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EuroFlow antibody panels for standardized n-dimensional flow
cytometric immunophenotyping of normal, reactive and
malignant leukocytes
JJM van Dongen1, L Lhermitte2, S Böttcher3, J Almeida4, VHJ van der Velden1, J Flores-Montero4, A Rawstron5, V Asnafi2, Q Lécrevisse4,
P Lucio6, E Mejstrikova7, T Szczepański8, T Kalina7, R de Tute5, M Brüggemann3, L Sedek8, M Cullen5, AW Langerak1, A Mendonça6,
E Macintyre2, M Martin-Ayuso9, O Hrusak7, MB Vidriales10 and A Orfao4 on behalf of the EuroFlow Consortium (EU-FP6, LSHB-CT-2006-
018708)

Most consensus leukemia & lymphoma antibody panels consist of lists of markers based on expert opinions, but they have not
been validated. Here we present the validated EuroFlow 8-color antibody panels for immunophenotyping of hematological
malignancies. The single-tube screening panels and multi-tube classification panels fit into the EuroFlow diagnostic algorithm
with entries defined by clinical and laboratory parameters. The panels were constructed in 2–7 sequential design–evaluation–
redesign rounds, using novel Infinicyt software tools for multivariate data analysis. Two groups of markers are combined in each
8-color tube: (i) backbone markers to identify distinct cell populations in a sample, and (ii) markers for characterization of specific
cell populations. In multi-tube panels, the backbone markers were optimally placed at the same fluorochrome position in every
tube, to provide identical multidimensional localization of the target cell population(s). The characterization markers were
positioned according to the diagnostic utility of the combined markers. Each proposed antibody combination was tested against
reference databases of normal and malignant cells from healthy subjects and WHO-based disease entities, respectively. The
EuroFlow studies resulted in validated and flexible 8-color antibody panels for multidimensional identification and characterization
of normal and aberrant cells, optimally suited for immunophenotypic screening and classification of hematological malignancies.
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INTRODUCTION
For more than two decades, immunophenotyping has been
providing relevant information for the diagnosis, classification
and monitoring of hematological malignancies.1,2 Together with
cyto/histomorphology and molecular (cyto)genetics, immuno-
phenotyping is crucial for the identification, enumeration and
characterization of leukemia and lymphoma cells. Consequently, it
has acquired a prominent position in the current World Health
Organization (WHO) classification of hematological malignancies.3

Preferably, the immunophenotypic profiles of suspected cells
should be compared with those of normal hematopoietic cells.
Immunophenotypic similarities between the suspected cells and
their potential normal counterparts allow the assignment of
such cells to a given hematopoietic cell lineage and maturational
stage, as well as the identification of aberrant phenotypes, such as
leukemia-associated immunophenotypes.4–14 Such immuno-
phenotyping requires careful selection of unique combinations
of individual markers based on their degree of specificity for the

identification of a given cell lineage, maturation stage and
aberrant phenotype, as well as the selection of appropriate
antibody clones and fluorochrome conjugates to be used in
multicolor combinations; the performance of these marker
combinations is even more relevant than that of the individual
markers. Consequently, such careful selection of reagents is
essential for the design of standardized multicolor antibody
combinations that provide unique staining patterns for each
normal or aberrant cell population in a given sample.6,15,16

Each marker combination should be designed to answer one or
multiple relevant clinical questions, through the identification,
enumeration and characterization of the relevant cell populations
in a sample. As the target cell population may not be known in
advance or might have been defined previously, a different
strategy is required in each situation. In the former situation, a
rapid screening step based on a limited number of antibodies
(preferably in a single tube) directed at differential identification of
all relevant cell subsets in the sample is generally most
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efficient7,17–20 (Figure 1). In the latter situation, usage of a full
antibody panel is recommended for the characterization and
diagnostic classification of the suspected cells, using several
(common) backbone markers for reliable and reproducible
identification of the target cells in each multicolor combination
of the antibody panel13,14,20–24 (Figure 1). Preferably, the single-
tube screening antibody panels and the multi-tube disease-
classification antibody panels fit in a diagnostic algorithm with
entries defined by clinical and laboratory parameters. Such a
diagnostic algorithm is proposed here by the EuroFlow Con-
sortium (Figure 1) as a critical prerequisite in the design of optimal
antibody panels for diagnostic immunophenotyping.25,26

Multiple consensus panels have been proposed in the last two
decades,12–14,21–23,26–29 but they typically included largely
overlapping lists of cluster of differentiation (CD) markers per
disease category. Virtually all consensus proposals lack information
about reference antibody clones for the proposed CD markers and
they only provide limited information on the most appropriate
combinations of relevant markers in multicolor antibody panels for
immunophenotypic diagnosis and classification of hematological
malignancies.12–14,21–23,26–29 Given the number of CD antigens, the
broad range of antibody clones and the variety of fluorochrome-
conjugated reagents currently available for each individual CD
marker, selection of optimal panels of reagents cannot be based
exclusively on experience and expert opinions. In contrast, this
requires extensive prospective testing in multicentric studies. The

evaluation of the performance of a given antibody conjugate may be
based on absolute measures (for example, fluorescence intensity and
stain index (SI) obtained for a given control cell population),30 but
these criteria may not apply once the marker is combined with other
reagents in a single-tube combination or a multi-tube antibody
panel. Therefore, each reagent needs to be evaluated for its unique
staining pattern obtained for the distinct cell populations in a
multidimensional space defined by all parameters of the newly
designed multicolor tube. Consequently, evaluation of the
immunophenotypic profiles of leukemia cell populations should
preferably be based on a detailed comparison of the phenotypes of
individual cells for all markers together, rather than on subjective
interpretation of arbitrary mean fluorescence levels (for example:
negative versus positive, dim versus strong, homogeneous versus
heterogeneous patterns) of a list of single markers. Visualization of
such multidimensional spaces and selection of the most relevant
parameters for optimal discrimination between the relevant
cell populations require new software tools. Such tools were
developed by the EuroFlow group and they proved to be essential
for the critical evaluation and (re)design of the antibody
combinations.31–33 Among the new tools, reference data files
of normal and distinct disease entities were built and the
panels evaluated through paired multidimensional statistical
comparisons of such normal versus disease-specific data files, as
well as of data files corresponding to different well-characterized
leukemia/lymphoma entities (Figure 2). In this way we could

Figure 1. Flowchart diagram of the EuroFlow strategy for immunophenotypic characterization of hematological malignancies. On the basis of
several entries of clinical and laboratory parameters, hematological malignancies are screened using a limited screening panel (i.e., typically
one single tube) prior to appropriate and comprehensive characterization using extended antibody combinations. Abbreviations: ALOT, acute
leukemia orientation tube; AML, acute myeloid leukemia; BC, blast crisis; BCP, B-cell precursor; BM, bone marrow; CLL, chronic lymphocytic
leukemia; CLPD, chronic lymphoproliferative disorders; CML, chronic myeloid leukemia; CSF, cerebrospinal fluid; FL, follicular lymphoma; HCL,
hairy cell leukemia; LN, lymph node; LST, lymphoid screening tube; MCL, mantle cell lymphoma; MDS, myelodysplastic syndrome; MPD,
myeloproliferative disorders; PCD, plasma cell disorders; PCST, plasma cell screening tube; PNH, paroxysmal nocturnal hemoglobinuria; SST,
small sample tube.
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objectively evaluate the overall performance of the proposed panels
for answering the specific clinical questions.
Here we describe the EuroFlow antibody panels developed

for comprehensive immunophenotypic diagnosis and classifica-
tion of hematological malignancies. The proposed panels were
initially designed based on the experience and knowledge
accumulated in the literature as well as in the individual

EuroFlow laboratories. Subsequently, they were optimized in
multiple successive evaluation rounds using large numbers of
patient samples in the participating laboratories, taking advantage
of the reference data files of normal and leukemia and lymphoma
samples and the new software tools. The panels are designed in a
flexible way to fit the needs of distinct diagnostic laboratories and
they can be applied in one or multiple sequential steps. For each

Figure 2. Schematic illustration of how reference data files of normal and leukemia/lymphoma cells were built and used for evaluation of
antibody panels and software-guided comparison of individual cell populations from a new interrogated sample. In panels a and b it is shown
how normal (green events in a) and tumoral plasma cells (red events in b) derived from six different normal (n¼ 3) and myelomatous (n¼ 3)
bone marrow samples stained with the plasma cell disorders (PCD) EuroFlow panel (12 different immunophenotypic markers grouped in two
8-color tube combinations) were selected and merged to create a new reference data file (c). In (d and e), it is shown how the PCD panel
allows clear discrimination between both types of plasma cells using principal component analysis (d) and prospective comparison and
classification of plasma cells from new independent bone marrow samples corresponding to a reactive plasmocytosis (green dots in the left
column of (e) clustered in the normal green plasma cell area in the lower plots), a multiple myeloma (MM) patient (brown dots in the right
column of (e) clustered in the aberrant plasma cell area in the lower plots) and an MGUS (monoclonal gammopathy of undetermined
significance) patient (blue dots in the middle column of panel e clustered into two distinct populations localized in the lower plots in the
normal and aberrant reference plasma cell areas, respectively). Each individual large and small circle represents median values for single
immunophenotypic parameters of the plasma cell populations shown in dot plot diagrams and the median fluorescence expression value for
all immunophenotypic parameters measured in the principal component (PC)1 versus PC2 plots for individual samples, respectively; contour
lines in these plots represent s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d., respectively).
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antibody panel, detailed information is provided about the design
procedure and about the utility, based on results derived from
prospective evaluation of large series of well-defined patient samples.

MATERIALS AND METHODS
Patient and control samples
Multiple types of biological samples were collected from healthy
volunteers and patients with suspicion or diagnosis of different types of
hematological malignancies and other non-clonal hematological and non-
hematological disorders, as specified later in each section of this paper.
The collected samples concerned peripheral blood (PB), bone marrow
(BM), fine needle aspirates (FNA), biopsies from lymphoid and non-
lymphoid tissues, cerebrospinal fluid (CSF) and vitreous samples. For all
patients with a hematological malignancy, the diagnosis was established
according to the WHO criteria.3

Informed consent procedures and forms were proposed and approved
at the first EuroFlow meeting (see the Editorial in this Leukemia issue).
Informed consent was given by donors or their guardians (for example,
parents) in case of children according to the guidelines of the local Medical
Ethics Committees and in line with the Declaration of Helsinki Protocol. All
participants obtained approval or no-objection from the local Medical
Ethics Committees for secondary use of remaining diagnostic material for
the EuroFlow studies, which also allows the inclusion of anonymized flow
cytometric results into a central (public) database to define reference
values for normal, reactive, regenerating and malignant cell samples.

Immunophenotypic studies
For immunophenotypic studies, all samples were systematically processed
in parallel with the EuroFlow protocol versus the local routine procedures.
Accordingly, the EuroFlow standard operating procedures (SOP) for
instrument setup, instrument calibration, sample preparation, immunos-
taining and data acquisition16 were used at individual centers in parallel
to the corresponding local protocols and techniques used for routine
diagnosis and classification of hematological malignancies according to
the WHO criteria. For data analysis, the Infinicyt software (Cytognos SL,
Salamanca, Spain) was used in parallel to the local data analysis software
programs and procedures.
For multivariate analysis of samples measured with the EuroFlow SOP and

antibody panels, the Infinicyt software was used. For this purpose, the merge
and calculation functions were applied for multi-tube panels prior to the
analysis, as described elsewhere.31,32 Briefly, prior to multivariate analyses, the
populations of interest were selected and stored each in a distinct data file.
Data files corresponding to the same cell population from an individual
sample but stained with a different antibody tube of a multi-tube panel were
merged into a single data file containing all information measured for that
specific cell population. In a second step, ‘missing’ data in one tube about
markers only stained in the other tubes were calculated using previously
described algorithms and tools implemented in the Infinicyt software.32

Consequently, the generated final data file contained data about each
parameter measured in the multi-tube panel for each of the events
composing the cell population in that data file (Figure 2). This data file was
further merged with the data files of other samples either to create a
reference pool of a population of normal, reactive or malignant cells or to
compare it with one or more of such reference pool data files, through
multivariate analysis, for example, principal component analysis (PCA).31

SECTION 1. ACUTE LEUKEMIA ORIENTATION TUBE (ALOT)

L Lhermitte1, V Asnafi1, J Flores-Montero2, Q Lécrevisse2, L Sedek3,
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BACKGROUND
Acute leukemias comprise a heterogeneous group of malignant
diseases characterized by clonal expansion of immature hemato-
poietic precursor cells. Current international classifications that are
used for therapeutic stratification categorize acute leukemias
mainly on the basis of the lineage of the blast cells and the type of
additional cytogenetic/molecular lesions and, to a lesser extent,
detailed immunophenotype.3 Two major categories of acute
leukemias are recognized: (i) lymphoid precursor neoplasms,
which are subdivided into B- and T-cell precursor acute
lymphoblastic leukemia/lymphoma (BCP-ALL and T-ALL,
respectively),34,35 and (ii) acute myeloid leukemia (AML) and
related precursor neoplasms.3 A small number of cases do not fit
into these two major groups because they either show no clear
evidence of differentiation along a single lineage or express
differentiation antigens highly specific of more than one lineage,
making assignment to a single lineage difficult.36 These cases
represent less than 5% of all acute leukemia cases36–38 and they
are categorized separately in the current WHO classification as
acute leukemias of ambiguous lineage, including both acute
undifferentiated leukemia (AUL) and mixed phenotype acute
leukemia (MPAL).36

Flow cytometry has an essential role in the diagnosis and
classification of acute leukemias.24,35,39 Together with cytomorphology
and cytochemistry, immunophenotyping is crucial for the detection and
lineage assignment of blast cells in suspected samples, including the
definition of acute leukemias of ambiguous lineage.37,38,40 Comparison
of the immunophenotypic features of blasts cells versus normal
hematopoietic precursors and immature cells contributes to the
definition of the stage of maturation arrest of the blast population
within the B- and T-lymphoid lineages as well as the neutrophilic,
monocytic, megakaryocytic or erythroid lineages. In addition, specific
immunophenotypic profiles have been associated with prognosis and/
or unique cytogenetic and molecular abnormalities.41–46 Finally, flow
cytometric immunophenotyping has also proven to be of great utility
for sensitive detection of low levels of residual blast cells and their
distinction from normal regenerating immature cells in the BM of acute
leukemia patients during treatment.47

During the past 5 years, the EuroFlow group has designed and
evaluated a set of 8-color antibody panels for the diagnosis and
classification of acute leukemias, which can be used in combination
with novel software tools in order to optimize flow cytometric
n-dimensional immunophenotypic characterization of blast cells. As for
most EuroFlow protocols, the acute leukemia panels were designed in
such a way that they can be applied in two consecutive steps
(Figure 1). Depending on the precise clinical question associated with a
sample suspected of containing blast cells, the first step includes a
single 8-color tube, the ALOT, complemented by a multi-tube panel
designed for full characterization of the malignancy. The choice of the
second panel depends on the results obtained with the ALOT, that is,
the antibody panel for confirmation and classification of BCP-ALL,
T-ALL, or the antibody panel for non-lymphoid acute leukemia, the so-
called AML/myelodysplastic syndrome (MDS) panel. Rare cases of
ambiguous lineage leukemias are identified with the ALOT as
requiring the use of more than one complementary panel
(for example, the BCP-ALL and AML/MDS panels). This section focuses
on the design and evaluation of the ALOT, whereas the subsequent
characterization panels are described below in other sections: BCP-ALL
(Section 5), T-ALL (Section 6) and AML/MDS (Section 7).

General principle for the design of the ALOT as an ‘orientation’
tube for blast cells
The ALOT was designed for initial assessment of the nature of
immature populations of hematopoietic cells in acute leukemia
samples (B- or T-lymphoid versus non-lymphoid lineage or mixed
phenotype) in order to allow appropriate orientation towards the
complementary BCP-ALL, T-ALL and AML/MDS antibody panels.
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More specifically, ALOT was designed for rapid and efficient
analysis of a sample, known to contain blasts according to
cytomorphology or when the clinical and/or laboratory data are
indicative for infiltration of the sample, for example, high white
blood cell (WBC) count in PB co-existing with one or multiple
cytopenias. However, screening for minimal numbers of blast cells
reflecting disseminated disease or exclusion of a hematological
malignancy in a systematic way is not possible with the ALOT
screening tube alone.

Selection of antibodies
The criteria for antibody selection of the ALOT in order to optimally
orientate the acute leukemia sample depend on lineage-associated
specificity and sensitivity of the recognized antigens. An ideal
orientation marker is constantly expressed by all cells of a single
lineage and shows no cross-lineage reactivity. With the potential
exception of cytoplasmic (Cy)CD3 in T-ALL patients,48 if we exclude
the exceptional cases of natural killer (NK)-cell acute leukemia,49

such a marker has not been identified. Because of
the inclusion of this antigen (CyCD3), the consequent need for
intracytoplasmic staining within the ALOT was assumed to be
essential. Very few membrane-bound target antigens are lineage
specific; for example, CD7 and CD19 are T- and B-lineage associated
markers, respectively, which are expressed in a significant number of
AML cases.50–55 Conversely, myeloid antigens such as CD13 and

CD33 can be frequently found in BCP-ALL or T-ALL.45,56–58 The very
few membrane-bound antigens that are stricto sensu lineage-specific
(for example, antigen receptors in lymphoid lineage) often appear
late at the cell surface membrane during physiological ontogeny
and, as such, they are expressed in only a minor subset of acute
leukemia cases, thus lacking sensitivity. Most lineage-specific
markers expressed at early stages of maturation are intracellular
markers (for example, CyMPO, CyLysozyme, CyCD3). We therefore
opted for a limited selection of intracellular and membrane-bound
markers to fit into a single 8-color tube.
Based on previous reports 27 and on our knowledge and

experience, all potentially valuable markers were considered.
These included, among others, CD7, CD5, CD10, CD13, CD19,
CD33, CD117, nuclear (Nu)TdT, HLADR, CyCD3, CyCD79a, CyMPO,
CyLysozyme and potentially also mixtures of markers (for example,
CD13þ 33). Noteworthily, virtually none of these markers perfectly
matched the aforementioned criteria. As lineage commitment has
to be assessed by flow cytometry on well-identified immature
cells, markers that could contribute to the definition of immaturity
and the identification of blast cells were considered
independently (for example, CD34, CD45, CD117 and NuTdT).
We then designed a list of markers that would be comparatively
evaluated following the criteria and rationale described below.
Differentiation of hematopoietic cells comes with a specific

pattern of CD45lo intensity correlated with both lineage and
maturation stage. Thus, CD45 was a major marker for (i)

Table 2. Utility of ALOT markers

Lineage markersTarget antigen Maturation markers

1st level 2nd level

Shared backbone markers

CyCD3 T T-ALL
CD45 Immature BCP-ALL/T-ALL/AML-MDS
CyMPO My
CyCD79a Ba

CD34 Immature BCP-ALL/AML-MDS
CD19 Bb BCP-ALL
CD7 Tb

SmCD3 Maturec T-ALL

Abbreviations: ALL, acute lymphoblastic leukemia; ALOT, acute leukemia orientation tube; AML, acute myeloblastic leukemia; B, B lineage; BCP, B-cell precursor;
Cy, cytoplasmic; MDS, myelodysplastic syndrome; My, myeloid lineage; Sm, surface membrane; T, T lineage. aAlso present in some T-ALL. bAlso present in some
AML. cSmCD3 is used as a maturity marker for T-lineage, as identification of suspected immature T-cells relies on detection of CyCD3þ /lo SmCD3� CD34þ /�

blasts.

Table 1. Design of ALOT in five consecutive rounds with inclusion of backbone markers in common with the acute leukemia panelsa

Fluorochromes and markersVersion (no. of cases
b
)

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700

1 (n¼ 35) SmCD3 CD45 CyMPO CyCD79a CD34 CD19 CD7 CyCD3
2 (n¼ 55) SmCD3 CD45 CyMPO CyCD79a CD34 CD19 CyCD3 CD7

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

3 (n¼ 102) SmCD3 CD45 CyMPO CyCD79a CD34 CD19 CD7 CyCD3
4 (n¼ 35) SmCD3 CD45 CyCD79a CyMPO CD34 CD19 CD7 CyCD3
5 (Final)c (n¼ 158) CyCD3T CD45B,T,M CyMPO CyCD79a CD34B,M CD19B CD7 SmCD3T

Abbreviations: AF700, alexa fluor 700; ALL, acute lymphoblastic leukemia; ALOT, acute leukemia orientation tube; AmCyan, Anemonia Majano cyan fluorescent
protein; AML, acute myeloblastic leukemia; APC, allophycocyanin; AUL, acute undifferentiated leukemia; BCP, B-cell precursor; Cy, cytoplasmic; Cy5.5, cyanin5.5;
Cy7, cyanin7; FITC, fluorescein isothiocyanate; H7, hilite7; MPAL, mixed phenotype acute leukemia; PacB, pacific blue; PacO, pacific orange; PE, phycoerythrin;
PerCP, peridinin–chlorophyll–protein; Sm, surface membrane. aFurther information about markers and hybridomas is provided in the Appendix. bA total of 385
acute leukemia cases were evaluated: 190 BCP-ALL, 57 T-ALL, 132 AML, 6 AUL/MPAL. cT¼backbone markers in common with T-ALL antibody panel;
B¼backbone markers in common with BCP-ALL antibody panel; M¼markers in common with AML/MDS antibody panel. Highlighted boxes: changes as
compared to previous version.
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identification of the suspected cell population on the basis of its
dim expression and, (ii) exclusion of normal residual cells.59–61 To
refine the blast cell gating and further confirm the immature
nature of the pathological population, CD34 was selected, as it is
expressed by a significant number of acute leukemias from any
lineage. Lineage-associated markers were then added for final
blast cell gating and assessment of blast cell lineage. CyMPO was
selected as a highly specific myeloid marker. CyCD3 was included
as a specific T-lineage marker, which should be interpreted in
combination with surface membrane (Sm)CD3 in order to identify
a CyCD3þ /SmCD3� /lo pattern, the most frequent phenotype of
T-ALL. CD19 was selected as a very sensitive B-lineage marker,
which is expressed during the early stages of B-cell commitment
as well as in virtually all BCP-ALL cases. However, CD19 lacks
specificity as it is also expressed in a subset of AML cases, albeit at
lower and more heterogeneous levels. Consequently, CyCD79a
was added to improve B-lineage assignment, even though it is
also expressed in t(8;21)+ AML cases50,51,54,55 and at low levels in a
significant number of T-ALL cases, particularly the immature and
T-cell receptor (TCR)gdþ T-ALL subgroups.62–64 Of note, CyCD79a
was preferred to CyCD22 because CD22 is not lineage specific as it
is also expressed at high levels in normal basophils, mast cells and
some dendritic cells.65–67 Finally, CD7 was selected because it is
positive in virtually all cases of T-ALL and in a subset of, usually
CyMPO-negative, AML. The other markers listed above were
discarded because they were felt to be not specific enough or
they have been found to be redundant with other markers. The
choice between NuTdT and CD34 was discussed extensively. For
this purpose, 34 cases were analyzed using TdT/CD34 in parallel,
including 17 BCP-ALL, 11 AML and 6 T-ALL; the value of each
marker was individually appreciated for gating of blast cells for all
cases. NuTdT and CD34 were found to be positive and informative
in 88 and 82% of BCP-ALL, 83 and 33% of T-ALL, and 18 and 55%
of AML cases, respectively. The utility of each marker was overall
strictly similar in this series (65% of CD34 or NuTdT positivity over
the different disease categories), supporting no evidence in favor
of one marker or the other. However, the contribution of
each marker did not affect the same cases as the expression of
TdT and CD34 was not systematically correlated (15% of cases
CD34þ /NuTdT� , 15% CD34� /NuTdTþ ). This highlighted a
certain complementarity of CD34 and TdT in this perspective.
Owing to constraints of 8-color cytometry, it was chosen to
include only one additional immaturity marker. CD34 had the
advantage of identifying immature cells of all lineages and was
finally selected in order to leave free the fluorescein
isothiocyanate (FITC) channel in favor of MPO staining in the
ALOT, and to serve as a valuable backbone marker in the BCP-ALL
panel, avoiding intracellular staining.

Design of the configuration of the ALOT antibody combination
Once the eight individual markers had been selected, the labeling
of antibodies and the specific fluorochrome configuration of the
ALOT had to be set. The final configuration of the ALOT (Table 1)
was designed to meet two criteria: (i) optimal detection of antigen
expression, which may be fluorochrome dependent, and (ii)
choice of backbone markers compatible with the different
subsequent acute leukemia characterization panels so that
information from the ALOT could be integrated with them in a
final multiparameter analysis of the whole blast cell phenotype.
This meant that the ALOT had to be developed in close synergy
with the design of the backbones of the three independent acute
leukemia characterization panels (BCP-ALL, T-ALL and AML/MDS
panels), and had to be re-tested following each modification
proposed for the characterization panels. Consequently, the CD45,
CD34 and CD19 markers of the ALOT also serve as backbone
markers when information regarding the ALOT is combined (using
the merge and calculation functions of the Infinicyt software) with

the BCP-ALL panel (see Section 5), whereas the CyCD3, CD45 and
SmCD3 markers serve as backbone markers when information
regarding the ALOT is combined with the T-ALL panel (see Section 6).
CD45 and CD34 are also used as part of the backbone marker set in
the AML/MDS panel (see Section 7) (Table 1). The final combination
designed with selected target antigens is given in Table 1, whereas
the utility of the included markers is summarized in Table 2. Details of
the antibody clones are given in the Appendix.

Evaluation of the ALOT antibody combination
The final ALOT antibody combination is the result of multiple
evaluation rounds performed to optimize the choice of target
antigens, antibody clones, fluorochrome conjugates and combina-
tions of antibody reagents. In total, the ALOT underwent five
rounds of evaluation and redesigning with repeated testing on
both control and patient samples, including the full spectrum of
acute leukemias (Table 1). After analysis of a total of 385 acute

Figure 3. Results of the preliminary study aimed at classification of
158 acute leukemia samples—89 B-cell precursor (BCP)–acute
lymphoblastic leukemia (ALL), 27 T-ALL, 37 acute myeloid leukemia
(AML) and 5 acute undifferentiated leukemia (AUL)/mixed pheno-
type acute leukemia (MPAL)—stained with the final acute leukemia
orientation tube (ALOT) combination, using principal component
(PC) analysis implemented in the automated population separator
(APS) software tool. Comparison of well-defined entities (BCP-ALL,
blue circles; T-ALL, green circles; AML, orange circles) shows proper
classification based on the expression of the eight antigens,
evaluated in the ALOT. Light scatter characteristics were excluded
from APS analysis, despite their utility, because standardization had
not been achieved at the time those samples were analyzed. Each
individual circle represents a single case expressed as median
fluorescence expression for all immunophenotypic parameters
measured in the PC1 versus PC2 plot, and contour lines represent
s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d.,
respectively). The five most informative markers contributing to the
best discrimination between each diagnostic entity are displayed at
the bottom in a decreasing order of percentage contribution to the
discrimination.
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leukemia samples, this tube was considered to be in its ‘final’
configuration. In every evaluation round, variants of the final
combination were tested in a multi-centric setting in parallel to in-
house procedures. Briefly, initial testing (n¼ 35) included CD45�
Anemonia Majano cyan fluorescent protein (AmCyan) and CD3-
Alexa Fluor 700 (AF700) fluorochrome-conjugated antibodies
(version 1 of the ALOT) (Table 1). A CD7-AF700 antibody was
tested (n¼ 55) in order to leave the bright Allophycocyanin (APC)
fluorochrome position for the CyCD3 reagent (version 2 of the
ALOT), but the obtained results were not satisfactory (Table 1). We
then compared the performance of CD45� Pacific Orange (PacO)/
CD3�APC Hilite7 (APCH7) (version 3 of the ALOT) with that of
CD45�AmCyan/CD3�AF700 reference conjugates and validated
the switch of fluorochromes to these new conjugates (n¼ 102
samples) to get rid of spectral overlap and to improve the

brightness of the stainings. Additional evaluations were per-
formed to evaluate alternative clones and antibody labeling, such
as the CD79a and MPO FITC and phycoerythrin (PE) conjugates
(n¼ 35) (version 4 of the ALOT) (Table 1). Given that CD3
antibodies are conjugated to almost all new fluorochromes, we
also checked which fluorochrome was optimal for CyCD3
detection and whether the fluorochrome-conjugated CD3 anti-
bodies were affected by fixation and permeabilization reagents
(for example, Fix&Perm, An der Grub, Vienna, Austria). To address
this issue, 26 acute leukemia samples (including 3 T-ALL) were
analyzed with both SmCD3-APCH7/CyCD3-PacB and CyCD3-
APCH7/SmCD3-PacB combinations in parallel. The average SI of
residual T-cells measured was 14.9/19.9 with the SmCD3-APCH7/
CyCD3-PacB combination, and 8.7/45.6 for the CyCD3-APCH7/
SmCD3-PacB combination. In addition, the mean SI of blast cells
from T-ALL samples was improved with CyCD3-PacB staining as
compared to CyCD3-APCH7 (27.2 versus 9.1 for CyCD3-PacB and
CyCD3-APCH7, respectively). We concluded that the results were
in favor of a CyCD3-PacB/ SmCD3-APCH7 combination for optimal
detection of immature T-cells. This allowed us to fix the final
configuration, which was validated on 158 acute leukemia
samples (version 5 of the ALOT): CyCD3� PacB/CD45� PacO/
CyMPO� FITC/CyCD79a� PE/CD34� peridinin chlorophyll pro-
tein complex-Cyanin5.5 (PerCPCy5.5)/CD19� PECyanin7 (Cy7)/
CD7�APC/SmCD3�APCH7 (Table 1). Overall, data obtained with
the final ALOT version performed similarly to local immunostain-
ing protocols and the stainings were of good quality, with low
background signal when fresh and well-preserved samples (within
48 h of sample collection) were analyzed. Deviation from this
criterion was notably associated with increasing background for
CyCD3 and CD45, and with unspecific SmCD3 staining that could
generally be solved by discarding dead cells.

Conventional and multivariate analysis of acute leukemia samples
The ALOT configuration was fixed based on conventional analysis
of an initial series of 158 acute leukemia samples (89 BCP-ALL,

Figure 4. Automated population separator (APS) results of the
multicentric evaluation of the acute leukemia orientation tube
(ALOT) in its final configuration (n¼ 466 acute leukemia patients).
The orientation tube was applied routinely to any fresh acute
leukemia sample in all eight EuroFlow laboratories. Results are shown
as APS plots of the eight fluorescence parameters with exclusion of
light scatter parameters—B-cell precursor (BCP)–acute lymphoblastic
leukemia (ALL), blue circles; T-ALL, green circles; acute myeloid
leukemia (AML), orange circles. (a) APS classification of the three well-
defined entities; the principal component (PC)1-axis (horizontal)
displays B- versus T-discrimination, while the PC2-axis (vertical)
highlights lymphoid versus myeloid separation. (b–d) Pairwise APS
analyses of the same well-defined acute leukemia samples. The PC1
axis (horizontal) highlights intergroup differences, while PC2 axis
(vertical) displays intragroup heterogeneity. Classification is optimal
between BCP-ALL and T-ALL and between BCP-ALL and AML, whereas
some overlap is seen between T-ALL and AML, mainly reflecting the
intrinsic biological proximity of certain cases (n¼ 8/466; 1.7%) of these
diseases. (e, f ) Overlay of unusual acute leukemia samples on
the previously defined classification APS plots. Noteworthily, most of
these mixed phenotype acute leukemia (MPAL), TþMyeloid (My),
Myþ B and Tþ B cases map in between the two groups they belong
to phenotypically, while acute undifferentiated leukemia (AUL) cases
fall together with the non-lymphoid AML cluster. MPALTþMy, yellow;
MPAL BþMy, grey; MPAL Bþ T, brown; AUL, blue. Each individual
circle represents a single case expressed as median fluorescence
expression for all immunophenotypic parameters measured in the
PC1 versus PC2 plot, and contour lines represent s.d. curves (dotted
and continuous lines represent 1s.d. and 2s.d., respectively). The five
most informative markers contributing to the best discrimination
between each diagnostic group are displayed at the bottom of the
corresponding APS plot, in a decreasing order of percentage
contribution to the discrimination.
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27 T-ALL, 37 AML and 5 AUL/MPAL). Testing of these 158 cases
demonstrated a good correlation between the information
provided by the ALOT and both in-house procedures and the
final WHO diagnosis of the disease. Further confirmation of the
ALOT efficiency was obtained when processing the data using
PCA (Infinicyt software). For this purpose, each ALOT data file was
computed to specifically extract the information relative to the
blast cell population. All blast populations derived from the
different patients were merged into a single data file and plotted
together on an automated population separator (APS) view for
automated separation by PCA.16 Pairwise analysis of well-defined
acute leukemia subgroups (BCP-ALL versus T-ALL versus AML)
demonstrated excellent discrimination of each disease category,
thus validating the approach (Figure 3). The dispersion observed
within each reference group resulted mainly from the wide
spectrum of CD34 expression in all acute leukemia subgroups.
The approved ALOT antibody combination was then prospec-

tively applied to an independent cohort of 483 freshly collected
acute leukemia cell samples (see Supplementary Table 1), mainly PB
(n¼ 89) and BM (n¼ 387), but also some pleural effusions (n¼ 5)
and other body fluids (n¼ 2) obtained from well-characterized
patients at diagnosis: 259 BCP-ALL, 131 AML, 76 T-ALL and 17 AUL/
MPAL patients. An additional set of 41 samples were analyzed,
consisting of other hematological malignancies (n¼ 21), such as
diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL),
chronic mature B-cell lymphoproliferative disorders (B-CLPD) and
MDS as well as reactive BM samples (n¼ 20). Each ALOT data file
contained information on 6000 blast cells per patient and was
analyzed with the Infinicyt software, through direct PCA compar-
ison with each pair of acute leukemia groups (BCP versus T-ALL,
T-ALL versus AML and BCP-ALL versus AML), as described above.
Analysis of the 466 well-characterized BCP-ALL, T-ALL and

AML cases, excluding AUL/MPAL samples (n¼ 17), highlighted
excellent discrimination of BCP-ALL from both AML and T-ALL
(Figure 4). Conversely, T-ALL and AML groups showed a slight
overlap. Of note, overlapping cases (8 out of 466; 1.7%)
mostly corresponded to immature T-ALL that fit the criteria for
the recently described Early T-cell Progenitor T-ALL68–71 with
unusually dim CyCD3 expression and immature CD34þ /CyMPO� /

CD7þ AML (Figure 5). This overlap may be the consequence of
both the biological nature of immature blast cells in some
malignancies arrested at a stage of early T/Myeloid (My)
development, and the high phenotypic heterogeneity of non-
lymphoid acute leukemia cases. Consequently, the few cases
falling into this area should optimally benefit from further
evaluation with both the T-ALL and AML antibody panels for
complete characterization. Acute leukemia of ambiguous lineage
(17 out of 483; 3.5%) represented a heterogeneous category,
which comprised AUL (n¼ 4; 0.8%), MPAL with populations from
two distinct lineages (n¼ 2; 0.4%) and MPAL with mixed lineage
cell populations, either TþMy or BþMy (n¼ 11; 2.3%) (Figure 4).
When analyzed in the multidimensional PCA view with supervision
based on well-defined entities, MPAL from TþMy lineages and
also Bþ T cases clustered as expected in between T-ALL and AML
and in between BCP and T-ALL clusters (Figure 4). By contrast,
MPAL from BþMy lineages appeared more heterogeneous, as
two out of five patients clustered in between AML and BCP-ALL,
whereas two other clustered together with BCP-ALLs, and one was
close to T-ALL, owing to strong expression of CD7. Noteworthily,
three out of four AUL cases fall together with non-lymphoid
acute leukemia reference cases (Figure 4). These preliminary data
suggest that multicenter collection of a large number of
ambiguous lineage cases combined with multivariate comparison
of harmonized results will be useful to significantly increase the
number of these rare cases in order to delineate relevant
individual clusters within the AUL/MPAL category that will
pinpoint cases that require specific characterization. Until such
an extensive database becomes available, cases with suggestive
phenotypic criteria of belonging to AUL/MPAL groups according
to the WHO classification should be analyzed with appropriate
combinations of characterization panels (for example, T-ALL and
AML/MDS antibody panels).
In order to further appreciate the value of each individual

marker included in the ALOT the analyses were repeated leaving
out each marker one by one. Results showed that most of the
seven-antibody combinations led to decreased discrimination of
the well-defined entities (Figure 6). For instance, exclusion of
CD19 significantly impaired separation of BCP-ALL and AML

Figure 5. Pairwise analysis of the T-acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) cases after AML subsetting based
on CD7 and CyMPO expression. AML are known to harbor major phenotypic heterogeneity. Pairwise analysis of AML phenotypic subsets
demonstrates that the overlap is mainly observed with CyMPO� CD7þ AML cases and immature forms of T-ALL (T-ALL, green; CyMPOþ AML,
red; CyMPO� /CD7� AML, orange; CyMPO� /CD7þ AML, yellow). Each individual circle represents a single case expressed as median
fluorescence expression for all immunophenotypic parameters measured in the principal component (PC)1 versus PC2 plot, and contour lines
represent s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d., respectively). The five most informative markers contributing to
the best discrimination between each entity group are displayed at the bottom of the corresponding automated population separator (APS)
plot, in a decreasing order of percentage contribution to the discrimination.
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entities, as expected, while not much affecting discrimination
between the T-ALL and BCP-ALL groups. Comparable results were
obtained for all markers left out, except for CD45 and SmCD3,

whose exclusion had less impact on the quality of the separation
of all the well-characterized acute leukemias. These markers
contributed less to disease category discrimination but were not
excluded from the combination and replaced by alternative
markers because they were considered as essential for blast cell
identification and gating, as well as for exclusion of residual non-
malignant cells.
Finally, the non-acute leukemia samples (n¼ 41) were directed

with the ALOT towards the expected panels for further investiga-
tion. For example, mature B cell disorders were assigned to a BCP-
ALL panel, which allowed exclusion of BCP-ALL and orientation
towards the appropriate B-CLPD panel. It should be noted that
the ALOT alone using conventional or multivariate analyses did
not allow direct re-orientation towards the mature B-CLPD panel
as the CD45þ /CyCD79aþ /CD19þ /CD34� phenotype may corre-
spond to both CD34� BCP-ALL or a mature B-cell malignancy,
regardless of the level of CD45 expression.72,73 The BCP-ALL panel,
however, contains sufficient markers for re-orientation towards
the mature B-CLPD panel, such as surface immunoglobulin (Ig)
light and heavy chains as well as numerous maturation markers.
As expected, non-AML myeloid neoplasias (for example, MDS)
clustered with the AML group and were consequently oriented to
be further analyzed with the AML/MDS panel.

