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The Doctoral Thesis “Multispectral Imaging for the Analysis of Materials 

and Pathologies in Civil Engineering, Constructions and Natural 

Spaces”, presented by Susana del Pozo Aguilera, is part of the research 

line entitled “Radiometric analysis of images to study different land 

covers by optical remote sensing systems” in which by using different 

active and passive sensors as conventional and multispectral cameras, 

different terrestrial laser systems or even their combination; different 

materials and pathologies regarding disciplines as civil engineering, 

cultural heritage and natural resources have been analysed.  

Remote sensing is an invaluable tool when direct measurements are 

difficult or impossible to perform and lack of knowledge will result in 

costly expenditures, long delays or even wrong decisions. The evolution 

of optical remote sensing over the past few decades has enabled the 

availability of rich spatial, spectral and temporal information to remote 

sensing analysts without forgetting its non-invasive and non-destructive 

character. In this way, the present Thesis is framed within close-range 

imagery conducted by airborne and terrestrial-based platforms to 

accurately image different land surfaces with high resolution. It includes 

techniques to hybridise remotely sensed imagery acquired simultaneously 

from active and passive sensing modalities for a joint radiometric-

geometric analysis to support decision making processes. With the 

advances in sensor technology and the increasing quantity of multi-

sensor, multi-temporal, and multi-data from different sources, data fusion 

has become as a valuable tool in remote sensing applications. 
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Optical remote sensing focuses on the range from visible to near infrared 

light. Remote sensing systems used for imaging purposes in this spectral 

range are mostly passive systems, detecting the solar radiation reflected 

or transmitted by objects on Earth. But in this case, the contribution of 

the intensity data collected by active systems (terrestrial laser scanners) 

give an added value to the radiometric data from conventional passive 

sensors. This research line is not trendy or novel in the fields of 

Geomatics because it is a well-established technique that has long been 

used form many years, especially in the case of satellite observations. 

However, it offers a great scientific contribution in the close-range 

remote sensing area as it deals very rigorously, by using an in-house 

software developed for this purpose, the vicarious radiometric calibration 

of sensors, the data acquisition and its main common problems, the 

sensor and data fusion, potentials and limitations of several sensors and 

wavelengths regarding the field of application, the analysis of data and 

the extraction of valuable final products.   

It is a line of research promoted and developed by the TIDOP Research 

Group (http://tidop.usal.es/) of the University of Salamanca, which is 

researching and developing software and hardware tools within 

competitive projects and in collaboration with other research groups and 

leading companies at national and international level. Specifically, this 

line is a topic of interest for the Department of Geoscience and Remote 

Sensing of the Faculty of Civil Engineering and Geosciences of the Delft 

University of Technology. They were interested in the application of a 

low-cost multispectral camera to the field of geology. As a result, Susana 

del Pozo Aguilera conducted a 3-months research stay at the Department 

in Delft (The Netherlands) under the supervision of Dr. Roderik 

Lindenbergh, which culminated with a high impact publication and give 

rise the third chapter of the Thesis.  

The new scientific contributions and the valuable results obtained led to 

the publication of various scientific articles, all currently published in 

prestigious journals in the field of remote sensing, civil engineering and 

instrumentation, subject to anonymous peer review and indexed in 

databases Journal Citation Report (JCR), being in the top quartile (Q1) of 

their category. It is noteworthy that the results derived an intellectual 
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property and a technical book chapter which highlight the research, 

implementation and knowledge transfer capabilities of Susana del Pozo 

Aguilera. 

The Doctoral Thesis is completed with a proper section of conclusions 

and future perspectives in which, the major contributions and 

recommendations for future works are precisely specified in order to 

complement this work being fully integrated into the line of research. 

Accordingly, this Thesis brings the cutting edge in signal processing and 

exploitation research closer to users and developers of remote sensing 

technology and it would be a valuable reference to graduate students and 

researchers in the academia and the industry who are interested in 

keeping abreast with the current state-of-the-art in signal and image 

processing techniques for optical remote sensing. 

Given the conditions put forward, the supervisors consider that the 

present Doctoral Thesis is suitable for submission and public defence in 

the form of “Compendium of Publications” and with “International 

Mention” since it presents more than sufficient original results according 

to the requirements and regulations established by the University of 

Salamanca in this regard. In witness whereof, this certificate has been 

signed at 

 

Ávila, 10 February 2016, 

 

 

 

Dr. Diego González Aguilera                   Dr. Pablo Rodríguez Gonzálvez 
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La energía radiante óptica ha sido siempre el nexo de unión entre el 

sistema visual humano y el mundo exterior, siendo la energía solar 

esencial para el crecimiento y desarrollo biológico. 

(Grum, 2012) 
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Abstract 
 

Multispectral imaging is a non-destructive technique that combines 

imaging and spectroscopy to analyse the spectral behaviour of materials 

and land covers through the use of geospatial sensors. These sensors 

collect both spatial and spectral information for a given scenario and a 

spectral range, so that, their graphical representation elements (pixels or 

points) store the spectral properties of the radiation reflected by the 

material sample or land cover. The term multispectral imaging is 

commonly associated with satellite imaging, but the application range 

extends to other scales as close-range photogrammetry through the use of 

sensors on board of airborne systems (gliders, trikes, drones, etc.) or 

through their use at ground level. Its usefulness has been proved in a 

variety of disciplines from topography, geology, atmospheric science to 

forestry or agriculture. The present thesis is framed within close-range 

remote sensing applied to the civil engineering, cultural heritage and 

natural resources fields via multispectral image analysis.  

Specifically, the main goal of this research work is to study and analyse 

the radiometric behaviour of different natural and artificial covers by 

combining several sensors recording data in the visible and infrared 

ranges of the spectrum. The research lines have not been limited to the 

2D data analysis, but in some cases 3D intensity data have been 

integrated with 2D data from active (terrestrial laser scanners) and 

passive (multispectral digital cameras) sensors in order to analyse 

different materials and possible associated pathologies, getting more 

comprehensive products due to the metric that 3D brings to 2D data.  

Works began with the radiometric calibration of the active and passive 

sensors used by the vicarious calibration method. The calibrations were 

carried out through MULRACS, a multispectral radiometric calibration 

software developed for this purpose (see Appendix B). After the 

calibration process, active and passive sensors were used together for the 

discretization of sedimentary rocks and detecting pathologies, as 

moisture, in façades and in civil structures. Finally, the Doctoral Thesis 
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concludes with a theoretical book chapter in which all the know-how and 

expertise arising during this research stage have been compiled. 
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Resumen 
 

Las imágenes multiespectrales se constituyen como técnica no 

destructiva que combina imagen y espectroscopía para analizar el 

comportamiento espectral de distintos materiales y superficies terrestres a 

través del uso de sensores geoespaciales. Estos sensores adquieren tanto 

información espacial como espectral para un escenario y un rango 

espectral dados de tal forma sus unidades de representación gráfica (ya 

sean píxeles o puntos) registran las propiedades de la radiación reflejada 

para cada material o cobertura a estudiar y longitud de onda. Las 

imágenes multiespectrales no solo se limitan a las observaciones 

satelitales a las que tradicionalmente se vinculan, sino que tienen un 

campo de aplicación más amplio gracias a los estudios de rango cercano 

realizados a través del uso de sensores tanto embarcados en sistemas 

aéreos (planeadores, paramotores, drones, etc.) como a nivel terreno. Su 

utilidad ha sido demostrada en multitud de disciplinas; desde la 

topografía, geología, aerología, hasta la ingeniería forestal o la 

agricultura entre otros. La presente tesis se enmarca dentro de la 

teledetección de rango cercano aplicada a la ingeniería civil, el 

patrimonio cultural y los recursos naturales a través del análisis 

multiespectral de imágenes. 

Concretamente, el principal objetivo de este trabajo de investigación 

consiste en el estudio y análisis del comportamiento radiométrico de 

distintas coberturas naturales y artificiales mediante el uso combinado de 

distintos sensores que registran información espectral en los rangos 

visible e infrarrojo del espectro electromagnético. Las líneas de 

investigación no se han limitado al análisis de datos bidimensionales 

(imágenes) sino que en algunos casos se han integrado datos de 

intensidad registrados en 3D a través de sensores activos (láser escáner 

terrestres) con datos 2D capturados con sensores pasivos (cámaras 

digitales convencionales y multiespectrales) con el objetivo de analizar 

diferentes materiales y posibles patologías asociadas a los mismos 

ofreciendo resultados más completos gracias a la métrica que los datos 

3D aportan a los datos 2D. 
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Los trabajos comenzaron con la calibración radiométrica de los sensores 

por el método de calibración vicario. Las calibraciones fueron resueltas 

gracias al uso del software MULRACS, un software  para la calibración 

radiométrica multiespectral desarrollado durante este periodo para tal fin 

(ver Apéndice B). Tras el proceso de calibración, se combinó el uso de 

sensores activos y pasivos para la diferenciación de distintos tipos de 

rocas sedimentarias y la detección de patologías, como humedades, en 

fachadas de edificios históricos y en estructuras de ingeniería civil. 

Finalmente, la Tesis Doctoral concluye con un capítulo teórico de libro 

en el cual se recopilan todos los conocimientos y experiencias adquiridos 

durante este periodo de investigación. 
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1. INTRODUCCIÓN 

  

Las imágenes multiespectrales se constituyen como técnica no 

destructiva gracias a la cual es posible adquirir información espectral de 

distintas cubiertas terrestres de forma remota y mediante el uso de: (i) 

sensores sensitivos a varias longitudes de onda (Zhang et al., 2006) o (ii) 

varios sensores al mismo tiempo. Esto es posible gracias al análisis de la 

respuesta radiométrica de cada material a cada longitud de onda para la 

que es capaz de capturar información el sensor o sensores empleados. El 

término radiometría abarca diversas materias, desde los conceptos 

básicos de flujo radiante, energía y su transferencia, hasta la calibración 

de los equipos para permitir su uso en diferentes campos de aplicación 

(Grum, 2012). El propósito de esta Tesis Doctoral consiste en abarcar 

equitativamente todos estos puntos apostando por la hibridación sensorial 

para ampliar el alcance que un solo sensor puede ofrecer, y por tanto, 

realizar estudios más amplios y completos. En este sentido, se hace uso 

de las imágenes multiespectrales como alternativa no destructiva a los 

métodos de inspección más expeditos en los campos de la ingeniería 

civil, el patrimonio cultural y los recursos naturales. 

Esta técnica se basa en la interacción de la energía con cada material o 

superficie terrestre. Concretamente, se centra en el estudio de la 

proporción de energía reflejada por cada superficie para cada longitud de 

onda del espectro, es decir, el estudio de la firma espectral de cada 

material. La firma espectral es una reseña única de identidad de cada 

material (Shaw and Burke, 2003) y, por tanto, cualquier variación en ella 

puede dar constancia de cualquier alteración química o mecánica 

producida en dicho material. 

Las imágenes multiespectrales se vinculan convencionalmente a las 

imágenes satelitales debido a que la Tierra ha sido estudiada y observada 

por este tipo de imágenes desde 1960 (Davis, 2007) a diferentes 

resoluciones espaciales, temporales y espectrales a través de sensores 

instalados en multitud de satélites. Gracias a estas imágenes es posible 



Multispectral imaging for the analysis of materials and pathologies in civil engineering, 

constructions and natural spaces 

  

 
34 
 

llevar a cabo estudios que abarcan desde los recursos naturales hasta el 

sistema climático y sus cambios. La mayor ventaja radica su potencial 

para proporcionar observaciones a nivel global para un gran conjunto de 

cubiertas terrestres (Justice et al., 2002; Bartholomé y Belward, 2005). 

Mientras que hoy en día estas imágenes siguen siendo muy importantes 

para llevar a cabo estudios globales, las imágenes multiespectrales no se 

limitan a las observaciones satelitales sino que también se utilizan con 

éxito para ciertos estudios de coberturas que requieren mayor resolución 

y una adquisición más cercana. Esto es posible mediante el uso de 

diversas plataformas tanto a nivel aéreo como terrestre (Knoth et al., 

2013; Brooke, 1989). 

Este es el punto de partida del presente trabajo de investigación: el 

estudio multiespectral de rango cercano de diferentes cubiertas y 

materiales terrestres mediante el uso de sistemas aéreos y plataformas 

terrestres para sacar partido a las alternativas y soluciones que las nuevas 

geotecnologías ofrecen para realizar estudios de mayor resolución. A lo 

largo del desarrollo de esta Tesis Doctoral existe una clara apuesta por la 

fusión e integración de datos espectrales recogidos por diferentes 

sensores con el fin de obtener un registro más completo sobre las 

coberturas a examinar y una mayor precisión a la hora de evaluar los 

resultados  que los que cabrían esperarse de los extraídos de un único 

sensor (Pohlc, 1998). 

El objetivo del presente capítulo es servir de parte introductoria a la Tesis 

Doctoral donde se detallará el contexto, alcance, motivación, objetivos y 

estructura del trabajo de investigación desarrollado.  

1.1. Fundamentos teóricos 

1.1.1. Introducción a la teledetección y sus fundamentos 

Cuando un objeto recibe radiación ya sea ésta emitida por el sol u otra 

fuente, dependiendo del tipo de objeto considerado y las características 

de su superficie, esta radiación puede seguir tres caminos: ser reflejada, 

absorbida o transmitida (Joseph, 2005). A la fracción de energía reflejada 

se le denomina reflectividad o albedo (ρ); a la fracción absorbida se le 
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denomina absortividad (α) y a la fracción transmitida transmisividad (τ), 

y cuya suma cumple la ley de conservación de la energía (Ecuación 1): 

1      (1) 

Mediante la teledetección es posible estudiar este comportamiento de la 

radiación y derivar conclusiones acerca del estado físico y químico de los 

materiales. El término teledetección ha sido definido de muchas maneras 

dependiendo del propósito de la técnica. La definición que se muestra a 

continuación (Davis et al., 1978) es general y está en línea con los 

desarrollos y aplicaciones desarrollados en la presente Tesis Doctoral:  

 “La teledetección es la ciencia por la que a través de distintas 

mediciones realizadas de forma remota, es decir, sin llegar a entrar en 

contacto con los objetos de interés, se deriva información acerca de 

ellos. La magnitud medida con mayor frecuencia por estos sistemas de 

percepción remota es la energía electromagnética reflejada” 

Existen dos tipos de técnicas de percepción remota para la adquisición de 

datos: los sistemas activos y los sistemas pasivos (Barret, 2013), ambos 

igualmente válidos y que ofrecen diferentes herramientas funcionales. En 

la teledetección pasiva se hace uso de sensores capaces de capturar la 

radiación solar reflejada o emitida por los distintos objetos. La región que 

abarca el visible, infrarrojo cercano e infrarrojo de onda corta (entre 0.4 

µm y 3 µm) es el rango espectral reflexivo solar ya que la energía que el 

sol suministra a la superficie terrestre supera la emitida por la propia 

tierra en este rango (Schowengerdt, 2006). Por su lado, la teledetección 

activa hace uso de una fuente artificial de radiación para estudiar los 

materiales de tal forma que la señal reflejada por la superficie de los 

mismos, y que es registrada de vuelta en el sensor, caracteriza el tipo de 

material. La representación gráfica de los resultados finales procedentes 

de un sensor activo no tienen formato de imagen por lo que hibridar 

ambas técnicas de teledetección supone llevar a cabo un riguroso 

procesado y registro de los datos procedentes de ambas tecnologías. 

1.1.2. Sensores 

Los sensores empleados en teledetección óptica (rangos visible, 

infrarrojo cercano e infrarrojo de onda corta) convierten la radiación 
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entrante en una señal cuya salida es, en formato digital, proporcional a la 

distribución espacial de luminosidad recibida. En este punto se producen 

ciertas transformaciones de las características espaciales, radiométricas y 

geométricas de la radiación de entrada. Es importante estudiar 

cuidadosamente estas alteraciones para diseñar adecuadamente los 

algoritmos de procesamiento de los datos y hacer una correcta 

interpretación de los resultados (Schowengerdt, 2006). Los detectores 

empleados para capturar y registrar la radiación de entrada son detectores 

cuánticos fabricados con materiales semiconductores (Richtmeyer et al., 

1968). Éstos convierten la radiación entrante en una señal electrónica que 

se amplifica y posteriormente se procesa por la electrónica del sensor. En 

la digitalización o conversión analógica-digital (A/D) la señal procesada 

se muestrea y cuantifica en niveles digitales
1
 en función de la resolución 

radiométrica del sensor. 

Los sistemas de teledetección se caracterizan no solo por su resolución 

radiométrica sino también por su resolución espacial, espectral y 

temporal (Parr et al., 2005). La resolución radiométrica como se ha 

comentado, es la resolución numérica asociada a la cuantificación de la 

radiación, es decir, la sensibilidad que tiene un sensor para discriminar 

distintas variaciones de luminosidad. Bajo el concepto de resolución 

espacial está la capacidad del sistema para distinguir objetos, es el 

tamaño del objeto más pequeño que puede ser distinguido por el sensor. 

Depende principalmente de la distancia objeto-sensor y del campo de 

visión. La resolución espectral es la sensibilidad de un sensor para 

discriminar cierto número y anchura de bandas del espectro 

electromagnético. Los sensores multiespectrales son aquellos sistemas 

que son capaces de registrar la radiación en varias longitudes de onda y a 

diferentes resoluciones espectrales. Finalmente, la resolución temporal se 

refiere al intervalo de tiempo transcurrido entre las distintas 

adquisiciones de datos. 

En el caso concreto de las imágenes multiespectrales, los sensores usan 

sistemas multi-lente con combinación de filtros para adquirir 

simultáneamente imágenes para el rango espectral característico de cada 

filtro. Tienen la gran ventaja de que registran la radiación reflejada en 

                                                 
1
 2

b
 niveles digitales, donde b es la resolución radiométrica del sensor en bits. 
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rangos discretos del espectro aunque el análisis simultáneo de esas 

imágenes no es un tema trivial (Colwell, 1961) tal y como se evidenciará 

durante el desarrollo de la presente Tesis Doctoral. 

1.1.3. Calibración radiométrica de los sensores 

Antes de comenzar con la descripción del proceso de calibración 

propiamente dicho, se debe hacer una pequeña introducción a ciertos 

conceptos que son necesarios para el estudio de las imágenes espectrales. 

La irradiancia (E) es la magnitud utilizada para caracterizar la energía 

luminosa incidente en una superficie por unidad de tiempo, normalmente 

se mide en W/m
2
. La reflectancia (ρ) es un número adimensional entre 0 

y 1, habitualmente expresado en porcentaje, que determina la proporción 

de luz reflejada por una superficie con respecto a la luz incidente. La 

reflectancia depende a su vez de parámetros como la longitud de onda, el 

ángulo de incidencia de la radiación y el ángulo de reflexión. La 

radiancia (L) es un concepto que no distingue entre la radiación que 

incide sobre una superficie y la que es reflejada por la misma, es 

simplemente la irradiancia normalizada por unidad de ángulo sólido (en 

estereorradianes) del observable en la dirección de propagación de la luz. 

Se mide comúnmente en W/m
2
·sr. Si la radiancia está normalizada por 

longitud de onda (en µm), se le denomina radiancia espectral, y sus 

unidades son W/m
2
·sr·μm. La Ecuación 2 muestra la relación que existe 

entre estos conceptos radiométricos. 

L

E
  

 
(2) 

Si bien los datos brutos procedentes de los sensores, en niveles digitales, 

pueden ser analizados y aplicados en muchos campos sin necesidad de 

realizar ningún procesamiento adicional (Robinove, 1982), esta 

metodología no exprime todas las posibilidades que pueden derivarse de 

haber realizado un proceso de calibración radiométrico previo. Para 

llevar a cabo estudios más completos de la mano de la hibridación 

sensorial, tanto el formato como la magnitud final que ofrezca cada 

sensor debe ser la misma, para ello, los niveles digitales brutos deben ser 

transformados a los correspondientes valores físicos de radiancia o 

reflectancia del material a estudiar. Estos valores físicos a nivel sensor se 
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obtienen tras aplicar los coeficientes de calibración radiométricos de cada 

banda espectral del sensor (Dinguirard and Slater, 1999). En el campo de 

la teledetección, existen dos métodos de calibración radiométrica: la 

calibración absoluta y la relativa (Lo and Yang, 1998). La calibración 

radiométrica absoluta determina para cada banda espectral en que 

registra el sensor los parámetros necesarios para transformar los niveles 

digitales a valores físicos. Normalmente, para el caso de los sensores 

pasivos se emplean modelos lineales (Richards y Richards, 1999) 

definidos por la pendiente de la recta y la ordenada en el origen, gain y 

offset respectivamente. Por su lado, la calibración radiométrica relativa 

consiste en normalizar los valores de salida del sensor cuando existe una 

radiación incidente uniforme. La calibración radiométrica absoluta puede 

resolverse mediante el método basado en radiancias o el método basado 

en reflectancias.  

Los métodos de calibración radiométrica absoluta más conocidos son 

(Honkavaara et al., 2009): la calibración en laboratorio, a bordo de un 

vehículo o plataforma aérea, la calibración vicaria y la auto-calibración. 

La calibración vicaria, que es la que se aplica en la presente tesis, 

consiste en una calibración realizada en un campo de pruebas a partir de 

una serie de medidas de reflectancia o radiancia de una serie de 

superficies artificiales y naturales a través de un espectrorradiómetro 

calibrado (Thorne et al., 1997). Se basa en los modelos de transferencia 

radiativa limitados por la medida de los valores superficiales y las 

características atmosféricas del momento (Slater et al., 1996).  

Una vez realizada la calibración del sensor, es posible extraer valores 

físicos de la superficie de cualquier material y en función de la resolución 

espectral de el(los) sensor(es) empleado(s), extraer su firma espectral y 

derivar información de utilidad acerca de las características del material 

estudiado. 

1.1.4. Análisis multispectral de los datos 

El análisis multiespectral de los datos consiste fundamentalmente en una 

clasificación de los píxeles de las imágenes para identificar áreas con 

distintas propiedades físicas. Si se quieren integrar datos procedentes de 

distintos sensores, se ha de realizar un proceso previo de unificación de 
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formatos. Es decir, si se combinan por ejemplo datos de intensidad 

procedentes de un sensor láser escáner (sensor activo) con datos 

procedentes de un sensor pasivo, los datos 3D procedentes del láser 

deben ser convertidos a imágenes 2D de tal forma que la resolución 

radiométrica y espacial final de ambos sensores sea la misma. Por lo 

tanto, antes de realizar el proceso de clasificación se han de aplicar 

ciertas rectificaciones geométricas y transformaciones radiométricas a los 

datos. 

La clasificación se lleva a cabo normalmente para datos multi-banda, es 

decir, para conjuntos de imágenes registradas en distintas longitudes de 

onda. Así, una clase es asignada a un pixel particular en función de su 

radiometría y características espectrales para esas longitudes de onda 

analizadas. Los procedimientos más comunes de clasificación son el 

método supervisado y el no supervisado (Lillesand et al., 2014). En la 

clasificación supervisada, el analista comienza identificando 

subconjuntos de píxeles representativos de los diferentes tipos de 

cobertura de interés, las denominadas clases informacionales. Estas 

muestras conforman las áreas de entrenamiento y recogen toda la 

información radiométrica de los píxeles seleccionados (en niveles 

digitales o valores físicos, dependiendo de si el sensor ha sido 

previamente calibrado o no) para el conjunto de bandas espectrales 

analizadas. Esta información se utiliza para entrenar al algoritmo de 

clasificación empleado en el reconocimiento de similitudes espectrales 

(Campbell, 2002). Sin embargo para el caso de la clasificación no 

supervisada, el proceso descrito con anterioridad se invierte (Jensen and 

Lulla, 1987). En primer lugar, las imágenes se clasifican 

automáticamente mediante un proceso de agrupación iterativo creando 

distintas áreas, los llamados clusters. Los algoritmos empleados se basan 

únicamente en la información radiométrica del conjunto de los datos 

aunque por lo general el analista especifica primero el número de clusters 

a diferenciar. El resultado final del proceso de agrupación iterativo ofrece 

grupos de píxeles que el analista puede posteriormente combinar o 

eliminar. Los resultados ofrecidos por ambos métodos resultan de gran 

utilidad para muchas disciplinas que demandan estudios de materiales y 

superficies terrestres. 
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1.2. Motivación 

No cabe duda de que las imágenes multiespectrales tomadas a corta 

distancia han experimentado un resurgimiento notable como 

complemento a la teledetección satelital (Zhou et al., 2009) permitiendo 

hacer estudios de mayor detalle y resolución, tanto espacial como 

temporal, de las superficies terrestres de interés. Si bien es cierto que los 

estudios multiespectrales de corto alcance llevan tiempo instaurados, 

explorar esta técnica desde la perspectiva del bajo coste evaluando los 

potenciales, errores y eficiencias derivadas de su uso en base a la 

calibración radiométrica de los sensores empleados fue la principal 

motivación de esta Tesis Doctoral.  Por esta razón, se decidió establecer 

el punto de partida en la calibración radiométrica de un sensor 

multiespectral de bajo coste embarcado en un sistema aéreo no tripulado. 

La idea era desarrollar un protocolo completo y de bajo coste para 

modelar el comportamiento radiométrico de dicho sensor teniendo en 

cuenta la posible afectación atmosférica para finalmente emplear dicho 

sensor de forma robusta en diversos análisis y para distintas coberturas 

terrestres. 

Dado que un proceso de calibración no se considera válido hasta que el 

sensor se evalúa en condiciones reales de campo, se planteó la necesidad 

de evaluar su eficacia en diferentes escenarios. Se propusieron tomas de 

datos tanto desde plataformas aéreas como a nivel terreno y para 

escenarios favorables, intermedios y desfavorables,  según las 

características espectrales del sensor,  para realizar una evaluación lo más 

completa posible de sus potenciales y limitaciones al respecto. 

Finalmente, y dado que cualquier sensor tiene sus propias limitaciones 

derivadas tanto de su principio de funcionamiento como de su 

configuración, se planteó la hibridación de sensores con diferentes 

principios de funcionamiento y resoluciones espectrales como solución 

para estudiar contextos desfavorables en los que el sensor multiespectral 

calibrado pudiera estar limitado. Se propuso el uso combinado de este 

sensor multiespectral con otros sensores pasivos y activos con el objetivo 

de ampliar el campo de aplicación de los análisis. De esta manera, los 

productos finales se verían mejorados no solo en términos radiométricos 
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sino también en términos geométricos, ofreciendo productos muy 

atractivos y útiles para la Comunidad Científica Internacional. 

1.3. Objectivos 

En este contexto, el objetivo general de la investigación consiste en 

realizar análisis multiespectrales completos y rigurosos en los que se 

apueste por la hibridación sensorial con base en la calibración 

radiométrica vicaria de los sensores para realizar análisis espectrales de 

una mayor variedad de coberturas terrestres. 

Para conseguir este objetivo general se establecen los siguientes 

objetivos específicos: 

 Profundizar en el conocimiento de  las leyes, teorías y conceptos 

de radiometría y ponerlos en práctica en la calibración 

radiométrica de una cámara multiespectral de bajo coste.  

 Estudiar y corregir los posibles errores sistemáticos que puedan 

ser transmitidos a las imágenes finales derivados del uso de 

sensores de bajo coste 

 Analizar la posibilidad de usar tarjetas artificiales de bajo coste 

como puntos de control radiométrico en el proceso de calibración 

de los sensores. 

 Incluir estimadores robustos y pruebas estadísticas en el proceso 

de calibración que den cuenta de su precisión para validar el 

procedimiento.  

 Comprender la relevancia que tiene el concepto de resolución, en 

general, para el análisis de imágenes y, de forma particular, la 

importancia que la resolución espacial, espectral, radiométrica y 

temporal tienen para cada caso de estudio concreto. 

 Hacer una revisión de los métodos y procedimientos que la 

Comunidad Científica Internacional emplea para el procesado 

multiespectral de imágenes. 
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 Automatizar el proceso de calibración radiométrica vicaria y los 

procesos de fusión de datos multiespectrales para simplificar los 

análisis radiométricos de las imágenes. 

 Analizar el potencial y limitaciones de un sensor multiespectral 

después de haber sido aplicado a un caso de estudio no favorable. 

 Analizar espectralmente diferentes coberturas terrestres tal y 

como se presentan en su estado natural aplicando distintos 

algoritmos de clasificación de imágenes 

 Calibrar radiométricamente un sensor activo (láser escáner 

terrestre) para analizar su comportamiento interno y compararle al 

comportamiento de los sensores pasivos. 

 Analizar las mejoras que la calibración y correcciones 

radiométricas proporcionan al procesado de datos y resultados 

finales tanto para el caso de sensores activos como pasivos. 

 Realizar hibridaciones sensoriales con éxito para dar solución al 

estudio radiométrico de coberturas terrestres cuya caracterización 

espectral sea característica de un rango espectral muy concreto y 

estrecho.  

 Detectar y analizar patologías presentes en materiales de 

construcción para diferentes escenarios a través de la hibridación 

sensorial y los algoritmos de clasificación de las imágenes. 

Establecer las limitaciones, necesidades y factores implicados en la 

adquisición y el estudio de datos multiespectrales dependiendo del tipo 

de sensor y plataforma utilizados. 

1.4. Estructura de la Tesis Doctoral 

Esta Tesis Doctoral se presenta en la modalidad de “compendio de 

artículos científicos” publicados en revistas internacionales de impacto 

de conformidad con el Reglamento de Doctorado de la Universidad de 

Salamanca. Consta de cinco artículos: cuatro publicados en revistas 

internacionales de alto impacto y uno publicado como capítulo de libro. 
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La Tesis Doctoral se organiza en cinco capítulos que siguen el orden 

lógico de investigación de acuerdo con los objetivos establecidos:  

 Capítulo I: Introducción. 

 Capítulo II: Calibración radiométrica vicaria de un sensor 

multiespectral. 

 Capítulo III: Imágenes multiespectrales aplicadas al campo de la 

geología. 

