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Abstract

A trajectory isomorphism between the two Newtonian fixed center problem in the sphere and two

associated planar two center problems is constructed. The complete set of orbits in S2 for this

problem is calculated.

1 Introduction

The two fixed center problem on the two-dimensional sphere goes back to Killing [1], and in modern

times to Kozlov and Harin [2], who proved the separability of the problem, thus its integrability,

in sphero-conical coordinates. These coordinates on S2 were introduced by Neumann [3] in one

of the first examples of dynamics in spaces of constant curvature and they are closely related to

elliptic coordinates, in fact the first system of coordinates plays a rôle in the dynamics on the

sphere completely similar to the second system with respect to the Euclidian case. Integrability

and Hamilton-Jacobi separability in sphero-conical coordinates has been constructed for different

physical systems defined on the sphere, see for instance [4]. In particular, the authors analyzed

in this context the Neumann problem and the Garnier system on S2 in order to study solitary

waves in one-dimensional non-linear S2-sigma models, see [5] and [6]. A detailed historical review of

several systems defined in spaces of constant curvature, including open problems, has been recently

performed in [7] where a precise bibliography is contained.

The two fixed center problem on the sphere is the superposition of two Kepler problems on

S2. An explicit expression for the second constant of motion for this problem and also for some

generalizations was given in [8, 9]. In [10] Borisov and Mamaev, inspired in a previous work of

Albouy and Stuchi [11, 12], established a trajectory isomorphism (in terms of a new time variable)

between the orbits lying in the half-sphere that contains the two attractive centers and the bounded

orbits of an associated planar system of two attractive centers.

In this work we extend this result to the whole sphere, i.e. we establish a trajectory isomorphism

between the complete set of orbits of the original problem and the corresponding one to two associated

planar problems. The underlying idea is to identify each trajectory crossing the equator with the

conjunction of two planar unbounded orbits, one of the two attractive center problem and another

one for the system of two repulsive centers.
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This extended trajectory isomorphism allows us to describe the bifurcation diagram of the spher-

ical problem, analyzed in [13, 14, 15], in terms of the well known bifurcation diagrams for the planar

problems (see [16] and [17]) and also determines a simple change of variables, from sphero-conical co-

ordinates to planar elliptic coordinates, that converts the involved quadratures into elliptic integrals.

Thus finally explicit formulas for the different types of orbits of the complete problem are obtained

in terms of Jacobi elliptic functions both for the “radial” and “angular” coordinates. The existence

of closed orbits in the sphere is guaranteed for the case of commensurability between the involved

periods.

The structure of the paper is as follows: The problem is presented in Section 2 using sphero-

conical coordinates on S2. In Section 3 the extended trajectory isomorphism is defined, and thus the

quadratures are converted into elliptic integrals. The bifurcation diagram for the spherical problem

is constructed from the diagrams of the two associated planar problems in Section 4. Finally, in

Section 5, the processes of inversion of elliptic integrals in S2 are detailed, and general equations for

the solutions are showed.

The complete list of parametric equations for the different types of orbits in S2, in terms of a local

time, is included in the Appendix, together with a gallery of figures for all the significative cases.

2 The two Newtonian centers problem in S2

We consider the problem of a unit mass lying on the sphere S2 of radius R, viewed as immersed in

the Euclidean space R3 with cartesian coordinates (X,Y, Z):

X2 + Y 2 + Z2 = R2

under the influence of the superposition of two Kepler potentials on S2, i.e. the potential:

U(θ1, θ2) = −γ1

R
cotan θ1 −

γ2

R
cotan θ2 (1)

where θ1 and θ2 denote the great circle angles between the location of the centers F1 and F2, see Fig.

1, and a given point P on S2, in such a way that Rθ1 and Rθ2 are the orthodromic distances from

F1 and F2 to P , respectively. γ1 and γ2 are the strengths of the centers, where we have considered

0 < γ2 ≤ γ1, i.e. the test mass feels the presence of two attractive centers in F1 and F2, and

correspondingly two repulsive centers in their antipodal points F̄1 and F̄2. Without loss of generality,

it has been chosen the points, notation and orientation showed in Fig. 1. Thus cartesian coordinates

of F1 and F2 are: (R sin θf , 0, R cos θf ) = (Rσ̄, 0, Rσ) and (−R sin θf , 0, R cos θf ) = (−Rσ̄, 0, Rσ)

respectively. Parameters σ = cos θf and σ̄ = sin θf have been introduced in order to alleviate the

notation.

This problem is completely integrable, see e.g. [1, 2], there exist two constants of motion, the

Hamiltonian:

H =
1

2R2

(
L2
X + L2

Y + L2
Z

)
− 1

R

(
γ1(σ Z + σ̄ X)√
R2 − (σ Z + σ̄ X)2

+
γ2(σ Z − σ̄ X)√
R2 − (σ Z − σ̄ X)2

)
(2)
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Figure 1: Location of the two Newtonian centers F1 and F2 in S2. The angular separation is 2θf ,

with 0 < θf <
π
2 . θ1 and θ2 denote the great circle angles between a given point P ∈ S2 and F1 and

F2, respectively.

where: ~L = ~X × ~P , ~P = (PX , PY , PZ), ~X = (X,Y, Z), and the second invariant:

Ω =
1

2R2

(
L2
X + σ2L2

Y

)
− σ

R

(
γ1 Z√

R2 − (σ Z + σ̄ X)2
+

γ2 Z√
R2 − (σ Z − σ̄ X)2

)
(3)

This constant of motion is slightly different but equivalent to the invariant obtained by Borisov and

Mamaev in [8, 9]. Potential (1) can be rewritten as:

U(θ1, θ2) = −
(γ1 + γ2) sin θ1+θ2

2 cos θ1+θ2
2 + (γ1 − γ2) sin θ2−θ2

2 cos θ2−θ12

R
(

sin2 θ1+θ2
2 − sin2 θ2−θ1

2

) (4)

in such a way that it is natural to introduce an á la Euler version of sphero-conical coordinates on

S2, i.e.

U = sin
θ1 + θ2

2
, V = sin

θ2 − θ1

2
; −σ̄ < V < σ̄ , σ̄ < U < 1

Coordinate lines with fixed U or V resemble “spherical ellipses” or “spherical hyperbolas” respectively

with foci F1 and F2, well understood that “spherical hyperbolas” are no more that “spherical ellipses”

with respect to the pair of foci F̄1 and F2 or F1 and F̄2.

The change of coordinates:

X =
R

σ̄
U V , Y 2 =

R2

σ2σ̄2
(U2 − σ̄2) (σ̄2 − V 2) , Z2 =

R2

σ2
(1− U2) (1− V 2) (5)

is a four-to-one map because the ambiguities in the signs of Y and Z. Obviously coordinates U and

V are dimensionless.
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Potential (4) is written in these sphero-conical coordinates with two different expressions depending

on the hemisphere that it is considered. For S2
+ = {(X,Y, Z) ∈ S2, Z ≥ 0}, we have:

U+(U, V ) = − 1

R(U2 − V 2)

(
(γ1 + γ2)U

√
1− U2 + (γ1 − γ2)V

√
1− V 2

)
whereas in S2

− = {(X,Y, Z) ∈ S2, Z ≤ 0} the potential reads:

U−(U, V ) = − 1

R(U2 − V 2)

(
−(γ1 + γ2)U

√
1− U2 + (γ1 − γ2)V

√
1− V 2

)
Thus Hamiltonian (2) has also to be splitted in two different expressions:

H± =
1

2R2(U2 − V 2)

(
(U2 − σ̄2)(1− U2)p2

U + (σ̄2 − V 2)(1− V 2)p2
V

)
+ U±(U, V ) (6)