CONCLUSION
Here we propose an extensively tested single tube with an 8-color
combination of antibodies for fast and efficient orientation
of acute leukemias towards a full BCP-ALL, T-ALL and/or AML
characterization panel. An unprecedented orientation efficiency
of 98.3% for non-ambiguous lineage cases was shown for the
ALOT combination with a series of 483 newly diagnosed
acute leukemia cases, tested prospectively at different centers.
In addition, the combination of ALOT and the PCA-based
data analysis facilitates standardized orientation to subsequent
BCP-ALL, T-ALL and/or AML panel testing. However, the classifica-
tion efficiency using APS remains to be assessed with an
independent validation cohort. Interestingly, in a small fraction
of cases an early T/My precursor acute leukemia phenotype is
likely to be identified using multivariate analysis, which requires
evaluation by more than one of the three acute leukemia multi-
tube antibody panels. Phenotypic clustering of unusual MPAL/AUL
cases will require collection of a vast number of acute leukemia
cases in order to achieve relevant characterization. Altogether, the
ALOT tube with an integrated analysis of only eight markers
appeared to be an unprecedentedly strong tool for acute
leukemia diagnosis.

Figure 6. Utility of each individual marker of the acute leukemia
orientation tube (ALOT) for acute leukemia classification. Classifica-
tion results using all possible seven-parameter combinations show
the importance of the contribution of the eighth marker for disease
category discrimination. The quality of separation between classical
entities is demonstrated using a traffic-light code: optimal separa-
tion (42s.d.), green; minimal overlap (1–2s.d.), orange; major
overlap (o1s.d.), red. Automated population separator (APS) plots
illustrate the corresponding pairwise comparisons (B cell precursor
(BCP)–acute lymphoblastic leukemia (ALL) cases are plotted as blue
circles; T-ALL as green circles; and acute myeloid leukemia (AML) as
orange circles). Each individual circle represents a single case
expressed as median fluorescence expression for all immunophe-
notypic parameters measured in the principal component (PC)1
versus PC2 plot, and contour lines represent s.d. curves (dotted and
continuous lines represent 1s.d. and 2s.d., respectively).
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SECTION 2. LYMPHOID SCREENING TUBE (LST)
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BACKGROUND
Detection of phenotypically aberrant and clonal mature lympho-
cytes is the diagnostic hallmark of CLPD. Clonogenic events lead
to the expansion and accumulation of mature-appearing lympho-
cytes, which carry a proliferative and/or survival advantage over
their normal counterparts.3,74,75 This translates into progressive
accumulation of clonal cells and their products causing PB
lymphocytosis, BM lymphoid infiltrates, enlargement of one or
multiple other tissues (for example, lymphadenopathy, splenomegaly
or other organomegalies), or emergence of a serum monoclonal
component. Clinical manifestations and laboratory findings related to
the increased number of lymphocytes initiate the diagnostic process
(Figure 1).18,25 In addition, functional impairment of tissues involved
may also lead to other diagnostic information such as cytopenias,
unexplained neurological symptoms or serous effusions. Such findings
demand for assessment of the potentially clonal or neoplastic nature
of the mature lymphoid cells in the various types of samples.25,76

Identification of the abnormal lymphocytes and their discrimination
from normal and reactive cells are key steps in establishing a final
diagnosis. For decades now, flow cytometric immunophenotyping is
an essential tool for the diagnostic screening of CLPD and for the
specific identification and characterization of the expanded aberrant
lymphocytes.6 Over the years, refined approaches have been
developed and technical improvements implemented, which have
progressively increased the efficiency of the diagnostic screening of
CLPD in clinical and laboratory settings.17,20

Identification of aberrant lymphocytes currently not only relies
on their absolute or relative numerical distribution among all
lymphocytes (or their subpopulations) present in the sample, but
also mainly searches for more specific ‘abnormal’ immunopheno-
typic profiles. These aberrant phenotypes can clearly be distin-
guished from normal and reactive patterns in the multi-
dimensional space generated by unique combinations of fluor-
ochrome-conjugated antibodies.17,18,77–81

At present, different screening protocols, antibody panels and
immunophenotypic strategies are used in individual laboratories
for the diagnostic screening of CLPD. Overall, it is well established
that in a diagnostic screening step the informative markers
have to be combined whenever possible in a single antibody
combination that can easily and rapidly be evaluated. The
EuroFlow group has designed and evaluated an 8-color, 12-
marker combination of antibodies aiming at the detection of
phenotypically aberrant populations of mature B-, T- and NK-cells
in PB, BM, lymph nodes (LN) and other types of body tissues and
fluids, which can be used in the diagnostic screening of CLPD. The
use of multiple markers conjugated with the same fluorochrome
has previously been shown to be highly efficient in this regard.17

The antibody combination in this so-called lymphoid screening
tube (LST) can guide the need for further immunophenotyping
with appropriate antibody panel(s) for accurate diagnosis and
classification of lymphoid malignancies, through the EuroFlow
panels for B-CLPD (Section 8), T-CLPD (Section 9), and NK-CLPD
(Section 10).

Selection of antibodies for the LST
The selection of antibodies for the LST aimed at dissecting
lymphoid cells into their major subsets with a set of reagents that
can simultaneously define aberrant and clonal phenotypes.
Initially CD45 was selected for the definition of the compartments
of mature versus immature lymphocytes, CD3 for the identifica-
tion of T-cells, and both CD19 and CD20 for the selection of B-cells;
these two later markers combined with CD45 would allow
subsetting of B-cells into mature B-lymphocytes (CD19þ , CD20hi

and CD45hi) and B-cell precursors (CD19þ , CD20� /lo, CD45lo). NK-
cells should fulfill the criteria for mature lymphocytes (CD45hi,
SSClo) in the absence of CD19 and SmCD3 expression and they
would typically show reactivity for CD56. Additional markers
selected for further subsetting of B, T and NK-cells included (i)
SmIgk and SmIgl, (ii) CD4, CD8 and CD56 and (iii) CD56 and CD8,
respectively. These antibody reagents were arranged into a first
version of an 8-color LST (Table 3). Additional markers were
incorporated later in the LST, as described below.

Design and construction of the LST
The proposed LST resulted from a seven-round process of design–
evaluation–redesign of successive LST versions (Table 3). Each LST
version was evaluated in a large but variable number of normal,
reactive and neoplastic patient samples obtained at diagnosis, as
well as at other disease time-points (for example follow-up or
relapse) in parallel to the routine approaches applied for the same
purpose in each participating center (6 EuroFlow centers).
Version 1 of the LST (Table 3) proved to be a robust

combination that allowed identification of the major populations
of normal B-, T- and NK lymphocytes and their dissection into up
to 13 normal lymphoid subsets: (1) SmIgkþ and SmIglþ mature
B-cells, plus B-cell precursors; (2) CD4þ , CD8hi, CD4þ /CD8lo and
CD4� /CD8� /lo T-lymphocytes (further divided according to CD56
expression into (i) CD4þ /CD56� and CD4þ /CD56þ ; (ii) CD8hi/
CD56� and CD8hi/CD56þ ; (iii) CD4þ /CD8lo/CD56� and CD4þ /
CD8lo/CD56þ ; and (iv) CD4� /CD8� /lo/CD56� and CD4� /CD8� /lo/
CD56þ T-cells, respectively) and both CD56þ /CD8� /lo and CD56hi/
CD8� /lo NK-cells.
Preliminary evaluation of version 1 of the LST showed comparable

results with the local approaches for the identification of the aberrant
or clonal populations of mature lymphocytes (n¼ 9/9). However, this
LST version also showed some unwanted features. First, some
antibody conjugates performed below the expectations, for example,
CD19-AmCyan and CD3-APC Cyanin7 (Cy7) showed suboptimal
performance (low resolution) for positive identification of the B- and
T-cell populations (data not shown). Second, the relatively high
degree of overlap observed between the PE and PerCPCy5.5
fluorochrome conjugates pointed out the need for a more careful
selection of the markers included at these two fluorochrome
positions. Finally, inclusion of CD38 was proposed to provide
complementary information about the normal versus abnormal
populations of lymphocytes, to increase the accuracy in discriminat-
ing B-cell precursors, particularly in BM samples, and to evaluate
additional subsets of B-cells (for example, plasma cells).
The reagents selected to solve these issues were included in

version 2 of the LST, evaluated in 29 samples (Table 3). New CD19
and CD20 conjugates were selected and subsequently incorpo-
rated in the LST owing to poor resolution of CD19� PerCPCy5.5
and CD20�APC, which were replaced in version 3 by CD19�
PECy7 and CD20� PacB. In version 4, CD38�AF700 was replaced
by a custom-made CD38�APCH7 conjugate (Table 3). These
fluorochrome replacements resulted in a better discrimination
between the different populations of normal lymphoid cells. With
this version only CD45�AmCyan showed suboptimal perfor-
mance owing to relatively high fluorescence spillover into the FITC
channel. Additionally, inclusion of an anti-TCRgd antibody was
proposed for version 5 of the LST (Table 3). This ‘matured’ LST
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combination (version 5; Table 3) was further fine-tuned by
replacing CD45�AmCyan by CD45� PacO and including CD5
as a consequence of the direct comparison performed between
versions 5 and 6 of the LST. As a result, a final configuration
(Table 3) was proposed with two options where either CD10
(version 6) or CD38 (version 7) were alternatively used. Addition of
CD10 was proposed for achieving a more B-cell-oriented approach
in laboratories in which B-CLPD represent the major fraction of the
screened samples.
In summary, major modifications introduced after the evalua-

tion of each version of the LST (versions 1–7) aimed at (i) inclusion
of markers that could improve the characterization of the
lymphoid cell populations (for example, CD38), (ii) increasing the
number of lymphocyte populations and subsets that could be
identified (for example, positive discrimination of plasma cells
with CD38 or discrimination of TCRgdþ from other CD8� /lo T-cells
with the anti-TCRgd antibody) and/or (iii) providing a more
sensitive and/or robust orientation on subsequent analyses, when
lymphocyte populations with aberrant or clonal phenotypes had
been detected (for example, CD5 and CD38 in B- and/or T-cell
CLPD). Further description of the utility of each marker included
in the final version is shown in Table 4. In addition, redistribution
of informative markers into other fluorescence channels and
substitution of specific fluorochromes showed improved perfor-
mance.16 These fluorochrome changes also aimed at keeping
compatibility with other EuroFlow panels designed in parallel, for
example, markers and conjugates used as backbone markers for
the B-CLPD panel were kept in the LST at the same fluorochrome
positions (see Section 8).
As already mentioned above, in some fluorescence channels

two different markers were placed to overcome the limited
number of fluorescence detectors with respect to the number of
antibody reagents required. Of note, each pair of markers placed
in the same fluorescence channel was arranged in such a way that
their expression is typically restricted to different (normal or

abnormal) cell populations that could be positively identified and
selected using other markers present in the LST. Based on this
strategy, any potential misinterpretation of their differential
reactivity in normal and neoplastic lymphoid cells can be avoided,
if all major and minor phenotypes of normal lymphocytes are
identified (for example, CD20lo cytotoxic T-cells). 82

Evaluation of the LST, version 6
Version 6 of the LST was designed to address the potential need
for a more B-cell-oriented approach in some laboratories by
including slight modifications with respect to version 5. These
modifications aimed at increasing the sensitivity of the combina-
tion using relevant markers for B-cell subsetting in combination
with SmIgk and SmIgl. Inclusion of CD5 and CD10 in version 6
(versus version 5) was considered appropriate because of the
kinetics of expression of the two markers during normal
maturation and their association with specific B-CLPD entities;74

CD38 was taken out to leave room for these markers. Version 6 of
the LST was extensively evaluated for the screening of abnormal
lymphoid cells at one center in a total of 1285 samples of which
504 harbored one or two aberrant or clonal B-cell populations. Of
the 504 infiltrated samples, 19 (5%) demonstrated a double clonal
B-cell population, one of which was CD10þ (Figure 7), and 5 cases
(1%) had a minor CD10þ clonal B-cell population (SmIg light-
chain-restricted expression). Without CD10, 5 of these 24 cases
would not have been detected at the initial screening step
(5/1285; 0.4%). Version 6 of the LST was also evaluated against
version 5 by the USAL group in 12 additional samples (7 PB and 5
BM). In this evaluation, both LST versions showed infiltration in
4/12 samples (2 abnormal B- and 2 abnormal T-cell populations).
Overall, it was concluded that the combined usage of CD5 and
CD10 in version 6 might result in a higher sensitivity for detection
of small CD10þ B-cell clones, especially when minor clones
composed of a mixture of phenotypically (CD5þ and/or CD10þ )

Table 3. Design of LST in seven consecutive roundsa

Version (no. of cases)b Fluorochromes and markers

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC APCCy7

1 (n¼ 9) CD45 CD19 SmIgl SmIgk CD8 CD56 CD4 and CD20 SmCD3

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700

2 (n¼ 29) SmCD3 CD45 CD8 and SmIgl CD56 and SmIgk CD19 CD4 CD20 CD38
3 (n¼ 97) CD20 CD45 CD8 and SmIgl CD56 and SmIgk CD4 CD19 SmCD3 CD38

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC APCH7

4 (n¼ 26) CD20 CD45 CD8 and SmIgl CD56 and SmIgk CD4 CD19 SmCD3 CD38
5 (n¼ 19) CD20 CD45 CD8 and SmIgl CD56 and SmIgk CD4 CD19 and

TCRgd
SmCD3 CD38

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

6c,d (n¼ 12) CD4 and
CD20

CD45 CD8 and SmIgl CD56 and SmIgk CD5 CD19 and
TCRgd

CD10 SmCD3

7 (Final) (n¼ 271) CD4 and
CD20

CD45 CD8 and SmIgl CD56 and SmIgk CD5 CD19 and
TCRgd

SmCD3 CD38

Abbreviations: AF700, alexa fluor 700; AmCyan, Anemonia Majano cyan fluorescent protein; APC, allophycocyanin; BM, bone marrow; Cy7, cyanin7; FITC,
fluorescein isothiocyanate; FNA, fine needle aspirate; H7, hilite7; LNB, lymph node biopsy; PacB, pacific blue; PacO, pacific orange; PB, peripheral blood; PB-
MNC, PB mononuclear cells; PE, phycoerythrin; PerCPCy5.5, peridinin–chlorophyll–protein–cyanin5.5; Sm, surface membrane. aFurther information about
markers and hybridomas is provided in the Appendix. bA total of 463 samples (292 PB, 13 PB-MNC, 127 BM, 20 LNB, 8 FNA, 3 other types of samples) was
evaluated. Among them, 384 abnormal lymphoid populations were detected: 266 B (1 showed an immature B-cell phenotype), 95 T, 23 NK. No abnormal
lymphoid population could be detected in 90 cases (healthy donors and non-infiltrated samples). cSamples included for evaluation of this version were stained
in parallel with version 5. dOne center tested this combination in an additional group of 1285 cases. Results were always concordant with local routine
diagnostics. Single cases might include more than one abnormal population. One sample showed abnormal lymphoplasmocytoid cells and four cases
displayed abnormal plasma cell populations. Highlighted boxes: changes as compared to previous version.
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distinguishable B-cell populations coexist and sample availability
for further stainings is limited, hampering full immunophenotypic
characterization with the B-CLPD panel.

Evaluation of the LST, version 7
The aim of the LST was to detect any mature lymphoid
malignancy in a diagnostic screening phase. In line with this
aim, CD5 has added value for the immunophenotypic evaluation
of T- and NK-cells. CD10 may contribute to the screening of T-cell
malignancies, particularly for the detection of CD4þ /CD10þ cells

in the diagnosis of some cases of angioimmunoblastic lymphoma,
but such lymphomas more frequently show other phenotypic
aberrancies such as coexistence of a CD4hi/SmCD3� /lo T-cell
phenotype.83 In turn, CD38 would further allow positive
identification of plasma cells and it provides valuable
information when evaluating a wide range of lymphoid
malignancies including large cell lymphomas with MYC
translocations (for example, BL and transformed DLBCL),
follicular lymphoma, plasmablastic lymphoma, plasma cell
disorders (PCD) and other B-CLPD with plasmacytoid
differentiation.3 Consequently, versions 5 and 6 were merged

Figure 7. Evaluation of the performance of versions 6 (a) and 7 (b) of the lymphoid screening tube (LST). Illustrating example of a peripheral
blood sample stained with LST version 6 and LST version 7. (a.1, b.1) Show the presence of a numerically increased B-cell population (46.7%
and 50.1%, respectively) (green dots). Principal component analysis (PCA) of the B-cells evidenced the presence of up to three different B-cell
populations (a.2) with version 6 of the LST tube, while with version 7 only two populations could be discriminated (b.2). Conventional
bivariate dot plot analysis showed that the two major B-cell populations (red and yellow dots) corresponded to two different B-cell clones
displaying distinct surface membrane immunoglobulin (SmIg) light-chain phenotypes: SmIgkþ /SmIgl� /CD20hi/CD5� (red dots; 32.8% and
33.5% in a and b, respectively) and SmIgk� /SmIglþ /CD20þ /CD5lo (yellow dots; 13.9% and 16.6% in a and b, respectively). Both B-cell
populations were clearly detected with the two LST versions (a.3, a.4 and b.3, b.4). Further phenotypic characterization of these two B-cell
populations evidenced the presence of a minor CD10þ B-cell (sub)population (brown dots) within the SmIgk-restricted B-cells (3.94% of all
B-cells; a.5). In this case, CD38 expression (b.5) added no further information; however, it should be noted that the abnormal phenotypic
profile of the two major B-cell clones granted their further immunophenotypic characterization by the application of the B-CLPD panel, which
finally evidenced the CD10þ /SmIgkþ restricted (sub)population.

Table 4. Utility of LST markers for identification of lymphoid cells in patients with CLPD

Marker Main normal population(s)
identifieda

Positive
diagnosis

Population
subsetting

Diagnostic
subclassification

Potential minimal
disease value

Prognostic
relevance

CD45 Mature lymphocytes and B-cell
precursors

X X

CD19 B-cells, T- and NK-cells by
exclusion

X X X

CD20 B-cells, T- and NK-cells by
exclusion

X X X X

SmIgl
and k

SmIgþ B-cells X X X

CD38 Plasma cells and B-cell
precursors

X X X X X

SmCD3 T-cells, B- and NK-cells by
exclusion

X X X

CD4 CD4þ T-cells X X X X
CD8 CD8hi T-cells and CD8lo NK-cells X X X X
CD56 NK-cells X X X
TCRgd TCRgdþ T-cells X X X
CD5 T-cells X X X

Abbreviations: CLPD, chronic lymphoproliferative disorders; LST, lymphoid screening tube; Sm, surface membrane. aSome markers may be aberrantly
expressed in other abnormal lymphoid populations.
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into a final LST version, which incorporated CD5 and CD38 but not
CD10 (Table 3): version 7 of the LST.
In a final stage, version 7 of the LST underwent evaluation in all

participating EuroFlow centers and included 271 samples (175 PB,
75 BM, 14 LN biopsies, 5 LN FNA, 1 pleural fluid and 1 ascitic fluid).
In 228/271 samples (84%) an aberrant lymphoid population was
detected with a median percentage of infiltration of 31% of the
total number of leukocytes (range: 0.04� 98%). A 100% con-
cordance was obtained when compared with routine approaches
in each participating center, with sensitivity down to 0.1% for
detection of small aberrant lymphoid cell populations.
In summary, version 7 enabled a complete phenotypic

evaluation of all relevant mature lymphoid compartments in
samples most frequently used to screen for mature lymphoid
malignancies such as PB, BM and LN tissues. Version 7 includes
markers that identify and quantify the populations of interest,
allows their detailed subsetting and also detects the most
frequent phenotypically aberrant patterns for the markers
included. Additionally, version 7 showed an optimal efficiency in
guiding the selection of complementary antibody panels for a
more complete immunophenotypic characterization of any
abnormal lymphoid population present in the sample, at
frequencies X0.1%. Finally, usage of CD45, CD19 and CD20 in
common to the B-CLPD panel and careful avoidance of redundant
stainings further facilitates full integration of the LST as tube 1 of
the B-CLPD panel (see Section 8) (Figure 1).

Multivariate analysis of normal lymphocyte cell populations
All samples that were obtained from normal healthy donors
(n¼ 22, 19 PB and 3 BM; mean age: 36±14 years, 9 males and 13

females) were analyzed using conventional approaches for the
identification of all major normal lymphoid populations contained
in them, such as B- (SmIgkþ , SmIglþ ); T- (CD4þ , CD8hi, CD4þ /
CD8lo, CD4� /CD8� /lo/TCRgd� and CD4� /CD8� /lo/TCRgdþ ) and
NK-cells (in addition to the positive identification of plasma cell)
for a total of 105 cells measured per sample (Figure 8). Among
the normal PB samples (n¼ 19), lymphoid populations were
distributed as follows—mean (range): total lymphocytes, 23.9%
(11–42.2%); T-cells, 19.1% (8.2–36%); CD4þ T-cells, 10.1%
(4.1–18%); CD8hi T-cells, 7.3% (2.3–17.2%); CD4� /CD8� /lo/
TCRgd� , 0.4% (0.1–1%); CD4� /CD8� /lo/TCRgdþ , 1% (0.01–3.1%);
B-cells, 2.2% (0.4–5%); SmIgkþ B-cells, 1.3% (0.2–3.2%); SmIglþ

B-cells, 0.9% (0.2–2.4%); k/l ratio, 1.5 (1.1–2.2); total NK-cells, 2.6%
(1.3–5.7%); and plasma cells: 0.06% (0.01–0.45%).
Afterwards, the lymphoid cell populations from the different

normal PB samples were gated and data stored in a separate data
file for each population.32 Subsequently, the data files were
merged to create a pool of normal reference cells for each of the
above-listed cell populations. PCA showed that when individually
considered, all normal lymphocyte populations clustered together
in the APS (principal component (PC)1 versus PC2) view of the
Infinicyt software according to their normal phenotypic profile in
the 10-dimensional space generated by the light scatter and
fluorescence emissions measured with the LST (Figure 9).

Multivariate analysis of suspicious lymphoid populations
Once the normal B-, T-CD4þ , T-CD8þ and NK-cell reference
databases were constructed, multiparametric comparison of each
corresponding B-, T- and NK-cell population from each individual
sample suspected of carrying a CLPD (n¼ 249) versus the normal

Figure 8. Illustrative example of the immunophenotypic profile of the lymphocyte populations present in normal peripheral blood stained
with the lymphoid screening tube (LST) (version 7). (a) Typical profile of mature lymphocytes (brown dots) for light scatter parameters and
CD45. (b) Phenotype of normal mature B-cells for the B-cell-associated markers in the LST combination with a normal distribution according to
surface membrane (Sm) light-chain expression (SmIgkþ B-cells are painted as dark green dots and SmIglþ B-lymphocytes as light green
dots). (c) The phenotypic features of normal mature T-cells as defined by the expression of relevant markers in the combination (CD4þ T-cells:
dark blue dots; CD8hi T-cells: blue dots; CD4� /CD8� /lo/TCRgd� T-cells: light blue dots; and CD4� /CD8� /lo/TCRgdþ T-cells: cyan dots). (d)
Phenotypic pattern of normal peripheral blood NK-cells (yellow dots) for SSC, CD56, CD19/TCRgd, SmCD3, CD38, CD5, CD8 and CD20/CD4
with version 7 of the LST.
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reference pool was performed using the APS tool (Infinicyt
software). Overall, our results showed an overlap for most cell
populations present in every sample with their corresponding
pool of normal reference cells. However, 149/150 aberrant B-cell
populations were also detected (99.4%) in samples showing
the presence of clonal B-CLPD populations. In one case, the
phenotypic profile of the neoplastic B-cells overlapped with that
of normal B-cells and their presence could only be confirmed
when light-chain-restricted B-cell subsets were evaluated because
of an altered SmIgk/SmIgl B-cell ratio.
Similarly, aberrant T-cell populations were detected in 61/65

T-CLPD (94%). In detail, phenotypically abnormal CD4þ /CD8� /lo

T-cells were identified in 33/36 cases with CD4þ /CD8� /lo T-CLPD
infiltrated samples; in the other three samples in which CD4þ /
CD8� /lo clonal T-cells could not be easily discriminated from
normal cells based on their phenotype, an abnormally increased
number of CD4þ T-cells was found (CD4þ T-cells represented
99.2 and 19.6% of the total number of lymphocytes in two PB
samples and 85.1% of the total number of lymphocytes in a LN
biopsy sample), which should also lead to further evaluation of
CD4þ T-cells with the T-CLPD EuroFlow panel (Section 9).
In addition, aberrant CD8hi/CD4� T-cells were clearly found
outside the normal CD8hi T-cell cluster in 13/14 cases (93%) with
monoclonal expansions; the other case showed abnormally high
CD8þ T-cell numbers. Finally, abnormal populations of CD4� /
CD8� /lo/TCRgd� T-cells (n¼ 3), CD4� /CD8� /lo/TCRgdþ T-cells
(n¼ 11) and CD4þ /CD8þ T-cells (n¼ 1) were detected in all cases

carrying neoplastic infiltration by these typically minor T-cell
populations.
Regarding NK-cells, abnormal populations could be clearly

discriminated from normal NK-cell phenotypes in 17/18 cases with
NK large granular lymphocytic (LGL) leukemia. In the remaining
sample, the altered NK-cell population showed only partial overlap
with the normal NK-cell phenotype; such phenotypic differences
also required further evaluation.
In summary, the LST detected aberrant B-, T- or NK-cell

immunophenotypes in 149/150 (99.4%) of B-CLPD and in 78/83
(94%) of T/NK-CLPD, with an overall frequency of 97.4%. The
remaining six cases displayed either partially aberrant phenotypes
(n¼ 1) or increased numbers of the suspicious lymphoid
population, all of which would lead to further confirmatory
phenotypic evaluation.

CONCLUSION
In this section a single 8-color LST was designed, evaluated,
redefined and re-evaluated for a total of seven sequentially
improved versions. The proposed final EuroFlow LST version
(version 7) showed 100% concordance with routine approaches.
Furthermore, our results confirm the utility of the proposed LST
combination to discriminate between normal and abnormal
lymphoid cells, based on the detection of aberrant immunophe-
notypic characteristics in the LST combination in virtually all
abnormal B-cell populations (499%) and most (X94%) LGL

Figure 9. Illustrative automated population separator (APS)—principal component (PC)1 versus PC2 views of B-, CD4þT-, CD8hi T- and NK-
cells, defined by their immunophenotypic profile obtained with the markers included in the lymphoid screening tube (LST) (version 7). As
illustrated, normal B-, CD4þ T-, CD8hi T- and NK-cells from different samples clustered together on either single or bimodal distribution (green
lines in the upper row). In this row, the bimodal distribution of normal B-cells reflects the differential expression of surface membrane
immunoglobulin (SmIg) k versus l light chains. The middle row illustrates examples of cases (red dots) in which all cells within the leukemic
cell population were phenotypically aberrant and clearly separated from the corresponding pool of normal B-, T CD4þ , T CD8hi and NK-cells,
respectively (green lines). In the lower row, examples of cases in which variable numbers of normal and aberrant or clonal lymphoid cells (both
depicted as red dots) coexist in the same sample are shown. Note that part of the red dots in the lower row corresponding to normal cells
tend to fall within the normal reference pool (cluster of red dots inside the green lines) resembling their distribution, while clonal/aberrant
cells (cluster of red dots outside the green lines) are clearly separated from the normal cell cluster. Contour green lines represent s.d. curves
(dotted and continuous lines represent 1s.d. and 2s.d., respectively from normal B-, T- or NK-cell phenotypes).
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NK-cells and CLPD T-cells, with an overall efficiency of 97.4%
(sensitivity of down to 10� 3). In the other few CLPD cases (n¼ 6;
2.6%), a typically altered numerical distribution would also require
further confirmatory testing.

SECTION 3. SMALL SAMPLE TUBE (SST)

AW Langerak1, L Martin-Martin2, J Almeida2, J Flores-Montero2,
M Cullen3, E Mejstrikova4, D Tielemans1, J Vermeulen1, HK Wind1,
VHJ van der Velden1, A Orfao2 and JJM van Dongen1
1Erasmus MC, Rotterdam, The Netherlands; 2USAL, Salamanca, Spain;
3UNIVLEEDS, Leeds, UK and 4DPH/O, Prague, Czech Republic

BACKGROUND
Central nervous system (CNS) localization is a relatively rare
complication of a systemic non-Hodgkin lymphoma, although the
exact frequency varies per histological subtype (from o5% in
low-grade B-cell lymphomas to B20% in aggressive B-cell
lymphomas).84–89 CNS localization of lymphoma is associated
with an unfavorable outcome.90 In turn, some patients present
with neurological symptoms that could be compatible with a CNS
lymphoma, but without evidence for lymphoma elsewhere in the
body. Primary CNS lymphoma (PCNSL) is even less frequent than
secondary CNS localization of a systemic lymphoma, but has a
similar poor clinical course.
Intra-ocular lymphomas (IOL) can present as a primary event in

the eye (PIOL), or as a clinical manifestation in parallel to or
following CNS lymphoma (reviewed by Chan91 and Coupland92).
The majority (60–85%) of PIOL patients develop CNS lymphoma
within 2–2.5 years after initial diagnosis.92 The two types of
lymphomas thus form a spectrum of the same disease termed
oculo-cerebral lymphomas (PIOL/PCNSL). IOL can also present as
secondary localizations of a systemic lymphoma (secondary IOL).
PIOL are estimated to account for up to 1–2% of all extranodal
lymphomas.92 PIOL are mostly of the B-cell type (DLBCL), whereas
T-cell type IOL are often associated with cutaneous T-cell
lymphomas or other systemic T-cell lymphoma.92 Over the last
two decades an increase in PCNSL, and potentially also PIOL, has
been seen in immunocompromised individuals. PIOL occur in
adult individuals (average age 50–60 years) and typically present
as chronic, often refractory, uveitis or vitritis, the so-called
masquerade syndrome.91,92 This masquerade syndrome is the
reason for a considerable delay (8–21 months) in establishing a
correct diagnosis.92

In the diagnostic process of patients with neurological and/or
ophthalmologic symptoms that could be indicative of CNS
lymphoma or IOL, lumbar puncture and vitrectomy are performed
to obtain CSF and vitreous biopsy material, respectively. In
contrast to most other materials, CSF and vitreous biopsies pose
difficulties to the diagnostic process owing to the fact that both
types of samples almost systematically present with low cell
numbers. In such pauci-cellular or ‘small’ samples it is of utmost
importance to obtain maximal information from minimal numbers
of cells. Traditionally, cytomorphology has been the gold standard

technique for the detection of malignant leukocytes in both CSF
and vitreous material for diagnostic purposes.93,94 Even though
positivity can be highly specific for a CNS lymphoma or IOL
diagnosis, the risk of false-negativity in cytomorphology is
high.87,88,95 This is related to the poor cell viability in these
materials, as well as the often troublesome discrimination
between benign and malignant cells on top of the low cell
numbers.87,96,97 Other studies exploit Ig and/or TCR gene
analysis,91,98,99 but the pitfall of coincidental, non-reproducible,
amplification in case of small cell numbers (pseudoclonality) has
to be considered.
Multiparameter flow cytometric immunophenotyping combines

high specificity with good clinical sensitivity. Several studies
indeed underline the importance of multiparameter flow cyto-
metric immunophenotyping for efficient and reliable diagnosis
versus exclusion of CNS lymphoma or IOL localizations.87–90,100–105

For CSF analysis multiple 3-, 4-, 6- or even 8-color single-tube
screening panels and protocols have been described (see Kraan
et al.106 for an extensive review and description of labelings and
methods). In this section we discuss the design and evaluation of
the 8-color EuroFlow SST and related sample preparation
protocols aimed to evaluate CSF and vitreous biopsy samples, in
patients suspected of lymphoma.

Design of the EuroFlow small sample screening tube
The EuroFlow group designed an 8-color flow cytometric labeling
aimed at screening for lymphoma in ‘small samples’ from CSF and
vitreous material obtained from suspected cases. As the SST
should enable optimal detection and identification of all possible
cell types in pauci-cellular materials, a series of antibodies had to
be included in a single tube. Thus, the markers that were selected
included the pan-leukocyte marker CD45, as well as markers for
positive identification of mature B-cells (CD19, CD20) and their
SmIg light chain subsets (anti-SmIgk, anti-SmIgl), and both T-cells
and NK cells (SmCD3, CD4, CD8, CD56). Additional markers like
CD14 (monocytes) and CD38 (plasma cells) were selected to
identify all possible cell types in a more complete way. To
accommodate all these markers in one tube, at three different
fluorochrome positions two antibodies were selected that appear
on different cell types in a mutually exclusive manner: (a) CD8 and
SmIgl expressed by T- and B-cells, respectively, (b) CD56 and
SmIgk present on T/NK- and B-cells, respectively, and (c) SmCD3
and CD14 markers specific for T-cells and monocytes/macro-
phages, respectively (Table 5). In this way a single 8-color/11-
antibody tube was developed that allows complete typing of all
relevant cell types in small samples. In combination with the
forward and side scatter (FSC, SSC, respectively) features, 13
parameters are available to characterize cells present in CSF and
vitreous biopsy. Through appropriate gating strategies, SmIgk and
SmIgl positivity can be evaluated within the CD19þ B-cell
fraction, and CD4 and CD8 reactivity within the SmCD3þ T-cell
fraction, as also described above in Section 2 for the LST (see also
Figure 10 for an illustration of the gating strategy). For most
positions, the fluorochrome-conjugated antibodies from the LST
were selected. In addition, CD14 was placed in combination with

Table 5. Composition of SST for detection of lymphoid cellsa

Fluorochromes and markers

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

CD20 CD45 CD8 and SmIgl CD56 and SmIgk CD4 CD19 SmCD3 and CD14 CD38

Abbreviations: APC, allophycocyanin; Cy7, cyanin7; FITC, fluorescein isothiocyanate; H7, hilite7; PacB, pacific blue; PacO, pacific orange; PE, phycoerythrin;
PerCPCy5.5, peridinin–chlorophyll–protein–cyanin5.5; Sm, surface membrane; SST, small sample screening tube. aFurther information about markers and
hybridomas is provided in the Appendix.
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SmCD3 as a CD14�APC conjugate, which proved to perform in
optimal conditions.

Evaluation of the SST
The EuroFlow SST has been tested on a cohort of 164 samples that
have been collected within the EuroFlow Consortium. These
included 23 vitreous biopsies with a clinical suspicion of IOL and
141 CSF samples. Both groups of samples typically contained low
numbers of cells, ranging from o100 to tens of thousands. As
controls, 11 CSF samples from patients with an initial diagnosis of
acute leukemia or Hodgkin lymphoma were studied, plus 15 CSF
samples from patients with a clinical suspicion of (early) multiple
sclerosis. In the remaining 115 CSF samples and the 23 vitreous
biopsies, lymphoma localization was suspected. CSF and vitreous
samples were collected in tubes with a small volume (a few ml) of
culture medium plus 0.2% bovine serum albumin (BSA, SIGMA-
ALDRICH, St. Louis, MO, USA) or 10% fetal calf serum
(FCS, Invitrogen, Carlsbad, CA, USA) for a better cell viability,
or in tubes prepared with 0.2 ml of Transfix (Cytomark,
Buckingham, UK) (Tubes&Transfix, Immunostep SL, Salamanca,

Spain). Upon arrival in the laboratory, cells were centrifuged and
the pellet was resuspended in 200 ml phosphate buffer saline
þ 0.5% BSA. Out of this cell suspension, one-third of the volume
was initially used for the EuroFlow SST labeling. For sample
preparation the EuroFlow protocols were adapted to previously
described89 consensus recommendations using a wash, stain, lyse
and wash procedure.
In the CSF control group (multiple sclerosis, acute leukemia,

Hodgkin lymphoma samples), the majority of the CSF cells that
could be identified with the SST labeling corresponded to
T-lymphocytes, whereas the remaining cells were monocytes
and B-lymphocytes (Table 6). Of note, no CD45lo blasts could be
identified in the CSF samples of acute leukemia patients. In turn,
no aberrant B- or T-cell populations were seen in the vast majority
(104/115) of the CSF samples that were taken because of a clinical
suspicion of lymphoma (Figure 10). In 96 (out of these 104)
samples that showed enough viable cells for evaluation, the
majority of cells identified with the SST labeling also concerned
T-lymphocytes (Table 6). Likewise, in the majority (21/23) of
vitreous biopsies no aberrant B- or T-cell populations were found
either (Table 6); notably, the number of cells in these vitreous

Figure 10. EuroFlow small sample tube (SST) analysis of a cerebrospinal fluid (CSF) (a) and a vitreous biopsy (b) sample with a normal
composition of B- and T-lymphocytes. Based on a FSC/SSC/CD45 gating strategy, CD19þ B-cell and SmCD3þ T-cell populations are identified.
Even though the surface membrane immunoglobulin (SmIg) k and l markers are both present in combination with other antibodies with the
same fluorochrome, SmIgkþ (green dots) and SmIglþ (purple dots) cells can be discerned by gating on the CD19þ B-cell population. In both
samples the SmIgkþ and SmIglþ B-lymphocytes show a normal ratio (1.5). In a similar way, a normal distribution of CD4þ (orange dots) and
CD8þ (blue dots) T-lymphocytes (ratio 2.3 and 2.1 in a and b, respectively) was detected within the CD3þ T-cell population.

Table 6. Normal and reactive leukocyte populations in 120 CSF and 21 vitreous biopsies without evidence for lymphoma

Group of samples % B-cells SmIgk/SmIgl
ratio

% T-cells CD4/CD8
ratio

%
Monocytes

%
Neutrophilsa

% Other undefined
events

CSF (n¼ 120) 2.0 (0-32) 1.4 (1.0–3.0) 50.8 (0–100) 1.8 (0.1–10.9) 2.1 (0–17) 15 (0–99) 31.7 (0–100)

CSF (MS cohort) (n¼ 15) 1.1 (0–4) 1.3 (1.0–2.5) 48.2 (0–89) 2.8 (1.7–7) 3.6 (0–14) 23 (0–99) 21.9 (0–100)
CSF (other HM suspicion)
(n¼ 9)

0.2 (0–1) NA 40.8 (0–100) 1.2 (0.2–3.5) 0 9 (0–14) 49.8 (0–100)

CSF (lymphoma suspicion)
(n¼ 96)

4.8 (0–32) 1.4 (1.0–3.0) 63.4 (0–100) 1.7 (0.1–10.9) 2.6 (0–17) 13 (9–59) 23.4 (0–100)

Vitreous fluid (n¼ 21) 0.5 (0–4) NA 51.7 (3–100) 2.1 (0.3–49) 2.6 (0–14) 18 (0–53) 14.1 (0–100)

Abbreviations: CSF, cerebrospinal fluid; HM, hematological malignancy; MS, multiple sclerosis; NA, not applicable due to lack of B-cells in most samples; Sm,
surface membrane. Results are expressed as mean value and range between brackets. aCells that cluster based on FSCint/SSChigh/CD45lo can be considered as
neutrophilic granulocytes (see also Discussion). NA, not applicable because of too few B-cells.
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biopsies was generally rather low, although the relative composi-
tion was similar to the CSF samples with a predominance of
T-lymphocytes (Table 6). None of these cases was diagnosed as
CNS lymphoma or IOL.
In nine CSF samples with an initial suspicion of lymphoma,

clonal B-cell populations were observed, in keeping with a primary
B-cell lymphoma or a localization of a systemic B-cell lymphoma/
B-cell leukemia. Out of the 23 vitreous biopsies two cases also
showed an aberrant B-cell population; in one sample this
concerned a SmIgkþ B-cell population (Figure 11a), whereas the
other contained a suspect SmIg-negative B-cell population that
had also been seen in a previous vitreous biopsy of the same
patient. Furthermore, in two other CSF samples from patients
with lymphoma suspicion, aberrant T-cell populations (CD3lo/
CD4þ /CD8þ ) were identified (Figure 11b), compatible with their
diagnosis of T-cell lymphoma and post-transplant lymphoproli-
ferative disorder. Finally, two CSF samples in the control group
without lymphoma suspicion showed clear infiltration by plasma
cells (CD38hi-expressing cells) (Figure 11c), indicative of a systemic
plasma cell malignancy that was indeed found upon further

diagnostic work-up. Overall, the results in all analyzed samples
underline the power of this 13-parameter flow cytometric SST
strategy to reliably confirm or exclude lymphoma localization
(Table 7). All these cases (13/13) lacked a final cytological
diagnosis of CNS disease or IOL. Despite this, they all had a final
diagnosis of CNS lymphoma or IOL based on histopathology,
image analysis or the clinical behavior of the disease.