 Capítulo IV: Hibridación sensorial aplicada a los campos de la 

ingeniería civil y del patrimonio cultural. 

 Capítulo V: Conclusiones generales.  

Además, se han considerado dos apéndices de forma adicional. El 

Apéndice A que proporciona información sobre el factor de impacto de 

las revistas en las que los trabajos han sido publicados y el Apéndice B 

que resume las principales características y opciones del software 

MULRACS (propiedad intelectual registrada SA – 00/2015/4722) 

desarrollado por los autores para facilitar la calibración radiométrica de 

los sensores pasivos. 

A continuación se detalla el contenido incluido en cada capítulo y la 

relación que existe entre los distintos capítulos de la tesis:  

Capítulo I: Este capítulo sirve de capítulo introductorio y ofrece una 

visión general del estado del arte actual sobre el análisis multiespectral de 

imágenes desde la perspectiva más frecuente de la teledetección, pasando 

por las imágenes aéreas a través de vehículos aéreos hasta los estudios de 

corto alcance realizados a nivel terreno. También se establece el objetivo 

general y los objetivos específicos del trabajo de investigación y 

finalmente se concluye con la organización y la estructura de los 

capítulos restantes.  

Capítulo II: Este capítulo actúa de marco de referencia para el resto de 

capítulos debido a que en él se trata la calibración radiométrica y se 

resuelve para el caso de una cámara multiespectral de bajo coste (la Mini 

MCA-6 de Tetracam
®
), sensor que se usa en el resto de estudios 
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posteriores. Los motivos por los que se decidió elegir este tipo de sensor, 

el campo de aplicación en el que fue analizado, la plataforma y la 

distancia de estudio están justificados dentro de este capítulo. Para 

finalizar, señalar que el proceso de calibración radiométrico se llevó a 

cabo gracias al software de calibración MULRACS (véase el Apéndice 

B) desarrollado por los autores para tal fin. 

Capítulo III: Este capítulo está motivado por la realización de una 

estancia de colaboración en la Universidad Tecnológica de Delft (Países 

Bajos). Debido al interés mostrado por su Departamento de Ingeniería y 

Ciencias de la Tierra para testear la cámara multiespectral Mini MCA-6 

calibrada (Capítulo II) en el reconocimiento de rocas. En este capítulo se 

desarrollan por tanto los trabajos realizados durante la estancia: la 

aplicación de este sensor multiespectral para el estudio y caracterización 

espectral de rocas sedimentarias sabiendo a priori que el rango espectral 

ofrecido por el sensor no era el idóneo para el caso de estudio planteado. 

De esta manera se analizaron sus potenciales y limitaciones al respecto.  

Capítulo IV: Una vez conocido el comportamiento radiométrico de la 

cámara multiespectral de bajo coste y conocidos también su potencial y 

limitaciones derivados de su uso en diferentes coberturas y escenarios, en 

este capítulo se apuesta por la hibridación sensorial como herramienta 

para llevar a cabo análisis espectrales más completos aplicables a una 

gama más amplia de áreas de estudio. Concretamente, se propone el uso 

conjunto de la Mini MCA-6 junto a otros sensores activos y pasivos de 

cara a profundizar en el estudio de del funcionamiento radiométrico de 

sensores con distintos principios de funcionamiento y en el estudio de 

distintas técnicas de procesamiento de datos para la optimización de los 

resultados. El objetivo final consiste en conseguir una herramienta eficaz 

con la que sea posible realizar estudios espectrales de mayor variedad de 

superficies terrestres.  

En este caso, y como se verá a través de los tres subcapítulos 

establecidos, la fusión sensorial se centra en la detección de humedades y 

otras patologías presentes en construcciones tanto civiles como del 

patrimonio cultural. 
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IV.1: Este subcapítulo aborda el tema de la hibridación sensorial de dos 

sensores calibrados radiométricamente y con principios de 

funcionamiento diferentes, un láser escáner activo y la cámara 

multiespectral de bajo coste analizada en los Capítulos II y III. Las 

imágenes multiespectrales de la Mini MCA-6 se combinaron con los 

datos de intensidad del láser escáner terrestre FARO Focus-3D
®
 para la 

documentación espectral de una fachada con presencia de humedad. 

Gracias a la geometría 3D proporcionada por el láser fue posible crear 

ortoimágenes verdaderas y, por tanto, realizar análisis cuantitativos de las 

patologías detectadas. Finalmente, se señalan las ventajas y desventajas 

derivadas del uso de cada uno de los sensores para la detección de 

humedades subrayando las dificultades intrínsecas al proceso de 

hibridación.  

IV.2: En este subcapítulo se establece un protocolo automático para la 

detección y mapeo de humedades en estructuras de hormigón. Se plantea 

la adquisición combinada de datos espectrales a través de cuatro 

sensores, dos sensores activos y dos pasivos, y el procesado conjunto de 

sus datos siguiendo una metodología de análisis simplificada. En este 

caso se decidió llevar a cabo un análisis radiométrico de los datos 

digitales brutos, sin aplicar la calibración radiométrica, con el fin de 

estudiar la viabilidad en la automatización del proceso de detección de 

este tipo de patologías. Tras realizar distintas transformaciones 

geométricas a los datos y gracias a la escala real que nos ofrece la 

geometría 3D de los sensores activos, como productos finales se obtienen 

imágenes clasificadas con propiedades métricas.  

IV.3: En este subcapítulo se aborda la fusión sensorial de forma teórica y 

orientada al análisis multiespectral de patologías presentes en las 

construcciones en general. Se establecen por tanto los fundamentos, 

principios y métodos de adquisición y procesamiento de datos para tal 

fin. 

Capítulo V: Esta tesis se cierra con la discusión y análisis de los 

principales  resultados y conclusiones alcanzadas durante su desarrollo. 

También se establecen diferentes enfoques y líneas futuras abiertas a la 

continuidad de esta línea de investigación.    
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2. CALIBRACIÓN RADIOMÉTRICA VICARIA 
DE UN SENSOR MULTIESPECTRAL 

 

Este capítulo contiene el artículo Vicarious radiometric calibration of a 

multispectral camera on board an unmanned aerial system (Calibración 

radiométrica vicaria de una cámara multiespectral embarcada en un 

sistema aéreo no tripulado) publicado en Febrero de 2014 en la revista 

internacional Remote Sensing. 

2.1. Resumen 

Este artículo describe el procedimiento seguido para calibrar 

radiométricamente una cámara multiespectral de bajo coste (Mini MCA-

6, Tetracam®) a bordo de un sistema aéreo no tripulado y a una altura de 

vuelo moderada (30 metros). Tanto la calibración como su posterior 

validación fueron resueltas mediante método vicario basado en radiancias 

(Slater et al., 1987) y haciendo uso del software MULRACS (apéndice 

B) desarrollado por los autores para tal fin. El objetivo principal fue 

determinar la respuesta espectral de la cámara, es decir, conocer la 

relación entre los datos de entrada (radiación reflejada por cada 

superficie) y los de salida (niveles digitales). Una vez conocida esta 

relación, la cámara multiespectral puede usarse para analizar el 

comportamiento radiométrico de cualquier superficie o material en 

valores físicos, ya sean radiancias o reflectancias, en lugar de niveles 

digitales.  

El método vicario descrito requiere de: (i) un área de prueba en el que se 

dispongan varias superficies homogéneas y Lambertianas de interés 

(naturales y artificiales), (ii) un espectrorradiómetro cuyas mediciones 

sirvan de verdad terreno y (iii) realizar una adquisición simultánea de las 

imágenes multiespectrales y los datos con espectrorradiómetro. El 

espectrorradiómetro es el dispositivo con el que se mide la radiación 

reflejada (en este caso en valores de radiancia, W·m
-2

·sr
-1

·nm
-1

) por cada 
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superficie de interés y para las longitudes de onda para las cuales es 

capaz de registrar información de acuerdo con su resolución espectral. 

Por su parte, la cámara a bordo del sistema aéreo no tripulado captura, 

para cada una de sus seis bandas espectrales, la radiación reflejada por 

cada superficie. Esta radiación puede estar alterada por la absorción y 

dispersión de las partículas en suspensión de la atmósfera (Chan, 1960). 

Para eliminar la afección e influencia que una columna atmosférica de 30 

metros pueda tener sobre la señal de entrada al sensor es necesario 

conocer algunos datos meteorológicos del momento de la captura 

(temperatura, espesor óptico, vapor de agua, etc.). Una vez eliminada esta 

afección, los datos de la cámara y del espectrorradiómetro ambos pueden 

ser analizados como si se hubieran tomado a la misma altura, sin 

atmósfera que influya de por medio. De esta manera, para cada banda 

espectral en la que registra la cámara, el comportamiento radiométrico de 

cada superficie de interés medido con espectrorradiómetro es comparado 

con los niveles digitales de salida de la cámara. La relación existente 

entre ambos valores para cada banda determina los coeficientes de 

calibración radiométrica de la cámara.  

Debido a que los sensores de bajo coste son susceptibles de transmitir 

ciertos errores sistemáticos a las imágenes finales, el análisis y corrección 

de estos errores supuso un reto añadido a la calibración radiométrica. En 

este caso, se estudiaron y corrigieron las imágenes de ruido de fondo y 

viñeteo para cada una de las seis bandas espectrales. Para finalizar, todos 

estos aspectos fueron implementados en el software MULRACS y la 

calibración radiométrica de la cámara fue resuelta por el método de 

estimación robusto Danés propuesto por Krarup (Krarup et al., 1980). 

Este trabajo sirvió por un lado para validar el uso vinilos y lonas de 

diferentes colores como superficies de calibración de bajo coste y por 

otro, para que distintas superficies naturales (suelo, paja seca y pinos) 

fueran utilizados como superficies de validación o chequeo. Nótese la 

alta correlación obtenida (error promedio del 1.8%) entre las radiancias 

medidas in situ con espectrorradiómetro calibrado y las obtenidas con la 

cámara tras su calibración para la superficie de chequeo “pino”. Por otra 

parte, y después de evaluar la influencia atmosférica a través del modelo 

de transferencia radiativa 6S (modelo más utilizado por la Comunidad 
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Científica en el campo de la teledetección), se concluye que para una 

altura de vuelo de 30 metros y un cielo despejado, la influencia 

atmosférica es insignificante. Esto abre la posibilidad de analizar 

cualquier superficie terrestre cuya adquisición de datos tenga ciertas 

limitaciones de punto de vista (como puede ser el caso de las cubiertas 

forestales y los macizos rocosos), de tal forma que una toma de datos 

aérea sea una alternativa a las observaciones satelitales, suponiendo una 

mejora en resolución espacial y temporal. Finalmente se concluye que el 

software MULRACS garantiza robustez en la calibración radiométrica de 

sensores pasivos, quedando demostrado por el buen ajuste (R
2
 = 0,98) 

que se obtiene de sus resultados. 
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Abstract: Combinations of unmanned aerial platforms and multispectral sensors are 

considered low-cost tools for detailed spatial and temporal studies addressing spectral 

signatures, opening a broad range of applications in remote sensing. Thus, a key step in this 

process is knowledge of multi-spectral sensor calibration parameters in order to identify the 

physical variables collected by the sensor. This paper discusses the radiometric calibration 

process by means of a vicarious method applied to a high-spatial resolution unmanned flight 

using low-cost artificial and natural covers as control and check surfaces, respectively. 

Keywords: radiometric calibration; vicarious method; multispectral camera; UAS;  

low-cost targets; radiance; remote sensing 

 

1. Introduction 

Unmanned aerial systems (UASs) are gaining ground in the field of remote sensing as a new and 

versatile tool for data acquisition. In this sense, the interest of the international scientific community in 

them is steadily increasing. NASA has been a pioneer in the use of UASs, an example being 
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agricultural resource monitoring, such as coffee crops [1,2], or the analysis of vineyard crop vigor 

variables [3], among others. 

In comparison with manned aircraft or satellite platforms, UASs provide unique advantages in the 

data captured: their low operating height enables the generation of data at a very high spatial resolution 

in small areas [4], up to 1 cm per pixel [5,6]. Furthermore, UAS platforms allow short revisit periods, 

in contrast to satellite platforms, with their unfavorable orbital coverage patterns [7]. In addition, this 

high temporal resolution in data capturing [8] and increased maneuverability allow remote data 

acquisition in small inaccessible areas or in hazardous environments [9]. For these reasons, together 

with their low operational costs, UASs are becoming a key tool to meet the requirements of satellite 

imagery and aerial photography users. 

The progress of microelectronics in the field of digital sensors, navigation equipment  

(GNSS/IMU (Global Navigation Satellite System/inertial measurement unit)), along with the design of 

small aircraft and light-weight materials, has reduced the cost of the fundamental components of  

UASs [10]. Several authors have published works in which, using cameras on board small planes or 

radio-controlled helicopters, they have demonstrated the viability of such airborne vehicles as image 

acquisition platforms for scientific purposes [11–16]. With the increasing availability of commercial, 

low-cost components, research groups now have the option to develop their own projects based on 

UASs. Accordingly, they have the possibility of loading sensors with adequate spectral and 

radiometric resolution to satisfy their own research requirements. 

The possibility of working with multispectral cameras on these platforms allows radiometric studies 

to be carried out. To this end, sensors must undergo a calibration that analyzes the radiometric 

behavior of each pixel in the different regions of the spectrum in which information has been recorded. 

This behavior depends on the weather conditions and the characteristics of the sensor [17]. Analyzing 

and comparing these magnitudes to other field measurements, a vicarious calibration model is 

achieved [18] following the empirical line approach [19]. As a result, vicarious calibration allows 

physical quantities to be known in units of radiance (W·m
−2

·sr
−1

·nm
−1

) for any pixel from a single 

image in a particular camera channel. The basis of this behavior is that each body has its own, different 

reflected/emitted energy pattern that sets it apart from other material when electromagnetic energy 

impinges on it [20]. 

This study aims to obtain the calibration parameters of a multispectral camera onboard a UAS using 

low-cost targets. To achieve this, different natural and artificial surfaces were used to determine 

radiance accurately at the sensor level through the use of a calibrated radiometer [21]. As result, it was 

possible to extract quantitative data from the multispectral imaging. Additionally, with the 

determination of the radiometric calibration parameters, several sensor corrections were applied to 

improve the data quality [22]. This workflow highlights the advantages, limitations and problems 

associated with radiometric capture using multispectral remote sensing onboard UASs. 

The present work has the following structure and organization. First, the instruments employed are 

described, together with the flight planning for data gathering (Section 2) and the radiometric and 

geometric corrections made to the camera (Section 3). We then discuss the proposed calculation 

process of the radiometric calibration (Section 4). Thirdly, the field campaign of the case study is 

explained, and the results achieved are analyzed and validated (Section 5). Finally, we outline the 

conclusions and future work (Section 6). 
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2. Materials 

The instruments employed included a multispectral camera, an aerial platform and the 

spectroradiometer, which will set the ground truth in the form of radiances over artificial control 

surfaces and natural check surfaces. In the case of the UAS, the flight planning needs to be considered 

to optimize the data gathering step. 

2.1. Instruments 

A Mini-MCA camera with 6 channels was used as the multispectral sensor [23] (Figure 1); its low 

weight suggested that it was suitable for loading on a UAS. The specifications of the multispectral 

camera are listed in the following table (Table 1). 

Figure 1. Mini-MCA multispectral camera. 

 

Table 1. Characteristics of the Mini-MCA multispectral camera. 

Parameter Value 

Number of channels 6 

Weight 700 g 

Geometric resolution 1280 × 1024 

Radiometric resolution 10 bits 

Speed 1.3 frames/s 

Pixel size 5.2 µm 

Focal length 9.6 mm 

Each of the six channels of the camera is constituted by a CMOS (complementary  

metal-oxide-semiconductor) sensor and a filter with a pre-set performance against the spectral range. 

Such filters are characterized by a central wavelength in the range of 531 to 801 nm. 

The spectral response of the CMOS is not uniform, due to quantum efficiency and sensitivity.  

In turn, filters do not have the same transmittance. The combination of CMOS and the 6 filters is 

reflected by a reduction in the radiance captured by the camera. These responses are defined in the 

following graphic (Figure 2), according to the manufacturer’s data (Andover Corporation; Salem, NH, 

USA and Tetracam Inc.; Chatsworth, CA, USA). 

Figure 2 shows the spectral range covered by the camera (green, red and near-infrared). The exposure 

time of each filter is different for the same capture and has the following relationship (Table 2): 
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Figure 2. Complementary metal-oxide-semiconductor (CMOS) and filter spectral 

performance of the Mini-MCA multispectral camera. 

 

Table 2. Characteristics of the six channels of the camera and their corresponding exposures times. 

Channel λmin (nm) λmax (nm) Band Width (nm) Exposure Time (%) 

0 740 820 80 100 

1 510 550 40 130 

2 650 690 40 125 

3 660 740 80 100 

4 720 760 40 100 

5 760 840 80 100 

The unmanned aerial system was an eight-rotor Oktokopter [24] (Figure 3), which has a gimbal 

stabilized with two degrees of freedom. This multi-rotor has an IMU system with 10 degrees of 

freedom and a GNSS, thanks to which scheduled flight paths can be established. The most relevant 

characteristics are specified in Table 3. 

Figure 3. Oktokopter. 
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Table 3. Unmanned aerial systems (UAS) characteristics. 

Parameter Value 

Weight without batteries 1880 g 

Battery weight (5000 mAh-14.8 V) 540 g 

Multispectral camera weight 1025 g 

Full system weight 3445 g 

Maximum range transmission 1000 m 

Recommended range transmission 750 m 

Estimated flight time 12 min 

Maximum horizontal speed 4 km/h 

The spectroradiometer used to carry out the calibration was the FieldSpec 3 ASD (Analytical 

Spectral Devices) spectroradiometer. This is a general-purpose spectroradiometer used in different 

areas of application that require reflectance, transmittance, radiance and irradiance measures, and it is 

especially designed to acquire spectral measurements in the visible to short-wave infrared range.  

The spectroradiometer is a compact, portable instrument that allows one to capture spectral data in 

the region from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The spectroradiometer is 

configured by three detectors, separated by appropriate filters to eliminate the light of lower orders. 

The electromagnetic radiation projected onto a holographic diffraction grating is captured through an 

optical fiber. This grid separates and reflects wavelength components, to be measured independently 

by detectors. The visible/near-infrared (350–1000 nm) portion of the spectrum is measured by a  

512-channel silicon photodiode array overlaid with an order separation filter. The short-wave infrared 

(SWIR) portion of the spectrum is acquired with two scanning spectrometers: for wavelength ranges of 

1000–1830 nm and 1830–2500 nm. Each SWIR spectrometer consists of a concave holographic 

grating and a single thermo-electrically cooled indium gallium arsenide (InGaAs) detector with a 2-nm 

sampling interval. 

The incoming light to the device is captured through a 3-m optical fiber, whose field of view (FOV) 

is modified by various foreoptics. 

2.2. Flight Planning  

Proper planning of UAS flights is an important aspect in order to ensure that the data capture fits 

the theoretical parameters and user requirements pursued and optimizes the available resources. 

Furthermore, risks to humans are avoided, and higher quality images can be obtained. 

This planning takes into account all the limitations and restrictions that are required by the final 

images themselves to meet the objectives of the study, acting as a guarantee in the photo capture 

process. The values that can be specified include the position and attitude of the camera, the flight 

path, the design of the different image blocks, the determination of the overlaps between the different 

images, the required camera angles, the scale (through the choice of the pixel size on the ground (GSD 

(Ground sampling distance)) and control of the time of flight, among others. The theoretical GSD 

value, which sets the geometric resolution of the study, is defined as: 

h S
GSD

f


  (1) 
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where h is the flight height, S the pixel size and f the camera focal length. 

One of the most important factors is the overlap between images, since this will ensure greater 

robustness of the geometry captured, determining the image orientations and the reconstruction of the 

object with greater accuracy and reliability [25]. A UAS flight without the proper flight planning will 

merely lead to a waste of resources, since the local topography will modify the theoretical flight 

parameters (GSD, forward and side overlap, etc.), causing them to move away from optimal values.  

A local increase in height in the study area will lead to a higher spatial resolution (a decrease in h), but 

also decrease in image overlap, and gaps may appear between the strips.  

For this study, the planned flight was carried out (Figure 4) with a flight height of 30 m and a GSD 

of 16 mm, allowing the radiometric calibration of the camera to be resolved correctly. The flight path 

was calculated with the UFLIP (UAS Flight Planning) software (developed by the Tidop research 

group), which allows the above photogrammetric flight planning parameters to be taken into account. 

Figure 4. Photogrammetric flight planning using an orthoimage of the study area. 

 

3. Multispectral Camera Correction 

The use of a multispectral sensor requires a series of corrections prior to the radiometric calibration 

process: background error and vignetting. Furthermore, an additional geometric correction (geometric 

calibration) necessary for correct channel fusion is considered. All these corrections are determined in a 

single laboratory analysis and only need to be checked periodically to ensure their stability or when the 

camera is modified.  

3.1. Background Error Correction 

Image noise sources can be classified as signal-dependent noise (photon shot noise) and  

signal-independent noise (dark current, amplifier noise, quantization error) [26]. Some of these noise 

sources, such as the quantization error, may be negligible, as long as the noise does not exceed the 



Remote Sens. 2014, 6 1924 

 

 

quantization interval of the ADC (Analog to Digital Converter). However, a multispectral camera may 

be affected by non-random errors [27], which will degrade the final image quality. 

This study analyzed the background error recorded by the camera, whose bimodal behavior was 

different for each channel and more pronounced on high-reflectance surfaces and is not related to the 

random noise caused by the sensor electronics (dark current). The systematic error has two 

configurations: on the one hand, a series of periodic horizontal bands, due to the blockage of the 

diaphragm; and on the other hand, a pseudo-texture in the distribution of digital levels. This systematic 

error is assessable in a completely dark room in the absence of light, where only the random noise 

component is to be expected. 

To eliminate both effects, a laboratory analysis was undertaken in the absence of light, evaluating 

the average response of the camera per channel under different exposure times. The maximum 

background error for this study involved a 0.49% increment in the digital level value. 

3.2. Vignetting 

The term vignetting refers to the effect of the brightness attenuation of an image as we depart from 

its principal point radially. This phenomenon occurs due to the effective size of the camera lens 

aperture. Vignetting is decreased proportionally to lens aperture (or inversely to the f-number). 

Furthermore, vignetting is related to the focal length, since the angle of the light incidence on the 

sensor causes a dimming, such that wider-angle lenses are more affected by this phenomenon. 

Since this condition affects the image radiometry, it was corrected to ensure that each pixel would 

contain the correct digital level. The study was conducted in a laboratory, with uniform illumination, 

acquiring a series of photographs of a white pattern with low-specular reflection [27,28] (Figure 5). 

Figure 5. (a) NIR image of vignetting study; (b) 3D vignetting representation of Channel 6. 

 

(a) (b) 

3.3. Geometric Distortion 

Geometric distortion caused by the camera lens can be considered as a supplementary aspect to the 

radiometric calibration process. Moreover, the processing of geometric distortion involves an alteration 

of digital levels, due to the resampling process, and hence, its correction (direct or reverse) should be 

carried out in the final stage. 
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The goal is to determine the geometric (principal point coordinates, xp, yp, and principal distance, f) 

and physical (radial and tangential distortion) parameters that define the internal orientation of the 

camera, using a laboratory calibration. 

This aim can be achieved thanks to a protocol in which image shots are convergent to a pattern or 

grid of known dimensions and by applying the collinearity, which relates image points with ground 

points. In particular, an open source tool, Bouguet [29], was used. More specifically, a set of images 

with a planar checkerboard pattern were acquired under different roll and pitch angles. The images 

ensured that the pattern covered the largest area of the image in order to model the geometric 

distortions without extrapolations. 

Table 4 shows the results of the 6-sensor camera (Tetracam Mini-MCA) calibration, expressed in 

the balanced model [30]. This distortion model fits the effect of radial distortion (∆r) through the 

coefficients, a0, a1 and a2, whereas the coefficients, P1 and P2, model the tangential component (∆t), 

according to the mathematical model of Equation (2): 

     

     

3 5

0 1 2

2
2

x 1 p 2 p p

2
2

y 2 p 1 p p

r a r a r a r

t P r 2 x x 2P x x y y

t P r 2 y y 2P x x y y

     

         

         

 
(2) 

where r′ stands for the radial distance of the real image (in contrast to the radial image of the ideal or 

undistorted image). The coefficients, a0, a1 and a2, are functions of the radial distance from the 

principal point of symmetry. Additional information about the geometric calibration can be  

found in [31]. 

Table 4. Radial and tangential distortion parameters of the six MCA channels. 

Channel 
Balanced Principal 

Distance (mm) 

Radial Distortion Tangential Distortion 

a0 a1 a2 P1 P2 

778 nm 9.971 0.01508 −0.00234 6.16E−05 1.45E−04 −2.74E−04 

530 nm 9.849 0.01560 −0.00231 5.01E−05 2:06E−05 −1.31E−04 

672 nm 9.961 0.01556 −0.00177 −1.55E−05 1.57E−04 −4.82E−04 

700 nm 9.945 0.01464 −0.00206 3.35E−05 3:20E−04 −2.44E−04 

742 nm 9.974 0.01817 −0.00184 −4.55E−05 5.41E−05 −1.79E−04 

801 nm 9.955 0.01648 −0.00178 −2.85E−05 −1.02E−05 −1.37E−04 

The differences in construction between the sensors are also shown in Figure 6, where the 

maximum discrepancy reaches 18 pixels, illustrating the relevance of this geometric correction for 

individual image fusion. 

Since the multispectral camera has six non-collinear objectives, the image fusion has to take into 

account, not only the calculated intrinsic camera parameters (specific for each sensor), but also the 

extrinsic parameters of the sensors; the three-axis orientation and spatial position. The distance, or 

baseline, among the optical centers of the sensors will cause a parallax [32] in the image fusion.  

This effect can usually be neglected in real applications (due to the height of the flight). However, for 



Remote Sens. 2014, 6 1926 

 

 

laboratory experiments or very low flights, this parallax can be considered by resampling the images 

according to the coefficients of the fundamental matrix [33]. 

Figure 6. Graphic representation of geometric distortion of the six channels of the MCA. 

 

4. Radiometric Calibration 

4.1. Calibration Method 

Analyses derived from data captured by multispectral cameras require previous knowledge of the 

radiometric calibration parameters of each channel. According to Dianguirard and Slater [34], 

radiometric calibration processes can be classified as: 

 Laboratory calibration before the flight (preflight calibration). This procedure involves a 

rigorous calibration of sensors. 

 Satellite or airborne calibration (onboard calibration), implementing checks during image 

acquisition. Lamps or solar-diffuser panels are used in this kind of calibration. 

 Calibration through in situ measurement campaigns (vicarious calibration). This entails an 

absolute radiometric calibration in flight conditions other than those found in the laboratory. 

Within this modality, the absolute method based on radiance or reflectance is included. 

The radiance-based method is theoretically more accurate, and its uncertainty is approximately 

2.8% versus 4.9% for the reflectance-based method [35]. This low value arises from the calibration 

and stability of the spectroradiometer required for calibration [34]. 

Among the different calibration methodologies, we chose a vicarious calibration based on the 

absolute radiance method (Figure 7), considering that the digital level that defines each pixel has a 

direct relationship with the radiance detected by the sensor [27,36]. 

Thus, for each spectral channel of the camera, a linear model is established that relates the digital 

level to the radiance captured by the sensor. 

Radiometric calibration processes require homogeneous and Lambertian surfaces. Among the 

possible materials that could function as control surfaces, we chose low-cost elements: a canvas with  

6 different tones of grey and 6 PVC (polyvinyl chloride) vinyl sheets with different colors. 
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Figure 7. Workflow of the radiometric calibration process. 

 

For this calibration workflow, artificial targets were chosen instead of pseudo-invariant features, 

since they have proven to be more appropriate [18,37,38]. The critical factor for this selection is the 

requirement of uniform reflectivity with respect to the viewing direction and wavelength [38]. In the 

case of pseudo-invariant objects, these are not suitable, because their radiometric properties change 

over time [39,40]. Pseudo-invariant features were only employed as check surfaces. 

Digital levels (DL) of artificial targets are extracted from the aerial images to calculate the 

relationship between them and the radiance of the surfaces (obtained with the spectroradiometer). The 

simplified radiative transfer model is defined according to the following equation: 

0 1sensorL c c DL    (3) 

Since several images are involved in the calibration adjustment, a luminance homogenization factor 

between photos was taken into account. This factor absorbs exposure differences (due to changes in 

lighting between different shots) and the inherent shutter time of each channel. 

0 1sensor hL c c DL F     (4) 

where c0 and c1, offset and gain, are the calibration coefficients of each camera channel. The variable, 

Fh, is the homogenization factor of digital levels, defined as follows, 

eq

h

v

F
F

F
  (5) 

where Feq is the exposure factor and Fv the shutter opening time factor. 

Furthermore, because the images are affected by different types of radiometric distortion generated 

by the sensor (see Section 3), these corrections were taken into account in adjustment Equation (5), 

obtaining the final calibration model: 

   0 1 , ,sensor hL c c DL F R x y V x y       (6) 

where R is the systematic background error correction and V the vignetting correction; both variables 

are functions of the pixel position in the image. 
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In classical aerial photogrammetry, aiming at the determination of physical parameters at the 

surface level and not at the sensor level, the 6S atmospheric model [41] has been applied. The 

modeling of the influence of the atmosphere on the propagation of radiation for a height of 1 m 

(spectroradiometer data captured) and 30 m (UAS flight height) shows no discrepancy. More 

specifically, the difference has an order of magnitude of <1 × 10
−9

 W·cm
−2

·sr
−1

·nm
−1

. Therefore, it 

could be suggested that in UAS photogrammetry, the influence of the surface to sensor component of 

the atmosphere is minimal, since radiation passes through a very small atmospheric column. Due to its 

reduced value, the relative atmospheric correction can be neglected in the adjustment model, as 

reported in [42].  

Finally, the results of the radiometric calibration process were validated by checking the surface: 

natural covers, such as vegetation, soil-covered land and bare soil. 