The Hamilton-Jacobi equations coming from (6):

H±
(
∂S

∂U
,
∂S

∂V
, U, V

)
+
∂S

∂t
= 0 (7)

are separable into two ordinary differential equations if we look for solutions of the form: S±(t;U, V ) =

St(t) + SU±(U) + SV (V ). Introducing nondimensional variables:

H± →
γ1 + γ2

R
H± , t→

√
R3

√
γ1 + γ2

t , pU,V →
√
R(γ1 + γ2)pU,V

and defining the parameter:

γ =
γ2

γ1 + γ2

the complete solution of (7) is:

S±(t;U, V ) = −Ht+ sg(pU )
√

2

∫ U

σ̄

√
HU2 ± U

√
1− U2 −G√

(1− U2)(U2 − σ̄2)
dU

+sg(pV )
√

2

∫ V

−σ̄

√
−HV 2 + (1− 2γ)V

√
1− V 2 +G√

(σ̄2 − V 2)(1− V 2)
dV

where H and G are the values of the constants of motion: H = H, G = G; G is the separation

constant, related with Ω and H, (3) and (2), by the expression:

G = H− Ω

Given the local time ς by: dς = dt
U2−V 2 , the standard separation procedure leads us to the first order

equations:

dU

dς
= sg(pU )

√
2

√
(1− U2)(U2 − σ̄2)(HU2 + U

√
1− U2 −G) (8)

dV

dς
= sg(pV )

√
2

√
(1− V 2)(σ̄2 − V 2)(−HV 2 + (1− 2γ)V

√
1− V 2 +G) (9)
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for the problem in the Northern hemisphere S2
+, and:

dU

dς
= sg(pU )

√
2

√
(1− U2)(U2 − σ̄2)(HU2 − U

√
1− U2 −G) (10)

dV

dς
= sg(pV )

√
2

√
(1− V 2)(σ̄2 − V 2)(−HV 2 + (1− 2γ)V

√
1− V 2 +G) (11)

for the Southern S2
− one.

A direct attack to the involved quadratures looks apparently cumbersome, and as far as we know

they are not solved in the literature. Nevertheless some of the qualitative and topological properties

of these orbits have been analyzed in [13, 14, 15].

3 Trajectory isomorphism between the spherical and two different

planar problems

Following Borisov & Mamaev [10] we go back to Cartesian coordinates (X,Y, Z) where the potential

(1) can be written as:

U(X,Y, Z) = − 1

R

(
γ1(σ Z + σ̄ X)√
R2 − (σ Z + σ̄ X)2

+
γ2(σ Z − σ̄ X)√
R2 − (σ Z − σ̄ X)2

)
(12)

The corresponding Newton equations for this problem are:

Ẍ = − ∂U
∂X

+ λX , Ÿ = −∂U
∂Y

+ λY , Z̈ = −∂U
∂Z

+ λZ (13)

where dots represent derivatives with respect to the physical (dimensional) time t and λ is the

Lagrange multiplier. In [10] it was proved that the gnomonic projection from S2
+ to the tangent

plane Π+ at the point (0, 0, R), together with a linear transformation in Π+, maps Newton equations

(13) to the Newton equations of an associated problem of two attractive centers in R2.

Here, we shall also consider simultaneously another gnomonic projection, from S2
− to the tangent

plane Π−, at (0, 0,−R). The projected coordinates (x, y) are given in the two planes by:

Π+ : x =
R

Z
X , y =

R

Z
Y ; Π− : x =

R

−Z
X , y =

R

−Z
Y (14)

We will use throughout the paper the following criteria: uppercase letters describe magnitudes and

variables specifically defined in the sphere, whereas lowercase will be associated to the planar cases.

Following [10] we perform in Π+ the linear transformation:

x1 ≡ x , x2 ≡
y

σ
(15)

Newton equations (13) for potential (12) are re-written in transformed projected coordinates (x1, x2)

on Π+ as:

x′′1(τ) = −∂V+

∂x1
, x′′2(τ) = −∂V+

∂x2
(16)

V+(x1, x2) = − α1√
(x1 − a)2 + x2

2

− α2√
(x1 + a)2 + x2

2

(17)
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where primes denote derivative with respect to a new time τ defined by:

dτ =
R2

Z2
dt

and we have introduced the parameters: a = R σ̄
σ , α1 = γ1

σ2 and α2 = γ2
σ2 .

Simili modo, Newton equations (13) restricted to S2
− can be projected into Π− using (14) and, after

applying transformation (15), the equations:

x′′1(τ) = −∂V−
∂x1

, x′′2(τ) = −∂V−
∂x2

V−(x1, x2) =
α2√

(x1 − a)2 + x2
2

+
α1√

(x1 + a)2 + x2
2

(18)

are obtained.

Note that V−(x1, x2) in Π− is no more than the planar potential of two repulsive centers, where the

rôles of the points (±a, 0), and thus the strengths of the centers in modulus, are interchanged with

respect to the attractive potential V+(x1, x2) in Π+.

Thus, while the restriction of Newton equations (13) to the Northern hemisphere S2
+ is equivalent

to the Newton equations (16) for a planar problem of two attractive centers with potential (17), the

restriction to the Southern hemisphere S2
− is tantamount to a planar problem of two repulsive centers

with potential (18).

Bounded orbits of the attractive planar problem are in a one-to-one correspondence with the orbits

of the spherical problem that lie in S2
+. However, trajectories of the spherical problem crossing the

equator have to be described in this projected picture by two pieces: an unbounded orbit of the

attractive planar problem (17) in Π+ plus an (unbounded) orbit of the repulsive planar problem (18)

in Π−, corresponding to the parts of the orbit belonging to S2
+ and S2

− respectively.

It is possible to describe in a compact form the two associated planar problems, in Π+ and Π−

respectively, by the hamiltonians:

h± =
1

2

(
p2

1 + p2
2

)
+ V±(x1, x2) (19)

It is adequate again to use non-dimensional variables:

xi → axi , pi →
√
α1 + α2√

a
pi , τ →

√
a3

√
α1 + α2

τ , h± =
α1 + α2

a
h± ; α =

α2

α1 + α2
= γ

and to introduce “radial”, u and “angular”, v elliptic (Euler) coordinates in R2:

u =

√
(x1 + 1)2 + x2

2 +
√

(x1 − 1)2 + x2
2

2
, v =

√
(x1 + 1)2 + x2

2 −
√

(x1 − 1)2 + x2
2

2

x1 = uv , x2 = ±
√
u2 − 1

√
1− v2 , v ∈ (−1, 1) , u > 1

in such a way that the hamiltonians (19) are written in terms of these coordinates as:

h± =
1

u2 − v2

(
u2 − 1

2
p2
u ∓ u +

1− v2

2
p2
v − (1− 2α)v

)
6



i.e. two standard Liouville-separable systems in elliptic coordinates. It is straightforward to construct

the associated first order equations with respect to the local time ζ = ζ(τ) defined by:

dζ =
dτ

u2 − v2

and we finally obtain the following equations in the Π+ plane:(
du

dζ

)2

= 2(u2 − 1)(hu2 + u− g) ,

(
dv

dζ

)2

= 2(1− v2)(−hv2 + (1− 2α)v + g) (20)

that solve the original problem in S2
+. Correspondingly, for the Southern case we obtain in the Π−

plane: (
du

dζ

)2

= 2(u2 − 1)(h̃u2 − u− g̃) ,

(
dv

dζ

)2

= 2(1− v2)(−h̃v2 + (1− 2α)v + g̃) (21)

where the constants of motion take the values: h+ = h and g+ = g for the energy and the separation

constant in Π+, respectively; and h− = h̃ and g− = g̃ in Π−. The quadratures involved in equations

(20) and (21) are of elliptic type, and thus expressible in terms of the Jacobi elliptic functions.

