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This paper studies the dimensionless compliance in cylindrical geometries with transverse
surface cracks subjected to axial tensile loading. Compliance evolution is analyzed when
round bars are subjected to fatigue with free and constrained sample ends, initial crack
geometries of straight or circular fronts and several materials characterized through of
the Paris parameter m. With this aim, a computer application that calculates the crack
front’s geometric evolution and the dimensionless compliance was made by discretizing
the crack front and assuming that every point advance perpendicular to the crack front
according to the Paris law. The results show that dimensionless compliance grows with
the increase of the relative crack depth and the decrease of the aspect ratio, showing
greater values for free sample ends than for constrained sample ends. Furthermore, during
fatigue crack growth, materials with higher values of the Paris parameter m produce
slightly greater dimensionless compliance and a better convergence between the results
for straight or circular initial crack.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of fatigue crack propagation in cylindrical geometries is of great interest in fracture mechanics, because it is
one of the most common geometries in linear structural elements. These components, usually subjected to oscillating load,
may fracture, generally, after surface fatigue crack growth, with semi-elliptical shapes contained in a plane perpendicular to
the loading axis.

Several criteria have been stated in the past to characterize fatigue crack growth in these geometries, e.g., prediction of
the 90� intersecting angle of the crack with the surface or the iso-K criterion along the crack front [1]. The most used being
that based on the Paris Erdogan law [2–7], which requires the knowledge of the dimensionless stress intensity factor (SIF), Y,
along the crack front in the round cracked bar. It has been deducted by several authors following different procedures: com-
pliance methods, finite element analysis, boundary integral equation methods, experimental techniques, etc. [1,8–10].

Dimensionless compliance in round cracked bars under tension or bending depends on the crack geometry. If the crack is
characterized by an elliptical shape, there are two factors exerting influence: the relative crack depth (crack depth divided by
the diameter), which causes an increase of its value, and the aspect ratio (ratio between the crack depth and the other semi-
axis of the ellipse), which causes a decrease of its value [3,11]. Thus, there is a relation between the change in compliance
during fatigue crack growth and the crack geometry evolution, which depends on the specimen material, the initial crack
geometry and the type of applied load [7,12].

Experimentally the geometrical evolution of the crack front in a cylindrical bar can just be observed post mortem (once
fractured) and there are several techniques to mark the front according to the material studied. It is possible to relate the
. All rights reserved.
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crack front geometry with compliance, one of the few characteristics which can be measured during the crack propagation.
The aim of this paper is to obtain the dimensionless compliance in cracked cylindrical bars subjected to tension with differ-
ent crack geometries (crack depths and aspect ratios), as well as analyzing how dimensionless compliance evolves when
fatiguing round bars of different materials (coefficient m of Paris 2, 3 and 4), with different initial crack geometries (circular
and quasi-straight, both crack shapes with relative depth a/D of 0.1, 0.3 and 0.5) and applying tensile load to round bars with
free sample ends and constrained sample ends.

2. Numerical modelling

A computer program in the Java programming language was developed to determine the geometrical evolution of the
crack front according to the Paris law, for transverse surface crack in cylindrical geometries subjected to tensile fatigue load,
which would be the basis to determine the change which occurs in the dimensionless compliance of the round bar.

2.1. Fatigue crack front evolution

The basic hypothesis of the modelling consisted of assuming that the crack front can be modelled as an ellipse with centre
on the bar surface [13] and the fatigue propagation takes place in a direction perpendicular to this crack front, following the
really sound (and the most widely accepted) crack growth criterion: the Paris Erdogan law [14],
da
dN
¼ CDKm ð1Þ
Every elliptical arc of the crack front was divided in 14 segments with exactly the same length using the Simpson’s rule in
order to discretize the front. The point on the round bar surface was not taken into account, since it presents some difficulties
regarding the computation of the dimensionless SIF (there is a plane stress state on the crack surface). After that, every single
point was shifted according to Paris Erdogan law perpendicular to the front and so as to keep constant the maximum crack
depth increment, Da(max) �max Dai = D/1000, all over the process [15]. The advance of every front point, Dai, can be ob-
tained from the maximum crack increment and the ratio of the dimensionless SIF,
Dai ¼ DaðmaxÞ Yi

YðmaxÞ

� �m

ð2Þ
The newly obtained points, fitted by the least squares method [13], generate a new ellipse with which the process is re-
peated iteratively until the desired crack depth is reached. Due to the existing symmetry, only half the problem was used for
the computations (Fig. 1).