4.2. Fitting Model  

From multiple artificial targets collected in several images, a least squares adjustment was applied. 

A robust estimation was chosen instead of an ordinary least squares (OLS) method, since OLS is 

highly sensitive to outliers, because real measurements of error distributions have larger tails than the 

Gaussian distribution [43]. In our case, we chose the Danish Method proposed by Krarup [44], which, 

applied iteratively, gives a series of weights according to the residual values of the previous iteration.  

In the first iteration, the weight matrix, W, is set as the identity matrix: 

1

1 0

( ) ( )

ii i j

T T

w  ; w   with i j

x 

  

     A W A A W K
 (7) 

where x is the vector of calibration coefficients, A is the design matrix (digital levels) and K is the 

matrix of independent terms (radiance). The residual vector v is: 

v   A Kx  (8) 

whose a posteriori variance is: 

2 T

m n

  




Wv v
 (9) 

where m is the number of equations and n the total number of unknowns. 

From the first adjustment of residuals, new weights are calculated individually for each equation, 

based on the following weight function of the Danish estimator: 

2
i

i

-cv

i

1 for v 2
( )

ke for v 2
iw v





 
 



 (10) 

where c is a constant that varies between 2 and 3, depending on the redundancy of the adjustment and 

data quality. 

The convergence selection criterion of the iterative process is established based on the fulfillment of 

one of the following conditions: 
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 Standard deviation estimator < 0.001; 

 Change in variance < 0.01; 

 When there are more than 20 iterations. 

In the adjustment, an additional unknown was added per image to the x vector to absorb the 

heterogeneity regarding the possible variations in irradiance between images; this is more likely to 

occur in unstable weather conditions. 

5. Experimental Results 

5.1. Radiometric Campaign 

The study area is located in Gotarrendura, a village close to Avila (Castilla y León, Spain). Data 

collection was carried out on 27 July 2012, on a pine plot of 2.52 ha, which was overflown at a height 

of 30 m. The pine species was Pinus pinaster, with a density of 1330 trees per hectare and a height 

between 1.5 and 2.1 m. 

As control surfaces, a 5 m × 1 m greyscale canvas (GS) and six 0.55 m × 0.35 m vinyl sheets of 

different colors (red, gray, white, black, blue and green) were selected, similar to [42]. These artificial 

surface sizes guaranteed at least 21 pixels (up to 61 pixels), which exceeds the minimum of three times 

the GSD to rule out neighbor effects. The check surfaces, corresponding to natural covers  

(pseudo-invariant features), are highlighted with the yellow, orange and red circles in Figure 8. 

Figure 8. Aerial image of the control and check surfaces. 

 

The low-cost colored artificial targets provide a transportable test field as an alternative to a 

permanent radiometric calibration field. They also avoid the problems of painted targets associated 

with permanent test fields, caused by environmental conditions [45]. In the radiometric study, 

calibration surfaces were characterized using the spectroradiometer as a detector of the radiant flux 

that is reflected from such covers. During data acquisition, it was necessary to take into account that 

the incidence angle that the spectroradiometer gun formed with the surfaces was as orthogonal as 

possible, taking two spectral measurements per cover. Prior to each sample measurement, the 
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calibrated white reference (Labsphere, Inc. Spectralon™, North Sutton, NH, USA) was measured. The 

spectra were measured in absolute radiance mode. Each spectral measurement is the average result of 

120 individual spectra, following the protocol shown in [42]. 

In parallel, a planned UAS flight was conducted over the study area, capturing multispectral images 

(Figure 9) and choosing those in which the maximum numbers of control and check surfaces were visible. 

Figure 9. An example of a multispectral 10-bit image (sixth channel image, 801 nm). 

 

The selected radiance control surfaces were obtained from the spectroradiometer. 

Figure 10 shows the spectral signatures of the vinyl sheets used in the radiometric calibration. The 

reflectance of these surfaces was obtained as the ratio between the reflected radiance of each cover and 

the radiance of a white reference target (Spectralon 99%), both measured with the spectroradiometer. 

Figure 10. The spectral signature of the control surfaces (vinyl sheets) used in the 

radiometric calibration process. 

 

To compare the radiometric measurements with digital levels, it is important to note that the 

radiance obtained with the radiometer lies between the 350 and 2500 nm spectral range with a 1-nm 

resolution, whereas the Mini-MCA is capable of recording digital levels in its six channels, each one 
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characterized by a particular response (Figure 2), due to the differential responses of the filter and 

CMOS at each wavelength. Therefore, it was necessary to adapt and standardize the radiometric 

measurements to the spectral resolution of the camera, together with the camera spectral response (RC). 

The spectral camera response includes the CMOS response, as well as the filter transmission function. 

Equation (11) shows the integration process for the measured reflectivity (ρ) of a target (t) with a white 

reference panel: 

 
   

 

2

1

2

1

t C

t

C

R d

R d









   
 

 




 (11) 

The equation was also applied to obtain the target radiance values involved in the calibration model 

(Equation (6)). 

5.2. Analysis and Validation of Results  

The Radiometric Calibration was resolved with the support of software developed for this purpose 

in MATLAB. 

The control surfaces used have a typical radiance response for each of the multispectral camera 

channels, and based on these, the vicarious calibration relationship was established. The following 

figure (Figure 11) shows this feature for each of the control surfaces used in the calibration process. 

Figure 11. Average radiance for artificial targets. GS, greyscale canvas. 

 

Regarding the radiometric calibration parameters for an altitude of 30 m for each of the six channels 

of the Mini-MCA onboard the UAS, Table 5 shows the final results of this study. The R
2
 fitting 

coefficient was 0.9833 for a simultaneous block adjustment of six channels. Table 5 also shows the 

coefficients for the same fitting model, but with an individual channel adjustment. In this second case, 

the results are fairly similar, as is the determination coefficient, with no significant discrepancies 

between the two fitting methodologies. 
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Table 5. Mini-MCA calibration coefficients. 

Channel 
Block Adjustment Individual Channel Adjustment 

C0 C1 R
2
 C0 C1 R

2
 

778 nm −0.000992 0.047175 

0.9833 

−0.001510 0.047292 0.9846 

530 nm 0.000704 0.057802 0.000264 0.057718 0.9816 

672 nm −0.000307 0.049919 −0.000795 0.050005 0.9823 

700 nm −0.000345 0.041242 −0.000861 0.041353 0.9820 

742 nm −0.000688 0.074146 −0.001205 0.074335 0.9843 

801 nm −0.000319 0.047655 −0.000834 0.047656 0.9827 

It should be noted that the C0 value (intercept) is very small (compatible with zero), such that it 

could be excluded from the calculation.  

In this sense, the statistical test used for the validation of the results was the average of the errors in 

radiance, expressed as percentages (with respect to 10 bits) per control surfaces and per channel  

(Figure 12). 

Figure 12. Average radiance calibration error (percent). 

  

In the above figure, it may be seen that the control surfaces with the greatest error in their radiance 

estimation are those with the highest reflectance, i.e., the white vinyl and the second lightest color, the 

greyscale canvas. Furthermore, this error is noteworthy in channel 1 (530 nm), which has the lowest 

performance, due to the low CMOS response (Figure 2). However, this maximum error means an error 

of 8%, which can be considered acceptable, since it is an isolated value, as shown in Figure 13, the 

average residues (2.5%) remaining within the range of error estimated for this calibration mode. 

In order to validate the radiometric calibration process, calibration coefficients were applied to the 

digital levels of natural surfaces to obtain the radiance. The following figure (Figure 13) shows the 

setting of the radiance measurements considered as ―ground truth‖ (spectroradiometer) for the case of 
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a pine and their corresponding values obtained after applying calibration coefficients to the pine  

digital levels. 

Figure 13. Pine radiance from the spectroradiometer and from the calibrated Mini MCA. 

 

In this case, a strong correlation can be seen between the calculated radiances and in situ 

measurements, it being possible to calculate the pine radiance for each of the six camera channels with 

a relative error of only 1.8%. 

6. Conclusions 

This study shows the validity of a vicarious radiance-based calibration for the Mini-MCA onboard a 

UAS through the use of low-cost covers as control surfaces. The correlation of 0.98 between ground 

radiance and that derived from the digital level shows the degree of consistency achieved. 

Furthermore, despite the complexity of the data, the average error of 2.5% is very encouraging. 

In addition, after several laboratory and field studies, the validity of using low-cost surfaces for the 

calibration process was confirmed. Moreover, low-cost covers show an invariant reflectivity for a 

certain period of time in which they remain unaffected by deterioration. 

Another important contribution of high-spatial resolution remote sensing at low flight heights, as 

provided by this study, is that the relative surface-sensor atmospheric effects on UAS versus  

ground truth measurements are negligible, thus simplifying the workflow. 

Finally, in view of the high spatial, spectral and temporal resolution achieved for UAS remote 

sensors, these platforms can generate high value products at reduced costs as compared to satellite or 

manned aerial platforms. UAS remote sensing is proving to be a valuable non-invasive technique for 

the recognition and analysis of different types of strata, crops and rocks, among others. Furthermore, 

not only qualitative results are obtained, physically relevant quantitative results derived from the 

digital levels of UAS images can be obtained, as well, and are most relevant. 
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3. IMÁGENES MULTIESPECTRALES 
APLICADAS A ESTUDIOS GEOLÓGICOS 

 

Este capítulo contiene el artículo Discrimination between sedimentary 

rocks from close-range visible and very-near infrared images (Distinción 

de rocas sedimentarias mediante imágenes de rango cercano en el rango 

visible e infrarrojo cercano del espectro) publicado en Julio de 2015 en la 

revista internacional Plos One. 

3.1. Resumen 

El objetivo de este artículo consistió en validar el uso de la cámara Mini 

MCA-6 calibrada (ver Capítulo II) para estudiar y diferenciar distintos 

tipos de rocas sedimentarias dispuestas en su estado natural. La principal 

dificultad de esta investigación radica en validar el uso de un rango 

espectral no idóneo, ofrecido por la cámara multiespectral (visible e 

infrarrojo cercano), para el análisis espectral de cubiertas rocosas, 

caracterizables en el rango infrarrojo de onda corta del espectro (Hunt, 

1982). Mediante el análisis multiespectral de un conjunto de 12 

formaciones geológicas con diferentes porcentajes de calizas, margas y 

areniscas de la región de Ródano-Alpes, en Francia, se evaluó el 

potencial y las limitaciones vinculadas a esta cámara para la 

diferenciación de rocas sedimentarias. 

La firma espectral es característica e inherente a cada material y muestra 

de forma gráfica cómo interactúa la energía electromagnética con la 

materia en términos de radiación reflejada. En concreto, representa la 

cantidad de energía reflejada por la superficie de un material (en términos 

de porcentaje) para cada longitud de onda del espectro. Dado que el 

objetivo consistía en encontrar diferencias significativas entre los 12 

tipos de formaciones geológicas para el rango espectral ofrecido por la 

cámara, las imágenes capturadas en niveles digitales debían ser 

convertidas a valores de reflectancia (ρ). Para ello, fue necesario no sólo 
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conocer los parámetros de calibración de la cámara para cada banda 

(offset y gain, c0 y c1 respectivamente), sino también la irradiancia solar 

en el momento de la adquisición (E, W·m
2
·sr

-1
·nm

-1
). Estos parámetros 

se relacionan con la reflectancia y la radiancia (L) según la Ecuación 2 

siguiendo la hipótesis Lambertiana. La irradiancia solar fue obtenida 

gracias al uso de un Spectralon
®
, un panel de reflectancia conocida y 

calibrada en laboratorio (Bruegge et al., 2001). Se colocó el Spectralon
® 

en cada afloramiento de tal forma que apareciera en todas las imágenes 

multiespectrales realizadas a los macizos rocosos. Dado que la 

reflectancia es el ratio entre la radiancia y la irradiancia solar (Equation 

2), y dado que tanto la reflectancia como la radiancia reflejadas por el 

panel calibro son conocidos, la irradiancia puede ser calculada a través de 

la Ecuación 3. Una vez la irradiancia solar es conocida, es posible 

transformar los niveles digitales (DL) a reflectancias. 

0 1L c c DL
E  

 

 
   

 
(3) 

Una vez se tiene el conjunto de imágenes multiespectrales en valores de 

reflectancia, comienza el proceso de análisis para evaluar la capacidad 

discriminatoria de la cámara en el campo de la geología. 

En primer lugar, se obtuvieron las firmas espectrales de los tres tipos de 

roca sedimentaria (arenisca, caliza y marga) de las que se componían los 

12 tipos de formaciones geológicas. Posteriormente, se llevó a cabo una 

clasificación supervisada de las imágenes aplicando el algoritmo de 

máxima verosimilitud y en base a los resultados de las firmas espectrales 

obtenidas. Cuatro clases informacionales fueron evaluadas: caliza, 

marga, vegetación y sombras. La arenisca fue excluida del proceso de 

clasificación dado que su firma espectral se superpone a la firma de la 

piedra caliza en el rango espectral visible e infrarrojo cercano. 

Tras analizar los resultados se concluye que la cámara multiespectral 

Mini MCA-6 es capaz de encontrar diferencias espectrales entre dos de 

los tres tipos de roca analizada, entre calizas y la margas, no siendo 

posible en la actualidad diferenciar entre calizas y areniscas. Hay que 

señalar que los resultados de firmas espectrales obtenidos para los tres 

tipos de roca son consistentes con el comportamiento espectral de sus 
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composiciones minerales y tamaños de grano. Si bien es cierto, que 

añadido al hecho de que el rango espectral de esta cámara no es el 

adecuado para realizar estudios espectrales de rocas, existen otro tipo de 

dificultades asociadas al estudio de este tipo concreto de cobertura. Los 

afloramientos rocosos suelen tener superficies heterogéneas que causan 

variaciones en la reflexión de la radiación que incide sobre ellas. 

Además, esta geometría superficial favorece la creación de sombras que 

son capturadas por la cámara. Es por ello que para el estudio de este tipo 

de coberturas se recomienda realizar la toma de datos en días nublados 

donde la luz es lo más difusa posible y se favorece la transición 

progresiva entre zonas bien iluminadas y zonas en sombra. De esta forma 

se conseguirían análisis más exhaustivos y resultados más consistentes. 

Finalmente se concluye que tanto: (i) la hibridación sensorial entre esta 

cámara multiespectral y otro sensor capaz de adquirir información 

espectral en el rango infrarrojo de onda corta como (ii) el estudio de la 

función de distribución de reflectancia bidireccional (BRDF) de este tipo 

de cubiertas redundaría en análisis exitosos y completos para el caso de 

afloramientos rocosos. 
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Abstract
Variation in the mineral composition of rocks results in a change of their spectral response

capable of being studied by imaging spectroscopy. This paper proposes the use of a low-

cost handy sensor, a calibrated visible-very near infrared (VIS-VNIR) multispectral camera

for the recognition of different geological formations. The spectral data was recorded by a

Tetracam Mini-MCA-6 camera mounted on a field-based platform covering six bands in the

spectral range of 0.530–0.801 µm. Twelve sedimentary formations were selected in the

Rhône-Alpes region (France) to analyse the discrimination potential of this camera for rock

types and close-range mapping applications. After proper corrections and data processing,

a supervised classification of the multispectral data was performed trying to distinguish four

classes: limestones, marlstones, vegetation and shadows. After a maximum-likelihood clas-

sification, results confirmed that this camera can be efficiently exploited to map limestone-

marlstone alternations in geological formations with this mineral composition.

Introduction
The knowledge of the mineralogical composition of sedimentary rocks is relevant to many dis-
ciplines and sectors. In the fields of Geology and Orogeny to discover this composition is the
key for interpreting plate tectonic settings. Many regions have been destroyed and the only
record lies in the sediments of the area. Thus, the relationship between the mineralogical com-
position of sediments and the tectonic plates provides a powerful tool for recognizing ancient
tectonic settings [1]. However, ascertaining composition of geological formations in ancient
sedimentary basins is generally difficult due to chemical and physical modification of source
materials during weathering, erosion, transport and deposition [2]. For other fields such as
Environmental Economics, the study of outcrops threatened by human activity and natural
hazards as erosion, salinization and landslides is an important contribution. The clay and cal-
cium carbonate contents of the soil are used to describe soil types and reveal their vulnerability
to erosion [3, 4].
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The past decade has seen the rapid adoption of digital measurement techniques in Geology
due to the great advantages that they provide in contrast to expensive traditional techniques.
Global navigation satellite systems (GNSS), photogrammetry, laser detection and ranging
(LIDAR) and remote sensing satellite imaging systems have all been used for digital mapping
and interpretation at multiple scales [5]. Focusing on the field of remote sensing, the shortwave
infrared (SWIR) spectral range enable highly effective geological mapping [6], because rocks
and minerals have their own inherent spectral pattern in this range [7, 8]. Multispectral satellite
data is acquired at 10–30 m spatial resolution. For this resolution, satellite acquired signal in a
pixel frequently corresponds to a mixture of several types of ground covers. Close-range remote
sensing solves this spatial resolution problem avoiding such mix-up of covers. Collecting high
spatial resolution data in a more flexible way and without inadequate temporal resolution due
to orbital coverage patterns are some of the advantages of this technique. But it provides many
other benefits as several authors [9–11] highlight: the ability to inspection restricted areas and
not only the top of the outcrops, allowing real-time registration data for any configuration and
orientation of the rock formation. Thus, by analysing close-range remote sensing data acquired
from a versatile field-based platform it is possible to obtain more rigorous analysis or even
improve the classification of multi-temporal satellite imagery.

Photogrammetric outcrop models [12] provide the framework for geological mapping and
interpretation, which become indispensable to perform stratigraphic and structural analysis
[13]. Some studies have proven the ability to discriminate between different sedimentary rocks
and classify images from some outcropping terrains through the integration of multiple spatial
and spectral close-range data. Hyspectral imagery and terrestrial LIDAR data fusion is a good
example because they have proven to be a perfect combination to analyse different carbonate-
rich outcrops [14–16]. Other works [17] demonstrate the feasibility of lithological interpreta-
tions and clay content predictions in sedimentary rocks by analysing the intensity from differ-
ent wavelength terrestrial laser scanners. For all these works, sensors that cover the SWIR
range (1.300–2.600 μm) have been used.

In this article the use of a 6-band multispectral camera covering the VIS and VNIR spectral
range (0.530–0.801 μm) is proposed to demonstrate its ability to discriminate sedimentary
rocks. A set of 12 geological formations with different percentages of clay and carbonate miner-
als were studied showing the potential of low-cost sensing for noncontact measurements in
this field. In this way, geomorphology, geological mapping, exploration, geochemical hazards
and other geological applications could be remotely assessed by using passive sensor technolo-
gies at ground level. The paper is organized as follows: Section 2 describes study area where the
radiometric campaign took place; Section 3 explains the instruments used for data acquisition,
and the data processing in which the protocol followed is also described; Section 4 describes
and analyses the results achieved after the data processing, that is, the spectral signatures of dif-
ferent rock types, and the classified multispectral images. Finally, Section 5 includes the conclu-
sions arising from the use of this sensor in this field and the future work.

Study Area
The radiometric campaign was carried out in June 2014 in the Drôme department of France, in
the southeastern part of the Rhône-Alps region (Fig 1). This area is lithologically characterized
by sedimentary deposits of the Upper Jurassic-Lower Cretaceous interval. In these periods, car-
bonate sedimentation was deposited at different water depths: a few meters only of depth in
shallow-marine areas [18], and up to several hundred meters of water depth in pelagic marine
areas. During these periods there were different deposition processes which gave rise to the cur-
rent outcrops mainly consisting of carbonate minerals with trace amounts of silica (limestones)
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and clay minerals (marlstones) with different degrees of uniformity across the layers of strata.
On one hand, there were heterogeneous formations with limestone-marlstone alternations
formed during the Kimmerdigien, Valanginian or Hauterivian ages (see Fig 2). On the other,
there were more homogeneous massive outcrops from the Tithonian and Turonian ages. And
finally, marlstone outcrops formed during the Oxfordian, Aptian and Albian ages [19]. The
geology, geo-chemistry and mineralization of the study area are well described in the literature
[20, 21].

It was possible to identify 12 different geologic formations, which together make up the
stratigraphic column of the area (Fig 2). These outcrops are composed of limestone-marlstone
alternations, with occasional sandstone beds, with different thicknesses and percentages. In all,
the total stratigraphy is made up of three rock types: limestone, marlstone and sandstone, with
variations of mineral content and different degrees of weathering. In this regard, the investiga-
tion presents some difficulties and challenges due to the mentioned variety of the rock masses.

Since only two of the twelve rock formations, Formation 2 and 4 (Fig 2), were composed of
sandstone (100% and 10% respectively), the analysis was mainly focused on the discretization
between the other two rock types: limestone and marlstone. In this case eleven of the twelve
existing formations were composed of these two rock types.

It was decided to perform a first analysis focusing on the discrimination of the pure forma-
tions due to the considerable variety in their composition and the spectral range and resolution
limitations of the multispectral camera employed. Formation 1, 3 and 9 were analysed as pure
limestones, Formation 2 as pure sandstone and Formation 12 as pure marlstone. Two mixture
formations, Formation 4 and 6 were also analysed after a supervised classification. At first
sight, and for a non-specialist user in this field, Formation 4 and Formation 12 seem to be the
same; so one extra goal was to assess different spectral behaviours of them within the recording
spectral rage.

Material and Methods

Equipment
For the geological data acquisition the Tetracam Mini MCA-6 multispectral camera (Fig 3)
and several complementary devices for supporting the data collection were used. The 6-bands
multispectral camera is mounted on a special platform and fixed to an adapter swivel to allow

Fig 1. Location of the study area and the studied outcrops (the Drôme department, France).

doi:10.1371/journal.pone.0132471.g001
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getting stable shots during the data acquisition. This sensor consists of six bands covering the
visible and very-near infrared range (0.530–0.801 μm) of the spectrum and collects the
reflected solar radiation from each rock formation at 10-bits radiometric resolution. Each band
is formed by a filter and a CMOS sensor (Complementary Metal-Oxide Semiconductor) pro-
viding each band its individual behaviour regarding the captured wavelength and the transmit-
tance. The technical specifications of this sensor are shown in Table 1.

In order to obtain images with physical values (reflectance) from raw digital images two
essential parameters must be known, the radiometric calibration parameters of each of the six
bands (offset and gain, c0 and c1), and the solar irradiance (E) of the capture moment. Since
the multispectral camera was radiometrically calibrated in a previous field campaign, c0 and c1
per band were known [22]. This calibration was a radiometric vicarious calibration based on
the radiance method and closely related to the empirical line correction approach [23, 24]. On

Fig 2. Stratigraphic column of the 12-different Mesozoic geologic formations from newest to oldest.

doi:10.1371/journal.pone.0132471.g002
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the other hand, the solar irradiance for each capture moment was obtained by using a standard
calibrated reflection target (Spectralon, Labsphere) as will be explained below. The calibrated
Spectralon used in this study (Fig 4) consisted of four different panels of 99%, 50%, 25% and
12% reflectance. The spectral behaviour of each Spectralon panel was certified in laboratory.

Finally and because this camera is originally designed to be load on board unmanned aerial
systems (UASs), auxiliary equipment becomes necessary for fixing the camera and all its
devices to use it at ground level. For this purpose, a special platform to gather all the equipment
was designed (see Fig 5). This platform along with a tripod and a swivel provided stability and
allowed to rotate the camera in all three degrees of freedom to accommodate and level its posi-
tion to the orientation of the outcrops.

Data acquisition protocol
During the field work a total of 40 images were acquired to cover the 12 different geologic for-
mations in different scenarios of light and time of the day in order to have sufficient represen-
tative samples under different conditions. Fig 1 shows the exact location of all the outcrops that
were sampled around the principal village, La Motte-Chalancon.

At each outcrop considered, the Spectralon was placed on the wall of the rock mass with the
same orientation as the exposed surface (Fig 5), after which the ideal place to position the mul-
tispectral equipment was determined. Parameters as distance, orientation relative to the face of
the rock and sun orientation were taking into account for that purpose. The distance is a signif-
icant parameter because both spatial resolution and the parallax between images depend on it.

Fig 3. TetracamMini MCA-6 multispectral camera.

doi:10.1371/journal.pone.0132471.g003

Table 1. Characteristics of the Mini MCA-6 multispectral camera.

Features Bandwidth

Number of bands: 6 Band 1 (0.530 μm): 40 nm

Distance between lenses: 34.5 mm Band 2 (0.670 μm): 40 nm

Geometric resolution: 1280 x 1024 Band 3 (0.700 μm): 80 nm

Radiometric resolution: 10 bits Band 4 (0.740 μm): 40 nm

Pixel size: 5.2 μm Band 5 (0.780 μm): 80 nm

Focal length: 9.6 mm Band 6 (0.801 μm): 80 nm

doi:10.1371/journal.pone.0132471.t001
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The Ground Sample Distance (GSD) is determined as the size of the pixel when the image is
projected to the ground surface. The GSD value is affected by distance as characterized in Eq
(1). Since the six camera lenses are not collinear, there is a parallax that affects images depend-
ing on this parameter. The greater the distance, the less parallax, until a limit is reached beyond
which the parallax is becoming negligible. This limit is 64 m according to Eq (1). Note that the
distance between objectives is 34.5 mm according to the manufacturer (see Table 1). As a con-
sequence, the GSD has to be greater than 34.5 mm to avoid significant influence of parallax.

GSD ¼ D � S
f

ð1Þ

Fig 4. Hemispherical spectral reflectance factor of each Spectralon panel.

doi:10.1371/journal.pone.0132471.g004

Fig 5. Positioning of the multispectral camera with respect to a rock formation including the
Spectralon placed on the wall of the rock.

doi:10.1371/journal.pone.0132471.g005
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where D is the distance between the camera and the outcrop, S the pixel size of the sensor and f
the focal length (see Table 1).

Thus, a balance between spatial resolution and the minimization of the parallax effect was
sought. At that distance and with the right orientation thanks to the tripod swivel, visible and
very near infrared images were taken such that all the exposed face was covered, whenever
possible.

Data processing
Data processing involved three main phases: obtaining the solar irradiance at the moment of
capture, transforming raw digital images into reflectance images (Fig 6) and performing super-
vised classifications trying to draw conclusions from the composition differences among the
geological formation analysed.

Solar irradiance at the moment of capture. Since data were collected at different locations
and moments of the day, they were affected by the particular solar radiation at the moment of
capture. It is necessary to eliminate the influence of this variability when extracting joint infor-
mation from the data. In order to obtain images with pixel values independent of sunlight
(reflectance images), digital levels (DL) of the raw spectral images have to be converted into
surface reflectance values. This transformation requires the knowledge of the solar irradiance
(E) at the precise moment of the image capture and the radiometric calibration parameters of
each camera band (c0band and c1band). The solar parameter was calculated from the reflected
solar radiation of a Spectralon (Fig 4). For this purpose, the Spectralon was placed in every
outcrop so that it appeared in each multispectral image (Fig 5). In the image processing phase,
and making use of its 4 reflectance panels, an average of the raw pixel values panel was deter-
mined. Thereby, 4 representative values of each reflectance panel per band (DL(STR−99),band,
DL(STR−50),band, DL(STR−25),band and DL(STR−12),band) were estimated. These values, together with
the radiometric calibration parameters of each camera band, allowed the radiance values calcu-
lation (Eq (2)). The calibration parameters were known beforehand since a vicarious radiomet-
ric calibration of the camera [22] was previously performed. A set of 4 radiance values per
band (Li,band), one for each Spectralon panel, were estimated.

Li;band ¼ c0band þ
c1band � DLi;band

Tband

ð2Þ

With these parameters and according to Eq (3), an average of the solar irradiance (Eband [W.
m2.sr-1.nm-1]) was estimated for each capture moment and band as an average of the four DL

Fig 6. Workflow for obtaining images in reflectance values.

doi:10.1371/journal.pone.0132471.g006
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values.

Eband ¼ 1

4
�
X4

i¼1

Li;band

Tband

� p ð3Þ

where c0band and c1band are the radiometric calibration coefficients, of each camera band, Tband

is the exposure time per band at each moment of the image capture and DLi are the digital lev-
els of each reflectance panel of the Spectralon.

Reflectance images. After this processing step, the first results of the research, spectral sig-
natures of the outcrops, were obtained. Getting reflectance images involves transforming, digi-
tal levels of the raw images into reflectance values. In this way, assuming the outcrop as a rocky
Lambertian surface (uniform reflectivity), the following Eq (4) is applied to every pixel of each
six multispectral images.

Rband ð%Þ ¼
c0band þ c1band � DL

�Eband

� p ð4Þ

where Rband(%) is the reflectance value of each pixel in percentage. c0band, c1band and Eband are
the calibration parameters of the camera and the solar irradiance, respectively.

Once the reflectance images were obtained, multispectral images were created and stored as
6-dimensional matrixes (1024 pixels x 1280 pixels x 6 images) where reflectance values per
band can be extracted just by clicking a pixel (Figs 7 and 8). If these reflectance pixel values are
plotted on the y-axis and the respective wavelengths of the camera on the x-axis, spectral signa-
tures of each geological formation are obtained. Taking into account the mean values and stan-
dard deviations of the outcrops, conclusions about the discrimination potential of the camera
in this field were derived.

Classified images. The third step classifies the multispectral images into 4 classes: lime-
stone, marlstone, vegetation and shadows; resulting in an easy-to-interpret classified image
that will help to assess the use of this sensor in the characterization and recognition of rocks.
For this purpose, a supervised classification based on the maximum likelihood (ML) algorithm
[25] was performed after masking image pixels belonging to sky and/or road.

The ML classifier quantitatively evaluates both the variance and covariance of the category
spectral response patterns when classifying an unknown pixel (x). Four different sets were pre-
pared to train the process assuming that the distribution of the pixels forming the category
training data is Gaussian. This assumption of normality is generally reasonable for common
spectral response distributions. Under this assumption, the distribution of a category response
pattern (k) can indeed be completely described by the mean vector and the covariance matrix.

