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Abstract

The quantum problem of an electron moving in a plane under the field created by two Coulom-
bian centers admits simple analytical solutions for some particular inter-center distances. These
elementary eigenfunctions, akin to those found by Demkov for the analogous three dimensional
problem, are calculated using the framework of quasi-exact solvability of a pair of entangled ODE’s
descendants from the Heun equation. A different but interesting situation arises when the two
centers have the same strength. In this case completely elementary solutions do not exist.

1 Introduction

The quantum spectral problem of a charged particle moving in the field created by two fixed
Coulomb centers appears in a natural way in the study of diatomic molecular ions, in the Born-
Oppenheimer approximation. Although the three-dimensional case has been profusely studied
from different points of view: computational, see e.g. [1], analytical, see [2, 3], as far as we know
the search for elementary solutions has been reduced to the work of Demkov [4] in the two-center
problem in three dimensions.

In this letter, the existence of elementary solutions for the planar problem is studied. The
underlying idea is similar to the Demkov approach [4] to the three-dimensional case, and thus
we search for the eigenfunctions of the system that can be written essentially as polynomials.
Unlike the three-dimensional problem, the planar system admits elementary solutions not only
of hydrogenoid type, i.e., eigenfunctions with energy coinciding with the energy levels of an hy-
drogenoid atom, but also of a new type that we shall term as “quasi”-hydrogenoid. These new
type of elementary solutions does not arise in the three dimensional problem and its existence is
reminiscent of the different topologies subjacent to 2D and 3D two center problems.

The Schrödinger equation for the planar problem is separable in Euler elliptic coordinates.
After the separation process the PDE wave equation reduces to two ODE’s, namely a Razavy
and a Whittaker-Hill equation, linked by the two invariants of the system. These equations
are particular descendants of the Confluent Heun equation, and, thus, it is possible to obtain
polynomial solutions when the parameters of the problem render the two ODE simultaneously
quasi-exactly solvable [5]. The separability properties and the study of the general potentials that
admit exact and quasi-exact solvability for a broad family of physical problems associated to the
3D two-center problem have been recently analyzed thoroughly in Reference [6].

When the two centers are of equal strength, contrary to expectations, the problem is more
involved. The Whittaker-Hill equation descends to the Mathieu equation which is never quasi-
exactly solvable. Thus, there are not completely elementary eigenfunctions in this situation,
although interesting wave functions may be derived for certain intercenter distances determined
from the Mathieu characteristic values.
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2 The planar quantum problem posed by two Coulombian

centers

The stationary Schrödinger equation governing the quantum dynamics of a charged particle mov-
ing in the potential of two fixed Coulombian centers (nuclei, ions, etc) in the plane reads:

(

−1

2
∆− Z1

r1
− Z2

r2

)

Ψ = EΨ , (1)

where ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
, and atomic units are used: ~ = me = e = a0 = 1, a0 being the Bohr radius.

Z1 and Z2 are the atomic numbers of the two nuclei, and r1 and r2 are the distances from the
electron to the nuclei:

r1 =

√

(

x1 −
R

2

)2

+ x2
2 , r2 =

√

(

x1 +
R

2

)2

+ x2
2 ,

while R is the internuclear distance. Equation (1) admits separation of variables using Euler
elliptic coordinates (ξ, η), ξ = r1+r2

R
∈ (1,+∞) and η = r2−r1

R
∈ (−1, 1). Search for separated

wave functions Ψ(ξ, η) = F (ξ)G(η) converts equation (1) into two ODEs: one

(ξ2 − 1)
d2F (ξ)

dξ2
+ ξ

dF (ξ)

dξ
+

(

ER2

2
ξ2 +R(Z1 + Z2)ξ + λ

)

F (ξ) = 0 (2)

in the “radial”coordinate ξ ∈ (1,∞), the other

(1− η2)
d2G(η)

dη2
− η

dG(η)

dη
−
(

ER2

2
η2 +R(−Z1 + Z2)η + λ

)

G(η) = 0 (3)

in the “angular”η ∈ (−1, 1) coordinate. λ is the separation constant.
Equations (2) and (3) are no more than the algebraic form of Razavy and Whittaker-Hill

equations respectively, see e.g. [7]. The wave functions of our problem are given by the product
of solutions of (2) and (3) for identical values of the energy E and the separation constant λ.

