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Abstract

In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in
the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation
around cylindrically symmetric BPS vortices is characterized mathematically, analysing the spectrum of the
second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound
states with low values of quantized magnetic flux are described fully, and their main properties are discussed.
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1. Introduction

Very soon after the discovery of Abrikosov quantized flux lines in the Ginzburg-Landau theory of Type
II superconductors [1], the existence and nature of fermionic bound states on these vortex filaments were
discussed by de Gennes et al. in Reference [2] . Quantized magnetic flux lines were rediscovered by Nielsen
and Olesen in the Abelian Higgs model, see [3], a finding that enhanced the interest of these topological
defects by promoting them to the relativistic and quantum world. By adjusting the couplings in the Abelian
Higgs model to drive the system to the critical point between Type II and Type I superconductors, Bo-
gomolny showed, see [4], that quantized vortex lines still exist but move without interaction with respect
to each other. Bosonic vortex bound states were investigated by Goodman and Hindmarsh, see [5], in the
context of the Abelian Higgs model for any value of the parameter governing the transition between Type
I and Type II superconductivity. In this short note we shall focus on finding BPS vortex bound states and
we shall describe these internal boson-vortex modes by a mixture of analytical and numerical methods, at
least at the same level of numerical precision as the BPS vortex solutions themselves.

2. BPS vortex fluctuations

The Abelian Higgs model describes the minimal coupling between a U(1)-gauge field and a charged
scalar field in a phase where the gauge symmetry is broken spontaneously . In fact, it is a relativistic
version of the Ginzburg-Landau theory of superconductivity. At the transition point between Type I and II
superconductivity, where the masses of the Higgs and vector fields are equal, the AHM action reads

S[φ,A] =

∫
d4x

[
−1

4
FµνF

µν +
1

2
(Dµφ)∗Dµφ− 1

8
(φ∗φ− 1)2

]
. (1)

Here, non-dimensional coordinates, couplings and fields are used, while φ(x) = φ1(x) + iφ2(x) is a complex
scalar field and Aµ(x) = (A0(x), A1(x), A2(x), A3(x)) is the vector potential. The covariant derivative is
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defined in the conventional form, Dµφ(x) = (∂µ − iAµ(x))φ(x), whereas the electromagnetic field tensor is
also standard: Fµν(x) = ∂µAν(x) − ∂νAµ(x). We choose the metric tensor in Minkowski space as gµν =
diag(1,−1,−1,−1), µ, ν = 0, 1, 2, 3, and use the Einstein repeated index convention. In the simultaneous
temporal and axial gauges A0 = A3 = 0, the Bogomolny arrangement of the energy per unit length for static
and x3-independent field configurations V [φ,A], see [4], shows that solutions of the first order PDE system

D1φ± iD2φ = 0 , F12 ±
1

2
(φ∗φ− 1) = 0 , (2)

with appropriate asymptotic behaviour at infinity in the R2 x1 : x2-plane, are absolute minima of V [φ,A]. It
was proved in [6] that there exist solutions of the PDE’s (2) with finite string tensions that are proportional
to the magnetic flux along the x3-axis of n ∈ Z quanta: V [φ,A] = 1

2 |
∫
R2 d

2xF12| = π|n|. These topo-
logical objects are denoted BPS vortices because they correspond to the Abrikosov-Nielsen-Olesen vortex
filaments arising in Type II superconductors, see [1]-[3], when the scalar and vector penetration lengths in
the Ginzburg-Landau free energy are equal and the system lives exactly at the transition point to Type I
materials.

Denoting the BPS vortex fields as:

φV = ψ(~x;n) = ψ1(~x;n) + i ψ2(~x;n) , AV = (V1(~x;n), V2(~x;n)) with ~x = (x1, x2) ,

and assembling the vector and scalar vortex fluctuations (a1(~x), a2(~x)), ϕ(~x) = ϕ1(~x) + iϕ2(~x) in a column
vector ξ(~x) with transpose

ξt(~x) =
(
a1(~x) a2(~x) ϕ1(~x) ϕ2(~x)

)t
,

one checks that the linearized dynamics is governed by the action of the second-order vortex fluctuation
operator H+

H+ =


−∆ + |ψ|2 0 −2D1ψ2 2D1ψ1

0 −∆ + |ψ|2 −2D2ψ2 2D2ψ1

−2D1ψ2 −2D2ψ2 −∆ + 1
2 (3|ψ|2 − 1) + VkVk −2Vk∂k − ∂kVk

2D1ψ1 2D2ψ1 2Vk∂k + ∂kVk −∆ + 1
2 (3|ψ|2 − 1) + VkVk

 (3)

on ξ(~x). Resolution of the spectral problem H+ξλ(~x) = ω2
λ ξλ(~x), where λ is a label in either the discrete

or the continuous spectrum of H+, permits the decomposition of ξ(~x) as a linear combination of the ξλ(~x)
eigenfunctions.