Fig 7. Reflectance per band of a specific rock formation.

doi:10.1371/journal.pone.0132471.g007
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With these parameters, the statistical probability of a given pixel value being a member of a
particular land cover class (P(x / k)) can be computed. The resulting bell-shaped surfaces are
called probability functions (Eq (5)), and there is one such function for each spectral category
[26].

Pðx=kÞ ¼ �ln
���
X

k
���� ðx � mkÞT

X
k�1ðx � mkÞ ð5Þ

where |∑k| is the covariance matrix and μk the mean vector of the training data belonging to
each class.

In this way, a class is assigned to a pixel when the probability of belonging to this class in Eq
(5) is maximal.

Experimental Results

Spectral signatures
This research covers the study of 12 geological formations composed of three types of sedimen-
tary rocks, sandstone, limestone and marlstone. Fig 8 depicts the spectral signatures of the geo-
logical formations with higher percentages of each of these rocks: Formation 1, Formation 2,
Formation 3, Formation 9 and Formation 12 (compare Fig 2). Formation 1, 3 and 9 were ana-
lysed as pure limestones, Formation 2 as pure sandstone and Formation 12 as pure marlstone.
For each rock formation manually representative pixels were selected, sampling areas clear of
vegetation and shadows. For each selected pixel, reflectance values of the 5x5 nearest neigh-
bours (involving 25 pixels) were stored. Finally, the average reflectance and standard deviation
of the stored values were calculated with the support of software developed using Matlab.

For the considered samples the lowest standard deviation value (with an average of 1.3%)
appears for the Formation 12 (95% marlstone). This behaviour is consistent with the hypothe-
sis that experts support, errors in spectral measurements increase when the grain size increases
[27]. A large grain has a greater internal path where photons may be absorbed [28]. Indeed

Fig 8. Spectral signatures of the three rock types and the standard deviation of their measurements.

doi:10.1371/journal.pone.0132471.g008
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marlstones have the smallest grain size of the three types of rocks (< 0.06 mm) due to the clay
minerals composition [29]. On the other hand, the highest deviation value occurred for lime-
stones (with an average of 4.5%) very close to sandstones (with an average of 3.6%). In this
case, there is much variability in the grain size due to the different composition of its fragments;
but also because the spectral signature of limestones was calculated as an average of three dif-
ferent formations. Finally, another source of variability in the reflectance of a rock is the degree
of mechanical weathering [30], so depending on the massivity and the degree of homogeneity
of the formation more or less errors were obtained in the measurements.

By analysing the reflectivity of the examined formations it can be confirmed that the spectral
signatures are coherent with the reflectance behaviour of their minerals. Eleven of the twelve
geological formations are composed of different proportions of limestone and marlstone. Only
Formation 2 and 4 are composed of sandstone (100% and 10% respectively). For that reason,
the analysis was mainly focused on the discretization between these two rock types (limestones
and marlstones). Limestones are composed mainly of calcium carbonate. Moreover, marl-
stones are composed of clay. Due to the reflective properties of these materials (higher reflec-
tance in the case of calcium carbonate [31]) depending on the percentage of these components,
more or less reflectance was obtained. Fig 8 shows that the spectral signature of sandstones and
limestones in the 0.530–0.801 μm spectral range is quite similar. In addition, Fig 8 indicates
that it is possible to discriminate between limestones and marlstones because, in spite of the
high variability of limestone measurements, both spectral signatures do not overlap.

As pointed out in Section 2, obtaining any difference between Formation 4 and Formation
12 was a challenge because these formations, at first sight, look the same. As shown in Fig 9,
and despite of the reflectivity differences between these two formations, we may not be able to
obtain good results from a classification based only on these two formations due to their spec-
tral patterns overlap (taking into account the standard deviations). Nevertheless, their spectral
signatures are consistent with their composition; Formation 4 has more reflectivity because it

Fig 9. Spectral signatures of Formation 4 and 12 and the standard deviation of the measurements.

doi:10.1371/journal.pone.0132471.g009
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contains sandstone. Regarding the deviation degree of measurements (an average of 3.1% in
Formation 4), the explanation lies in the fact that the greater variability in the composition, the
greater deviation in the measurements.

Classification results
In the third step of data processing a supervised classification was performed. Four different
training sets were chosen to classify final reflectance images into 4 classes: limestone, marl-
stone, vegetation and shadow. Sandstone was excluded from the classification process as only
two formations, Formation 2 and 4, were composed of this material and because the results in
Fig 8 indicate that the spectral response of sandstone in the spectral range covered by the sen-
sor is almost identical to that of the pure limestone formation. Formation 1, 3 and 9 were
selected to represent pure limestone and Formation 12 representing pure marlstone. Fig 10
illustrates the resulting classified images for the case of four geological formations, pure lime-
stone and marlstone (Formation 1 and Formation 12) and two mixed formations (Formation 4
and Formation 6). In the classified images white pixels represent pixels masked previously to
be out of this process.

The classified images were obtained after calculating the probability of belonging to each of
the 4 classes. This probability was graphically represented for each class as an 8-bit grey scale
image where the maximum probability was represented in white (value of 255) and the mini-
mum in black (value of 0). These probability images are shown in order in Fig 10B: probability
of belonging to the limestone, marlstone, vegetation or shadow class. It is observed that vegeta-
tion areas are perfectly discriminated except in the case of the Formation 12 where some vege-
tation areas were classified as limestone. This fact happens due to the pre-set configuration of
the camera filters. The wavelengths of each filter were chosen for previous vegetation studies.
Vegetation absorbs red and reflects green and infrared radiation. So by analysing red and infra-
red wavelengths we can provide information about the vegetation´s health [32].

Regarding the mixed formations, in the case of Formation 4 there was a higher percentage
of blue pixels (limestone) even though their real percentage is 5%. A possible explanation was
the presence of sandstone (10%) and because the slope of the outcrop influenced the way the
light was reflected.

To evaluate the separability between classes the transformed divergence based on means
and variance-covariance matrix [33] was used as a quantitative estimator for the 4 training
samples. Table 2 shows the separability between the 4 classes (without considering the back-
ground or null class).

As Table 2 shows, results from class separability confirm that the main goal of this study has
been achieved, a high separability between limestone and marlstone (99.99%). It must be
pointed out that for this results a proper radiometric calibration of the multispectral camera
and different lenses corrections [22] were applied to work in reflectance values (characteristic
values of each material). The worst case was for marlstone and shadows (90.42% of separabil-
ity) but remained within an acceptable range. This fact would be explained due to the low
reflectivity of this sedimentary rock. In this way, there were some areas where the classification
was less efficient than it should be. To conclude, it is also worth noting that whenever vegeta-
tion was compared to another class, separability results were quite good. This was expected
because the configuration of the wavelengths makes the camera ideal for vegetation studies.

Conclusions
In this paper a visible-very near infrared multispectral camera was tested and analysed in a
field campaign in the Drôme department of France. As a result, its ability and limitations to
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discretize sedimentary rock formations were evaluated regarding the spectral range of the cam-
era (0.530–0.801 μm) and the homogeneity of the rock surfaces.

Regarding the spectral signatures of the most pure geological formations (Fig 8) it is con-
cluded that although it is not possible to completely discriminate between all of them, the

Fig 10. (a) Band-5 reflectance images. (b) Images of probability. (c) Final classified images.

doi:10.1371/journal.pone.0132471.g010
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spectral signatures are consistent with their composition. The highest reflectivity response was
obtained for sandstones and limestones, which usually consist of quartz and calcite grains
respectively. Finally Formation 12, composed mostly of marlstones, obtained the lowest reflec-
tivity. Due to the percentage of sandstone in the Formation 4 (10%) it had higher reflectance
than Formation 12 although both mostly had the same grain size and similar degree of
weathering.

As these geological formations were mainly composed by 2 of the 3 types of sedimentary
rocks analysed (limestone and marlstone), a maximum likelihood supervised classification was
performed by distinguishing 4 classes: limestone, marlstone, vegetation and shadows. After
comparing the classified images (Fig 10) with their corresponding geological formation com-
position (Fig 2), it is possible to conclude that this multispectral camera is able to discriminate
between these 2 types of sedimentary rocks. It has been demonstrated that limestones and
marlstones have different spectral patterns in the 0.530–0.801-μm spectral range. By contrast,
it is not possible to find notable differences between the response patterns of limestones and
sandstone. The spectral range of this camera does not allow the discrimination between them.
It would be possible by using a capture sensor that works in the SWIR range of the spectrum
(1.4–3μm).

Derived from this analysis, some conclusions are listed on the difficulties we found in the
radiometric analysis of rocks in general and the limitations arising from the use of this camera
in particular:

• The orientation of the outcrop complicates radiometric analysis because different orienta-
tions and roughness reflect light in different directions [34]. Even if the camera is properly
stationed, it will pick different reflectances from the same rock due to the different orienta-
tion of their faces.

• The homogeneity of the geological formation is a relevant property. In this study the most
homogeneous lithological mass belongs to the Formation 12 [35], the “Terres Noires” forma-
tion, which had the lowest standard deviation in its measurements.

• Greater homogeneity in sunlight results in a better radiometric analysis because the rock will
be evenly illuminated without the presence of shadows or glare in different parts. Therefore,
cloudy days are the most suitable days for data collection.

• The spectral range of the camera is not the most suitable for characterizing different types of
geological formations, although results in the discrimination of rock types are encouraging.

Future improvements in methods and equipment will help to achieve better results. With
respect to methods, Bidirectional Reflectance Distribution Function (BRDF) studies could
be incorporated to study how light is reflected at each geological formation and moment.
In this way, reflectance results will improve as it is no longer necessary to assume that the sur-
faces scatter in a Lambertian way and depend on the slope of the outcrop. Regarding the equip-
ment, the combined use of different remote sensors such as terrestrial laser scanners, will

Table 2. Transformed divergence (0–2).

Limestone Marlstone Vegetation

Marlstone 1.999834 - -

Vegetation 1.999739 2.000000 -

Shadow 1.917816 1.808445 1.988555

doi:10.1371/journal.pone.0132471.t002
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complement spectral information and will provide 3D models giving scale, slope and surface
roughness. This information may help improve the final classification process.
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4. FUSIÓN SENSORIAL APLICADA A LOS 
CAMPOS DE LA INGENIERÍA CIVIL Y EL 

PATRIMONIO CULTURAL 

 

4.1. Detección de patologías en fachadas a partir de 

teledetección activa y pasiva 

Este subcapítulo contiene el artículo Multispectral radiometric analysis 

of façades to detect pathologies from active and passive remote sensing, 

(Análisis radiométrico multispectral de fachadas para la detección de 

patologías a partir de teledetección activa y pasiva) publicado en Enero 

de 2016 en la revista internacional Remote Sensing. 

4.1.1. Resumen 

El propósito de este trabajo consistió en conseguir la fusión de dos 

sensores geomáticos con distintos principios de funcionamiento, uno 

pasivo y uno activo, para detectar posibles patologías presentes en los 

materiales de construcción de fachadas. Es decir, conseguir determinar, 

en primer lugar, qué principio de funcionamiento y rango espectral es el 

más adecuado para la detección de patologías como la humedad, la 

colonización biológica (musgos, hongos, etc.) o posibles alteraciones 

químicas de los materiales y, en segundo lugar, evaluar el grado de 

mejora derivado del uso de sensores calibrados radiométricamente. Para 

tal fin, la cámara multiespectral Mini MCA-6 (ver Capítulo II) y el láser 

escáner terrestre FARO
®
 Focus3D fueron analizados. 

Los sensores pasivos capturan la radiación natural reflejada por la 

superficie de las cubiertas mientras que los sensores activos emiten su 

propia fuente de radiación con el fin de escanear los objetos (Kaasalainen 

et al., 2005). Si bien es cierto que el uso del láser escáner terrestre está 

más extendido para el caso de estudios geométricos y de medición de 
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distancias, en este caso la intensidad procedente de su señal de retorno es 

utilizada para analizar radiométricamente distintas coberturas terrestres. 

La principal ventaja de la teledetección activa es que es menos 

influenciable por las condiciones atmosféricas que la pasiva y que puede 

ser empleada tanto de día como de noche. 

Para combinar los datos crudos procedentes de ambos sensores y 

analizaros en términos de variables físicas (reflectancias en este caso), 

han de aplicarse primeramente una serie de transformaciones y 

correcciones. En el caso de las imágenes multiespectrales, estas deben ser 

corregidas de dos errores radiométricos sistemáticos que se transmiten a 

las imágenes finales, el error de ruido de fondo y el efecto de viñeteo (ver 

Capítulo II). Por su parte, los distintos escaneos láser deben ser alineados 

y posteriormente filtrados para eliminar información redundante. 

Después de este pre-procesamiento, y gracias el uso de un Spectralon® 

durante la adquisición de datos (ver Capítulo III), los valores crudos 

procedentes de cada sensor fueron transformados a valores de 

reflectancia. En el caso de la cámara multiespectral, esta fue previamente 

calibrada en otro trabajo de campo (ver Capítulo II), por lo que sólo fue 

necesario conocer la irradiancia solar en el momento de cada adquisición. 

En el caso del láser, se llevó a cabo una calibración radiométrica vicaria 

por el método de reflectancias (Palmer, 1993) previa a la campaña de 

campo. En ella se analizó la relación existente entre la intensidad de la 

señal de retorno procedente del escaneado del Spectralon® y sus valores 

de reflectancia conocidos y calibrados a priori. 

Finalmente, y de cara a analizar los datos de ambos sensores de forma 

conjunta, tanto los datos 3D como las imágenes multiespectrales fueron 

transformados a ortoimágenes verdaderas gracias a la métrica 

proporcionada por el láser escáner y tras el cálculo previo de orientación 

externa de cada imagen multiespectral. Estas ortoimágenes fueron 

clasificadas de forma no supervisada y de forma supervisada tanto en 

valores de niveles digitales como en reflectancias, concluyéndose que: 

 El sensor para el que se obtuvieron mejores resultados fue el láser 

escáner terrestre debido a que, por un lado, no se ve influenciado 

por los cambios en las condiciones de iluminación y, por otro, a 
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que la patología que principalmente presentaba la fachada 

(humedad), se caracteriza mejor en la longitud de onda ofrecida 

por este sensor. Por su parte, los resultados de la cámara 

multiespectral estaban condicionados tanto por el registro de sus 

seis bandas para la generación de las ortoimágenes como por la 

influencia de las variaciones de iluminación. Cabría esperar 

mejores resultados del sensor pasivo si la adquisición de datos se 

hubiera llevado a cabo un día nublado con luz difusa. 

 Hay que mencionar el valor añadido que aporta el láser escáner a 

los datos radiométricos. Proporciona escala y como resultado no 

solamente es posible cuantificar las patologías detectadas sino 

también detectar otros posibles problemas estructurales tales 

como grietas, descamaciones, etc. 

Para ambos sensores se lograron mejoras significativas derivadas de su 

uso calibrado. Se obtuvo una mejora mínima del 34% en el coeficiente 

Kappa (Cohen, 1960) después de calibrar radiométricamente ambos 

sensores.
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Abstract: This paper presents a radiometric study to recognize pathologies in façades of historical
buildings by using two different remote sensing technologies covering part of the visible and very
near infrared spectrum (530–905 nm). Building materials deteriorate over the years due to different
extrinsic and intrinsic agents, so assessing these affections in a non-invasive way is crucial to help
preserve them since in many cases they are valuable and some have been declared monuments of
cultural interest. For the investigation, passive and active remote acquisition systems were applied
operating at different wavelengths. A 6-band Mini-MCA multispectral camera (530–801 nm) and
a FARO Focus3D terrestrial laser scanner (905 nm) were used with the dual purpose of detecting
different materials and damages on building façades as well as determining which acquisition system
and spectral range is more suitable for this kind of studies. The laser scan points were used as base to
create orthoimages, the input of the two different classification processes performed. The set of all
orthoimages from both sensors was classified under supervision. Furthermore, orthoimages from each
individual sensor were automatically classified to compare results from each sensor with the reference
supervised classification. Higher overall accuracy with the FARO Focus3D, 74.39%, was obtained
with respect to the Mini MCA6, 66.04%. Finally, after applying the radiometric calibration, a minimum
improvement of 24% in the image classification results was obtained in terms of overall accuracy.

Keywords: cultural heritage; multispectral camera; laser scanning; radiometric calibration; remote
sensing; close range photogrammetry; multispectral classification

1. Introduction

Historical buildings and monuments are valuable constructions for the area where they are placed.
The degradation of their construction materials is caused mainly by environmental factors such as
pollution and meteorological conditions. Specifically, the presence of water plays an important role in
stone deterioration processes [1]. It accelerates the weathering processes contributing to dissolution
and frost/thaw cycles among others [2] allowing the formation of black crust on the rock surface
resulting in mechanical and chemical degradations of stones. For that reason the use of non-contact
and non-destructive technologies to study stone damages is important for the preservation of buildings
and for the choice of the best technique for restoration [3,4].

Terrestrial laser scanners and multispectral digital cameras are two different technologies that are
suitable for these studies. They are non-destructive and non-invasive sensors that allow researchers to

Remote Sens. 2016, 8, 80; doi:10.3390/rs8010080 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 80 2 of 16

acquire massive geometric and radiometric information across the building with high accuracy and in
a short acquisition time. The geometrical information provided by laser scanner technology has been
successfully applied in a large number of fields such as archaeology [5], civil engineering [6], geology [7]
and geomorphological analysis [8]. On the other hand, radiometric information, provided by the laser
intensity data and the multispectral digital cameras, is used less frequently. Even so, its high potential
for classification tasks and recognition of different materials has been demonstrated [9]. Nowadays,
in the literature, one can find works related to this issue ranging from methodologies of radiometric
calibration [10] to corrections of intensity values [9,11] including applications of the intensity data [12].
Spectral classification methods are based on the properties of the reflected radiation from each surface
and the fact that each specific material has wavelength dependent reflection characteristics. There are
many classification methods, which vary in complexity. These methods include hard and soft classifiers,
parametric and non-parametric methods and supervised and unsupervised techniques [13]. There are
several works related to the application of these techniques to the identification of damage on building
surfaces [14–18].

The main objective of this paper is the classification and mapping of pathologies and materials of
a historical building façade from reflectance values at different wavelengths by combining intensity
calibrated data from a FARO Focus3D laser scanner and calibrated images from a 6-band Mini-MCA
multispectral camera. Additional goals were evaluating the degree of automation in the pathology
detection process of façades. To achieve these objectives, the paper is divided into the following
sections: Section 2 gives the details and specifications of the equipment employed and thoroughly
describes the methods employed in the workflow methodology. Section 3 shows the classification
maps and accuracy results for both unsupervised and supervised classifications, closing with Section 4
which summarizes the main conclusions and findings drawn from the study.

2. Material and Methods

The methodology developed to reach the objectives of the paper consists of three main stages: the
data acquisition, the pre-processing and the processing of data as is outlined in Figure 1. For the data
acquisition, two sensors with different operating principles were implemented: a passive multispectral
camera and an active terrestrial laser scanner. The pre-processing step involved data filtering and
several corrections applied to the spectral information to finally obtain data in reflectance values.
During the last step and taking advantage of the metrics from the scan points, reflectance orthoimages
were generated for both the multispectral images and the laser intensity. These orthoimages were the
input for two different classifications processes: a clustering classification with data from each sensor
and a supervised classification with the set of all data from both sensors.
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2.1. Equipment

For the documentation of the façade, the following equipment was used: two radiometrically
calibrated sensors with different characteristics and data acquisition principles, a passive multispectral
camera and an active terrestrial laser scanner. Figure 1 shows the main characteristics of them and the
different stages of the workflow followed in this research.

For the multispectral data acquisition, a calibrated lightweight Multiple Camera Array
(MCA-Tetracam) was employed. This low-cost sensor allows versatility in data acquisition; however it
requires the radiometric and geometric corrections to ensure the quality of the results [19]. It includes
a total of 6 individual sensors with filters for the visible and near infrared spectrum data acquisition.
More specifically, the individual bands of 530, 672, 700, 742, 778 and 801 nm were used. The longest
wavelength was chosen taking into account that the multispectral sensor is not externally cooled.
In spite of its 1280 ˆ 1024 pixels of image resolution, the camera has a radiometric resolution of 10 bits.
The focal length of 9.6 mm and the pixel size of 5.2 µm yield a façade sample distance (FSD) of 5.4 mm
for a distance of 10 m, which should be taken into account for the pathology detection performance in
small elements. The main limitation of this camera is the field of view (38˝ ˆ 31˝), so several captures
were needed to keep the FSD.

The FARO Focus3D is a phase shift continuous wave terrestrial laser scanner (TLS) operating at
a wavelength of 905 nm. It is not common to use this kind of sensor to perform radiometric studies
but it guarantees a comprehensive data acquisition whose results are not influenced by changes in
light. This device measures distances in a range of 0.60–120 m with a point measurement rate of
976,000 points per second. It has an accuracy of 0.015˝ in normal lighting and reflectivity conditions
and a beam divergence of 0.19 mrad, equivalent to 19 mm per 100 m range. The field of view covers
320˝ vertically and 360˝ horizontally with a 0.009˝ of angular resolution and the returning intensity is
recorded at 11 bits. This laser scanner includes, in addition, a double compensator in the horizontal
and vertical axis that can be used as constraint for the scan alignment.

Additionally, a high resolution spectroradiometer (ASD FieldSpec3) (Figure 2) was used as
a remote detector of radiant intensity from the visible to the shortwave infrared ranges (350 to 2500 nm
with a maximum spectral resolution of 3 nm and ˘1 nm wavelength accuracy) to validate the spectral
results of the study [20]. Equipped with optical fiber cables, it measured reflectances from the different
materials and covers of the façade with a 25˝ field of view. Measures were made by positioning the
spectroradiometer gun (Figure 2a) as orthogonal as possible and at a distance of approximately 10 cm
from the sample, trying to cover a relatively homogeneous area of the material.
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2.2. Data Acquisition

Since each material has a unique reflectance behavior depending of the wavelength, the presence
of pathologies on façades, such as moisture, moss or efflorescence, is likely to be successfully detected
by analyzing the reflected visible and very near infrared radiation from the façades in reflectance
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values instead of digital levels (output digital format of the device). That is why these two sensors were
radiometrically pre-calibrated and used to obtain orthoimages with surface reflectance values instead
of digital levels. Since reflectance, for the specific case of a passive sensor, is a function of the solar
incident radiance, a standard calibrated reflection target (Spectralon, Labsphere) was required and
placed on the façade (Figure 2a), thus it appeared in every multispectral image to be able to calculate
the solar irradiance (E) of each capture moment.

Illumination is a crucial parameter for data acquisition with passive sensor, particularly when
several shot positions are required to cover the object of study. For that reason and to ensure the
greatest resolution, taking fewer photos as far as possible was prioritized in this study. A total of
56 captures were collected with a FSD of 5.4 mm for the worst case so that the standard calibrated
reflection target appeared in all of them.

On the other hand, the laser scanner data acquisition was designed so that the effect of the laser
beam incidence angle [21,22] was minimized. Intensity data at 11-bit resolution was collected at
an average distance of 10 m through three scans with scan area restrictions. Thus, 7 m of façade
were covered for each of the scans assuming a maximum incidence angle error of 5.6% regarding the
maximum oblique angle of incidence (19.29˝). In addition, scanning positions were selected according
to the different technical specifications of the scanner for an spatial resolution of 6 mm at the working
distance. The laser network was adapted and filtered due to the presence of obstacles that hinder
a single station data acquisition.

2.3. Pre-Processing

Before the reflectance orthoimage generation some corrections to raw data were applied to avoid
error propagation in the radiometric calibration process. In this section, these radiometric corrections
and the final radiometric calibration were described as well as the orthoimages generation process.
Finally, the orthoimages were classified to obtain maps of different pathologies and building materials.

2.3.1. Multispectral Images Corrections

Low-cost sensors, such as the Mini MCA6, are more likely to be affected by different noise sources
so that the actual value of radiation collected by them is altered (Equation (1)) [23]. Specifically, the Mini
MCA6 was affected by two different sources errors: a background noise and a vignetting effect [20].
Both errors were studied under precise laboratory controlled conditions for each wavelength band.

The background noise is a systematic error caused by the sensor electronics of the camera. It was
analyzed in a completely dark room in the absence of light determining the noise per band depending
on the exposure time. For this study, the maximum background error was for the 801-nm band and
involved a 1.07% increment of the actual digital level value. Regarding the vignetting effect [24], the
radial attenuation of the brightness was studied taking images of a white pattern with uniform lighting
conditions. Digital levels of each multispectral image were corrected for these two effects through
a script developed in Matlab to improve the data quality before the radiometric calibration.

DLraw “ DLradiance ` pDLbn `DLvq (1)

where DLraw are the digital levels of the raw images, DLradiance are the digital levels from the radiance
component, DLbn are the digital levels from background noise and DLv are the digital levels from the
vignetting component.

2.3.2. Filtering and Alignment of the Point Clouds

The raw laser scanner data were filtered and segmented in order to remove those points that
were not part of the object of study (adjacent building, artificial elements, trees, etc.). The individual
point cloud alignment was done by a solid rigid transformation by the use of external artificial targets
(spheres). The spheres were stationed in tripods at the plumb-line plane surveyed by the global
navigation satellite system (GNSS). The laser local coordinate system could be transformed to a global
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coordinate system (UTM30N in ETRS89), allowing the geo-referencing of the subsequent classification
for a global analysis and interpretation. This proposed workflow allowed a final relative precision of
the coordinates of the artificial targets of 0.01 m and an absolute error of 0.03 m after post-processing.
As a result, a unique point cloud in a local coordinate system with 11 mm precision (due to the error
propagation of inherent error sources of laser scanner [25] and the error associated to the definition of
the coordinate system) was generated.

2.3.3. Radiometric Calibrations

To perform the radiometric calibration of both sensors, auxiliary equipment such as lambertian
surfaces with known spectral behavior (Spectralon) and/or a spectroradiometer are needed to solve
the calibration. Thus, after the calibration process images values, in the case of the camera, and points’
intensities, in the case of the laser scanner, correspond to the radiation emitted by the surface expressed
in radiance or reflectance. The Mini MCA6 multispectral camera was calibrated in a previous field
campaign [20] through in situ spectroradiometer measurements of artificial surfaces, with known and
unknown reflectance behavior (Spectralon and polyvinyl chloride vinyl sheets respectively). Regarding
the radiometric calibration of the TLS, it was carried out in laboratory by using a Spectralon and in
absence of light.

The multispectral camera was calibrated by the radiance-based vicarious method [26–28], being
the transformation equation from raw images into images with reflectances values Equation (2):

ρMCA “
c0λ ` c1λ ¨DL{Fvλ

Eλ
¨ π (2)

where c0λ and c1λ, offset and gain, are the calibration coefficients of each camera band, Fvλ the
shutter opening time factor and Eλ the solar irradiance at the ground level. Table 1 summarizes the
multispectral camera calibration coefficients and the R2 determination coefficient achieved per band.

Table 1. Calibration coefficients of the Mini MCA6 per band.

Bands c0λ c1λ R2

530 nm 0.000264 0.057718 0.9816
672 nm ´0.000795 0.050005 0.9823
700 nm ´0.000861 0.041353 0.9820
742 nm ´0.001205 0.074335 0.9843
778 nm ´0.001510 0.047292 0.9846
801 nm ´0.000834 0.047656 0.9827

In order to obtain reflectance values directly from laser data, a reflectance-based radiometric
calibration [28] consisting of analyzing the distance-behavior of the intensity data (Figure 3) was
performed (Equation (3)).

ρFARO “ ea¨d ¨ b ¨ d2 ¨ ec1F¨DLF (3)

where a and b were the empirical coefficients related to the signal attenuation and internal TLS
conversion from the received power to the final digital levels, d the distance between the laser scanner
and the object, c1F the gain of the TLS and DLF the raw intensity data in digital levels (11 bits).
Please note that the empirical coefficients were obtained by a laboratory study, since the TLS internal
electronics and intermediate signal processing is not disclosed.

In this case, a laboratory experiment from 5 to 36 m at one-meter intervals provided enough
information to study the FARO Focus3D internal behavior (Figure 3). It was conducted in low-light
conditions at a controlled temperature of 20 ˝C to model and simulate the system behavior.
By positioning a Spectralon at each distance increment, intensity data were acquired at a quarter
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of the maximum resolution of the laser scanner (6 mm). The calibrated surface (Figure 2a) consists of
four panels of 12%, 25%, 50% and 99% reflectance and it was assembled on a stable tripod to ensure its
verticality. The raw intensity data from each reflectance panel were obtained by averaging the intensity
values of the points belonging to each panel. The mean intensity value was plotted per panel and
distance resulting in the Figure 4.
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Figure 4 shows the signal attenuation of the FARO Focus 3D with distance as well as the
logarithmic model that the measurements follow for distances up to 9 m. This particular behavior was
noted in previous research works with similar sensors [29] and it is explained by the lidar equation [30].
By knowing the calibrated reflectance values of each Spectralon panel for 905 nm, the wavelength of
the laser scanner, field measurements could be related with these reflectance values at each studied
distance. Being 0.992, 0.560, 0.287 and 0.139 the normalized (0–1) reflectance values for the panel of
99%, 50%, 25% and 12% of reflectance respectively. Figure 5 shows how these values relate at a 10 m
distance, and follow an exponential relationship which is shown in Equation (3). This distance was
chosen as a threshold since for lower distances the calibration model changes due to the internal
measurement system, involving alternative mathematical models.

As Figure 4 shows, the greater the distance the greater the intensity errors in the measurements.
This behavior is related to the decrease of the received power due to the distance attenuation and
signal scattering. Since the effective range of the employed TLS is higher than the studied distance,
this error only appears significantly in the lower reflectance surface (12% panel).
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Based on the empirical study of the laser response, the attenuation of the signal with the distance
(Figure 4) and the logarithmic behavior of the sensor [29], the relationship between digital levels and
reflectances was finally approximated according to the Equation (4).

