Inf Syst Front
DOI 10.1007/s10796-016-9670-x

@ CrossMark

Designing a goal-oriented smart-home environment

Javier Palanca! - Elena del Val! - Ana Garcia-Fornes! - Holger Billhardt? -

Juan Manuel Corchado? - Vicente Julidn!

© Springer Science+Business Media New York 2016

Abstract Nowadays, systems are growing in power and
in access to more resources and services. This situation
makes it necessary to provide user-centered systems that act
as intelligent assistants. These systems should be able to
interact in a natural way with human users and the envi-
ronment and also be able to take into account user goals
and environment information and changes. In this paper,
we present an architecture for the design and development
of a goal-oriented, self-adaptive, smart-home environment.
With this architecture, users are able to interact with the
system by expressing their goals which are translated into
a set of agent actions in a way that is transparent to the
user. This is especially appropriate for environments where
ambient intelligence and automatic control are integrated
for the user’s welfare. In order to validate this proposal,
we designed a prototype based on the proposed architec-
ture for smart-home scenarios. We also performed a set of
experiments that shows how the proposed architecture for
human-agent interaction increases the number and quality
of user goals achieved.

< Elena del Val
edelval @dsic.upv.es

Departamento de Sistemas Informaticos y Computacion,
Universitat Politecnica de Valéncia, Valéncia, Spain

Department of Computer Science, University of Salamanca,
Salamanca, Spain

3 CETINIA, Universidad Rey Juan Carlos, Madrid, Spain

Published online: 11 July 2016

Keywords Multi-agent systems - Smart-home
environments - Adaptive systems - Goal-oriented systems -
Service-oriented systems

1 Introduction

Collaboration is an important factor in achieving success
in any type of work or project. In general, any task with
hints of complexity requires the collaboration of more than
one individual. Technology should be capable of support-
ing these collaboration processes through the formation and
management of groups or coalitions of entities that which
can be humans or software agents. These groups or coali-
tions can arise in a spontaneous or planned manner in order
to maximize the expected utility or profit of the individuals.
Agent technology enables the development of applications
that support the formation and management of such organi-
zations dynamically. Applications of this kind are possible
through the use of a goal-oriented architecture for human-
agent societies, where the traditional notion of application
disappears. Rather than developing software applications
that accomplish computational tasks for specific purposes,
the goal-oriented approach in these human-agent societies
is based on the immersion of users in self-adaptive envi-
ronments that facilitate the achievement of their goals in an
automated way.

This new way of envisioning applications requires new
methods and techniques that support the integration of
humans and software agents, considering agents as ser-
vice/resource providers. Taking this into consideration, one
of the main problems is how to show all the available ser-
vices and resources to users in an appropriate way. As the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10796-016-9670-x-x&domain=pdf
mailto:edelval@dsic.upv.es

Inf Syst Front

size of available services increases, it is more difficult for
users to determine which service or set of services is the
most suitable for achieving their goals. Moreover, users usu-
ally know what they want to do, but they do not know how
to do it. Since users know their goals, it will be easier to
help them with a goal-oriented architecture. Considering
that agents are intelligent entities that have social capabili-
ties, they fit properly in a goal-oriented architecture where
services are provided and consumed in order to achieve their
goals. In this paper, we present a goal-oriented architec-
ture that is based on the SOC (Service-Oriented Computing)
concepts (Huhns et al. 2005) and their use in the design
and implementation of a goal-oriented smart-home environ-
ment. The purpose of the architecture is to find solutions
to reach user goals through the composition and execution
of services offered by agents. In this architecture, agents
provide services in a ubiquitous environment where users
(human or non-human) express their goals and the system
determines the set of actions that fulfils the goal in way that
is a completely transparent to the user (i.e., the user does not
see the translation process from goals to actions).

The goal-oriented architecture is designed to work in
environments with Service-Oriented Architectures, Grid
architectures, or business process architectures. In these
environments, there are many interconnected nodes where
providers offer a multitude of services. This work focuses
on a goal-oriented smart-home environment, where a user
declares a goal with certain constraints and the smart-home
system tries to carry out a set of actions in order to deal with
the user request expressed as a goal. The smart environment
considers services offered by different nodes in a pervasive
or ubiquitous way (Reddy 2006; Molina et al. 2008) as well
as services provided by external entities.