It is possible to synthesize the chain of maps leading from the original problem in the sphere to the

pair of planar two center problems (20) and (21) in a unique one-to-one transformation of coordinates

in S2, from sphero-conical (U, V ) to planar elliptic (u, v), as follows:

U =
σ̄u√

σ̄2u2 + σ2
; V =

σ̄v√
σ̄2v2 + σ2

(22)

together with an equivalence, up to a constant factor, between the nondimensional local time ς of

the spherical problem and the nondimensional local time ζ for the associated planar problems:

dς =
√
σσ̄ dζ (23)

The equator Z = 0, or U = 1, of S2 is mapped by (22) into the point of infinity in the coordinate u.

Thus (22) and (23) map directly the first order equations (8, 9) in S2
+ to equations (20) in Π+, and

(10, 11) in S2
− to (21) in Π− via the identifications:

h =
σ̄

σ
(H −G) =

σ̄

σ
Ω = tan θf Ω , g =

σ

σ̄
G = cotan θf G , in S2

+

h̃ =
σ̄

σ
(H −G) =

σ̄

σ
Ω = tan θf Ω , g̃ =

σ

σ̄
G = cotan θf G , in S2

−

It is remarkable that in this projected picture the rôle of the planar energies h and h̃ is played, up

to a factor, by the projection of the second constant of motion Ω, and not by the projection of the

spherical Hamiltonian.

Consequently the transformation (22) establishes that fixing in S2 a negative value of the constant of

motion Ω, the orbits of the problem lie in the S2
+ hemisphere and are in a one-to-one correspondence

with the bounded orbits, h = σ̄
σΩ < 0, of the planar attractive system in the Π+ plane. However, if

Ω ≥ 0, orbits cross the equator of S2, and thus the portions of the orbits belonging to S2
+ are described

by equations (20) with planar energy h ≥ 0, unbounded planar orbits in the attractive problem in

Π+, whereas the portions lying in the Southern hemisphere S2
− are determined by equations (21)

with h̃ > 0, i.e. unbounded planar orbits of the repulsive problem in Π−.
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Figure 2: a) Bifurcation diagram for two attractive centers in the plane. b) Bifurcation diagram for

two repulsive centers in the plane with the strengths (in modulus) exchanged with respect to the

attractive potential. In both cases we chose α = 1
3 .

4 The bifurcation diagrams

The isomorphic transformation (22) allows us to analyze the bifurcation diagram in S2 starting from

the bifurcation diagrams of the two associated planar problems. We shall reproduce the results

explained in [14, 15] about the spherical problem constructing a global bifurcation diagram out of

the diagrams of two planar centers, see [16] and [17], respectively attractive in Π+ and repulsive in

Π− and strengths interchanged.

Both in Π+ and Π− planes, i.e. the images of the North S2
+ and South S2

− hemispheres, we

re-write (20) and (21) in terms of the ramification points:

(
du

dζ

)2

= 2h(u2 − 1)(u− u1)(u− u2) ,

(
dv

dζ

)2

= −2h(1− v2)(v − v1)(v − v2) (24)

Π+ : u1 =
−1

2h
−
√
g

h
+

1

4h2
, u2 =

−1

2h
+

√
g

h
+

1

4h2

v1 =
1− 2α

2h
−
√
g

h
+

(1− 2α)2

4h2
, v2 =

1− 2α

2h
+

√
g

h
+

(1− 2α)2

4h2
,

(
du

dζ

)2

= 2h̃(u2 − 1)(u− ũ1)(u− ũ2) ,

(
dv

dζ

)2

= −2h̃(1− v2)(v − ṽ1)(v − ṽ2) (25)

Π− : ũ1 =
1

2h̃
−
√
g̃

h̃
+

1

4h̃2
, ũ2 =

1

2h̃
+

√
g̃

h̃
+

1

4h̃2

ṽ1 =
1− 2α

2h̃
−

√
g̃

h̃
+

(1− 2α)2

4h̃2
, ṽ2 =

1− 2α

2h̃
+

√
g̃

h̃
+

(1− 2α)2

4h̃2

In Figure 2, plotted for α = 1/3, we observe the bifurcation diagrams corresponding to the attractive

and repulsive planar problems in Π+ Fig. 2a) and Π− Fig. 2b), respectively, with strengths α1, α2,

8



Figure 3: Global bifurcation diagram in S2 with γ = 1
3 .

and α̃1 = −α2, α̃2 = −α1. Critical curves in both {h, g} and {h̃, g̃} planes are determined by the

existence of double roots in (24) and (25), see [16, 17], and shadowed areas in the diagrams are zones

where motion is classically forbidden, i.e., velocities and/or momenta are imaginary.

The allowed motions in the Π+-plane are of two types: (1) If h < 0 orbits are bounded and are

usually labelled as {ts, ts′ , tl, tp}, for satellitary, lemniscatic and planetary, see [16]. (2) If h ≥ 0, see

[17], unbounded orbits occur standardly labelled as: {t1, t2, t3, t4, t5}. Separatrices between bounded

and unbounded motions live in the {h = 0} straight line.

In the Π− plane a similar but simpler picture is found, see Fig. 2b). On the h̃ > 0 upper half-

plane unbounded orbits exist in five different classes, labeled as {t′1, t′2, t′3, t′4, t′5}. In this case the

line {h̃ = 0} does not accommodate separatrices but rather it responds to a limiting behaviour of

unbounded zero energy orbits reached from h̃ > 0.

The bifurcation diagram for the complete problem in S2, Figure 3, can now be constructed from

the planar ones, using transformations (22) and (23). Two morphisms are induced: (1) Orbits in Π+

are applied to orbits in S2
+ identifying the invariants as follows: h = σ̄

σΩ and g = σ
σ̄G. (2) Orbits in

Π− are applied to orbits in S2
− if the invariants are translated to: h̃ = σ̄

σΩ and g̃ = σ
σ̄G. The global

bifurcation diagram in S2 is thus displayed on the { σ̄σΩ, σσ̄G}-plane.

Moreover, the lower half plane of Figure 3, σ̄
σΩ < 0, is mapped one-to-one with the lower half

plane of the problem of two attractive centers in Π+, Fig. 2a), as it was showed in [10], orbits lying

only in S2
+ are in a bijective correspondence with bounded orbits in Π+. However, fixed an initial

condition, each point
(
σ̄
σΩ, σσ̄G

)
in the upper half plane of the global diagram represents an orbit

that crosses the equator of S2, and thus is mapped by (22) and (23) to the union of an unbounded

orbit in Π+ and another one in Π−, with equal planar energies: h = h̃ = σ̄
σΩ.

Critical curves in Figure 3 are inherited from the corresponding ones in planar diagrams:

9



• Double roots in equations (24, 25) for the “radial” variable arise in the: Blue straight line:

L2
1 =

{
σ̄
σΩ− σ

σ̄G− 1 = 0
}

, red straight line: L1
1 =

{
σ̄
σΩ− σ

σ̄G+ 1 = 0
}

, and green hyperbola:

L3
1 = {4ΩG+ 1 = 0}.

• Analogously, double roots for the “angular” variable produce the: Dashed blue straight line:

L1
γ =

{
σ̄
σΩ− σ

σ̄G− (1− 2γ) = 0
}

, dashed red straight line: L2
γ =

{
σ̄
σΩ− σ

σ̄G+ (1− 2γ) = 0
}

,

and dashed green hyperbola: L3
γ =

{
4ΩG+ (1− 2γ)2 = 0

}
.