Detection of aberrant lymphoid populations by PCA

Multivariate analysis of the B- and T-cell populations contained in
individual CSF and vitreous biopsy samples was performed using
PCA implemented in the Infinicyt software APS1 view (PC1 versus
PC2) to evaluate the rate of detection of aberrant B- and T-cell
phenotypes in cases showing CNS lymphoma or IOL. To this end,
we used several of the clonal CSF cases from the current cohort as
well as newly obtained clonal CSF cases. In the APS view we found
a clear separation of clonal B-cells from normal B-cells for 2/4
SmIgkþ cases and 5/5 SmIglþ cases, and for the one case in
which SmIg expression could not be determined (overall: 8/10

Figure 11. EuroFlow small sample tube (SST) analysis of a vitreous biopsy with prominent clonal B-cell population (a) and of two cerebrospinal
fluid (CSF) samples with prominent aberrant T-cell (b) and plasma cell (c) populations. In a, following FSC/SSC/CD45 gating, B- and T-cell
populations are identified; the B-cell population shows a heavily skewed surface membrane immunoglobulin (SmIg) k/SmIgl ratio (410), in
line with an aberrant, monoclonal large B-lymphocyte population (red dots); residual CD4þ (orange dots) and CD8þ (blue dots)
T-lymphocytes show a normal distribution (ratio 2.5). In b, upon FSC/SSC/CD45 gating, a T-cell population is identified, which consists of
CD4þ (orange dots) and CD8þ (blue dots) T-lymphocytes, as well as an aberrant T-cell population (red dots) characterized by a SmCD3lo/
CD4hi/CD8lo phenotype; the presence of this aberrant T-cell population could be caused by a contaminating blood cell population, given the
fact that neutrophil granulocytes can be discerned based on FSC versus SSC and CD45 versus SSC features. Based on a FSC/SSC/CD45 gating
strategy, a T-cell population with a normal CD4/CD8 ratio (1.6) can be identified (but no B-cell population) in c. In addition, in this panel a
rather large population of CD19� /CD3� cells (red dots) is seen that upon further analysis appeared to be CD38hi and CD56� , in keeping with
a plasma cell origin; further diagnostic work-up of this patient indeed showed an aberrantly similar plasma cell population in the bone
marrow (data not shown).
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cases; data not shown). The parameters that contributed most to
the APS-based discrimination were FSC and CD38, and to a lesser
extent also CD20 and SSC. In contrast, the two other SmIgkþ

cases were hardly or not discernible from control B cells or from
SmIgkþ B-cells unless an increased ratio between SmIgkþ /
SmIglþ B-cells was considered to be an informative parameter for
lymphoma diagnosis. The two aberrant T-cell cases could easily be
discerned from control CD4þ and CD8þ T-cells in the APS view,
with CD4 and CD8 as the most discriminative markers. Of note,
cytomorphological analysis was not informative in any of these
cases (n¼ 12/12), as already described above.

CONCLUSION
The EuroFlow SST and sample preparation protocol is a powerful
diagnostic tool for the evaluation of CSF and vitreous samples
with a clinical suspicion of primary lymphoma. The 13-parameter
SST labeling allows for a complete typing of the most relevant
leukocyte populations in these samples. While in the majority of
cases the presence of aberrant B-, T- or plasma cell populations
can be confirmed or excluded using the APS view of the Infinicyt
software, in the remaining cases an aberrant B-cell population was
more difficult to establish, unless an altered SmIgk/SmIgl B-cell
ratio was considered as indication for a diagnosis of B-cell
lymphoma. A more detailed characterization of the aberrant B- or
T-cell populations requires the use of even more markers in
additional labelings, which are currently in progress.

SECTION 4. PLASMA CELL DISORDERS (PCD) PANEL

J Flores-Montero1, J Almeida1, JJ Pérez2, A Mendonça3, P Lucio3,
R de Tute4, M Cullen4, A Rawstron4, E Mejstrikova5, L Sedek6,
T Szczepański6, L Lhermitte7, VHJ van der Velden8, H Wind8,
S Böttcher9, MB Vidriales2, T Kalina5, J San Miguel2 and A Orfao1
1USAL, Salamanca, Spain; 2HUS, Salamanca, Spain; 3IPOLFG, Lisbon, Portugal;
4UNIVLEEDS, Leeds, UK; 5DPH/O, Prague, Czech Republic; 6SUM, Zabrze,
Poland; 7AP-HP, Paris, France; 8Erasmus MC, Rotterdam, The Netherlands and
9UNIKIEL, Kiel, Germany

BACKGROUND
PCD are a group of diseases most frequently characterized by the
presence of clonal (neoplastic) plasma cells in the BM capable of
secreting a clonal Ig that can be detected in serum and/or urine.107 It
includes different disease entities, among which multiple myeloma
(MM) and monoclonal gammopathy of undetermined significance
(MGUS) are the most prevalent and representative entities.108

Additionally, other less frequent clinical conditions associated with
predominant extramedullary plasma cell localizations and organ failure
due to the accumulation of the clonal Ig (for example, amyloidosis) are
also included in this group of diseases.107,109

Multiparameter flow cytometric immunophenotyping, together
with other clinical, radiological, biochemical and hematological
data, provides relevant information for the diagnosis and
classification of PCD. At the same time, flow cytometry contributes
to prognostic stratification and minimal residual disease (MRD)
monitoring of myeloma patients after therapy.9,110 The most
relevant clinical information provided by flow cytometry relies on
the identification and enumeration of aberrant versus normal/
polyclonal BM plasma cells: a higher ratio between both
populations is associated with malignancy (for example MM
versus MGUS). Similarly, the presence of o5% of normal plasma
cells within the total population of BM plasma cells is also
associated with a poor outcome in symptomatic MM and a higher
risk of progression in both MGUS and smoldering MM.111 In turn,
several individual markers and immunophenotypic profiles (for
example, CD28 and CD117 expression) have been associated with
specific genetic changes and disease outcome.112

Over the years, an increasing number of markers have been
identified that provide relevant immunophenotypic information
on plasma cells.9,110,112–122 Current consensus recommendations
include CD38, CD138 and CD45 (together with light scatter
characteristics) as the best combination of backbone markers for
the identification and enumeration of plasma cells.9,110,114 In
addition, expression of CD19, CD56, CD117, CD20, CD28, CD27 and
CD81, together with CyIg light-chain restriction, is associated with
unique phenotypic patterns that allow clear discrimination
between normal/reactive versus clonal plasma cells.9,110,113,118

More recently, it has also been shown that the plasma cell surface
expression of b2 microglobulin negatively correlates with its
serum levels and a better outcome, becoming an additional
potentially attractive prognostic marker.121

On the basis of existing data and consensus recommendations,
the EuroFlow Consortium has designed and evaluated a two-tube,
12-marker panel of antibodies devoted to: identification of plasma
cells, discrimination and enumeration of coexisting normal/
reactive and aberrant plasma cell populations and detailed
characterization of additional cell surface markers that contribute
to the definition of aberrant phenotypes or disease prognosis.

Selection of antibody reagents
Four distinct backbone markers (CD38, CD138, CD45 and CD19)
were selected for efficient identification of plasma cells (CD38 and
CD138) and to distinguish between normal/reactive and clonal
plasma cell compartments based on their most frequent aberrant
phenotypes (CD38, CD19 and CD45). Another eight markers were
additionally selected for the characterization of plasma cells with
the PCD panel configured as two-tube, 12-marker combination
(Table 8). The overall panel of markers aimed at: (i) positive
identification of plasma cells in BM, and other less frequent types

Table 7. SST results of 149 pauci-cellular samples

Suspected lymphoma localized in CSF (n¼ 115)
Aberrant/clonal B-cell populationsa (1 CLL, 1 BL, 1 FL, 1 MCL, 2 DLBCL, 1 B-cell lymphoma, 2 unknown) 9/115 (7.8%)
Aberrant T-cell populations (T-cell lymphoma, PTLD) 2/115 (1.7%)

Suspicious of other hematological malignancies in CSF (n¼ 11)
Aberrant plasma cell populations 2/11 (18.1%)

Vitreous biopsy (n¼ 23)
Aberrant/clonal B-cell populations 2/23 (8.7%)

Total 15/149b (10.0%)

Abbreviations: BL, Burkitt lymphoma; CNS, central nervous system; CLL, chronic lymphocytic leukemia; CSF, cerebrospinal fluid; DLBCL, diffuse large B-cell
lymphoma; FL, follicular lymphoma; FNA, fine needle aspirate; IOL, intraocular lymphoma; PTLD, post-transplant lymphoproliferative disease; SST, small sample
tube. aIn one case a parallel FNA brain biopsy was analyzed next to the CSF sample, showing the same aberrant B-cell population; bAll positive cases had a final
diagnosis of CNS lymphoma or IOL based on histopathological analysis, imaging techniques and/or the clinical behavior of the disease, while none of the
negative cases by the SST labeling was diagnosed as having CNS or IOL.
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of samples evaluated for PCD; (ii) accurate discrimination between
normal/reactive and aberrant plasma cells, because of their
distinct immunophenotypic profiles; and (iii) confirmation of their
clonal nature, as evidenced by a restricted CyIg light-chain
expression or expression of X2 aberrant markers (Table 9). The
final proposed configuration of the panel (version 6; Table 8)
resulted from evaluation of six sequential versions of distinct two-
tube combinations of the above-listed backbone (n¼ 4) and
characterization markers (n¼ 8). Interestingly, no inclusion or
exclusion of markers was required during this process, as from
initial testing the proposed markers proved to accomplish the
tasks they were selected for. However, modifications were
required with regard to the specific combination of fluoro-
chrome-conjugated reagents of the selected antibodies because
of their technical features and performance. Technical issues that
had an impact on the performance of specific fluorochrome-
conjugated reagents included high plasma-cell baseline auto-
fluorescence levels, the amount of expression of individual
markers (for example, CD38, b2 microglobulin, CD56) and the
availability of high-quality fluorochrome-conjugated antibodies
for specific fluorochrome positions. In turn, particular attention
was also paid to the light scatter positioning of plasma cells
(SSCint/hi and FSChi) with the PCD panel that should completely fall
inside the pre-established FSC and SSC window of analysis,
influencing the reference values set for these parameters.

Design of the PCD EuroFlow panel
Overall, we analyzed a total of 214 samples from 10 healthy
subjects and 204 patients. The samples included monoclonal
gammopathies studied at different time points of the disease

(diagnosis, relapse and follow-up) (n¼ 173), B-CLPD patients
studied at diagnosis who showed no involvement of the plasma
cell compartment (n¼ 3) and patients with non-plasma cell-
related diseases (Non-PCD) (n¼ 28). In brief, 114 BM were
analyzed with versions 1� 5 (Table 8) and 100 samples (98 BM
and two PB) with the final version 6 of the PCD panel (Table 8).

Table 8. Design of PCD tubes in six consecutive testing roundsa

Version (no. of cases)b Tube Fluorochromes and markers

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC APCCy7

1 (n¼ 7) 1 CD45 CD19 CyIgl CyIgk CD38 CD56 CD27 c

2 CD45 CD19 b2 micro CD81 CD38 CD117 CD28 c

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700

2 (n¼ 68) 1 CD19 CD45 CyIgl CyIgk CD138 CD56 CD27 CD38
2 CD19 CD45 b2 micro CD81 CD138 CD117 CD28 CD38

3 (n¼ 5) 1 CD19 CD45 b2 micro CyIgl CD138 CD56 CyIgk CD38
2 CD19 CD45 CD27 CD81 CD138 CD117 CD28 CD38

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC APCH7

4 (n¼ 29) 1 CD19 CD45 b2 micro CyIgl CD138 CD56 CyIgk CD38
2 CD19 CD45 CD27 CD81 CD138 CD117 CD28 CD38

5d (n¼ 5) 1 CD19 CD45 CD138 CyIgl b2 micro CD56 CyIgk CD38
2 CD19 CD45 CD138 CD81 CD27 CD117 CD28 CD38

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

6 (Final) (n¼ 100) 1 CD45 CD138 CD38 CD56 b2 micro CD19 CyIgk CyIgle

2 CD45 CD138 CD38 CD28 CD27 CD19 CD117 CD81

Abbreviations: AF700, alexa fluor 700; AmCyan, Anemonia Majano cyan fluorescent protein; APC, allophycocyanin; BM, bone marrow; Cy, cytoplasmic; Cy7,
cyanin7; FITC, fluorescein isothiocyanate; H7, hilite7; MGUS, monoclonal gammopathy of undetermined significance; b2 micro, b2 microglobulin; MM, multiple
myeloma; NonPCD, non-plasma cell-related diseases; PacB, pacific blue; PacO, pacific orange; PB, peripheral blood; PCD, plasma cell disorders; PE,
phycoerythrin; PerCPCy5.5, peridinin–chlorophyll–protein–cyanin5.5. aFurther information about markers and hybridomas is provided in the Appendix.
bA total of 214 samples (212 BM, 2 PB) was evaluated. Among them 117 MM, 47 MGUS and 50 other conditions were detected. The other conditions included:
1 amyloidosis; 2 plasma cell leukemias; 6 non-infiltrated samples from patients with suspected PCD that showed no infiltration both in routine and EuroFlow
diagnostic approaches (suspected disease category: 2 MGUS, 2 MM, 1 plasmocytoma, 1 IgM paraproteinemia); 3 B-chronic lymphoprolipherative disorders
with no involvement of the plasma cell compartment; 10 normal healthy donors; 15 reactive BM samples from patients with NonPCD; 13 regenerating BM
samples after chemotherapy from patients with NonPCD. cCD138 was proposed for this position but no conjugate was commercially available at the time of
evaluation. dAll samples were evaluated using tube 2 only. Highlighted boxes: changes as compared to previous version. eTesting of CyIgl-APCC750 is
ongoing to increase the stain index of CyIglþcells.

Table 9. Utility of PCD markers

Tube Target
antigen

Identification
of plasma
cells

Aberrant
markers

Assessment of
plasma cell
clonality

BB markers CD38 X C
CD138 X
CD45 X C
CD19 X C

Tube 1 CyIgl X
CyIgk X
CD56 C
b2 micro S

Tube 2 CD27 S
CD28 S
CD117 S
CD81 S

Abbreviations: BB, backbone; C, common aberrant marker; Cy, cytoplasmic;
b2 micro, b2 microglobulin; PCD, plasma cell disorders; S, second
diagnostic level marker.
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Evaluation of version 1 (Table 8) of the PCD EuroFlow panel
highlighted the problems caused by the high levels of expression
of both CD38 and b2 microglobulin on normal plasma cells, when
PerCPCy5.5- and FITC-conjugated reagents were used, respec-
tively. Such high fluorescence intensity levels were associated with
inappropriate fluorescence compensation profiles and fluores-
cence intensity levels falling out of the window of analysis.
Therefore, attempts were made to accommodate CD38 and b2
microglobulin in other fluorescence channels for which they show
lower fluorescence intensity and lower fluorescence spillover into
other channels. For this purpose, CD38-AF700 (versions 2 and 3 of
the PCD EuroFlow panel), CD38-APCH7 (versions 4 and 5) and
CD38-FITC (version 6) conjugates were further evaluated. Overall,
the best performance was obtained with the CD38-FITC reagent
(version 6). In turn, b2 microglobulin was posted as a candidate for
the PerCPCy5.5 channel. Owing to the need for a custom
conjugate, it could only be evaluated in version 5 of the panel,
with acceptable performance. Final tuning of the CD38-FITC and
b2 microglobulin-PerCPCy5.5 was required in version 6 of the PCD
panel for both reagents (Table 8) to further decrease the
fluorescence intensity obtained for plasma cells. For these
markers, such fine-tuning was achieved by mixing each reagent
with the corresponding unconjugated reagents of the same CD38
and b2 microglobulin clones. With this strategy, the overall
performance of the two markers improved and matched the
desired fluorescence intensity profiles. The mixture of unconju-
gated and conjugated reagent ensures saturating conditions and
avoids unexpected variations in the staining patterns because of
changes in cell concentrations, which would otherwise be
observed when attempts to reduce fluorescence intensity are just
based on reducing the concentration of the fluorochrome-
conjugated antibody.123 The optimal CD38 (clone LD38) staining
was obtained with a 3/2 mixture of the conjugated and of the
purified antibody, respectively. The optimal b2 microglobulin

(clone TÜ99) staining was obtained with a 19/1 mixture of the
conjugated and of the purified antibody reagents, respectively.
Similarly, the reagent initially selected for cytoplasmic detection of

Igl light chains—anti-Igl(polyclonal)-FITC (DAKO, Glostrup, Den-
mark)—also resulted in positive cells falling out of the window of
analysis used for the FITC-associated fluorescence channel, and
beyond the linearity range of the corresponding fluorescence detector.
Thus, anti-Igl was also evaluated as a PE-conjugated reagent (versions
3–5 of the PCD panel; Table 8) with similar limitations and as an
APCH7-conjugated antibody reagent (version 6), which was finally
selected. Noteworthy, the CyIgk-APC and CyIgl-APCH7 staining
resulted in adequate discrimination of CyIgkþ versus CyIglþ normal
plasma cells and identification of CyIg light-chain restriction by clonal
plasma cell populations. However, the staining pattern for both
reagents on other SmIgþ B-cells was not as discriminative.
Another marker for which different reagents were tested was

CD45. CD45� PacO conjugates were initially selected and
evaluated as a potential alternative to CD45�AmCyan in order
to have uniformity across all EuroFlow panels (see other sections
of this manuscript). However, in the PCD panel, CD45� PacO
resulted in poor discrimination between CD45� and CD45lo

plasma cell populations. This was due to the relatively high plasma
cell baseline autofluorescence levels in the PacO fluorescence
channel, which exceeded the resolution power of this reagent for
discrimination of CD45� versus CD45lo plasma cells. AmCyan was
then preferred and kept for subsequent versions of the PCD
EuroFlow panel (versions 2–5). However, this fluorochrome
conjugate was associated with suboptimal results due to
fluorescence spillover into the FITC channel,16 forcing further
evaluation and selection of an alternative reagent: CD45–PacB.
CD138 was then selected as the marker to occupy the PacO

position when CD45 was removed from this fluorochrome
position. CD138-conjugated reagents were absent from version
1, due to the lack of a conjugate to fit the position proposed

Figure 12. Example of a bone marrow (BM) sample from a monoclonal gammopathy of undetermined significance (MGUS) patient stained
with the final version (version 6) of the PCD EuroFlow panel illustrating its power for the identification of plasma cells and discrimination
between their normal/polyclonal and clonal counterparts. Normal plasma cells (green dots) show a typically normal immunophenotypic
profile and coexist in this sample with a clonal population of plasma cells (red dots), which show multiple aberrant phenotypes—CD38lo,
CD45� , CD19� , CD56hi, CD117þ , CD81lo, CD28lo and CD27�—together with high expression of b2 microglobulin. The polyclonal versus
(mono)clonal nature of both plasma cell populations is confirmed by their pattern of expression of cytoplasmic immunoglobulin (CyIg) kþ

and CyIgl� (normal CyIgk/CyIgl ratio versus CyIglþ restricted expression, respectively).
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(for example, APCH7) and it was further evaluated in other
positions such as PerCPCy5.5 (versions 2–4), and FITC (version 5),
which subsequently had to be assigned to other problematic
reagents (b2 microglobulin and CD38, respectively). CD138 was
considered as a less problematic marker whose utility relies on the
distinction between CD138þ plasma cells and other CD138� cells
and it was finally included in the panels as a CD138� PacO
reagent (version 6), ordered as a custom conjugate. Unexpectedly,
when this marker was introduced, decreased fluorescence
intensity was observed when sample processing included only
surface markers (using FACS Lysing solution, BD Biosciences, San
Jose, CA, USA) versus intracellular staining for the detection of
CyIg chains (using the Fix&Perm reagent) (data not shown).
Because of this, it was decided that both tubes of the panel should
be processed similarly with Fix&Perm, until this issue would be
solved in order to reduce intra-sample variability due to use of
different sample preparation procedures for the two tubes
included in the PCD EuroFlow panel. Relocation of other markers
in the combination was mainly caused by the modifications
required to set the CD45, CD138, CD38 and b2 microglobulin
markers at an optimal position, as explained above.

Evaluation of the PCD EuroFlow panel
Among the 100 samples analyzed with version 6 of the PCD
EuroFlow panel, 38 corresponded to patients with MM, 23 to
patients with MGUS, 2 to plasma cell leukemia patients and 6 to
diagnostic samples from patients with suspected PCD (2 MGUS,
2 MM, 1 plasmacytoma and 1 IgM paraproteinemia), but no
infiltration by aberrant plasma cells as confirmed by local routine
approaches. The other BM samples were from 10 patients with
non-PCD who underwent BM evaluation at diagnosis, 13 from
regenerating BM after chemotherapy indicated for non-PCD and 8
normal adult BM samples from healthy subjects. In every sample,

total BM plasma cells were identified based on their CD38int/hi,
CD138þ phenotypic profile in association with intermediate to
high FSC and SSC characteristics, after excluding cell doublets in a
FSC area versus FSC height dot plot.
Further multiparameter flow cytometry gating of the distinct

plasma cell populations and analysis of their phenotypic features
showed that with version 6 of the PCD EuroFlow panel we were
able to detect and fully characterize the immunophenotype of
aberrant plasma cells versus their normal/reactive counterparts
(Figure 12) in every sample. This included samples that contained
aberrant plasma cells (n¼ 63/63 samples) and/or normal/reactive
plasma cells (n¼ 88/88) as assessed by routine diagnostic
protocols performed in parallel in the eight participating centers.
In 49/49 samples coexisting clonal and normal plasma cells were
detected with the two approaches. Noteworthily, in all cases
evaluated, tube 1 could distinguish between the two plasma cell
compartments based on their distinct phenotypes.
These individual data files were then merged to create a

reference pool of normal plasma cells. PCA showed that all
normal plasma cell populations clustered together in the
APS1 (PC1 versus PC2) view of the Infinicyt software. This
indicates that normal plasma cells from different healthy subjects
show an overlapping phenotypic profile as defined by
the 12-dimensional space, generated by all markers evaluated
(Figure 13).
Similarly, normal/reactive plasma cells from patients suspected

of carrying a PCD in which no abnormal plasma cells were
detected (n¼ 6), patients evaluated for a non-PCD at diagnosis

Figure 13. Automated population separator (APS) views of illustrat-
ing principal component analyses (PCA) of the distinct immuno-
phenotypic profiles of plasma cells from healthy donors and two
different multiple myeloma (MM) and monoclonal gammopathy of
undetermined significance (MGUS) patients, based on the expres-
sion of the 12 markers included in the plasma cell disorders (PCD)
EuroFlow panel (Version 6). (a) Simultaneous analysis of bone
marrow (BM) plasma cells from healthy donors (n¼ 8; green circles).
(b) Overlapping profiles of plasma cell populations from the same
healthy donors (n¼ 8; green circles) when compared to those of BM
plasma cells from non-infiltrated patients with distinct PCD at
diagnosis (n¼ 6; orange circles), non-plasma cell-related diseases
(non-PCD) at diagnosis (n¼ 10; light blue circles) and BM plasma
cells from non-PCD patients studied after chemotherapy (n¼ 13;
dark blue circles); noteworthily, polyclonal plasma cells from all
these cases phenotypically overlapped with BM plasma cells from
healthy subjects (b), although polyclonal plasma cells from two
samples (one PCD and one non-PCD patient studied at diagnosis,
who showed no BM infiltration by clonal/aberrant plasma cells)
showed overlapping phenotypes with clearly shifted median values,
appearing as separated from the main cluster due to increased
numbers of CD19� plasma cells with a normal phenotypic profile.
The two lower panels (c, d) show illustrating examples of the
distinctly aberrant immunophenotypic profiles of clonal plasma cells
in two different patients (red circles and dots) with MM (c) and
MGUS (d). Noteworthily, in c a single group of clonal plasma cells is
observed, which clusters separately from the normal/reactive
plasma cell cluster, while in d two groups of plasma cells were
present in the MGUS patient BM: a polyclonal (phenotypically
normal) plasma cell population that clustered together with the
reference pool of normal plasma cells and a clonal plasma cell
population that clustered separately from normal plasma cells (red
dots). The five most informative markers contributing to the best
discrimination between each of the two clonal plasma cell
populations and the corresponding normal plasma cell reference
pool are displayed at the bottom of each plot, in a decreasing order
of percentage contribution to the discrimination (c, d). Each circle
represents one single case (median expression observed for all
phenotypic parameters evaluated), while contour lines represent s.d.
curves (dotted and broken lines represent 1s.d. and 2s.d.,
respectively); dots correspond to single BM plasma cell events from
the MM (c) and MGUS (d) patients represented.
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(n¼ 10) and patients after chemotherapy (n¼ 13), also clustered
together upon the same analytical approach as described above.
When analyzed together, plasma cell populations from these
reactive/regenerating samples, clustered together with the
reference pool of normal plasma cell populations, which confirms
that they have a very similar and overlapping immunophenotypic
profile (Figure 13b). Noteworthily, in two of these samples (one
corresponding to a non-infiltrated PCD sample studied at
diagnosis and one from a patient with a non-PCD) polyclonal
BM plasma cells clustered slightly apart from the main cluster of
normal plasma cells due to an increased percentage of CD19�

plasma cells with an otherwise normal polyclonal phenotype
(Figure 13b). Notably, no clear discrimination could be made
between samples stained at different centers.
Conversely, when each abnormal plasma cell population from

individual patient samples was processed and analyzed as
described above, and compared to both the normal and the
reactive/regenerating plasma cell reference pools, it emerged as
being clearly different from both clusters of polyclonal plasma
cells in the APS diagrams, for all infiltrated PCD patient samples
tested (illustrated for two patients in Figures 13c and d).
Noteworthily, a clear discrimination could already be obtained
for every patient with the eight markers of tube 1, the other four
markers contributing to improve the separation between normal
and aberrant plasma cells in a significant percentage of cases.
Interestingly, when data files with information about clonal
plasma cells from all altered samples were analyzed and displayed
together in the APS view, two clearly different clusters
of abnormal plasma cell populations were observed; these
clusters reflected different phenotypic profiles, which mostly
corresponded to cases with CD56hi versus CD56� /lo aberrant
plasma cells.

CONCLUSION
Multiparameter flow cytometric immunophenotyping proved to
be an efficient approach for the detection of normal/reactive
versus aberrant plasma cells, the calculation of their relative
distribution in a sample and the detailed characterization of their
immunophenotypic profiles in patients with different subtypes of
monoclonal gammopathies. Such information has previously
proven to contribute to the diagnosis, classification and prog-
nostic stratification of this clinically heterogeneous group of
disorders. Here we propose a panel of 12 distinct markers based
on two 8-color tubes, for accurate identification of plasma cells,
specific detection and quantification of phenotypically aberrant
versus normal/polyclonal plasma cell populations and detailed
characterization of their immunophenotypic profiles. The two
proposed tubes contain four backbone markers in common
(CD38, CD138, CD45 and CD19) and eight additional markers that
were equally distributed in tube 1 (CD56, b2 microglobulin, CyIgk
and CyIgl) and in tube 2 (CD27, CD28, CD81 and CD117). As tube
1 proved sufficient for the specific identification, enumeration and
discrimination between normal/reactive and aberrant plasma
cells, it can be used as a standalone tube for the initial screening
of PCD in a two-step diagnostic approach (Figure 1). In such case,
tube 2 could be optional and used for further evaluation and
characterization of the altered plasma cells, only when this is
indicated.

SECTION 5. ANTIBODY PANEL FOR B-CELL PRECURSOR ALL
(BCP-ALL)

L Lhermitte1, V Asnafi1, L Sedek2, T Szczepański2, S Böttcher3,
M Brüggemann3, E Mejstrikova4, T Kalina4, A Mendonça5, P Lucio5,
J Bulsa2, J Flores-Montero6, JJ Pérez7, H Wind8, JG te Marvelde8,

VHJ van der Velden8, J Hernández9, AS Bedin1, JJM van Dongen8,
A Orfao6 and E Macintyre1
1AP-HP, Paris, France; 2SUM, Zabrze, Poland; 3UNIKIEL, Kiel, Germany; 4DPH/O,
Prague, Czech Republic; 5IPOLFG, Lisbon, Portugal; 6USAL, Salamanca, Spain;
7HUS, Salamanca, Spain; 8Erasmus MC, Rotterdam, The Netherlands and
9Cytognos SL, Salamanca, Spain

BACKGROUND
The EuroFlow BCP-ALL antibody panel aims at recognition and
classification of all immature B-lineage malignancies, that is, the
neoplasms of precursor B-cells.34 Immunophenotypically, BCP-ALL
resemble normal precursor B-cells with B-lineage antigen
expression (for example, CD19, CyCD79a, CyCD22) and other
phenotypic characteristics, mimicking to a certain extent the
phenotypic stage of maturation arrest.124 Conversely, expression
of some antigens differs significantly from normal by being
asynchronous, ectopic or aberrant. This information can be
assessed by multiparameter flow cytometry and is critical for the
distinction between normal and leukemic cells and to make (or
exclude) the diagnosis of BCP-ALL. It is also useful to establish a
phenotypic signature at diagnosis for subsequent MRD
monitoring by flow cytometry.125

Flow cytometry has a critical role in BCP-ALL diagnosis based on
lineage assignment and the phenotypic features of maturation
arrest.27,34 Most of this information relies on combinations of
multiple markers. As an example, the European Group for the
Immunological Classification of Leukemias (EGIL) uses a
combination of four markers (CD10, CyIgm, SmIgM or Ig light
chains) for this purpose.27,34 Some phenotypic profiles correlate
with recurrent molecular abnormalities, but they are complex and
do not rely on the expression of a single marker.36,45 For example,
the E2A-PBX1 rearrangement is suspected in a CD19þ /CD10þ /
CD20� /lo/CD34� /CD9þ /CyIgmþ phenotype.126 A series of
phenotypic patterns associated with prognosis, genotypic
aberrancies or maturation stage of arrest have been reported
based on expert and consensus experiences and mainly
qualitative (presence or absence of expression) analyses of a
relatively limited number of markers.27,45 This undoubtedly does
not reflect the whole phenotypic complexity of BCP-ALL.
Deciphering the heterogeneity of BCP-ALL requires integration
of the precise expression levels of a wide range of antigens,
collected from the leukemic cells of many different BCP-ALL
patients. Consequently, harmonized analysis of BCP-ALL cases
including all potentially relevant markers for subclassification of
BCP-ALL is needed. The aim of the EuroFlow Consortium was to
establish a standardized procedure for the immunophenotypic
diagnosis and classification of BCP-ALL based on a well-defined
set of antibody reagents that can be used in combination with
newly developed software tools to perform multiparameter
analysis of antigen profiles. The BCP-ALL panel developed
consists of a comprehensive 8-color four-tube antibody panel.
More precisely, the BCP-ALL panel was designed to reach the
following goals: (i) to identify normal B-cell precursors; (ii) to
detect phenotypic aberrations allowing distinction between
normal and regenerating B-cell precursors and BCP-ALL; (iii) to
document the phenotype of leukemic cells versus their normal
counterparts, including identification of both common and
divergent patterns to determine the stage of maturation arrest
and propose relevant leukemia-associated phenotypes (LAP) for
MRD assessment, respectively; (iv) to detect immunophenotypic
profiles associated with recurrent oncogenic abnormalities; and (v)
to provide prognostic information.

Design of the EuroFlow BCP-ALL panel
The BCP-ALL panel was designed to be applicable with both
conventional data analysis procedures and innovative data
analysis tools to take optimal advantage of n-dimensional flow
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cytometry. In order to allow linkage of the data from the different
BCP-ALL tubes, an optimal combination of backbone markers
(present in every tube) and characterization markers was used as
the basic strategy to construct the panel.

Selection of backbone markers. An optimal combination of backbone
markers should allow identification and subsequent gating of
B-cell blasts in every BCP-ALL case. The backbone markers should
also provide unique positions for individual blast cells inside the
n-dimensional space detected in common in every tube in the
panel, in order to allow accurate calculations of data for each BCP-
ALL cell.16 As for all other EuroFlow panels, the backbone should
include a limited number of markers in order to enable inclusion
of a maximum of characterization markers within a limited
number of tubes.
Overall, three backbone markers were found to be sufficient.

The same three backbone markers were used in ALOT to allow the
combination of data obtained with both protocols. Up front,
candidate backbone markers were limited, and most of them
effectively met the afore-mentioned criteria. These included
CyCD79a, CyCD22, CD19, CD45, CD34 and CD10. CyCD79a and
CyCD22 were discarded in order to avoid intracellular staining and
because these antibodies did not demonstrate a clear added value
over CD19 for the identification of B-cell precursors. CD19 was
chosen for the backbone as it is expressed at an early stage of
B-cell commitment and in virtually all BCP-ALL cases. CD45 was
also retained as a particularly efficient marker in BCP-ALL for blast
cell gating and exclusion of residual normal cells, especially CD45hi

mature B cells.61 In addition, CD45 displays increasing levels of
expression during B-cell development, thus also contributing to
deciphering immature subpopulations among normal B-lineage
cells.5,11,124

The two selected markers, however, were not enough, and so a
third backbone marker was required with two candidates: CD10
and CD34. CD10 is frequently but variably expressed in BCP-ALL,
and represents both an immaturity and B-cell lineage-related

marker with a variable expression pattern along normal B-cell
development.5,11,124 Conversely, CD34 is a marker of immaturity,
which is not lineage-related and is frequently (but not always)
expressed in BCP-ALL. When expressed, CD34 is useful for
identification of the blast cells. However, CD34 expression does
not reflect normal B-cell development as good as CD10, as its
expression is restricted to the earliest stages of B-cell development
and is rapidly lost in later stages.5,11,124 Evaluation of the patterns
of expression of both markers showed that BCP-ALL has bimodal
or partial expression pattern of CD10 and CD34 in around 1% and
8% of cases, respectively. Consequently, CD34 best reflects the
intraclonal heterogeneity of malignant B-cell precursors. On top of
this, many CD34 antibody conjugates that work well are currently
commercially available, whereas CD10 detection is highly
dependent on the specific labeling used, with decreasing levels
of sensitivity from PE to APC, PECy7 and FITC conjugates.
Accordingly, we decided to add CD34 to the CD19 and CD45
backbone markers.
Comparative testing showed that CD45�AmCyan should be

replaced by CD45� PacO, which did not negatively affect the FITC
channel. CD34� PerCPCy5.5 was selected based on its excellent
staining properties and a sensitive CD19� PECy7 conjugate was
chosen because of the brightness of this fluorochrome, and the
better performance observed versus CD19� PacB (custom-
conjugated; data not shown). The final set of backbone markers
selected for the BCP-ALL panel therefore consisted of
CD45� PacO, CD34� PerCPCy5.5 and CD19� PECy7, and it
proved to allow gating of the entire tumor B-cell population in
every BCP-ALL case out of the 52 tested; noteworthily, the same
antibody conjugates were shared with the ALOT to enable linkage
of data from both panels.

Selection of additional characterization markers. Once the backbone
markers were set, a list of characterization markers was made,
based on previous reports and the experience of the EuroFlow
laboratories. These markers were then prioritized into first- and

Table 10. Design of BCP-ALL panel in four consecutive testing roundsa

Fluorochromes and markersVersion (no. of cases)
b

Tube

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700

1 (n¼ 14) 1 CD20 CD45 CD58 CD66c CD34 CD19 CD10 CD38
2 SmIgk CD45 SmIgM CyIgm CD34 CD19 CD123 SmIgl
3 CD21 CD45 NuTdT CD13 CD34 CD19 CD22 CD24
4 CD81 CD45 CD15 and CD65 NG2 CD34 CD19 CD33 CD9

2 (n¼ 17) 1 CD20 CD45 CD58 CD66c CD34 CD19 CD10 CD38
2 SmIgk CD45 CyIgm CD123 CD34 CD19 SmIgM SmIgl
3 CD21 CD45 NuTdT CD13 CD34 CD19 CD81 CD24
4 CD9 CD45 CD15 and CD65 NG2 CD34 CD19 CD33 CD22

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

3 (n¼ 35) 1 CD20 CD45 CD58 CD66c CD34 CD19 CD10 CD38
2 SmIgk CD45 CyIgm CD33 CD34 CD19 SmIgM and CD117 SmIgl
3 CD21 CD45 NuTdT CD13 CD34 CD19 CD22 CD24
4 CD9 CD45 CD15 and CD65 NG2 CD34 CD19 CD123 CD81

4 (Final) (n¼ 149) 1 CD20 CD45 CD58 CD66c CD34 CD19 CD10 CD38
2 SmIgk CD45 CyIgm CD33 CD34 CD19 SmIgM and CD117 SmIglc

3 CD9 CD45 NuTdT CD13 CD34 CD19 CD22 CD24
4 CD21 CD45 CD15 and CD65 NG2 CD34 CD19 CD123 CD81

Abbreviations: AF700, alexa fluor 700; ALL, acute lymphoblastic leukemia; AmCyan, Anemonia Majano cyan fluorescent protein; APC, allophycocyanin; BCP,
B-cell precursor; BM, bone marrow; Cy, cytoplasmic; Cy7, cyanin7; FITC, fluorescein isothiocyanate; H7, hilite7; Nu, nuclear; PacB, pacific blue; PacO, pacific
orange; PB, peripheral blood; PE, phycoerythrin; PerCPCy5.5, peridinin–chlorophyll–protein–cyanin5.5; Sm, surface membrane. aFurther information about
markers and hybridomas is provided in the Appendix. bA total of 215 samples (172 BM, 36 PB and 7 other types of samples) was evaluated. Among them, 193
corresponded to BCP-ALL patients and 18 and 4 BM and PB from healthy donors, respectively. cTesting of CyIgl-APCC750 is ongoing to increase the stain
index of CyIgl cells. Highlighted boxes: changes as compared to previous version.
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second- level markers, based on their relevance for both adult and
pediatric BCP-ALL. Noteworthily, few antibodies were conjugated
with the new fluorochromes at the time the panel was designed.
This required multiple custom conjugations, testing of the new
antibody conjugates in comparison to the standard fluorochrome
conjugates using reference samples, and evaluation of the
newly designed antibody panel on a series of BCP-ALL samples.
Each modification within the antibody panel had a significant
impact on its configuration, so that a new round of testing was
needed. The final configuration of the BCP-ALL panel is thus the
result of a carefully thought-out design and multiple rounds
of testing to optimize technical aspects, for example target
antigens, fluorochrome conjugates and antibody combinations
(Table 10).
Most EuroFlow panels are designed in such a way that each

tube is disease-oriented, lineage-related or aims at a specific goal.
The BCP-ALL panel could not be easily built in this way, as many
markers are associated with multiple aims. For instance, CD22 and
CD10 are both useful for positive diagnosis of BCP-ALL and the
identification of LAP for MRD assessment. In addition, CD10 is also
useful for subclassification of BCP-ALL. Nevertheless, each tube in
the final panel has an underlying rationale that covers one or
multiple aims as summarized in Table 11. The way in which the
markers were combined should enable usage of both conven-
tional data analysis procedures and software-based link of all
information obtained with the panel.