The connection with the Confluent Heun equation

Both (2) and (3) are reduced to the Confluent Heun Equation (CHEq) [8, 9]:

(

z2 − 1
)

u′′(z) +
( ǫ

2
(z2 − 1) + γ(z − 1) + δ(z + 1)

)

u′(z) +
(α

2
(z + 1)− q

)

u(z) = 0 , (4)

via the changes of variable:

F (ξ) = (ξ + 1)
2γ−1

4 (ξ − 1)
2δ−1

4 e
ǫξ
4 u(ξ) (5)

G(η) = (1 + η)
2γ−1

4 (1− η)
2δ−1

4 e
ǫη
4 u(η) (6)

that are compatible with the form of Razavy and Whittaker-Hill equations only in the four fol-
lowing cases: a) δ = γ = 1

2 , b) δ = γ = 3
2 , c) δ = 1

2 , γ = 3
2 , and d) δ = 3

2 , γ = 1
2 . The rest of

CHEq constants are related to the physical parameters of equations (2) and (3) by the identities:

ǫ2 = −8ER2

λ =
ǫ2

16
+

ǫ(γ − δ)

4
− (γ + δ)(γ + δ − 2)

4
+

2α− 1

4
− q

together with:
α

2
− ǫ

4
(δ + γ) = R(Z1 + Z2)

2



in the radial equation, and
α

2
− ǫ

4
(δ + γ) = R(Z2 − Z1)

in the angular one.
If we interpret CHEq as an spectral problem Du(z) = qu(z), it is not difficult to show, see [5],

that the differential operator D can be written as a quadratic combination of the generators of the
Lie algebra sl(2, R) if and only if α = −nǫ, being n a non-negative integer, and consequently CHEq
represents a quasi-exactly solvable spectral problem [10, 11, 12, 13] for this special combination
of parameters. In this situation it is possible to find an invariant module of polynomial solutions
of (4) associated with each arbitrary value of n. The search for Frobenius solutions of the form:

u(z) =

∞
∑

k=0

(−1)kPk(q)

2kk!(γ)k
(z + 1)k , (7)

where (γ)k = γ(γ + 1) . . . (γ + k − 1) and P0(q) = 1, leads to the following three-term recurrence
between the polynomials Pk(q) for k ≥ 1:

Pk+1(q) = (q − k(δ + γ − ǫ + k − 1))Pk(q)− kǫ(n− k + 1)(γ + k − 1)Pk−1(q) (8)

Thus, given a concrete value of n, and fixing q as one of the n + 1 roots of Pn+1(q), qj , j =
1, . . . , n+ 1, solutions (7) truncate to polynomials of degree n,

un,j(z) =

n
∑

k=0

(−1)kPk(qj)

2kk!(γ)k
(z + 1)k (9)

and consequently a n+1 dimensional module of polynomial eigenfunctions of (4) can be determined
algebraically.

3 Elementary solutions of Razavy equation

Translating the QES condition of (4) to the Razavy equation (2): α = −nrǫ, nr ∈ N, a quantiza-
tion condition in the expression of ǫ appears

α

2
− ǫ

4
(γ + δ) = R(Z1 + Z2) =⇒ ǫ = − 4R(Z1 + Z2)

(2nr + γ + δ)
(10)

and consequently, in the energy eigenvalues:

E = − ǫ2

8R2
=⇒ Enr = − 2(Z1 + Z2)

2

(2nr + γ + δ)2
(11)

Meanwhile, the separation constant is characterized by nr but also by j = 1, . . . , nr + 1, because
the explicit dependence in the qj parameter:

λnr ,j =
R2(Z1 + Z2)

2

(2nr + γ + δ)2
+

(2nr − γ + δ)R(Z1 + Z2)

(2nr + γ + δ)
− (γ + δ)(γ + δ − 2)

4
− 1

4
− qj (12)

As it was mentioned above, the compatibility between Razavy and CHEq is only possible in
four concrete choices of constants δ and γ. Thus we find the following expressions for energies,
separation constants and eigenfunctions:

Type a. δ = γ = 1
2 .

Enr = −2(Z1 + Z2)
2

(2nr + 1)2
, λnr ,j = −R2Enr

2
+

2nrR(Z1 + Z2)

2nr + 1
− qj

Fnr ,j(ξ) = e−
R(Z1+Z2)

2nr+1 ξunr,j(ξ)

3



Type b. δ = γ = 3
2 .