In the search for bound state (normalizable) eigenfunctions other than zero modes, i.e. 0 < ω2
λ < 1

assuming that ω2
λ = 1 is the scattering threshold, we shall profit from a hidden SUSY structure of H+.

Linear deformation of the PDE system (9), together with the background gauge

∂1[ξ(~x)]1 + ∂2[ξ(~x)]2 − ψ1(~x) [ξ(~x)]4 + ψ2(~x) [ξ(~x)]3 ≡ ∂kak(~x)− ψ1(~x)ϕ2(~x) + ψ2(~x)ϕ1(~x) = 0 , (4)

is encoded in the following first-order PDE operator

D =


−∂2 ∂1 ψ1 ψ2

−∂1 −∂2 −ψ2 ψ1

ψ1 −ψ2 −∂2 + V1 −∂1 − V2

ψ2 ψ1 ∂1 + V2 −∂2 + V1

 , (5)

acting on the space of BPS vortex fluctuations. This operator D allows us to embedd H+ in a SUSY
Quantum Mechanical system because H+ = D†D and we find the following SUSY algebra generated by the

supercharge Q =

(
0 0
D 0

)
:

Q2 =
(
Q†
)2

= 0 , H = QQ† +Q†Q =

(
H+ = D†D 0

0 H− = DD†
)
, (6)
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H being the SUSY Hamiltonian, while the SUSY partner to H+ is:

H− =


−∆ + |ψ|2 0 0 0

0 −∆ + |ψ|2 0 0
0 0 −∆ + 1

2 (|ψ|2 + 1) + VkVk −2Vk∂k − ∂kVk
0 0 2Vk∂k + ∂kVk −∆ + 1

2 (|ψ|2 + 1) + VkVk

 . (7)

Except for the eigenfunctions in the kernel of D, which are zero modes of H+, the two operators are
isospectral. This supersymmetric structure led to the proof of the Weinberg index theorem on the plane [7]:

indD = dim KerD = lim
M→∞

TrL2

{ M2

D†D +M2
− M2

DD† +M2

}
= 2n ,

stating that H+ has 2n zero modes in its spectrum: H+ξ+
0l(~x) = 0, l = 1, 2, · · · , 2n. Moreover, (6) also

guarantees that the H+-spectrum is non-negative, such that the zero modes of D are all the ground states
of H because KerH− = 0.

We shall focus on BPS cylindrically symmetric vortex filaments shaped according to the Nielsen-Olesen
ansatz:

φ(~x) = fn(r) einθ ; rAθ(r, θ) = nβn(r) . (8)

We stress that: (1) Cylindrical coordinates are chosen in the R3-space and the vector potential components
are adapted to them. (2) Besides the temporal and axial gauges, the radial gauge Ar = 0 is assumed such
that the vector field is purely vorticial. (3) The complex scalar field is expressed in polar form.

The first-order PDE system (2) becomes the following ODE system:

dfn
dr

(r) =
n

r
fn(r)[1− βn(r)] ,

dβn
dr

(r) =
r

2n
[1− f2

n(r)] . (9)

The solutions for the radial profiles fn(r) and βn(r), in the x1 : x2-plane and infinitely repeated along the
x3-axis, determine the cylindrically symmetric BPS vortex solutions. The finiteness of the energy per unit
length demands that fn(r)→ 1 and βn(r)→ 1 as r →∞.

Some analytical progress in the investigation of the zero-mode fluctuations on BPS cylindrically sym-
metric vortices was achieved in [7]. Further comprehension of their structure was obtained in References
[8] and [9]. Here, the motivation leading several researchers to describe in detail the vortex zero modes
came from the study of vortex scattering at low energies within the approach of geodesic dynamics in their
moduli space, see e.g. [10]. In this note we shall focus on finding and describing excited fluctuation modes in
the discrete H+-spectrum, i.e., internal modes of fluctuation, where the BPS vortex captures scalar and/or
vector mesons, an issue not discussed in the literature on the Abelian Higgs model.