Markers for positive and differential diagnosis of BCP-ALL. The first goal
of the BCP-ALL panel is to make a diagnosis of BCP-ALL. For this
purpose, the following specific aims should be reached: (1)
confirmation of the immaturity of the suspected or abnormal cell

population, (2) confirmation of the B-lineage origin, (3) exclusion
of overlap with other cell lineages, and (4) demonstration of the
malignant versus normal/reactive immunophenotype of the gated
cell population. Asynchronous expression of antigens (for
example, co-expression of CD20hi and CD34hi), aberrant or ectopic
antigen expression (for example, CD33hi), and disappearance of
normal phenotypic maturation kinetics, are all evidence in favor of
the malignant nature of immature lymphoid B-cells.
The BCP-ALL panel included B-lineage-associated markers

(CD22, CD24, CD10, CD20, CyIg, SmIg), markers for differential
diagnosis with other acute leukemias (for example, CD13, CD33,
CD117, CD15, CD65 to exclude AML) and other markers useful for
comparison with and distinction from normal B-cell development
patterns (NuTdT, CD10, CD38, CD20, CD123).
CD22 is strongly associated with the B-lineage, but is not B-cell

specific, as it is also expressed on normal basophils, mast cells and
plasmocytoid dendritic cells (pDC).65–67 Within lymphoid cells, its
expression indicates B-cell commitment and it appears at a very
early stage of normal B-cell development. CD22 was at first
conjugated with AF700, but staining was too weak (mean SI on
mature B-cells of 3.7) and so an APC conjugate was preferred
(mean SI of 85.4) and selected. Similarly to CD22, CD24 is also
expressed on B-cells at very early stages, but it is also present on
mature granulocytic cells. The first CD24 reagent evaluated was
conjugated with AF700 and gave an acceptable staining (mean SI
of 6.6) despite being weaker than PE conjugates (mean SI of 12.7).
AF700 was later compared with and replaced by a CD24-APCH7
reagent, which gave slightly brighter staining (mean SI of 15.2), in
line with other EuroFlow antibody panels that contain CD24.
Myeloid antigens (CD13, CD33, CD117, CD15, and CD65) were

added in order to detect CD19-expressing AML, which might not

Table 11. Utility of BCP-ALL markers

Additional markers, 1st level Additional markers, 2nd levelTube Target
antigen

Identification
of blasts

Positive
diagnosis

Differential
diagnosisa

Classification (e.g.
maturation stage)

Classification
(molecular
aberrancy)

LAP
identification

Aim per tube

Backbone
Markers

CD34 X X X
9=
;

Identification
of blastsCD19 X X

CD45 X X

Tube 1 CD20 X X
9>>>>=
>>>>;

Diagnosis
CD58 X Classification
CD66c X X LAP markers
CD10 X X X Molecular

subtypesCD38 X X X

Tube 2 SmIgk X X
9>>>>>>=
>>>>>>;

Diagnosis
CyIgm X X

Classification
CD33 X
CD117 X
SmIgM X X
SmIgl X X

Tube 3 CD9 X X
9>>>>=
>>>>;

Diagnosis
NuTdT X Classification
CD13 X LAP markers
CD22 X X Molecular

subtypesCD24 X X X

Tube 4 CD21 X
9>>>>>=
>>>>>;

ClassificationCD15 X X
LAP markersCDw65 X X
Molecular
subtypes

NG2 X
CD123 X X
CD81 X

Abbreviations: ALL, acute lymphoblastic leukemia; AUL, acute undifferentiated leukemia. BCP, B-cell precursor; Cy, cytoplasmic; LAP, leukemia-associated
phenotypes; MPAL, mixed phenotype acute leukemia; Nu, nuclear; Sm, surface membrane. aMain differential diagnoses considered: mature B-cell
malignancies, normal immature B-cells (hematogones), other acute leukemias with B-cell marker expression, MPAL/AUL.
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have been positively identified by the ALOT. Given that SmIgm
cannot be expressed independently of CyIgm and that BCP-ALL
virtually never shows CD117 expression, CD117 and SmIgm were
combined in the same tube in the same fluorochrome position. In
case of CyIgm negativity and SmIgmþCD117 positivity, this latter
signal can be attributed to CD117 and a SmIgm� CD117þ

immunophenotype. CD15 and CD65 were also pooled in the same
position, as the information they provide in BCP-ALL cases is
similar and overlapping. In fact, both myeloid antigens may also
represent cross-lineage markers, supporting the malignant nature
of the BCP-ALL population, and to a certain extent they provide
information that may contribute to subclassification of BCP-ALL
(see below).
When immature lymphoid cells (also referred to as

hematogones) are identified by cytomorphology, the primary
clinical question may be reduced to the distinction between
malignant and normal/regenerating B-cell precursors. Normal/
regenerating B-cell precursors display dynamic and reproducible
immunophenotypic maturation patterns with sequential and
coordinated expression of multiple antigens,5,11,124 while BCP-
ALL cell populations are far more homogeneous. The normal
precursor-B-cell maturation pattern is mainly characterized by
decreasing expression of both CD38 and CD10 and increasing
expression of CD20.5,11,124 Consequently, these three markers
were combined in a single tube and were compared in several
combinations, for example CD10� PE/CD38�APC/CD20� PacB,
CD10� FITC/CD38� PE/CD20� PacB and CD10�APC/
CD38�APCH7/CD20� PacB, together with the three backbone
markers (Figure 14). The second combination was discarded
because of the dim staining intensity of the CD10� FITC
conjugates (Figure 14c), while the first and the third
combination were most efficient for assessment of normal B-cell
development (Figure 14a and b). We opted for the latter in order
to keep the FITC and PE channels free for other characterization
markers. NuTdT is an immaturity marker which is mainly expressed

in B and T lymphoid lineage cells but that is also found at a
variable percentage in 425% of AML cases.52,127–129

Consequently, this marker lacks lineage specificity but was
found to be useful to (i) confirm the immaturity of B-cells and
(ii) to contribute to the distinction between normal and malignant
profiles, as NuTdT expression is normally restricted to very early
B-cell precursors.
Noteworthily, the selected characterization markers can also

contribute to re-orientation towards the LST/ B-CLPD protocol in
cases of mature B-CLPD, which were initially misinterpreted on
morphological grounds as compatible with an acute leukemia.
Such re-orientation can be based on SmIgM, SmIgk and SmIgl in
addition to CD45, CD34, NuTdT and CD38, a set of markers that
enables distinction between mature and immature neoplastic
B-cells.

Markers for subclassification of BCP-ALL. Information on the matura-
tion stage of BCP-ALL generally relies on the expression of CD10,
CyIgm, SmIgM, CyIgk and CyIgl.27,34 Consequently, we aimed to
obtain this information from a single tube. For this purpose Igk
and Igl were labeled with novel fluorochromes (PacB and APCH7,
respectively). The two Igm antibodies were initially placed in the
FITC and PE positions, but Igm-PE staining appeared to be
unreliable (for example, high levels of unspecific staining). As
Igm-APC only worked well as surface staining, we finally opted for
the CyIgm-FITC/SmIgM-APC configuration.
Many antigens have been reported to be aberrantly expressed

in BCP-ALL cases in association with specific recurrent molecular
abnormalities.45 Such markers were also selected albeit that they
are positioned in different tubes, but the new software and data
analysis tools can combine the information for subclassification of
BCP-ALL. BCR-ABL-positive cases are associated with frequent
expression of myeloid markers such as CD13 and CD33 in addition
to CD34hi and CD38lo, typically without expression of CD117.43,130

CD66c (KOR-SA3544) has also been reported to be preferentially

Figure 14. Performance of the distinct combinations of CD10, CD20 and CD38 used to identify B-cell precursors and evaluate normal B-cell
maturation in the bone marrow. Representative dot plots of the different fluorochrome conjugates tested are shown. Thirteen bone marrow
samples from reactive or regenerating bone marrows at various time points after chemotherapy were stained using the three combinations in
parallel and analyzed together after merging. (a) Resolution of individual normal precursor B-cells is optimal using a CD10–PE reagent (green
dots). Similar discrimination is reproduced using CD10–APC (blue dots) whereas discrimination is worsened when using CD10–FITC (red dots).
(b) Virtual merging of the three previous configurations demonstrates that CD10–APC (blue line, left panel) provides equivalent
discrimination. CD38–APCH7 (blue line, right panel), despite generating significantly weaker signals than CD38–APC (red line, right panel),
correctly recapitulates resolution of the distinct subpopulations and places the most immature population close to the bright 104 level.
(c) Mean fluorescence intensity (MFI) and stain index (SI) of the different reagents tested.
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expressed in BCR-ABL fusion gene and in hyperdiploid BCP-ALL
cases.131–133 Given the potential impact of CD66c, the antibody
was placed in the strong PE channel. MLL-rearranged cases
generally show a CD19þ /CD34þ /NuTdTþ /CD10� /CD15þ /� /
CD65þ /� /CD9þ /CD24� /partiallyþ immunophenotype134,135 with
characteristic expression of NG2, although this is not specific.136

NG2 (7.1) was introduced with the bright PE labeling. TEL-AML1
BCP-ALL are known to exhibit a CD9� /CD20� /CD66c� pattern
in addition to CD19, CD10, NuTdT and CD34 positivity and
CD20� /lo.42,137,138–140 CD9 was placed in the PacB channel and
found to perform satisfactorily. Lastly, E2A-PBX1 gene
rearrangement is typically associated with a CD19þ /CD10þ /
CD34� /CyIgmþ /SmIgM� pre-B immunophenotype associated
with negativity or partial positivity for CD20 and strong
positivity for CD9.126 Most other molecular abnormalities do not
show clear phenotypic associations.

Markers for the identification of LAP and MRD assessment. MRD
assessment by flow cytometry is increasingly used in the
management of hematological malignancies, including BCP-
ALL.141–145 The CD19, CD34, CD45, CD10, CD38, CD20 com-
bination (tube 1 of the BCP-ALL panel) is highly efficient in
discrimination of normal/regenerating versus malignant immature
B-cells and could represent an MRD-oriented combinat-
ion.140,141,146–148 LAP markers can further contribute to the
discrimination between normal/regenerating and malignant
B-cell precursors. Accordingly, in addition to the aforementioned
CD22, CD24, CD66c and CD9 antigens, CD123, CD21, CD81 and
CD58 were selected. CD123 is a major LAP marker, but is not
consistently overexpressed by blast cells;149 in the proposed BCP-
ALL panel this antibody is conjugated with the bright APC

fluorochrome. CD21 can be expressed by CD19þ /CD34þ malignant
B-cells while absent in their normal counterparts;150 because of its
satisfactory labeling a CD21-PacB reagent was chosen. CD81 is a
tetraspanin molecule that is highly expressed on normal B-cell
precursors, but is found at abnormally low levels in blast cells from a
substantial percentage (480%) of BCP-ALL patients.151 CD58 is
often overexpressed by blast cells versus regenerating normal
precursor B-cells (for example, hematogones).152,153 Because of
design constraints, an FITC labeled CD58 reagent was selected.
Although the CD58-FITC signal was weaker than the reference PE
conjugate, the discrimination between normal and malignant cells
was still satisfactory.
It is worth noting that the markers finally chosen for the BCP-ALL

antibody panel were selected from an extensive list of candidate-
antigens cited in the literature or considered to be relevant based on
the experience of EuroFlow members. Each marker was discussed
and many were not chosen (for example, CD52, ZAP-70, HLADR,
CD135, CD44, CD11a, CD14, CyBcl-2, CD7, CD25, CD5, CD79b),
because their utility was concluded to be of limited value compared
to the selected markers.

BCP-ALL immunostaining protocol. Use of the BCP-ALL panel will
usually be dictated by results obtained with the ALOT. In case of
high suspicion of BCP-ALL (in children for instance), the ALOT and
the BCP-ALL panel can be run at the same time, but the ALOT
should always be interpreted first to ensure that another panel is
not indicated. If the clinical suspicion and cytomorphological
information from BM smears merely requires discrimination
between hematogones and leukemic cells, application of the
ALOT together with the first BCP-ALL tube will be sufficient to
provide the correct answer.

Figure 15. An illustration of the strategy used to gate B cell precursor (BCP)–acute lymphoblastic leukemia (ALL) blasts (a) and to evaluate their
whole immunophenotypic profile using a band dot plot from the Infinicyt software (b). The BCP-ALL blast cell population is depicted as blue
dots, while normal residual B- and T-cells are shown as purple and green dots, respectively.
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The BCP-ALL panel should be run using the EuroFlow SOP for
instrument settings and immunostaining in combination with the
Infinicyt software to allow appropriate linkage between the tubes
and the ALOT. Of note, the ALOT and BCP-ALL panel includes
tubes with only surface staining (tubes 1 and 4 of the BCP-ALL
panel) and tubes with both surface and intracellular staining
(tubes 2 and 3 of the BCP-ALL panel and ALOT). Each tube should
be treated with the appropriate sample preparation protocol for
staining of surface markers or surface plus intracellular markers.
The different impact of the pre-analytical steps on light scatter
parameters and fluorochrome intensities of backbone markers is
automatically recognized and adjusted by the software (harmo-
nization process),33 allowing merging and calculation of marker
expression based on parameters measured under different
preanalytical conditions. This approach has been validated in
B-CLPD33 as well as on a series of 9 BCP-ALL samples using the
BCP-ALL panel (data not shown).

Evaluation of the BCP-ALL panel using conventional versus
multivariate data analysis approaches
In order to evaluate the BCP-ALL panel, its final configuration was
run on 149 freshly collected cell samples from adult (n¼ 37) and
childhood BCP-ALL cases (n¼ 112) derived from different tissues.
Testing was carried out by seven laboratories, always in
combination with the ALOT. Relevant clinical and biological
annotations were collected whenever available, including the

most relevant molecular abnormalities (for example, BCR-ABL, TEL-
AML1, E2A-PBX, MLL rearrangements). To date molecular annota-
tions were completed for 65/149 cases.
Data were analyzed locally using the Infinicyt software including

specific gating of the blast cell population based on backbone
markers. Noteworthily, the backbone markers selected proved to
be highly efficient in specifically selecting all BCP-ALL blast cells in
every case analyzed. Interpretation could be then performed in a
conventional manner assisted by data analysis tools such as
histogram band plots that instantly provided a phenotypic profile
of the leukemic population (Figure 15). Through this approach,
conventional subclassification of BCP-ALL such as EGIL classifica-
tion was obtained; BI 18 cases (12%), BII 108 cases (73%) and BIII
23 cases (15%) with an identical distribution to that derived from
local panels.
A key challenge for flow cytometry is to identify phenotypic

features that could facilitate subclassification of BCP-ALL. Current
WHO classification stratifies BCP-ALL according to molecular
abnormalities.34 Consequently, it will be important to determine
to what extent flow cytometry immunophenotyping is able to
identify genotypic subsets among the phenotypically
heterogeneous group of BCP-ALL. Interestingly, multivariate PCA
of the whole immunophenotype of BCP-ALL blast cell populations
obtained with the ALOT plus BCP-ALL panel demonstrated
recognizable phenotypic patterns that could distinguish
different molecular-associated entities from both normal and
reactive hematogones (Figure 16a) and between other molecular

Figure 16. Illustrating principal component analysis (PCA) bivariate dot plot representations (automated population separator (APS) views) of
the clustering obtained in the pairwise multivariate PCA of B-cell precursor (BCP)–acute lymphoblastic leukemia (ALL) immunophenotypes
associated with distinct molecular subgroups of BCP-ALL cases and normal/regenerating hematogones (hematogones, gray circles;
hyperdiploid cases, violet circles; BCR-ABLþ cases, red circles; TEL-AML1þ patients, green circles; and MLL-AF4þ cases, pink circles). Each
circle represents median values of individual cases for all immunophenotypic markers in the EuroFLow BCP-ALL panel contributing to
principal component (PC)1 and PC2. Contour lines represent s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d., respectively).
The five most informative markers contributing to the best discrimination between each pair of disease subgroups are displayed at the
bottom of each plot, in a decreasing order of percentage contribution to the discrimination.
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subgroups (Figure 16b). Based on this strategy, we may be able to
define phenotypic subsets of BCP-ALL, which are enriched for
specific molecular abnormalities, potentially allowing orientation
of genetic screening. It should be emphasized that the currently
identified phenotypic profiles do not represent surrogate markers
for detection of genetic aberrations. Further investigation of
BCP-ALLs with extensive annotations and clinical correlations is
required before further conclusions can be made.

CONCLUSION
The BCP-ALL antibody panel proved to be highly efficient in
combination with the ALOT, in: (i) identifying BCP-ALL blast cells in
a highly sensitive and specific way, (ii) distinguishing normal from
leukemic B-cell precursors and (iii) subclassifying BCP-ALL into
conventional maturation-associated subtypes of disease; addition-
ally, preliminary data also suggest that the panel could contribute
to the orientation of further molecular genetic screening for rapid
identification of molecular subgroups of BCP-ALL.

SECTION 6. ANTIBODY PANEL FOR T-ALL

L Lhermitte1, V Asnafi1, S Böttcher2, M Brüggemann2, L Sedek3,
T Szczepański3, E Mejstrikova4, T Kalina4, A Mendonça5, P Lucio5,
VHJ van der Velden6, H Wind6, J Flores-Montero7, JJ Pérez8,
M Muñoz9, AS Bedin1, JJM van Dongen6, A Orfao7 and E Macintyre1
1AP-HP, Paris, France; 2UNIKIEL, Kiel, Germany; 3SUM, Zabrze, Poland; 4DPH/O,
Prague, Czech Republic; 5IPOLFG, Lisbon, Portugal; 6ERASMUS MC, Rotterdam,
The Netherlands; 7USAL, Salamanca, Spain; 8HUS, Salamanca, ES and
9Cytognos SL, Salamanca, Spain

BACKGROUND
The EuroFlow T-ALL antibody panel aims at the (immunopheno-
typic) diagnosis and characterization of T-ALL. T-ALL includes a
heterogeneous group of malignancies defined by the expansion
of immature T-cell precursors blocked at specific stages of
maturation, typically deviated from normal differentiation path-
ways.56,154–158 Although T–ALL and T-cell lymphoblastic

lymphoma (T-LBL) present differently, primarily with respect to
involvement of BM and blood relative to tissue involvement,159

they are very closely-related diseases. In particular, there are no
significant immunophenotypic differences and the WHO 2008
classification considers them to be one disease entity.35

The T-ALL EuroFlow panel has been designed to be applied
when the ALOT orientates towards an expansion of T-lineage
precursors. In a first step, the panel aims at recognition of
immature T-cells, which is in itself strong evidence in favor of
T-ALL. T-cell development occurs primarily in the thymus, and
identification of immature T-cells in PB, BM or tissues other than
the thymus is per se abnormal. However, when immunophenotyp-
ing mediastinal biopsies, the panel should also be able to
distinguish malignant from normal thymocytes. Furthermore, the
panel aims at subclassification of T-ALL according to the T-cell
lineage maturation stages and potentially also according to the
underlying genetic subgroup. A large variety of somatic genetic
markers contribute to T-ALL oncogenesis.154,157,158,160 Some
co-exist (for example, NUP214-ABL1 and overexpression of TLX1/
TLX3161–163) and may occur in subclones, suggestive of sequential
acquisition. This genetic complexity is likely to result in a variety
of deregulated transcriptional networks, which impact differently
on immunophenotypic profiles. So far, relatively few immuno-
phenotypic profiles in T-ALL have been associated with recurrent
molecular abnormalities, compared to BCP-ALL or AML. However,
some specific correlations do exist, for example, frequent CALM-
AF10 rearrangements in CD2� and/or TCRgdþ T-ALL,164 but this
association is not constant or specific. Conversely, a significant
number of T-ALL molecular abnormalities are associated with a
specific T-cell maturation arrest165 or gene expression
profile.154,166,167 Overexpression of TLX1 is typically associated
with a cortical immunophenotype.165,168 Despite phenotypic
similarities between T-ALL and normal thymic development,165

detailed multiparameter immunophenotyping also allows
identification of protein expression patterns, which distinguish
T-ALLs from their normal thymic counterparts.
Overall, the 8-color T-ALL antibody panel allows for positive and

differential diagnosis of T-ALL and subclassification of the disease
according to different classification systems and at the same

Table 12. Design of the T-ALL panel in four consecutive testing roundsa

Fluorochromes and markersVersion (no. of cases)b Tube

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700

1 (n¼ 7) 1 SmCD3 CD45 NuTdT CD99 CD5 CD10 CD4 CyCD3
2 SmCD3 CD45 CD7 CD117 HLADR CD8 CD1a CyCD3
3 SmCD3 CD45 TCRab TCRgd — CD56 — CyCD3
4 SmCD3 CD45 CD44 CD13 CD45RA CD33 CD123 CyCD3

2 (n¼ 12) 1 SmCD3 CD45 NuTdT CD99 CD5 CD10 CD4 CyCD3
2 SmCD3 CD45 CD2 CD117 HLADR CD8 CD1a CyCD3
3 SmCD3 CD45 TCRab TCRgd — CD56 CyTCRb CyCD3
4 SmCD3 CD45 CD44 CD13 CD33 CD45RA CD123 CyCD3

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

3 (n¼ 29) 1 SmCD3 CD45 NuTdT CD13 CD5 CD10 CD1a CyCD3
2 SmCD3 CD45 CD2 CD117 CD4 CD8 CD7 CyCD3
3 SmCD3 CD45 TCRgd TCRab HLADR CD56 CyTCRb CyCD3
4 SmCD3 CD45 CD44 CD99 CD33 CD45RA CD123 CyCD3

4 (Final) (n¼ 64) 1 CyCD3 CD45 NuTdT CD99 CD5 CD10 CD1a SmCD3
2 CyCD3 CD45 CD2 CD117 CD4 CD8 CD7 SmCD3
3 CyCD3 CD45 TCRgd TCRab CD33 CD56 CyTCRb SmCD3
4 CyCD3 CD45 CD44 CD13 HLADR CD45RA CD123 SmCD3

Abbreviations: AF700, alexa fluor 700; AmCyan, Anemonia Majano cyan fluorescent protein; APC, allophycocyanin; BM, bone marrow; Cy, cytoplasmic; Cy5,
cyanin5; Cy7, cyanin7; FITC, fluorescein isothiocyanate; H7, hilite7; Nu, nuclear; PacB, pacific blue; PacO, pacific orange; PB, peripheral blood; PE, phycoerythrin;
PerCP, peridinin–chlorophyll–protein; Sm, surface membrane; T-ALL, T-cell acute lymphoblastic leukemia. aFurther information about markers and hybridomas
is provided in the Appendix. bA total of 112 samples were evaluated (72 BM, 26 PB, 9 pleural effusions and 5 other types of samples); among them, 102 were
from T-ALL patients and 10 from healthy donors. Highlighted boxes: changes as compared to previous version.
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time it provides additional information that reflects T-ALL
heterogeneity.

Design of the T-ALL EuroFlow panel
The T-ALL protocol was designed in parallel to the ALOT and the
BCP-ALL antibody panel. As a consequence, the rationale for its
design (including the choice of backbone markers) was similar to
that used for these two other protocols. Here we present the
specificities of the T-ALL antibody panel and refer to Sections 1
and 5 for general design concepts. Table 12 summarizes the
design of the T-ALL panel in four consecutive steps, while the
specific aims of the individual markers are summarized in
Table 13.

Selection of backbone markers
In order to link data from ALOT and the different tubes of the
T-ALL panel, we aimed to identify a fixed combination of
backbone markers capable of identifying all blast cells in every
case with minimal contamination by other residual cells. In
contrast to other EuroFlow panels, eligible markers for backbone
selection were limited because they had to closely match the two
criteria of: (i) broad expression, and (ii) efficiency for blast cell
identification. Candidate markers included CD7, CD5, CyCD3 and
CD99.35 CD99 was not universally expressed, especially in more
mature T-ALL, and its signal was considered to be too weak to
allow clear gating of blasts from residual normal T-cells. CD5 was
usually expressed but it may be dim or negative, especially in a

subset of immature T-ALL.71 CD7 was virtually always expressed,
but it is not lineage-specific.35 CyCD3 fits perfectly with the above-
referred criteria, as by definition it is constantly expressed in
T-ALL35,48,169 and usually at high levels, allowing easy gating of
blast cells. However, CyCD3 must be interpreted in combination
with SmCD3 to exclude normal mature residual (or reactive)
T-cells, which requires the combined assessment of CyCD3 and
SmCD3. Finally, blast cell selection was improved by adding CD45
to discard non-lymphoid cells, even if CD45 is most often
expressed at a high intensity on T-ALL blasts, thus making them
overlap with mature lymphoid cells.170 Based on these
considerations, we finally set the T-ALL backbone as
CD45� PacO, CyCD3� PacB and SmCD3�APCH7. The choice of
fluorochromes resulted from the strategic decision to use less
common fluorochromes for gating markers so that the more
common fluorochromes could be used for characterization
markers in a more flexible way. Importantly, three T-ALL
backbone markers were also included in the ALOT to benefit
from the ALOT information on CyMPO,36 CyCD79a62–64 and
CD3449 expression using the merge function of the Infinicyt
software.16

Selection of additional markers
Once the set of backbone markers was defined, we then
completed the panel with a wide variety of T-lineage-related
markers in order to strengthen and specify the T lineage affiliation
of the leukemic cells, subclassify T-ALL according to maturation

Table 13. Utility of T-ALL markers

Tube Target
antigen

Identification
of blasts

Additional markers, 1st level Additional markers, 2nd level Aim of tube

Positive
diagnosis

Differential
diagnosisa

Classification
(EGIL)

Classification
(including
TCR-chain

and ETP-ALL)

LAP markers
(MRD/MDD)

BB markers CyCD3 X X X X
9=
; Identification of blastsCD45 X X X

SmCD3 X X X

Tube 1 NuTDT X X
9>>>>=
>>>>;

Diagnosis
CD99 X X Classification
CD5 X X X X X Maturation stage
CD10 X X LAP markers
CD1a X X X X Assessment of minimal

disseminated disease

Tube 2 CD2 X X X
9>>>>=
>>>>;

DiagnosisCD117 X X
ClassificationCD4 X
Maturation stageCD8 X X X
LAP markersCD7 X X X

Tube 3 TCRgd X X X X
9>>>>=
>>>>;

DiagnosisTCRab X X
ClassificationCD33 X X
Maturation stageCD56 X (x)
LAP markersCyTCRb X

Tube 4 CD44 (x)
9>>>>=
>>>>;

Classification
CD13 X X
HLADR X
CD45RA (x) X
CD123 X X

Abbreviations: ALL, acute lymphoblastic leukemia; AUL, acute undifferentiated leukemia; BB, backbone; Cy, cytoplasmic; ETP, early T progenitor; LAP, leukemia-
associated phenotype; MDD, minimal disseminated disease; MPAL, mixed phenotype acute leukemia; MRD, minimal residual disease; Nu, nuclear; Sm, surface
membrane; TCR, T-cell receptor. aMain differential diagnoses considered: mature T-cell malignancies, other acute leukemias with T-lineage marker expression,
MPAL/ AUL; (x) to be assessed.
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stage and distinguish blast cells from other residual cells in the
sample.

Markers for differential diagnosis of T-ALL. To specify the T-lineage
maturation stage of blast cells, we chose CD2, CD4, CD5, CD7, CD8,
CD10, CD99, TCRab and TCRgd to be included in the panel.2

Collective experience and additional testing allowed identification
of appropriate combinations of antibodies and fluorochromes. For
example, although PerCPCy5.5 may be a relatively weak
fluorochrome, CD5� PerCPCy5.5 worked remarkably well in
T-ALL. This is also true for CD2 coupled to FITC. On the other
hand, a CD10� FITC conjugate was considered unsatisfactory and
was consequently replaced by a bright CD10� PECy7 reagent. It
was logical to place CD4 and CD8 in the same tube and the
CD4� PerCPCy5.5/ CD8� PECy7 combination performed well
upon testing. For the TCR, we initially chose TCRab� FITC/
TCRgd� PE in order to optimize detection of TCRgdþ T-ALL, but
our results showed no advantage of the signal intensity for
TCRgd� PE relative to TCRgd� FITC and detection of TCRab with
FITC was less satisfactory than with PE, as was detection with the
WT31 antibody relative to the IP26A clone. We consequently
chose the combination TCRgd� FITC (IMMU510) and TCRab� PE
(IP26A).
To indicate the precursor nature of T-cells, we also added TdT,

CD1a, CD34 and CD99 to the panel.35,171 Detection of NuTdT can
be difficult, but the TdT� FITC reagent selected gives reliable and
robust staining. As this antibody was used concomitantly with
staining for CyCD3 we initially compared permeabilization with
Fix&Perm and FACS Lysing solution as used for the AML panel (see
Section 7), and we finally opted for the Fix&Perm protocol because
of optimal CyCD3 staining. Expression of CD99 is often relatively
weak and it was consequently important to use a bright
fluorochrome, such as PE. CD1a performed well with FITC, PE
and APC. In order to group immature T lymphoid markers in one
tube, CD1a was placed in the APC channel, with satisfactory
results. As CD34 was in the ALOT tube, it was not repeated in the
T-ALL panel.
We also introduced myeloid antigens (CD13, CD33, CD117), in

addition to MPO that is assessed in the ALOT, but it is worth
noting that these antigens are not sufficient for classification as
MPAL as they are only considered as evidence of cross-lineage
expression within the 2008 WHO criteria.35,36 However, they are
mainly expressed in very immature T-ALL, especially among those
cases that fit with the early T-cell progenitor (ETP) entity.68,70,71

With respect to the differential diagnosis, T-lineage-related
antigens such as CD2, CD7, and even CD5 and CyCD3 may be
expressed by so-called NK-cell precursor lymphoblastic leukemia/
lymphoma (NK-ALL).35 CD56 is present in the panel and as such
can help to diagnose this exceptional and provisional entity. It
may, however, be difficult to distinguish NK-ALL and immature
T-ALL,35,36 since bona-fide, but predominantly immature, T-ALL
cases can express CD56.36,172–176 Whether these are distinct
entities remains unclear.35,36 The expression of myeloid markers in
immature T-ALL but not in NK-ALL may be helpful in this
situation.36 Difficulties with differential diagnosis from
plasmacytoid dendritic cell leukemias, which can express T-cell-
associated markers (for example, CD2, CD7), can be partly solved
with the profiles of CyCD3, CD4, CD123 and CD56 expression and
to a lesser extent also with HLADR and CD45RA.177–179

Markers for subclassification of T-ALL. T-ALLs are classified according
to their maturation arrest and on the basis of differential
expression of certain markers.27,35,180 Four distinct stages were
classically defined by the EGIL group based on CD2, CD3, CD5,
CD7, CD8, CD1a, and TCR expression.27 Application of this
classification is possible with the EuroFlow T-ALL antibody panel
because all markers are present. We felt, however, that other
markers were required in order to identify the stage of

maturational arrest of T-ALL relative to normal thymopoiesis. In
particular, classification of T-ALL according to their TCR expression,
including CyTCRbF1, SmCD3, TCRab and TCRgd expression, was
considered relevant165 in order to identify three stages of (i)
immature (CyCD3þ /CyTCRbF1� /SmTCR� ), (ii) pre-ab (CyCD3þ /
CyTCRbF1þ /SmTCR� ) and (iii) mature (CyCD3þ /SmTCRþ ) T-ALL
blasts, discriminating among TCRgdþ and TCRabþ T-ALL, which
have been previously demonstrated to have prognostic impact.181

The CyTCRbF1 antibody was custom-conjugated with APC, titrated
and validated on CyTCRb positive cell lines (DND41, Jurkatt, RPMI,
CEM) or negative cell lines (SIL-ALL, Kasumi). This antibody was
then placed within the TCR-tube, along with TCRgd, TCRab and
both CyCD3 and SmCD3, thus allowing both EGIL and TCR
maturation-associated classifications with the T-ALL antibody
panel although it provides a dim staining. Additional markers
(CD44, CD45RA, HLADR, CD13, CD33 and CD123) were added in
order to contribute to maturational staging.69,182–185 Some assess
immaturity (e.g. CD123186) or allow detection of the recently
identified (very immature) ETP-ALL cases.68,70,71 Prognosis of
patients with the later is poor and requires appropriate
therapeutic stratification.70,71 The EuroFlow T-ALL panel allows
recognition of this entity by co-expression of CyCD3þ , CD5lo,
CD1a� , CD8� with stem-cell/myeloid markers including notably,
CD34, CD117, HLADR, CD13 and CD33.70,71

LAP markers for MRD assessment. As for the BCP-ALL panel,
evaluation of LAP already at diagnosis is essential for MRD
assessment by flow cytometry.141,142,144,146,187,188 Given the fact
that MRD is assessed in PB or BM samples where virtually no
immature T-cells exist, LAP markers are mainly represented by
markers that determine the precursor nature of T-cells (immaturity
markers). Such markers include CD34 (in ALOT) and NuTdT, CD1a
and CD10 in tube 1 of the T-ALL antibody panel.189,190

Interestingly, distinction between normal and leukemic T-ALL
cells could be achieved with a single tube, that is, tube 1 of the
T-ALL antibody panel. Of note, the T-ALL panel was designed
based on markers listed from the literature and our collective
experience. Other potential target antigens (for example,
CD52, CD65, CD15, Bcl-2, CD20, CD24, CD64, CD14, CD15, CD65,
NG2 and CD38) were not included, as they were considered to
provide little added value as compared to those that were
selected (Table 13).

Evaluation of the T-ALL panel using conventional and multivariate
analysis
To evaluate the utility and efficiency of the T-ALL panel in making
the diagnosis and identifying T-ALL subgroups (64) T-ALL cases
were prospectively analyzed using both the ALOT and T-ALL
panels versus local panels. Data from each T-ALL case were
compiled within a single 29-dimensional data file, as described in
previous sections. It was possible to confirm the T-ALL diagnosis in
virtually all cases and to simultaneously classify T-ALL according to
the existing WHO 2008, EGIL and TCR-based immunophenotypic
classifications.27,35,165 In fact, malignant immature T-cells could be
distinguished from normal mature T-cells and, more significantly,
even from normal human thymocytes, as illustrated in Figure 17.
Multiparameter analysis of groups of T-ALL cases that are based
on the overall immunophenotypic features of blast cells cluster
apart from each other and their correlation with genetic and
clinical characteristics will probably allow identification of specific
subgroups. However, this will require prospective immunopheno-
typic analysis of a much larger number of T-ALL cases with full
genetic and clinical annotations, given the oncogenetic and
clinical heterogeneity of T-ALL. This needs acquisition within an
appropriate anonymized database. Such an anonymized database
is currently being developed by the EuroFlow group.
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CONCLUSION
The 4-tube T-ALL antibody panel in combination with the ALOT
promises to be highly efficient for the diagnosis and phenotypic
subclassification of T-ALL. At the same time it provides informa-
tion about the presence of LAP that can be used for MRD
monitoring. The panel is composed of a set of three backbone
markers that allow simultaneous evaluation of the whole
phenotypic profile of blast cells plus a set of markers devoted to
the classification of T-ALL according to the EGIL and other
alternative maturation-associated classification systems, together
with the distinction between leukemic blasts and normal T-cell
precursors. The markers are combined in such a way that the
tubes facilitate flexible usage of the panel depending on the
specific aim. For example, the EGIL classification of T-ALL is
possible with tube 1, while definition of maturation stages
according to TCR can be achieved with tube 3, and distinction
between leukemic and normal cells is possible with solely tube 1.

SECTION 7. ANTIBODY PANEL FOR AML AND MDS

VHJ van der Velden1, JG te Marvelde1, M Cullen2, E Mejstrikova3,
J Flores-Montero4, L Sedek5, S Richards2, O Hrusak3, T Szczepański5,
P Evans2, T Kalina3, H Wind1, MB Vidriales6, JJ Pérez6, J Hernández7,
M Lopez-Botet8, P Bettelheim9, A Orfao4 and JJM van Dongen1
1Erasmus MC, Rotterdam, The Netherlands; 2UNILEEDS, Leeds, UK; 3DPH/O,
Prague, Czech Republic; 4USAL, Salamanca, Spain; 5SUM, Zabrze, Poland;
6HUS, Salamanca, Spain; 7Cytognos SL, Salamanca, Spain; 8Immunology Unit,
Universitat Pompeu Fabra, and IMIM-Hospital de Mar, Barcelona, Spain and
9Central Laboratory, Otto Wagner Hospital, Vienna, Austria

BACKGROUND
The EuroFlow antibody panel for AML and MDS aims at the
detection and classification (lineage assignment and definition of
maturation profile) of AML and MDS. AML and MDS are both
heterogeneous diseases, which, in contrast to T-ALL and BCP-ALL,
can affect multiple cell lineages and multiple maturation stages.
The EuroFlow AML/MDS antibody panel therefore focuses on all
major myeloid lineages. This particularly concerns the neutrophilic
lineage, monocytic lineage and erythroid lineage, but also the less
frequent pDC lineage, basophilic lineage, mast cell and mega-
karyocytic lineages are covered. In addition to establishing the

involved cell lineage(s) and maturational arrest(s) of the neoplastic
cells, the EuroFlow AML/MDS panel also aims at the detection of
aberrant expression of lymphoid-associated markers and abnor-
mal lymphoid maturation profiles. The overall resulting immuno-
phenotypic profile of the blast cells will allow classification of the
malignancy and in some cases may be related to genetic
abnormalities. For example, acute promyelocytic leukemia
(APL) with t(15;17) typically has the immunophenotype of a
promyelocyte (CyMPOþ , HLADR� , heterogeneous CD13þ , homo-
geneous CD33þ , CD117þ ) with abnormally negative to low CD15
expression,41 while blast cells in AML with t(8;21) frequently co-
express CD19191 and in AML with inv(16) frequently are CD2þ .192

In patients with MDS, the role for flow cytometric immuno-
phenotyping is not fully established, but recently immunopheno-
typing was included as one of the co-criteria for the diagnosis of
MDS.193 Several studies indeed have shown that immuno-
phenotypic abnormalities can be detected in the vast majority
of MDS patients, including abnormalities in lineages (or cases)
with normal cytomorphological appearance.194,195 However, as
many immunophenotypic abnormalities are not specific for MDS,
flow cytometric scoring systems are needed, but so far they have
not been standardized.10,196–203 International harmonization of
flow cytometry MDS diagnostics is currently in progress.14,204

For patients with a suspicion of an acute (myeloid) leukemia,
in the first instance the ALOT tube should be performed (see
Section 1). If the results of the ALOT tube point towards a non-
lymphoid acute leukemia (AML, ambiguous lineage acute
leukemia or even pDC neoplasm), the AML/MDS panel should sub-
sequently be performed. For patients with a clinical or cytomor-
phological suspicion of an MDS or an unexplained cytopenia, one
may directly perform the AML/MDS panel (Figure 1).
Many antibodies have been reported to be useful for

immunophenotyping of AML/MDS patients and several consensus
reports have been published.12,21,23,205 On the basis of these
reports and the knowledge and experience of the EuroFlow
members, several antibodies were selected and initially tested in
the EuroFlow laboratories. After evaluation of the results during
multiple EuroFlow meetings, positions of antibodies were
changed or new antibodies were included/excluded in the
antibody panel. The resulting antibody panel was subsequently
tested again, and this cycle of testing–evaluation–optimization–
retesting was repeated until the final EuroFlow AML/MDS panel
was approved. The approved panel was also prospectively
evaluated. In contrast to previous consensus reports, the EuroFlow
AML/MDS antibody panel therefore is not solely based on
knowledge, experience and opinions, but is also based on
extensive testing and re-testing of many antibody combinations.