The dimensionless SIF, Y, is three-parametric for the crack modelled as an ellipse with centre on the round bar surface and
its value depends on the crack geometry and on the point on the front where it is calculated. The dimensionless SIF used in
the computations is that proposed by Shin and Cai [10] obtained by the finite element method and the virtual crack exten-
sion technique, whose value is function of the relative crack depth a/D, the aspect ratio a/b, and the position of the point
considered on its front x/h (Fig. 2).

The fitting of the results provides a three-parametrical expression which is defined as a function of the coefficients Mijk

(Table 1), which are different depending on tension with free sample ends or constrained sample ends,
Y ¼
X2

i¼0

X7

j¼0

X2

k¼0

Mijk
a
b

� �i a
D

� �j x
h

� �k
ð3Þ
2.2. Dimensionless compliance

If tensile load is applied, it is obtained that the local displacement u is related to the applied force F through compliance as
follows:
iΔa

Fig. 1. Process followed to compute the fatigue crack growth.
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Fig. 2. Crack characterization.

Table 1
SIF coefficients Mijk for tension proposed by Shin and Cai [10].

i j k = 0 k = 1 k = 2

(a) Free sample ends, i.e., unrestrained bending
0 0 0.220 0.123 �0.409
0 1 28.513 0.511 �9.764
0 2 �354.782 �2.034 128.817
0 3 2178.632 �19.569 �727.078
0 4 �7140.202 144.435 2201.067
0 5 12957.447 �359.284 �3732.813
0 6 �12227.977 393.518 3343.521
0 7 4721.868 �159.206 �1240.214
1 0 �0.326 0.065 1.011
1 1 �3.780 �6.878 �3.946
1 2 79.489 47.747 41.099
1 3 �571.094 �119.954 �316.682
1 4 1976.255 14.769 1284.860
1 5 �3583.421 423.169 �2563.292
1 6 3256.770 �661.610 2455.158
1 7 �1163.158 306.176 �880.302
2 0 0.266 0.118 �1.584
2 1 �9.118 �3.515 45.562
2 2 85.381 75.016 �552.891
2 3 �465.013 �587.594 3322.477
2 4 1475.911 2197.404 �10812.317
2 5 �2794.532 �4264.810 19328.127
2 6 2878.868 4138.287 �17829.715
2 7 �1261.348 �1588.135 6638.698

(b) Constrained sample ends, i.e., restrained bending
0 0 1.095 0.113 �0.896
0 1 �1.336 1.824 3.092
0 2 13.108 �21.709 �4.197
0 3 �43.689 105.483 �13.255
0 4 134.868 �271.225 51.548
0 5 �242.653 387.470 �59.329
0 6 254.093 �290.024 13.481
0 7 �108.196 88.387 10.854
1 0 �1.177 0.271 0.904
1 1 17.924 �11.649 0.701
1 2 �137.252 98.358 �32.641
1 3 545.816 �415.027 204.104
1 4 �1223.334 982.713 �568.407
1 5 1541.587 �1329.634 857.543
1 6 �1006.656 961.893 �657.659
1 7 264.206 �288.565 191.570
2 0 0.725 �0.388 0.008
2 1 �17.427 10.074 �4.883
2 2 134.652 �80.088 55.092
2 3 �551.902 328.165 �305.079
2 4 1239.493 �772.921 916.962
2 5 �1548.537 1055.952 �1545.428
2 6 969.388 �784.581 1372.595
2 7 �227.132 245.798 �485.556
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u ¼ kF ð4Þ
The strain energy density U can be expressed taking into account the equivalence between the energy release rate G and
the stress intensity factor in plane strain K,
dU ¼ GdA ¼ K2ð1� m2Þ
E

dA ð5Þ
where v is the Poisson coefficient and dA the differential of the crack area. On the other hand, the strain energy density for a
cracked bar subjected to tensile load is, introducing the value du from the Eq. (4),
dU ¼ 1
2