3. Spectrum of cylindrically symmetric BPS vortex fluctuations

In the search for positive bound states ξ+
λ (~x) in the discrete spectrum of the operator H+, the use

of supersymmetry is convenient. If ω2
λ > 0, the SUSY structure (6) implies that H±ξ±λ (~x) = ω2

λξ
±(~x).

Moreover, the eigenfunctions of H± are related through the supercharges: ξ+
λ (~x) = 1

ωλ
D†ξ−λ (~x). In addition,

it should be recalled that the background gauge condition must be satisfied in order to eliminate spurious
gauge fluctuations. The strategy is thus to solve the spectral problem for H− first and apply the D†
operator to the ξ−λ eigenfunctions, finally obtaining the eigenfunctions ξ+

λ of H+. This indirect path is more
appropriate because the spectral problem of H− is more tractable owing to its block-diagonal form. Two
classes of eigenmodes of the operator H− can be distinguished:

• Class A H−-eigenmodes: The two 1× 1 block-diagonal sub-matrix differential operators in H− prompt a
complete decoupling of the vector field from the scalar fluctuations in the H−-spectral problem. There thus

exist eigenfunctions of the form [ξA−
λ (~x)]t =

(
a1(~x) 0 0 0

)t
and [ζA−

λ (~x)]t =
(

0 a2(~x) 0 0
)t

.

The H+-wave functions of the form D†[ζA−
λ (~x)] do not satisfy the background gauge. Therefore, we shall
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study only the physically meaningful possibilities D†[ξA−
λ (~x)] among this class of eigenmodes. The non-null

component of ξA−
λ (~x) complies with the PDE (−∇2 + |ψ|2) a1(~x) = ω2

λ a1(~x), or, in polar coordinates,

− ∂2a1

∂r2
− 1

r

∂a1

∂r
− 1

r2

∂2a1

∂θ2
+ [f2

n(r)− ω2
λ]a1 = 0 . (10)

The separation ansatz a1(~x) = vnk(r) cos(kθ) 1 leads to the 1D Sturm-Liouville problem

− d2vnk(r)

dr2
− 1

r

dvnk(r)

dr
+
[
f2
n(r)− ω2

λ +
k2

r2

]
vnk(r) = 0 (11)

for the radial form factor vnk(r). Univaluedness of the fluctuations demand that the wave number k must be
a natural number: k = 0, 1, 2 . . .. The ODE (11) is no more than a radial Schrödinger differential equation

with a potential well V A
eff(r;n, k) = f2

n(r) + k2

r2 , which includes a centrifugal barrier when k 6= 0, bounded
below and running to 1 at infinity: limr→∞ Veff(r) = 1. Consequently, a continuous spectrum arises in the
ω2
λ ∈ [1,∞) range, i.e., for energies above the scattering threshold ω2

λ = 1. Below this threshold, in the
ω2
λ ∈ (0, 1) range, boson-vortex bound states may exist if the spectral problem (11) admits eigenvalues. The

procedure to find both the eigenvalues ω2
j and the eigenfunctions vnk;j(r) will be implemented in the next

Section for low values of n. The need to identify the eigenvalues will leads us to convert the ODE (11),
where ω2

λ is a priori unknown, in a system of equations of finite differences by some discretization method
of the half-line to a lattice with a finite but large number of points. Diagonalization of the matrix of the
linear system in turn provides the eigenvalues and eigenfunctions, which are very good approximations to
the eigenfunctions and eigenvalues of H− provided that the number of points of the discretization is large
enough.

• Class B H−-eigenmodes: The 2× 2 block-diagonal sub-matrix in H− acts only on scalar field fluctuations

of the form [ξB−
λ (~x)]t =

(
0 0 ϕ1(~x) ϕ2(~x)

)t
, leading to the spectral PDE system:[

−∇2 + 1
2 (|ψ|2 + 1) + VkVk

]
ϕ1(~x)− 2Vk ∂kϕ2(~x) = ω2

λ ϕ1(~x) (12)[
−∇2 + 1

2 (|ψ|2 + 1) + VkVk
]
ϕ2(~x) + 2Vk ∂kϕ1(~x) = ω2

λ ϕ2(~x) . (13)

For cylindrically symmetric BPS vortices, the ansatz ϕ1(~x) = −unk(r) sin[(k+1)θ], ϕ2(~x) = unk(r) cos[(k+
1)θ] that converts the PDE system (12) and (13) into the spectral ODE is clear:

Runk(r) = −d
2unk(r)

dr2
− 1

r

dunk
dr

+
[1

2
(1 + f2

n(r)) +
(nβn(r)− (1 + k))2

r2
− ω2

λ

]
unk(r) = 0 , (14)

where the radial form factor unk(r) is the unknown. This is a radial Schrödinger differential equation with
an effective potential well: V B

eff(r) = 1
2 [1 + f2

n(r)] + 1
r2 [nβn(r) − (1 + k)]2. From the functional behavior of

V B
eff , we may conclude that a continuous spectrum arises settled on the threshold value ω2

λ = 1. The same
reasoning indicates that there could exist bound states in this class with eigenvalues in the ω ∈ (0, 1) range.
However, a theoretical argument can be used to discard this possibility. The linear differential operator R
associated with the ODE (14) can be factorized as R−1 = L†L, where L refers to the first-order differential
operators L = − d

dr + 1
r [1+k−nβn(r)]. This means that the R−1 operator has a non-negative spectrum and,

consequently, there are no bound states in the discrete spectrum of H− within this class B of fluctuations.

Translation via use of the supercharges of all the H−-spectral information described previously reveals
the structure of the H+-spectrum:

• Class A H+-eigenmodes: Assuming knowledge of ω2
λ and vnk(r) from the solution of (11) the eigenfunctions

of H+ paired through supersymmetry with these class A H−-eigenmodes take the form:

ξA+
λ (~x, n, k) =


sin θ cos(kθ)∂vnk(r)

∂r − k
r vnk(r) cos θ sin(kθ)

− cos θ cos(kθ)∂vnk(r)
∂r − k

r vnk(r) sin θ sin(kθ)
fn(r) vnk(r) cos(nθ) cos(kθ)
fn(r) vnk(r) sin(nθ) cos(kθ)

 , k = 0, 1, 2, . . . . (15)

1 a1(~x) = vnk(r) sin(kθ), k = 1, 2 . . ., also leads to (11). We shall pursue the cosine alternative, for the sake of brevity.
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It is immediate to check that ξA+
λ (~x) satisfies the background gauge (4), meaning that the fluctuations (15)

correspond to admissible eigenfunctions of the second-order BPS vortex fluctuation operator H+ 2. From
(11) we may conclude that a continuous spectrum emerges at the threshold value ω2 = 1, while the discrete
spectrum is confined to the open interval ω2

j ∈ (0, 1). The presence of bound states in the H+-spectrum,

however, requires the existence of eigenfunctions of (11) satisfying the boundary conditions dvnk
dr (0) = 0 and

limr→∞ vnk(r) = 0. This point will be addressed in the next section.

• Class B H+-eigenmodes: The corresponding SUSY partner H+-eigenfunctions ξB+
λ (~x) associated with the

class B H−-eigenfunctions are given by:

ξB+
λ (~x) = rn−k−1


hnk(r) sin[(n− k − 1)θ]
hnk(r) cos[(n− k − 1)θ]

−h
′
nk(r)
fn(r) cos(kθ)

−h
′
nk(r)
fn(r) sin(kθ)

 .

The new radial form factor hnk(r) may be defined from the relation unk(r) = rn−k−1

fn(r) hnk(r) in such a way

that the ODE (14) turns into the equation

r h′′nk(r) + [−1− 2k + 2nβn(r)]h′nk(r) + r[ω2
λ − f2

n(r)]hnk(r) = 0 ,

for the radial form factor hnk(r). Regularity at the origin, however, of the positive eigenfluctuations ξB+
λ (~x)

requires that 0 ≤ k ≤ n − 1. In this case, there exists a continuous spectrum emerging from the threshold
value ω2 = 1 and no positive eigenvalue bound states arise. Notice, however, that the form of these
eigenmodes ξB+

λ (~x) follow the ansatz given in [8] for the zero modes, such that we can regard the 2n zero
modes as the only bound class B H+-eigenmodes 3.

Orthogonality between eigenfunctions belonging to different classes is guaranteed by the conservation of
the scalar product in the SUSY partnership:

〈
ξA+
λ (~x), ξB+

λ′ (~x)
〉

=
〈
ξA−λ (~x), ξB−λ′ (~x)

〉
= 0, because class A

and B eigenfunctions of H− are clearly orthogonal. Orthogonality between eigenfunctions belonging to the
same class with different angular dependence is established by Fourier analysis.