ρFARO “ e0.214¨d ¨ 3.907 ¨ 10´7d2 ¨ e0.005415¨DLF (4)

This empirical equation can be applied only to objects at a distance over than 8 m since as can be
shown in Figure 4, the FARO Focus3D has a completely different behavior for shorter distances.

2.4. Processing

In this subsection reflectance products are joined to achieve the orthoimages at each wavelength
and they are finally classified to obtain maps of different building materials and pathologies.

2.4.1. Orthoimages Generation

Once the final point cloud was filtered, aligned and calibrated, a triangulation was applied
to create the digital façade model (DFM). This step was required in order to generate continue 2D
products (in the form of true orthoimages) and carry out the pathology detection by the classification
process. For the DSM generation the incremental triangulation Delaunay algorithm was applied [31].
The output was refined to avoid artifact, meshing gaps, and other errors [32].

Orthoimages are highly demanded products that offer many benefits: metric accuracy and
radiometric information useful to analyze different information quantitatively and qualitatively.

For the orthoimage generation, it was necessary to know the external orientation of the images
with respect to the coordinate system of the laser point cloud model. For that purpose an average of
20 corresponding points between the point cloud and images were manually established. The image
projection was characterized by a rigid transformation (rotation and translation) together with the
internal camera parameters.

Orthoimages were generated based on the anchor point method [33]. This method consists
of applying an affine transformation to each one of the planes formed by the optimized triangular
mesh, which was obtained from the point cloud determined by the laser. Through the collinearity
condition [34], the pixel coordinates of the vertices of the mesh were calculated, and the mathematical
model of the affine transformation directly relates the pixel coordinates of the registered image and of
the orthoimage.

2.4.2. Orthoimages Classifications

In order to categorize the orthoimages in different informational classes a previous
automatic unsupervised classification and a posterior supervised classification were performed.
The unsupervised classification was based on the Fuzzy K-means clustering algorithm where each



Remote Sens. 2016, 8, 80 8 of 16

observation can concurrently belong to multiple clusters [35]. For a set of n multidimensional pixels,
the automatic management in l clusters iteratively minimizes the Equation (5) [36]:

Jm “

n
ÿ

i“1

λ
ÿ

l“1

um
i,l‖ xi´cl ‖2 ; 1 ď m ă 8 (5)

where m represents any real number greater than 1, xi the i-th of d-dimensional measured data, uil the
degree of membership of xi in the cluster l, cl the d-dimensional center of the cluster and ‖ ˚˚ ‖=
Euclidean norm expressing the similarity between any measured data and the center.

Fuzzy partitioning is carried out through an iterative optimization of the objective function shown
above, with the update of membership and the cluster centers by Equation (6).

uil “
1

c
ř

k“1

„

‖ xi´cl ‖
‖ xi´ck ‖
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2
m´ 1
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il
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This iteration will stop when maxil

!
ˇ

ˇ

ˇ
uil
pk`1q ´ uil

pkq
ˇ

ˇ

ˇ

)

ă ε, where ε is the stop criterion between
0 and 1 and k represents the iteration steps.

After this classification, a first approach of the spectral classes and different construction materials
was obtained. With a subsequently supervised classification and applying the expert knowledge of
some classes, the final results improved. Furthermore, this supervised classification will serve as
reference to discuss which sensor is the ideal one for detecting materials and pathologies in façades.

In this case, a maximum likelihood (ML) classification algorithm [37] was applied. The ML
classifier quantitatively evaluates both the variance and covariance of the category spectral response
patterns when classifying an unknown pixel. The resulting bell-shaped surfaces are called probability
functions, and if the prior distributions of this function are not known, then it is possible to assume
that all classes are equally probable. As a consequence, we can drop the probability in the computation
of the discriminant function F(g) (Equation (7)), and there is one such function for each spectral
category [38].

Fpgq “ ´ln
ˇ

ˇΣp
ˇ

ˇ´ pg´ µpq
TΣp

´1pg´ µpq (7)

where p is the p-th cluster, Σp is the variance-covariance matrix and µp represents the class mean vector
and g the observed pixel.

3. Experimental Results

The study area was the Shrine of San Segundo declared World Cultural Heritage in 1923 [39]
(Figure 6). This Romanesque shrine is located in the west of the city of Ávila (Spain) and was built in
the 12th century with unaltered grey granite plinths and walls with the alternation of granite blocks
with different alteration degrees. The unaltered granite is mainly present in the blocks of low areas
because of its high compressive strength and resistance to water absorption.

The field work was carried out on 27 July 2012 around the southern façade of the church (Figure 6),
the most interesting façade from a historical point of view because it preserves the Romanesque main
front. The five archivolts and capitals are decorated with plant and animal motifs. A total of 3 stations
for the case of laser scanner were performed to cover the façade at a distance of 10 m (see Figure 6 right).
The resolution of the data capture of the FARO Focus3D was a quarter of the full resolution provided
by the manufacturer, 6 mm at 10 m. Moreover, the façade was photographed at the same distance with
the Mini MCA6 multispectral camera with a FSD of 5.4 mm. A selection of 9 multispectral images of
the 56 (7 per station) were used for the orthoimages generation. This selection was related with the
most suitable images regarding the area of study and the optimal sharpness and quality of the set of
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images. The total volume of information generated amounted to 10.7 GB, where the great part was due
to the meshes and orthoimages generation projects. Figure 7 shows the set of the 7 final orthoimages
with a 6 mm FSD.
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3.1. Reflectance Orthoimages

In order to compare the discrimination capability of both technologies to distinguish building
materials and pathologies a first unsupervised classification of the orthoimages belonging to each
sensor was performed (Figures 8 and 9). A final supervised classification with the complete set of
7 orthoimages was carried out. For each informational class manually representative areas distributed
throughout the façade (between 5 and 10 polygons per class) were selected. This last classification
serves as a reference with which to compare each individual unsupervised classification. The steps
followed by the workflow are shown in Figure 1.
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3.2. Orthoimages Classifications

Ten predefined clusters were used in each case for the unsupervised classification algorithm.
In all of them, the resulting map showed the existence of affected areas. Post-analysis reduced the
number of clusters. The number of clusters decreased from 10 (initial clusters) to 5 thematic classes
with real meaning: (1) unaltered granite; (2) altered granite; (3) wood (door of the church); (4) areas
with moisture evidences (caused by capillarity or filtration water) and (5) mortar between blocks.

It is noteworthy that results from Mini MCA6 are not fully satisfactory due to large variability
in lighting conditions during the data acquisition. As mentioned at the beginning of Section 3, the
fieldwork took place on 27 July 2012, with a 6-h total acquisition time. Although radiometric calibration
reduces the effects of the lighting variability between different data acquisition time, passive sensors
are really sensitive to shady areas. These areas could be seen in Figure 7, specifically in the orthoimages
from the Mini MCA6, and also in the classification results of the entrance area in Figure 8 (blue color).
However, this is not the case for the active sensor, FARO Focus3D, where the continuity of materials
and pathologies is a remarkable aspect.

Comparing the results with a visual inspection, results correspond quite well to reality for both
types of existing granites (unaltered and altered) and wood by three well differentiated clusters in all
classification maps (Figures 8 and 9). Regarding pathologies detection, it was not possible to draw
final conclusions with these first unsupervised classifications. However, this process served to perform
a better defined supervised classification.

With the aim of having a reference with which to compare both unsupervised classification
maps, a supervised classification of the full set of 7 orthoimages in reflectance values was performed
(Figure 10) taking into account the two existing variants of granite, their pathologies derived primarily
from moisture and the other informational classes.

The best overall accuracy for the Fuzzy K-means unsupervised classifications was 74.39%,
achieved for the FARO Focus3D map in contrast with the 66.04% accuracy for the Mini MCA6 map.
This indicates that the best correlation between the number of pixels correctly classified and the total
number of pixels occurred for this near infrared active sensor.

Table 2 contrasts the results of the supervised classification (based on training areas) with the
unsupervised classification for each sensor. The table shows the sum of pixels belonging to each class
for each of the classifications performed. The count is expressed as a percentage of the total number of
classified pixels (1,154,932 without taking the background class into account).
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Table 2. Pixels computation belonging to each thematic class.

Class Reference Map Multispectral Map Laser Map

Unaltered granite 30.04% 28.53% 27.33%
Altered granite 42.60% 48.06% 47.27%

Wood 5.35% 5.67% 5.82%
Moisture 1.88% 4.74% 1.31%
Mortar 20.13% 13.00% 18.27%

In a quantitative analysis for the estimation of the two types of granite and wood, results of both
sensors are quite similar and really close to the reference map while intensity data from laser scanner
are the closest to the reference map results for the estimation of moisture and mortar. Results show
higher pixels classified as moisture in the case of multispectral map (2.86% higher with respect to the
reference map) and few pixels classified as mortar (7.13% lower than the reference map) due mainly
to the altered granite count (whose spectral response has the greatest similarity). Results from the
laser sensor are quite similar, greater amount of altered granite by reducing the unaltered granite and
mortar detected classes. Note that the best results for moisture detection are achieved with the FARO
Focus3D, since humidity has a major interference with this wavelength [40]. Since the pathological
classes (moisture and altered granite) are better recognized by the laser scanner and it is the most
comprehensive sensor with results closer to the reference, it can be concluded that the active sensor
has proven to be the best option to study and detect pathologies and different construction materials
for studies with high variability in light conditions where passive sensors are greatly affected.

To evaluate the separability between classes the transformed divergence indicator [41], ranging
from 0 to 2, was used as the most widely used quantitative estimator for this purpose [42]. Table 3
shows the separability between the final 5 classes.

Table 3. Transformed divergence for the supervised classification.

Unaltered Granite Altered Granite Wood Moisture

Altered granite 1.87 - - -
Wood 2.00 2.00 - -

Moisture 1.99 1.99 2.00 -
Mortar 1.98 1.42 2.00 2.00
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In general, a high separability was achieved for all 5 classes, highlighting the good separability
between the spectral signatures of the two granite types. The worst results were for the mortar and
the altered granite classes. This fact is explained by two reasons: on the one hand, the façade sample
distance (FSD) of the orthoimages (11 mm in the worst case) was not enough to detect façade areas
with smaller thickness of mortar; and on the other, altered granite class presented the closest spectral
behavior regarding mortar. With respect to the moisture of the façade, it appeared in lower areas of
the shrine (capillarity rising damp) and in the buttress, acting as a filter system for the water from the
roof (filtration moisture). These areas are built with unaltered granite blocks since lower areas need to
support the loads of the whole building (also in buttress). The radiometric misunderstanding between
moisture and unaltered granite did not occur in the case of altered granite since the latter is part of the
center of the façade, a low humidity area.

3.3. Accuracy Assessment

In order to assess the accuracy of the unsupervised classifications, the supervised classification
approach based on maximum likelihood algorithm served as reference. Five classes and the seven
bands available were considered in the classification process. Accuracy results for the case of the Mini
MCA6 multispectral camera and the FARO Focus3D laser scanner were 66.04% and 74.39% respectively
as mentioned above, and according to the Cohen’s Kappa coefficient [43] the level of agreement was
0.50 and 0.621 respectively (excluding the null class).

Furthermore, as mentioned in Section 2.1, an ASD FieldSpec3 spectroradiometer was used to
measure several samples of granite for a parallel study. Those measures, in this study, have been used
as reference and as a complement to the above analysis to compare the spectral signatures of these
construction materials with the discrete reflectance results obtained from the Mini MCA6 and the
FARO Focus3D (Figure 11). The spectral signatures and deviations of the two types of granite present
in the façade are plotted for the wavelength range covered by both sensors (530–905 nm).

In Figure 11, the graph continuous lines show at any wavelength the mean value of the
reflectances of unaltered and altered granite samples distributed along the façade and measured
with the spectroradiometer (a total of 6 and 7 samples of granite, respectively). On the other hand, the
colored areas represent the standard deviation of that spectroradiometer measurements. Regarding
the discrete values of reflectance achieved with the sensors (discrete points) they result from the mean
reflectance value of the “unaltered granite” and “altered granite” classes for each sensor’s wavelength
of the supervised classification map. The “mortar” class was not finally evaluated due to its variability
in thickness along the façade and due to the fact that the FSD achieved was in many areas greater than
its thickness.

It should be mentioned that a great fit of the reflectance values from both sensors (discrete
points) was achieved for both granite real spectral behaviors (spectroradiometer measurements)
with admissible standard deviations associated (lower than those associated with spectroradiometer
measurements). For both evaluated materials, the mean error was 0.007 (in the range 0–1), being the
maximum 0.049 (in the range 0–1), which is better than the expected error for this vicarious calibration
technique (around 5%).

The confusion matrices for the assessment of both sensors are shown in Tables 4 and 5 where the
main diagonal indicates the percentage of pixels that have been correctly classify and the off-diagonal
values represent misclassification. The producer and user accuracies as well as the overall accuravy
are given. Regarding the moisture class, a significant performance improvement of the classifier is
observed for this class for the operating wavelength of the FARO Focus3D. In the case of the mortar
class, the Mini MCA6 do not bring good results mainly due to the errors produced during the 6-band
registration process. Finally, we mention that in the case of the unaltered and altered granites, little
variations were observed between both sensors.
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Table 4. Confusion matrix of the Mini MCA6 unsupervised classification.

Moisture Mortar Altered Granite Unaltered Granite Wood User Accuracy

Moisture 40.14% 25.40% 0.54% 33.92% 0.01% 40.14%
Mortar 0.06% 39.11% 59.53% 1.31% 0.00% 39.11%

Altered granite 3.79% 7.69% 73.86% 14.61% 0.05% 73.86%
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Table 5. Confusion matrix of the FARO Focus3D unsupervised classification.

Moisture Mortar Altered Granite Unaltered granite Wood User Accuracy

Moisture 52.46% 1.04% 23.17% 19.81% 3.52% 52.46%
Mortar 0.00% 60.46% 37.36% 2.18% 0.00% 60.46%

Altered granite 0.05% 12.81% 78.29% 8.64% 0.20% 78.29%
Unaltered granite 0.29% 1.49% 21.70% 75.47% 1.04% 75.47%

Wood 0.48% 0.00% 0.00% 0.00% 99.52% 99.52%

Producer accuracy 89.64% 68.32% 68.68% 83.62% 91.81%

Overall accuracy: 74.39%

To conclude, it should be highlight that the improvement in both the overall accuracy and the
Kappa coefficient is significant in the case of working with radiometrically calibrated sensors as
opposed to the use uncalibrated ones [17]. The results for the Mini MCA6 have experienced a 24%
improvement in terms of overall accuracy and 23% regarding the Kappa coefficient. Furthermore, the
improvement from the use of the calibrated FARO Focus3D was of 29% and 35% regarding the overall
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accuracy and Kappa coefficient, respectively. Results worsen in the case of the Mini MCA6 due to two
factors; the first is that the camera is a passive sensor, so it is sensitive to changes in light conditions
and shadow areas during data acquisition. The second error factor is caused by the slave image
registration process, as has been mentioned above, due to the errors in the determination of baselines,
angular misalignments and the internal parameters of the camera. Any error in those parameters is
propagated into the final multispectral orthoimage, being worsened for higher spatial resolutions,
where the geometric pixel footprint in the object may differ depending on the wavelength.

4. Conclusions

The work presented in this paper shows a comparison of the classification results from the use of
different radiometrically calibrated sensors to detect pathologies in materials of historical buildings
façades. By combining the use of two different data acquisition techniques (active and passive), two
sensors were examined: a multispectral camera and a 3D laser scanner. The results show the different
radiometric responses of the ashlars of a church with different damages levels (mainly moisture).
The classification algorithms used for the classification processes were the Fuzzy K-means and the
maximum likelihood classification algorithms.

A complete description of the workflow followed is outlined describing the data acquisition,
pre-processing (including sensors radiometric calibrations), orthoimages generation and the
application of two classification algorithms to assess the final results. Our results show that the
most comprehensive sensor for which the best results were obtained is the FARO Focus3D. This is
possibly due to the advantage of working in an active way with no need of external radiation.
As a result, classification maps were not affected by different lighting conditions during data acquisition.
Furthermore, geometric models of the study object can be derived thanks to its data capture. With these
models, physical pathologies (such as fissures, desquamations, etc.) could be analyzed and both these
damages and chemical pathologies could be quantified. However, for the challenge of the registration
of 6 wavelength bands, the results from the Mini MCA6 were quite good. Considering all those issues
and with the experience of working with these sensors in previous studies, it is concluded that the
radiometric calibration of the sensors is crucial since it contributes to improving the accuracy of the
outcomes (a 35% Kappa coefficient improvement in the case of the FARO Focus3D). Thus, a sensor
combination with laser scanning as a primary choice is the best solution for pathology detection and
quantification. By adding the intensity information to visible or multispectral information, results of
classification improve in a quantitative and a qualitative way.

In future work, the use of a hyperspectral camera or another laser scanner operating in
the shortwave infrared as a complement of the sensors proposed will improve the pathologies
detection and the overall accuracy results since the spectral resolution of the study would be
increased. In addition, and for non-carved historical buildings, the roughness of the façade would
be calculated from the scan points in order to have additional data of the materials so it can help in
the discrimination process. Finally, and regarding the data acquisition of passive sensors, constant
favorable climatic conditions will be planned so that the accuracy of its classification results may be
significantly improved.
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4.2. Automatización en la detección de humedades en 

estructuras de hormigón mediante hibridación 

sensorial 

Este subcapítulo contiene el artículo Automatic mapping of moisture 

affectation in exposed concrete structures by fusing different wavelength 

remote sensors (Mapeo automático de humedades en estructuras de 

hormigón mediante la fusión de sensores remotos de diferente longitud 

de onda) publicado en Noviembre de 2015 en la revista internacional 

Structural Control and Health Monitoring. 

4.2.1. Resumen 

El objetivo principal de este trabajo consistió en analizar la viabilidad de 

automatizar los procesos de inspección de humedades en estructuras de 

hormigón a través del análisis y procesado de datos multiespectrales 

procedentes de sensores geomáticos. Para aumentar el rango espectral de 

estudio y poder caracterizar mejor esta patología un total de cuatro 

sensores, dos sistemas láser activos y dos cámaras digitales (una 

convencional y una multiespectral), fueron analizados abarcando con ello 

los rangos visible, infrarrojo cercano e infrarrojo de onda corta. Con el 

fin de automatizar al máximo el proceso y reducir los tiempos de 

procesado de datos se prescindió de la calibración radiométrica de los 

sensores. Además, para analizar los resultados se emplearon algoritmos 

de clasificación automáticos de imagen. 

La fusión sensorial se consiguió tras varios procesamientos geométricos 

de los datos: (i) transformación de las nubes de puntos 3D procedentes de 

los láser escáner a ortoimágenes y (ii) corrección y registro de las 

imágenes procedentes de los sensores pasivos. Finalmente, y tras aplicar 

una metodología automática de clasificación no supervisada, fue posible 

analizar de los diferentes grados de humedad contrastando los resultados 

obtenidos con los ofrecidos por la inspección visual realizada por un 

experto. 

Tras la realización de este estudio se concluyó que si bien los sensores 

pasivos ofrecen una mayor resolución espectral, en cuanto a número de 
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bandas, que la ofrecida por los láser escáner terrestres (mono-

espectrales), los últimos dieron mejores resultados aun cuando no se 

llevó a cabo la calibración radiométrica de los mismos. Esto se debe a 

que son sensores que no están influenciados por los cambios en las 

condiciones lumínicas durante la duración de la toma de datos. Sin 

embargo, para estos dispositivos se observa una disminución de la señal 

de retorno proporcional al cuadrado de la distancia de la adquisición y 

hay que corregirlos de este hecho. Tras realizar un análisis de varianza, 

se determinó que el rango espectral más adecuado para la detección de 

humedades es el infrarrojo, concretamente las bandas de 778, 905 y 1550 

nm de longitud de onda destacando que los mejores resultados fueron 

obtenidos con los datos capturados en infrarrojo de onda corta (1550 

nm). Tras la realización de este trabajo se validada la automatización del 

proceso de detección de diferentes niveles de humedad en estructuras de 

hormigón haciendo uso de sensores no calibrados que preferiblemente 

trabajen en el rango infrarrojo. Además de la detección de distintos 

grados de humedad, y gracias a la utilización de sensores activos, fue 

posible cuantificar esos niveles de humedad superficiales. 
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SUMMARY

Water content is a critical parameter for the early detection of moisture degradation in exposed concrete structures.
Traditionally, visual inspection is the most extended procedure to detect superficial pathologies caused by moisture
in concrete constructions, principally when access is limited. For such cases, remote sensing is a valuable tool to
recover radiometric information useful for detecting and quantifying different degrees of affectation caused by wa-
ter. This paper presents an approach to identifying and evaluating the water content in a real concrete structure by
fusing several sensors recording data in different wavelengths. In particular, a procedure to integrate three-
dimensional intensity data collected by two terrestrial laser scanners (Riegl-Z390i and FARO Focus 3D) with
two-dimensional radiometric data provided by a six-band multispectral camera and a commercial digital camera
(MCA6 Tetracam and Canon EOS 5D) is developed. After data fusion in a two-dimensional space, a multiband
image was created for further spectral analysis. Finally, an unsupervised classification using clustering algorithms
was performed to identify the degrees of affectation and the most suitable remote sensor for moisture mapping.
Comparisons between the sensors used in this survey reveal that intensity imagery from both laser scanners has
high potential for the recognition and characterisation of the degree of moisture in this type of structure. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main cause of degradation in engineering constructions, and more specifically in reinforced con-
crete structures, is the influence of meteorological conditions [1]. This damage is caused, generally,
by the presence of water and its influence on the corrosion of the steel bars [2] that may result in the
presence of external cracks exposing the steel reinforcement to the atmospheric environment [3]. Thus,
when the concrete is dry, the corrosion shows negligible values (below 0.1μA/cm2). These values in-
crease when the humidity goes up to maximum values of around 100μA/cm2 [4]. In addition, it is com-
mon that vegetation appears with the presence of moisture in wet areas, which is an additional
deterioration factor for the structure’s conservation because it increases water infiltration [5].

Therefore, surveillance and maintenance are very important tasks for the conservation of these
structures, especially in areas of greatest exposure to degradation factors. Currently, routine inspections
are performed visually without resulting in quantitative assessments of the conservation status and
which rely on experience-based expertise that must be developed over years of practice. Remote sens-
ing would be a good solution to analyse remotely the deterioration level of the materials in these cases
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and when structures are inaccessible. Thus, this technology becomes an important tool to assist in the
decision-making and the maintenance of damaged structures [6].

The expansion of laser scanning technology towards civil engineering applications is remarkable,
particularly for surveying infrastructures with difficult access. In that sense, many works have been re-
ported in the literature for cases, for example of bridges. Laser scanning is a technology of great inter-
est for studying historic masonry bridges where the geometry is closely related to structural
performance [7]. In the literature, there are important works such as those presented by [8], software
for the quantification of bridge deterioration based on Light Detection and Ranging (LiDAR) data. Fur-
thermore, the combination of other technologies such as infrared thermography, photogrammetry and
ground penetrating radar [9] have provided suitable models to conduct simulations of areas affected by
moisture content in masonry arch bridges. Ground-penetrating radar is currently applied in the inspec-
tion of concrete bridge conditions with a really good accuracy of the results [10]. Ultrasonic [11] and
laser scanner [12] methods, meanwhile, are also currently used for this purpose. In this sense, the high
potential of remote sensing technologies for assessing concrete bridges is demonstrated.

It is important to note the role of geometry in structural health monitoring using spatial computa-
tions. In this sense, the work developed by [13] proposes spatial information systems for the assess-
ment of risk management of large structures. This is in accordance with building information
models, the new standards for three-dimensional (3D) modelling accounting not only for geometry
but also for semantic and topologic information. Thus, the monitoring of built-up structures can benefit
from the full potential of computer technology and can be based on more efficient methods giving a
spatial perspective to inspection data. Therefore, the growth of standard information models for civil
engineering infrastructures, such as bridge information models [14], promotes the development of
new methods to accomplish the inspection and assessment of the state of built-up constructions.

Based on the advances in geomatic technologies and the new standards for 3D modelling and the
monitoring of built-up structural systems, this paper presents an approach to detecting and quantifying
the area affected by the presence of surface moisture in concrete structures by fusing multispectral data
registered by both 3D and two-dimensional (2D) remote sensors. The aim consists of comparing four
different sensors and determining which one is the best to identify, quantify and analyse moisture dam-
age in concrete structures. To this end, both the geometric transformations and the spectral analysis are
described in Section 3 of this paper. The data set will be subjected to three different cluster-number
classifications, and the results are presented in Section 4. The final section is devoted to outlining
the main conclusions.

2. THEORETICAL BACKGROUND

Remote sensing techniques and methods allow the automatic detection of damage in built-up construc-
tions with an accurate georeferencing and geometric characterisation of pathologies [15]. In recent
years, laser scanning has experienced a significant expansion because of its potential for providing
the spatial information of 3D objects in a massive way. However, laser scanners not only provide in-
formation about the geometry of the objects but also information about the portion of the energy
reflected by an object’s surface, which depends on its spectral reflectance characteristics. The backscat-
ter generated when the laser beam strikes the object’s surface is recorded by most LiDAR instruments
as a function of time [16,17] or the returned phase of the laser beam (Figure 1).

The amount of energy returned in LiDAR systems is modelled through Equation 1, the radar equa-
tion. This model establishes that the returned energy is a function of some sensor parameters, the mea-
surement geometry and the cross-section of the target [18], given by

Pr ¼ Pt

4π
� Dr

2

R4βt
2 �σ (1)

where Pr is the received signal power from the transmitted laser pulse after reflecting on the target, Pt is
the transmitted signal power, Dr is the diameter of the optical receiver, R is the slant range to the target
from the sensor and βt is the laser beam width.
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The effective target cross-section σ can be expressed as a function of the scattering solid angle of the
target, as

σ ¼ 4πPr

ΩsPi
Alf (2)

where Ωs is the solid angle of the scattered radiant flux, Pi is the incident radiant flux (equal to the
transmitted laser power Pt) and Alf is the laser footprint area at the target.

Also, the effective target cross-section has a proportionality of the cos α when the incidence angle α
is greater than 0.

The biconical reflectance ρ [19] is defined as the ratio of the reflected to the incident flux. Materials
with Lambertian characteristics may be discriminated attending to the response of this property through
the spectrum, and this is usually denoted by a spectral curve. Knowing the reflectance value for a spe-
cific wavelength would allow the identification of the material being observed. However, as previous
equations reveal, the discrimination of materials by using laser intensity is not immediate. Furthermore,
it must be taken into account that the amount of returned energy depends not only on the previous
parameters but also on power losses due to the sensor and the atmosphere, ηsys and ηatm, respectively.
The first loss is caused by all the optical components of the LiDAR sensor and affects the optical trans-
mission efficiency. The second loss refers to the transmission efficiency of the atmosphere between the
sensor and the target (at range R). After these assumptions, the amount of return power registered by a
LiDAR system may be expressed by Equation 3 [20]:

Pr ¼ Pt�Dr
2�ρ

4R2 ηsys�ηatm�cos α (3)

Laser scanners have the ability of recording the return power as a function of time after transmis-
sion, and depending on the objects hit by the laser beam, there might be several function peaks. These
peaks denote objects located at different ranges, and depending on the intensity recorded, the spectral
characteristics may be derived. While most commercial systems do not provide information about
proprietary pulse detection algorithms, the usual procedures are based on computing a threshold, the
centre of gravity, or are even based on finite differences using numerical derivatives or others. The first

Figure 1. Sketch of a LiDAR sensor for two different principles of operation: the phase-shift and time-of-flight
methods being Δϕ the phase shift, λ the wavelength, m the ambiguity or integer number of cycles, c the speed

of light and t the round-trip time.
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scanners provided only a return echo, but now, most of the instruments register several echoes with
their respective intensity attribute, normally at 8-bit, 12-bit or 16-bit resolution. The most modern laser
scanning instruments digitalise not only a few echoes but also the full waveform [21].

Traditionally, remote sensing is classified into active and passive sensors. Contrary to laser scan-
ning, photography has been included in the passive methods because it records reflected solar energy
in different bands of the electromagnetic spectrum. However, the information collected from 3D space
is registered on a planar sensor through a central projection.

Intersection is an application in analytical photogrammetry that allows the assignment of the colour
registered in an image to a point in the object space after calculating the orientation of the image. So, if
the spatial coordinates of an object are known, the image coordinates can be calculated through the col-
linearity equations (Equation 4). The collinearity condition establishes that the camera station, any ob-
ject point and its photo image all lie along a straight line in 3D space.

xa ¼ �f
m11 XA � X0ð Þ þ m12 YA � Y0ð Þ þ m13 ZA � Z0ð Þ
m31 XA � X0ð Þ þ m32 YA � Y0ð Þ þ m33 ZA � Z0ð Þ

� �

ya ¼ �f
m21 XA � X0ð Þ þ m22 YA � Y0ð Þ þ m33 ZA � Z0ð Þ
m31 XA � X0ð Þ þ m32 YA � Y0ð Þ þ m33 ZA � Z0ð Þ

� � (4)

where xa ya) are the image coordinates, f is the principal distance, (X0 Y0 Z0) are the spatial coordinates
of the projection centre and (XA YA ZA) are the spatial coordinates of the object.

Conversely, if both the image and spatial coordinates of a minimum of four points are known, the
orientation of the projection centre can be obtained. This is general practice when texturing point
clouds. However, this method is costly, and its application to automation in the inspection and map-
ping of superficial pathologies may be limited. To ease the last goal, this paper proposes a method that
allows the registration of several sources of spectral data and the automatic classification of moisture
areas. The two main purposes of this study are as follows: first, to analyse the spectral response of
moisture in concrete walls and second, to determine which remote sensor and spectral range regarding
those proposed are the most suitable to conduct the inspection of such pathologies.

3. MATERIALS AND METHODS

3.1. Equipment

Both active and passive remote sensing techniques were applied in this study. The active sensors
involve two terrestrial laser scanners, and the passive sensors comprise a multispectral camera and
an RGB single-lens reflex (SLR) digital camera. Figure 2 shows the different wavelength sensors used
in this research.