Fdu ¼ 1
2

F2dk ð6Þ
The stress intensity factor in plane strain for the geometry of the study can be obtained as follows:
K ¼ Yr
ffiffiffiffiffiffi
pa
p

ð7Þ
where the stress r for axial tension is calculated:
r ¼ 4F

pD2 ð8Þ
If Eqs. (5) and (6) for strain energy density are made equal and introducing values K (Eq. (7)) and r (Eq. (8)), the following
expression is obtained:
1
2

F2dk ¼ Y
4F

pD2

ffiffiffiffiffiffi
pa
p� �2 ð1� m2Þ

E
dA ð9Þ
and isolating compliance in the Eq. (9), it is obtained:
k ¼ 32ð1� m2Þ
pD4E

Z a

0
Y2adA ð10Þ
Solving the integral which appears in Eq. (10) is not trivial. In order to achieve that, the Cartesian coordinates (x, y) were
change into parametrical coordinates (a, h), relating themselves both through the expressions:
x ¼ b cos h ð11Þ
y ¼ a sin h ð12Þ
where the correspondence between angles d and h, deducted from Fig. 3, is as follows,
tan d ¼ y
x
¼ a

b
tan h ð13Þ
The differential of the ellipse area modelling the crack advance is:
dA ¼ dx ^ dy ð14Þ
differentiating the coordinates (x,y) according to the new coordinates (a,h),
δ θ

b
h

y

x

Fig. 3. Relationship between d and h angles.
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dx ¼ b0ðaÞ cos hda� b sin hdh ð15Þ
dy ¼ sin hdaþ a cos hdh ð16Þ
and substituting these expressions on the Eq. (14), it is obtained,
dA ¼ ðab0ðaÞ cos2 hþ b sin2 hÞda ^ dh ð17Þ
The problem that arises in calculating Eq. (17) can be found in the previous knowledge of the variation of the parameter b
with the crack depth a. The definition of the derivative at a point can be used to this purpose,
b0ðaÞ � bðaþ DaÞ � bðaÞ
Da

ð18Þ
Introducing Eq. (17) in Eq. (10), which allows calculating compliance in a cracked round bar subjected to axial tensile
loading, it is obtained:
k ¼ 64ð1� m2Þ
pD4E

Z a

0

Z p=2

acosh
b

Y2aðab0ðaÞ cos2 hþ b sin2 hÞdhda ð19Þ
where f is defined as the dimensionless compliance due to tensile load,
f ¼
Z a

0

Z p=2

acosh
b

Y2 a

D3 ðab0ðaÞ cos2 hþ b sin2 hÞdhda ð20Þ
There is an easier way to obtain the differential of the area of the ellipse which models the crack advance, which consists
of approximating this calculation by using the following expression:
dA � 2Sda ð21Þ
where 2S is the arc length of the crack front which is expressed in parametric coordinates as follows,
S ¼
Z h1

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0ðhÞÞ2 þ ðy0ðhÞÞ2

q
dh ¼

Z p=2

acosh
b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
a

� �2

sin2 hþ cos2 h

s
dh ð22Þ
and substituting in Eq. (10),
k � 64ð1� m2Þ
pD4E

Z a

0

Z p=2

acosh
b

Y2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
a

� �2

sin2 hþ cos2 h

s
dhda ð23Þ
an approximate expression of the dimensionless compliance, f, is obtained:
f �
Z a

0

Z p=2

acosh
b

Y2 a2

D3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
a

� �2

sin2 hþ cos2 h

s
dhda ð24Þ
The dimensionless compliance value can be calculated incrementally with the crack growth, where the integral,
f ¼
X

i

Z aiþ1

ai

Z p=2

acosh
b

Rdhda ð25Þ
(i,j) (i,j+1)

(i+1,j)
(i+1,j+1)

a

θ

i+1

a i

j

θ j+1

a
i

a
i+1

θ j+1θ j

Fig. 4. Divisions with the isolines used in the trapezoidal rule.



