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The bipartite ground state entanglement in a finite linear harmonic chain of particles is numerically
investigated. The particles are subjected to an external on-site periodic potential belonging to a
family parametrized by the unit interval encompassing the sine-Gordon potential at both ends of
the interval. Strong correspondences between the soliton entanglement entropy and the kink energy
distribution profile as functions of the sub-chain length are found.

Introduction. - Entanglement in systems displaying solitonic solutions has been studied for some specific models
[1–5]. Recently, solitons in discrete chains presenting bounded internal modes have received increasing attention from
both experimental and theoretical point of view [6–13]. Since solitonic solutions of nonlinear models are characterized
by being localized and topologically protected, investigation focusing on their use for quantum information tasks are
in progress. As for example, in [14] the authors studied the behavior of entanglement in a chain of particles using the
Frenkel-Kontorova model [15–17], and they have investigated the possibility to use solitons as the carrier of quantum
information. In this model the particles of the 1-D chain interact by means of an elastic force with the nearest
neighbors and are subjected to an on-site (substrate) sine-Gordon potential V . The strength of the elastic couplings
g between adjacent particles becomes a parameter in the model which rules the width (proportional to

√
g) of the

unique soliton energy density lump. The influence of the sG soliton on the bipartite entanglement was analyzed by
means of the von Neumann entropy, where one of two sub-blocks which conform the chain is always centered at the
kink energy density maximum (kink center). The authors study the dependence of the von Neumann entropy on the
size of the subblocks for several values of g, i.e., for several values of the soliton width. The result is that the presence
of the soliton enhances the entanglement reaching a maximum when the size of the sub-block coincides approximately
with the soliton width. The investigation of this issue in interacting multi-soliton solutions is achieved in [18].
Solitons and/or kinks are extended states whose energy densities are spatially localized in bounded regions in

contrast with vacuum energy densities which are spatially homogeneous. In scalar field theory on the real line the
existence of kinks comes from quantization of solitary wave solutions of the classical field equations. These traveling
waves have energy densities showing one or several lumps of energy moving together with their center of mass. Thus,
the kink center and the centers and widths of these lumps characterize the extended state, see e.g. [19]. We shall
address a system in this class determined by the family of double sine-Gordon potential energy densities:

V (φ; a) = 1− (1− a) cos(2πφ)− a cos(4πφ) , a ∈ [0, 1] .

The family parameter a is chosen to be in the unit interval in order to have a function V semi-definite positive. At
a = 0 the standard sine-Gordon (sG) model is included, whereas at a = 1 the sG model reappears although the
argument is twice the standard sine-Gordon angle. Crucial to us in this work is the existence of kink traveling waves
in any member of this family of models. The structure of the kink profiles, however, differs with varying values of
a. In particular, in the range 0 ≤ a ≤ 1

5 the kink energy density shows a single maximum at the kink center, i.e.,

it is formed by only one lump of energy density. In the range 1
5 < a < 1, however, the kink energy density presents

two separated maxima symmetrically distributed with respect to the kink center. The kink profile is formed by two
separated energy density lumps if a is greater than 1

5 and less than 1. The distance between the lump centers grows
with a and becomes infinity at a = 1 where the one-lump sine-Gordon kink of double angle emerges, see References
[20, 21].
We shall work in the Frenkel-Kontorova scheme choosing as on-site substrate the potential of the double sine-

Gordon model, i.e., we shall focus on the double sine-Gordon model defined on a finite chain of points instead of on
the whole real line. Following the ideas disclosed in [14], we shall study soliton entanglement entropy replacing the
standard sine-Gordon on-site potential by one potential belonging to the double sine-Gordon (dSG) family. By this
token we enlarge the number of physical parameters. Besides the spring constant g, the family parameter a ∈ [0, 1]
plays a significant rôle. The length where the kink energy density departs from the vacuum energy, the kink width, is
proportional to

√
g whereas a determines the kink profile shape. These facts together make the dSG model specially

suitable to investigate entanglement entropy when the kink energy distributions are more or less extended over the
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chain and/or their shape exhibits one or two energy lumps with different separations. With this in mind we divide
the chain following [14] into two complementary sub-blocks or sub-chains with no common points. Unlike Marcovitz
et al. we select the two sub-chain starting from the two chain endpoints. We expect that the entanglement between
fluctuations in different sub-chains will be influenced by how much of the kink energy distribution is contained in each
sub-chain. The g parameter leads us to distinguish three characteristic regimes: (1) First, we address the situation
where the kink width is much shorter than the total chain length. For instance, the choice of g = 104 on a chain of
length 501 points (used in this paper) the kink energy density occupies one fifth of the chain. The kink is clearly
localized. (2) Second, in a chain of the same length a coupling of g = 105 concentrates the kink in three fifths of the
chain. The kink is more spread throughout the chain in this regime than in the previous one. (3) Third, choosing
again the same chain but having g = 106 we encounter the last regime: the kink energy distribution encompasses the
whole chain. Clearly, similar regimes for longer chains are found for higher values of g. In all these considerations it
is assumed that the kink center sits at the chain midpoint.
We shall perform numerical calculations of the correlation functions and the von Neumann entropy in these three