Orbits with Ω < 0 are naturally labeled with the inherited standard notation for bounded motion

in the planar associated problem in Π+. The branching points u1, u2 and v1, v2, understood as

functions of Ω and G, allow us to specify the analytical features of these orbits, in S2
+:

• Planetary orbits (tp). There are two analytical possibilities that lead to the same type or orbits:

(1) −1 < 1 < u1 < u < u2 , −1 < v < 1 , v1, v2 ∈ C (26)

(2) −1 < 1 < u1 < u < u2 , v1 < v2 < −1 < v < 1 (27)

In both cases the bounds u = u1 and u = u2 represent two caustics for these orbits, i.e. two

“spherical ellipses” in the Northern hemisphere S2
+, see Fig. 6 (a), that confine the planetary

motion of these “circumbinary” orbits.

• Lemniscatic orbits (tl). Analogously, there exist two possibilities:

(1) −1 < u1 < 1 < u < u2 , −1 < v < 1 , v1, v2 ∈ C (28)

(2) −1 < u1 < 1 < u < u2 , v1 < v2 < −1 < v < 1 (29)

A unique caustic, u = u2, appears in this case. The orbits describe a lemniscatic motion around

the two centers in S+
2 . See Fig. 6 (b).

• Satellitary orbits (ts): Each point
(
σ̄
σΩ, σσ̄G

)
of this region in Figure 3 represents two possible

orbits:

(1) − 1 < u1 < 1 < u < u2 , −1 < v1 < v2 < v < 1 (30)

around the stronger center, limited by the caustics: u = u2 and v = v2, and:

(2) − 1 < u1 < 1 < u < u2 , −1 < v < v1 < v2 < 1 (31)

around the weaker center, bounded by: u = u2 and v = v1. See Figure 6 (g).

• Satellitary orbits (ts′) around the stronger center:

− 1 < u1 < 1 < u < u2 , v1 < −1 < v2 < v < 1 (32)

For this situation the motion is limited by the caustics: u = u2 and v = v2, see Figure 6 (c).
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For Ω > 0, it is possible to extend the standard nomenclator, Planetary (tp), Lemniscatic (tl)

and Satellitary (ts′), to the orbits that cross the equator but have a behavior analogous to the

corresponding cases restricted to the Northern hemisphere. However, two completely new types of

orbits arise. There are two zones of admissible motion without partners between the orbits with

Ω < 0, that we will call Dual Satellitary (tds) and Meridian Planetary (tmp) orbits, taking into

account its qualitative features.

Branching points are now identified by: ũ1 = −u2, ũ2 = −u1 and ṽ1 = v1, ṽ2 = v2, because:

h = h̃ = σ̄
σΩ and g = g̃ = σ

σ̄G in order to glue continuously the two orbit pieces on the Northern and

Southern hemispheres at the equator.

• Planetary orbits (tp): The orbits in S2 are composed by two pieces:

S2
+ : u1 < −1 < 1 < u2 < u , v1 < −1 < v < 1 < v2 (33)

S2
− : ũ1 < −1 < 1 < ũ2 < u , ṽ1 < −1 < v < 1 < ṽ2

Note that the limit u→∞ in both cases is no more that U → 1, and thus the map (22) applies

two unbounded curves to a finite one that crosses the equator of S2. The Northern pieces

presents the caustic: u = u2, whereas the Southern ones are limited by the “spherical ellipse”:

u = ũ2. The motion is confined between these curves in a planetary way and can be seen as

the natural continuation of the tp orbits in S2
+ with Ω < 0. See Figure 6 (d).

• Lemniscatic orbits (tl): Analogously, there are two parts:

S2
+ : u1 < −1 < u2 < 1 < u , v1 < −1 < v < 1 < v2 (34)

S2
− : −1 < ũ1 < 1 < ũ2 < u , ṽ1 < −1 < v < 1 < ṽ2

in such a way that there are no caustics in S2
+ and one in S2

−: u = ũ2. We find again a natural

resemblance between these orbits and their partners in the Ω < 0 case. See Figure 6 (e).

• Satellitary orbits (ts′):

S2
+ : u1 < −1 < u2 < 1 < u , −1 < v1 < v < 1 < v2 (35)

S2
− : −1 < ũ1 < 1 < ũ2 < u , −1 < ṽ1 < v < 1 < ṽ2

The caustics are now: u = ũ2 in S2
−, and v = v1 = ṽ1 in the two hemispheres. See Figure 6 (f).

• Dual Satellitary orbits (tds):

S2
+ : u1 < −1 < u2 < 1 < u , −1 < v1 < v < v2 < 1 (36)

S2
− : −1 < ũ1 < 1 < ũ2 < u , −1 < ṽ1 < v < ṽ2 < 1

The tds orbits present a behaviour delimited by the two caustics: v = v1 = ṽ1 and v = v2 = ṽ2

in S2, and: u = ũ2 in the Southern hemisphere. Thus the orbits pass between the two centers

in S2
+, but do not reached the South Pole. See Figure 6 (h).
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• Meridian Planetary orbits (tmp):

S2
+ : −1 < u1 < u2 < 1 < u , −1 < v1 < v < v2 < 1 (37)

S2
− : −1 < ũ1 < ũ2 < 1 < u , −1 < ṽ1 < v < ṽ2 < 1

The situation is similar to the tds case, but now only the two “angular” caustics are allowable.

Thus the orbits complete the passing between the centers not only in S2
+ but also in S2

−. The

tmp orbits resemble the planetary ones interchanging the surrounded centers. See Figure 6 (i).

Finally, the analysis should be completed with the case Ω = 0 whose orbits lie in the S2
+ hemisphere.

These can be easily described as the limit Ω→ 0 in the Ω < 0 case. The caustic u = u2 for the tp, tl

and ts′ orbits becomes u2 →∞, and thus U(u2)→ 1, i.e. the equator Z = 0 of S2. Consequently the

motions are completely similar to the corresponding ones in S2
+ but now bounded by the equator.

5 Evaluation of the quadratures, inversion of the elliptic integrals

Explicit analytical expressions determining the orbits are obtained by applying standard procedures

that require the inversion of elliptic integrals, see for instance [18, 19]. The quadratures solving the

two pairs of uncoupled ODE’s (24) and (25) go back to Euler, Lagrange and Jacobi and have been

thoroughly discussed by several authors along the time, see [20] and references therein, see also [21].

We shall briefly report here on the processes of quadrature evaluation/elliptic integral inversion in the

context of the spherical problem, keeping in mind that the variables (u, v), which appear in equations

(24) and (25), should be regarded as coordinates in S2
+ and S2

− through the map transformation (22),

as it has been explained in the previous sections.

There are two distinctly different situations, for the Ω < 0 or Ω > 0 ranges:

• Ω < 0. In this case the inversion of the elliptic integrals appearing in equations (24) is standard,

we will detail only the planetary case as example.