Design of the AML/MDS antibody panel
Design of the AML/MDS panel was based on a strategy that would
search for the unequivocal identification of blast cells in every
tube in the panel using the same set of backbone markers. In
addition, a second group of markers was combined with the
backbone markers, devoted to the characterization of the
identified blast cells as well as of the maturation profile of BM
precursors into the three major myeloid lineages (neutrophil,
monocytic and erythroid lineages) and also several minor myeloid
compartments less frequently involved in the disease (for
example, basophil, mast cell, pDC and megakaryocytic precursors).
The combination of the backbone markers and new software

tools allows a true multiparameter analysis of complete blast cell
phenotypes with the EuroFlow AML/MDS antibody panel. With
regard to the characterization markers, this antibody panel was
designed in such a way that the more mature cell compartment
(for example, CD34� precursors) of the three main myeloid cell
lineages (granulocytic, monocytic, erythroid) could be optimally
evaluated in single tubes. Using the backbone markers,

Figure 17. Overall immunophenotypic profile of T-acute lympho-
blastic leukemia (ALL) blast cells (red dots) versus normal human
thymocytes (blue dots) as assessed by the EuroFlow T-ALL panel. Of
note, principal component analysis (PCA) showed a clear separation
between the phenotypic profiles of normal versus leukemic T-cell
precursors based on a principal component (PC)1 versus PC2
representation (automated population separator (APS)1 view of the
Infinicyt software). Contour lines represent s.d. curves (dotted and
broken lines represent 1s.d. and 2s.d., respectively).
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information from other tubes can easily be added to these
‘lineage-oriented’ tubes for the more immature (for example,
CD34þ ) precursor cells.

Selection of backbone markers. To optimally use the n-dimensional
possibilities of the Infinicyt software including the merge and
calculation functions, each tube needs to contain a number of
identical antibodies that can be used to link the data from the
other tubes. These so-called backbone markers should allow easy
identification of the malignant population among remaining
normal cells. Furthermore, they should reflect the potential
heterogeneity of the malignant population in order to allow
appropriate calculation of data based on the nearest-neighbor
principle implemented in the Infinicyt software.32 On the basis of
knowledge and experience, CD34 and CD45 were directly selected
as backbone markers for the AML/MDS panel. Other potential
backbone markers, that is, CD117, HLADR, CD33 and CD11b, were
evaluated on BM or PB samples from 96 AML patients. For this
testing, the combination of HLADR(L243)–FITC, CD117(104D2)–PE,
CD45(2D1)–PerCP, CD34(8G12)–APC, CD33(p67.6)–PECy7 and
CD11b(ICRF44)–APCCy7 was used.
In 61/96 samples (63%), CD45 and CD34 were already sufficient

for easy recognition of the heterogeneous leukemic population.
In the remaining 25 patients, the additional value of the other
markers was evaluated. The percentage of patients in which
addition of CD117, HLADR, CD33 or CD11b allowed an easier
gating of the leukemic cells was 51%, 40%, 20% and 23%,
respectively. Inclusion of a fourth backbone marker gave best
results for the combination CD34, CD45, CD117 and HLADR (9%

extra patients). Addition of a fifth or sixth backbone marker hardly
improved these results. Thus, by using CD34, CD45, CD117 and
HLADR as backbone markers, efficient (sensitive and specific)
gating of all leukemic blast cells was possible in 84/96 patients
(88%; see Figure 18). In the remaining 12 patients gating of the
leukemic cells was also possible, but it was less straightforward;
these cases mainly concerned patients with monocytic leukemias.
Most interestingly, combined expression of HLADR and CD117 is
typically associated with distinct maturation (phenotypic) profiles
in different myeloid lineages, for example, sequential loss of CD34
and CD117 in HLADRþ monocytic and DC precursors versus CD34
and HLADR on CD117þ maturing neutrophils/erythroid
precursors.
To maintain optimal flexibility for the remaining antibodies, it

was decided to preferentially select the less commonly available
fluorochromes for the backbone markers. Initially CD34–
PerCPCy5.5, CD117–PECy7, HLADR–PacB and CD45–AmCyan
were tested. In addition, CD45–AmCyan was replaced by CD45–
PacO, to be consistent with the other EuroFlow antibody panels
(Table 14).

Selection of other characterization antibodies. As mentioned above,
selection and combination of characterization markers in indivi-
dual tubes was accomplished for detailed characterization of the
main hematopoietic BM cell compartments (maturing neutrophils,
monocytic and erythroid precursors) in the first three tubes of the
AML/MDS panel. The other tubes were designed for assessment of
cross-lineage and aberrant antigen expression profiles together
with the evaluation of B-cell precursors and immature CD34 cells

Figure 18. Identification of acute myeloid leukemia (AML) blast cells using the EuroFlow AML/myelodysplastic syndrome (MDS) panel
backbone markers (CD34, CD117, HLADR and CD45). Automated population separator (APS) (principal component (PC)1 versus PC2) plots of
three different AML patients are shown. Color codes are as follows: red dots, AML cells; green dots, mature lymphocytes; purple dots,
maturing neutrophils.

Table 14. The EuroFlow AML/MDS antibody panela,b

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7 Aim

1 HLADR CD45 CD16 CD13 CD34 CD117 CD11b CD10 Diagnosis and classification, neutrophilic
maturation, PNH

2 HLADR CD45 CD35 CD64 CD34 CD117 CD300e
(IREM2)

CD14 Diagnosis and classification, monocytic
maturation, PNH

3 HLADR CD45 CD36 CD105 CD34 CD117 CD33 CD71 Diagnosis and classification, erythroid
maturation

4 HLADR CD45 NuTdT CD56 CD34 CD117 CD7 CD19 Aberrant expression of lymphoid markers,
abnormal B lymphoid maturation

5 HLADR CD45 CD15 NG2 CD34 CD117 CD22 CD38 Aberrant marker expression, stem cells
6 HLADR CD45 CD42a

and
CD61

CD203c CD34 CD117 CD123 CD4 Diagnosis and classification of AML
Megakaryocytic, basophilic, and plasmacytoid
dendritic cell lineages

7 HLADR CD45 CD41 CD25 CD34 CD117 CD42b CD9 Characterization of megakaryoblastic leukemia,
and systemic mastocytosis

Abbreviations: AML, acute myeloid leukemia; APC, allophycocyanin; BB, backbone; BM, bone marrow; Cy7, cyanin7; FITC, fluorescein isothiocyanate;
H7, hilite7; MDS, myelodysplastic syndrome; Nu, nuclear; PacB, pacific blue; PacO, pacific orange; PE, phycoerythrin; PerCPCy5.5, peridinin–chlorophyll–
protein–cyanin5.5; PNH, paroxysmal nocturnal hemoglobinuria. aFurther information about markers and hybridomas is provided in the Appendix. bA total of
96 BM samples were evaluated for selection of the BB markers. An additional 84 BM AML samples were evaluated with this version (final) of the panel.
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(tubes 4 and 5), assessment of minor compartments of basophils,
mast cells, pDC (tube 6) and megakaryocytic lineage cells (tubes 6
and 7).

Tube 1: antibody combination for neutrophil maturation
Within the normal neutrophil lineage, several markers like CD10,
CD11b, CD13 and CD16 are expressed in a maturation-stage-
specific manner. In combination with the backbone markers, these
markers allow detailed characterization of the neutrophil matura-
tion pathway from the most immature myeloid blast cells till the
mature polynuclear neutrophilic granulocytes.11 Abnormalities in
the expression of these markers are frequently seen in patients
with both AML and MDS.194,195,203 CD16–FITC and CD13–PE
conjugates were selected based on experience, , initially together
with CD10–APC and CD11b–AF700. However, testing of this
antibody combination on BM samples from AML and MDS
patients showed that the fluorescence intensity of CD11b–AF700
was insufficient. Therefore, CD11b–AF700 was replaced by
CD11b–APC and CD10–APC was replaced by CD10–APCH7. This
resulted in satisfactory stainings for all markers; an example of the
staining pattern of tube 1 is shown in Figure 19a.

Tube 2: antibody combination for monocytic maturation
Regarding the monocytic lineage, CD14 is considered to be the
typical marker for monocytes, but this marker is only expressed
during the intermediate to last stages of monocytic maturation. In
contrast, CD64 (and to a lesser extent CD36) are already expressed

during the earlier stages of monocytic differentiation. Therefore,
usage of at least one of these two markers (preferentially CD64) is
required for identification of early monocytic cells. The expression
of CD33 increases early during monocytic development to levels
higher than those of granulocytic cells.11 This CD33 expression
pattern also facilitates distinguishing monocytic and granulocytic
cells. CD11b is absent on immature monocytic cells but it is
expressed during later stages. Initially, the combination of the
CD36/CD64/CD11b/CD14 characterization markers was evaluated.
Because CD11b is also included in tube 1, this marker was later
replaced by CD300e (IREM-2) in the monocytic lineage-oriented
tube 2. CD300e (IREM-2) is a glycoprotein whose expression on
normal hematopoietic cells is restricted to cells of the monocytic
and myeloid dendritic cell lineages.206 During normal monocytic
development, CD300e is expressed in the last stages of maturation
after CD14 is highly expressed. In AML, CD300e is almost
exclusively found on leukemic cells from patients with
monocytic leukemia, its reactivity increasing from monoblastic
to monocytic AML and CMML. Noteworthily, in a subgroup of
these patients CD300e is already expressed before CD14. Because
CD36 is also informative for the erythroid differentiation, and it
appears on CD64hi monocytic precursors (that can be easily
distinguished from other myeloid precursors based on its higher
intensity of expression), it was decided to use CD64 in the
monocyte-oriented tube and CD36 in the erythroid-oriented tube
(see tube 3). In tube 2, CD36 was therefore replaced by CD35(CR1),
which is expressed by erythrocytes, granulocytes, monocytes and
dendritic cells, as well as by the leukemic cells in a subset of AML

Figure 19. Neutrophil, monocytic and erythroid differentiation in bone marrow from a healthy subject as determined using tube 1 (maturing
neutrophils), tube 2 (monocytic cells) and tube 3 (erythroid precursors) of the EuroFlow acute myeloid leukemia (AML)/myelodysplastic
syndrome (MDS) antibody panel. The different colors reflect distinct differentiation stages from the more immature CD34þ precursors (light
green events) to mature (light blue dots) population of each distinct cell line.
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patients.207 Preliminary data (data not shown) suggest that
immature monocytic cells could first express CD35, followed
later by CyMPO, while in immature neutrophilic cells, expression of
CyMPO clearly precedes that of CD35. CD35 can therefore
contribute to distinguishing early monocytic and neutrophil
differentiation stages. On the basis of the expression patterns
and the availability of antibody conjugates, CD14, CD35, CD64 and
CD300e were finally selected for the monocyte-oriented tube. As
expression of CD14 is relatively strong, the relatively weak APCH7
conjugate was chosen. The relatively bright PE and APC
fluorochromes were selected for CD64 and CD300e, respectively.
An example of the immunophenotypic patterns that can be
observed with this labeling is shown in Figure 19b.

Tube 3: antibody combination for erythroid differentiation
For evaluation of the erythroid differentiation, markers like
CD235a (glycophorin A), CD71 and CD36 are informative. As
CD235a is expressed not only on immature erythroid cells but also
on mature erythroid cells, this marker appeared to be less suitable
for use on whole BM or whole PB. We therefore evaluated several
other markers that may characterize erythroid cells: CD233 (band-
3 protein), CD238 (Kell) and CD105 (‘epithelial cellular adhesion
molecule’, Ep-CAM) (in several combinations). No satisfactory
results were obtained with CD233, even after additional titration
experiments. CD238 worked well, but the intensity of the staining
on erythroid cells was low. CD36 and CD105 are already expressed
during early stages of erythroid differentiation, before CD235a
becomes positive.208,209 Expression of CD105 remains present
after the CD71 expression is increased and subsequently
disappears shortly after CD117 expression is lost, so that more
mature erythroid cells no longer express CD105. Conversely, CD36
expression remains at relatively high levels throughout the
maturation of normal red blood cells. Little is known about
CD105 expression in AML, but aberrant CD105 expression has
been reported in patients with MDS.199 Testing of CD105 on BM
samples from healthy subjects and AML patients showed optimal
and specific staining of early erythroid cells at intermediate stages
of erythroid maturation. Therefore, CD105, CD36 and CD71 were
selected for the erythroid-oriented tube. Given the expression
levels and the availability of antibody conjugates, CD36–FITC,
CD105–PE, and CD71–APCH7 were chosen. For the fourth
antibody position, CD33–APC was chosen, as CD33 expression is
absent during the erythroid differentiation and could be used as
an exclusion marker. At the same time CD33 also provides relevant
information for the granulocytic (tube 1) and monocytic lineages
(tube 2), particularly once evaluated in the context of AML. An
example of the immunophenotypic patterns that can be observed
with this labeling is shown in Figure 19c.

Tube 4: antibody combination for aberrant
cross-lineage antigen expression and altered B-cell precursors
The fourth tube in the EuroFlow AML/MDS antibody panel does
not focus on a particular cell lineage but aims at the detection of
aberrant expression of lymphoid-associated markers on myeloid
cells. Frequently occurring cross-lineage markers are CD19 in
AML with t(8;21), CD7, and CD56.4,210,211 Because cross-lineage
expression can be weak, CD7–APC and CD56–PE were selected.
NuTdT is expressed in many AML, but has limited added value for
AML diagnosis.212 However, NuTdT provides information on
precursor B-cells, particularly in patients with MDS when
combined with CD19.10,213 We initially evaluated the antibody
combination TdT–FITC, CD19–PE, CD22–APC and CD38–APCCy7,
since this combination allows detailed characterization of B-cell
differentiation. Although this combination worked well, this
combination was later on replaced by TdT–FITC, CD56–PE,
CD22–APC and CD19–APCH7. CD56 was initially evaluated as an
AF700 conjugate in tube 5, but this resulted in a dim staining and

therefore the AF700 conjugate was replaced by the CD56–PE
reagent that showed optimal staining. Although CD19–APCH7
also stains relatively weak with respect to other CD19-fluoro-
chrome conjugates, the intensity obtained is sufficient for
identification of B-cells. In this regard, it should be noted that
CD19 is also present in the ALOT tube as a strong PECy7-
conjugated reagent. Finally, CD22–APC was switched over with
CD7–APC originally tested in tube 5. The reason for this switchover
was that only the first four tubes are needed in case of suspicion
of MDS (see below), and that analysis of CD7 on myeloid blast cells
is more relevant than CD22 in MDS patients.195

Tube 5: antibody combination for stem cells and other markers
Tube 5 contains several markers that are informative in AML but
that are less suited for evaluation of differentiation pathways. NG2
is a protein typically absent in normal hematopoietic cells, but its
expression has been associated with the presence of MLL gene
rearrangements and pDC lineages, which occur in approximately
10 and o1% of AML patients, respectively.214,215 NG2 expression
can be relatively dim and therefore the PE conjugate was chosen,
as was also done for tube 4 of the BCP-ALL antibody panel. The
CD15 antigen is already expressed during the early stages of
granulocytic development and is also dimly expressed on mature
monocytes. For this purpose, the CD15–FITC conjugate provided
satisfactory staining intensities. CD38 is strongly expressed on
most myeloid cells but is absent on early stem cells (CD34þ /
CD38� ). As the frequency of (leukemic) stem cells may have
prognostic significance,216 CD38 was included in the EuroFlow
AML/MDS antibody panel. Given the intensity of the staining, the
APCH7 conjugate was selected with a satisfactory pattern. CD22
is a typical B-cell-associated marker, which is also expressed by
basophils, mast cells and a fraction of pDC.66,67,217 Expression of
CD22 on AML is very infrequent (o5%), and it may well be that
these cases in fact reflect (precursor) basophilic and/or mast cell
blast cells or DC leukemia.215 The main reason to include CD22 in
the AML/MDS panel was its use as an additional B-cell marker,
next to CD19 and CyCD79a in the ALOT tube and CD10 in tube 1,
to exclude a potential MPAL.36 Initially, we evaluated the antibody

Figure 20. Identification of basophils (blue events) and plasmocytoid
dendritic cells (red events) in a representative bone marrow from a
healthy subject using tube 6 of the EuroFlow acute myeloid
leukemia (AML)/myelodysplastic syndrome (MDS) antibody panel.
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combination CD15–FITC, NG2–PE, CD7–APC and CD56–AF700. The
staining intensity obtained with CD56–AF700 was, however,
unsatisfactory and therefore this conjugate was replaced by
CD56–PE and switched over with CD38 from tube 4. Finally, CD7–
APC was switched with CD22–APC in tube 4 (see explanation
above).

Tube 6: antibody combination for mast cells, basophils, pDC and
megakaryoblastic/megakaryocytic cells
For recognition of the less frequent mast cells, basophils, pDC and
megakaryocytic cells as well as their malignant counterparts,
markers allowing identification of these cell populations were
selected for inclusion in tube 6 of the EuroFlow AML/MDS panel.
For identification of megakaryoblastic/megakaryocytic cells, a
combination of CD42 and CD61 in the same fluorochrome was
selected. Both markers are already expressed during early stages
of megakaryocytic differentiation.218 As megakaryoblastic
leukemias can be single positive for CD42 or CD61, a
combination of both markers was chosen. If leukemic cells are
positive for CD42a and/or CD61, the megakaryoblastic nature of
AML cells can be confirmed in an additional tube fully focused on
the megakaryocytic lineage (tube 7, see below). CD203c is one of
the few markers suitable for identification of CD117hi mast cells,
and it is also expressed on CD117� /lo basophils.219,220 CD123 can
be used in combination with the backbone marker HLADR to
identify pDC (CD123þ /HLADRþ ) and basophils (CD123þ /
HLADR� ) (Figure 20).221 CD4 is expressed by plasmacytoid
dendritic cells as well as by monocytic cells. On the basis of the
intensity of expression and the availability of antibody conjugates,
CD42a–FITC, CD61–FITC, CD203c–PE, CD4–APCH7 and CD123–
APC were selected for this tube combination.

Tube 7: antibody combination for megakaryocytic differentiation
The megakaryocyte-oriented tube aims at confirmation of acute
megakaryoblastic leukemia (AML-M7), if the results of tube 6 raise
such suspicion. Next to the four backbone markers, CD41 and
CD42b are included in this tube, as both markers are specific for
the megakaryocytic lineage. CD9 is expressed on a wide variety of
cells; within the megakaryocytic lineage CD9 is already expressed
during the early stages and therefore can contribute to the
diagnosis of AML-M7.222,223 For the last antibody position, CD25
was chosen, as some data suggest that this marker is expressed
during the early stages of megakaryocytic development.224

Furthermore, CD25 can be used to detect immunophenotypic
aberrant mast cells when a systemic mastocytosis or chronic
eosinophilic leukemia (possibly in combination with an AML or
MDS) is suspected.225 An example of the immunophenotypic
results obtained in AML-M7 with this tube is shown in Figure 21.
In addition to the markers indicated above, several other

markers have been reported as consensus markers for the flow
cytometric diagnosis of AML patients.12,21,23,205 This includes

CD65, CD66, lysozyme, eosinophilic peroxidase (EPO) and CD2.
Although these markers can be informative, some (for example,
CyEPO) were extensively evaluated and they proved not to be
essential. At the same time, the EuroFlow AML/MDS antibody
panel already contains sufficient markers for appropriate
characterization of all myeloid lineages and relevant prognostic
subgroups. Nevertheless, evaluation of the potential utility of
other markers (for example, lysozyme) requires further evaluation.

THE EUROFLOW AML/MDS ANTIBODY PANEL
The final EuroFlow AML/MDS antibody panel is summarized in
Table 14. An example of the results obtained with this antibody
panel is shown in Figure 22. This antibody panel should be used in
combination with the standard EuroFlow immunostaining protocol.16

Although the Fix&Perm reagents were selected within EuroFlow for
intracellular stainings, it was decided to use FACS Lysing Solution for
tube 4 of the AML/MDS panel. TdT works well using FACS Lysing
Solution and usage of FACS Lysing Solution has the advantage that
all tubes can be processed in a similar manner, thereby retaining
identical scatter characteristics in all tubes and facilitating the merge
and calculation options in the Infinicyt software.
During the EuroFlow studies all evaluated AML cases were

analyzed with the first six tubes, whereas tube 7 was also applied
if an AML-M7 was suspected. This allowed detailed classification of
all evaluated cases. Preliminary evaluation of large series of AML
patients suggests that the first four tubes of the EuroFlow AML/
MDS panel in combination with the ALOT tube might be sufficient
for the diagnosis and classification of most AML patients. Based on
the immunophenotyping results of the first four tubes or if
complete phenotypic classification of AML is required, tubes 5
and 6 might be added in p10% of cases. Tube 7 should be used
(together with tubes 1–6 and ALOT) if a megakaryocytic leukemia
or a transient myeloproliferative disorder is suspected (either
forehand or based on the results of tube 6).
In case of MDS suspicion, the first four tubes of the EuroFlow AML/

MDS panel are sufficient to identify abnormalities in the differentia-
tion of the various (major) myeloid lineages (for example, neutrophil,
monocytic and erythroid lineages). Tubes 5–7 do not yet seem to
provide relevant additional information for MDS diagnosis.
In addition to evaluation of patients with suspicion of AML or

MDS, the EuroFlow AML/MDS panel may also provide relevant
information for patients with a suspicion of paroxysmal nocturnal
hemoglobinuria (PNH) in the context of BM aplasia and MDS (PNH:
detection of CD10þ /CD16� mature neutrophils in tube 1 and of
CD14� monocytes in tube 2), mastocytosis (CD25þ /CD117hi mast
cells in tube 7) and chronic myeloid leukemia (CML, tubes 1 and
6). It should, however, be noted that the EuroFlow tubes were not
primarily designed for these diseases and therefore other
antibody combinations may be more appropriate, in case of
primary suspicious of such diseases.226,227

Figure 21. Characterization of an acute megakaryoblastic leukemia using tube 7 of the EuroFlow acute myeloid leukemia (AML)/
myelodysplastic syndrome (MDS) antibody panel. The AML cells (brown and red dots) are positive for CD34 and CD117 and they partly
express the megakaryocytic-lineage-associated markers CD42b, CD41 and CD9. HLADR and CD25 were both negative on blast cells.
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Univariate and multivariate analysis of AML subgroups
To evaluate whether the EuroFlow AML/MDS antibody panel
appropriately characterizes AML subgroups, data were collected
from 84 AML patients.225,228 Univariate analysis identified several
markers that were differentially expressed among the various
subtypes. Monocytic markers like CD36, CD14, CD4 and CD11b
were primarily observed on blast cells from patients with an acute
monocytic leukemia, t(9;11)þ AML, or AML with mutated NPM1.
CD42a/CD61 were only expressed on megakaryoblastic leukemias,
while these leukemias did not express CD123. Also, erythroid
leukemia did not express CD123. The pan-myeloid marker CD33
was expressed on the vast majority of AML, but not on erythroid
leukemias. Based on single markers, leukemias originating from
different myeloid lineages could therefore be distinguished, while
characterization of genetically-defined subgroups was not
straightforward.
In multivariate analysis (APS view) several WHO-defined subgroups

could be distinguished from each other (Figure 23). Particularly
morphologically-defined subgroups could be distinguished, while
separation of genetically-defined subgroups was generally less clear.
This may be explained, at least in part, by the fact that immunophe-
notyping (like morphology) focuses on cell lineages and differentiation
stages, while genetically-defined subgroups may be more hetero-
geneous, owing to different secondary hits that may have a different
impact on the differentiation potential of the affected cells.229,230

CONCLUSION
The AML/MDS EuroFlow panel allows detailed characterization of the
distinct myeloid lineages, including the evaluation of maturation
pathways and aberrant immunophenotypes of myeloid cells. This
panel should be performed for patients with suspicion of AML or MDS
in combination with the ALOT; however, it also provides essential
information to rule out PNH and systemic mastocytosis with BM
involvement. Of note, it was not possible to use the same backbone
markers in the AML/MDS panel and the ALOT, which prevents
software linkage of markers present in the ALOT with markers in the
AML/MDS panel. The AML/MDS panel was built so that it can be
applied in a flexible way, the first four tubes being essential for the
phenotypic characterization of both AML and MDS.

Figure 22. Band plot examples of two acute myeloid leukemia (AML) patients analyzed according to the EuroFlow AML/myelodysplastic
syndrome (MDS) antibody panel. The AML blast cells (red dots) are gated based on the backbone markers and their immunophenotype is
shown in a multiparameter band-dot plot. A patient with APL (PML-RARA-positive) and a patient with an AML without maturation are shown in
the left and right panels, respectively.

Figure 23. Multivariate principal component analysis (PCA; principal
component analysis (PC)1 versus PC2, automated population
separator (APS)-1) view of various WHO-defined subgroups of
AML. (a) NPM1-mutated (red squares) versus CBFB-MYH11þ AML
(green squares). (b) AML without maturation (yellow circles) versus
megakaryoblastic leukemia (dark blue circles). (c) AML without
maturation (yellow circles) versus monoblastic/monocytic AML (pink
circles). (d) Erythroid AML (cyan circles) versus megakaryoblastic
leukemia (dark blue circles). Each square/circle represents the overall
mean/median position of an individual AML patient in the PC1
versus PC2 representation of the whole immunophenotypic profile
of the AML blast cells, respectively.
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SECTION 8. ANTIBODY PANEL FOR B-CELL CHRONIC
LYMPHOPROLIFERATIVE DISEASES (B-CLPD)

S Böttcher1, A Rawstron2, P Lucio3, R de Tute2, J Flores-Montero4,
Q Lécrevisse4, A Mendonça3, V Asnafi5, L Lhermitte5,
M Brüggemann1, JJ Pérez6, JJM van Dongen7 and A Orfao4
1UNIKIEL, Kiel, Germany; 2UNILEEDS, Leeds, UK; 3IPOLFG, Lisbon, Portugal;
4USAL, Salamanca, Spain; 5AP-HP, Paris, France; 6HUS, Salamanca, Spain and
7Erasmus MC, Rotterdam, The Netherlands

BACKGROUND
Mature (peripheral) B-cell malignancies represent the malignant
counterpart of normal mature B-cells that have differentiated into
naive B cells or their progeny. The WHO subclassification of
mature B-cell leukemias and lymphomas, also known as B-CLPD,
follows the concept of normal (benign) counterparts and attempts
to distinguish the B-cell malignancies in relationship to the
germinal center reactions and other B-cell activation and matura-
tion processes.231 Nevertheless, the exact normal counterparts of
several B-CLPD (for example, hairy cell leukemias, HCL) have
not been discovered. Thus, integration of a complex set of
immunophenotypic, morphological, clinical and cytogenetic
information is currently essential for the correct subclassification
of mature B-cell malignancies. The reproducible diagnosis of
specific B-CLPD WHO entities based on morphology remains a
serious challenge, as even agreement between expert hemato-
pathologists on particular disease entities ranges between 53 and
94% of cases.232 However, already 15 years ago it has been shown
that the inclusion of immunohistological assessments could
increase the agreement rate by up to 14% in mature B-cell
malignancies.232

It is clear that precise and reproducible diagnosis of B-CLPD
subtypes has high clinical relevance, as the disease group
comprises largely indolent entities that are best treated by
watchful waiting (for example, certain subgroups of chronic
lymphocytic leukemia, CLL233) as well as extremely aggressive
diseases with a median survival of few months only if left
untreated (for example BL). Furthermore, the advent of novel
therapeutic options has greatly improved the prognosis for many
patients with a mature B-cell neoplasm, for example, for patients
with mantle cell lymphoma (MCL).234 Modern treatment regimens
are tailored for the specific B-CLPD subtype, so that obtaining the
correct diagnosis has gained additional importance for optimal
patient care. Immunophenotyping has proved essential for the
diagnostic classification of many B-CLPD cases, but the current
immunophenotyping strategies also face several difficulties. For
example, the rising number of immunophenotypic markers used
for the classification of B-CLPD as well as the heterogeneous and
overlapping immunophenotypic profiles among distinct entities
have increased the complexity of data interpretation. Clearly, a
more objective and more integrated approach is needed with
selection of the most informative markers and deletion of
redundant makers, which provide more confusion than solution.
The EuroFlow Consortium embarked on a systematic evaluation

of the immunophenotype’s contribution to the diagnostic
classification of mature B-cell malignancies, aiming at a more
integrated as well as a fully standardized and reproducible
immunophenotypic diagnosis of B-CLPD subgroups. The complete
set of morphological, cytogenetic and immunophenotypic infor-
mation required by the WHO 2008 classification served as the
diagnostic ‘gold standard’ in each patient. We developed an
optimized and non-redundant combination of markers in order to
reproduce as far as possible that ‘gold standard’ solely based on
flow cytometry (EuroFlow B-CLPD panel). Noteworthily, we
decided to separate PCD from the remaining mature B-cell
neoplasms as they usually present with a clearly distinguishable
clinical picture and immunophenotype that requires different
screening and classification strategies (Figure 1). The EuroFlow

B-CLPD panel was designed to work in all cases in which the
malignant B-cell clone could be separated by gating on backbone
markers. The resulting (gated) population was required to
systematically contain o10% contaminating non-clonal B-cells.
The B-CLPD panel is intended to be applied subsequent to the
detection of a clonal B-cell population using the LST. For reasons
of efficiency and cost reduction, the relevant immunophenotypic
information of the LST is also used for the classification of the
distinct B-CLPD entities. In cases with a very high pre-test
suspicion of a B-CLPD, it is recommended to stain the LST
simultaneously with the B-CLPD panel (or parts of it) in order to
minimise the number of steps required to obtain a definite
immunophenotypic diagnosis (Figure 1).

Design of the EuroFlow B-CLPD panel
In line with the EuroFlow strategy on the identification of target
populations in different tubes of an antibody panel via common
backbone markers, the first step in the design of the B-CLPD panel
was to define a minimal set of markers to identify all B-cells
between the other leukocytes in PB, BM and LN samples from
patients with B-CLPD. The second step focused on the selection of
antigens with different expression between B-CLPD entities,
aiming at appropriate characterization of each B-CLPD entity.

Selection of backbone markers. Several B-lineage-specific antigens
(for example, CD19 and CD20) were obvious candidates for
backbone markers, as they are assumed to be useful for
identification of all B-cells in a sample. However, aberrantly low
expression of CD20,235 CD19,236,237 CD22238 and CD37150 was
known to be a common phenomenon in several mature B-CLPD
entities. When we started the project it was not known to what
extent such under-expression occurs simultaneously for several
B-cell antigens in a single patient and how this would affect the
ability to distinguish malignant B-cells from the remaining
leukocytes. Therefore we first tested the relative contributions of
CD19, CD20, CD22 and CD37 to the identification of malignant
B-cells in a B-CLPD sample.
To address the relative contributions of pan-B-cell markers to

the identification of malignant B-cells in B-CLPD, a 6-color
combination was initially evaluated at two different centers
(Backbone panel 1, Table 15).
The analysis included samples from 49 B-CLPD patients: 18 CLL, 4

DLBCL, 7 follicular lymphoma (FL), 4 MCL, 2 marginal zone lymphoma
(MZL) and 14 unclassified B-CLPD. The background fluorescence was
set to include 95% neutrophils in the sample. B-cells were defined to
comprise any lymphocytes with expression of at least one of the four
B-cell markers CD19, CD20, CD22 or CD37 above the background
fluorescence level. The malignant clone was identified as a
subpopulation of mature B-cells showing either light-chain
restriction or complete lack of light-chain expression. The mean
fluorescence intensity (MFI) of the malignant clone and the
percentage of B-cells expressing CD19, CD20, CD22 and CD37 with
higher intensity than background was analyzed.
Expression levels of the investigated B-cell antigens were

significantly correlated for all 1� 1 marker combinations. However,
the degree of correlation decreased in the following order: CD19
versus CD37 (Spearman r¼ 0.68, Po0.0001), CD37 versus CD20
(r¼ 0.59, Po0.0001), CD37 versus CD22 (r¼ 0.55, Po0.0001), CD22
versus CD20 (r¼ 0.52, Po0.0001), CD19 versus CD20 (r¼ 0.41,
P¼ 0.004), and CD19 versus CD22 (r¼ 0.35, P¼ 0.01). The percentage
of undetected neoplastic B-cells with respect to the markers applied
is visualized in Figure 24. Overall, none of the investigated antibodies
was on its own sufficient to identify all malignant B-cells in every
patient. There were individual B-CLPD patients in whom the vast
majority of malignant B-cells could not be distinguished from
background using one of the markers alone. As expected, low-level
CD20 expression was particularly common in CLL, whereas
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under-expression of CD19 most often occurred in FL and DLBCL
patients (data not shown). The most efficient combination of two of
these four markers evaluated to detect neoplastic B-cells comprised
CD20 plus CD19, with at most 11% undetected malignant cells per
case. The remaining B-cells were most efficiently identified by
additionally relying on CD22 (Figures 24b and c).
An alternative set of backbone markers was tested in a total of 10

B-CLPD patients (4 CLL, 1 DLBCL, 3 FL, 1 MZL, 1 non-classified
B-CLPD) in one center to study the utility of CD20-PacB instead of the
CD20-APCCy7 reagent (backbone panel 2, Table 15). This change in
the backbone CD20 antibody clone and conjugate further improved
the performance of the CD20 plus CD19 combination with a
maximum percentage of undetected lymphoma cells of only 2%. All
other correlations were identical to those described for the panel
tested at the other two centers (data not shown). Consequently,
CD20-PacB was selected for subsequent testing.
As all panels were designed to work not only in blood but also in

BM and cell suspensions prepared from tissue sections, we agreed to

additionally include CD45–PacO as the third backbone marker. This
marker facilitates the distinction of leukocytes from erythroid
precursors and non-hematopoietic cells, as well as the
identification of the major subpopulations of the leukocytes.
Subsequently, the EuroFlow Consortium tested the combination of

CD20–PacB, CD45–PacO, CD19–PECy7 and CD22–AF700 (clone IS7,
EXBIO, Prague, Czech Republic) as potential backbone markers, to
definitively check the performance of CD20–PacB and evaluate the
need for the third B-cell marker for the identification of all B-cells of
interest in every case. CD22–AF700 replaced CD22–APC, so that other
B-cell characterization markers could be introduced into the APC
channel. This configuration of backbone markers was tested in the
context of the first version of the full 8-color EuroFlow B-CLPD
antibody panel (Table 15) in a total of 63 samples (17 CLL, 6 DLBCL,
13 MCL, 4 FL, 1 HCL, 2 lymphoplasmacytic lymphomas (LPL), 3 MZL,
12 non-classified B-CLPD, 1 normal BM, 4 normal PB). We found that
CD19–PECy7 identified all B-cells in all cases except some FL (n¼ 2)
and MCL (n¼ 4) patients, whereas CD20–PacB detected all B-cells in

Table 15. Design of the B-CPLD panel in seven consecutive testing roundsa

Version (no. of
cases)b

Tube Fluorochromes and markers

PacB PacO FITC PE PECy5 PECy7 APC APCCy7

BB 1 (n¼ 49) 1 SmIgk CD37 SmIgl CD19 CD22 CD20
BB 2 (n¼ 10) 1 CD20 SmIgk CD37 SmIgl CD19 CD22

PacB PacO FITC PE PerCPCy5.5 PECy7 APC AF700

1 (n¼ 63) 1 CD20 CD45 SmIgk SmIgl CD5 CD19 SmIgM CD22
2 CD20 CD45 CD103 CD10 CD5 CD19 CD43 CD22
3 CD20 CD45 CD81 CD79b CD5 CD19 CD23 CD22
4 CD20 CD45 CD31 CD63 CD5 CD19 CD185

(CXCR5)
CD22

5 CD20 CD45 CD24 CD305(LAIR1) CD5 CD19 CD11a CD22
6 CD20 CD45 CD38 CD25 CD138 CD19 CD11c CD22

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

2 (n¼ 43) 1 CD20 CD45 SmIgl SmIgk CD22 CD19 CD23 CD81
2 CD20 CD45 CD103 CD25 CD11c CD19 SmIgM CD24
3 CD20 CD45 CD31 CD305(LAIR1) CD5 CD19 CD43 CD185

(CXCR5)
4 CD20 CD45 CyBcl2 CD10 CD79b CD19 CD38 CD49d

3 (n¼ 37) 1 CD20 CD45 SmIgl SmIgk CD22 CD19 CD23 CD81
2 CD20 CD45 CD103 CD25 CD11c CD19 SmIgM
3 CD20 CD45 CD31 CD305(LAIR1) CD5 CD19 CD43
4 CD20 CD45 CyBcl2 CD10 CD79b CD19 CD38 CD49d
5 CD20 CD45 CD24 CD95 CD19 CD200

4 (n¼ 31) 1 CD20 CD45 SmIgl SmIgk CD22 CD19 CD23 CD81
2 CD20 CD45 CD103 CD25 CD11c CD19 SmIgM CD43
3 CD20 CD45 CD31 CD305(LAIR1) CD5 CD19 CD43 CD24
4 CD20 CD45 CyBcl2 CD10 CD79b CD19 CD38 CD49d
5 CD20 CD45 CD24 CD95 CD19 CD200 CD31
6 CD20 CD45 CD19 CD185

(CXCR5)
CD103

5 (Final) (n¼ 151) 1¼ LST CD20 CD45 CD8 and
SmIgl

CD56 and
SmIgk

CD5 CD19 and
TCRgd

SmCD3 CD38

2 CD20 CD45 CD23 CD10 CD79b CD19 CD200 CD43
3 CD20 CD45 CD31 CD305(LAIR1) CD11c CD19 SmIgM CD81
4 CD20 CD45 CD103 CD95 CD22 CD19 CD185

(CXCR5)
CD49d

5 CD20 CD45 CD62L CD39 HLADR CD19 CD27

Abbreviations: AF700, alexa fluor 700; APC, allophycocyanin; BB, backbone; BL, Burkitt lymphoma; BM, bone marrow; B-NHL NOS, B non-Hodgkin lymphoma
not otherwise specified; CLL, chronic lymphocytic leukemia; CLPD, chronic lymphoproliferative disorder; Cy, cytoplasmic; Cy5, cyanin5; Cy5.5, cyanin5.5;
Cy7, cyanin7; DLBCL, diffuse large B-cell lymphoma; FITC, fluorescein isothiocyanate; FL, follicular lymphoma; HCL, hairy cell leukemia; H7, hilite7; LN; lymph
node; LPL, lymphoplasmacytic lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PacB, pacific blue; PacO, pacific orange; PB, peripheral
blood; PE, phycoerythrin; PerCP, peridinin–chlorophyll–protein; Sm, surface membrane. aFurther information about markers and hybridomas is provided in the
Appendix. bA total of 384 cases (194 PB, 144 BM, 42 LN and 4 tissue biopsies) was evaluated. Among them 98 were CLL, 65 MCL, 55 FL, 40 DLBCL, 35 MZL, 32
B-NHL NOS, 21 LPL, 20 HCL, 7 BL and 11 from healthy donors. Highlighted boxes: changes as compared to previous version.
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all patients with the exception of six CLL patients. The combination of
CD20–PacB and CD19–PECy7 distinguished all light-chain-restricted
B-cells from background in every case analyzed, thus further
extending our earlier observation. Conversely, our findings showed
that CD22–AF700 did not significantly contribute to
the identification of clonal B-cells in addition to the selected
markers, as fluorescence overlap from brightly expressed anti-
gens detected by APC-labeled antibodies made CD22-AF700-positive
populations undistinguishable from the background.
Based on the above experiments, the EuroFlow Consortium

concluded that the combination of CD20–PacB plus CD19–PECy7
was not only required but also sufficient to identify all clonal cells in
mature B-lineage malignancies. At diagnosis, we did not observe
cases underexpressing simultaneously both antigens to an extent
that they would go undetected by the brightly labeled CD19–PECy7
and CD20–PacB antibodies. In fact, 262 patient samples analyzed
with subsequent versions of the EuroFlow B-CLPD classification
panel never showed a B-cell population that was simultaneously
negative for CD19–PECy7 and CD20–PacB (see Figure 24d).
Nonetheless, all subsequent B-CLPD panel versions included
CD22–PerCPCy5.5 as an additional B-cell characterization marker
(Table 15). We conclude that if B-cell CLPD expressing neither CD20
nor CD19 exist, they are extremely rare (that is, o0.5% of all cases).
Mature data are now available on the correlation of B-cell

antigens in B-lineage CLPD, which confirm our initial data: a high
correlation between CD20 and CD22 expression (r¼ 0.67,
Po0.0001), whereas CD19 expression was less closely correlated
to CD20 (r¼ 0.47, Po0.0001) and CD22 levels (r¼ 0.43, Po0.0001).
Figure 24 shows the correlation in a total of 151 B-CLPD cases
assessed with the final version of the B-CLPD EuroFlow panel (6 BL,
26 CLL, 21 DLBCL, 26 FL, 15 HCL, 15 LPL, 22 MCL and 20 MZL).