regimes. Both the quantum vacuum and kink sectors will be investigated, whereas three values of the a parameter
will be considered distinguishing kink profiles with a single lump, two close lumps, and two widely separated lumps.
Our results offer a refinement in several directions on the structure of the soliton entanglement entropy discussed in
[14]. First, the spatial correlation functions computed before the partition into two subchains show shapes in strong
correspondence with the kink energy distribution profile. These correspondences are unveiled in the three regimes
previously described, in each of them for the three characteristic values of a. Comparison with spatial correlation
between vacuum fluctuations is also offered. In a second step, we use the knowledge of the correlation functions to
compute, also numerically, the entanglement entropy arising in a partition of the system into two subchains between
fluctuations living in different parts of the chain. Our N -particle chain will thus be divided into one ℓ-particle and
another N − ℓ particle subblock with all the ℓ points in the first subchain located at the left of the N − ℓ points of
the second subchain. We shall compute the entanglement for different choices of the partition length ℓ. The main
conclusion is that entanglement between fluctuations in the two different subchains is maximum when ℓ coincides
with one of the kink lump centers. If the kink energy density shows two energy lumps the entanglement entropy as
a function of ℓ reaches two maxima too precisely when the length of the subblock ℓ coincides with the kink lump
centers. In more general terms, we claim that the entanglement is enhanced when the kink energy density at the
sub-block endpoint increases and it is maximum when the kink energy density is maximum.

Quantization. - We shall address a 1-D linear harmonic chain of N particles interacting with the nearest neighbors
and subjected to an on-site (substrate) potential V . We assume that the equilibrium position of the n-th particle in
the chain is XV

n = n, n = 0, . . . , N . The classical Hamiltonian governing the dynamics of this model is

H =

N−1∑

n=0

Hn,n+1 =

N−1∑

n=0

1

2

[
π2
n + 2V (φn) + g(φn+1 − φn)

2
]
. (1)

where φn represents the displacement of the n-th particle with respect to its equilibrium position, Xn = n + φn,
πn = φ̇n is the momentum of the n-th particle, g is the non dimensional strength of the elastic couplings between
adjacent neighbor particles, and V represents the external on-site potential, see [16]. We assume that V (φ) is a
non negative function which vanishes when the displacements reach an equilibrium point. In formula (1) all the
magnitudes involved, particle positions, momenta, and potential are rescaled to non dimensional quantities. The
system of coupled ODE’s

d2φn

dt2
= −∂V (φn)

∂φn
+ g(φn+1 − 2φn + φn−1) , n = 0, 1, . . . , N (2)

are the equations of motion describing the classical dynamics of the model, whereas time-independent solutions are
determined from the difference equations system:

− ∂V (φn)

∂φn
+ g(φn+1 − 2φn + φn−1) = 0 . (3)

We shall distinguish two types of time-independent finite energy solutions:

1. Homogeneous solutions of (3), denoted as φV(n) = φVn :

φV(n) = φVn = 0 with n = 0, 1, · · · , N .

All the particles sit at their equilibrium points Xn = n in such a way that their classical energy is zero:
H(φVn ) = 0. We shall refer to them as vacuum solutions foreseeing future treatment in a quantum setting.
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2. Discrete soliton/kink solutions, which we shall denote as: φSn = φS(n). Soliton and kink are frequently used
as synonymous in the Literature. The strict concept of soliton, however, is more restrictive. Both kinks and
solitons are solitary non-linear waves, but they differ in the fact that solitons preserve shapes after collisions.
We shall denote as kinks the non-homogeneous solutions from now on throughout this paper. Kinks are thus
solutions of (3) obeying the following boundary conditions:

φS(0) = φS0 = 0 , φS(N) = φSN = 1 , (4)

characterized accordingly by the non null “topological charge”: T = |φSN−φS0 | = 1. The boundary conditions (4),
tantamount to XS

0 = 0 and XS
N = N +1, demand that the kink profile will depart from the particle equilibrium

positions somewhere in the middle of the chain. The kink energy distribution (density in the continuum limit)
is: E(φSn) = V (φSn) +

1
2g(φ

S
n+1 − φSn)

2.

Small fluctuations η(n, t) around static solutions φsta(n) = φstan , either vacuum or kink configurations,

φ(n, t) = φstan + η(n, t)

are still solutions of the ODE’s system (2) if and only if the following ODE’s linear system

( d2
dt2

+Ω(n) + 2g
)
η(n, t)− g η(n− 1, t)− g η(n+ 1, t) = O(η2) (5)

is satisfied, see [20]. In formula (5) Ω is the second derivative of the potential evaluated at the static solution:

Ω(n) = d2V
dφ2 [φstan ].