The range for the u-variable in (24) (left) is: u1 < u < u2, and thus the curves: u = u1 and

u = u2, ∀v ∈ (−1, 1), determine the two caustics. The quadrature solving the u-equation in (24) is:

±
√
−2σ̄

σ
Ω ζ = I(u)− I(u0) ; I(u) =

∫ u

u1

dz√
(z2 − 1)(z − u1)(u2 − z)

(38)

where the initial condition u(0) = u0 is assumed. The elliptic integral of the first kind I(u) in (38)

can be inverted performing the following change of variable z → s, see [18] case 256:

z =
u1(1− u2) + (u2 − u1) sn2 s

1− u2 + (u2 − u1) sn2 s
⇒ I(u) = gu

∫ su

0
ds = gu su

where sn s denotes the Jacobi sinus function: sn s ≡ sn(s|k2
u), gu and the elliptic modulus ku, are

defined in terms of the turning points as:

k2
u =

2(u2 − u1)

(u2 − 1)(u1 + 1)
, gu =

2√
(u2 − 1)(u1 + 1)

.
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Formula (38) is thus simplified to become a linear relation between su and the local time ζ which is

easily inverted:

gu (su − su0) = ±
√
−2σ̄

σ
Ω ζ ⇒ su(ζ) =

±
√
−2σ̄

σ Ω

gu
ζ + su0 (39)

with: gusu0 = I(u0). Finally, reminding the last change of variable, the explicit inversion of (38) is

achieved:

u(ζ) =
u1(1− u2) + (u2 − u1) sn2 su

1− u2 + (u2 − u1) sn2 su

where su is defined as function of the local time ζ, su(ζ), in equation (39). Alternatively, using the

properties of Jacobi elliptic functions, u(ζ) can be re-written in terms of the Jacobi function dn in

the simpler form:

u(ζ) =
u1 − 1 + (u1 + 1) dn2 su

1− u1 + (u1 + 1) dn2 su
, −1 < 1 < u1 < u < u2 . (40)

We stress, by writing the inequalities characterizing this type of orbits, that the analytic expression

for u(ζ) appearing in formula (40) is compelled to live inside the (u1, u2) interval.

The companion expression for v(ζ), for instance in the planetary case: −1 < v < 1, is given,

after a completely analogous procedure, by the expressions:

v(ζ) =
1− v2 + 2v2 sn2 sv
v2 − 1 + 2 sn2 sv

with

sv(ζ) =
±
√
−2σ̄

σ Ω

gv
ζ + sv0 , k

2
v =

2(v2 − v1)

(v2 − 1)(1 + v1)
, gv =

2√
(v2 − 1)(1 + v1)

Applying transformation (22) to these expressions of u(ζ) and v(ζ), and replacing the results in (5),

a complete description in Cartesian coordinates of planetary orbits in the Northern hemisphere is

obtained.

Analogously, all the integrals I(u) and I(v) solving equations (24) in the different ranges of u and

v compatible with Ω < 0 can be inverted by similar techniques. The ensuing analytic expressions

are assembled in Appendix A. The u(ζ) and v(ζ) functions which respectively solve the u- and

v-dynamics are smooth, bounded between turning points, and periodic with periods respectively

Tu ∝ K(k2
u) and Tv ∝ K(k2

v), where K(k2) is the complete elliptic function of the first kind. The

trajectories in all these cases are bounded between caustics in S2
+ and dense, except if the u- and

v-periods are commensurable.

• Ω > 0. The procedure is more delicate in this case essentially because the trajectories complying

with the ODE pair (24) reach the equator whereas there is admissible motion governed by (25)

that also reach the equator coming from the Southern hemisphere. Therefore, it is convenient to

investigate the inversion of the quadratures of the u-equations of both (24) and (25) in a global form.

However, in the “angular”v-integrals there are no differences with respect to the Ω < 0 range.
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Let us focus on planetary orbits. An orbit of this type in S2 is described by two pieces: the portion

belonging to S2
+ is a solution of equations (24) in the ranges:

u1 < −1 < 1 < u2 < u , v1 < −1 < v < 1 < v2

whereas for the S2
− piece we have equations (25) and ranges:

ũ1 < −1 < 1 < ũ2 < u , ṽ1 < −1 < v < 1 < ṽ2

The first quadrature in (24) for the “radial” variable:

±
√

2σ̄

σ
Ω ζ = I(u)− I(u0) ; I(u) =

∫ u

u2

dz√
(z2 − 1)(z − u1)(z − u2)

. (41)

can be inverted with a change of variable like that explained before in the Ω < 0 case. The solution

is

u(ζ) ≡ u(su) =
u2 − 1 + (u2 + 1) dn2 su

1− u2 + (u2 + 1) dn2 su
(42)

where:

su(ζ) =
±
√

2σ̄
σ Ω

gu
ζ + su0 , k

2
u =

2(u2 − u1)

(1− u1)(1 + u2)
, gu =

2√
(1− u1)(1 + u2)

A plot of u(ζ), see Figure 4 (left), shows several relevant features of u(ζ). First, the function (42)

presents infinite poles, located at the points where: dn2 su = u2−1
u2+1 . This is an expected result if one

sees u(ζ) as a solution of the planar problem of two attractive centers with h > 0 re-interpreting

ζ as the local time of this planar problem; the trajectory goes to infinity in a finite interval of the

local time. However, in the sphere S2 the sphero-conical variable U(ζ), given by (22), is bounded

but exhibits finite discontinuities and reaches its maxima on the equator U = 1 at the poles of

u(ζ), see Fig. 4(right). Second, it is remarkable, and a priori unexpected, that both u(ζ) and U(ζ)

take negative values. The subtle interpretation of this fact is the understanding that, given the

inversion problem posed by (41), its solution u(ζ) ≡ u(su) solves also the complementary problem:

y < u1 < −1 < 1 < u2, i.e. the inversion problem of the elliptic integral:

I ′(y) =

∫ u1

y

dz√
(z2 − 1)(z − u1)(z − u2)

in such a way that the inverse function y(s) verifies: y(s) = u(su + K), where K = K(k2
u). Thus,

u(su) defined in equation (42) represents simultaneously the genuine u-“radial”positive solution,

u ∈ (u2,∞), and the negative y(s)-“radial”solution with y ∈ (−∞, u1). Note that, according to the

plot in Figure 4, these two solutions occur in consecutive intervals of the local time ζ.

A direct search for the solution of equation (25) in S2
−, where ũ1 < −1 < 1 < ũ2 < u, requires the

inversion of the elliptic integral in the next equation:

±
√

2σ̄

σ
Ω ζ = I ′(u)− I ′(u0) , Ĩ(u) =

∫ u

ũ2

dz√
(z2 − 1)(z − ũ1)(z − ũ2)

.
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Figure 4: Graphics of the function u(ζ) defined in (42) and its partner U(ζ) in S2, corresponding to

the values: Ω =
√

3, G = 2
√

3
3 , σ = cos π6 , su0 = 0.

Figure 5: Graphics of the function |U(ζ)| corresponding to the values: Ω =
√

3, G = 2
√

3
3 , σ = cos π6 ,

su0 = 0.

Having in mind that ũ1 = −u2, ũ2 = −u1, we can write:

Ĩ(u) =

∫ u

−u1

dz√
(z2 − 1)(z + u2)(z + u1)

=

∫ u1

−u

dw√
(w2 − 1)(w − u2)(w − u1)

= I ′(−u)

where the change of variable z = −w has been performed. Thus, we conclude that the inversion

of Ĩ(u), i.e. the “radial” solution in S2
−, is tantamount to the inversion of I ′(−u) and consequently

to minus the negative part of u(su) given in (42). Therefore, we represent the “radial” solution

simultaneously in both S2
+ and S2

− by simply taking the absolute value |u(ζ)| of the solution given in

(42). Moreover, with this identification the function |U(ζ)| is smooth, i.e. the gluing at the equator

of the Northern and Southern branches of the orbits is continuous and differentiable, see Figure 5,

with respect to the local time ζ.

This argument is valid also for the “radial” quadratures of the rest of different types of orbits that

cross the equator. Thus, the general expression for the orbits in Cartesian coordinates over the sphere

S2, using (22) in (5), can be written in a compact form valid for all the types of orbits described in
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the previous Section as:

X(ζ) =
Rσ̄ |u(ζ)| v(ζ)√

σ̄2u2(ζ) + σ2
√
σ̄2v2(ζ) + σ2

Y (ζ) =
±Rσσ̄

√
u2(ζ)− 1

√
1− v2(ζ)√

σ̄2u2(ζ) + σ2
√
σ̄2v2(ζ) + σ2

(43)

Z(ζ) =
Rσ sg[u(ζ)]√

σ̄2u2(ζ) + σ2
√
σ̄2v2(ζ) + σ2

.