Selection of characterization markers for differential diagnosis between
distinct B-CLPD entities. In parallel to the last part of the backbone

marker testing, we started the selection of the set of characteriza-
tion markers for the differential diagnosis of B-CLPD entities
(Table 15). We used markers that were (i) already known to be of
diagnostic value for the differential diagnosis of mature B-cell
malignancies; (ii) known to be associated with normal B-cell
developmental and maturational steps, thus following the
concept of the WHO classification; and (iii) associated with B-cell
homing, hypothesizing that different homing receptors might
regulate the propensity of lymphoma cells to infiltrate BM, LN or
spleen. Marker selection was based on published data and
unpublished evidence from the EuroFlow laboratories.
Supplementary Table 2 provides an overview on all 33 markers
tested within the EuroFlow B-CLPD project and the selected
references suggesting their potential utility for the classification of
B-CLPD. The table also includes scientific work that was published
after the EuroFlow project started.
Detailed analysis of the results of version 1 of the B-CLPD

antibody panel (Table 15) showed that the CD11a, CD138 and
CD63 antigens did not contribute to the differential diagnosis of
mature B-cell malignancies. Furthermore, we identified that the
APCH7 fluorochrome is a good alternative to AF700, with an
overall good performance and lower fluorescence compensation
needs. In line with the development of the other EuroFlow
antibody panels, the Consortium decided to use the APCH7
conjugate in further testing. To improve the differential diagnosis
among different B-CLPD entities, we additionally introduced
CyBcl-2 in a second version of the panel (Table 15), which also
contained several custom-conjugated antibodies. Assessment of
43 new B-CLPD cases revealed that the newly introduced custom-
conjugated CD185(CXCR5)–APCH7 antibody did not yield the
expected results, most likely due to suboptimal fluorochrome
labeling of the antibody. Consequently, CD185(CXCR5)–APCH7
was not used in the third panel version. Furthermore, CD95 and
CD200 were additionally included into the panel to improve the

Figure 24. Percentage of clonal B-cells that are not detected using one (a), two (b) and three (c) pan-B-cell markers, respectively (n¼ 49
samples from 49 patients; black symbols represent individual patients, red lines depict the medians), and CD19–PECy7 versus CD20-PacB (d),
CD19–PECy7 versus CD22-PerCPCy5.5 (e) and CD20–PacB versus CD22-PerCPCy5.5 (f ) dot plots showing the distribution of individual
neoplastic B-cells (small dots) and median values of each population in individual cases (circles) from a series of 151 B-cell chronic
lymphoproliferative diseases (B-CLPD) patients. Circles are colored according to diagnoses of individual patients: red, chronic lymphocytic
leukemia (CLL); dark green, follicular lymphoma (FL); green, marginal zone lymphoma (MZL); light green, CD10� diffuse large B-cell
lymphoma (DLBCL); dark blue, mantle cell lymphoma (MCL); light blue, hairy cell leukemia (HCL); orange, CD10þ DLBCL; pink, Burkitt
lymphoma (BL); brown, lymphoplasmacytic lymphoma (LPL).
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identification of germinal center diseases and to distinguish MCL
cases from the other B-CLPD entities, respectively. The resulting
panel (version 3 in Table 15) was prospectively applied to 37 new
cases, yielding promising preliminary results for the differential
diagnosis among distinct B-CLPD entities. Nevertheless, owing to
the unavailability of antibody reagents in suitable fluorochromes,
four fluorochrome positions (APCH7 in three tubes and
PerCPCy5.5 in one tube) were left open until custom-conjugated
reagents became available (version 4 of the B-CLPD in Table 15).
This next version (version 4) of the panel included APCH7-labeled
antibodies to the CD43, CD31 and CD103 antigens, which were
tested against reference antibodies in the panel in a series of 31
cases representing the major B-CLPD entities. This assessment
revealed differences in correlation in the following order: CD103
FITC versus CD103 APC-H7 (r¼ 0.39, P¼ 0.02), CD43 APC versus
CD43 APC-H7 (r¼ 0.77, Po0.0001) and CD31-FITC versus CD31
APC-H7 (0.83, Po0.0001). We concluded that CD31 and CD43
could be potentially applied in the APCH7 format.
PCA as integrated into Infinicyt software was applied to the

samples acquired with version 4 of the B-CLPD antibody panel.
Based on PCA, CyBcl-2, CD25 and CD24 were found not to have
added value to the diagnostic power of the panel, once the other
markers were present (data not shown). In particular, while CyBcl2
was expectedly239 underexpressed in BL cases compared to all
other mature B-cell lymphomas and leukemias, the remaining
immunophenotype of BL was sufficiently unique to identify the
disease without CyBcl2. CD25 was helpful for identification of HCL,
but this was readily possible without this antigen using markers
such as CD305 (LAIR1), CD11c and CD103. The differential diagnosis
between HCL and HCL variants was not intended in this panel, as
HCL variant is a very rare disease. If that differential diagnosis is in
question, CD25 has to be stained after the B-CLPD panel. Finally,
CD24 did not show a significant contribution to the classification of
B-CLPD in the presence of the other markers. Furthermore, this
analysis also showed that most B-CLPD subtypes could
unequivocally be classified using the panel. Only the differential
diagnosis between subgroups of LPL, MZL, FL and DLBCL cases
remained difficult. In an attempt to improve the resolution between
those entities, we additionally included CD62L, CD39, HLADR and
CD27 into the panel (version 5; Table 15).
In the meantime, the development of the LST was sufficiently

mature, so that the information obtained using both the LST and
the B-CLPD antibody panel could be combined in a unified single
data file for further multivariate analysis.16

Evaluation of the B-CLPD EuroFlow antibody panel
The final version of the B-CLPD panel (version 5) was then tested
in 151 patients in six EuroFlow centers. We analysed the utility of
this panel by comparing means of all MFIs per disease category for
all evaluated markers (univariate analyses). This analytic step
demonstrated a good concordance of mean MFIs in different
disease categories to published data (for an overview on relevant
literature see Supplementary Table 2; for examples of observed
expression levels see Figure 25). These observations suggested
that the multi-color panel indeed yielded the expected results.
However, this assessment was limited by the lack of published
immunophenotypic information for many markers in many
mature B-cell malignancies.240 We also observed that all disease
categories included cases that showed overlap in expression levels
for individual markers to other disease categories. Even markers
considered to be specific for particular diseases (for example,
CD103 for HCL) showed some overlap with other disease
categories (Figure 25). We also confirmed that newly introduced
markers such as CD200 and CD305 (LAIR1) provided improved
separation between WHO-defined B-CLPD entities (Figure 25).
Owing to the heterogeneity of marker expression in individual

cases within a given WHO entity, we decided to evaluate a novel

immunophenotype-based diagnostic approach to mature B-cell
malignancies: instead of identifying diseases using the typical
expression of a marker or a sequential combination of markers,
entities are now identified by their characteristic position within
the multidimensional space created by the combination of all
measured marker expressions.241 The total number of markers
within a panel defines the number of dimensions of this space.
PCA is applied to find the vector of the multidimensional space
with the highest variation of all events measured for two given
diseases. In general, this vector allows the best discrimination
between the two diseases, visualized with the automated
population separation (APS) tool of the Infinicyt software.16

The novel approach allowed establishing typical immunophe-
notypic patterns for most of the eight major B-CLPD entities: BL,
CLL, DLBCL, FL, HCL, LPL, MCL, and MZL. To distinguish between
these eight entities a total of 28 diagnostic decisions have to be
made (1� 1 comparisons). It is currently possible to make all these
decisions, albeit that it remains difficult to distinguish DLBCL from
(i) FL and from (ii) MZL and LPL. Also, the unequivocal differential
diagnosis between MZL and LPL is not possible with our panel of
markers (Figure 26d). We speculate that a lack of separation

Figure 25. Illustrating examples of the median fluorescence intensity
(MFI) of CD200, CD305(LAIR1) and CD103 detected among different
major diagnostic categories of B-cell chronic lymphoproliferative
diseases (B-CLPD). Circles correspond to median values of individual
patient B-cells for each marker. BL, Burkitt lymphoma; CLL, chronic
lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL,
follicular lymphoma; HCL, hairy cell leukemia; LPL: lymphoplasmacytic
lymphoma; MCL: mantle cell lymphoma; MZL, marginal zone lymphoma.

EuroFlow antibody panels
JJM van Dongen et al

1947

& 2012 Macmillan Publishers Limited Leukemia (2012) 1908 – 1975



between those two entities might also be related to difficulties of
hematopathologists to distinguish them on histopathological
grounds. In fact, expert reference pathologists agreed on these
two disease categories in 56% and 63% of all cases, respec-
tively.232 Individual aberrant cases additionally showed clustering
in the border zone of two B-CLPD entities (DLBCL versus BL, 1
case; DLBCL versus MCL, 2 cases; FL versus LPL, 1 case; FL versus
MCL, 1 case; and FL versus MZL, 4 cases). Thus, 24/28 differential
diagnoses can objectively be made for the vast majority of cases
through combined use of the EuroFlow B-CPLD antibody panel
and the new Infinicyt software tools.
An example of the differential diagnostic power of the EuroFlow

strategy is given in Figure 26. MZL cases are clearly separated from
HCL cases when the first (x-axis) and second (y-axis) principal
components are simultaneously considered (Figure 26a). The 5
(out of 25) parameters contributing most significantly to the first
principal component are, in descending order: CD305 (LAIR1),
CD11c, CD103, CD200 and CD22. The diagram of first versus
second principal component for CLL and MCL cases (Figure 26)
shows again that most patients can unequivocally be classified
into one of the disease categories using flow cytometry data only.
The five markers that contributed the most to the first principal
component were CD79b, CD200, SmIgM, CD23 and CD20.
On the basis of these results, we investigated which markers

contributed the most to the differential diagnosis of the most
frequent mature B-cell malignancy, CLL, versus all other mature
B-cell malignancies. Overall, a combination of 10 relevant antigens
(CD20, CD45, CD19, CD5, CD38, CD23, CD10, CD79b, CD200 and
CD43) yielded an almost equally good separation between CLL
and all other B-CLPD entities (Figure 26b). Therefore, the B-CPLD
panel was designed so that those markers were included into
tubes 1 (LST) and 2 (of the panel) (Table 15). Consequently, it is
possible to unequivocally diagnose this disease using tube 1 (LST)
and tube 2 of the B-CLPD antibody panel only.

CONCLUSION
The B-CPLD EuroFlow antibody panel consists of four tubes plus
the LST, which combines a total of 27 different B-cell associated
markers. Each tube in the panel contains three backbone markers

(CD19, CD20 and CD45), which proved to provide efficient positive
identification of all clonal B-cells in every B-CPLD patient tested.
Backbone markers combined with the characterization markers
provide an efficient differential diagnosis among the majority of
B-CPLD entities (24/28 diagnostic decisions), using multivariate
analysis of complete phenotypes of individual cells. The panel was
designed to work in a modular way, so that the first two tubes
allow efficient diagnosis of CLL versus all other disease entities.
Future diagnostic strategies in mature B-cell malignancies will

take advantage of using the best discriminating immunopheno-
types in multivariate analysis, for each possible differential
diagnosis. EuroFlow is currently constructing a reference database
containing complete immunophenotypic information from well-
defined mature B-cell malignancies. Unknown new cases will be
evaluated for diagnostic purposes by comparing their immuno-
phenotype to the immunophenotypic information along the
vectors in the EuroFlow reference database for best differential
diagnosis.

SECTION 9. ANTIBODY PANEL FOR T-CELL CHRONIC
LYMPHOPROLIFERATIVE DISEASES (T-CLPD)

J Almeida1, J Flores-Montero1, JJ Pérez2, MB Vidriales2, M Lima3,
AH Santos3, AW Langerak4, D Tielemans4, L Lhermitte5, V Asnafi5,
E Macintyre5, S Böttcher6, A Mendonça7, P Lucio7, R de Tute8,
M Cullen8, A Rawstron8, L Sedek9, T Szczepański9, T Kalina10,
M Martin-Ayuso11, JJM van Dongen4 and A Orfao1
1USAL, Salamanca, Spain; 2HUS, Salamanca, Spain; 3HSA-CHP, Porto,
Portugal; 4Erasmus MC, Rotterdam, The Netherlands; 5AP-HP, Paris, France;
6UNIKIEL, Kiel, Germany; 7IPOLFG, Lisbon, Portugal; 8UNIVLEEDS, Leeds, UK;
9SUM, Zabrze, Poland; 10DPH/O, Prague, Czech Republic and 11Cytognos SL,
Salamanca, Spain

BACKGROUND
T-cell CLPD, also termed peripheral (mature) T-cell neoplasms
(PTCL), are relatively uncommon lymphoid malignancies (B10%
of all CLPD in Western countries) derived from post-thymic mature
T-cells.3,242,243 Despite their low frequency, T-CLPD comprise a

Figure 26. First principal component (PC1) versus second principal component (PC2) bivariate dots plots of the complete immunophenotype
of a series of marginal zone lymphoma (MZL) versus hairy cell leukemia (HCL) (a), chronic lymphocytic leukemia (CLL) versus mantle cell
lymphoma (MCL) (b), follicular lymphoma (FL) versus CLL (c) and MZL versus lymphoplasmacytic lymphoma (LPL) (d) cases. Colored circles
represent median values of individual cases for all those immunophenotypic markers in the EuroFlow B-cell chronic lymphoproliferative
disorder (CLPD) panel contributing to PC1 and PC2. Contour lines represent s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d.,
respectively). The five most informative markers contributing to the best discrimination between each disease entity are displayed at the
bottom of each plot, in a decreasing order of percentage contribution to the discrimination.
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highly diverse and heterogeneous group of entities,3,244 much less
understood than their B-cell counterpart owing to their rarity and
biological heterogeneity and the lack of distinctive genetic
markers for most disease categories.244,245 Consequently,
subclassification of major groups of T-CLPD still remains a
challenge. As an example, the most common WHO ‘category’ of
T-CLPD in Western countries (B30% of all T-CLPD) is that of PTCL
not otherwise specified (PTCL-NOS),3 which is mostly defined by
exclusion criteria (for example, lack of specific features of other
better-defined WHO diagnostic categories of PTCL).3,246,247

Nevertheless, some progress has been made in recent years in
our understanding of the pathogenesis of several subtypes of
T-CLPD. On one side, this has been due to the identification of the
normal counterparts of specific PTCL groups. For example,
angioimmunoblastic T-cell lymphoma (AITL) has emerged as a
distinctive subtype of T-CLPD derived from follicular T helper
cells3,247–249 and CD4þ /CD25þ /CyFoxp3þ regulatory T-cells are
known to be the closest normal counterpart of adult T-cell
leukemia/lymphoma (ATLL) cells.3,245 On the other side, such
advances are related to the identification of unique biological
features among specific subgroups of patients that contribute to a
better prognostic stratification of patients. For instance, anaplastic
large cell lymphoma (ALCL) is composed of two distinct entities
with different prognosis, based on the presence or absence of
expression of the anaplastic lymphoma kinase (ALK) gene;250

similarly, T-cell prolymphocytic leukemia (T-PLL) cells specifically
overexpress the kinase coactivator Tcl1 in a substantial proportion
of cases, due to chromosomal rearrangements involving the TCL1
gene.251,252

With the exception of mycosis fungoides (MF), primary
cutaneous ALCL and T-cell LGL leukemia,3 PTCL are among the
most aggressive lymphoid neoplasms.246,253 This means that most
patients present with clear signs and symptoms of a CLPD,
frequently associated with PB involvement, in addition to
infiltration of LN and skin, among other tissues.3 The application
of the EuroFlow T-CLPD panel on samples from patients known
to have increased numbers of (aberrant) T-cells as identified/
suspected by the LST tube (see Section 2) aims at accurate
confirmation of the presence of clonal T-cells in the different
samples analyzed regardless of their nature—PB, LN or other

tissues—and precise classification of the chronic T-cell disease
into a specific WHO PTCL category.
The design and development of a standardized 8-color

antibody T-CLPD panel to classify T-CLPD comprised the selection
of combinations of both backbone markers and characterization
markers for the identification and characterization of the T-cell
population(s) of interest, as described below.

Selection of backbone markers
Four antigens (CD45, SmCD3, CD4 and CD8) were chosen as
backbone markers for the T-CLPD panel, in order to identify
normal mature T-cells (CD45hi/SmCD3þ events) and the major
T-cell subsets defined by the expression pattern of CD4 and CD8
(CD4þ /CD8� ; CD4þ /CD8þ ; CD4� /CD8� /lo; and CD4� /CD8hi).
Initially, the following fluorochrome-conjugate monoclonal anti-
bodies were tested as backbone reagents (BB1 in Table 16):
CD8–PacB, CD45–AmCyan, CD3–PerCPCy5.5 and CD4–AF700. The
proposed combination was initially tested by one center on eight
PB samples from healthy adults. While the performance of the
CD3–PerCPCy5.5 conjugate was optimal, the following limitations
were found for the other three backbone markers: (i) interference
of CD45-AmCyan in the FITC channel16; (ii) very poor (5/8 cases) or
poor (3/8 cases) ability of CD4-AF700 for clear cut identification of
CD4þ T-cells; and (iii) poor resolution of the CD8-PacB reagent to
discriminate CD8lo T-cells (7/8 cases). As a result, a second
alternative combination of backbone markers for the T-CLPD
panel was designed (BB2 in Table 16): CD4–PacB, CD45–PacO,
CD3–PerCPCy5.5 and CD8–APCH7.
Preliminary testing with this second combination of backbone

markers was initially done at one center in three PB samples, with
clear improvement as regards the identification of normal T cells, in
the absence of significant technical issues. Consequently, the
combination underwent further evaluation at two distinct EuroFlow
sites for a total of 12 PB samples. The new combination of backbone
markers proved to be useful in every case tested for the identification
of T-cells and the major T-cell subsets, as well as for their
discrimination from the remaining leukocyte populations, in both
normal/reactive (n¼ 9) and pathological samples (n¼ 6). Notably,
this combination of backbone markers was also robust enough to

Table 16. Design of the T-CLPD panel in two consecutive testing roundsa

Version
(no. of cases)b

Tube Fluorochromes and markers

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700 Aim (phenotypic characterization)

BB 1 1 CD8 CD45 SmCD3 CD4

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

BB 2 1 CD4 CD45 SmCD3 CD8

1 (n¼ 19) 1 CD4 CD45 CD7 CD26 SmCD3 CD2 CD28 CD8 SS
2 CD4 CD45 CD27 CD197(CCR7) SmCD3 CD45RO CD45RA CD8 Maturation stage
3 CD4 CD45 CD5 CD25 SmCD3 HLADR CyTcl1 CD8 T-PLL
4 CD4 CD45 CD57 CD30 SmCD3 TCRgd CD11c CD8 Cytotoxic phenotype; ALCL
5 CD4 CD45 CyPerforin CyGranzyme B SmCD3 CD16 CD94 CD8 Cytotoxic phenotype; T-LGL

2 (Final) 1 CD4 CD45 CD7 CD26 SmCD3 CD2 CD28 CD8 SS
(n¼ 67) 2 CD4 CD45 CD27 CD197(CCR7) SmCD3 CD45RO CD45RA CD8 Maturation stage

3 CD4 CD45 CD5 CD25 SmCD3 HLADR CyTcl1 CD8 T-PLL
4 CD4 CD45 CD57 CD30 SmCD3 CD11c CD8 Cytotoxic phenotype; ALCL
5 CD4 CD45 CyPerforin CyGranzyme B SmCD3 CD16 CD94 CD8 Cytotoxic phenotype; T-LGL
6 CD4 CD45 CD279c SmCD3 CD8 AITL

Abbreviations: AF700, alexa fluor 700; AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; AmCyan, Anemonia Majano cyan
fluorescent protein; APC, allophycocyanin; BB, backbone; BM, bone marrow; CLPD, chronic lymphoproliferative disorder; Cy, cytoplasmic; Cy7, cyanin7; FITC,
fluorescein isothiocyanate; H7, hilite7; LGL, large granular lymphocytic leukemia; PacB, pacific blue; PacO, pacific orange; PB, peripheral blood; PE,
phycoerythrin; PerCPCy5.5, peridinin–chlorophyll–protein–cyanin5.5; Sm, surface membrane; SS, Sézary syndrome; T-PLL, T-cell prolymphocytic leukemia.
aFurther information about markers and hybridomas is provided in the Appendix. bA total of 86 samples (78 PB, 7 BM and 1 other type of sample) was
evaluated: 20 normal samples and 66 pathological samples (37 clonal expansions of CD4þ T cells, 18 of CD8þ T cells and 11 clonal samples of CD4� /CD8� /lo

T cells). cTesting of a CD279-PECy7 conjugate reagent is ongoing to avoid tube 6 by placing this marker in the empty position in tube 4. Highlighted boxes:
changes as compared to previous version.
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allow gating, merging and calculating strategies with the Infinicyt
software for aberrant T-cell populations, as detailed below.

Selection of characterization markers
The major aim of the EuroFlow T-CLPD panel is (i) to
detect phenotypically aberrant T-cells and (ii) to allow precise
classification of T-CLPD into the current WHO diagnostic
categories.3 Therefore, once the optimal backbone reagents
had been definitively established, antibody reagents for further
characterization and classification of T cells were then selected
from a large list of T-cell related markers.3,78,242,243,245,250–259 These
included antibodies against classical pan-T-cell associated
antigens known to be aberrantly expressed in many T-CLPD
disease categories (for example, CD2, CD5 and CD7),3,242,257 T-cell
maturation-associated markers (for example, CD27, CD197 (CCR7),
CD45RA and CD45RO),245 co-stimulatory molecules (for example,
CD26 and CD28),3,242,243 activation-associated markers (for
example, CD25—also constitutively expressed by CD4þ /CD25þ

regulatory T-cells245—CD38, CD69 and HLADR),256,257 interleukin-2
receptors other than CD25 (CD122), cytotoxic-related molecules
expressed by effector T-LGL,256,258,259 such as CD11c, CD16, CD56,
CD57, killer-cell Ig-like receptors (for example CD158a/b/e/j/k and
NKB1), and lectin-type (for example, CD94 and CD161) receptors,
as well as intracytoplasmic proteins (for example, perforin,
granzymes and TIA-1). In addition, markers reported to be
expressed in specific WHO subtypes of T-CLPD such as
CD30,3,260 CyTcl1251,252 and follicular CD4þ helper T-cell-
associated markers245 (for example, CD10 and CD279, among
other markers) were also considered as candidates to be included
in the panel. Based on existing data about all these markers, and
the experience of the EuroFlow members, the following criteria
were used to select individual reagents for further testing: (i) its

ability to identify immunophenotypically aberrant T-cells in a
significant proportion of T-CLPD or their specific WHO disease
categories and (ii) its contribution to the definition of the
maturation stage (naive versus memory versus terminally
differentiated or effector cells) of the expanded T-cells; the final
goal was to classify the different T-CLPD entities according to the
more recent version of the WHO classification.3

It is currently well known that monoclonal T cells from T-CLPD
frequently show downregulation of pan-T-cell markers, such as
CD2, CD5 and CD7, in addition to SmCD3 and CD4.3,242,243

Therefore, reagents recognizing these molecules were considered
as mandatory to be selected for further testing (first diagnostic
level markers in Table 17) and hence included in the initial
EuroFlow T-CLPD panel. Other markers (or combinations of
markers) were selected also as first-level markers based on
their contribution to a more precise subclassification of T-CLPD
into particular WHO categories.3 CD26 and CD28 are useful
markers for the identification of Sézary cells, as those CD2lo/CD4lo/
SmCD3lo T-cells showing a typical CD26� /CD28þ phenotypic
pattern.255,261,262 Similarly, CD30 is typically, but not exclusively,263

expressed in systemic ALCL (ALK� and ALKþ ) and primary
cutaneous CD30þ T-cell lymphoproliferative disorders.264

Preliminary studies reported that T-cell neoplasms other than
T-PLL could also express CyTcl1,264 but more recent reports have
shown that within T-cell malignancies, CyTcl1 expression is
restricted to most (around 70–80%) T-PLL cases,251,252 while it is
absent in CD30� /þ ALCL, T lymphoblastic lymphoma, nodal PTCL,
MF265 or any other mature T-cell tumor types.251,252 Inclusion of
the CD11c, CD16 and CD57 first-level markers and the CD94,
granzyme B and perforin second-level cytotoxic-related markers
was based on their ability to assess cytotoxic-associated
phenotypes and hence to identify T-LGL,3,258,259 although

Table 17. Utility of T-CLPD markers

Diagnostic level Sub-classificationTube Target antigen Identification of T-cells and T-cell subsets

1st 2nd

BB markers CD3 X
CD4 X X
CD8 X X
CD45 X

Tube 1 CD7 X
CD26 X X
CD2 X X
CD28 X X

Tube 2 CD27 X
CD197 (CCR7) X X
CD45RO X
CD45RA X

Tube 3 CD5 X
CD25 X X
HLADR X
CyTcl1 X X

Tube 4 CD57 X X
CD30 X X
CD11c X X

Tube 5 CyPerforin X X
CyGranzyme B X X
CD16 X X
CD94 X

Tube 6 CD279 X X

Other TCR Vb families X

Abbreviations: BB, backbone; CLPD, chronic lymphoproliferative disorders; Cy, cytoplasmic.
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T-CLPD cases other than T-LGL have also been found to express
cytotoxic molecules.3,245 The CD56 cytotoxic molecule was not
included in the EuroFlow T-CLPD panel, as it was already present
in the LST tube; in contrast, at this time anti-TCRgd had not yet
been included in the EuroFlow LST, and therefore it was
considered as a mandatory marker to assess the TCRgd versus
TCRab nature of the disease. Other markers selected at this
stage included the CD27, CD197(CCR7), CD45RA and CD45RO
maturation-associated markers and the CD25 and HLADR
activation-related proteins; the inclusion of all these latter
groups of markers was based on the fact that the phenotype of
pathological cells from many T-CLPD correlates with distinct
maturation-associated subsets of T-cells, and therefore the
differential expression of the CD45 isoforms, CD27 and
CD197(CCR7) could be useful not only for the definition of the
maturation stage of tumor cells,245 but also for a more refined
classification of T-CLPD cases into the distinct WHO entities. In this
regard, previous studies have shown that Sézary cells typically
display a CD4þ memory T-cell phenotype,255 while T-PLL cells
display a phenotype consistent with a naive/central memory
T-cell3 and the phenotype of T-LGL leukemia cells overlaps with
that of normal activated effector T-cells.256

Once the target molecules were selected, monoclonal anti-
bodies against them were chosen among the FITC-, PE-, PECy7-
and APC-fluorochrome conjugates, which were commercially
available; the first version of the EuroFlow T-CLPD panel was
then designed (Table 16) and evaluated. Shortly after the design
of version 1, the second and definitive version of the EuroFlow
T-CLPD panel was developed, with the following two major
improvements: (i) exclusion of the anti-TCRgd reagent, to avoid
redundancy with the LST (note that version 1 of T-CLPD panel was
developed in parallel with the first four versions of the LST, when
anti-TCRgd was not yet included in it); and (ii) inclusion of CD279

as a characteristic marker of follicular CD4þ helper T-cells, to
increase the diagnostic power of the panel for the identification of
AITL.3,247–249 The recent availability of new CD279 reagents (for
example, CD279–PECy7 from BDB) would contribute to improve
the current version of the EuroFlow T-CLPD panel, as the
CD279–PE monoclonal antibody reagent used until now might
be replaced by the new PECy7 conjugate of the same CD279 clone
in the corresponding PECy7 position of tube 4 (Table 16), resulting
in a five (instead of six) 8-color combinations of monoclonal
antibodies.
The description of the precise role for each marker in the panel

of all reagents included in the T-CLPD panel (version 2) is shown in
Table 17.

Evaluation of the EuroFlow T-CLPD panel
Testing of the EuroFlow T-CLPD panel (version 2) was performed
by seven EuroFlow centers involved in the study of T-CLPD. A total
of 67 samples were stained with the full panel (version 2)
(Table 18); these included 11 PB samples from healthy adults
(mean age of 33±6 years; 7 males and 4 females), 34 samples
from patients with clonal expansions of CD4þ T-cells (mean age
of 62±12 years; 20 males and 14 females, distributed in the
distinct WHO subtype diseases3 as shown in Table 18), 11 samples
containing clonally expanded CD8hi T-cells (mean age of 60±17
years; 3 males and 8 females), 10 samples of TCRgdþ T-CLPD
(mean age of 59±14 years; 8 males and 2 females) and 1 sample
from a 67-year-old male with CD4� /CD8� /lo TCRabþ T-cell
leukemia. In 30/56 patients (54%) T-cell clonality was confirmed by
TCR gene rearrangement analyses according to the BIOMED-2
multiplex PCR protocols266 performed either on whole samples or
on highly-purified T-cell fractions.
In order to evaluate the utility of the EuroFlow T-CLPD panel for

the purposes referred above, pairwise unsupervised discrimination

Table 18. Phenotypic patterns and numbers of pathological T-cells detected with the final version of the EuroFlow T-CLPD panel (n¼ 67)

No of T-cellsDiagnostic group
a

Aberrant T-cells
b

(no. of cases/total cases)

% of T-cells (from WBC)c No of T-cellsd (� 103/ml)

Healthy adult donors (n¼ 11) 0/11 CD4þ /CD8� : 12.3 (7.4–21.8) 700 (400–1900)
CD8hi/CD4� : 7.2 (2.8–14.4) 400 (170–1000)
CD4� /CD8� /lo: 0.6 (0.2–3.7) 50 (10–200)
CD4þ /CD8hi: 0.34 (0.0–2.1) 20 (7–100)

Clonal expansions of CD4þ T-cellse (n¼ 34)
Sézary syndrome (n¼ 9) 9/9 24 (4.4–88.7) 3560 (170–5300)
T-PLL (n¼ 5) 5/5 90 (61–96) 214 000 (63 000–528 000)
ATLL (n¼ 4) 4/4 82 (39–85) 23 600 (3200–34 900)
CD4þ LGL (n¼ 4) 4/4 25 (10–60) 2300 (1500–3200)
AITL (n¼ 2) 2/2 5.6 (3–8.3) 1100
PTCL-NOS (n¼ 10) 10/10 14 (3.3–65) 3000 (1900–6100)

Clonal expansions of CD8hi T-cells (n¼ 11)
T-LGL (n¼ 10) 9/10 27 (1–56) 1500 (110–9500)
CD8hi PTCL-NOS (n¼ 1) 1/1 17 6010

Clonal expansions of CD4� /CD8� /lo T-cells (n¼ 11)
TCRgdþ T-LGL (n¼ 9) 8/9 19 (1.3–33) 1500 (30–5900)
TCRgdþ hepatosplenic T-cell lymphoma (n¼ 1) 1/1 24 ND
TCRabþ T-CLPD (n¼ 1) 1/1 75 NA

Abbreviations: AITL, angioimmunoblastic T-cell lymphoma; ATLL, adult T-cell leukemia–lymphoma; BM, bone marrow; CLPD, chronic lymphoproliferative
disorders; LGL, large granular lymphocyte leukemia; NA, not applicable; ND, not available; PB, peripheral blood; PTCL-NOS, peripheral T-cell lymphoma not
otherwise specified; TCR, T-cell receptor; T-PLL, T-cell prolymphocytic leukemia; WBC, white blood cells. aA total of 67 cases was evaluated, which
corresponded to 59 PB, 7 BM and 1 ascitic fluid sample. bAccording to previously reported studies (References78,243,245,254,258,260-264,266). cResults expressed as
median % of T-cells from WBC (range). For the different patient groups, only data from the expanded/ aberrant T-cell population is shown. dResults expressed
as median absolute number of circulating T-cells� 103/ml (range) for the PB samples analyzed; for the different patient groups, only data from the expanded/
aberrant T-cell populations are shown. eRegardless of CD8 expression (either negative or dimly positive).
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by PCA with the APS function provided with the Infinicyt software
program was used.16,241 Regarding clonal CD4þ T-cell cases,
samples from all T-CLPD categories but PTCL-NOS included in the
multicenter testing phase (Sézary syndrome (SS), T-PLL, ATLL,
CD4þ T-LGL and AITL) clearly clustered separately from normal
CD4þ T-cells (Figure 27A, plots ‘a’ to ‘f’). The most informative
markers responsible for such separation included maturation-
associated molecules such as CD45RA, CD45RO, CD27 and CD28—
probably reflecting the fact that normal CD4þ T cells are
heterogeneous, in contrast to the more homogeneous matura-
tional patterns displayed by clonal T cells—and markers expected
to be relevant for such a discrimination between normal CD4þ

T cells and clonal cells from SS (CD2, CD26 and CD7), T-PLL
(CyTcl1), ATLL (HLADR and CD25), CD4þ T-LGL (CD28, CyGran-
zyme B and CD7) and AITL (CD279, HLADR and SmCD3)
(Figure 27). Similarly, CD4þ T-CLPD cases from different WHO
disease categories also expressed distinct phenotypic profiles
versus the other groups, as illustrated in Figure 27B (plots ‘g’ to ‘l’)
for several of the most relevant two-by-two comparisons. The
precise markers mostly contributing to discriminate each CD4þ

T-CLPD group from other CD4þ reference groups are also
displayed in this figure (Figure 27B, plots ‘g’ to ‘f’); interestingly,
these discriminating markers included most of the markers found

to be also relevant for the discrimination between each WHO
disease group and normal CD4þ T-cells. PTCL-NOS cases were not
included in such comparisons since, as expected, they formed a
highly heterogeneous group. However, when each PTCL-NOS case
was individually compared with normal CD4þ T-cells and the
cases from the other WHO disease categories, no overlap was
observed, except for 4/10 PTCL-NOS cases that showed partial
overlap with Sézary cells. Noteworthily, no CD30þ cases have
been analyzed so far with the EuroFlow panel, but data derived
from previous experience and immunohistochemical analyses
support its utility in the T-CLPD panel proposed here.
Regarding the CD8hi (10/11) and CD4� /CD8� /lo (10/11) T-CLPD

groups, all but two cases also showed clearly different immuno-
phenotypic profiles versus their corresponding normal T-cell
counterparts, as illustrated in Figure 28a and c for representative
cases from both groups. In only one T-LGL case in each of the
CD8hi and CD4� /CD8� /lo T-CLPD groups (Figure 28b and d) was
marked overlap between the phenotypic profiles of clonal and
normal T-cells observed. Markers contributing the most to the
discrimination between each clonal CD8hi T-CLPD case and the
reference group of normal CD8hi T-cells included CD45RO, CD27,
CyGranzyme B, CD28, CD57 and CD45RA; similarly, CD28,
CyGranzyme B, CD45RA, CD45RO, CD16, CD11c and CD27 were

Figure 27. Comparative principal component (PC)1 versus PC2 views of CD4þ T-chronic lymphoproliferative disorders (CLPD) cases. A (plots
a–f ) shows the APS (automated population separator, PC1 versus PC2) views for the comparisons of each CD4þ T-CLPD WHO diagnostic
subgroup—Sézary syndrome (SS), light green; T-cell prolymphocytic leukemia (PLL), dark green, adult T-cell leukemia/lymphoma (ATLL), pink;
CD4þ large granular lymphocytic (LGL) leukemia, brown; angioimmunoblastic lymphoma (AITL), dark blue; and peripheral T-cell lymphoma
not otherwise specified (PTCL-NOS), red—versus normal CD4þ T-cells (green), while B (plots g– l) shows two-by-two PCA comparisons
between different diagnostic categories of CD4þ T-CLPD. Each circle represents one single case (median expression observed for all
phenotypic parameters evaluated), while contour lines represent s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d.,
respectively). The six most informative markers contributing to the best discrimination between CD4þ T cells from the different cases are
displayed at the bottom of each plot, in a decreasing order of percentage contribution to the discrimination.
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the most informative markers for the distinction between normal
and clonal CD4� /CD8� /lo T-cells. No clear phenotypic differences
were observed among the distinct WHO disease categories either
within the CD8hi (TCRabþ T-LGL versus CD8hi PTCL-NOS) or within
the CD4� /CD8� /lo (TCRgdþ T-LGL versus hepatosplenic T-cell
lymphoma) T-CLPD groups (data not shown); however, owing to
the limited number of cases included in some of these groups,
further studies are required in the future to confirm these very
preliminary findings.