If φstan = φVn then Ω(n) is the curvature of the potential at the equilibrium points, where all the particles of the
chain sit. If φstan = φSn then Ω(n) is evaluated at kink solutions and because kinks are not homogeneous, i.e., they vary
with n, it takes different values at different points of the chain. From the spectral problem of the (N + 1)× (N + 1)
Hessian matrix B(n,m)

B(n,m) =
(
Ω + 2g

)
δnm − g δn,m−1 − g δn,m+1 ,

N∑

m=0

B(n,m)ψk(m) = ω2
kψk(n) (6)

where Ω obeys to either to vacuum or kink static solutions, the general solution of the ODE’s system (5)

η(n, t) =

N∑

k=0

1√
2ωk

(
ak e

iωkt + a∗k e
−iωkt

)
ψk(n) (7)

is obtained in terms of the (N + 1) normal modes of fluctuation ψk(n), whose eigenvalues have been denoted as ω2
k,

see (6). Dirichlet boundary conditions ensure that the eigenmodes are real.
Quantization of this pre-quantum picture is achieved by promoting the ak and a∗k coefficients to annihilation and

creation bosonic operators: [â†k, âq] = δkq . The bosonic quantum field and its conjugate momenta operator read:

η̂(n, t) =
N∑

k=0

1√
2ωk

(
âk e

iωkt + â
†
k e

−iωkt
)
ψk(n) , π̂(n, t) = i

N∑

k=0

√
ωk

2

(
âk e

iωkt − â
†
k e

−iωkt
)
ψk(n) . (8)

States characterized by a set of occupation numbers nk of each k-th normal mode are eigenfunctions of the linearized

Hamiltonian Ĥ0 =
∑N

k=0

(
â†(k)â(k) + 1

2

)
ωk of energy:

Ĥ0| {nk}〉 = E{nk}|{nk}〉 , E{nk} =
N∑

k=0

(
nk +

1
2

)
ωk . (9)

These Fock space states correspond to the fundamental mesons of the system, both in the vacuum sector and in the
kink sector, distinct alternatives distinguished by the appropriate choice of the B matrix.

The double sine-Gordon model.- We choose the substrate potential between the members of the one-parametric
family of double sine-Gordon (dSG) potentials

V (φ; a) = 1− (1 − a) cos(2πφ)− a cos(4πφ) , a ∈ [0, 1] , (10)
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FIG. 1: Double sine-Gordon potential for the parameters a = 0.0 (blue dashed line), 0.6 (pink thick solid line) and 0.99 (red
thin line).

plotted in Figure 1 as a function of φ for three characteristic values: a = 0.0, 0.6 and 0.99, see [22].
The set of absolute minima or zeroes of V (φ; a) in the interval a ∈ [0, 1) is independent of a: M = {φ(j) = j , j ∈ Z},

see Figure 2. As a function of φ (10), however, exhibits more critical points. dV
dφ (φ; a) = 0 if and only if:

φ(j) = j , φ(j+
1

2
) = j +

1

2
, φ(±, j) = ± 1

π
arctan

√
3a+ 1

5a− 1
+ j . (11)

Evaluation of the second derivative of the potential at the three types of critical points

d2V

dφ2
(0; a) = 4(1 + 3a)π2 ,

d2V

dφ2
(12 ; a) = 4(5a− 1)π2 ,

d2V

dφ2
(φ(+,0); a) =

1− a(2 + 15a)

a
π2 (12)

tells us that the first type is always formed by minima of V , the second type contains maxima if a < 1
5 that become

relative minima when a reaches 1
5 and the last type formed only by real critical points for a > 1

5 that are always
maxima, see Figure 1 and 2. Only quantization over absolute minima is safe, relative minima give rise to false vacua
through tunnel effects, and maxima produce tachyons. We thus choose the state with no fluctuations over the classical
configuration φ(0) as the vacuum state of the quantum system [24]. Quasi-particles of mass 4(1 + 3a)π2 arise when
the creation operator â† acts on the vacuum state.
Besides the homogeneous solutions of the field equations (3) listed in (11) there are other static but n-dependent

solutions in these model. These are the kinks that must comply with the contour conditions (4) at the endpoints
because the system is defined on a finite chain, see Figure 3.
The system of finite differences equations (3) shows that these solutions depend both on a and the strength of the

elastic coupling g. As stated before the parameter g rules the extension of this topological solution along the chain, see
[14]. A qualitative analysis of (3) confirms this claim. If g is strong enough the particle distribution solving (3) is such
that φn+1 − φn ≃ 1