4. Positive eigenvalue bound states of the small vortex fluctuation operator

We now attempt to elucidate the existence of excited fluctuations of class A belonging to the discrete
spectrum of H+ with positive eigenvalues lower than 1. The search for and the analysis of these fluctuations
reduce to the numerical computation of the radial form factor vnk(r) in the ODE (11). Our strategy to
achieve this is to employ a second-order finite-difference scheme that simulates the differential equation (11)
by the recurrence relations

−
v

(i+1)
nk;j − 2v

(i)
nk;j + v

(i−1)
nk;j

(∆x)2
−
v

(i+1)
nk;j − v

(i−1)
nk;j

2i(∆x)2
+
[
f2
n(i∆x) +

k2

i2(∆x)2

]
v

(i)
nk;j = ω2

nk;j v
(i)
nk;j , (16)

where we have confined the problem to the interval [0, rmax] for a large enough rmax. We denote v
(i)
nk;j =

vnk;j(i∆x), with ∆x = rmax

N , and choose a mesh of N points with i = 0, 1, 2, · · · , N . The eigenfunctions and
the eigenvalues depend on the values of the angular momentum k and the vorticity n. The index j is used
to enumerate the discrete eigenfunctions. The contour conditions are:

(1) − 4

3

v
(2)
nk;j − v

(1)
nk;j

(∆x)2
+
[
f2
n(∆x) +

k2

(∆x)2

]
v

(1)
nk;j = ω2

nk;j v
(1)
nk;j and (2) v

(N)
nk;j = 0

2The sine alternative leads to degenerate eigenfunctions with ξA+
λ (~x, n, k) obtained by simply replacing cos(kθ) by sin(kθ)

and sin(kθ) by − cos(kθ) in the wave function (15). Knowledge of the radial form factor vnk(r) authomatically gives both the
cos and sin bound states.

3Other n zero modes are easily generated by rotating π/2 separately in the scalar and vector field fluctuations, which is a

symmetry of the spectral problem. The same argument can be applied to the eigenfunctions ξB+
λ (~x).
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A good estimation of the discrete eigenvalues ω2
nk;j is obtained through diagonalization of the N ×N matrix

in the left member of the linear system (16). We show the eigenvalues of H+ for low values of n and k
obtained in a Mathematica environment in Table 1 by applying this procedure with the choice of N = 400.
In Figure 1 we illustrate the behavior of the potential wells of the radial Schrödinger equation (11) for n = 4
and the overlapped dashed lines that determine the discrete eigenvalues of the H+-spectrum in this case.
The radial form factor vnk;j(r) of the eigenfunctions associated with these eigenvalues are also shown.

In general, we observe that the number of bound states increases with the magnetic flux n. In particular,
we conclude the existence of 1 bound state for n = 1-vortices; 2 bound states for the n = 2 and n = 3
vortices; 3 bound states for n = 4-vortices, and 4 bound states in the case of n = 5-vortices. In Table 1 we
include a graphical representation of the discrete H+-spectrum for several values of the vorticity n.

Eigenvalues of the discrete spectrum of H+

n k = 0 k = 1 k = 2

1 (ωA
10;1)2 = 0.777446 - -

2 (ωA
20;1)2 = 0.538573 (ωA

21;1)2 = 0.972563 -

3 (ωA
30;1)2 = 0.402692 (ωA

31;1)2 = 0.830078 -

4
(ωA

40;1)2 = 0.319276
(ωA

40;2)2 = 0.988212
(ωA

41;1)2 = 0.701708 -

5
(ωA

50;1)2 = 0.263671
(ωA

50;2)2 = 0.939461
(ωA

51;1)2 = 0.601223 (ωA
52;1)2 = 0.942438

Table 1: Numerical estimation of the discrete spectrum eigenvalues associated with the class A eigenfunctions ξA+
λ (~x, n, k) with

angular momentum k, together with a graphical representation of the second-order small n-vortex fluctuation operator H+

spectrum. The eigenvalues of the form ωn0 shown in this Table agree with those given in Table 3 of Reference [5] for critical
quotient of the scalar and vector field masses up to a factor of 2 due to a different convention.

Figure 1: Plots of the effective radial potential wells V A
eff(r, n = 4, k) arising in (11) for k = 0, 1, 2 (solid lines) with the discrete

eigenvalues (dashed lines) overlapped (left) and the corresponding radial eigenfunctions v4k,j(r) (right) of the small n = 4
vortex fluctuation operator H+.

In sum, there exist bound states ξA+
nk,j(~x) that are eigenfunctions of H+. Here, we have described the

stationary wave functions where an awkward combination of scalar and vector boson fluctuations are trapped
by a cylindrically symmetric BPS vortex. These configurations oscillate in time with frequencies determined
by the discrete eigenvalues and are thus internal modes of fluctuation of the BPS n-vortex.
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