3248 J. Toribio et al. / Engineering Fracture Mechanics 78 (2011) 3243–3252
it is solved using the trapezoidal rule (where R is the corresponding expression according to Eq. (20) or Eq. (24)), following
the scheme on Fig. 4, dividing every crack increment in eight parts for half of the problem, so they correspond with the coor-
dinate’s isolines (a, h).

The compliance increment in every crack advance is calculated using the following expression,
f ¼
X

i

ðaiþ1�aiÞ
X7

j¼0

ðhjþ1�hjÞ
ðRði;jÞþRði;jþ1ÞþRðiþ1;jÞþRðiþ1;jþ1ÞÞ

4
þðh8�h7Þ

2
ðRði;7ÞþRðiþ1;7ÞþRði;8ÞÞ

3

 !

ð26Þ
In the results shown, Eq. (20) and not Eq. (24) has been used for calculating the dimensionless compliance, because there
were disagreements of up to 15% between the two solutions (Eq. (20) does not approximate the element of the area, whereas
Eq. (24) does). In order to obtain the dimensionless compliance of the initial crack, the process is similar to the one just de-
scribed, but easier, because it considers that every previous crack front has the same aspect ratio as the initial one. Further-
more, compliance due to smaller cracks than the minimum ones considered by Shin and Cai (a/D = 0.067) were not taken into
account.
3. Numerical results and discussion

In cracked cylindrical bars with tensile load, dimensionless compliance f depends on the restriction on the specimen ends,
on relative crack depth a/D and on the aspect ratio a/b. Figs. 5 and 6 show how dimensionless compliance varies with these
parameters. It can be observed how dimensionless compliance increases when so does relative crack depth. For a given
depth, dimensionless compliance decreases with the aspect ratio, from quasi-straight front cracks (a/b = 0.08) to completely
circular ones (a/b = 1.00). Hence, there is a strong dependency between dimensionless compliance and aspect ratio. Further-
more, dimensionless compliance is much greater under tension with free sample ends (Fig. 5) than under tension with
constrained sample ends (Fig. 6), increasing the difference between both results with relative crack depth and with the as-
pect ratio.
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With regard to dimensionless compliance, a comparative study was carried out of the results of this modelling and those
obtained by other authors, which present round bars subject to tension with free sample ends from certain crack geometries,
a/D 6 0.6 and a/b = {0.08, 0.20, 0.40, 0.60, 0.80, 1.00} (Fig. 7). Shih and Chen [3] estimated dimensionless compliance using
the mean value of the two expressions of the dimensionless SIF obtained by Carpinteri [9] for that calculation. Rubio et al.
[11] considered the variation of the dimensionless SIF along the crack front with the expression of Shin and Cai, using the
trapezoidal rule in order to calculate the integral of the compliance with an approximate value of the element of area
(Eqs. (21) and (24)). In this study, compliance has also been obtained using the Shin and Cai expressions along the crack
front, where the integral was calculated without approximating the element of area (Eqs. (17) and (20)), using the trapezoidal
rule with elements of area small enough, as was supported by a previous convergence study.
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Fig. 7. Comparison between prediction of the presents model and results from other researchers (free sample ends).
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Fig. 8. Dimensionless compliance (m = 2 and (a/D)0 = 0.1).
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Fig. 9. Dimensionless compliance (m = 2 and (a/D)0 = 0.3).
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The values of Shih and Chen for a/b = 0.0 coincide to a great extent with the results of the present model for a/b = 0.08, the
first being slightly inferior in the section a/D = 0.5–0.6. For a/b = 0.5 and 1.0 the results of Shih and Chen have a very similar
tendency, but with slightly higher values. Rubio et al. show a great coincidence for a/b = 0.0 and 1.0, remaining the rest of the
curves for constant a/b approximately equidistant (except for a/b = 0.2 which is closer to a/b = 0.4 than to a/b = 0.0), whereas
in this paper the representations for constant a/b are closer one to another as the crack front gets straighter, and therefore,
the values of Rubio et al. are below.