Here, sg denotes the sign function and (u(ζ), v(ζ)) are the solutions of equations (20) or (21).

Explicit expressions for (43) in all the different regimes are written in the Appendix.

The periodicity properties of the functions (43) are inherited from the Jacobi elliptic functions through

the functions u(ζ) and v(ζ): Solutions (43) are products of periodic functions with different periods

Tu and Tv. Consequently (43) will be periodic, and thus the orbits closed, only if Tu and Tv are

commensurable, i.e. there exists p, q ∈ N∗ such that:

p Tu = q Tv (44)

otherwise the orbits will be dense inside the allowable region of S2.

The periods Tu and Tv are proportional to K(k2
u) and K(k2

v) respectively, with a factor that

depends on the concrete Jacobi functions involved in the respective expressions of u(ζ) and v(ζ).

The search for a closed orbit, having fixed the values of p, q and Ω (or G), requires to solve the

trascendental equation (44) in the variable G (alternatively Ω). Explicit expressions for the periods,

and concrete examples of closed orbits for different values of p and q are collected in the Appendix.
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Appendix. Explicit expressions for the different types of orbits

The set of parameters that determines the problem is R, θf , γ1 and γ2, but after defining nondimen-

sional variables the strengths can be measured with only one relative quantity: γ = γ2
γ1+γ2

.

Our choice of integration constants to characterize the solutions (43), as functions of the nondimen-

sional local time ζ introduced in (23), is: the two constants of motion Ω and G, and the two initial

data su0 and sv0 . Dependence in Ω and G is given implicitly through the values of the branching

points:

u1 =
σ

σ̄

[
−1

2Ω
−
√
G

Ω
+

1

4Ω2

]
, u2 =

σ

σ̄

[
−1

2Ω
+

√
G

Ω
+

1

4Ω2

]

v1 =
σ

σ̄

[
(1− 2γ)

2Ω
−
√
G

Ω
+

(1− 2γ)2

4Ω2

]
, v2 =

σ

σ̄

[
(1− 2γ)

2Ω
+

√
G

Ω
+

(1− 2γ)2

4Ω2

]
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if Ω 6= 0, and u1 = σ
σ̄G, v2 = σ

σ̄
−G

(1−2γ) for the Ω = 0 case.

Remember also that the following notation have been introduced along the paper:

σ = cos θf , σ̄ = sin θf ; sn su = sn(su(ζ)|k2
u)

and so on for the rest of Jacobi elliptic functions, where:

su ≡ su(ζ) =
±
√

2σ̄
σ |Ω|
gu

ζ + su0 , sv ≡ sv(ζ) =
±
√

2σ̄
σ |Ω|
gv

ζ + sv0 if Ω 6= 0

su ≡ su(ζ) =
±
√

2

gu
ζ + su0 , sv ≡ sv(ζ) =

±
√

2

gv
ζ + sv0 if Ω = 0

in such a way that initial conditions are: su0 = su(0) and sv0 = sv(0).

With all these considerations, the orbits for the two fixed centers problem in S2 are:

Ω > 0: Orbits that cross the equator.

• Planetary orbits-tp, see (33):

X(ζ) = R
ΥuΥv

σ̄ (1− u2 − (u2 + 1) dn2su) (1− v1 + 2v1 sn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄
√
u2

2 − 1
√
v2

1 − 1 dnsu snsv cnsv

Z(ζ) = R
ΥuΥv

σ (u2 − 1− (u2 + 1) dn2su) (v1 − 1 + 2 sn2sv)

(45)

where

Υu =
√

(u2 − 1)2 − 2(u2
2 − 1)(σ2 − σ̄2) dn2su + (u2 + 1)2 dn4su

Υv =
√

(v1 − 1)2 + 4(1− v1)(σ̄2v1 − σ2) sn2sv + 4(σ̄2v2
1 + σ2) sn4sv

k2
u =

2(u2 − u1)

(1− u1)(1 + u2)
, gu =

2√
(1− u1)(1 + u2)

, k2
v =

2(v2 − v1)

(1− v1)(1 + v2)
, gv =

2√
(1− v1)(1 + v2)

• Lemniscatic orbits-tl (34):

X(ζ) = R
ΥuΥv

σ̄ (u2 − 1− 2u2 dn2su) (1− v1 + 2v1 sn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄ ku
√

1− u2
2

√
v2

1 − 1 dnsu snsu snsv cnsv

Z(ζ) = R
ΥuΥv

σ (1− u2 − 2 dn2su) (v1 − 1 + 2 sn2sv)

(46)

Υu =
√

(u2 − 1)2 + 4(1− u2)(σ̄2u2 − σ2) dn2su + 4(σ̄2u2
2 + σ2) dn4su

Υv =
√

(v1 − 1)2 + 4(1− v1)(σ̄2v1 − σ2) sn2sv + 4(σ̄2v2
1 + σ2) sn4sv
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k2
u =

(1− u1)(1 + u2)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
2(v2 − v1)

(1− v1)(1 + v2)
, gv =

2√
(1− v1)(1 + v2)

• Satellitary orbits-ts′ (35):

X(ζ) = R
ΥuΥv

σ̄ (1− u2 + 2u2 dn2su) (2v1 + (1− v1) sn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄ ku
√

1− u2
2

√
1− v2

1 dnsu snsu cnsv

Z(ζ) = R
ΥuΥv

σ (u2 − 1 + 2 dn2su) (2− (1− v1) sn2sv)

(47)

Υu =
√

(u2 − 1)2 + 4(1− u2)(σ̄2u2 − σ2) dn2su + 4(σ̄2u2
2 + σ2) dn4su

Υv =
√

4(σ̄2v2
1 + σ2) + 4(1− v1)(σ̄2v1 − σ2) sn2sv + (v1 − 1)2 sn4sv

k2
u =

(1− u1)(1 + u2)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
(1− v1)(1 + v2)

2(v2 − v1)
, gv =

√
2√

(v2 − v1)

• Dual Satellitary orbits-tds (36):

X(ζ) = R
ΥuΥv

σ̄ (1− u2 + 2u2 dn2su) (1 + v1 − (1− v1) dn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄ ku
√

1− u2
2

√
1− v2

1 dnsu snsu dnsv

Z(ζ) = R
ΥuΥv

σ (u2 − 1 + 2 dn2su) (1 + v1 + (1− v1) dn2sv)

(48)

Υu =
√

(u2 − 1)2 + 4(1− u2)(σ̄2u2 − σ2) dn2su + 4(σ̄2u2
2 + σ2) dn4su

Υv =
√

(1 + v1)2 + 2(1− v2
1)(σ2 − σ̄2) dn2sv + (1− v1)2 dn4sv

k2
u =

(1− u1)(1 + u2)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
2(v2 − v1)

(1− v1)(1 + v2)
, gv =

2√
(1− v1)(1 + v2)

• Meridian Planetary orbits-tmp (37):

X(ζ) = R
ΥuΥv

σ̄ (u2 + 1− 2u2 sn2su) (1 + v1 − (1− v1) dn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄
√

1− u2
2

√
1− v2

1 cnsu snsu dnsv

Z(ζ) = R
ΥuΥv

σ (1 + u2 − 2 sn2su) (1 + v1 + (1− v1) dn2sv)

(49)
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Υu =
√

(1 + u2)2 − 4(1 + u2)(σ̄2u2 + σ2) sn2su + 4(σ̄2u2
2 + σ2) sn4su

Υv =
√

(1 + v1)2 + 2(1− v2
1)(σ2 − σ̄2) dn2sv + (1− v1)2 dn4sv

k2
u =

2(u2 − u1)

(1− u1)(1 + u2)
, gu =

2√
(1− u1)(1 + u2)

, k2
v =

2(v2 − v1)

(1− v1)(1 + v2)
, gv =

2√
(1− v1)(1 + v2)

• Having into account the involved Jacobi functions in each type of solutions, the u- and v- periods

for the different orbits with Ω > 0 are:

tp orbits : Tu =
gu√
2σ̄
σ Ω

2K(k2
u) , Tv =

gv√
2σ̄
σ Ω

4K(k2
v)

tl and ts′ orbits : Tu =
gu√
2σ̄
σ Ω

4K(k2
u) , Tv =

gv√
2σ̄
σ Ω

4K(k2
v)

tds and tmp orbits : Tu =
gu√
2σ̄
σ Ω

4K(k2
u) , Tv =

gv√
2σ̄
σ Ω

2K(k2
v)

Ω < 0: Orbits that lie only in the Northern hemisphere.