N for almost all n. φ(n) is almost a straight line with a slope as small as allowed by the boundary
conditions. The influence of the external potential is very small and the kink profiles depart from the homogeneous
vacuum practically along the whole chain. At weak coupling g → 0, however, the distribution of particles favoured
by kink solutions of (3) presents abrupt changes from one to the next particle somewhere in the middle of the chain.
The potential provides strong forces away the thin kink region restoring the particles to lie on consecutive absolute
minima of V at the two sides of the kink. In this case the effect of the kink is confined within a small part of the
chain. In Figures 4-5-6 we show graphics of numerically generated kink solutions with unit topological charge for
several values of the elastic constant g in a chain of N + 1 = 501 particles together with their energy distributions
where the above mentioned pattern is observed. Having fixed this length for the chain we have selected two values of
g in order to characterize the strong and weak regimes mentioned above plus one third value in between to analyze
the intermediate regime. It is clear that for chains of different length one must adopt other values of g to deal with
kinks that cover 1

5 ,
3
5 , and/or the whole chain. We thus distinguish three different regimes:

1. Substrate potential dominant regime (SubsReg). We select the value g = 104 as the regime representative in a
N = 500 particle chain. The dynamics is fundamentally determined by the substrate potential in detriment of
the elastic inter-particle forces. The kink energy distribution is localized in an interval of length N

5 = 100.
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FIG. 2: Pictures of vacuum solutions for a chain of 11 particles subjected to a double sine-Gordon substrate potential, corre-
sponding to the a parameter values: (a) a = 0.0, (b) a = 0.6 and (c) a = 0.99.

VsubHΦn, a = 0.6L

x º n

Kink solution

1 2 3 4 5 6 7 8 9 10 11

FIG. 3: Graphics of the kink solution numerically obtained for a chain of 11 particles under the dSG substrate potential and
the parameter value: a = 0.6. Note that the particle on the right boundary is displaced in one site with respect to the same
particle in the vacuum. The particles not in the boundary are displaced away from their equilibrium positions.

2. Balanced Substrate potential/Elastic force regime (BalReg). g = 105 is the representative value of the elastic
parameter in a chain of the same length. Elastic forces and those induced by the substrate potential act on each
particle in a balanced manner. Under these circumstances the kink energy distribution spreads on an interval
of length 3N

5 = 300.

3. Elastic force dominant regime (ElasReg). On the same chain g = 106 is a representative value of this third
regime. Forces induced by the substrate potential are very weak as compared with the elastic interparticle
forces. The kink energy distribution is smoothly distributed over the whole chain.
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FIG. 4: Kink profiles (solid line) and their energy distributions (dashed line) for a = 0, a = 0.6 and a = 0.99 in the substrate
potential dominant regime of the dSG model on a N = 500 chain. The kink profiles jump from a homogeneous solution to the
next one in a abrupt manner. Accordingly, the kink energy distributions neatly depart from zero only on a short interval and
have one maximum if a < 1

5
but two maxima appear if a > 1

5
.
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FIG. 5: Kink profiles (solid line) and their energy distributions (dashed line) for a = 0, a = 0.6 and a = 0.99 in the balanced
substrate potential/elastic force regime of the dSG model on a N = 500 chain. The jump from a vacuum solution to the next
one is less steep than in the regime discussed in Figure 4. The kink energy distributions are also less localized and spread over
longer intervals. The distinct number of lumps, one if a < 1

5
, two for a > 1

5
, is also observed.
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FIG. 6: Kink profiles (solid line) and their energy distributions (dashed line) for a = 0, a = 0.6 and a = 0.99 in the elastic
force dominant regime of the dSG model on a N = 500 chain. The kink profiles climb almost uniformly starting from one
vacuum solution at the chain left endpoint and ending at the next vacuum solution on the chain right endpoint. The kink
energy distributions are even less localized than those in the previously described regime. The existence of energy distributions
formed by one or two lumps when a is below or above 1

5
is also appreciated.

In sum, the set of graphics displayed in Figures 4-5-6 reveals the rôle of the parameter a. For a less than but close
to one the kink profile consists in a two-step climbing, with a long plateaux in between, from one vacuum solution up
to the next one. The energy distribution is concentrated around the midpoints of each jump and thus a two energy
lump configuration arise. The reason is the existence of a relative minima of V between each two absolute minima
when a > 1

5 , recall formulas (11) and (12). Moreover, because V (φ(j+
1

2
)) = 2(1−a) the value of the potential at these

relative minima is close to zero when a is slightly less than one. The climb from φ(j) to φ(j+1) “resting”at φ(j+1/2) as
much as possible. Thus, the distance between the two jumps is very large when, e.g., a = 0.99. When a decreases but
is still greater than 1