On the basis of the contents of the preceding paragraphs,
in this work we propose a goal-oriented architecture for
smart-home environments. The main contributions of this
proposal are: (i) a formal model for an architecture that
not only has a fixed set of plans to deal with the self-
adaptation of the system, but one that is also able to create
new plans and refine or repair running plans; (ii) the archi-
tecture includes case-based reasoning techniques to learn
from previous plans used in specific situations and reuse
them according to new requirements; (iii) semantic informa-
tion in the definition of services and user goals in order to
facilitate the automatic service discovery and composition
of complex services; (iv) a negotiation process is included
to check the availability of service providers and to estab-
lish temporal commitments to ensure the execution of the
services within a time frame.

The rest of the paper is structured as follows: Section 2
describes the related work; Section 3 introduces the

@ Springer

approach of Distributed Goal-Oriented Computing architec-
ture to develop human-agent systems; Section 4 presents the
design of a goal-oriented smart-home environment based
on the previous architecture. Finally, Section 5 presents the
conclusions of the paper.

2 Related work

One of the areas where the use of human-agent technolo-
gies play a key role is smart-home environments. The area
of smart-homes can be considered as a branch of ubig-
uitous computing that integrates ambient intelligence and
automatic control into living spaces for comfort, health-
care, safety, security, and energy conservation (Alam et al.
2012). Smart-home environments have been researched for
nearly two decades (De Silva et al. 2012). The research in
the area of smart-home environments has since tackled dif-
ferent technical issues such as heterogeneity in devices and
technologies, context awareness, and security in order to
facilitate the implementation of intelligent environments.

Although several technical challenges have been
achieved, there are still open issues. The increase in the
number of devices and the proliferation of services that are
locally or remotely available (i.e., services in local smart-
home environments and services in the cloud) and the
dynamism of smart-home environments (i.e., appearance
of new entities, temporal unavailability of components,
changes in the environment conditions or user prefer-
ences) make it necessary to include mechanisms that
facilitate reconfiguration in smart-home environments.
Self-adaptation enables a system to reason and to adapt
itself in order to achieve user goals when uncertainties and
changes in the environment appear. There are previous
works in the context of smart-home environments that try
to deal with user requirements using pre-defined plans
established at design time (Cetina et al. 2009; Dalpiaz et al.
2009). The use of pre-defined plans makes the reconfigura-
tion of the system difficult when unforeseen events occur.
A better approach to this problem is to dynamically gener-
ate new plans or reuse and adapt plans that were previously
used in similar contexts to deal with unforeseen events, as
we propose in this work.

Other works based on Multi-Agent Systems (MAS) have
been proposed to deal with self-configuration in smart-
home environments to deal with user goals. MAS are
considered to be a suitable tool for the study of complex
adaptive systems, especially for those that are distributed
and dynamic (Cook 2009; Matthews et al. 2007). A smart-
home environment can be viewed as a MAS where software
agents and users interact.

Inf Syst Front

For instance, Iftikhar and Weyns (2014) propose a formal
approach for self-adaptation. This approach is based on a
feedback loop that consists of four adaptation components:
monitor, analyze, plan, and execute. The main contribution
of this approach is that it ensures that the goals (which
were verified offline) are guaranteed at runtime. It also sup-
ports adaptation to changing goals. A goal-driven approach
based on agents and semantics for automatic service discov-
ery and control is presented in Andrushevich et al. (2010).
The authors describe a layered architecture (device, con-
nectivity, service, and semantic agents layer). The semantic
agents layer contains an agent for each of the goals of the
smart-home environment (i.e., energy, comfort, safety, and
security) and a coordinator agent that solves conflicts when
agents have competing goals. Although it is an interest-
ing proposal, details about how the coordination and the
self-adaptation of the system is carried out by the agents
are not provided. Ayala et al. (2013) propose an agent-
based Ambient Assisted Living system that incorporates
self-configuring tasks. In this approach, the self-configuring
process is inside agents. There is a control loop that starts
analyzing the context to check if something has changed in
the system. Then, the agent determines if the current situa-
tion requires reconfiguring the system according to a plan.
These plans are stored in a plan library and can be accessed
by the goal. After this, the scheduler executes the set of
actions of the plan. The main drawback in this approach is
that the plan library seems to be a set of predefined plans at
design time; therefore, if new services or unforeseen situa-
tions appear in the system they would not be considered in
the plan library.