CONCLUSIONS
Although the series of T-CLPD patients analyzed is still relatively
limited (n¼ 56), particularly within some WHO disease categories,
our results clearly show that the 8-color EuroFlow T-CLPD panel
contributes to the diagnostic classification of T-CLPD. Accordingly,
this panel allows distinction between clonal T-cells and their
corresponding normal counterparts in the vast majority of cases
(50/56); at the same time, it provides useful information for the
subclassification of the disease. In this regard, the panel proposed
allowed unequivocal classification of CD4þ T-CLPD into specific
WHO subtypes, particularly SS, T-PLL, ATLL, CD4þT-LGL and AITL,
for which markers like CD2, CD7, CD26, CD28 (for SS), CD25,
HLADR (for ATLL), cytotoxic-associated markers (for CD4þ T-LGL),
CyTcl1 (for T-PLL) and CD279 (for AITL) were particularly
informative. The precise value of CD30 in this panel needs to be
further investigated in future studies, as no CD30þ T-CLPD cases
have been analyzed so far. Regarding CD8hi and CD4� /CD8� /lo

T-CLPD, our data also confirm the value of the panel in
discriminating between clonal cytotoxic effector T-cells and their
normal counterparts, except for a few T-LGL leukemia cases, where
clonal T-cells overlapped with their normal/reactive counterpart;
however, the value of the marker combinations used here for the
identification of specific CD8þ and CD4� /CD8� /lo T-CLPD WHO
disease categories seems to be more limited than in CD4þ T-CLPD
cases and deserves further investigation in larger series of patients,
both by the EuroFlow Consortium and by other groups.

SECTION 10. ANTIBODY PANEL FOR NK-CELL CHRONIC
LYMPHOPROLIFERATIVE DISEASES (NK-CLPD)

J Almeida1, J Flores-Montero1, L Lhermitte2, V Asnafi2, R de Tute3,
M Cullen3, A Rawstron3, D Tielemans4, AW Langerak4, JJ Pérez5,
M Lima6, AH Santos6, A Mendonça7, P Lucio7, S Böttcher8,
L Sedek9, T Szczepański9, T Kalina10, M Muñoz11, JJM van Dongen4

and A Orfao1
1USAL, Salamanca, Spain; 2AP-HP, Paris, France; 3UNILEEDS, Leeds, UK;
4Erasmus MC, Rotterdam, The Netherlands; 5HUS, Salamanca, Spain; 6HSA-
CHP, Porto, Portugal; 7IPOLFG, Lisbon, Portugal; 8UNIKIEL, Kiel, Germany;
9SUM, Zabrze, Poland; 10DPH/O, Prague, Czech Republic and 11Cytognos SL,
Salamanca, Spain

BACKGROUND
NK-cell neoplasms are rare hematological disorders, which
represent o1% of all lymphomas and chronic lymphoid disorders
in Western countries.267 In addition to their rarity, they are also
rather heterogeneous, including distinct clinicopathologic disease
entities. According to the most recent WHO classification,3 three
distinct malignancies derived from mature NK-cells are
recognized: aggressive NK-cell leukemia, extranodal (nasal type)
NK/T-cell lymphoma and CLPD of NK cells. The former two entities
are strongly associated to infection by the Epstein–Barr virus (EBV)
and they are characterized by an aggressive clinical course and
poor survival. Conversely, CLPD of NK cells (NK-CLPD) represent a
new provisional category, which includes cases previously
designated as chronic NK-cell lymphocytosis, chronic NK-large
granular leukemia and NK-cell LGL lymphocytosis, among other
terms.3,268 Indeed, NK-CLPD comprises a broad spectrum of

NK-cell proliferations,3,268 from reactive to neoplastic expansions,
difficult to distinguish because of lack of a universal NK-cell marker
for clonality. Noteworthily, NK-CLPD is the most common mature
NK-cell proliferation in Caucasians; it is not systematically
associated to EBV infection3 and the clinical course of patients
is usually indolent. In these patients the number of NK cells

Figure 28. Comparative principal component (PC)1 versus PC2 views
of CD8hi and CD4� /CD8� /lo T-cells in four T-cell chronic lympho-
proliferative disease (T-CLPD) cases. (a, b) show APS (automated
population separator, PC1 versus PC2) views of two CD8hi T-CLPD
cases versus normal CD8hi T-cells, while c and d show comparisons
of two CD4� /CD8� /lo T-CLPD cases versus normal CD4� /CD8� /lo

T-cells. (a) and (c) show representative cases of most CD8hi and
CD4� /CD8� /lo T-CLPD patients who had a phenotypic pattern
clearly different from that of their normal T-cell counterpart (10/11
cases for each T-CLPD group), while (b) and (d) show the only two
cases for which clonal T-cells displayed an overlapping phenotype
with that of normal T-cells. In all panels, T-CLPD samples are
depicted as red circles, while normal/reference T-cells are shown as
green circles. Each circle represents one single case (median
expression observed for all phenotypic parameters evaluated), while
contour lines represent s.d. curves (dotted and continuous lines
represent 1s.d. and 2s.d., respectively). The six most informative
markers contributing to the best discrimination between normal
and clonal T-cells from each individual case displayed are listed at
the bottom of each plot, in a decreasing order of percentage
contribution to the discrimination.
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typically remains stable for many years without therapy and
sometimes it may even show spontaneous regression,268 which
could reflect in such cases the reactive nature of the expansion;
however, rare cases of NK-CLPD have been reported that
transformed into an aggressive NK-cell leukemia.269,270

As in European countries, most NK-cell proliferations correspond
to NK-CLPD; the most common reason for consulting in such cases
is lymphocytosis detected in a routine WBC count in association or
not with cytopenias and in the absence of other associated
symptoms or physical signs of disease. According to the stepwise
diagnostic workflow recommended by the EuroFlow Consortium
(Figure 1), in a first step the LST (see Section 2) should be applied in
these cases and when the NK-cell lineage is suspected to be
responsible for the lymphocytosis—absolute or relative expansion
of either CD56þ or CD56� /lo/ CD45hi cells in the absence of
expression of SmCD3, CD4, TCRgd and CD19 in the LST—the
NK-CLPD panel is then applied in a second step, for full
characterization. Therefore, the EuroFlow NK-CLPD panel aims at
further characterization of the expanded NK-cells, to discriminate
between aberrant and normal/reactive NK-cells, and to establish the
precise diagnosis.

Selection of backbone markers
Four backbone markers (CD45, SmCD3, CD56 and CD19) were
selected for the NK-CLPD panel, to unequivocally identify NK cells,
as those CD45hi/SmCD3� events showing reactivity for CD56;
inclusion of CD19 and SmCD3 as backbone markers is supported
by the fact that in around one-third of NK-cell expansions NK cells
show absence or dim expression of CD56;79 therefore, in these
latter cases NK cells are identified by exclusion of the remaining
cells included in the, for example, CD45hi/SSClo ‘lymphocyte gate’
(T- and B-cells). In the first testing phase, the following
fluorochrome conjugates were used as backbone reagents (BB1
in Table 19): CD19–PacB, CD45–AmCyan, CD3–PerCPCy5.5 and
CD56–AF700. This proposed combination was initially tested at
one center in eight PB samples from healthy adults. This showed
that while the performance of the CD19–PacB and CD3–
PerCPCy5.5 conjugates was optimal—in terms of, for example,
brightness, SI, limited spectral overlap—to exclude mature B- and
T-cells, respectively, two technical limitations existed: (i) inter-
ference of CD45-AmCyan in the FITC channel16 and (ii) low
resolution of the CD56–AF700 conjugate to identify CD56lo NK
cells. Consequently, the following changes were introduced in the
backbone markers of the NK-CLPD panel: (i) the AmCyan
fluorochrome was replaced by PacO for evaluation of CD45, and

(ii) the CD56–AF700 conjugate was planned to be substituted by
an anti-CD56–APCH7 reagent. However, owing to the limited
availability of APCH7-conjugated reagents at the time of testing
(November 2007), a second alternative combination of backbone
markers for the NK-CLPD panel was designed (BB2 in Table 19):
CD45–PacO, CD56–PECy7, CD3–PerCPCy5.5 and CD19–APCH7. Of
note, the CD56–PECy7 reagent included in this second version of
the NK-CLPD backbone was selected after testing in parallel two
different commercially available CD56–PECy7 reagents: CD56–
PECy7 from BD Biosciences (clone: NCAM16.2) and CD56-PECy7
(clone: N901/NKH1); this comparison was performed at one center
in a total of three PB samples from healthy adults, and it showed a
better performance for the latter reagent, with a greater SI versus
the former conjugate (median SI of 9.8 versus 5.2, respectively).
Testing of this second combination of backbone markers

proposed for the NK-CLPD panel was initially done at one center
in three PB samples. Preliminary results showed a clear

Table 19. Design of the NK-CLPD panela

Version
(no. of cases)b

Fluorochromes and markers AimTube

PacB AmCyan FITC PE PerCPCy5.5 PECy7 APC AF700

BB 1 1 CD19 CD45 SmCD3 CD56

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

BB 2 1 CD45 SmCD3 CD56 CD19

Final (n¼ 38) 1 CD2 CD45 CD7 CD26 SmCD3 CD56 CD5 CD19 Aberrant NK-cells
2 CD16 CD45 CD57 CD25 SmCD3 CD56 CD11c CD19 Aberrant NK-cells
3 HLADR CD45 CyPerforin CyGranzyme B SmCD3 CD56 CD94 CD19 Aberrant NK-cells,

cytotoxic
phenotype

Abbreviations: AF700, alexa fluor 700; AmCyan, Anemonia Majano cyan fluorescent protein; APC, allophycocyanin; BB, backbone; CLPD, chronic
lymphoproliferative disorder; Cy, cytoplasmic; Cy7, cyanin7; FITC, fluorescein isothiocyanate; H7, hilite7; PacB, pacific blue; PacO, pacific orange;
PB, peripheral blood; PE, phycoerythrin; PerCPCy5.5, peridinin–chlorophyll–protein–cyanin5.5; Sm, surface membrane. aFurther information about markers and
hybridomas is provided in the Appendix. bA total of 38 PB samples was evaluated, which corresponded to 10 normal and 28 pathological samples. Highlighted
boxes: changes as compared to previous version.

Table 20. Utility of NK-CLPD markers

Tube Diagnostic levelTarget
antigen

Identification
of NK-cells

1st 2nd

BB markers SmCD3 X
CD19 X
CD45 X
CD56 X

Tube 1 CD2 X
CD7 X
CD26 X
CD5 X

Tube 2 CD16 X
CD57 X
CD25 X
CD11c X

Tube 3 HLADR X
CyPerforin X
CyGranzyme B X
CD94 X

Abbreviations: BB, backbone; CLPD, chronic lymphoproliferative disorders;
Cy, cytoplasmic; Sm, surface membrane.
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improvement as regards identification of NK cells, in the absence
of significant technical issues. Consequently, the combination
underwent further evaluation at two EuroFlow sites for a total of
12 PB samples. The new combination of backbone markers proved
to be useful for the identification of NK-cells, and their
discrimination from the remaining leukocyte populations in every
case tested, both in normal/reactive (n¼ 8) and in NK-CLPD (n¼ 4)
PB samples. Importantly, this combination of backbone markers
was also robust enough to allow gating, merging and calculating
strategies with the Infinicyt software, as detailed below.

Selection of characterization markers
Once the optimal backbone reagents were definitively estab-
lished, antibody reagents for further characterization of NK cells
were selected from a large list of NK-cell related markers,
previously tested by our79,80,271 and/or other258,272–276 groups.
Initially, this included a large list of monoclonal antibodies
directed against classical NK-cell-associated antigens, including
signaling molecules (for example, CD2, CD5, CD7 and CD8), the
CD16 low-affinity FcgRIII, activation-related markers (for example,
CD26, CD38, CD45RO, CD69 and HLADR), interleukin-2 receptors
(CD25 and CD122), cytotoxic molecules (for example, CD11c and
CD57) and intracytoplasmic enzymes (for example, perforin,
granzymes and TIA-1), together with antibodies against killer-cell
Ig-like receptors (KIR; for example, CD158a/b/d/e/l and NKB1),
leukocyte Ig-like receptors (LIR; for example, CD85j (LIR1/ILT2)),
C-type lectin-like receptors (for example, NKG2A/D, CD94 and
CD161) and natural cytotoxicity receptors (NCR), such as CD335
(NKp46), CD336 (NKp44) and CD337 (NKp30), among others.
Based on existing data about all these markers, the following
criteria were used to select reagents for further testing: the ability
to better distinguish normal/reactive versus immunopheno-
typically aberrant NK-cells and to assess a cytotoxic effector
phenotype, and therefore determine the maturation stage of the
expanded NK-cells.
Regarding the first purpose, it has been recurrently shown that

aberrant or clonal NK cells display unique and altered patterns of
expression of CD2, CD7, HLADR and CD94 versus both normal and
reactive NK cells,3,79,80,271,272,277 although a relatively high degree
of overlap has been observed. Therefore, reagents recognizing the
above referred molecules were considered as mandatory to be
selected for further testing (first diagnostic level markers in
Table 20) and hence included in the NK-CLPD panel, together
with CD16; this latter marker was selected as a confirmatory
marker typical of CD56lo NK-cells, but also as a useful marker to

identify some (rare) CD16� /lo NK-cell malignancies.270 In order to
assess a cytotoxic effector phenotype and the maturation stage of
the expanded NK-cells, markers known to be expressed on
terminally differentiated cytotoxic effector cells such as CD11c,
CD57, perforin and granzyme B80,271,278,279 were selected to be
included in the NK-CLPD panel (Table 19). As these molecules are
also expressed by normal/reactive NK-cells, and are therefore not
useful for their distinction from clonal/aberrant NK-cells, anti-
bodies recognizing cytotoxicity-related molecules were consid-
ered as second-level markers (Table 20). Additional antibodies
against molecules not usually present in most normal NK-cells
under baseline conditions, were also selected for testing with the
NK-CLPD panel (CD5, CD25 and CD26), as they have been found to
be expressed by pathological NK-cells in some (rare) cases. Other
proteins that have been claimed to potentially serve as surrogate
markers for NK-cell clonality, such as restricted or absent
expression of a single isoform of the NK-cell-associated antigen
families (for example, KIR), were finally not included in the
EuroFlow NK-CLPD panel, based on the lack of conclusive results
reported so far in this regard258,273–276,280 and the experience of
the EuroFlow groups. Previous studies in short series of NK-CLPD
cases (between 3(ref. 273) and 15(ref. 280) cases) pointed out that NK-
cell expansions frequently show a skewed NK-receptor expression
(for example, homogeneous expression of one or more KIR,
particularly CD158a and CD158b),273,274,280 in contrast to normal
NK-cells, which typically display a diversified repertoire of NK-cell
receptors. Despite this, both the sensitivity and specificity of this
approach to unequivocally identify clonal NK-cells is currently
poor (unless a relatively extensive set of antibodies against the
repertoire of NK-cell receptors is used), particularly when a
background of normal residual NK-cells co-exists with a clonal
population of NK-cells (data not shown).
Once the target molecules were selected, monoclonal anti-

bodies against them were chosen from among the PacB-, FITC-,
PE- and APC-fluorochrome conjugates commercially available
(Table 19). The precise role for each marker included in the NK-
CLPD panel is summarized in Table 20.

Multicenter testing of the EuroFlow NK-CLPD panel
Testing of the EuroFlow NK-CLPD panel was carried out by seven
EuroFlow centers involved in the study of NK-CLPD. A total of 38
PB samples were stained with the full panel: 10 samples from
healthy adults (mean age of 36±6 years; 5 males and 5 females);
11 female patients (64±21 years) with expanded circulating

Table 21. Phenotypic patterns and percentage of NK-cells detected with the EuroFlow NK-CLPD panel

Diagnostic group Aberrant NK-cellsa

(no. of cases/total cases)
% of NK-cells
(from WBC)b

No. of PB NK-cellsc

(� 103/ml)

Healthy adult donors 0/10 2.1 (1.5–4.5) 130 (60–290)
Cases with expanded polyclonal (reactive) NK-cellsd,e 0/5 14.5 2020
Clonal NK-CLPDf 6/6 30 (16–65) 3280 (1480–7800)

Cases with expanded NK-cells not tested
for clonalityg

9/17 44 (30–62) 4710 (290–7500)

Abbreviations: CLPD, chronic lymphoproliferative disorders; HUMARA, human androgen receptor X-chromosome inactivation assay; PB, peripheral blood;
WBC, white blood cells. aAccording to previously reported studies.79,80,271,277. bResults expressed as median % of NK-cells from WBC (range). cResults expressed
as median absolute number of circulating NK-cells� 103/ml (range). dIn these cases, diagnosis (assessment of the clonal versus polyclonal nature of the NK-cell
expansions) was established by the HUMARA assay,278,279 performed on highly purified PB NK-cells. eIn 1 case, NK-cells showed a borderline
altered phenotype (virtually all NK-cells, representing 46% of WBC and 7220 cells� 103/ml, were CD56� /lo/ CD7� /lo/CD2þ /CD11cþ /CD57� /þ /CD94lo/
HLADR� /þ ). fIn 1/6 cases (showing 65% NK-cells), the expanded cells showed overlapping features with reactive NK-cells (CD56� /lo/CD7� /lo/CD2þ /CD11cþ /
CD57þ /hi/CyPerforinhi/ CyGranzyme Bhi/CD94lo/HLADR� /þ ). gSeven of the 9 cases with phenotypically abnormal/aberrant NK-cells were classified
by the Infinicyt software as clonal cases (2 were clinically diagnosed with CLPD), one case as reactive and one case could not be classified; from the remaining
8 cases, 7 cases showed a reactive NK-cell phenotype, while one case showed a normal NK-cell phenotype in the manual analysis; from the 7 cases showing a
reactive NK-cell phenotype, 4 cases were classified by principal component analysis (PCA) as normal/reactive, 2/7 as clonal (one of them corresponded to the
case referred in footnote f ) and 1/7 could not be classified; the case considered to have a phenotypically normal NK-cell phenotype could not be classified by
PCA and it showed a borderline altered CD56þ /CD7� /CD2þ /CD11c� /CD57� /þ /CD94þ /HLADR� phenotype.
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Figure 30. Illustrative phenotypic patterns of NK-cells from healthy donors, and patients with expanded polyclonal, clonal CD56þ and clonal
CD56� /lo NK-cells. Arrows point to the most informative markers in the distinction between each clonal NK-cell case versus their normal and
reactive NK-cell counterparts.

Figure 29. Comparative principal component (PC) 1 versus PC2 views of clonal versus both normal and reactive NK-cell reference cases. The
APS (automated population separator, PC1 versus PC2) views of each CD56þ (Panel A, plots a and b, and Panel B, plots g and h) and CD56� /lo

(Panel A, plots c–f, and Panel B, plots i–l) clonal NK-cell case (different red circles), versus the reference groups of normal (green circles) and
reactive/polyclonal NK-cells (blue circles). Each circle represents one single case (median expression observed for all phenotypic parameters
evaluated), while contour lines represent s.d. curves (dotted and continuous lines represent 1s.d. and 2s.d., respectively). The six most
informative markers contributing to the best discrimination between each clonal NK-cell CLPD case and the corresponding reference group
are displayed at the bottom of each plot, in a decreasing order of percentage contribution to the discrimination.
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NK-cells found to be suitable (heterozygous) for the HUMARA
assay–six clonal and five polyclonal cases—and 17 samples from
patients with expanded PB NK-cells (mean age: 66±12 years) in
whom the HUMARA assay was not performed (13 males and 3
females) or it was not informative to assess NK-cell clonality (one
homozygous female for the HUMARA assay) (Table 21). A case was
considered to be monoclonal by the HUMARA assay when the
corrected allele ratios werep0.33 orX3 for both NK-cells and NK-
cells/control cells, indicating that one of the parental alleles was
represented at an excess of X50% versus the other allele278,279

(paired normal purified T-cells or neutrophils were used as control
cells). In 2/6 cases in which the presence of monoclonal NK cells
could be confirmed (both showing a CD56� /lo phenotype), T-cell
clonality was ruled out by PCR TCR gamma gene analysis.
In order to evaluate the utility of the EuroFlow NK-CLPD panel

for the distinction between normal/reactive and clonal NK-cells,
pairwise unsupervised discrimination by PCA with the APS
function provided with the Infinicyt software program was used.
In order to be sure about the polyclonal versus clonal nature of the
expanded NK-cells from patients, only samples from healthy
subjects (n¼ 10) and those female patients (n¼ 11) found to be
heterozygous for the HUMARA assay–six clonal and five polyclonal
cases—were included in the PCA-based comparisons. As shown in
Figure 29A (plots ‘a’ to ‘f’), cases stained with the EuroFlow
NK-CLPD panel, from both the CD56þ (n¼ 2) and the CD56� /lo

(n¼ 4) clonal NK-cell groups, showed clearly different immuno-
phenotypic profiles versus normal NK-cells (n¼ 10). Similarly,
cases from the CD56þ clonal NK-cell group (n¼ 2) also showed
distinct phenotypic profiles as compared to the group of
polyclonally expanded reactive NK-cells (Figure 29B, plots ‘g’ to
‘l’). However, in 3/4 cases with CD56� /lo clonal NK-cells, partial
overlap between the phenotypic profiles of clonal and normal or
reactive NK-cells was observed (Figure 29A, plot ’c’ and Figure 29B,
plots ‘i’, ‘k’ and ‘l’). Despite this, it should be noted that each of
these three cases was clearly different from normal and reactive
NK-cells, when comparisons were made separately for these cases
versus each subset of CD56þ and the CD56� /lo/polyclonal
NK-cells (data not shown).
The precise markers mostly contributing to discrimination of

each clonal case from the reference groups of both normal and
reactive/polyclonal NK cells included CD56, CD57, HLADR and
CD94; in addition, CD7 was also an informative marker in the dis-
tinction between normal versus clonal NK-cells (mainly CD56� /lo),
and CyGranzyme B and CyPerforin—and to a lesser extent also
CD2—were informative in the distinction between reactive/
polyclonal versus clonal NK-cells (Figure 29). Illustrative pheno-
typic patterns of NK-cells from healthy donors and patients with
expanded polyclonal and clonal NK-cells are shown in Figure 30.
Using this Infinicyt-based strategy, expanded NK cells from those

additional 17 samples for which clonality could not be determined
showed an aberrant phenotypic profile in nine cases (from which
seven cases were also found to have phenotypically abnormal NK
cells, according to previously reported studies79,80,271,277). In five
cases, overlapping profiles with normal (n¼ 3) and reactive NK-cells
(n¼ 2) were found, while in the remaining three cases the software
did not allow precise classification into a specific reference group.
Comparisons between the conventional and the new PCA-based
classification strategies for these 17 samples are described in a
footnote in Table 21.

CONCLUSIONS
Our results obtained in a relatively limited number of patients
show that the EuroFlow NK-CLPD panel, consisting of three 8-color
combinations of monoclonal antibodies, would contribute to
improve the diagnosis of NK-cell CLPD, as it allows the
identification of immunophenotypic profiles that distinguish
clonal versus polyclonal NK-cells. As a major challenge within

NK-cell CLPD is to distinguish between reactive and clonal
proliferations of NK cells (because of lack of universal markers
for NK-cell clonality), the EuroFlow panel and strategy would
facilitate the distinction between them and therefore would be of
great help in routine diagnostic settings. However, confirmation of
these preliminary results in larger series of patients is necessary,
which is a future goal of the EuroFlow activities.

GENERAL DISCUSSION
Immunophenotyping is an essential tool in the diagnostic work-up
and classification of hematological malignancies.1–3 Although
other immunophenotypic techniques may also be used for
evaluation of tissues, multiparameter flow cytometry is most
frequently indicated. Despite the objectivity of flow cytometric
measurements and the apparent simplicity of the technique,
multiple problems and limitations have emerged over time.281

Multiparameter flow cytometry is currently regarded as a costly
and complex approach, because of increased reagent costs
related to the progressively higher number of markers used for
answering clinical questions, and because of the exponentially
increased need for expertise in data analysis and interpretation.
This, together with technical variations between different
laboratories around the world (for example, number and type of
reagents and instruments available), has resulted in many
different strategies and antibody panels, almost as many
strategies as individual flow cytometry laboratories. This diversity
has hampered real standardization and reproducibility of flow
cytometric diagnostics. In addition, interpretation of flow
cytometry data slowly evolved from an objective measurement
of the percentage of positive or negative cells to highly subjective
interpretations of two-dimensional dot-plot pictures, which
are interpreted in an ‘experience-based’ manner, as done for
routine histomorphology and cytomorphology. Such short-
comings have pushed the need for standardization in the
field and multiple initiatives have been made in the last
two decades.7,9,12–14,22,23,25–29,106,193,204,282–284 However, such
‘standardization’ initiatives are usually limited because they only
address a part of the whole process, without true validation of the
‘consensus proposals’ in prospective studies. For example, most
recommendations and guidelines only provide lists of informative
markers without discussing reference reagents, fluorochrome
conjugates and the most appropriate multicolor combinations.
Even more, the proposed lists of markers are frequently grouped
according to one or a few disease categories or cell lineages, which
do not necessarily answer the clinical questions, particularly those
raised in a diagnostic screening phase. As a consequence,
excessively high numbers of markers are being used, which are
frequently different between laboratories. Consequently, discrepant
results might be obtained for the same patient samples.
Comparable to such consensus groups, also the EuroFlow

Consortium started the EuroFlow project with a first consensus
proposal of potentially informative markers and technical flow
cytometry procedures.16 However, the antibody panels were
designed per set of related medical indications and clinical
questions (Figure 1). As described in this report, validation of the
proposed marker combinations and antibody panels showed
multiple shortcomings. Consequently, for optimization purposes,
all antibody panels required inclusion of additional markers,
replacement of antibody clones and/or fluorochrome conjugates
(many of which were even not commercially available) over 2 to 7
successive cycles of panel redesign and panel evaluation with
exclusion of redundant markers while retaining the essential ones.
Noteworthily, such cycles of panel redesign-and-evaluation aimed
at final validation of the total set of EuroFlow antibody panels,
which required analysis of more than 2000 informative samples as
described in this paper. Of note, the end-points for validation of
the EuroFlow panels were a 100% sensitivity with an optimized
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specificity or a 100% specificity with a maximized sensitivity. Only
under such conditions can we avoid the gray zone of uncertainty
associated with approaches that aim at the greatest efficiency and
that almost always include both false-negative and false-positive
cases, and consequently have disturbing levels of uncertainty for
individual (for example, atypical) cases. The EuroFlow validation
process required new analytical tools for objective multivariate
analysis of flow cytometry data that were not available as ready-
to-use software functions and had to be designed and imple-
mented into the user-friendly environment of the Infinicyt
software.16,31 The application of the new analytical tools in the
multi-centric setting of the EuroFlow Consortium was made
possible by extensive standardization of instrument settings and
sample preparation protocols.16 As an overall result, the validated
EuroFlow antibody panels can be integrated in the diagnostic
screening and classification strategies (Figure 1). These antibody
panels are flexible and can be adapted to fit the needs of different
diagnostic laboratories or clinical treatment protocols as discussed
below, while serving as validated benchmark.

Acute leukemia orientation tube (ALOT)
The first section of this report describes a single 8-color
immunostaining combination (ALOT), which is optimized for
recognition of all major types of classical acute leukemias (BCP-
ALL, T-ALL and AML) as well as of acute leukemias of ambiguous
lineage and allows optimal choice of the most appropriate
characterization panel for further phenotypic classification.
The WHO 2008 criteria for classification of acute leukemias

emphasize the value of a limited number of lineage-related
antigens (CyCD3, CD19 and CyMPO), diagnosis of MPAL pre-
dominantly relying on these three markers plus a few monocytic
markers.36,37 For the recognition of B-cell lineage, CD19 expression
combined with CyCD79a or CyCD22 is proposed, whereas the sole
expression of CyMPO or CyCD3 is regarded by the WHO criteria as
sufficient to recognize myeloid and T-cell lineage-positive cases,
respectively; CyCD3 would also be systematically necessary for the
assignment of blasts to the T-cell lineage. In contrast to previous
classifications, there is no diagnostic value for additional myeloid-
associated markers such as CD13, CD33, CD117 and others,
because they are not sufficiently lineage-specific and therefore
they are not considered as definitive evidence for a specific
lineage. Despite the fact that the ALOT was designed prior to the
publication of the 2008 WHO criteria, the three major lineage-
associated markers are all included in ALOT. Other markers
considered to be of secondary importance for lineage-assignment
were placed in the disease-oriented characterization panels (BCP-
ALL, T-ALL and AML/MDS).
In previous versions of the WHO classification285 only the

percentage of cells expressing a marker was taken into account,
whereas in the more recent 2008 version3 the intensity of antigen
expression is also regarded to be important. Combination of the
ALOT with the EuroFlow instrument settings and sample
preparation SOP, as well as the new software tools developed
by the EuroFlow group, allows direct integration of quantitative
data about the intensity of expression of each individual marker in
single leukemic cells in the evaluation of the overall blast cell
phenotype for the eight ALOT markers: the four lineage-associated
markers (CD19, CyCD79a, CyCD3, CyMPO) plus CD7, CD45, CD34
and SmCD3. Multivariate analysis (for example, PCA) showed that
all markers except those used for positive identification of blast
cells (CD45 and CD34) or exclusion of mature cells (CD45 and
SmCD3) were essential for obtaining optimal results (Figure 6). In
this regard, it should be emphasized that ALOT was designed and
validated for orientation of an acute leukemia sample towards
further characterization panels and thus, it should not be used on
its own for definitive exclusion of a hematological malignancy.
Nevertheless, when the ALOT is combined with the LST and tubes

1–4 of the AML/MDS panel, virtually all hematological malig-
nancies can be excluded or detected, albeit not definitively
classified. In turn, when combined with the appropriate com-
plementary panel, the precise diagnosis of acute leukemia,
ambiguous lineage acute leukemia (for example, mixed pheno-
type and undifferentiated acute leukemias) can be obtained
(Figures 3–5). In specific situations that only require distinction
between malignant and normal lymphoid B-cell precursors
(excluding MRD situations), the combination of ALOT with the
first tube of the BCP-ALL antibody panel is sufficient, as discussed
below.
Although the acute leukemia panels include two sequential

steps (ALOT plus the BCP-ALL, T-ALL and/or AML/MDS panels), in
some specific situations they can be performed simultaneously.
For example, in case of high suspicion of AML, the ALOT and AML
panels can be run in parallel. It should be noted that the ALOT is
always required for complete phenotypic characterization of acute
leukemias, because it includes essential markers required for the
detection of AUL/MPAL. Although the ALOT alone showed
promising results with respect to the orientation and identification
of acute leukemias of ambiguous lineage among typical single-
lineage acute leukemias, the cohort needs to be expanded to
include a significant number of cases of these rare disease
subcategories and determine whether optimal subclassification of
AUL and MPAL cases may benefit in the future from the
systematic application of one or two specific acute leukemia
panels. The combined application of the ALOT and the new
software tools (for example, PCA) of the Infinicyt software will
undoubtedly assist acute leukemia diagnosis and promote true
standardization in multicenter settings.

Lymphoid screening tube (LST)
Screening for the presence of aberrant mature B-, T- and NK-cell
populations in the clinical diagnostic setting remains one of the
most frequent requirements for flow cytometric immunopheno-
typing of leukemias and lymphomas. At present, a wide variety of
approaches is used in individual laboratories, which frequently rely
on a combination of (inter)national recommendations and
local experience. In this report, a single 8-color, 12-marker LST is
proposed for the diagnostic screening of CLPD in a wide variety of
human samples including PB, BM and lymphoid tissue specimens.
The LST was designed to evaluate the overall lymphoid

compartment of such samples in different clinical situations and
medical indications. Accordingly, the LST allowed identification of
lymphoid populations with aberrant or clonal phenotypes in
virtually all infiltrated samples; in the remaining few cases, an
altered numerical distribution of the specifically altered lympho-
cyte populations was observed, indicating that further assessment
of the potential clonal nature of the expanded cells is required.
Moreover, the information obtained with the LST efficiently points
to the precise panel required for full characterization of the altered
cell population, that is, PCD, B-CLPD, T-CLPD and/or NK-CLPD.
Importantly, the data obtained in the screening step (LST) can be
integrated with the data of the full characterization panels,
particularly the B-CLPD antibody panel.
Noteworthy, an interesting alternative to the LST combination

proposed (version 7) was designed to be well-suited to
predominantly B cell CLPD-oriented laboratories (LST version 6).
It takes optimal advantage of multiparameter flow analysis using
a mixture of 12 antibodies for highly sensitive detection and
classification of B-cell clones, particularly among patients with
different subtypes of B-cell lymphoma in the absence of absolute
or relative lymphocytosis. The major difference between the two
LST versions relies on the substitution of CD38 in version 7 by
CD10 in version 6. It should be noted that LST version 7 allows full
integration with the B-CLPD panel and at the same time it
provides a clear advantage for those diseases involving the
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plasma cell compartment together or not with mature B-cells (for
example, Waldenstrom macroglobulinemia286). Conversely, LST
version 6 is better suited for cases of CD10þ B-CLPD, specifically in
FL patients with low levels of infiltration. However, it should be
noted that the LST is not designed for MRD investigations. This
requires specific combinations, which are currently being
designed and evaluated by the EuroFlow group, aiming at the
detection of minimal disease in the different WHO diagnostic
subgroups of CLPD, including FL.
Extensive testing in multiple EuroFlow centers showed that the

LST combination is a cost-effective protocol when compared to
currently used approaches.18,20 Accordingly, in the five evaluated
EuroFlow laboratories the LST reduced the time required for
sample processing and data analysis by around one-fourth (mean
of 40 min versus 55 min) and reduced reagent costs (1 tube with
12 reagents versus a mean of 3 tubes and 13 markers), while
resulting in a higher diagnostic efficiency. In this regard, it should
be noted that individual markers in LST version 7 showed
independent values. For example, TCRgd appeared to be useful for
the screening of rare TCRgd lymphomas and other clonal
expansions of TCRgd T-cells in 11/249 (4.4%) cases tested.
However, because of the relatively low frequency of TCRgd
expansions, usage of this marker could be optional at a screening
stage and more suited for a later step in the classification of
specific T-CLPD WHO entities (see Section 9). More importantly,
the LST was highly efficient in distinguishing between normal and
clonal/aberrant lymphoid populations, as confirmed through the
multivariate analysis tools included in the Infinicyt software
(for example, PCA). These findings suggest that automated
approaches for recognition of immunophenotypic profiles may
be used in the future for specific gating of lymphoid cell
populations and its comparison with a pool of reference (for
example, normal, reactive or neoplastic) data files for further
detailed analysis (Figure 9). Finally, whereas the LST was designed
for a diagnostic screening step when increased counts of clonal
lymphocytes are typically present, the approach proved to have a
good sensitivity, as it detected neoplastic cells at low levels
(10� 3). Nevertheless, the LST is not optimally suited to search for
malignant lymphoma cells in paucicellular samples like CSF or
vitreous biopsies.

Small sample tube (SST)
Body fluids that contain low numbers of cells, such as CSF and
vitreous biopsies (here collectively referred to as ‘small samples’),
pose a diagnostic challenge in case of clinical suspicion of
lymphoma. Both single and multicenter studies have recently
demonstrated that multiparameter flow cytometric analysis is the
optimal strategy to establish the cellular composition of these low
cell number samples and to confirm or exclude the presence of
aberrant cell populations. Even though 4- and 6-color flow
cytometric screening protocols have proven their value, the
here-presented 8-color/13-parameter EuroFlow SST labeling is
currently the most complete flow cytometry assay for clinically
suspect CSF and vitreous samples. The main diagnostic contribu-
tion of the EuroFlow SST labeling concerns the screening for a
primary lymphoma in those situations with a clinical lymphoma
suspicion but without evidence for a systemic lymphoma in
(earlier) analyses of other cell materials and tissues.
The results of the 141 CSF samples and 23 vitreous biopsies

clearly underline the diagnostic value of the SST in that it allows
for a complete typing of the most relevant leukocyte populations
in these samples with positive identification of all normal subsets
of hematopoietic cells present in CSF, except neutrophils
(Figure 10). Based on FSC/SSC/CD45 gating neutrophils could be
identified, although possible inclusion of, for example, CD11b or
CD16 in a future version of the SST for example in the same
fluorochrome position as SmCD3 and CD14 should help to define

neutrophils in a more direct way. In addition, the SST can confirm
or exclude the presence of aberrant B-, T- or plasma cell
populations. In this respect, it has been suggested that a SmIgk/
SmIgl ratio of o0.25 or 44 should be considered as a deviation
from normal, and hence an indication for a B-cell lymphoma.106

However, it should be noted that a skewed ratio per se is not
sufficient for the diagnosis of B-cell lymphoma. Apart from clinical
features and possibly also morphological indications, the entire
flow cytometric profile should give more clues on the true
aberrant immunophenotype of the involved cell population.
Hence, a combined evaluation of all 13 parameters of the SST
labeling using PCA clearly enhanced the diagnostic possibilities to
identify aberrant B- and T-cell clones. Nevertheless, the set of
markers is apparently still too limited to allow a detailed
characterization of the aberrant B- or T-cell populations in all
cases for further diagnostic subclassification into specific WHO
disease categories. For this reason, we are currently evaluating
additional B-cell and T-cell small sample labelings for further
typing the aberrant cell population on the remaining cells of the
CSF or vitreous material. An alternative option to confirm the
aberrant character of the suspect B- or T-cell population could be
to use the remaining cells for a multiplex PCR-based Ig/TCR
clonality-testing strategy.266

Even though, the EuroFlow SST labeling can also be used for
small sample analysis in cases with a systemic lymphoma, in such
cases it may be better to choose a more targeted approach to
identify the lymphoma population in CSF or vitreous biopsies
using a limited set of markers specific for the lymphoma (so-called
‘minimal disseminated disease’ approach). Finally, localization of
acute leukemia cells in, for example, CSF is not a main application
of the EuroFlow SST labeling, but would also most probably
benefit from a more targeted approach.
Despite its high specificity and sensitivity, the exact diagnostic

value of the EuroFlow SST labeling for small samples is greatly
dependent on the number of cells that can be studied and the
viability of these cells. Cell viability can be increased by collection
of the cells in tubes with culture medium plus 10% FCS or 0.2%
BSA and a short transport time between clinic and laboratory
(optimally within 1 h). Alternatively, so-called TransFix collection
tubes are also currently commercially available, which result in
optimal stabilization of the cells for a few days (for example, 48 h)
and improved cell detection.