Enr = −2(Z1 + Z2)
2

(2nr + 3)2
, λnr ,j = −R2Enr

2
+

2nrR(Z1 + Z2)

2nr + 3
− qj − 1

Fnr ,j(ξ) =
√

ξ2 − 1 e−
R(Z1+Z2)

2nr+3 ξunr,j(ξ)

In these two cases a) and b) the energies are the corresponding to planar hydrogenlike atoms
with nuclear charge Z1 + Z2.

Type c. δ = 1
2 , γ = 3

2 .

Enr = −2(Z1 + Z2)
2

(2nr + 2)2
, λnr ,j = −R2Enr

2
+

(2nr − 1)R(Z1 + Z2)

2nr + 2
− qj −

1

4

Fnr ,j(ξ) =
√

ξ + 1 e−
R(Z1+Z2)

2nr+2 ξunr,j(ξ)

Type d. δ = 3
2 , γ = 1

2 .

Enr = −2(Z1 + Z2)
2

(2nr + 2)2
, λnr ,j = −R2Enr

2
+

(2nr + 1)R(Z1 + Z2)

2nr + 2
− qj −

1

4

Fnr ,j(ξ) =
√

ξ − 1 e−
R(Z1+Z2)

2nr+2 ξunr,j(ξ)

In the cases c) and d) the energies do not correspond to the planar hydrogenoid atoms, because
the even character of the denominator, 2nr + 2, recall that the spectrum of the planar hydrogen
problem[7] is: E = −2

(2n+1)2 . Nevertheless, there exist interesting elementary solutions of Types c)

and d) which are reminiscent of the lemniscatic orbits of the classical problem and we shall refer
to as “quasi”hydrogenoid.

4 Elementary solutions of Whittaker-Hill equation

An equivalent analysis can be performed for the angular equation (3) simply changing the relative
sign of the charge Z1 and the range of variation for the angular coordinate. Thus, the condition:
α = −naǫ, na ∈ N, leads to the following structure of solutions:

Type a. δ = γ = 1
2 .

Ena = −2(−Z1 + Z2)
2

(2na + 1)2
, λna,j = −R2Ena

2
+

2naR(−Z1 + Z2)

2na + 1
− qj

Gna,j(η) = e−
R(−Z1+Z2)

2na+1 ηuna,j(η)

Type b. δ = γ = 3
2 .

Ena = −2(−Z1 + Z2)
2

(2na + 3)2
, λna,j = −R2Ena

2
+

2nrR(−Z1 + Z2)

2na + 3
− qj − 1

Gna,j(η) =
√

1− η2 e−
R(−Z1+Z2)

2na+3 ηuna,j(η)

Type c. δ = 1
2 , γ = 3

2 .

Ena = −2(−Z1 + Z2)
2

(2na + 2)2
, λna,j = −R2Ena

2
+

(2na − 1)R(−Z1 + Z2)

2na + 2
− qj −

1

4

Gna,j(η) =
√

1 + η e−
R(−Z1+Z2)

2nr+2 ηuna,j(η)

Type d. δ = 3
2 , γ = 1

2 .

Ena = −2(−Z1 + Z2)
2

(2na + 2)2
, λna,j = −R2Ena

2
+

(2na + 1)R(−Z1 + Z2)

2na + 2
− qj −

1

4

Gna,j(η) =
√

1− η e−
R(−Z1+Z2)

2na+2 ηuna,j(η)

4



Figure 1: Graphical representation of the probability density ρ(x1, x2) = |Ψ|2 for the normalized eigenfunction
(14), and several level curves of ρ(x1, x2).

5 Elementary solutions of the Schrödinger equation

The simultaneous existence of elementary solutions in both radial and angular equations, for fixed
values of Z1 and Z2, is obviously possible only if the parameters E and λ determined in the
resolution process are the same for both equations.

Thus, there exist elementary solutions of the Schrödinger equation only for those values of
n1 ∈ N and n2 ∈ N that solve the diophantine equation:

(Z1 + Z2)
2

n2
1

=
(−Z1 + Z2)

2

n2
2

, (13)

where n1 can be equal to 2nr +1, 2nr + 3 or 2nr + 2, whereas n2 is: 2na + 1, 2na + 3 or 2na + 2.
Moreover, the value of the separation constant λ in (2) and (3) must be the same and because of
the dependence of λ on R, the equality will only be satisfied for certain values of the internuclear
distance.