5 the situation is the same but the value of the potential at the relative minimum is higher and

the distance between the jumps is shorter, i.e., the two lumps in the energy distribution are closer. Finally, if a < 1
5

the relative minima become maxima and the climbing takes place in one step because there is no a relative minima
in between to rest. The a = 1 limit is special. The relative minima become absolute, zeroes of the substrate potential
V (φ; 1), that form the set: M(1) = {φ(j) = j

2 , j ∈ Z}. For this value the dSG potential (10) becomes a pure sG
potential again. Certainly the model in the limit a = 1 involves a two-kink solution of a single-well sine-Gordon
potential with argument twice the usual angle. In the field theory model on the continuous real line this limit implies
that one of the kinks goes to infinity because the relative minimum becomes absolute. In a finite discrete chain, we
selected the value a = 0.99 to offer a description of kink profiles close to this limit: the two lumps of energy moves
towards the endpoints of the chain.
At this point, it is important to emphasize that the surge of two lumps on kink profiles when a > 1

5 in the unit
topological charge sector of the double sine-Gordon does not means that these soliton structures are multi-soliton or
breather solutions akin to those arising in pure sine-Gordon models, i.e., the models found in the boundary points
a = 0 and a = 1 of the family. sine-Gordon multisolitons live in sectors with topological charge different from one
and are time-dependent even in their center of mass. Unlike in the standard sine-Gordon model, there exists forces
between kinks either formed by one or two lumps in the double sine-Gordon models, specifically between kinks and
anti-kinks, see [21]. Isolated kinks, however, are static in their center of mass: either formed by one or two lumps the
only time-dependence arise from the motion of the center of mass obeying to Lorentz transformations.
We pass to study how the rich structure of these dSG solitons influences quantum entanglement between vacuum

and kink fluctuations. In particular, we begin by analyzing the spatial correlation functions between two particles in
the chain in the kink and vacuum sectors.

Spatial Correlation Functions. - To compute spatial correlation functions in this N -particle system we follow



7

the procedure established in the References [14, 23]. The canonical variables are assembled into a vector Y = (η, π)
which is a point in phase space. The N -component vectors η = (η1, η2, ..., ηN ) and π = (π1, π2, ..., πN ) encompass
respectively the particle positions and momenta. Quantization forces the following commutation rules:

[Ŷα, Ŷβ ] = iJαβ , J =

(
0 1

−1 0

)
, (13)

where the 2N × 2N symplectic matrix J is written in this formula as N × N blocks of the null and identity matri-
ces. Expectation values of two canonical variables in a quantum state are the matrix elements of the 2N × 2N

covariance matrix M = Re[〈Ŷ Ŷ T 〉], which may be diagonalized in the Williamson form W = SWMS−1
W =

diag (λ1, λ2, ...λN , λ1, λ2, ...λN ), where the eingenvalues λj ≥ 1
2 are the moduli of the eigenvalues of the matrix JM .

Gaussian states are completely characterized by the covariance matrix M and by their first momenta. Partitioning

the N-mode system into two sets A and B, the reduced covariance matricesMk = Re[〈ŶkŶ T
k 〉], k = A,B, must be put

in the Williamson form. Matrix elements of the covariance matrixM are thus of the form 〈η̂(n)η̂(m)〉 = tr ρ̂η̂(n)η̂(m),
〈π̂(m)η̂(n)〉 = tr ρ̂ π̂(m)η̂(n) and 〈π̂(n)π̂(m)〉 = tr ρ̂ π̂(n)π̂(m), where ρ̂ is the density operator of the quantum state of
the chain and η̂(n), π̂(n) are the quantum operators defined in (8). Assuming that the whole system is in the ground
state we find the correlation functions between particle positions and momenta

Re {〈η̂(m)η̂(n)〉} =
1

2

∑

l

ψl(m)ψl(n)

ωl
, Re {〈π̂(m)π̂(n)〉} =

1

2

∑

l

ωlψl(m)ψl(n) , (14)

whereas positions and momenta verify: Re {〈π̂(m)η̂(n)〉} = Re {〈η̂(m)π̂(n)〉} = 0.
Correlations between two particle positions are obtained from the normal modes eigenvalues and eigenfunctions:

ξmn = 〈η̂(m) η̂(n)〉 = 1

2

N∑

k=0

ψk(m)ψk(n)

ωk
. (15)

In Figures 7 (a)-(b)-(c) the dependence on n of the spatial correlation function when one of the particles sits at the
left endpoint of the chain ξ0n = ξn is displayed. Numerical computations relying on formula (15) have been performed
for our chain of 501 particles, accounting for vacuum and kink normal modes, in the nine cases where the kink profiles
were depicted: three characteristic values of a and g. The properties of correlation functions as functions of n are
clearly observed in the g = 104 regime. Vacuum and kink correlations ξn do not differ from each other for small n
where the kink profile does not depart too much from the vacuum solution. At larger n kink fluctuation correlations
remarkably grow bigger than vacuum correlations until reaching one or two maximum values, precisely at the points
where the kink energy distribution also reaches its maximum values. If n+ denotes the position of the maximum
farther away from the origin, kink correlations start to decrease for n > n+. The difference between kink correlations
for a < 1