Kucher and Weyns propose a self-adaptive software sys-
tem to support elderly care (Kucher and Weyns 2013). The
architecture proposed consists of four modules: autocon-
figurator, context-adaptor, sensor infrastructure, and com-
munication infrastructure. The modules that are directly
related to the self-configuration are the autoconfigurator,
which supports the discovery of new services and con-
figures the system based on user requirements, and the
context-adaptor which detects changes in the environment

and adapts services based on user preferences. However this
proposal lacks specific details about how to build this solu-
tion, namely, how the system adapts itself to changes in the
environment.

Loseto et al. present a multi-agent approach that is based
on service discovery and orchestration in smart-homes
(Loseto et al. 2012). They introduce semantic information
in services and user profiles to facilitate the negotiation of
the services that are most suitable according to user pref-
erences. The agent-based framework presented is populated
by a home agent, a user agent, an interface agent, and a
device agent. The home agent plays a key role in the self-
adaptation process of the system. The home agent facilitates
the service discovery and orchestration and also mediates
between user agents and device agents to maximize the
overall utility. Although this proposal is interesting, it does
not consider temporal constraints when services are sched-
uled for their execution. The lack of this feature would make
the accomplishment of goals uncertain when their execution
must finish before a deadline.

According to this analysis, the theoretical basis of our
proposal tackles the self-adaptation of the smart-home envi-
ronments in order to deal with user goals using a goal-
oriented architecture. This initial formulation of the problem
we want to solve is based on the gaps and proposals founded
in the analysed literature (see Table 1). Therefore, this
proposal improves previous approaches in the following
ways:

e the proposed architecture includes an on-line plan-
ner that not only can create a new plan, but that can
also refine existing plans or repair running plans. This
behaviour solves the problem of having a static set of
predefined plans as other proposals do.

e the on-line planner uses case-based reasoning tech-
niques to learn from previous plans used in specific
situations and reuse them according to new user require-
ments. This learning capability allows the adaptation of
the proposal and represents an improvement on existing
proposals.

Table 1 Summary of differences between our approach and other existing systems

Approach Dynamic adaptation

User’s goal-oriented ~ Availability of services

Service discovery and composition Temporal constraints

[6,7] X v X
[10, 11] v v X
[12] v X X
[13] v v X
[14] v v X
DGOC v v v

X

<A X %
< X X X X X

@ Springer

Inf Syst Front

e services and user goals are semantically annotated in
order to facilitate automatic service discovery and com-
position of complex services while maintaining tempo-
ral constraints to avoid unpredictability.

e negotiation techniques are included to check the avail-
ability of service providers in real-time and to establish
temporal commitments to ensure the execution of the
services within a time frame. This behaviour assures
the execution of complex services before the deadline
established by the client.

3 Formal model for distributed goal-oriented
computing architecture

In this section, we present the model that defines the Dis-
tributed Goal-Oriented Computing architecture (DGOC).
In this work, we define the concept of Distributed Goal-
Oriented Computing as the paradigm where heterogeneous
agents can express their desires through goals (Palanca et al.
2012). Agents have their own goals and take actions to ful-
fill these goals. In order to achieve their goals, agents can
use automatic service composition mechanisms consider-
ing internal and/or external services. Internal services are
those services provided by the agents in the system. Exter-
nal services are those provided by external entities in the
cloud.

The proposed architecture incorporates abstractions of
agent, knowledge base, services, goals, and plans (compo-
sitions of services) (de Silva and Padgham 2005). Some of
these abstractions are taken from the BDI agent model (Rao
and Georgeff 1995). The model of this architecture aims to
define a new runtime support on an operating system ker-
nel where the basic execution entities are services instead of
processes.