As illustrative examples, we present several elementary solutions for two pairs of charges:
Z1 = 5, Z2 = 1, and Z1 = 2, Z2 = 1.
Charges Z1 = 5, Z2 = 1. The elementary eigenfunction of minimum energy corresponds to the
n1 = 3 and n2 = 2 solution of (13): E = −8. This solution appears considering Type b) in Razavy
equation with nr = 0 and Type d) in Whittaker-Hill equation with na = 0. The compatible value
of λ is − 7

16 that is obtained for R = 3
8 . Thus, we have the eigenfunction:

Ψ(ξ, η) =
√

ξ2 − 1
√

1− ηe−
3
4 (ξ−η) (14)

The next energy level where elementary solutions are found is E = −2. These solutions are
obtained for n1 = 6 and n2 = 4 in (13), in four different combination of Types c) and d):

• Type d) in both equations. The values of the constants are: λ = − 583
256 and R = 3

16and the
wave function reads:

Ψ(ξ, η) =
√

ξ − 1
√

1− η

(

η +
1

3

)

(

ξ2 − 10ξ − 7
)

e−
3
16 (ξ−η) (15)

• Type d) in Razavy equation and Type c) in Whittaker-Hill equation. λ = −2.25, R = 0.43

Ψ(ξ, η) =
√

ξ − 1
√

1 + η(η − 0.71)
(

ξ2 − 3.89ξ − 3.54
)

e−0.43(ξ−η)

• Type c) and d) respectively. λ = −3.11, R = 1.64

Ψ(ξ, η) =
√

ξ + 1
√

1− η(η − 0.58)
(

ξ2 − 0.63ξ − 0.88
)

e−1.64(ξ−η)

5



Figure 2: Graphical representation of ρ(x1, x2) for the normalized eigenfunction (15) and several level curves
of ρ(x1, x2).

• Type c) and d) again. λ = −0.59, R = 0.29

Ψ(ξ, η) =
√

ξ + 1
√

1− η(η + 3.20)
(

ξ2 − 10.06ξ + 16.82
)

e−0.29(ξ−η)

Charges Z1 = 2, Z2 = 1. In this case we present the three elementary eigenfunctions that appears
for: E = − 1

2 . The corresponding solution of (13) is n1 = 6 and n2 = 2.

• λ = 1
36 (59− 4

√
19), R = 2

3 (1 +
√
19)

Ψ(ξ, η) =
√

ξ − 1
√

1− ηe−
1
3 (1+

√
19)(ξ−η)

(

ξ2 +
1

2

(

3−
√
19
)

ξ +
1

4

(

3− 2
√
19
)

)

• λ = − 31
64 , R = 3

4

Ψ(ξ, η) =
√

ξ + 1
√

1− η(ξ2 − 8ξ + 11)e−
3
8 (ξ−η)

• λ = 1
36 (59 + 4

√
19), R = 2

3 (−1 +
√
19)

Ψ(ξ, η) =
√

ξ + 1
√

1 + ηe−
1
3 (−1+

√
19)(ξ−η)

(

ξ2 − 1

2

(

3 +
√
19
)

ξ +
1

4

(

3 + 2
√
19

)

)

In order to facilitate the presentation we have written some of the numbers rounded to three
significative digits, although all these elementary eigenfunctions have been obtained using exact
analytic expressions. There exists also elementary solutions containing polynomials of higher
orders, that have to be calculated using numerical approximations because the determination of
the roots of Pn+1(q) in (8) with n ≥ 5 is involved.

6 Two-equal centers

It is very interesting to analyze the symmetric case, i.e., when Z1 = Z2 = Z. The radial equation
(2) is still a Razavy equation, but the angular one (3) reduces to the algebraic version of Mathieu
equation:

(1− η2)
d2G(η)

dη2
− η

dG(η)

dη
−
(

ER2

2
η2 + λ

)

G(η) = 0 (16)