5 and a > 1
5 is that in the first case there is only a single maximum n0 whereas there are two n± if a > 1

5 .
Kink correlations in the last case decrease after n−, pass a relative minimum at n0, and increase again up to n+,
see Figure 7(a). We conclude that two-point particle spatial correlations in the kink sector recognize somehow the
kink profile shape. This behavior, albeit less pronounced, is reproduced in the BalReg regime, Figure 7(b), whereas
in the ElasReg regime, see Figure 7(c), the curvatures at the maxima are very mild and the correlation functions ξn
for vacuum and kink fluctuations look similar. We thus conclude that the logarithmic correlations in the kink sector
behave in a remarkable different manner that vacuum correlations of standard logarithmic class: ξVmn = log 1

|m−n| .
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n
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FIG. 7: Graphics of the logarithmic correlation functions between two particles separated by n positions for vacuum (dashed
lines) and kink (solid lines) fluctuations. Plots of the correlation functions when one of them is located at the left endpoint of
the chain: (a) SubsReg, (b) BalReg and (c) ElasReg regimes. In each regime, the parameter values a = 0, a = 0.6, and a = 0.99
have been considered. (d) Graphics of the logarithmic correlation functions between the m = 100th particle and a second one
separated by n positions for vacuum (dashed lines) and kink (solid lines) fluctuations in the g = 104 SubsReg regime. The
three characteristic values a = 0, a = 0.6, and a = 0.99 have been considered.
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The correlation function shapes as functions of the interparticle distance just described follows a similar pattern
independently of the fixed particle position. In order to illustrate this fact, correlation functions between them = 100th
particle and a second particle located in an arbitrary point m+ n of the N = 500 chain are displayed in Figure 7 (d)
for g = 104. Neither the kink configuration nor the contour conditions affect the position of the fixed particle in the
correlation function. Recall that the kink profile in this regime is confined approximately in the range (200, 300). We
observe that the correlation function increases when the second particle position 100 + n is located at the centers of
the kink lumps. In comparison with the correlations between two particles located respectively at 0 and n this effect
is reinforced because the fixed particle is closer to the kink center, see Figures 7a and 7d.

Entanglement. - Entanglement between fluctuations supported by Gaussian states is measured by taking advan-
tage of the correspondence between the diagonal form of the covariance matrix M = Re

[
〈Y Y T 〉

]
for the Gaussian

state with the covariance matrix of a thermal state, also diagonal in Fock space, having an average phonon number
nj = λj − 1

2 [23]. Here the λj are the Williamson eigenvalues of the covariance matrix and entanglement entropy is
accordingly defined as:

ES =
∑

j

S(λj) with S(λ) =
(
λ+ 1

2

)
ln
(
λ+ 1

2

)
−
(
λ− 1

2

)
ln

(
λ− 1

2

)
. (16)

After choosing a subblock of ℓ particles forming a subchain A of the whole chain of 501 particles the eigenvalues
of the reduced 2ℓ × 2ℓ covariance matrix to this subblock are numerically computed. Formula (16) is then used to
estimate also numerically the entanglement entropy. In contrast with the usual choice predominant in the Literature
where the subchain is centered at the chain mid point, see e.g. Reference [14], we take the subblock starting from the
left endpoint of the chain, see Figure 8. The reason is that performing these calculations on subchains of fixed but
arbitrary length ℓ ≤ 501 a striking similarity between the entanglement entropy as a function of ℓ and the kink energy
distribution along the chain clearly emerges. More precisely: entanglement between fluctuations in the sub-chains A
and B is maximum when ℓ is chosen at a maximum of the kink energy distribution.
In Figures 9-10-11 the entanglement entropies numerically obtained from (16) are displayed corresponding to the

three regimes where the kink profiles were shown before: SubsReg (Figure 9(a)-(b)-(c)), BalReg (Figure 10(a)-(b)-(c)),
and ElasReg (Figure 11(a)-(b)-(c)). In each regime the graphics for the three values of a, a = 0, a = 0.6, and a = 0.99,
are depicted.

Subblock

FIG. 8: A subblock of particles attached to the left endpoint of the total chain.

Entanglement entropies between vacuum fluctuations depend only slightly on the subchain location. For fixed g
and a they vary with ℓ in the same qualitative way as those entropies found for centered subchains. The differences
are only quantitative: the heights of the plateau of these functions are smaller in this new location of the subblock.
Kink fluctuation entanglement entropies require a much more detailed analysis. We shall describe in turn the results
in the nine different cases:

A. Substrate potential dominant regime

The numerically computed entanglement entropy is displayed in Figures 9(a)-(b)-(c) for the three habitual values
of the a parameter. The kink energy distributions are also shown as a shadowed zone in the same Figures. Note the
correspondence between the maxima of the kink energy distributions and the entanglement entropy as functions of ℓ,
in concordance also with the spatial correlation function maxima.