First, we formally define an agent a; by the following
tuple:

a; = (KB;, S;, Pl;, Gi), (D

where:

e K B; represents the Knowledge Base of the agent g;.
The K B; stores information about the states of the
agent. A state consists of a set of facts that the agent
believes to be true. For example, its own representation
of the environment.

e §; represents the set of services offered by the agent.
The agent uses its services to achieve its own objec-
tives and it also may offer them to other agents to help
them in the achievement of their goals. The services
are described using the OWL-S ontology. Therefore,
an important part of a service description will be its
preconditions (i.e., service preconditions and inputs)

@ Springer

and postconditions (i.e., service postconditions and out-
puts).

e Pl; represents a set of pre-compiled plans provided by
the agent for the achievement of its goals. A plan is
an ordered sequence of services where the postcondi-
tion of a service s; (Q(s;)) is equal to the precondition
of a service 541 (P(sj4+1)), where s;,s;41 € S, with
S = U, Si being the domain of the set of services
offered by all the agents in the system. Thus, we can
define the set of pre-compiled plans as Pl; C Pl, where
Pl represents the domain of the total set of possible
plans, that is, the set of all possible service sequences:

Pl ={(s1..sp/ Vi € l.n,s; € SA
Viel.n—1,,5; € SAi #j, P(sj+1) = Q(s)))}

The pre-compiled plans are created in order to opti-
mize the process of composing new plans at runtime.

e G; represents the set of goals that the agent wants to
achieve. When a goal is reached, the agent marks it as
an entry in its K B;, which means that the agent believes
that the facts associated to the goal are true.

Once the formal definition of an agent is presented, the
model of the Distributed Goal-Oriented Computing archi-
tecture is defined as follows:

DGOC = (A, yg,kp, 8p) 2)
where:

e A represents the set of agents that are in the system:
A ={a,aj,..,a}.

* Yy, 24 5 G is the goal selection function, where
G = Ua,- gi represents the domain of the set of goals
of all the agents in the system and g; = {gij, ..., &in}
represents a set of goals of the agent a;. Therefore, g;;
refers to the j-th goal of the agent q;.

® k,:GxA — 2Plis the function for the composition of
new plans. This function is used when there is no plan
in the set of pre-compiled plans of the agent (PI;). The
Kk p function creates a set of service compositions taking
into account the knowledge base K B; of the agent q;
and the goal g;;

kp(gij,ai) = {(s1.5n/ Vi € L.n,s; € SA
Vjiel.n—1s; € SAi # j, P(sj+1) = Q(s;))
AP(s1) € KB A(Q(sy) = gij)}

® §,:Gx 2Pl 5 Pl is the plan selection function. This
function selects a plan to be executed in order to reach
a selected goal. To do this, the §, function considers
the set of pre-compiled plans P/; and the set of plans
generated by the function «,(g;;, a;). It selects a valid
plan, which is a plan whose preconditions are satisfied
in the K B; of the agent a; that activates the goal and

Inf Syst Front

whose postconditions match the goal to be reached. The
invocation of this function will be: 8,(gi;, {p1..pa} U

kp(8ij» ai)).

The algorithm follow by the DGOC architecture is shown
in Algorithm 1. Initially, a new goal is selected from the
set of potential goals using the y, function. Then, the algo-
rithm checks the reachability and consistency of the goal
with regard to the other activated goals. After selecting a
goal, the selection function §), is used to find a plan that will
try to reach the goal. After this, the plan is executed. In case
of failure, a new plan will be selected or a different existing
plan could be used or adapted to deal with the goal. Finally,
the correct execution of the plan is checked by analyzing
the postconditions. If all the postconditions are fulfilled, the
goal is marked as reached. For any uncontrolled case, the
goal will be marked as non-reachable.