The standard form of Mathieu equation [15, 16] is obtained by the change of variable: η = cos ν,
where ν varies in the interval ν ∈ [−π, π] in such a way that the x2 > 0 half-plane is described in
the range ν ∈ (0, π) whereas ν ∈ (−π, 0) corresponds to the x2 < 0 half-plane, i.e., the original
change of coordinates:

x1 =
R

2
ξη , x2 = ±R

2

√

ξ2 − 1
√

1− η2

6



Figure 3: Graphical representation of ρ(x1, x2) for (20) and several level curves of ρ(x1, x2).

is redefined in a one-to-one version:

x1 =
R

2
ξ cos ν , x2 =

R

2

√

ξ2 − 1 sin ν

Thus, equation (16) reduces to standard form:

d2G(ν)

dν2
+ (a− 2q cos 2ν)G(ν) = 0 (17)

where a = −λ− ER2

8 and q = ER2

8 .
Mathieu equation (17) does not admit polynomial solutions [16], this fact can be easily checked

because the quasi-exact solvability condition for CHEq is not compatible with the form of Mathieu
equation (16). Complete elementary solutions, products of two polynomials, for the planar two
center problem in the symmetric case do not exist.

Nevertheless, it is possible to consider elementary solutions only for Razavy equation and to
determine the solutions of Mathieu equation corresponding to the values of Enr and λnr ,j, (11,12).
Each elementary Razavy solution is associated with a Mathieu equation (17) with the parameters:

anr,j = −λnr ,j −
EnrR2

4
, qnr =

EnrR2

8

There exist solutions of Mathieu equation (17) with different periodicity or quasi-periodicity
properties, and they are applicable to a physical problem depending on its special characteristics,
see for instance [14]. In the two-center problem, the physically admissible eigenfunctions of the
Schrödinger equation must be univalued and thus it is necessary to consider only the 2π-periodic
solutions of (17), the proper Mathieu functions: Cen(q, z) and Sen(q, z) [15, 16, 17]. The Mathieu
cosine Cen(q, z), n = 0, 1, . . . , and sine Sen(q, z), n = 1, 2, . . . , are solutions of (17) only if the
parameter a takes the Mathieu characteristic values an(q) and bn(q) respectively.

An elementary Razavy solution determined by Enr and λnr ,j is compatible only with values
of R such that the Mathieu parameter anr,j coincides with a characteristic value of the Mathieu
cosine or sine functions, i.e.

− λnr ,j −
EnrR2

4
= an

(

EnrR2

8

)

(18)

for some n = 0, 1, 2, . . . , or:

− λnr ,j −
EnrR2

4
= bn

(

EnrR2

8

)

(19)

for some n = 1, 2, . . . .
As examples, several eigenfunctions of this type are presented:

7



Figure 4: Graphical representation of ρ(x1, x2) for (21) and several level curves of ρ(x1, x2).

Charges Z1 = Z2 = 3. We illustrate the process with the simplest example: Choosing the energy
E = −8, obtained for nr = 1 in the Type a) of Razavy equation, there are two allowable values
for the separation constant: λ1,1 and λ12.

The associated Mathieu equations have parameters: a1,1 and a1,2 respectively, and q1 = −R2.
There exists only one possibility for R that leads a1,1 and/or a1,2 to be a characteristic value of
the Mathieu equation: if R = 1.33, then a1,2 = b1(q1) = 2.30, λ1,2 = 1.27. For these values, the
trascendent equation (19) is satisfied. Thus the eigenfunction is:

Ψ(ξ, ν) = e−2.67ξ(ξ + 0.91)Se1(−1.78, ν) (20)

Other examples are:

• E = −18, λ = −0.26, R = 0.33, a1(q0) = 0.75.

Ψ(ξ, ν) = e−0.99ξ
√

ξ + 1Ce0(−0.24, ν) (21)

• E = − 9
2 , λ = −3.13, R = 0.87, b2(q1) = 3.98.

Ψ(ξ, ν) = e−1.30ξ
√

ξ + 1(ξ + 0.49)Se2(−0.43, ν)

• E = − 72
25 , λ = 6.41, R = 4.49, a2(q2) = 8.11.

Ψ(ξ, ν) = e−5.39ξ
(

ξ2 + 1.73ξ + 0.74
)

Ce2(−7.26, ν)

For aesthetic reasons, the characteristic values and the other quantities involved in (20,21) and rest
of equations, are presented using only three significative digits, although obviously an arbitrary
precision can be obtained.

It is possible to find a plethora of solutions of this mixed type with specific values of R

physically meaningful in the atomic/molecular range.
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