We remark the following facts: (1) For sine-Gordon kinks, a = 0, the entanglement entropy between kink-kink and
vacuum-vacuum fluctuations are identical when the subblock length ℓ is small. The kink supported entropy Ekink

S
begins to increase and starts to differ from Evacuum

S when ℓ approaches 150. The kink entanglement entropy reaches
its maximum value at a subblock length of ℓ = 250. From this point onwards Ekink

S decreases until a subblock length
of approximately ℓ = 350, a point where again the kink supported entropy equals the vacuum entropy, see Figure 9(a).
The maximum of the entanglement entropy and the center of the kink energy distribution are identical and lie at
the mid point of the chain, a fact shown by the vertical dashed line. The kink entanglement entropy is maximum for
a subchain whose endpoint coincides with the kink energy distribution maximum point. Again this is in concordance
with the spatial correlation function, which reaches its maximum just at the center of the single kink, see Figure 7.
(2) When a = 0.6 the entanglement entropy between kink fluctuations behaves in a slightly different way. Like in the

previous case Ekink
S fits in the function Evacuum

S approximately until ℓ = 150. For subblocks of length 150 < ℓ < 236
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FIG. 9: Entanglement entropy between kink-kink (solid line) and vacuum-vacuum (dashed line) fluctuations for: (a) a = 0,
(b) a = 0.6 and (c) a = 0.99 in the SubsReg regime g = 104. The kink energy distributions are plotted as curves enclosing a
shadowed area in the scale set by ES. Dashed vertical lines have been included to point out the relative positions of the kink
energy distribution and entanglement entropy maxima.

the kink fluctuation entropy increases and reaches a maximum at ℓ = 236, precisely the center of the first lump of the
kink energy distribution. The entropy of subchains of lengths in the interval ℓ ∈ (236, 250) decreases until hitting a
relative minimum ℓ = 250, half the whole chain length. Beyond this length the entanglement entropy between kink
fluctuations starts to increase again reaching a second maximum at the center of the second lump of the kink energy
distribution ℓ = 264. For subblock lengths in the interval 264 < ℓ < 350, Ekink

S decreases until approximately ℓ = 350.
Beyond this subblock length the kink fluctuation entropy coincides again with Evacuum

S , see Figure 9(b).
(3) If a = 0.99 the entanglement entropy Ekink

S follows the same pattern explained in the previous case, see Figure
9(c). Here the distance between the two maxima of the entanglement entropy is greater than the distance between
the maxima of the a = 0.6 kink. The positions of the two maxima occur in this case for subblock lengths: ℓ = 221
and ℓ = 279, the maxima of the kink energy distribution. The kink fluctuation entropy exhibits a relative minimum
between the two maxima but the value of the kink entropy at this minimum is much greater than Evacuum

S in the
same range.
In the three cases the kink entanglement entropies and energy distributions are curves as functions of ℓ with similar

shapes and only the scales are different. One also checks that the correlations functions in Figure 7(a)-(d) have the
same critical points than the kink energy distributions.

B. Balanced Substrate potential-Elastic force Regime.

In Figures 10(a)-(b)-(c) graphics of both the entanglement entropy between vacuum-vacuum and kink-kink fluctu-
ations in a N = 500 particle chain are shown within the BalReg Regime g = 105 for a = 0, a = 0.6 and a = 0.99.

ES a = 0.
g=105

{ Hlength of the blockL

ES
kink

ES
vacuum

c1,2

ES
max

EHnL

100 200 300 400 500

1

2

3

4

5

ES a = 0.6
g=105

{ Hlength of the blockL

ES
kink

ES
vacuum

c1

ES
max

c2

ES
max

EHnL

100 200 300 400 500

1

2

3

4

5

ES a = 0.99
g=105

{ Hlength of the blockL

ES
kink

ES
vacuum

c1

ES
max

c2

ES
max

EHnL

100 200 300 400 500

1

2

3

4

5

FIG. 10: Entanglement entropies between kink-kink (solid line) and vacuum-vacuum (dashed line) fluctuations for: (a) a = 0,
(b) a = 0.6 and (c) a = 0.99 in the BalReg regime. The kink energy distributions are plotted as curves enclosing a shadowed
area using the scale set by ES. Dashed vertical lines show the relative positions of the maxima of the kink energy distribution
and entanglement entropy.

There are only quantitative discrepancies with respect to the pattern just described in the previous g = 104

regimes. The curves in this g = 105 regime are smoother and consequently the differences between the Ekink
S and

Evacuum
S entropies are less pronounced than those occurring for g = 104. The centers of the kink energy distributions,

however, slightly differ from the maxima of Ekink
S both in the cases when the kink is formed by one or two lumps.