The first laser scanner was the Riegl-Z390i, a time-of-flight laser scanner that emits pulses at a
1550 nm wavelength. This device measures distances in the range of 1–400m with a point

Figure 2. Sensors used for data collection. From left to right as active sensors: RIEGL-Z390i and FARO Focus
3D. As passive sensors: MCA6 Tetracam and Canon EOS 5D.
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measurement rate of 11 000 points per second. It has a nominal accuracy of 6mm at a distance of 50m in
normal lighting and reflectivity conditions and a beam divergence of 0.3mrad, equivalent to the 30mm
per 100m range. The viewing field extends 80° vertically and 360° horizontally with a 0.001° of angular
resolution [22]. The signal intensity received by the sensor system is recorded in 8-bit format.

The other laser scanner was the FARO Focus 3D, which measures distances using the principle of
phase shift at a wavelength of 905 nm. This device measures distances in a range of 0.60–120m with a
point measurement rate of 976 000 points per second. It has an accuracy of 0.015° in normal lighting
and reflectivity conditions and a beam divergence of 0.19mrad, equivalent to the 19mm per 100m
range. The field of view extends 300° vertically and 360° horizontally with a 0.009° of angular reso-
lution, and the returning intensity is recorded in 11-bit format. Additionally, this laser scanner includes
a double compensator in the horizontal and vertical axes.

The lightweight Multiple Camera Array, MCA6 (Tetracam, Chatsworth, CA, USA), was a multi-
spectral sensor (visible–near infrared) of 10-bit data and a resolution of 1280×1024pixels. The sensor
was equipped with six bands of 530, 672, 700, 742, 778 and 801nm. The recording of the images is
time triggered, and it has a focal length of 9.6mm and a pixel size of 5.2μm [23].

The Canon EOS 5D (Canon, Tokyo, Japan) is a high-resolution SLR digital camera chosen to ac-
quire information relating to the visible range of the spectrum with a resolution of 5616×3744pixels.
This camera uses a complementary metal–oxide–semiconductor sensor. The focal length is 24mm, and
it shoots 3.9 frames per second [24].

3.2. Methodological procedure

This study, motivated by the radiometric data fusion and sensor integration, needs to follow specific
methodology and data processing to finally analyse the data from the mentioned sensors all together.
To this end, the proposed methodology has three main stages, as outlined in Figure 3. In the first phase,
a series of geometric transformations must be applied to the data trying to have them on the same scale
and reference system. Provided as input data point clouds and images, these transformations consisted
of point cloud processing to obtain orthoimages and the rectification of images collected by the passive
sensors. The second stage was the registration of the data to a common reference coordinate system and
scale. Thus, a multidimensional array was created with an 11-band matrix (two bands from laser scan-
ners, six from the multispectral camera and three from the SLR camera) where digital levels repre-
sented the reflected energy for the different wavelengths registered by the sensors. The last stage
consisted of the automatic mapping of the concrete wall under study according to different levels of
moisture by an unsupervised classification of the set of 11 images. Finally, for each degree of moisture
class, the analysis of variance test was performed to evaluate significant differences among the differ-
ent sensors used for the survey.

3.2.1. Geometric transformations. The first step to building a multispectral array for the remote
evaluation of moisture in concrete structures is the registration of the data collected by the different
sensors in a common geometric space. Because raw data are registered in both 3D space (laser
scanning) and 2D projective space (RGB and multispectral cameras), the information had to be
converted into a common 2D space through orthogonal projections.

From 3D laser scanning to 2D raster images
To transform 3D data into orthogonal 2D raster structures (Figure 4), a rasterisation process was devel-
oped using MATLAB software (The MathWorks, Inc., Natick, MA, USA) [5].

The projection plane was computed as the plane that best fits the point cloud in the structure wall.
This operation was computed by hyper-planar fitting using orthogonal regression. This model uses
least squares where the errors are measured orthogonally to the proposed plane. Once this plane is

Figure 3. Workflow developed for the assessment of moisture damage in concrete structures.
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obtained, the orthogonal projection of the points forming the 3D point cloud is immediate. Given a
point P of the point cloud defined by its Cartesian components (X0, Y0, Z0) and the normal N to the
fitted plane (defined by (A, B, C)), the equation of the line may be expressed by the so-called vector
equation (Equation 5) or in the form of implicit equations (Equation 6):

X; Y ; Zð Þ ¼ X0Y0Z0ð Þ þ λ A;B;Cð Þ (5)

Here, λ is any scalar.

X � X0ð Þ
A

¼ Y � Y0ð Þ
B

¼ Z � Z0ð Þ
C

(6)

These equations, together with the implicit equation of the previous fitted plane (Equation 7), define
the point of intersection Q between the line and the plane. The intersection corresponding to each point
of the point cloud constitutes the 2D point cloud for rasterisation.

N ¼ AX þ BY þ CZ þ d ¼ 0 (7)

The next step was to define the intensity attribute for each element in the raster structure. The inten-
sity values of an area S of the structure wall can be defined as a random field model {I(s): s ∈S⊂R2}.
The set of points of the point cloud covering the element area can be considered as the collection of
independent observations at locations s={s1, s2,…, sn} on the random field, denoted by the data vector
I(s) = {I(s1), I(s2), …, I(sn)}.

The raster representation of the point cloud consists of latticing its continuous domain S and com-
puting a value of intensity [a digital number (DN)] for each raster element (pixel). By Equation 8, the
intensity of a given pixel, defined by the region P and the corresponding area |P|, can be estimated by
averaging the random field in P:

DN ¼ I Pð Þ ¼ 1
Pj j ∫ I sð Þds (8)

The value of the I(P) is computed by using the observed data contained in the region of a pixel.
Consequently, the spatial resolution of the classification results was constrained by the window size
for DN prediction: the pixel size. Figure 5 summarises the process of intensity image generation for
the Riegl and the FARO point clouds (1540 and 905ηm, respectively).

The ground sample distance (GSD) set for our tests (defined through pixel size) was based on the
point cloud resolution.

Rectification of imagery: Even if the images were registered in a plane, they need to be corrected of the
central perspective in order to convert them into rectified images. This transformation was carried out
through a bilinear projective rectification [25] of every single image (six from MCA6 and three from
Canon). These sets of images had to be corrected of perspective and adjusted to the size and shape
of the orthoimages generated from laser scanning data. Figure 6 illustrates the process of the bilinear
rectification performed for planar images.

Figure 4. Conversion of a three-dimensional (3D) point cloud into a raster image.
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Being x and y the coordinates of a point P in raw images,
a1 a2

a3 a4

� �
the affine transformation that

encloses scale and rotation parameters,
b1

b2

� �
the translation vector and c1 c2ð Þ the projection vector

that encloses the perspective effect along the X and Y axes, respectively, the new coordinates of the
points (x ′ and y ′) after the transformation were calculated according to Equation 9. A minimum num-
ber of four points is necessary to perform a projective rectification, but in our investigation, 14 points
were used by applying a least squares adjustment. Also, two of the control points were used to define
the rectangular area under study of the abutment.

a1 a2 b1

a3 a4 b2

c1 c2 1

0
B@

1
CA�

x

y

1

0
B@

1
CA ¼

x′

y′

1

0
B@

1
CA (9)

3.2.2. Radiometric data registration. Before the classification process, the set of 11 orthoimages had
to be registered in a common coordinate system, so those created from laser scanning data were
registered to the same coordinate system and boundary used for the previously rectified images. The
workflow consisted of using a common GSD (note that laser scanning images have a GSD of
25mm whereas the rectified images have a GSD of 1mm). Thus, a bilinear interpolation was used
to scale all the rectified images to a GSD of 25mm. Furthermore, all the images were scaled to the
same radiometric resolution (8 bit) optimising the dynamic range of each sensor. Finally, the
normalised images were stored as an array (Figure 7) where each element stores the digital number
values for the 11 bands.

3.2.3. Image classification. There is a variety of algorithms to perform unsupervised image
classification in remote sensing. One of the most frequently used is the K-means clustering

Figure 5. Geometric transformations of the laser point clouds.

Figure 6. Projective rectification of images acquired with digital cameras.
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algorithm [26]. This standard method was first proposed by Stuart Lloyd in 1957, and it separates X
observations into K clusters that are represented by their centroids. Each observation belongs to the
cluster with the nearest centre of mass. The centre of each cluster is solved by finding the minimum
of a sum-of-squares cost function using coordinate descent. Therefore, the aim is to minimise the
function presented in Equation 10:

P W;Qð Þ ¼ ∑
k

l¼1
∑
n

i¼1
wi;ld Xi;Qlð Þ (10)

where W is an n× k partition matrix, Q={Q1,Q2,…,Qk} is a set of objects in the same object domain
and d is the squared Euclidean distance between two objects.On the other hand, the fuzzy C-means
clustering is very similar to the K-means algorithm where each observation can concurrently belong
to multiple clusters [27]. The objective of the algorithm (developed by Dunn in 1977 and improved
by Bezdek in 1981) is to minimise the function presented in Equation 11 [28]:

Jm ¼ ∑
n

i¼1
∑
k

l¼1
umi;l xi�k clk2; 1 ≤m < ∞ (11)

where m is any real number greater than 1, ui,l is the degree of membership of xi in the cluster l, xi is the
ith of d-dimensional measured data, cl is the d-dimensional centre of the cluster and ‖ ** ‖ is any norm
expressing the similarity between any measured data and the centre.

Fuzzy partitioning is carried out through an iterative optimisation of the objective function shown
earlier, with the update of membership ui,l and the cluster centres cl by

ui;l ¼ 1

∑
C

k¼1

xi�k clk
xi�k ckk

� � 2
m�1

; cl ¼
∑
N

i¼1
umilxi

∑
N

i¼1
umil

This iteration will stop when maxil{|uil
(k + 1)� uil

(k)|}< ε, where ε is a termination criterion between 0
and 1 whereas k are the iteration steps. This method converges to a local minimum or a saddle point of
Jm.

Figure 7. Eleven-band multispectral image.
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In this research, the K-means classifier was tested to perform several unsupervised image classifica-
tions with different numbers of classes (three, four and five classes referring to degrees of moisture af-
fectation). The goal of this approach is to determine which number of classes presents a more robust
classification, and to provide information on which sensor was the most suitable to conduct such
investigations.

4. EXPERIMENTAL RESULTS

To test all these remote sensing technologies, a viaduct abutment of the OU-536 road in Ceboliño,
Ourense (Spain), was selected (Figure 8). This region is characterised by a high precipitation rate; thus,
the roads have a large number of bridges to protect them from the steps of the rivers. The concrete of
the abutments in this bridge is visibly affected by the surface run-off of the deck in the rainy season, so
it is exposed to a high moisture level. For that reason, it was likely to be a perfect scenario to study
moisture. For the data acquisition, a sunny and dry day was selected in order to avoid environmental
conditions such as high relative humidity and vapour content that could affect the intensity measure-
ments from the laser scanner sensors over their optimal working conditions.

4.1. Results of the geometric transformations

In order to create intensity images from laser scanning surveys in an identical coordinate system, both
point clouds, the one acquired with the FARO Focus and the one acquired with the Riegl scanner, were
aligned using 14 ground control points with an acceptable standard deviation of 2mm. Figure 9 shows
the intensity orthoimages from the 3D laser scanners after the orthogonal regression and projection of
points on a vertical plane.

Furthermore, Figure 10 shows the results of the perspective rectification for the Canon EOS 5D and
MCA6 images. In this way, each image matches with the intensity images created from the point cloud
because the control points used for the projective rectification were the same as those used for the point
cloud registration (ground control points). As a result of the transformation process, areas without
information (in black) were created. However, these areas were excluded from the region of study
on the wall.

4.2. Results of the image classification

In order to assess the effectiveness of the proposed approach, three unsupervised classifications were
carried out: establishing three, four and five classes. These different situations were studied because
an expert inspection only provided a subjective visual ground truth for the visible spectra (Figure 11);
however, the purpose of this research is not only to perform the classification automatically but also to
determine which band of the spectrum and remote sensor is the most suitable to conduct such inspec-
tions. Figure 12 (from top to bottom) shows the classification image from FARO Focus 3D for three,
four and five classes, respectively.

Figure 8. Images of a wall of the abutment studied.
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The dark blue class represents areas of higher moisture, followed by green, orange, maroon and fi-
nally light blue. The images created from the laser scanning (FARO and Riegl) data provided more ho-
mogeneous classes (in terms of spatial representation in the image).

The three classifications even show a high correspondence; a subsequent analysis was necessary in
order to identify which is the most suitable number of classes when remote sensing technologies are
used. To that end, the spectral signatures of the different degrees of affectation of concrete were calcu-
lated according to the three unsupervised classifications performed. In the multiband data registration,
an 11-band matrix (Table I) was uploaded, so an analysis of variance test assisted the assessment of the
most suitable number of classes.

Figure 9. Intensity orthoimages resulting from laser scanner data. From Riegl (on the top) and FARO Focus 3D
(on the bottom).

Figure 10. Camera images corrected for perspective. On the left is an RGB image and on the right a band 0 image
(778 nm) from the MCA6.

Figure 11. Visual inspection of the wall under study with three different degrees of moisture affectation.
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To obtain the spectral signature of each class, in each of the three classifications, the mean and stan-
dard deviation of digital levels were calculated by a random selection of 50 pixels per class. Note that
these pixel coordinates were marked using the overlapping information from the classification of the 11
spectral bands (Table I). The plotted results are presented in Figure 13.

As Figure 13 shows, when using only three classes to distinguish the degrees of affectation, there
were significant differences between the classes. However, when using five classes, the differences be-
tween the classes were not so evident, and the variance analysis confirms over-segmentation for classes
that did not show significant differences for the passive sensors (only the two laser scanners presented
clear differences in the spectral response of the five classes).

The results of the variance analysis show that for the case of four classes with unsupervised classi-
fication, most of the sensors presented significant differences between the classes. So, four was selected
as the most suitable number of classes for the automatic mapping of moisture affectation in exposed
concrete walls.

Finally, an analysis of variance with a significance level α=0.01 was carried out to conclude which
sensor was more suitable for detecting and mapping moisture affectation using the four classes

Figure 12. The unsupervised classification results of the FARO image for three, four and five classes correspond-
ing to moisture affectation.

Table I. Sensor bands arranged in ascending order of wavelength.

Sensor B G M0 R M1 M2 M3 M4 M5 FARO Riegl

Wavelength (nm) 436 520 530 660 670 700 740 780 800 905 1550

B (blue), G (green) and R (red) are the three bands of the Canon EOS 5D and MO, M1, M2, M3, M4 and M5 the six bands of the
MCA6 multispectral camera.
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Figure 13. Spectral signatures of the concrete for three, four and five moisture affectation classes, class 1 having
the highest moisture.
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established in the previous analysis. First, the variance analysis indicated that for the set of 11 spectral
images, significant differences between the four classes existed. Subsequently, for each spectral band,
it was verified whether significant differences between each class and each of the other three classes
existed. As shown in Table II, only the images collected by laser scanners and band 0 of the MCA
(M0) show significant differences between all the classes. The rest of the bands analysed (R, G, B,
M1, M2, M3, M4 and M5) are not capable to properly distinguish between class 2 and class 3, being
class 3 also misclassified regarding class 4 for these set of bands of the MCA6 multispectral camera.

From an analysis of Table II it can be summarised that there were no significant differences between
some of the classes, specifically between classes 2 and 3 of each of the bands of the Canon camera and
between classes 2 and 3, and classes 3 and 4 of the M1, M2, M3 and M4 bands of the MCA6.

The multispectral matrix created can serve also as the basis for calculating vegetation indices, such as
the normalized difference vegetation index, by using the MCA6 (with data from 630-nm and 801-nm

Table II. Results of the F-statistic and P-value for each wavelength and conclusions about the significant
differences.

Sensor Bands Classes Probability P

Canon EOS 5D R Class 1 Class 2 Class 3
Class 2 <0.0001 —
Class 3 <0.0001 0.0200 —
Class 4 <0.0001 <0.0001 <0.0001

G Class 1 Class 2 Class 3
Class 2 <0.0001 —
Class 3 <0.0001 0.0400 —
Class 4 <0.0001 <0.0001 <0.0001

B Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 0.1800 —
Class 4 <0.0001 <0.0001 <0.0001

MCA6 Tetracam M0 Class 1 Class 2 Class 3
Class 2 <0.0001
Class 3 <0.0001 0.0024
Class 4 <0.0001 <0.0001 <0.0001

M1 Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 0.0121 —
Class 4 <0.0001 0.001 0.4600

M2 Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 0.0150 —
Class 4 <0.0001 <0.0001 0.1600

M3 Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 0.1100 —
Class 4 <0.0001 0.0005 0.0900

M4 Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 0.0114 —
Class 4 <0.0001 <0.0001 0.0900

M5 Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 <0.0001 —
Class 4 <0.0001 <0.0001 <0.0001

FARO Focus FARO Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 <0.0001 —
Class 4 <0.0001 <0.0001 <0.0001

Riegl-Z390i Riegl Class 1 Class 2 Class 3
Class 2 <0.0001 — —
Class 3 <0.0001 <0.0001 —
Class 4 <0.0001 <0.0001 <0.0001
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bands) or by combining data from FARO Focus 3D (905 nm) and from the red band of the Canon
EOS 5D. This is possible because of the spectral behaviour of the chlorophyll pigment of the vege-
tation in these spectral bands. For the efflorescence phenomenon, visible and near-infrared wave
bands can detect it because surfaces with efflorescence have higher reflectance in these spectral
ranges. If it is caused by chlorides or sulphates, the short-wave infrared range is more suitable
[29]. The Riegl laser scanner could be a solution in such cases. As can be seen in previous works
by [30,31], the intensity of laser scanners can be properly used to automatically detect mortar efflo-
rescence and biological crusts.

5. CONCLUSIONS

This paper presents a comparative study to determine which remote sensing technology is more suit-
able for moisture detection in concrete structures. The proposed methodology advocates analysing dif-
ferent classification images through several unsupervised classifications based on a K-means algorithm.
For this purpose, a multiband matrix comprising orthoimages collected with several 3D and 2D remote
sensors was created. Data fusion was possible after several geometric transformations and radiometric
normalisations. Even if the study presented here is a qualitative approach for the moisture content clas-
sification of concrete surfaces, it has potential to estimate the area affected by the different degrees of
humidity in a quantitative manner (43m2 of the 55m2 studied, 77.33% according to the four-classes
classification map).

The unsupervised classification using a K-means algorithm demonstrated that the mapping of mois-
ture affectation in exposed concrete structures can be properly achieved. This is verified by the statis-
tical tests that allowed us to conclude the optimal number of classes to be used for mapping the
structure under study. Moreover, the evaluation of the spectral signatures built with the 11 spectral im-
ages led to the conclusion that both the intensity images created from the laser scanning data (FARO
and Riegl scanners) are more suitable for detecting and mapping surface moisture affectation.

This work allows the definition of a robust methodology to compare spectral images captured from
remote sensors that are being used more and more to assist the routine inspection of existing infrastruc-
tures. Also, the algorithms implemented using MATLAB software permit the use of the methodology
presented and are validated in this paper for the routine inspection of exposed concrete structures, thus
providing a new set of tools to improve the structural health monitoring of civil engineering structures
and buildings.

Because the proposed method cannot directly provide information about the degree of penetration
of moisture into the subsurface, future research into the correlation of the external presence of moisture
with the degree of degradation inside is required. On the other hand, some studies have been carried out
in order to gain qualitative information about the inner characteristics of materials by using ground-
penetrating radar and infrared thermography, so new methods that can connect that information with
the method proposed in this article will be investigated.
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4.3. Teoría de las imágenes multiespectrales y su 

aplicación al análisis de patologías presents en las 

construcciones 

Este subcapítulo abarca el capítulo Multispectral Imaging: 

Fundamentals, Principles and Methods to damage assessment in 

Constructions (Imágenes multiespectrales: fundamentos, principios y 

métodos de evaluación de patologías en las construcciones) del libro 

Geotechnologies for the Reverse Engineering of Structures and 

Infrastructures publicado en Diciembre de 2015 como volumen de la 

serie Structures & Infrastructures en la editorial CRC Press/Balkema. 

4.3.1. Resumen 

Este capítulo de libro destaca la versatilidad y el potencial que tienen las 

imágenes multiespectrales para el diagnóstico y evaluación de patologías 

superficiales y particularizando para el caso de los materiales de 

construcción. A través de una revisión teórica de sus fundamentos, 

principios y métodos es posible adquirir las bases técnicas y de procesado 

para conseguir realizar una evaluación de patologías económica y 

eficiente a través del análisis de imágenes multiespectrales. Se dedica un 

apartado a las recomendaciones para elegir el sensor óptimo para cada 

caso de estudio concreto, las resoluciones requeridas, el coste, el tiempo, 

etc. Asimismo, se pone de manifiesto la importancia de convertir los 

datos crudos (en niveles digitales) de cada sensor a magnitudes físicas 

para mejorar los resultados de los procesos de clasificación de las 

imágenes. En este sentido, se dedica un apartado específico que 

proporciona asesoramiento tanto para realizar la calibración radiométrica 

como para el registro sensorial para una amplia gama de sensores. Para 

concluir, decir que los sistemas multiespectrales permiten la generación 

de productos híbridos de mapeo de patologías superficiales que resultan 

de gran utilidad para los expertos en materiales de construcción. Las 

imágenes multiespectrales se convierten de esta manera en una 

herramienta muy valiosa tanto para la detección como la cuantificación 

de patologías superficiales y para el mantenimiento y la toma de 

decisiones en este sentido. 



1 INTRODUCTION 

From early constructions to the sophisticated different architectural styles such as the Rom-
anesque, Gothic or Neoclassical without overlooking the vernacular and the modern architec-
ture, the choice of building materials has had a relevant role in constructions. The choice of the 
ideal material to be used (either for aesthetic reasons, workability, load-bearing capacity or 
availability) represents one of the most important decisions to be made. Besides, understanding 
how such material becomes degraded, its pathological state and evolution over time are una-
voidable tasks in the conservation of buildings. 

It is therefore crucial to establish a direct relationship between the pathological state of build-
ings and their conservation that should be addressed from a multidisciplinary approach that en-
compasses the use of different disciplines and types of sensors (Sánchez-Aparicio et al. 2014, 
Moropoulou et al. 2013). 

In recent years, the use of multispectral data and different remote sensing techniques has 
drawn much attention focused on the classification of multispectral images. This product, de-
fined as a set of data, in different regions of the electromagnetic spectrum, extracted from one or 
more sensors (active or passive) and assessed in the form of a 2D image offers decisive ad-
vantages and represents a new horizon for the analysis of building pathologies (Del Pozo et al. 
2015, González-Jorge et al. 2012, Armesto-González et al. 2010). 

In light of the foregoing, chapters VII and XIII aim to provide a complete overview (theoreti-
cal and practical) of the pathological study of constructions through the analysis of multispectral 
images. Under the same methodological framework, relevant aspects for the knowledge and 
conservation of buildings, as those listed below, have been taking into account: 

Multispectral Imaging: fundamentals, principles and methods to 
damage assessment in constructions 
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cultural heritage that these constructions represent. The prevention, rehabilitation and restora-
tion processes in constructions involve, among other task, the pathological analysis and assess-
ment of building materials. To this end, it is important to perform qualitative analysis in some 
particular areas of the structure under consideration such as X-ray inspections or petrographic 
tests. This information is then extrapolated to the rest of the construction surface. Taking into 
account the above, and within a non-intrusive context, this chapter aims to provide readers the 
theoretical information necessary to carry out the diagnosis of pathologies in constructions by 
multispectral analysis. 
 



Flexibility: understood as the applicability of the methodology presented, using data from 
both passive (conventional, multispectral or thermal cameras) and active sensors (laser scanning 
systems, microwave systems, geo-radar, tomography, etc.). 

Versatility: directly related to the diversity of applicable sensors. Thanks to them and to the 
methodology proposed it is possible to differentiate a broad variety of construction materials 
and detect possible pathologies affecting them. 

Safety: ensured because robotic platforms (terrestrial or aerial) are used allowing the imple-
mentation of this methodology in buildings whose structural integrity is in doubt and there is an 
increased safety risk to operators, and even in areas of difficult access (roofs, tops of towers, 
etc.). 

Non-invasiveness: that is crucial in the maintenance and preservation of buildings. This prop-
erty becomes more relevant in the case of historical buildings, where the main priority is to 
maintain the originality of their design. 

Scalability: One of the most important properties of the technique discussed in this chapter 
lies in its ability to assess large-scale data, that can be defined as the analysis over large areas or 
even complete façades, unlike conventional methodologies for the study of pathologies confined 
to small localized areas. 

After mentioning the most relevant characteristics of the methodology, among which high-
light the abundance of geometric and radiometric data and the ability of analyzing large areas, it 
is logical to imagine that such methodology must occupy and important place in variety of engi-
neering applications; more specifically preventive conservation and reverse engineering, as will 
be discussed below. 

1.1 Relation of the multispectral imaging with reverse engineering 

Traditional engineering uses methods and techniques for the planning, design manufacturing, 
testing and production of different objects where each process is carried out separately and the 
workflow is only in one direction. 

By contrast, reverse engineering attempts to obtain information referring to a real object in 
order to analyze and improve it. This analysis encompasses the study of manufacturing defects, 
building materials, its operation and other aspects, such as its design and geometry, which must 
be taken into account for improving it. 

In short, reverse engineering tries to re-document objects as computer-aided design (CAD) 
models, graphics or maps in order to improve and optimize the final article of the production 
chain. Sometimes it is even possible to manufacture a new one including the improvements in 
quality on it. 

Reverse engineering applied to constructions has the main goal of collecting and compiling 
all the information referring to the characteristics of building materials, type of construction, 
geometry, structural behaviors, identification of possible pathologies and technical documents 
(work plans at different scales, sketches, etc.) to gain an exhaustive and comprehensive 
knowledge of the building for its reconstruction, rehabilitation, restoration or improvement of 
energy efficiency. 

Degradation and alteration phenomena affecting building materials are the result of complex 
pathological processes. However, they all follow the same trend: (i) an origin; (ii) an evolution, 
and (iii) a final consequence. An exhaustive knowledge and quantification of the degradation 
process allows acquiring a new comprehension level of the construction. At this level it is pos-
sible to develop and apply preventive, restoration and rehabilitation measures. 

The principles of the methodology discussed in this chapter are based on reverse engineering. 
First, a detection of pathologies (final consequence) is performed; then, ways of pathologies 
evolution are studied and finally, a rigorous evaluation of the causes with the support of the car-
tographic products generated is pinpointed. This is why the approach attempts to obtain the in-
formation referring to the real object, in this case the construction, in order to obtain a causal 
analysis. The essential requirement is thus to have experience in building materials and con-
struction techniques, how different materials degrade and also knowledge on techniques capable 
to quantify such kind of construction damages (Fig. 1). 



 
Figure 1. General workflow followed in the study of constructions through direct and reverse engineer-

ing. 

 
Within the broad diversity of techniques that can be used for this purpose, remote sensing has 
become really important. This technology together with the use of algorithms and processing of 
computer data, allow data acquisition and interpretation in a rapid, reliable and precise way 
(Sánchez-Aparicio et al. 2015). Within this context, photogrammetry, remote sensing and multi-
spectral image classification have become mainstream. 

In light of the above, our aim in this chapter is to address, from a theoretical viewpoint, the 
most relevant aspects of the methodology presented, included in the following sections: 

- Introduction. This section will afford an overall picture of the importance of pathologi-
cal analysis in construction, together with the advantages provided by the multispectral 
analysis within the field. 

- Theoretical background. This has a dual aim. On one hand, and in a clear and synthetic 
way, we shall describe and assess the most commonly materials used in construction, 
together with the pathological processes affecting them. On the other, we shall offer a 
series of basic data regarding remote sensing and multispectral imaging analysis, in the 
form of assumptions and principles. 

- Acquisition of a multispectral dataset. This will provide a theoretical approach to: (i) 
types of sensors; (ii) technical specifications, and (iii) a short guide to good practices 
applicable to such sensors. 

- Calibration and registration of multispectral data. This will address different aspects re-
ferring to the sensors used (radiometric calibration of photographic sensors, terrestrial 
laser scanners, and data registration from multiple sensors). 

- Damage assessment. This section will show the final products (thematic, metric and car-
tographic information), together with the pathological analysis and evaluation revealing 
the potentiality of such products in the conservation of constructions. 



2 THEORETICAL BACKGROUND 

In this section a brief review of the physical fundamentals on which the data capture from elec-
tromagnetic energy is based is described. 

2.1 Principles of radiation 

In wave theory, electromagnetic radiation is described as a propagation phenomenon in which 
energy travels at constant speed (C) (the speed of light) and can be described by two parameters, 
the frequency(ν) and the wavelength (λ), being: 

C     (1) 

In turn, Plank´s quantum theory explains how electromagnetic energy interacts with matter 
and that radiation is composed of discrete particles called photons or quanta, whose energy is 
described as: 

Q h    (2) 

Where h is the Plank’s constant (6.626x10-34J/second) and ν is the frequency. Replacing ν ac-
cording to the Equation 1, we have: 

/Q h C    (3) 

This expression indicates that the energy of a quanta becomes smaller as wavelength increas-
es and is, therefore, more difficult to be detected. 

2.2 Energy interactions with materials 

The electromagnetic energy detected by a sensor crosses the atmosphere before being recorded. 
Since the atmosphere is a body with variable composition and characteristics, during its passage 
it may suffer many alterations. This fact is of great importance in the case of multispectral satel-
lite sensors because the solar rays have to cross the whole of the atmosphere. Nevertheless, in 
the present context since the distance between the sensors used and the objects are very small (a 
maximum of 100-200 m), the atmospheric effect can be considered negligible with respect to 
the levels of precision we are working at. 

It is therefore appropriate to focus on the interaction processes that happen when electromag-
netic energy impinges on the different surfaces and materials. All this can be explained via the 
principle of the conservation of energy, according to which the incident energy is reflected, ab-
sorbed or transmitted by the different covers and depends on the wavelength considered (Equa-
tion 4). 