Algorithm 1 DGOC main algorithm

repeat
gi — vp{ar.an}) ;
if IsPossible (g;) A IsConsistent (g;) then
Pi < 0p(gis AP1-Pn }s Kip (94, a5));
while - IsFinished (p;) do
Execute (p;);
if HasFailed (p;) then
| pi = 0p(9i {pr-pn} U kp(gis ay));
end
end
if CheckPostCondition (p;) == True then
| GoalPursued(g;);
else
| GoalNotPursued (g;);
end

else

| GoalNotPursued(g;);
end
until True;

This algorithm presents a generalized view of the DGOC
execution. Different components of BDI agents were used
for this definition, such as the plan selection function, or
common planning techniques in Artificial Intelligence and
Case-Based Planning for the composition of new plans. The
basic execution component in the architecture is the service.
To describe a service in this formal model, we employ the
OWL-S service ontology (Martin et al. 2004). OWL-S is a
well-defined standard that provides enough power to seman-
tically describe all the functionality provided by agents in
the DGOC architecture.

Based on the formal model for the DGOC architecture,
there is a goal-oriented execution framework that provides
an implementation of the model. Figure 1 shows the main
components of the framework: the Deliberation Engine, the

Runtime Engine, and a set of agents in which there should
be at least one Operating System Agent. We briefly describe
each component, but for more details about the components
we refer the reader to Palanca et al. (2012).

The Deliberation Engine is responsible for deciding the
order and how plans are executed. This engine is per-
manently running in the background, evaluating the goals
that agents want to achieve and selecting them for their
completion. This component contains the On-line Planner
(i.e., the entity that composes new plans or repairs exist-
ing plans when there are no pre-compiled plans), and the
Commitment Manager (i.e., the entity that negotiates with
service providers and is able to estimate the services that
offer the best temporal conditions taking into account time
constraints).

The Runtime Engine takes plans provided by the On-line
planner or libraries of pre-compiled plans. Then, it manages
the plan execution by transferring the execution of the ser-
vices included in the plan to its scheduler. This component
is able to locate services that are in other nodes through a
discovery protocol and include them in the plan that is in
execution.

The Operating System Agent is composed of the follow-
ing elements: a goal set to carry out the tasks associated
with the operating system, a knowledge base that represents
the beliefs of the operating system, and a set of services to
provide the basic low-level functionality to the agents and a
plan library.

4 Designing a goal-oriented system
for a smart-home environment

Smart-home environments are a suitable scenario to apply
the proposed formal model for the DGOC architecture. We
aim to achieve a complete immersion of the user in the envi-
ronment (i.e., we want human users to be a component of
the system that interact with the smart-home in a natural
way expressing their goals). Therefore, the use of our goal-
oriented architecture model for smart-home environments
represents this level of required immersion while remain-
ing minimally invasive. A user only has to express his/her
goals, and the framework based on the formal model of the
DGOC architecture is responsible for finding the best way
to accomplish them. The system makes most of the deci-
sions and is able to adapt its plans to deal with unexpected
situations (i.e., services that are not available or environment
conditions that change).

In this section, we describe the application of the frame-
work based on the formal model of the DGOC architec-
ture presented in Section 3 for a smart-home by means
of an example. In this smart-home, a user can express
his/her desire to watch a movie when he/she gets home and

@ Springer

Inf Syst Front

(Agent Query/Add/Remove Facts 1"
I Goals Plan Knowledge Services | I
I o Library Base Set < -1_1____
I 4 A N\‘\ publish
/ | I \\‘
—_———_— e e e e — — = \
\c___ - - " —_————————————= \
\
I’ :
! @
H s, H
' :
,,' OS Kernel - i
{ R :
! Runtime < execution #
[< ———
| vl ~
1 el \ \ — T ey
”, Plan — o > = - Cloud of ~
[Commitment 7 Services \
] > Manager o~ 4 P / \
@/%o, | I
& | Service (/
\
\
|

Service

N\

Service

Planner

[
select l' ------ ” U
1
l" ------ I] T® [l ”5/,,))
! I Plan | O
1 j=2)
[N S R g I]
! Off-line |] 5
! Planner ®
i R H
d 80
\ !
On-line . l] query
I

!
!
!

!