More precisely: (1) For a = 0 the entropy Ekink
S shows a maximum at the midpoint of the chain where the kink center

is localized. (2) If a = 0.6 the function Ekink
S exhibits two maxima situated at ℓ = 207 and ℓ = 291, and, despite that

the respective maxima do not exactly coincide the kink entanglement entropy and the energy distribution have similar
shapes as functions of ℓ. (3) For a = 0.9, the lengths of the subblocks for which the entanglement entropy is maximum
are ℓ = 157 and ℓ = 342. This means that two subblocks which remarkably differ in length support maximum entropy.
The lump centers nearly coincide with the entanglement entropy maxima. The little discrepancies between entropy
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and kink energy maxima are due to discreteness effects: the kink energy distribution is more extended in the chain
than in the previous SubsReg regime and the location of the energy distribution maximum on a discrete chain is less
accurate. In Figure 7(b) one observes that the spatial correlation functions give a clue of the entanglement entropy
shapes also in this regime as one can check in Figures 10(a)-(b)-(c).

C. Elastic force dominant regime.

In Figures 11(a)-(b)-(c) the graphics of the entanglement entropies between kink-kink and vacuum-vacuum fluctu-
ations are plotted in the g = 106 ElasReg Regime for the three usual representative values of the parameter a.
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FIG. 11: Entanglement entropies between kink-kink (solid line) and vacuum-vacuum (dashed line) fluctuations for: (a) a = 0,
(b) a = 0.6 and (c) a = 0.99 in the ElasReg regime. The kink energy distributions are plotted as curves enclosing a shadowed
area using the same scale as ES. Dashed vertical lines show the relative positions of the kink energy distribution and the
entanglement entropy maxima.

Differences between kink-kink and vacuum-vacuum fluctuation entanglement entropies become small in this regime.
In general, these differences get smaller when the elastic constant g increases and the kinks become less concentrated.
Nevertheless, the shape of the kink entropy and energy distribution keeps correlated, despite that the center of the
kink energy distribution differs from the maxima of Ekink

S for a = 0.6 and a = 0.9 as in the BalReg regime. These
discrepancies are not only due to discreteness effects. Contour effects also affect because the kink profile differs from
a vacuum solution practically along the whole chain and the boundaries have a stronger influence on the kink energy
distributions. In fact, notice that in this regime the kink loses its characteristic smooth staircase shape adopting an
almost linear profile, see Figure 6. We remark three points: (1) The function Ekink

S exhibits a single maximum at the
middle of the chain if a = 0 as in the other two regimes previously discussed. (2) For a = 0.6 the kink fluctuation
entropy exhibits two low curvature maxima at the values ℓ = 155 and ℓ = 343. (3) The two maxima in the a = 0.99
case are placed at ℓ = 126 and ℓ = 374. In each case the maxima coincide with that of the spatial correlation function,
Figure 7(c), whereas the entanglement maxima only nearly coincide with the centers of the lumps of the kink energy
distribution because the reasons mentioned above .

Conclusions. - We have studied entanglement in a chain of 501 particles subjected to a substrate potential
belonging to the one-parametric family of double sine-Gordon potentials. We considered the entanglement arising
when a portion of the chain of length ℓ is taken from the left of the chain, instead of from the center [14]. This different
approach allowed us to see in a clearer way that, when focusing on kink solutions carrying an energy distribution
either formed by one or two lumps, the maximum entanglement exhibits a strong correspondence with both the spatial
correlation function and the centers of the lumps in the kink energy distribution. Regarding the spatial correlation
function, its maxima occur at the same value of the length of the subblock that makes the entanglement maxima,
whereas the maximum entanglement nearly coincide with the maximum of the lumps in the kink energy distribution.
We conclude that whenever the spatial correlation function between kink fluctuations presents maxima, also the kink
entanglement entropy and the kink energy distributions exhibit maxima. In Figure 7 together with Figures 9, 10
and 11 the pattern previously mentioned is observed. The entanglement grows when the kink energy distribution
evaluated at the sub-block endpoint increases. In general the maximum for the entanglement is reached when the sub-
block endpoint coincides with the kink lump centers. This pattern is clearly observed if the kink is confined in a small
region, see Figures 9 and 10, where the small discrepancies between kink entanglement entropy and energy distribution
maxima is understood as due to discreteness effects. In Figure 11 a greater discrepancy between the maxima of the
entanglement and the kink energy distribution is displayed. In this case the entanglement entropy maximum shift
with respect to the maximum of the energy distribution is mainly associated to boundary effects. Recall that in this
regime the kink occupy essentially all the chain such that the boundaries influence the kink solution. Indeed the
profile loses its kinky shape, see Figure 6, in favor of an almost equidistant particle configuration.
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