( ) ( ) ( ) ( )i r a tE E E E       (4) 

where Ei(λ) is the incident energy, Er(λ) is the reflected energy, Ea(λ) is the absorbed energy, 
and Et(λ) is the transmitted energy. 

The share of energy reflected, absorbed and transmitted by the same material depends not on-
ly on its composition and current condition but also on the wavelength at which it is observed. 
Thus, by using multispectral sensors, it is possible to distinguish different states, characteristics 
and properties of the same material at the same time.  

From all the types of energy described in Equation 4, multispectral sensors are specialized in 
observing the proportion of energy reflected. In order to study it, it is important to bear in mind 
the way objects reflect, that is the geometry of the reflection. Essentially, it depends on the 
roughness of the object surface. Thus, it is possible to distinguish two types of ideal reflectors 
(Fig. 2a): the specular type, where the angle of incident radiation is the same as the angle of re-
flect radiation; and the diffuse or Lambertian types (on rough surfaces), in which the reflection 
is uniform in all directions. However, in practice, these cases are not seen and the reflection is 
mixed between these two ideal cases. 

 
 



 
 
 
 

 
Figure 2. (a) Types of reflectors; (b) Diffuse reflection. 

 

Regarding construction materials, the specular reflection may occur on surfaces such as glass, 
steel or aluminum. But in most cases, the incident wavelength is much smaller than the varia-
tions in height of the surface to be studied, so that the reflection is usually diffuse (Fig. 2b). 

Diffuse reflection contains information about the color, being this property the most interest-
ing one to be observed in view of the information it provides. The reflectance (ρ) of a material is 
defined as the portion of reflected energy compared to the incident energy (Equation 5). 
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where ρ is the reflectance, Er(λ) is the reflected energy and Ei(λ) is the incident energy. 
By analyzing the reflectance graphics for different wavelengths it is possible to construct the 

so-called spectral reflectance curves or spectral signatures. 

2.3 Spectral Signatures 

The wavelength and its location on the electromagnetic spectrum are the parameters that are 
usually used to classify electromagnetic waves. In the electromagnetic spectrum it is possible to 
distinguish different regions: the ultraviolet, the visible (wavelengths between blue and red; 
from 400 to 700 nm), the infrared (near infrared: 700-1,300 nm, middle infrared: 1,300-3,000 
nm and thermal: 3,000-14,000 nm), microwaves (from 1 mm to 1 m) etc. 
 



 
Figure 3. Spectral signatures of the most common construction materials.  

 

Acquiring data from constructions and façades in a remote way by multispectral systems and 
sensors is possible thanks to the interaction between the electromagnetic energy and the differ-
ent molecular components of materials. Each material has its specific spectral behavior, which 
can be obtained at the laboratory under controlled conditions. That is, each material has its spe-
cific way of reflecting energy at the different wavelengths and it is perceived by observing its 
spectral signature (Fig. 3).   

However, far from being a unique and homogeneous behavior varies substantially as a func-
tion of the physico-chemical properties (temperature, moisture, degradation, decomposition). 
These characteristics are recorded in the data acquisition, and vary depending on some envi-
ronmental factors (illumination, reflections, etc.) These alterations give rise to difficulties when 
attempting to identify, characterize and classify materials, but at the same time are the basis for 
acquiring valuable information about the alteration degree of the materials, the presence of 
chemical or biological pathologies as well as structural damages. 

At this point, it could be asked how many points of the electromagnetic spectrum would be 
necessary to differentiate a given material or certain characteristics of that material. Without 
considering hyperspectral sensors, it may be sufficient to develop strategies based on the choice 
of just a few wavelengths, appropriately chosen, which could be enough to perform the identifi-
cation and discrimination of a material. When the spectral signatures are significant along the 
different regions of the spectrum, there are no problems for the differentiation of materials to be 
classified. However, there are some materials with similar spectral responses and may be neces-
sary to observe them at very close wavelengths. Accordingly, if the aim is to identify a single 
material or characteristic the choice of few suitable wavelengths will suffice. The greater variety 
of materials to be identified, the greater number of wavelengths necessary. 

2.1 Materials characterization: classification and common pathologies 

Throughout history, the quantity of different materials used for construction purposes has been 
increased. Accordingly, it is crucial to understand the nature and limitations of such materials, 
thus determining their applicability and behavior in a construction. Despite this, for the purpose 
of this chapter it is sufficient to establish a series of basic concepts, which enable, in a general-
ized way, the discrimination and knowledge of the broad variety of materials that are currently 
used in constructions. 

Leaving aside the pathological conditions of the materials, the classification of materials can 
include several criteria, from a classification based on the construction functionality (resistant, 
agglomerating and auxiliary materials), through a classification based on their emplacement in 



the construction (foundations, structures, envelopes, finishes and decoration) to a classification 
based on their nature (stone, agglomerates, organic and metallic materials, among others). With-
in this range of classifications, the most suitable one for our purposes would be the latter one 
(Fig. 4). 

 

 
Figure 4. General classification of materials (attending to their nature) commonly used in construction. 

 

Traditionally, humans have used available and durable materials that were closest to the con-

struction. These materials may have changed due to possible degradation processes. Even, mate-

rials of the most modern constructions and buildings may be eventually deteriorated and be-

come degraded due to time or other reasons (e.g., lack of maintenance). These alterations may 

depend on: 
- The construction element (wood, granite, limestone, slate, adobe, brick, steel, concrete, 

etc.) and characteristics as composition, structure and texture.  
- The constructive element (foundations, walls, arches, vaults, concrete slabs, pillars, 

etc.). 
- The environmental conditions (sharp changes in temperature, rain, snow) which elicit 

processes of weathering and erosion. 
- The location of the construction (orientation and geographic situation). 
- Environmental pollution (e.g. constructions close to roads with a high traffic density or 

industrial parks). 
- On human activity (paint on walls, acts of vandalism, armed conflicts). 
- Natural disasters (earthquakes, fires, etc.). 

To offer an exhaustive definition of the properties and pathologies that such materials might 

display is not the aim of this chapter. Accordingly, below we shall have a brief and fairly gen-

eral look of the properties of the materials and the main causes of the pathologies affecting con-

structions. 
In order to determine which type of material is ideal for a given construction it is necessary to 

know its properties, for that reason following properties of solids materials are studied: 
- Mechanical properties: Deformation produced by the load of the structure. This property 

establishes the material strength and its elastic modulus. 
- Electrical properties: Electrical conductivity and dielectric constant. 
- Thermal properties: Thermal conductivity and heat capacity. 
- Magnetic properties: Response of the material to a magnetic field. 
- Optical properties: Refractive and reflectivity indexes and the response to the electro-

magnetic radiation. 
- Chemical properties: Chemical reactivity of the material. 

The origin or cause of the pathological process can be divided into two well-differentiated 

groups: 



- Indirect causes: derived from construction problems due to poor design, inadequate 
building practices, the use of defective materials, and from lack of maintenance. These 
are the first causes that must be prevented. 

- Direct causes: refer to all the damage arising from structural, atmospheric, chemical, 
physical, reasons, among others. 

Below we show schematically the main direct causes: 
- Structural causes: movement of structures, separation of wall coverings and materials 

etc. In this context, the following mechanical damages must be studied: 
 Deformations: strains, deflections, impacts and vibrations.  
 Cracks: longitudinal openings affecting the thickness of the construction element 

owing to excess load or hygrothermal expansion and shrinkage. 
 Fissures: like cracks, the affect the surface of the construction element as the re-

sults of a discontinuity, owing to a join, to the lack of adherence or to deformations 
and movements of expansion and shrinkage. 

 Material detachments: owing to the lack of adherence between the finishing mate-
rial and its support. The main cause is due to other previous damages such as those 
caused by humidity, cracks or deformations.  

 Mechanical erosion: caused by accidental knocks or grazes that produce the loss of 
surface material. This erosion usually occurs on the plinths and lower parts of fa-
çades. 

- Degradation of materials due to:  
 Internal factors (composition, structure, and texture). Knowledge of the internal 

properties of each material used allows choosing the most suitable one. A wrong 
selection of a material may lead to its rapid degradation.   

 External factors as environmental conditions (frosts, rains, etc.), its use and its 
maintenance.  

The following external factors must be taken into account: 
- Physical damage due to environmental phenomena. Highlighting :  

 Humidity: an excess of water, greater than admitted by the construction material, 
causes physical variations of the materials (humidity during construction, capillari-
ty, leaks, condensation and other accidental factors). 

 Erosion: the loss of surface or modification of materials due to the action of atmos-
pheric agents that produce weathering. 

 Pollution: this leads to dirtiness on façades owing to the deposition of suspended 
particles in the air. If the particles are simply deposited, the result of dirtiness is 
due to deposition, but if they enter the pores of the surface the dirtiness is caused 
by differential washing that cause characteristic marks on surfaces.  

- Chemical damages. Caused by the appearance of salts or exposure to acid or alkaline 
environments, which react with the construction material and lead to its decomposition 
and degradation. The following factors are the most important: 

 Efflorescence. The soluble salts contained in the construction material are dis-
solved in the water of humid parts showing as a white chalky deposit on the sur-
face. The crypto-efflorescence is also very important and it is refers to crystallized 
salts that are formed inside the material, leading to hollows and later detachment of 
the material.    

 Oxidation and corrosion. These processes occur on metals such as iron and steel 
due to electrochemical reactions between the metal and the external elements of its 
surroundings. This may lead to a progressive loss of materials from the surface of 
the construction. 

 Organisms. This refers to living beings, either animal or vegetal, which can secrete 
aggressive substance that can degrade and alter the construction materials (moulds 
and fungi) and also can penetrate the surface (insects, roots, etc.) causing physical 
damage. 

 Erosion due to chemical factors can cause molecular transformations in the materi-
als by reacting with other elements. 

It is important to note that after gathering an exhaustive data collection referring to the con-
struction, it is necessary to perform a rigorous data acquisition to study the degradation level of 



the materials. In the data acquisition, and depending on the specific pathology, greater or lesser 
importance should be given to geometric aspects (the assessment of deformation, mechanical 
erosion, etc.) and to qualitative (X-ray, the use of reagent, etc.) and quantitative analysis (multi-
spectral image studies).  

If it becomes necessary to get an in-depth knowledge of the construction materials, their 
properties and associated pathologies, readers are invited to consult (Watt 1999), as well as the 
technical legislation for construction associated to each country. 

3 ACQUIRING A MULTISPECTRAL DATASET 

The concept of multispectral image is traditionally associated with the concept of data captured 
by a single remote sensor (multispectral cameras) capable of recording information at various 
wavelengths at the same time (Campbell 2002). This section aims to provide a more compre-
hensive view of this concept, opening the possibility of acquiring multispectral datasets by the 
combination of data coming from different types of sensor, whether passive (visible, infrared, 
and thermal cameras) or active (laser scanners). 

A multispectral dataset is essentially made up of a matrix of numerical values called digital 
levels that come from the analogic-digital transformation of the electromagnetic energy reflect-
ed by the surface of the object observed (Jones et al. 2010). The value of the digital level corre-
sponding to a pixel is proportional to the intensity of the radiance (W·m−2·sr−1·nm−1) reflected 
by the object. The ability of the sensor to discriminate among levels of radiance, and hence offer 
a greater or smaller range of digital levels, will depend on the radiometric resolution. If in the 
acquisition of a multispectral dataset several mono-spectral sensors are used with the aim of 
capturing several bands or channels of the electromagnetic spectrum, the process of the for-
mation of the digital image is repeated for each of the sensors used, recording information at the 
specific wavelength of each of them. However, in the case of using multispectral systems, the 
formation of the multispectral dataset is performed simultaneously owing to the synchronized 
use of a set of cameras integrated into a single sensor. Each of these cameras can be equipped 
with an optic filter designed to absorb radiation only within a specific wavelength range 
(Lillesand et al. 2004) or with a dedicated sensor with an integrated filter. Whichever method is 
used, the final result is the generation of a three-dimensional matrix (Fig. 5) (NxMxB) in which 
the value of the digital level of each pixel (Pn,m) will be located in a row (N), a column (M) and a 
band (B), from where the term of multispectral image is coined. 

 

Figure 5. Multispectral image formed by eight different spectral bands and a spectral signature obtained 

from the reflectance of a pixel for each band. 

 
In multispectral datasets, the information recorded by each sensor can be exploited together add-
ing the advantages that various sensors can bring to the limited registration of a single one. In 
order to achieve this spectral hybridization, a number of corrections and modifications must be 



undertaken to achieve uniformity in the resolution of the data and a rigorous registration process 
of the sensors involved (see Section 4). In short, the aim is to be able to simultaneously use the 
radiometric data collected by each sensor, thus broadening the spectral resolution of the final 
multispectral image. The ultimate objective is to analyze and assess the status and progress of 
degradation in constructions and detect possible pathologies by using different sensors strategi-
cally. 

3.1 Choosing the most appropriate sensor 

The choice of acquisition sensors for each individual study case will depend on several factors, 
among them: (i) the aim pursued (detection of biological elements damp patches, structural 
damage, etc.), which will dictate the range of wavelengths to be used; (ii) the working scale, 
which will govern the level of geometric resolution required for the sensor; (iii) the type of pre-
dominant material or materials in the object, and (iv) the temporal frequency necessary to ap-
preciate unequivocally the changes in the object (Sabins 2007). Therefore, if the aim is focused 
on multispectral image generation from data captured by two or more different sensors, the first 
step is to ensure a perfect homogenization of the data resolutions after which a proper registra-
tion is made. This process will be addressed in detail in Section 4: Multispectral dataset calibra-
tion and registration. 

Sensor resolution. 

To understand the whole concept of the resolution of a sensor, four concepts need to be con-
sidered: 

- Radiometric resolution: Number of digital levels in which the intensity of the signal (ra-
diance) is recorded. Since radiance is stored as a number of binary bits, the greater the 
number of storage bits of the sensor, the greater the radiometric resolution. For tempera-
ture sensors, the radiometric resolution is often converted to the equivalent thermal 
resolution. The most commonly used sensors for spectral studies of construction materi-
als have radiometric resolutions ranging between 8 and 12 bits, (256 to 4096 different 
digital levels). 

- Spatial resolution: Size of the ground element represented by an individual pixel. This 
is usually determined by the optical system of the sensor used to capture the data and by 
the distance between the sensor and the object (scale). The ground sample distance 
(GSD) is equivalent pixel size on the ground and is defined in Equation 6.  

d S
GSD

f


  (6) 

where d being the distance to the object; S is pixel size and f is the camera focal length. 
If the sensor-object distance (d) is reduced very much, it may be possible to achieve 
sub-millimeter resolutions by the use of devices with large focal lengths and sensors 
with a very small pixel size. 

- Spectral resolution: The ability of a sensor to define wavelength intervals and hence to 
discriminate between different component wavelengths in the scene; it is determined by 
the number and width of the individual spectral bands recorded. 

- Temporal resolution: The time between successive data captures. It makes sense in sat-
ellite imagery and ground-based monitoring case studies to analyze the state of the ob-
ject under study along time. It is vital for predicting maintenance strategies in order to 
prevent the degradation of building materials and to prioritize different stages of possi-
ble rehabilitations. 

Below, a variety of sensors ranging from the mono-spectral to multispectral types are dis-
cussed in detail. As already mentioned, the data from all of them can be combined to form a 
multispectral dataset with more valuable information.  

Sensing instruments 

The most common classification of sensors categorize them in two main groups. Namely pas-
sive and active sensors, depending on whether they require or not an external energy source to 



recover information (Tsang et al. 1985). All can be fixed or loaded onto a large variety of plat-
forms for the acquisition of data around the object of interest (from hand-held platforms at 
ground level to unmanned aerial systems, aircraft and satellites). In practice, and particularly in 
the case of constructions, the most widely used platforms are those that allow the sensors to be 
fixed and make a controlled capture to be made at ground level, and in some cases from above 
the ground, by the use of drones several meters above the structure. The platform chosen deter-
mines the position of the sensor in the data collection and the theoretical spatial resolution as 
long as a distance to the object is fixed. 

- Passive sensors. Passive sensors need an external energy source. The Sun acts as a natu-

ral source of radiation and the energy reflected by the different construction materials is 

captured passively. The energy that is naturally emitted in the specific case of thermal 

infrared can be detected in the daytime or night, as long as the amount of energy is large 

enough to be recorded. Since light is crucial for passive optical sensors, it must be en-

sured that the light will be as uniform as possible during data acquisition. These systems 

are made up of photo-detectors or thermal detectors sensitive to the electromagnetic ra-

diation at wavelengths ranging from the visible spectrum to the infrared and their corre-

sponding filters. There are two possible configurations for the case of photo-detectors. 

Those called CCD (Charge-Coupled Device) and CMOS (Complementary Metal-Oxide 

Semiconductor) (Magnan 2003). Both comprise metal-oxide semiconductors distributed 

in matrix form and they accumulate an electric charge for each pixel proportional to the 

intensity of the incident radiation but differ in method of reading the electric charges; 

different advantages and drawbacks are inherent to both. Thermal detectors use a differ-

ent kind of technology based on the absorption of the heat energy emitted by the object 

being studied. Except for thermographic cameras, the use of filters adds the possibility 

of selecting the bands of the spectrum at which the best characterization of the object to 

be studied can be achieved. Below are images of the passive sensors most widely used 

for the spectral analysis of construction materials (Fig. 6a). 

 

 
Figure 6. Examples of sensors used in the inspection of constructions: (a) active sensors, (b) passive sen-

sors. 



 

 Consumer-grade/reflex digital cameras (Visible region 400-700 nm) 
The lens is the element of cameras that is used to focus the light reflected onto the 
photoelectric detector. For the inspection of constructions, high geometric and ra-
diometric resolutions and the use of high-quality lenses is required. The main ad-
vantages of consumer-grade digital cameras are their convenience, portability 
(weights of 150 g or even less) and low cost. Unfortunately, however, these sensors 
come with a number of features which have adverse effects on remote sensing ap-
plications. The final product of these sensors is color images. To generate these im-
ages, an optical filter is coupled to the photoelectric detector (normally CCD) in 
order to obtain the three primary colors (red, green and blue), which combined in 
different proportions cause the sensation of color. This filter is known as a Color 
Filter Array (CFA) mask, or Bayer filter mosaic, and in it four original pixels from 
the detector are required to generate each color pixel, with the consequent loss of 
spatial resolutions (Lu et al. 2003). 

 Multispectral cameras (From visible to short-wave infrared – SWIR – region 400-
3,000 nm)  
Multispectral sensors are the only passive systems able to record information sim-
ultaneously in a few bands of the spectrum. The main problem with these systems 
is how to achieve multispectrality and the correct synchronization of all the ele-
ments involved. There are several configurations that can be used to do this. On the 
one hand, the integration of several lenses (photo-detector plus optical filter) in a 
single device (such as the case illustrated in Fig. 6), where each lens records infor-
mation for the spectral band permitted by its filter. On the other, there are the cam-
eras that achieve multispectrality using a single photo-detector and a ring of filters 
that, by means of small, rapid rotation, fixes the required input filter. The ad-
vantage of these over the former is the absence of eccentricity between the different 
captures; in this case the multispectral image is conformed almost immediately 
with no need for parallax correction (distance between the lenses). In this case, the 
geometric corrections and the correction of systematic errors (Del Pozo et al., 
2014) are made only for the existing lens, such that time can be saved. By contrast, 
they have the important drawback of not being able to capture the multispectral da-
taset at the same moment of time.  

 Thermal cameras (Thermal infrared region 8,000-15,000 nm) 
Any object with a temperature higher than absolute zero (-273 ºC or 0 ºK) is able to 
emit infrared energy. The cameras included in this group allow the temperature of 
the object studied to be obtained at a given distance, without the need to establish 
physical contact with its surface. Thanks to the thermal detectors incorporated, they 
capture the infrared radiation belonging to the radiation emitted by different sur-
faces and convert this into electrical energy. This electrical energy is translated into 
a digital value, finally providing the so-called thermographs or thermal images, 
from which is it is possible to derive the temperature for each pixel.  

- Active sensors. These provide their own source of radiation for illumination. They emit 

radiation, which is directed toward the surface to be investigated. The radiation reflected 

from that target is detected and measured by these sensors. One of the most widely used 

sensors for the radiometric and spectral study of materials is the terrestrial laser scanner. 
 3D laser scanners  

Three-dimensional laser scanners are of standard use in the geometric documenta-
tion of constructions and buildings since they allow real objects to be reconstructed 
in three dimensions with high spatial resolution in a short period of time. Use of 
this type of sensor for the creation of multispectral dataset needs data processing to 
perform the required transformations and obtain 2D images from 3D information. 
These are active systems, generally narrow-band mono-spectral that emit a series 
of laser pulses in all spatial directions thanks to deflector mirrors, after which the 
returning beam is captured, obtaining 3D information of the element studied. In 
some cases they have cameras, such that as well as the above-mentioned intensity it 



is possible to extract information about the visible range of the object. These sen-
sors do not need to be in contact with the structure, which is a key factor in the 
documentation of constructions and buildings where techniques that might degrade 
the construction material have been ruled out. One of the greatest advantages of 
this type of sensor is the possibility of combining the geometric and radiometric in-
formation provided so that the pathologies detected in the construction materials 
can be characterized. 
The physical principles on which the system of distance measurement is based (op-
tical triangulation, time of flight and phase shift govern the range and precision of 
the laser. There are different configurations and models, and we are now witness-
ing the evolution towards the design of increasingly rapid, light and precise sen-
sors. This variety of configurations allows different possibilities and functionalities 
that are useful for many user needs. Figure 6b shows some of the laser scanners 
most widely used for the documentation and characterization of the pathologies 
found in construction materials. 

3.2 Advise and best practices for multispectral data acquisition 

Since there is a large variety of sensors that can be used to characterize possible pathologies in 
constructions, the aim of this section is to offer a guide to good practices for the data acquisition 
and ease data processing required to conform the final multispectral dataset. In chapter XIII, 
where several study cases are discussed, conclusions may be drawn about the adequacy of each 
of the sensors and their suitability for each situation and pathology. In the long run, the issue is 
to perform a good planning of the data acquisition step in which the appropriate sensors and cri-
teria are taken into account 

Below there is a list of the most important criteria to bear in mind in the general capture of 
data (the use of both passive and active sensors) and for the particular use of optical passive and 
thermal passive sensors. 

Active and passive sensors: 
- Distance to the object vs. spatial resolution. In this matter, it is necessary to bear in mind 

that correct focusing of the object is crucial if we are to obtain clear, high-quality re-
sults. Accordingly, it is necessary to take into account the field of view (FOV) of the 
sensor. This will determine the total number of settings and hence the total duration of 
final data acquisition. 

- Surface uniformity. The more uniform the surface, the better the results obtained since 
the radiation will be reflected in a diffuse and uniform way so fewer shadows will be 
generated. 

- Overlapping. With a view to obtaining a large amount of information, ease the matching 
of geometries and ensuring the validity of the dataset, it is appropriate to establish cer-
tain overlapping zones between captures, whose amount may vary depending on the 
particular study case. 

- Number of settings. The greater the number of settings, the longer the time spent on ac-
quisition, the greater the amount of information and the greater the error propagation. 
The general strategy consists of optimizing the number of stop settings, maintaining the 
criterion of overlapping and solving the problem of masking and interferences that may 
exist (object interposed, static and in motion). 

Passive optical sensors: 
- Homogeneous illumination. Care must be taken to prevent the surface studied from hav-

ing any kind of projected shadow, deriving either from the construction itself or from 
some element outside it. Accordingly, it is recommended that measurements be taken on 
cloudy days since these are when solar radiation is most uniform and diffuse. 

- Time of data acquisition. Care should be taken to avoid the central hours of the day 
when the variability in the radiation between illuminated and non-illuminated zones is 
most pronounced. Also, maximum efforts should be made to avoid situations when zone 
of shadow, hidden zones and zones with reflections arise. The ideal times are therefore 
at dawn and just before dusk. 



- Position with respect to the Sun. The reflection from a surface is a function of the angle 
of view and depends on the proportion of specular and diffuse reflectance.  The most 
appropriate position, in cases where there is no homogeneous light, is the one in which 
the Sun is immediately behind the device, so that the surface is completely illuminated. 
It may be useful to note down the time and date of image capture in case it were neces-
sary to make any corrections later. 

Passive thermal sensors: 
- Thermal equilibrium. A specific thermographic data acquisition protocol is performed to 

avoid surface heating by direct radiation from the Sun. In particular, images are ac-
quired before sunrise and after sunset. Thermographies are taken with the same focus 
the camera is calibrated for, from an orthogonal position with respect to the façade con-
sidered, maintaining a constant distance according to the resolution required and guar-
anteeing an overlap between adjacent thermographies.  

4 MULTISPECTRAL DATASET CALIBRATION AND REGISTRATION 

As a function of its composition and state each object reflects and emits radiation differently, 
fulfilling the laws of physics (Section 2). Thus, the curve that describes the proportion of radia-
tion reflected as a function of the wavelength is known as the spectral signature (Fig. 3). Re-
garding emission, this is a function of the temperature of the object and will take place in the in-
frared for temperatures close to the Earth’s surface (Orlande et al. 2011). The challenge of 
remote sensing is no more than using a camera/sensor that can digitally store the energy coming 
from the object observed, radiance either reflected or emitted. By this way it is possible to use 
the images generated to classify the type of object, extract its characteristics and even assess its 
possible states, such as for example the existence of pathologies. To solve the problem at hand, 
it is necessary to follow a series of steps that invert the process of transformation undergone by 
the radiation since it is emitted or reflected from the object until it is stored digitally. 

The first alteration to the radiation is due to the propagation medium between the object and 
the sensor, which essentially consists of scattering and addition of radiation emitted by the at-
mosphere itself. As commented in Section 2, its correction can be considered negligible for cap-
tures taken at ground level, where the object-sensor distance is very small. Nevertheless, there 
are mathematical models for calculating this type of correction, such as the 6S model (Vermote 
et al. 1997). 

From the time when the radiation reaches the sensor until the image stored in binary format is 
generated a series of processes occurs, outlined in the following figure (Fig. 7). 

 

 
Figure 7.  Main components of a sensor. 

 

When the radiation finally reaches the surface of the detector, the signal generated will depend 
on the amount of energy of each wavelength and the response of the detector. This process in-
volves the response curve of the sensor, which depends on its chemical composition and will 
vary for each wavelength, as illustrated below (Fig. 8). 
 



 
Figure 8. Spectral response of the human eye in comparison with different detectors: silicon (visible and 

infrared cameras), GaAs-GaAsAl (Near infrared cameras) and InGaAs (SWIR cameras). 

 
Then, the signal received, expressed as an electrical response (Fig. 9), is amplified and convert-
ed into a digital level, applying two coefficients, called gain and offset, and a quantification to 
convert it into a whole number (as a function of the radiometric resolution of the sensor, as 
commented in Section 3). In some cameras, the choice of an ISO sensitivity corresponds to the 
alteration in gain, its increase allowing the acquisition of images from poorly lit scenes, with the 
drawback of the consequent increase in noise that is translated into a loss of definition. 

 

 
Figure 9. Different stages involved in the conversion of light radiance to digital levels: electrical response 

(left), amplification (centre) and analog-to-digital conversion (right). 

 

New cameras/sensors working in regions beyond the visible spectrum have appeared on the 
market for short-range applications, including multispectral, hyperspectral and thermal sensors. 
However, currently it is necessary to use different cameras/sensors to complete the perception of 
objects in the different regions of the spectrum that the final user one is interested in. This need 
is imposed by the trade-off between the different resolution components of sensors (Section 
3.1). The use of several sensors involves solving two problems: the radiometric calibration, 
which will allow the physical variables to be estimated for each of the bands, and the geometric 
fusion or registration of sensors that will allow the correct three-dimensional position to be at-
tributed to the physical information obtained. Below we devote two subsections to addressing 
both issues. 

4.1 Radiometric calibration 

In remote sensing, the relationship between the digital level (DL) and the reflectivity of the ob-
ject observed (

k ) is expressed, in a first approximation, as Equation 7 shows: 

( )k
k

L gain DL offset

E E 

 


  
   (7) 

where L represents radiance, E represents the irradiance of the scene, gain and offset are the 
radiometric calibration coefficients, considering the following as a hypothesis: a Lambertian be-



havior ( ) of the surface of the observed object, and a propagation unaffected by alterations 
from the atmosphere (Section 2). 

The radiometric calibration is simply the process that allows knowing the gain and offsetting 
coefficients necessary for later application in order to obtain physical magnitudes, in terms of 
radiance, reflectivity, temperature, etc. They will be estimated from the digital levels extracted 
from the image in the correct position for each region of the surface of the observed object, 
which will also involve removing possible geometric aberrations by a photogrammetric model-
ing process. 

In short, radiometric calibration is based on inverting Equation 7, in terms of reflectivity in 
this case, posing a set of equations where the unknowns are precisely the gain and offset calibra-
tion coefficients (Moran et al., 2001). As an example, in many case of satellite imagery, these 
coefficients are provided in a metadata file, and have been solved previously in a process of la-
boratory calibration prior to placing the sensor in orbit, but which in certain cases are corrected 
on the basis of a field calibration process. In the laboratory calibration there is total control over 
the energy source and an special device known as integrating sphere is used in order to approx-
imate quite closely Lambertian behavior. In field calibration, or vicarious calibration, reflectivi-
ty values are obtained for a set of areas observed in the image using a spectroradiometer. Also, 
by measuring the radiance for an artificial surface of known and calibrated reflectance and 
Lambertian behavior at the same moment it is possible to obtained the reflectivity in the band in 
question. In this process, on one hand we measure pseudo-invariant artificial surfaces such as 
colored and gray scale tarps to solve the calibration model and on the other we measure artificial 
or natural surfaces to validate it. 