Plasma cell disorders (PCD) panel
Interestingly, among all EuroFlow antibody panels, the PCD panel
was the only one where the initial list of markers proposed to be
included in the panel remained unchanged till the last version of
the panel. This indicates that matured consensus already existed
in the literature about the most informative and relevant
phenotypic markers for evaluation of clonal plasma cells in
PCD.9,110 Nonetheless, because of technical factors and plasma
cell-associated biological variables, fine adjustments of specific
fluorochrome-conjugated reagents were required to reach
optimal performance in the final configuration of the PCD panel
(version 6). For several markers (for example, CD38 and b2
microglobulin) dim fluorochrome-conjugated antibody reagents
associated with lower fluorescence intensities and lower
fluorescence spillover to other channels were preferred. For
these two reagents, final adjustments with a mixture of
fluorochrome-conjugated and purified (unconjugated) antibodies
was required to get optimal fluorescence staining patterns under
saturating conditions. In turn, other reagents such as CD45–PacO,
used in all other EuroFlow panels, could not be kept in the PCD
combination at the same fluorochrome position due to the
relatively low discrimination power between CD45� and CD45þ

plasma cells, mainly caused by the increased PC baseline
autofluorescence levels in this channel. Last, but not least, the
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limited availability of good-quality CD138 fluorochrome-conju-
gated reagents in the positions left by other markers forced its
inclusion as a custom conjugate of PacO. Further testing of new
commercially available good-quality conjugates for this marker,
which work similarly under Sm only or intracellular markers
staining protocols (for example, Horizon V500) is ongoing at the
different EuroFlow sites.
As an end result a two-tube, 12-marker, 8-color PCD panel is

proposed for accurate identification of plasma cells, specific
detection and quantification of phenotypically aberrant or clonal
versus normal/reactive/polyclonal plasma cell populations and
detailed characterization of their immunophenotypic profiles. As
tube 1 (CD38, CD138, CD45, CD19, CD56, b2 microglobulin, CyIgk
and CyIgl) proved sufficient for the specific identification,
enumeration and discrimination between normal/reactive and
aberrant plasma cells, it can be used as a stand-alone tube for the
initial screening of PCD in a two-step diagnostic approach
(Figure 1). In such case, tube 2 could be optional and used only
when indicated, for example, for assessment of additional
aberrant markers for monitoring MM patients after therapy.
Finally, this two-tube PCD antibody panel in combination with
the EuroFlow LST and B-CLPD panels may also contribute to the
diagnosis and classification of other B-CLPD categories, which
involve the plasma cell compartment in addition to clonal
B-lymphocytes, for example LPL, which includes Waldenström’s
macroglobulinemia.
Although the aim of the PCD EuroFlow panel was not directly

focused on MRD investigation after therapy, the evaluation of the
proposed panel in multiple centers showed a sensitivity of p10� 3

(routine detection of 100 aberrant plasma cell in 100000 cells acquired).

Antibody panel for B-cell precursor ALL (BCP-ALL)
The four tubes of the BCP-ALL panel in combination with the
ALOT enable the diagnosis and detailed immunophenotypic
characterization of BCP-ALL, including discrimination from normal
and regenerating precursor B-cells. In addition, all phenotypic
information required for subclassification of BCP-ALL according to
the WHO classification is included.34 The four tubes also contain
antibodies for detection of LAP markers and phenotypes associated
with genetic aberrations, such as CD66c and NG2. If immuno-
phenotypic profiles show coexpression of B-lineage markers and
myeloid-associated markers (for example, CD13, CD33, CD117,
CD15þ 65) as well as CD34 and CD38 positivity, the AML-MDS
tube 2 (with monocytic markers CD14, CD36, CD64) should be run in
parallel to detect exceptional cases of monoblastic-MPAL.
The BCP-ALL protocol is designed in a flexible way so that only

one or two tubes need to be used for specific clinical questions. For
example, tube 1 of the BCP-ALL panel is excellently suited to
distinguish normal or regenerating precursor B-cells (hematogones)
from BCP-ALL blast cells. Tubes 1 and 2 are sufficient for full
maturation-based classification of BCP-ALL according to EGIL criteria
or WHO guidelines. Furthermore, the BCP-ALL antibody protocol can
be run using conventional data analysis tools, although this provides
less information than exploiting the potential of innovative multi-
variate analysis-based software tools after staining for the whole
panel. For example, the maturation-associated subclassification of
BCP-ALL according to conventional criteria can efficiently be
achieved. However, given the subtle variations in the expression
levels of a wide range of antigens, we anticipate that multivariate
analysis of all markers in the panel will contribute to an improved
subclassification of BCP-ALL (Figure 16). Nevertheless, this requires
further investigation in larger series of BCP-ALL cases, which is under
development by the EuroFlow group.

Antibody panel for T-cell ALL (T-ALL)
We designed an antibody panel for diagnosis and detailed
characterization of T-ALL. The application of the T-ALL panel is

guided by the results of the ALOT tube. Fusion of the results
obtained with the ALOT and the T-ALL panel is based on three
common backbone markers. As discussed in the ALOT section, a
small number of immature or ETP-ALL and MPAL cases were
found to be at the interface between T-ALL and AML with the
ALOT tube. These cases should ideally be analyzed with both
T-ALL and AML panels, while awaiting the potential development
of a specific panel for ambiguous lineage acute leukemias.
The first tube of the T-ALL EuroFlow panel was designed to

detect both major and minor T-ALL populations including those
that may be missed by microscopic detection, either at diagnosis
or during follow-up. As such, this tube can be used for detection of
minimal disseminated disease (MDD) at diagnosis in T-LBL.287,288

However, initial analysis of tumor material with the complete
panel is required at diagnosis in order to allow reliable
identification of the pathological phenotype(s) and of coexisting
intraclonal heterogeneity. In many cases, tube 1 will suffice for
MDD detection, essentially when there is co-expression of T-cell-
associated (for example, CyCD3þ /�CD5) and immature (NuTdT,
CD1a, CD10, CD99hi) markers.287

The T-ALL panel is flexible, as it allows classification of T-ALL
according to the WHO 2008 system or other alternative
classifications using both conventional and new multivariate-
analysis-based software tools. Usage of the new multivariate
analysis tools has the advantages of comparing many phenotypic
profiles, which have been acquired in different laboratories in a
standardized manner and of integrated analysis of a large number
of T-ALLs within the context of prospective clinical trials. In
addition to its diagnostic contribution, it can also become a
discovery tool for identification of new phenotypic profiles, which
might allow improved therapeutic stratification and individual
management of T-ALL patients. These profiles should ideally be
compared in an n-dimensional immunophenotyping model in
which neoplastic T-cells are plotted against normal thymic T-cell
differentiation for comparison as well as for distinction. With the
future help of the EuroFlow T-ALL database, it will be possible to
study to what extent T-ALLs differ from single subpopulations of
thymocytes, that is, it will become possible to search for the
nearest-phenotypic neighbor of T-ALL blasts and to infer the
normal T-cell counterpart for each leukemia and more precisely
define the LAP. Such new phenotypic classification of T-ALL would
potentially be much more accurate than current classifications as
it is based on simultaneous analysis of a larger number of
parameters versus sequential analysis of multiple individual
markers. Further studies are needed to determine the potential
correlation of such classification with specific molecular genetic
T-ALL subgroups. If this proves to be the case, such information
will be available to the clinician within a few hours after cell
sample collection.

Antibody panel for acute myeloid leukemia/myelodysplastic
syndrome (AML/MDS)
The here-presented AML/MDS antibody panel allows detailed
characterization of all myeloid lineages as well as aberrant
immunophenotypes of the myeloid cells. For patients with
suspicion of AML and/or MDS, this antibody panel should be
performed together with the ALOT tube. It was not possible to use
the same backbone markers for the AML/MDS antibody panel and
the ALOT tube. Consequently, the markers present in the ALOT
tube cannot be linked to the markers in the AML/MDS antibody
panel. This is not a problem for markers like CD19, CD34, CD45
and CD7, which are also present in the AML/MDS antibody panel,
and for CyCD79a, CyCD3 and SmCD3, which are considered not
informative for AML/MDS. Merging of the AML/MDS antibody
panel with CyMPO would, however, be informative. Although
merging based on the common backbone markers CD45 and
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CD34 may be possible in some AML patients, this likely will not be
appropriate in the vast majority of AML cases.
In contrast to T-ALL and BCP-ALL, patients with AML frequently

have a heterogeneous leukemic cell population. As it is not always
clear which populations belong to the leukemia, appropriate
gating of the leukemic population can be difficult. In our
comparison of WHO-defined subgroups, we focused on the
immunophenotypic data of the immature cells defined by the
CD34, CD117 and HLADR backbone markers. It may, however, well
be that inclusion of more mature populations will improve the
flow cytometric classification of AML patients. In turn, the utility of
other markers associated with immaturity of hematopoietic cells
(for example, CD90 and CD133) in AML and MDS remains unclear
and should be further evaluated.
To determine which populations are normal and which

populations are immunophenotypically abnormal, appropriate
analysis of differentiation pathways is crucial. Therefore, the panel
was designed in such a way that the multivariate approach,
possible by the use of the here-presented 8-color antibody panel
in combination with the new Infinicyt software-associated tools,
will facilitate this process (Figure 19). Nevertheless, there is still an
urgent need for a more objective analysis of such data. In this
regard, we are now evaluating a new software module developed
for a more objective analysis of maturation pathways. This is based
on dissecting the differentiation pathways in multiple segments
(for example, stages) in a multidimensional space (for example,
based on PCA), generated by the phenotypic parameters
analyzed. The patterns observed in healthy individuals subse-
quently can serve as a reference for the patterns in AML and MDS
patients. In such patients, a similar segmentation can be made and
for each segment it can be determined with which normal
segment it more closely clusters and what markers are aberrant.
These software tools are currently being developed and evaluated
and will greatly facilitate the analysis of maturation-associated
defects, which is crucial for better classification of AML and MDS
patients.

Antibody panel for B-cell chronic lymphoproliferative diseases
(NK-CLPD) (B-CLPD)
The B-CPLD EuroFlow antibody panel proposed here aims at
diagnostic classification of BCLPD into the major WHO subtypes,
based on the immunophenotypic profiles of individual malignant
B-cells. The panel consists of four tubes, which should be stained
sequentially or in parallel to the LST. It is advised that LST and the
complete B-CLPD panel are stained in parallel in cases with a high
pre-test probability of a mature B-cell malignancy. Cases present-
ing with suspicion of CLL should be primarily evaluated using the
LST and tube 1 from the B-CLPD panel only. The three backbone
markers (CD19, CD20, and CD45) common to all four tubes and
the LST were designed to allow efficient positive selection of the
B-cells in all subtypes of mature/peripheral B-cell malignancies.
We demonstrated that this was systematically achieved using the
prospective evaluation of several hundreds of cases. The other 24
markers are devoted to the characterization of the identified
aberrant clonal B-cell. They included both markers already known
to contribute to specific differential diagnoses among distinct
WHO B-CLPD entities and novel markers. Inclusion of a relatively
high number of markers that are not currently used in many
routine diagnostic panels (for example, CD200, CD305(LAIR1),
CD31, CD62L) was based on their independent contribution to
pairwise differential diagnoses performed through multivariate
analyses, particularly between disease entities where previous
panels have proven to be of limited utility (for example, atypical
CLL). In turn, exclusion of some traditional markers (for example
CyBcl2) was due to redundancy with other more informative
combinations already included in the panel, as assessed by
multivariate analysis.

At a first glance, it might appear that the proposed panel is a
rather extensive panel. Nonetheless, it should be noted that it
provides additional and more robust information for the diagnosis
of specific WHO disease entities compared to the more traditional
panels. In fact, the overall panel of backbone and characterization
markers proposed here was tested for up to 28 differential
diagnosis, by multivariate analysis of individual malignant B-cells
from paired WHO diagnostic groups. Overall, the panel provided
an efficient differential diagnosis among the major B-CPLD entities
in all but four comparisons, which involved MZL versus LPL and
DLBCL versus MZL, LPL and FL. Noteworthily, these four
differential diagnoses are not only difficult on immunophenotypic
grounds but they have also been shown to have a rather limited
reproducibility among hematopathology experts when applying
the currently used WHO diagnostic criteria (for example, degree of
agreement ranging from 56% to 63% for LPL and MZL,
respectively).232

Comparison to the performance of more traditional 4-color
panels used at individual centers which included a slightly lower
number of markers, shows that the new markers included in the
EuroFlow B-CLPD panel provides more robust diagnosis of the
distinct WHO categories of BCLPD, even when similar multivariate
analyses are used.31 In addition, the EuroFlow B-CLPD panel was
also designed in a flexible way, so that the relevant
immunophenotypic information of the LST is also used for the
classification of the distinct B-CLPD entities and subsets of tubes
can be applied for a specific set of differential diagnoses.
Altogether, this allows comprehensive usage of different
combinations of tubes from the panel, for specific differential
diagnosis of frequent disease categories such as CLL, limiting
reagent and personal costs to a reasonable level.

Antibody panel for T-cell chronic lymphoproliferative diseases (T-CLPD)
In the proposed diagnostic work-up of PTCL, the EuroFlow T-CLPD
panel is scheduled to be applied on samples from patients
showing aberrant and/or increased numbers of T-cells, as
identified by the LST. Overall, this panel aims at confirmation of
the presence of aberrant T cells and further classification of PTCL
into specific WHO PTCL categories.
Similar to B-CLPD, PTCL represent a rather heterogeneous

group composed of multiple disease entities.3 However, in
contrast to mature B-cell neoplasms, T-CLPD derive from
multiple different T-cell populations/lineages (for example,
TCRgdþ versus TCRabþ CD4þ CD8� and TCRabþ CD4� CD8hi

T lymphocytes), evaluation of clonal excess requires a much
higher number of antibody reagents (for example, 24 TCRVb
family antibodies versus k and l), whereas they are much less
frequent disorders.3 Because of this, more T- than B-cell associated
markers, are required for a diagnostic screening phase, and for the
composition of the set of backbone markers in the EuroFlow
T-CLPD panel versus the B-CLPD panel. However, for reasons of
costs, most clinical flow cytometry laboratories try to keep the
overall number of antibodies against T-cell markers lower,
according to the relatively lower frequency of PTCL versus
B-CLPD. Based on all the above reasoning, the strategy
proposed by the EuroFLow Consortium for immunophenotyping
of T-CLPD consists of up to three sequential steps. In the first step,
the LST tube should be applied. In case the TCRgd� /SmCD3þ

T-cells are expanded (absolute or relative expansion), show
aberrancies (for example, abnormally low expression of SmCD3,
CD4, or CD5) or the CD4/CD8 T-cell distribution is altered,78,254,289

which are not fully conclusive about the clonal nature of such
cells, then the immunophenotypic analysis of the TCR-Vb
repertoire should be performed, for confirmation of T-cell
clonality.290–292 Finally, in the third step the T-CLPD panel
should be used, aimed at the classification of T-CLPD into
specific WHO disease categories3 in cases suspected of TCRabþ ,

EuroFlow antibody panels
JJM van Dongen et al

1961

& 2012 Macmillan Publishers Limited Leukemia (2012) 1908 – 1975



TCRgdþ and TCR� T-cell CLPD. In Section 9 of this report we focus
on the process and steps involved in the design of the T-CLPD
panel aimed at final classification of T-CLPD, while the
development of the LST tube is detailed in Section 2 of this
report. The approach proposed to assess T-cell clonality by flow
cytometry has been previously reported in the literature,290–294

which shows that in cases in which expanded or aberrant
TCRgd� /SmCD3þ T-cells are detected with the LST, the
predominance of a single TCR-Vb family within a T-cell
population (TCR-Vb restriction) is highly suggestive of a clonal
T-cell disorder.292–294 In cases where phenotypic abnormalities
involve TCRgdþ T-cells, the TCR-Vg and TCR-Vd repertoire may
also be investigated, but definitive demonstration of the clonal
nature of the infiltrating cell population may not be achieved, due
to the more restricted repertoire of normal TCRgdþ T-cells, their
imbalanced distribution in normal subjects295 and the relatively
limited availability of TCR-Vg and TCR-Vd family-specific reagents
for flow cytometry.
Regarding the overall performance of the EuroFlow T-CLPD

panel, our results clearly show further contribution of the marker
combinations used to distinguish between normal/reactive and
aberrant/malignant T-cells, except for a few CD8þ T-LGL cases. At
the same time it allowed unequivocal classification of T-CLPD into
most WHO entities, including SS, T-PLL, ATLL, T-LGL, and AITL.
Other rare entities that were not specifically evaluated, like CD30þ

T-CLPD, require further prospective studies, although they will
most likely be identified with the panel, based on the
immunophenotypic features described in the literature for such
disease entities and the experience accumulated at several
EuroFlow sites.

Antibody panel for NK-cell chronic lymphoproliferative diseases
(NK-CLPD)
One of the major challenges in establishing the diagnosis of NK-cell
neoplasms is to distinguish between normal, reactive and
(mono)clonal proliferations of NK cells, because of the lack of
clonal markers in the expanded NK cells. Many studies have clearly
shown that clonal pathological cells from most hematological
malignancies display aberrant phenotypes that allow their distinc-
tion from their normal counterparts.9,10,14,47,77,237,296,297 Based on
this background, the EuroFlow NK-CLPD panel aimed at further
characterization of the expanded NK-cells, to discriminate between
aberrant and normal/reactive NK-cells, and subsequently define a
more precise diagnosis of clonal NK-CLPD. As a result, we propose a
panel of three 8-color tubes containing 16 different markers, four of
which are backbone markers (SmCD3, CD19, CD45 and CD56), to
identify NK cells, and the remaining 12 markers are devoted to
distinguish aberrant from normal/reactive/polyclonal NK cells. Upon
applying multivariate analysis tools provided with the Infinicyt
software, we show that this panel facilitates the distinction between
aberrant and normal/reactive NK cells in most cases presenting with
NK-cell-associated lymphocytosis.
Consequently, the EuroFlow NK-CLPD panel will be of great

help in routine diagnostic settings in this regard. However, partial
overlap was observed for some cases, which points out the need
for further efforts to improve such discrimination. On the other
hand, it has to be taken into account that the rarity of this group
of diseases may be an obstacle for some laboratories to perform a
relatively large panel of markers to diagnose NK-CLPD. In such
cases, a potentially efficient alternative to the implementation of
the EuroFlow NK-CLPD panel in all clinical flow cytometry
laboratories is centralization in reference centers of this part of
the diagnostic work-up of NK-CLPD.
Therefore, in the absence of universal markers of NK-cell

clonality, the precise definition of the immunophenotypic profiles
associated with clonal versus reactive cells becomes crucial in the
diagnosis of NK-CLPD (Figure 29).

The EuroFlow reference database as a tool for immunophenotypic
classification of hematological malignancies
Finally, an additional relevant contribution of the work done is the
generation of a reference database containing information about
large numbers of cases within each WHO disease category. Such
database is currently being prospectively expanded by including
even more typical and atypical new, fully characterized cases. In
the near future, when such database becomes available, it can be
used to prospectively classify new individual cases at any clinical
flow cytometry laboratory around the world, whenever the
EuroFlow SOP for instrument settings and sample preparation
are used in combination with the EuroFlow panels and the new
multivariate data analysis software tools here described.

CONCLUSION
After 5 years of extensive testing, we present a complete set of
antibody panels for standardized n-dimensional flow cytometric
immunophenotyping of hematological malignancies. The step-
wise application of the single-tube screening panels and multi-
tube classification panels fits into the EuroFlow diagnostic
algorithm with entries defined by clinical and laboratory
parameters. The proposed antibody panels are designed to
diagnose and classify the various types of leukemias and
lymphomas according to the WHO-defined disease categories.
Multiple successive rounds of design–evaluation–redesign were
needed to reach the final versions of the antibody panels. The
initially designed consensus panels were first optimized by
inclusion of additional informative markers and exclusion of
redundant markers as identified by novel software tools for
multivariate data analysis. In parallel, the composition of the
antibody panels was improved by testing the various combina-
tions of antibody clones and fluorochrome conjugates. The final
version of the proposed panels was extensively validated on 2031
informative samples, using the novel Infinicyt software tools and
the EuroFlow SOP for sample preparation, data acquisition and
data analysis, as described by Kalina et al.16 This validation showed
that the EuroFlow antibody panels are highly efficient and at the
same time they are flexible and can be adapted to fit the different
needs of the different laboratories. Altogether, these results
indicate that combined usage of the EuroFlow antibody panels
and EuroFlow SOP can be considered as the most extensive and
validated approach for standardized multidimensional flow
cytometric immunophenotyping for diagnostic screening and
classification of hematological malignancies. The presented
EuroFlow tools may also serve as the basis for future
improvements in the field, particularly when the EuroFlow
database becomes available for comparing newly diagnosed
cases with the many cases in the database.
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APPENDIX
(Please check EuroFlow website www.euroflow.org for updates)

Table A1. Composition of ALOT and technical information on reagents.

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

CyCD3 CD45 CyMPO CyCD79a CD34 CD19 CD7 SmCD3

Marker Fluorochrome Clone Source Catalogue number (ml/test)

CyCD3 PacB UCHT1 BD Biosciences 558117 7
SmCD3 APCH7 SK7 BD Biosciences 641397 3
CD7 APC 124-1D1 eBioscience 17-0079-42 2
CD19 PECy7 J3-119 Beckman Coulter IM3628 5
CD34 PerCPCy5.5 8G12 BD Biosciences 347222 7
CD45 PacO HI30 Invitrogen MHCD4530 5
CyCD79a PE HM57 Dako R7159 5
CyMPO FITC MPO-7 Dako F0714 3

Table A2. Composition of LST and technical information on reagents

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

CD20 and CD4 CD45 CD8 and SmIgl CD56 and SmIgk CD5 CD19 and TCRgd SmCD3 CD38

Marker Fluorochrome Clone Source Catalogue number (ml/test)

SmCD3 APC SK7 BD Biosciences 345767 2.5
CD4 PacB RPA-T4 BioLegend 300521 0.5
CD5 PerCPCy5.5 L17F12 BD Biosciences 341109 15
CD8 FITC UCH-T4 Cytognos CYT-SLPC-50 Part of LST mixture (20)
CD19 PECy7 J3-119 Beckman Coulter IM3628 5
CD20 PacB 2H7 BioLegend 302320 1
CD38 APCH7 HB7 BD Biosciences 646786 3
CD45 PacO HI30 Invitrogen MHCD4530 5
CD56 PE C5.9 Cytognos CYT-SLPC-50 Part of LST mixture (20)
SmIgk PE polyclonal Cytognos CYT-SLPC-50 Part of LST mixture (20)
SmIgl FITC polyclonal Cytognos CYT-SLPC-50 Part of LST mixture (20)
TCRgd PECy7 11F2 BD Biosciences 649806 1

Table A3. Composition of SST and technical information on reagents

PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

CD20 CD45 CD8 and SmIgl CD56 and SmIgk CD4 CD19 SmCD3 and CD14 CD38

Marker Fluorochrome Clone Source Catalogue number (ml/test)

SmCD3 APC SK7 BD Biosciences 345767 2.5
CD4 PerCPCy5.5 SK3 Cytognos CYT-SLPC4-50 Part of SST mixture (20)
CD8 FITC UCH-T4 Cytognos CYT-SLPC4-50 Part of SST mixture (20)
CD14 APC MjP9 BD Biosciences 345787 5
CD19 PECy7 J3-119 Beckman Coulter IM3628 5
CD20 PacB 2H7 BioLegend 302320 1
CD38 APCH7 HB7 BD Biosciences 646786 3
CD45 PacO HI30 Invitrogen MHCD4530 5
CD56 PE C5.9 Cytognos CYT-SLPC4-50 Part of SST mixture (20)
SmIgk PE polyclonal Cytognos CYT-SLPC4-50 Part of SST mixture (20)
SmIgl FITC polyclonal Cytognos CYT-SLPC4-50 Part of SST mixture (20)
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Table A4. Composition of PCD and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 CD45 CD138 CD38 CD56 b2micro CD19 CyIgk CyIgl
2 CD45 CD138 CD38 CD28 CD27 CD19 CD117 CD81

Marker Fluorochrome Clone Source Catalogue
number

(ml/test)

CD19 PECy7 J3-119 Beckman Coulter IM3628 5
CD27 PerCPCy5.5 L128 BD Biosciences 649805 10
CD28 PE L293 BD Biosciences 348047 20
CD38 FITC LD38 Cytognos CYT-38F 3

�
5a

CD38 Pure LD38 Cytognos CYT-38P1 2
CD45 PacB T29/33 Dako PB986 5
CD56 PE C5.9 Cytognos CYT-56PE 5
CD81 APCH7 JS-81 BD Biosciences 646791 5
CD117 APC 104D2 BD Biosciences 333233 5
CD138 PacO B-A38 Exbio PO-520 4
b2micro PerCPCy5.5 Tü99 BD Biosciences 646781 4.75

�
5a

b2micro Pure Tü99 BD Biosciences 555550 0.25
CyIgk APC Polyclonal rabbit serum Dako C0222 2.5
CyIgl APCH7 1-155-2 BD Biosciences 646792 4

aMixture of fluorochrome-conjugated and -unconjugated antibodies is used to reduce signal intensity, while retaining saturating conditions to avoid
unpredictable variation in staining patterns. The 19:1 ratio for the two b2micro antibodies is caused by the five fold higher antibody concentration of the
unconjugated antibody.

Table A5. Composition of BCP-ALL panel and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 CD20 CD45 CD58 CD66c CD34 CD19 CD10 CD38
2 SmIgk CD45 CyIgm CD33 CD34 CD19 SmIgM and CD117 SmIgl
3 CD9 CD45 NuTdT CD13 CD34 CD19 CD22 CD24
4 CD21 CD45 CD15 and CD65 NG2 CD34 CD19 CD123 CD81

Marker Fluorochrome Clone Source Catalogue number (ml/test)

CD9 PacB MEM-61 Exbio PB-208-T100 4
CD10 APC HI10A BD Biosciences 332777 5
CD13 PE L138 BD Biosciences 347406 7
CD15 FITC MMA BD Biosciences 332778 10
CD19 PECy7 J3-119 Beckman Coulter IM3628 5
CD20 PacB 2H7 Biolegend 302320 1
CD21 PacB LT21 Exbio PB-306-T100 4
CD22 APC S-HCL-1 BD Biosciences 333145 5
CD24 APCH7 ML5 BD Biosciences 646785 5
CD33 PE P67.6 BD Biosciences 345799 5
CD34 PerCPCy5.5 8G12 BD Biosciences 347222 7
CD38 APCH7 HB7 BD Biosciences 646786 3
CD45 PacO HI30 Invitrogen MHCD4530 5
CD58 FITC 1C3 BD Biosciences 555920 7
CD65 FITC 88H7 Beckman Coulter IM1654U 7
CD66c PE KOR-SA3544 Beckman Coulter IM2357U 10
CD81 APCH7 JS-81 BD Biosciences 646791 5
CD117 APC 104D2 BD Biosciences 333233 5
CD123 APC AC145 Miltenyi Biotec 130-090-901 7
CyIgm FITC Polyclonal rabbit serum Dako F0058 10
NG2 PE 7.1 Beckman Coulter IM3454U 10
SmIgk PacB A8B5 Exbio PB-504-T100 4
SmIgl APCH7 1-155-2 BD Biosciences 646792 4
SmIgM APC G20-127 BD Biosciences 551062 10
NuTdT FITC HT-6 Dako F7139 10
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Table A6. Composition of T-ALL panel and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 CyCD3 CD45 NuTdT CD99 CD5 CD10 CD1a SmCD3
2 CyCD3 CD45 CD2 CD117 CD4 CD8 CD7 SmCD3
3 CyCD3 CD45 TCRgd TCRab CD33 CD56 CyTCRb SmCD3
4 CyCD3 CD45 CD44 CD13 HLADR CD45RA CD123 SmCD3

Marker Fluorochrome Clone Source Catalogue number (ml/test)

CD1a APC HI149 BD Biosciences 559775 5
CD2 FITC RPA-2.10 BD Biosciences 555326 5
CyCD3 PacB UCHT1 BD Biosciences 558117 7
SmCD3 APCH7 SK7 BD Biosciences 641397 3
CD4 PerCPCy5.5 SK3 BD Biosciences 332772 7
CD5 PerCPCy5.5 L17F12 BD Biosciences 341109 15
CD7 APC 124-1D1 eBioscience 17-0079-42 2
CD8 PECy7 SFCI21Thy2D3 Beckman Coulter 737661 5
CD10 PECy7 HI10A BD Biosciences 341112 5
CD13 PE L138 BD Biosciences 347406 7
CD33 PerCPCy5.5 P67.6 BD Biosciences 333146 10
CD44 FITC L178 BD Biosciences 347943 7
CD45 PacO HI30 Invitrogen MHCD4530 5
CD45RA PECy7 L48 BD Biosciences 337186 5
CD56 PECy7 N901 Beckman Coulter A21692 5
CD99 PE Tü12 BD Biosciences 555689 5
CD117 PE 104D2 BD Biosciences 332785 5
CD123 APC AC145 Miltenyi Biotec 130-090-901 7
HLADR PerCPCy5.5 L243 BD Biosciences 552764 10
TCRab PE IP26A Beckman Coulter A39499 7
CyTCRb APC 8A3 (bF1) Cytognos CYT-BF1AP 3
TCRgd FITC IMMU510 Beckman Coulter IM1571U 10
NuTdT FITC HT-6 Dako F7139 10

EuroFlow antibody panels
JJM van Dongen et al

1972

Leukemia (2012) 1908 – 1975 & 2012 Macmillan Publishers Limited



Table A7. Composition of AML/MDS panel and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 HLADR CD45 CD16 CD13 CD34 CD117 CD11b CD10
2 HLADR CD45 CD35 CD64 CD34 CD117 CD300e CD14
3 HLADR CD45 CD36 CD105 CD34 CD117 CD33 CD71
4 HLADR CD45 NuTdT CD56 CD34 CD117 CD7 CD19
5 HLADR CD45 CD15 NG2 CD34 CD117 CD22 CD38
6 HLADR CD45 CD42a and CD61 CD203c CD34 CD117 CD123 CD4
7 HLADR CD45 CD41 CD25 CD34 CD117 CD42b CD9

Marker Fluorochrome Clone Source Catalogue number (ml/test)

CD4 APCH7 SK3 BD Biosciences 641398 5
CD7 APC 124-1D1 eBioscience 17-0079-42 2
CD9 APCH7 M-L13 BD Biosciences 646782 5
CD10 APCH7 HI10A BD Biosciences 646783 5
CD11b APC D12 BD Biosciences 333143 5
CD13 PE L138 BD Biosciences 347406 7
CD14 APCH7 MjP9 BD Biosciences 641394 5
CD15 FITC MMA BD Biosciences 332778 10
CD16 FITC CLB FcR gran/1, 5D2 Sanquin M1604 20
CD19 APCH7 SJ25C1 BD Biosciences 641395 5
CD22 APC S-HCL-1 BD Biosciences 333145 5
CD25 PE 2A3 BD Biosciences 341011 10
CD33 APC P67.6 BD Biosciences 345800 10
CD34 PerCPCy5.5 8G12 BD Biosciences 347222 5
CD35 FITC E11 BD Biosciences 555452 5
CD36 FITC CLB-IVC7 Sanquin M1613 5
CD38 APCH7 HB7 BD Biosciences 646786 3
CD41 FITC CLB-tromb/7, 6C9 Sanquin M1674 1
CD42a FITC GRP-P Serotec MCA1227F 1
CD42b APC HIP1 BD Biosciences 551061 1
CD45 PacO HI30 Invitrogen MHCD4530 5
CD56 PE C5.9 Cytognos CYT-56PE 5
CD61 FITC RUU-PL7F12 BD Biosciences 347407 4
CD64 PE 10.1 Serotec MCA756PE 10
CD71 APCH7 M-A712 BD Biosciences 646789 5
CD105 PE 1G2 Beckman Coulter A07414 10
CD117 PECy7 104D2D1 Beckman Coulter IM3698 5
CD123 APC AC145 Miltenyi Biotec 130-090-901 10
CD203c PE 97A6 Beckman Coulter IM3575 10
CD300e APC UP-H2 Immunostep IREM2A-T100 5
HLADR PacB L243 Biolegend 307624 1 (1:5 dilution)
NG2 PE 7.1 Beckman Coulter IM3454U 10
NuTdT FITC HT-6 Dako F7139 10
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Table A8. Composition of B-CLPD panel and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 CD20 and CD4 CD45 CD8 and Igl CD56 and Igk CD5 CD19 and TCRgd SmCD3 CD38
2 CD20 CD45 CD23 CD10 CD79b CD19 CD200 CD43
3 CD20 CD45 CD31 CD305 CD11c CD19 SmIgM CD81
4 CD20 CD45 CD103 CD95 CD22 CD19 CD185 CD49d
5 CD20 CD45 CD62L CD39 HLADR CD19 CD27

Marker Fluorochrome Clone Source Catalogue number (ml/test)

SmCD3 APC SK7 BD Biosciences 345767 2.5
CD4 PacB RPA-T4 BioLegend 300521 0.5
CD5 PerCPCy5.5 L17F12 BD Biosciences 341109 15
CD8 FITC UCH-T4 Cytognos CYT-SLPC-50 Part of LST mixture (20)
CD10 PE ALB1 Beckman Coulter A07760 20
CD11c PerCPCy5.5 B-Ly6 BD Biosciences 646784 5
CD19 PECy7 J3-119 Beckman Coulter IM3628 5
CD20 PacB 2H7 BioLegend 302320 1
CD22 PerCPCy5.5 S-HCL-1 BD Biosciences 649804 2
CD23 FITC MHM6 Dako F7062 2.5
CD27 APC L128 BD Biosciences 337169 2.5
CD31 FITC WM59 BD Biosciences 555445 10
CD38 APCH7 HB7 BD Biosciences 646786 3
CD39 PE TÜ66 BD Biosciences 555464 10
CD43 APCH7 IG10 BD Biosciences 646787 5
CD45 PacO HI30 Invitrogen MHCD4530 5
CD49d APCH7 9F10 BD Biosciences 646788 2
CD56 PE C5.9 Cytognos CYT-SLPC-50 Part of LST mixture (20)
CD62L FITC SK11 BD Biosciences 347443 2.5
CD79b PerCPCy5.5 SN8 BD Biosciences 646790 5
CD81 APCH7 JS-81 BD Biosciences 646791 5
CD95 PE DX2 BD Biosciences 555674 20
CD103 FITC Ber-ACT8 BD Biosciences 333155 2
CD185 APC 51505 R&D Systems FAB190A 10
CD200 APC OX104 eBioscience 17-9200 1.25
CD305 PE DX26 BD Biosciences 550811 10
HLADR PerCPCy5.5 L243 BD Biosciences 552764 10
SmIgk PE Polyclonal Cytognos CYT-SLPC-50 Part of LST mixture (20)
SmIgl FITC Polyclonal Cytognos CYT-SLPC-50 Part of LST mixture (20)
SmIgM APC G20-127 BD Biosciences 551062 10
TCRgd PECy7 11F2 BD Biosciences 649806 1
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Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Table A9. Composition of T-CLPD panel and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 CD4 CD45 CD7 CD26 SmCD3 CD2 CD28 CD8
2 CD4 CD45 CD27 CD197 SmCD3 CD45RO CD45RA CD8
3 CD4 CD45 CD5 CD25 SmCD3 HLADR CyTcl1 CD8
4 CD4 CD45 CD57 CD30 SmCD3 CD11c CD8
5 CD4 CD45 CyPerforin CyGranzyme B SmCD3 CD16 CD94 CD8
6 CD4 CD45 CD279 SmCD3 CD8

Marker Fluorochrome Clone Source Catalogue number (ml/test)

CD2 PECy7 S5.2 BD Biosciences 335821 2
SmCD3 PerCPCy5.5 SK7 BD Biosciences 332771 10
CD4 PacB RPA-T4 BioLegend 300521 0.5
CD5 FITC L17F12 BD Biosciences 345781 10
CD7 FITC 4H9 BD Biosciences 347483 10
CD8 APCH7 SK1 BD Biosciences 641400 5
CD11c APC S-HCL-3 BD Biosciences 333144 2
CD16 PECy7 3G8 BD Biosciences 557744 2
CD25 PE 2A3 BD Biosciences 341011 10
CD26 PE L272 BD Biosciences 340423 10
CD27 FITC L128 BD Biosciences 340424 10
CD28 APC CD28.2 BD Biosciences 559770 10
CD30 PE BerH8 BD Biosciences 550041 10
CD45 PacO HI30 Invitrogen MHCD4530 5
CD45RA APC HI100 BD Biosciences 550855 10
CD45RO PECy7 UCHL1 BD Biosciences 337168 2
CD57 FITC HNK-1 BD Biosciences 333169 10
CD94 APC HP-3D9 BD Biosciences 559876 5
CD197 PE 3D12 eBioscience 12-1979 10
CD279 PE MIH4 BD Biosciences 557946 20
CyGranzyme B PE CLB-GB11 Sanquin M2289 15
CyPerforin FITC dG9 BD Biosciences 556577 10
CyTCL1 APC eBio1-21 eBioscience 17-6699 2
HLADR PECy7 L243 BD Biosciences 335830 2.5

Table A10. Composition of NK-CLPD panel and technical information on reagents

Tube PacB PacO FITC PE PerCPCy5.5 PECy7 APC APCH7

1 CD2 CD45 CD7 CD26 SmCD3 CD56 CD5 CD19
2 CD16 CD45 CD57 CD25 SmCD3 CD56 CD11c CD19
3 HLADR CD45 CyPerforin CyGranzyme B SmCD3 CD56 CD94 CD19

Marker Fluorochrome Clone Source Catalogue number (ml/test)

CD2 PacB TS1/8 Biolegend 309216 1
SmCD3 PerCPCy5.5 SK7 BD Biosciences 332771 10
CD5 APC L17F12 BD Biosciences 345783 2.5
CD7 FITC 4H9 BD Biosciences 347483 10
CD11c APC S-HCL-3 BD Biosciences 333144 2
CD16 PacB 3G8 Biolegend 302032 5
CD19 APCH7 SJ25C1 BD Biosciences 641395 5
CD25 PE 2A3 BD Biosciences 341011 10
CD26 PE L272 BD Biosciences 340423 10
CD45 PacO HI30 Invitrogen MHCD4530 5
CD56 PECy7 N901 Beckman Coulter A21692 5
CD57 FITC HNK-1 BD Biosciences 333169 10
CD94 APC HP-3D9 BD Biosciences 559876 5
CyGranzyme B PE CLB-GB11 Sanquin M2289 15
CyPerforin FITC dG9 BD Biosciences 556577 10
HLADR PacB L243 Biolegend 307624 1 (1:5 dilution)
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