• Planetary orbits-tp of type 1, (26):

X(ζ) = R
ΥuΥv

σ̄ (u1 − 1 + (u1 + 1) dn2su) (|1 + v1| (1− cnsv)− |1− v1| (1 + cnsv))

Y (ζ) = R
ΥuΥv

4σσ̄
√
u2

1 − 1
√
|1− v1||1 + v1| dnsu snsv

Z(ζ) = R
ΥuΥv

σ (1− u1 + (u1 + 1) dn2su) (|1 + v1| (1− cnsv) + |1− v1| (1 + cnsv))

(50)

Υu =
√

(u1 − 1)2 − 2(u2
1 − 1)(σ2 − σ̄2) dn2su + (u1 + 1)2 dn4su

Υv =
√
|1− v1|2(1 + cnsv)2 + 2|1− v1||1 + v1|(σ2 − σ̄2) sn2sv + |1 + v1|2(1− cnsv)2

k2
u =

2(u2 − u1)

(u1 + 1)(u2 − 1)
, gu =

2√
(u1 + 1)(u2 − 1)

, k2
v =

4− (|1− v1| − |1 + v1|)2

4|1− v1||1 + v1|
, gv =

1√
|1− v1||1 + v1|

• Planetary orbits-tp of type 2, (27):

X(ζ) = R
ΥuΥv

σ̄ (1− u1 − (u1 + 1) dn2su) (1− v2 + 2v2 sn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄
√
u2

1 − 1
√
v2

2 − 1 dnsu snsv cnsv

Z(ζ) = R
ΥuΥv

σ (−1 + u1 − (u1 + 1) dn2su) (v2 − 1 + 2 sn2sv)

(51)
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Υu =
√

(u1 − 1)2 − 2(u2
1 − 1)(σ2 − σ̄2) dn2su + (u1 + 1)2 dn4su

Υv =
√

(v2 − 1)2 + 4(1− v2)(σ̄2v2 − σ2) sn2sv + 4(σ̄2v2
2 + σ2) sn4sv

k2
u =

2(u2 − u1)

(u1 + 1)(u2 − 1)
, gu =

2√
(u1 + 1)(u2 − 1)

, k2
v =

2(v2 − v1)

(v1 + 1)(v2 − 1)
, gv =

2√
(v1 + 1)(v2 − 1)

• Lemniscatic orbits-tl of type 1, (28):

X(ζ) = R
ΥuΥv

σ̄ (1− u1 + 2u1 dn2su) (|1 + v1| (1− cnsv)− |1− v1| (1 + cnsv))

Y (ζ) = R
ΥuΥv

4σσ̄ ku
√

1− u2
1

√
|1− v1||1 + v1| dnsu snsu snsv

Z(ζ) = R
ΥuΥv

σ (u1 − 1 + 2 dn2su) (|1 + v1| (1− cnsv) + |1− v1| (1 + cnsv))

(52)

Υu =
√

(u1 − 1)2 + 4(1− u1)(σ̄2u1 − σ2) dn2su + 4(σ̄2u2
1 + σ2) dn4su

Υv =
√
|1− v1|2(1 + cnsv)2 + 2|1− v1||1 + v1|(σ2 − σ̄2) sn2sv + |1 + v1|2(1− cnsv)2

k2
u =

(u1 + 1)(u2 − 1)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
4− (|1− v1| − |1 + v1|)2

4|1− v1||1 + v1|
, gv =

1√
|1− v1||1 + v1|

• Lemniscatic orbits-tl of type 2, (29):

X(ζ) = R
ΥuΥv

σ̄ (u1 − 1− 2u1 dn2su) (1− v2 + 2v2 sn2sv)

Y (ζ) = R
ΥuΥv

4σσ̄ ku
√

1− u2
1

√
v2

2 − 1 dnsu snsu snsv cnsv

Z(ζ) = R
ΥuΥv

σ (1− u1 − 2 dn2su) (v2 − 1 + 2 sn2sv)

(53)

Υu =
√

(u1 − 1)2 + 4(1− u1)(σ̄2u1 − σ2) dn2su + 4(σ̄2u2
1 + σ2) dn4su

Υv =
√

(v2 − 1)2 + 4(1− v2)(σ̄2v2 − σ2) sn2sv + 4(σ̄2v2
2 + σ2) sn4sv

k2
u =

(u1 + 1)(u2 − 1)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
2(v2 − v1)

(v1 + 1)(v2 − 1)
, gv =

2√
(v1 + 1)(v2 − 1)

• Satellitary orbits-ts in zone 1, (30):

X(ζ) = R
ΥuΥv

σ̄ (1− u1 + 2u1 dn2su) (v2(1− v1) + v1(v2 − 1) sn2sv))

Y (ζ) = R
ΥuΥv

2σσ̄ ku
√

1− u2
1

√
1− v2

2 (1− v1) dnsu snsu dnsv cnsv

Z(ζ) = R
ΥuΥv

σ (u1 − 1 + 2 dn2su) (1− v1 − (1− v2) sn2sv))

(54)
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Υu =
√

(u1 − 1)2 + 4(1− u1)(σ̄2u1 − σ2) dn2su + 4(σ̄2u2
1 + σ2) dn4su

Υv =
√

(v1 − 1)2(σ̄2v2
2 + σ2)− 2(1− v1)(1− v2)(σ̄2v1v2 + σ2) sn2sv + (v2 − 1)2(σ̄2v2

1 + σ2) sn4sv

k2
u =

(u1 + 1)(u2 − 1)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
(1 + v1)(1− v2)

(1− v1)(1 + v2)
, gv =

2√
(1− v1)(1 + v2)

• Satellitary orbits-ts in zone 2, (31):

X(ζ) = R
ΥuΥv

σ̄ (1− u1 + 2u1 dn2su) (2v2 − (1 + v2) dn2sv))

Y (ζ) = R
ΥuΥv

4σσ̄ ku kv
√

1− u2
1

√
1− v2

2 dnsu snsu snsv

Z(ζ) = R
ΥuΥv

σ (u1 − 1 + 2 dn2su) (2− (1 + v2) dn2sv))

(55)

Υu =
√

(u1 − 1)2 + 4(1− u1)(σ̄2u1 − σ2) dn2su + 4(σ̄2u2
1 + σ2) dn4su

Υv =
√

4(σ̄2v2
2 + σ2)− 4(1 + v2)(σ̄2v2 + σ2) dn2sv + (1 + v2)2 dn4sv

k2
u =

(u1 + 1)(u2 − 1)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
(1 + v1)(1− v2)

(1− v1)(1 + v2)
, gv =

2√
(1− v1)(1 + v2)

• Satellitary orbits-ts′ (32):