4.2 Registration based on multiple sensors 

If the aim is to consider the three-dimensional geometry of the surface of an object onto which 

the radiometric information of the different bands of the available images will be projected as 

texture, the solution will lie in solving the General Method of Aerial Photogrammetry (Kraus et 

al. 1993). But this methodology will have the added problem of the complex geometries present 

in terrestrial scenarios. This methodology can be split into two large steps: (i) determination of 

the position (spatial and angular) of the sensors, and (ii) reconstruction of the 3D geometry of 

the object. Having determined the geometry and having resolved the positions of the sensors, 

we shall be able to extract the radiometric values associated with the geometry of the object in 

each of the spectral bands. 

In order to relate the values of the image pixels of the images from the different sensors to the 

corresponding points of the object observed, it is necessary to solve the internal parameters and 

external position of the sensor, which includes the processes of internal and external orientation 

respectively. The internal orientation solves the problems of the geometry in the sensor: the op-

tics and sensor plane, including models to obtain the focal length, the principal point and the 

geometric distortion. The external orientation refers to the capture position and the orientation 

of the viewing axis. 

The internal orientation can be solved by the process of geometric calibration of the sensors 

(Luhmann et al. 2013), which can be done at the laboratory before the field campaigns. Alterna-

tively, the unknowns of internal parameters can be integrated in the adjustment of the external 

orientation described below, in the method known as self-calibration.  

The determination of the images external orientations is a classic problem of photogramme-

try, known as photogrammetric spatial resection, and this can be solved through the formulation 

of a mathematical model (collinearity condition). This model involves points of the scene of 

known position (Ground control points - GCPs), which are measured manually in the images, 

and tie-points of unknown position on the scene , measured in the images automatically by ap-

plying algorithms belonging to computer vision, such as SIFT (Scale-Invariant Feature Trans-

form) (Lowe, 1999) or SURF (Speeded Up Robust Features) (Bay et al. 2006). However in cer-

tain cases tie-point detection can be completed by manual measurement. Solving this process 

requires having sufficient overlap between the images. Although this method provides valid re-

sults in the case of images in the visible spectrum with sufficient overlap and image quality, in 



the case of other regions of the spectrum it is a problem that currently remains to be solved 

(known as multimodal matching). This is the case above all in the thermal infrared, owing to 

causes such as insufficient overlap between images, radiometric variations due to changes in 

perspective, low geometric resolution, poor definition in the images, a paucity of radiometric 

variation between certain bands, etc. 

Accordingly, as an alternative to the process of  registration from a 3D point of view there is 

the possibility of re-projecting the different images onto a common plane using a 2D projective 

transformation (Hartley et al., 2003). The only proviso of this approach is that if the object stud-

ied is not planar, variations due to relief will be generated and these will affect the subsequent 

metric analyses. 

5 DAMAGE ASSESSMENT 

The assessment of damage on façades and civil constructions from multispectral images using 
non-destructive/non-invasive technologies (Section 3), and the strategies of calibration and reg-
istration described (Section 4) will require the generation of hybrid mapping products. These 
derived products can be: 2D (rectified images and orthoimages for visual interpretation, in true 
and false color and for quantitative analysis in different regions of the spectrum-visible, infra-
red, thermal, etc.); 3D (models textured from images from different regions of the spectrum sim-
ilar to the 2D case depending on whether they are destined for visual or quantitative analysis) 
and 4D (3D models that are comparable over time, in order to address monitoring processes). 
They will act as input data in the application of different strategies of multispectral classification 
and dimensional analysis, with a view to assessing possible chemical and physical pathologies, 
respectively.  

To accomplish the above, here we is proposed a specific methodology that will allow the fi-
nal user, using data acquired from several sensors, passive and active, multispectral and mono-
chromatic, to assess the pathological damage in different types of construction, either heritage 
buildings (historical) or civil engineering constructions (infrastructures). The proposed method-
ology can be broken down into three steps: (i) generation of hybrid cartographic products; (ii) 
multispectral classification and dimensional analysis based on the hybrid products, and (iii) as-
sessment of the results obtained with graphic, numerical and statistical methods. 

5.1 Generation of hybrid cartographic products 

In view of the sensors that can be used (Section 3), photogrammetric methods and laser scan-
ning methods should be used; these will allow the generation of hybrid cartographic products. 
Moreover, depending on the complexity of the object to be assessed, 2D cartographic products 
in the form of image rectifications and true orthoimages, and 3D models that integrate any mul-
tispectral band as an additional value, will be considered. Regardless of their type, they can be 
comparable over time in order to monitor the object. More specifically, when the assessment of 
the pathological state refers to chemical aspects (e.g., the presence of salts, vegetation, etc.), 
multispectral classification will be the procedure chosen to accomplish this goal. This classifica-
tion will use as input data correctly calibrated 2D images (section 4) and with a uniform scale 
through the use of rectification and orthorectification procedures. It should be noted that this 
multispectral image classification may be based on auxiliary information, which is sometimes of 
great value, in the form of 3D or 4D models (multitemporal) that may help the classification 
process, making the results much more robust. By contrast, when the aspect to be assessed cor-
responds to physical pathologies (e.g., cracks, detachments, structural changes, etc.), 3D and 4D 
models will be ideal for performing a dimensional analysis that will allow changes to be detect-
ed, displacements and deformations to be assessed in the construction under study. 

5.2 Multispectral classification and dimensional analysis 

Image classification is a fundamental task in the analysis and exploitation of multispectral imag-
es. This is especially relevant when the aim is to reduce the complexity of a set of digital levels 



belonging to different regions of the electromagnetic spectrum in different homogeneous cate-
gories that represent different spectral clusters (spectral signature) or informational classes. The 
aim here is the render the numerical values acquired by the sensor or sensors interpretable via 
thematic maps. This process involves the conversion of a multispectral image into another im-
age of the same size and characteristics by means of the assignation of each of the pixels to and 
informational and/or spectral category. To do so, two classification strategies are used, differen-
tiating between supervised and unsupervised classification:  

- Supervised classification. This starts out from identification on the image (by an expert 
user) of pilot areas, known as training polygons. These areas must correspond to, specif-
ic informational classes (material, chemical pathology, etc.) identified in situ or via ex-
isting images and/or maps. These areas fulfill a dual role; on one hand, some of them 
are used as a basis for the later segmentation process and, on the other, the others serve 
as check areas for assessing the results of the classification. Both types of area must 
show a certain degree of homogeneity and a balanced distribution in different zones of 
the image so that they will cover different variations within the same informational 
class. Based on a statistically study, an analysis of the viability of the differentiation 
among the classes chosen is made. As a result of this analysis, it is possible to modify 
(remove, fuse or split) the classes and select the spectral bands that best discriminate the 
problem in hand. Finally, via the application of different segmentation algorithms (Ta-
ble 1) it will be possible to assign all the pixels of the image to one of the information 
categories established. 
Most segmentation strategies analyze pixels individually based on their spectral proper-
ties. However, there are more sophisticated approaches in which the neighborhood or 
context of several pixels is considered to adopt the criterion of segmentation. These 
strategies take into account additional information (e.g., 3D model, multi-temporal ob-
servations, fusion of active sensors with passive-optical ones, etc.) and even parametric 
and non-parametric strategies that allow segmentation tasks to be improved. 

- Unsupervised classification: pursues the same aim but without requiring the interaction 
of the user in the definition of the classes, because it is based on an automatic procedure 
that looks for spectral clustering of the pixels. Finally, the user must analyze the classes 
detected automatically to establish possible correspondences with the informational 
classes. The main problem of unsupervised approaches is that sometimes, the results are 
far from having a relationship with the thematic classes (materials, chemical patholo-
gies, etc.) being sought and there is no biunivocal correspondence between the spectral 
clusters and informational classes. In these cases, it is necessary to use additional crite-
ria such as modifying the legend, including additional non-spectral criteria (e.g. tex-
tures, contextual information, 3D model, etc.) and multi-temporal information. 

In view of the above limitations, it is usual to choose mixed classification strategies, which 
first apply an unsupervised classification that will serve as a guide for a later supervised classi-
fication. In this way there will be a preliminary discretization of the image in its main spectral 
classes that will act as a training phase for later application of the different segmentation strate-
gies according to the previously defined training areas of informational classes. 

In order to synthesize the most significant algorithms in the field of multispectral image clas-

sification, the following table (Table 1) illustrates the most relevant segmentation algorithms as-

sociated with each of the classification techniques and their strategies (point/area, paramet-

ric/non-parametric). 

 
Table 1. Remote sensing image classification techniques (Li et al. 2014). 

Classification 

techniques 
Characteristics Examples of classifiers 



Pixel-based 

techniques 

Each pixel is assumed pure 

and typically labeled as a sin-

gle class. 

- Unsupervised (e.g. k-means, ISODATA, SOM, 

hierarchical clustering). 

- Supervised (e.g. Maximum likelihood, Mini-

mum distance-to-means, Mahalanobis distance, 

Parallelepiped, k-nearest Neighbours). 

- Machine learning (e.g. artificial neural net-

work, classification tree, random forest, sup-

port vector machine, genetic algorithms). 

Sub-pixel-based 

techniques 

Each pixel is considered 

mixed, and the areal portion of 

each class is estimated. 

- Fuzzy classification, neural networks, regres-

sion modeling, regression tree analysis, spectral 

mixture analysis, fuzzy-spectral mixture analy-

sis. 

Object-based 

techniques 

Geographical objects, instead 

of individual pixels, are con-

sidered the basic unit. 

- Image segmentation and object-based image 

analysis techniques (e.g. E-cognition, ArcGIS 

Feature Analyst). 

 
As a result of the multispectral classification a thematic map in pseudocolour will be obtained, 
containing the spatial distribution of a given phenomenon such as the type of material and/or 
chemical pathology associated with a given construction, which this thematic map will serve as 
a basis for problem-solving and decision-making in different contexts. 

Dimensional analysis and detection of changes constitute another tool used, in this case for 
the analysis of possible physical pathologies (quantitative or qualitative) of the construction 
under analysis. Its application may be made at 2D level (rectification, orthoimage) or at 3D/4D 
level (multi-temporal models).  

From the quantitative point of view, the objects of analysis will be different metric parame-
ters: distances, angles, differences in depth, changes in volume, etc. They will allow a dimen-
sional analysis of the object studied and the detection of possible changes in its structure.  

From the qualitative point of view, different images (belonging to the same band or combina-
tions among them) or 3D models can be compared over time by a simple subtraction between 
images and/or 3D models, previously registered under the same coordinate system and, if neces-
sary, normalized. In geometric terms, the change vector of a pixel will be defined as the vector 
that joins the spectral position of that pixel on two different dates, its magnitude expressing the 
intensity of the change, and its direction the type of change, such that it provides quantitative 
and qualitative information. This method is a valuable tool not only for quantifying the changes 
but also for their visual interpretation. The results can be highlighted in pseudo-color in order to 
analyse qualitative changes in the image and/or model.  

5.3 Evaluation of the results obtained 

Assessment of the results obtained in the study of chemical and physical pathologies is oriented 
in two directions, corresponding to the results of the multispectral classification and the results 
of the dimensional analysis.  

Evaluation of the results of the multispectral classification looks at the precision and reliabil-

ity globally and in particular for each class. The most widely used analytical tool is known as a 

confusion matrix (Fig. 10) and consists of performing an empirical evaluation by selecting a 

sample of pixels from the thematic map obtained (classified image) and comparing the class as-

signed with respect to the real class determined from reference data, preferably obtained by field 

sampling (ground truth). In this way it is possible to estimate the percentage of the pixels of 

each class that have been correctly classified as well as the proportion of errors due to confusion 

among the different classes. The confusion matrix is a numerical representation of the samples 

used for evaluation (checking areas), in which the rows (or columns) represent the classes as-

signed in the classification process and the columns (or rows) are the real classes obtained from 

the field sampling or from reference data (ground truth) (Fig. 10). 



 

 
Figure 10. Evaluation of the multispectral classification: Confusion matrix. 

 
In turn, evaluation of the dimensional analysis consists of the diagnosis interpretation of the ac-
curacy and reliability of the metric values obtained (distances, surfaces, volumes, etc.) and must 
be done following three steps: (i) a check of the reliability of the dimensional analysis via vali-
dation of the hypothesis of normality (i.e., the data fits a normal Gaussian curve); (ii) evaluation 
of the degree of accuracy of the dimensional analysis under the assumption of normality; and 
(iii) evaluation of the degree of accuracy under the assumption of non-normality. 

- The first step involves analyzing whether there are gross errors and/or systematic errors 
and hence a lack of normality in the data. To accomplish this, the application, in the or-
der of graphic, numerical and statistical methods, is recommended to validate the nor-
mality or not of the data. The graphical methods consist of application of QQ-plot anal-
ysis and error histograms. QQ-plot compares the quantiles of the empirical distribution 
against the quantiles of a theoretical normal distribution. If the distribution is normal, 
the QQ-plot will show a diagonal straight line. Error histograms allow two numerical 
parameters of great interest for seeing the normality of the data to be derived and these 
refer to the skewness and kurtosis of the normal distribution. Finally, and also im-
portantly, there is a series of statistical tests that allows the hypothesis of the normality 
vs. the non-normality of the data to be validated. Nevertheless, it should be noted that 
such tests are inefficient in cases in which a large number of observables are being han-
dled owing to the Central Limit Theorem (Chang et al. 2006); this is why they are ap-
plied last. 

- For the second step, application of the usual parameters is recommended (Table 2): 
mean error (µ), root mean square error (RMSE) and standard deviation (). 

 
Table 2. Accuracy measures for DEMs presenting normal distribution of errors (Höhle et al. 2009). 

Accuracy measure Notational expression 

Root mean square error 2

1

1 n
ii

RMSE x
n 

   

Mean error 
1

1 n
ii

x
n




   

Standard deviation 
2

1

1
( )

( 1)

n
ii

x
n

 


  

  

 
- Finally, in cases in which the hypothesis of normality is not fulfilled, it is necessary to 

use non-parametric robust estimators such as (Table 3): sample quantiles, median, nor-
malized median absolute deviation (Gencturk et al. 2014) and biweight midvariance 
(BWMV).  

 



Table 3. Accuracy measures for data not presenting a normal distribution of errors (Höhle et al. 2009). 

Accuracy measure Error type Notational expression 

Median (50% quantile) ∆x (0.5)x xQ m   

Normalized median absolute devia-

tion 
∆x  1.4826 i i xNMAD median x m     

68.3% quantile |∆x| (0.683)xQ  

95% quantile |∆x| (0.950)xQ  

 

6. CONCLUSIONS 

This chapter points out the significance of multispectral imaging in the assessment and diagno-
sis of pathologies in construction materials. Thus, this technology occupy an important place in 
a variety of engineering applications and more specifically in the reconstruction, rehabilitation 
and restoration fields of damaged constructions due to the quantity of geometric and radiometric 
information that it is capable of capturing and its ability to analyse large areas in a safe and non-
invasiveness way.  

In contrast to other inspection techniques, multispectral imaging represents a more versatile 
tool that allows the use of sensors with different operating principles (active and passive) and 
remote sensing techniques adjusting to the needs required for each specific case study. Due to 
the high versatility of the multispectral imaging systems and processing algorithms, this chapter 
shows the fundamental basis for an efficient and cost-effective damage assessment in construc-
tions. To achieve these goals, the three steps of any operation are discussed: (i) acquisition; (ii) 
calibration of the data captured; and (iii) pathological analysis. Complementarily a theoretical 
re-view, to ease the approximation at these systems for non-expert users, is presented.  

According to the project analysis requirements, there are several factors to take into account 
during the choice of the optimal sensor; mainly the spectral and geometric resolution. However, 
it may counter with other operational factors such as cost and time, being the optimal solution 
the combination of multispectral and/or mono spectral sensors. Data can be acquired by a dif-
ferent sensor, but requires additional considerations to ensure a perfect homogenization. Moreo-
ver, the conversion of the gather values into physical magnitudes is a critical step to classify im-
ages of the building into different materials pathologies and damage levels. In this chapter was 
shown the best practices to solve the sensor registration and radiometric calibration for a wide 
range of sensors.  

The multispectral systems presented allow the generation of hybrid cartographic products 
valuable in the decision making process to experts in building materials, construction tech-
niques, etc., which can be extended for temporal analysis and maintenance purposes. And even 
more important, it assesses the building damage quantitatively by the employment of non-
parametric statistical methods. 
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5. CONCLUSIONES Y PERSPECTIVAS 
FUTURAS 

 

5.1. Conclusiones 

Esta Tesis Doctoral aborda el análisis de las imágenes multiespectrales 

en la región visible e infrarroja del espectro electromagnético tomando 

como base la calibración radiométrica de los sensores empleados. El 

procedimiento metodológico y los resultados han sido publicados en 

varias revistas de impacto como artículos de investigación científica o 

capítulos de libro. 

Este capítulo final trata de resumir las contribuciones desarrolladas 

analizando los resultados más relevantes alcanzados y las directrices a 

seguir en futuros trabajos. A continuación se recogen las conclusiones 

relativas al uso de los sensores empleados, tanto de forma individual 

como conjunta, para los distintos campos de aplicación y estudios 

realizados. 

5.1.1. En líneas generales 

 Este periodo de investigación culmina con la adquisición de un 

alto nivel de conocimiento en lo que a conceptos y fundamentos 

en espectrometría y radiometría se refiere así como en lo 

concerniente a los procedimientos de análisis de datos 

multiespectrales de uso más extendido. Este saber queda 

recopilado de forma sintética con la publicación del capítulo de 

libro titulado “Multispectral Imaging: fundamentals, principles 

and methods to damage assessment in constructions” (ver sección 

IV.3 de la presente tesis). 

 En el campo de la teledetección existen dos métodos comunes de 

calibración radiométrica: la calibración absoluta y la relativa 
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(Dinguirard y Slater, 1999). En el caso de la calibración absoluta, 

la respuesta ofrecida por el sensor se compara con una fuente de 

radiación conocida y constante; mientras que la calibración 

relativa consiste en ecualizar la señal de salida del sensor cuando 

existe una fuente de radiación uniforme. En la presente Tesis 

Doctoral se han calibrado con éxito dos sensores mediante el 

método de calibración radiométrico absoluto: una cámara 

multiespectral de bajo coste y un láser escáner terrestre. 

 La calibración radiométrica del sensor pasivo (cámara 

multiespectral) se llevó a cabo en una campaña de campo y a 

través del método vicario basado en radiancias. Por su lado, la 

calibración radiométrica del sensor activo (laser escáner terrestre) 

se llevó a cabo en laboratorio mediante el método vicario de 

reflectancias (Slater et al., 1987). En ambos casos, la radiación de 

entrada al sensor (de fuente natural o artificial) fue comparada 

con la salida digital arrojada por cada sensor obteniéndose un 

buen grado de ajuste para ambos sensores. 

 No todos los sistemas de adquisición de datos tienen un 

comportamiento interno lineal por diseño. Tras los resultados de 

la calibración absoluta de ambos sensores (cámara multiespectral 

pasiva y láser escáner terrestre activo) se observó que ambos 

tenían un comportamiento interno diferente. Mientras que la señal 

del sensor pasivo sigue una función lineal, en el caso del sensor 

activo sigue una función exponencial y/o logarítmica que a su vez 

depende de la distancia a la que se han adquirido los datos.  

5.1.2. La calibración radiométrica 

 Se ha verificado la viabilidad de usar distintas superficies 

artificiales de bajo coste (vinilos y lonas) como superficies de 

control para realizar la calibración radiométrica de sensores por el 

método vicario. 

 Es posible llevar a cabo estudios remotos aéreos sin necesidad de 

realizar correcciones atmosféricas mediante la embarcación de 
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sensores en sistemas aéreos no tripulados a una altura moderada 

(<100 m) o trabajando a nivel terreno. 

 Gracias al apoyo del software MULRACS desarrollado por los 

autores, se ha conseguido automatizar la calibración radiométrica 

de los sensores pasivos proporcionando rigurosidad al proceso, 

evitando introducir medidas erróneas en los cálculos gracias a la 

implementación de algoritmos robustos de resolución en el 

mismo. 

 La calibración radiométrica de los sensores depara mejoras 

significativas en los resultados de clasificación de las imágenes, 

lográndose mejoras de entorno al 34% en fiabilidad tras realizar 

la calibración radiométrica. 

5.1.3. La cámara Mini MCA-6 como sensor remoto 

pasivo 

 La configuración espectral de la cámara Mini MCA-6 (530-801 

nm) es ideal para realizar estudios de coberturas vegetales como 

muestran los resultados del Capítulo II. No obstante puede ser 

utilizada con resultados muy prometedores en campos como la 

geología y la detección de humedades desde la apuesta por su 

hibridación con algún otro sensor remoto. 

 Antes de realizar la calibración radiométrica del sensor 

multiespectral fue necesario estudiar y corregir ciertos errores 

sistemáticos (errores de ruido de fondo y viñeteo) que el sensor 

transmitía a las imágenes distorsionando la realidad para eliminar 

trasladar estos errores al análisis radiométrico final. 

 Si bien el rango espectral de la cámara Mini MCA-6 no es el 

idóneo para el estudio de rocas, fue posible encontrar diferencias 

entre algunos tipos de roca sedimentaria aun cuando este tipo de 

cobertura terrestre presenta muchas heterogeneidades 

superficiales que redundan en dificultades añadidas para su 

estudio radiométrico a través sensores pasivos. Asimismo, las 

tomas de datos a nivel terreno tienen el hándicap de que capturan 
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posibles sombras proyectadas en la superficie de las rocas lo que 

dificulta aún más su análisis. 

5.1.4. Los laser escáner terrestres como sensores remotos 

activos 

 Los datos de intensidad láser están menos influenciados por los 

cambios en las condiciones de iluminación que las imágenes 

capturadas por los sensores pasivos, de manera que mediante su 

uso se han observado mejoras significativas en los resultados de 

los análisis espectrales, incluso cuando a calibración radiométrica 

no se ha aplicado o no estaba resuelta. 

 Para el caso concreto del FARO Focus3D (905 nm) y del Riegl  

LMS Z390i (1550 nm), se han obtenido buenos resultados en la 

detección de humedades en diversos materiales de construcción 

debido a que el comportamiento espectral de dicha patología para 

este caso concreto de materiales se hace característica para la 

región infrarroja del espectro.  

 Los láser escáner terrestres aportan un valor añadido a los datos 

radiométricos ya que proporcionan escala y por lo tanto es posible 

cuantificar cualquier patología o daño caracterizado por sus datos 

de intensidad. 

 A pesar del comportamiento interno desconocido de los láser 

escáner terrestres (black-box), es posible realizar una calibración 

radiométrica satisfactoria de los mismos para obtener valores 

físicos de reflectancia de cualquier material dado que la fuente de 

luz es controlada (sensor activo). 

5.1.5. La fusion sensorial 

 Se ha conseguido con éxito realizar una hibridación sensorial de 

hasta cuatro sensores diferentes, dos activos (laser escáner 

terrestres) y dos pasivos (una cámara multiespectral y una cámara 

digital convencional). 
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 A través de la fusión sensorial no solo se ha validado la capacidad 

de automatizar la detección de humedad sino que gracias a ella se 

ha podido delimitar y cuantificar de forma precisa su afección 

superficial. 

 Los datos procedentes de los sensores pasivos, cámara 

multiespectral y cámara digital, estaban condicionados tanto por 

el registro de sus bandas espectrales como por la influencia de las 

condiciones de iluminación del momento de captura. 

5.2. Perspectivas futuras 

Tras realizar los trabajos de investigación desarrollaos durante esta Tesis 

Doctoral se abren nuevas líneas de investigación y mejoras para 

complementar y optimizar los estudios multiespectrales remotos a través 

de la fusión de sensores activos y pasivos. 

5.2.1. En líneas generales 

 No hay que olvidar que la mayor parte de las superficies de los 

materiales tienen un comportamiento no Lambertiano, al contrario 

de lo que se presupone a primera instancia. Mediante el estudio 

del comportamiento anisotrópico de los materiales se conseguiría 

mejorar la caracterización de su reflectancia y por ende, el 

análisis espectral de los mismos ya que la radiación reflejada por 

cualquier superficie depende tanto de la orientación de la fuente 

radiante como del punto de vista de la adquisición de los datos.  

5.2.2. La calibración radiométrica y la cámara Mini 

MCA-6 como sensor remoto pasivo 

 Se propone realizar una calibración radiométrica del sensor en 

condiciones controladas de laboratorio para llevar un seguimiento 

de los posibles cambios que puedan producirse en sus coeficientes 

de calibración con el uso y el paso de los años.  
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5.2.3. Los láser escáner terrestres como sensors remotos 

activos 

 Se propone ampliar el abanico de posibilidades que ofrece 

actualmente el software de calibración radiométrico MULRACS 

de tal forma que sea posible no solo la calibración de sensores 

pasivos sino también de sensores activos, lo que contribuiría a la 

automatización completa del proceso de hibridación sensorial a la 

vez que se favorecería el uso de este tipo de sensores para realizar 

estudios espectrales de los materiales. 

 El ángulo de incidencia de un haz láser, tal y como establece la 

Ley de Lambert, es un factor relevante y que afecta a la 

intensidad de retorno capturada por el láser, analizada en los 

estudios radiométricos.  Si bien en los trabajos realizados durante 

esta investigación sus efectos han sido minimizados mediante un 

diseño y configuración concretos de la toma de datos, se propone, 

siempre que sea posible, estimar su magnitud y corregir los datos 

para mejorar los resultados de futuros análisis. 

5.2.4. La fusion sensorial 

 La posibilidad de trabajar con láser escáner terrestres en el rango 

visible y sensores pasivos en el rango SWIR ayudaría a 

complementar estos estudios de los cuales se sacarían 

conclusiones más completas acerca de los principios de 

funcionamiento y rangos espectrales para cada caso de estudio 

concreto. Además, el uso de sensores hiperespectrales también 

abriría nuevos desafíos en este sentido.  

 Se propone la técnica de pansharpening como método de 

optimización de los resultados tras la fusión sensorial tratando de 

combinar la mayor resolución especial y radiométrica ofrecida 

por cada uno de los sensores utilizados. 
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SOFTWARE MULRACS 

 

MULRACS-Multispectral Radiometric Calibration Software 

Tipo: Registro de la propiedad intelectual 

Referencia: SA-00/2015/4722 

Universidad: Universidad de Salamanca 

Códigos UNESCO: 

- 2209.18 Fotometría 

- 2209.20 Radiometría 

- 2209.90 Procesado de Imágenes 

- 3311.11 Instrumentos Ópticos 

Resumen: 

Aplicación informática para la calibración radiométrica de sensores 

pasivos en su uso de rango cercano (sin que se vean afectados por la 

absorción atmosférica de radiación solar). La calibración implementada 

por dicho software está basada en el método vicario de radiancias y 

puede aplicarse tanto al caso de sensores monoespectrales como 

multiespectrales. Una vez el sensor esté calibrado se podrán obtener 

imágenes en magnitudes físicas (reflectancias o radiancias) las cuales 

pueden ser explotadas para obtener información sobre recursos naturales, 

medio ambiente, agricultura de precisión, clasificación de cultivos, etc. 

de gran utilidad para la comunidad científica y para empresas que lleven 

a cabo análisis de firmas espectrales y análisis radiométricos de 

imágenes. 

Aplicaciones:  

Aplicación de gran interés para las empresas que trabajan con firmas 

espectrales y análisis radiométricos de imágenes ya sea para realizar 
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evaluaciones, investigaciones, inspección de materiales o estudios de 

producción de los recursos naturales. También resulta de gran interés 

para la comunidad científica internacional en aras de investigar el 

potencial de los sensores radiométricos/geométricos que se utilizan con 

asiduidad para otros propósitos. 

Autores: 

- Susana Del Pozo Aguilera 

- Mónica Herrero Huerta 

- David Hernández López 

- Pablo Rodríguez Gonzálvez 

- Diego González Aguilera 

Algunas Características: 

Cualquier empresa o grupo de investigación que aspire a realizar análisis 

de cualquier cubierta o material terrestre mediante el uso de sensores 

remotos, han de, previamente, calibrar los mismos adoptando una serie 

de protocolos de medición y calibración que ayuden a controlar de forma 

adecuada la inspección de las superficies/materiales a estudiar. El  

software. 

 MULRACS permite realizar una calibración rigurosa de los sensores a 

través del método de calibración basado en radiancias. Aplica un ajuste 

por mínimos cuadrados al conjunto de imágenes capturadas y que 

recogen las superficies artificiales que servirán para la calibración.  

iiiii Δα),ND,cf(cRadiancia  10  (4) 

donde c0i y c1i, ordenada en el origen y ganancia o pendiente, son los 

coeficientes de calibración del dispositivo, NDi los niveles digitales de 

las superficies artificiales extraídos de las imágenes, y αi un coeficiente 

de corrección, todos ellos para cada una de las i bandas/canales del 

dispositivo. 

Como método de resolución iterative se escogió el Método robusto de 

mínimos cuadrados Danés con el fin de asociar una serie de pesos en 

función del valor residual de cada iteración. De esta manera se se 
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descartan valores atípicos. El CD que se acompaña (contraportada de la 

tesis) incluye una versión digital de la tesis tanto en versión española 

como inglesa y un ejecutable del software MULRACS. 

Datos de entrada: 

- Medidas de radiancia procedentes de cada superficie de control 

obtenidas con espectroradiómetro calibrado  

- Superficies Lambertianas artificiales como tarjetas/superficies de 

control para la calibración 

- Superficies artificiales o naturales como superficies de chequeo 

de la calibración 

- Eficiencia cuántica del sensor CCD O CMOS y de los filtros del 

dispositivo a calibrar 

- Conjunto de imágenes junto a los parámetros de captura (focal, 

ISO, tiempo de exposición y apertura) 

Productos: 

- Parámetros de calibración del dispositivo por banda o canal 

- Irradiancia solar 

- Imágenes en valores de radiancia 

- Imágenes en valores de reflectancia 

- Resultados estadísticos de la calibración: gráficos, información 

correspondiente a las bandas/canals y a las superficies de control 

y chequeo. 

 

Figura Ap.B.1: Captura de pantalla de la interfaz del software mostrando 

algunos de los productos finales más relevantes.
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