The dimensionless compliance evolution during fatigue crack propagation is shown on Figs. 8–16, for initial crack depths
(a/D)0 = {0.1, 0.3, 0.5}, initial aspect ratios (a/b)0 = 0.08 (quasi-straight crack front) and (a/b)0 = 1.00 (circular crack front),
different materials (Paris exponent m 2, 3 and 4) and tensile load with free sample ends and constrained sample ends.
The chosen initial aspect ratios (quasi-straight and circular) represent the two limit cases of the wide set of possible initial
0.0

0.4

0.8

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a/b)
0
=0.08

(a/b)
0
=1.00

a/D

f

m=2

Fig. 10. Dimensionless compliance (m = 2 and (a/D)0 = 0.5).
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Fig. 11. Dimensionless compliance (m = 3 and (a/D)0 = 0.1).
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Fig. 12. Dimensionless compliance (m = 3 and (a/D)0 = 0.3).
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Fig. 13. Dimensionless compliance (m = 3 and (a/D)0 = 0.5).
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Fig. 14. Dimensionless compliance (m = 4 and (a/D)0 = 0.1).
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Fig. 15. Dimensionless compliance (m = 4 and (a/D)0 = 0.3).
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crack shapes. Their evolution under fatigue loading shows that any starting crack evolves towards an elliptically-shaped flaw
after certain number of cycles.

During crack growth, it can observed how dimensionless compliance presents a great dependency with relative crack
depth (which makes it to increase), and that the aspect ratio (which makes it decrease) influences to a lesser extent, because
of the strong geometrical convergence produced during fatigue crack growth [12,15]. Furthermore, the convergence of re-
sults for both initial crack fronts, quasi-straight and circular, is greater for smaller initial crack depths.

The dimensionless compliance in initial cracks with a quasi-straight front doubles that of those with a circular front,
although both are very small, increasing with growth at the same time as their values tend to be equal. In crack propagation,
the dimensionless compliance values, up to approximately a crack depth of half the specimen, are similar for both conditions
on the specimen ends (free and constrained), from whose size the dimensionless compliance for free sample ends increases
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Fig. 16. Dimensionless compliance (m = 4 and (a/D)0 = 0.5).
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more than for constrained sample ends (reaching a value which almost doubles for a depth of 0.7D). Furthermore, dimen-
sionless compliance curves present a greater convergence for free sample ends than for constrained ones.

The increase of the parameter m, Paris exponent of the material, offers slightly higher values of dimensionless compliance
for an circular initial front (a/b)0 = 1, and it is almost the same for a quasi-straight initial front (a/b)0 = 0.08. It is also observed
how the greater the coefficient m (characteristic of the material), the greater the convergence between results for the differ-
ent initial geometries. The difference between results for the different values of m is always bigger between m = 2 and m = 3
than between m = 3 and m = 4, which implies that as this parameter increases, the results depend less on it.

4. Conclusions

Dimensionless compliance f increases with relative crack depth a/D and decreases with the aspect ratio a/b, so that the
representations f-a/D for constant a/b are closer one to another as the aspect ratio gets smaller (straighter crack front). Fur-
thermore, the dimensionless compliance for tensile load with free sample ends is greater than for constrained sample ends
and the difference increases with relative crack depth as well as with the decrease of the aspect ratio.

In fatigue crack propagation, relative crack depth influences more on dimensionless compliance than the aspect ratio, be-
cause the crack front tends to converge when the crack propagates from different initial geometries.

In fatigue crack growth, dimensionless compliance is greater under tension with free sample ends than with constrained
sample ends, increasing the difference between its values with relative crack depth and obtaining for a = 0.7D a dimension-
less compliance value almost twice as high in free sample ends as in constrained sample ends.

The increase of the Paris exponent m offers slightly higher values of dimensionless compliance (more for circular initial
crack front (a/b)0 = 1 than for quasi-straight initial crack front (a/b)0 = 0.08). Furthermore, as m increases, a greater conver-
gence is also produced in values of dimensionless compliance for the different initial crack conditions.
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