X(ζ) = R
ΥuΥv

σ̄ (1− u1 + 2u1 dn2su) (2v2 + (1− v2) sn2sv))

Y (ζ) = R
ΥuΥv

4σσ̄ ku
√

1− u2
1

√
1− v2

2 dnsu snsu cnsv

Z(ζ) = R
ΥuΥv

σ (u1 − 1 + 2 dn2su) (2− (1− v2) sn2sv))

(56)

Υu =
√

(u1 − 1)2 + 4(1− u1)(σ̄2u1 − σ2) dn2su + 4(σ̄2u2
1 + σ2) dn4su

Υv =
√

4(σ̄2v2
2 + σ2) + 4(1− v2)(σ̄2v2 − σ2) sn2sv + (v2 − 1)2 sn4sv

k2
u =

(u1 + 1)(u2 − 1)

2(u2 − u1)
, gu =

√
2√

(u2 − u1)
, k2

v =
(v1 + 1)(v2 − 1)

2(v2 − v1)
, gv =

√
2√

(v2 − v1)

• The u- and v- periods in the case Ω < 0 are:

21



tp (1), tp (2) orbits : Tu =
gu√
−2σ̄

σ Ω
2K(k2

u) , Tv =
gv√
−2σ̄

σ Ω
4K(k2

v)

tl (1), tl (2), ts (1), ts (2) and ts′ orbits : Tu =
gu√
−2σ̄

σ Ω
4K(k2

u) , Tv =
gv√
−2σ̄

σ Ω
4K(k2

v)

Ω = 0: Orbits that lie in the Northern hemisphere bounded by the equator.

• Planetary orbits-tp, in this case: −1 < 1 < u1 < u , v2 < −1 < v < 1.

X(ζ) = R
ΥuΥv

σ̄ (u1 − sn2su) (−1− v2 + v2 dn2sv)

Y (ζ) = R
ΥuΥv

2σσ̄
√
u2

1 − 1
√

1+v2
v2−1 dnsu snsv cnsv

Z(ζ) = R
ΥuΥv

σ cn2su dn2sv

(57)

Υu =
√

(σ̄2u2
1 + σ2)− 2(σ̄2u1 + σ2) sn2su + sn4su

Υv =
√
σ̄2(1 + v2)2 − 2σ̄2v2(1 + v2) dn2sv + (σ̄2v2

2 + σ2) dn4sv

k2
u =

2

(u1 + 1)
, gu =

2√
(1 + u1)

, k2
v =

2

(1− v2)
, gv =

2√
(1− v2)

• Lemniscatic orbits-tl: −1 < u1 < 1 < u , v2 < −1 < v < 1.

X(ζ) = R
ΥuΥv

σ̄ (1− u1 sn2su) (−1− v2 + v2 dn2sv)

Y (ζ) = R
ΥuΥv

2
√

2σσ̄
√

1− u1

√
1+v2
v2−1 dnsu snsu snsv cnsv

Z(ζ) = R
ΥuΥv

σ cn2su dn2sv

(58)

Υu =
√

1− 2(σ̄2u1 + σ2) sn2su + (σ̄2u2
1 + σ2) sn4su

Υv =
√
σ̄2(1 + v2)2 − 2σ̄2v2(1 + v2) dn2sv + (σ̄2v2

2 + σ2) dn4sv

k2
u =

(u1 + 1)

2
, gu =

√
2 , k2

v =
2

(1− v2)
, gv =

2√
(1− v2)

• Satellitary orbits-ts′ : −1 < u1 < 1 < u , −1 < v2 < v < 1.

X(ζ) = R
ΥuΥv

σ̄ (1− u1 sn2su) (1 + v2 − dn2sv)

Y (ζ) = R
ΥuΥv

√
2σσ̄
√

1− u1

√
1− v2

2 dnsu snsu cnsv

Z(ζ) = R
ΥuΥv

σ cn2su dn2sv

(59)
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Υu =
√

1− 2(σ̄2u1 + σ2) sn2su + (σ̄2u2
1 + σ2) sn4su

Υv =

√
σ̄2(1 + v2)2 − 2σ̄2(1 + v2) dn2sv + dn4sv

k2
u =

(u1 + 1)

2
, gu =

√
2 , k2

v =
(1− v2)

2
, gv =

√
2

• Finally, the u- and v- periods for these orbits with Ω = 0 are:

tp orbits : Tu =
gu√

2
2K(k2

u) , Tv =
gv√

2
4K(k2

v)

tl and ts′ orbits : Tu =
gu√

2
4K(k2

u) , Tv =
gv√

2
4K(k2

v)

In Figure 6 there are represented several orbits with R = 1, γ = 1
3 and θf = π

6 , one for each different

situation. These orbits are dense in all the cases and they are depicted in the interval ζ ∈ [0, 70].

We can see in Figure 7 several closed orbits of different types, with specification of the values of p, q

and initial data su0 and sv0 . In all the cases p, q and the constant of motion Ω have been fixed, thus

G has been calculated by solving numerically equation (44).
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(a) tp : σ̄σΩ = −0.27, σ
σ̄G = 0.8 (b) tl : σ̄σΩ = −0.3, σ

σ̄G = 0.6 (c) ts′ : σ̄σΩ = −0.2, σ
σ̄G = −0.1

su0 = 0, sv0 = 0 su0 = 1, sv0 = 0 su0 = 1, sv0 = 0

(d) tp : σ̄σΩ = 0.5, σ
σ̄G = 2 (e) tl : σ̄σΩ = 0.25, σ

σ̄G = 1 (f) ts′ : σ̄σΩ = 0.5, σ
σ̄G = 0.5

su0 = 1, sv0 = 2 su0 = 0, sv0 = 0 su0 = 1, sv0 = 2

(g) ts : σ̄σΩ = −0.5, σ
σ̄G = 0 (h) tds : σ̄σΩ = 0.8, σ

σ̄G = 0.2 (i) tmp : σ̄σΩ = 1.5, σ
σ̄G = 0.2

su0 = 1, sv0 = 0 su0 = 1, sv0 = 2 su0 = 1, sv0 = 2

Figure 6: Orbits in S2. In all cases: γ = 1
3 , σ = cos π6 , σ̄ = sin π

6 .
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(a) tp : σ̄σΩ = −0.25, σ
σ̄G
∼= 0.80727 (b) tl : σ̄σΩ = −1/5, σ

σ̄G
∼= 0.29835 (c) ts′ : σ̄σΩ = −0.25, σ

σ̄G
∼= 0.10725

2Tu = 3Tv , su0 = 0, sv0 = 0 Tu = Tv , su0 = 3, sv0 = 0 3Tu = Tv , su0 = 3, sv0 = −1

(d) tp : σ̄σΩ = 0.5, σ
σ̄G
∼= 1.56826 (e) tl : σ̄σΩ = 0.25, σ

σ̄G
∼= 0.72393 (f) ts′ : σ̄σΩ = 0.3, σ

σ̄G
∼= 0.07292

3Tu = 2Tv , su0 = 1, sv0 = 0 3Tu = 2Tv , su0 = 0, sv0 = 0 5Tu = 3Tv , su0 = 3, sv0 = 1

(g) ts′ : σ̄σΩ = 0, σ
σ̄G = 0 (h) tds : σ̄σΩ = 0.6, σ

σ̄G
∼= 0.23559 (i) tmp : σ̄σΩ = 1.5, σσ̄G

∼= 0.47580

Tu = Tv , su0
= 0, sv0 = 0 Tu = Tv , su0

= 3, sv0 = 0 Tu = 3Tv , su0
= 0, sv0 = 0

Figure 7: Closed orbits in S2. In all cases: γ = 1
3 , σ = cos π6 , σ̄ = sin π

6 .
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