Fig. 1 Execution framework based on DGOC formal model

communicates it to the execution framework in one of the
following ways: sending an mobile message, using an iPad
application, or through a voice interface. In any case, the
application receives the user’s intention and transforms it

into a goal. This goal is introduced in the framework based

on the DGOC architecture model that controls the smart-
home. Although there are different options for watching
a movie (i.e., renting it in an on-line shop, downloading

External
Services

toh
| want ©0 W&
a movie: Home Devices
;'
s 2
[W& . (@)
|
) O | &’
§ Per_sonal A
Assistant VideoPlayer
§
Users s e MasterCard
ﬁ Goal Execution Find Plan
; Y
TV Agent ©* Scene Agent © 0S Agent @ Deliberation =%
Engine -3
l prepare film l l scene light l ’ Runtime Engine ‘ —
l play stream l l curtain control l DGOC Architectl)(e CBR
Retrieve Plan

Fig. 2 General view of the proposed use case

@ Springer

Inf Syst Front

Table 2 Services offered by

Netflix agent ID Name Conditions PS T

A film:search_film P: ?film:title 0,9 8
P: ?film:quality
Q: ?film:ID
Q: ?bank:price

B film:buy film P: ?film:ID 0,9 3
P: ?bank:price
Q: ?bank:objectToPurchase

C film:prepare_download P: ?film:ID 0,93 5

?bank:objectPurchased

Q: ?os:url

via P2P protocols, or using video streaming services), the
user only expresses the wish to watch a film. When the
user expresses the goal, he/she can also provide information
about restrictions and input parameters. As an example, an
input parameter would be the title of the movie that the user
wants to watch. Another possible input parameter would be
that the user may not want to pay more than a certain amount
of money to watch the movie and does not want to use a
specific payment provider. There are other parameters that
would also be important to take into consideration in order
to reach the goal, such as the required quality of the film, or
the device on which the user wants to watch the movie (i.e.,
a smart TV, an iPad, a PC, etc.). The entity responsible for
making the best choice of services to deal with user’s goals
is the framework, specifically, the Deliberation Engine. The
aim of the following example is to describe in detail how the
user’s goal is defined in the framework, how the plan to deal
with the goal is built, and how the services that accomplish
the user’s goal are selected by the framework.

4.1 Scenario description

The proposed scenario has been implemented over the
DGOC framework described above (see Fig. 1). The Fig. 2
illustrates the initial situation of the example where the
user employs a mobile interface to introduce the goal to be
accomplished. This goal is sent to the DGOC framework
which starts the process to reach the goal. In the imple-
mented framework, the different rooms and devices are
controlled by different intelligent agents in charge of differ-
ent tasks. Thus, the personal assistant agent allows the user
to introduce the goal into the system. Moreover, different
agents that incorporate the internal services needed to solve
the problem have been implemented. The 7V agent has the
capability to play a movie on a specific device (in this case,
a smart TV). The Scene Agent has the capability to con-
trol the lights and the curtain motor of a specific room. The
Operating System Agent allows the tasks associated with
the operating system to be carried out, such as downloading

Table 3 Services offered by

iTunes agent ID Name Conditions PS T

D film:search_-film P: ?film:title 0,7 7
P: ?film:quality
Q: ?film:ID
Q: ?bank:price

E film:buy_-film P: ?2film:ID 0,8 3
P: ?bank:price
Q: ?bank:objectToPurchase

F film:prepare_download P: ?2film:ID 0,81 4

P: ?bank:objectPurchased

Q: ?o0s:url

@ Springer

Inf Syst Front

Table 4 Services offered by

P2P agent ID Name Conditions PS T
G film:search_film P: ?film:title 0,4 7
?film:quality
Q: ?film:ID
H film:prepare_donwload P: ?film:ID 0,8 23

Q: ?os:url

the needed files and moving those files to a specific player
device. The framework also includes the possibility to use
different external services such as streaming or paying ser-
vices, which are added (if needed) into the plans created to
accomplish the goal.

For the services needed in the proposed example, we
considered the services described in Tables 1, 2, 3, 4, 5,
6, 7, 8 and 9. These tables show the available services,
their preconditions (P) and postconditions (Q), their proba-
bility of success (PS), and their worst-case execution time
(T). There are payment service providers such as Visa
(Table 5), MasterCard (Table 6), or PayPal (Table 7). There
are also movie providers that rent and sell such as Net-
flix (Table 2) and iTunes (Table 3) and services related to
the ambient conditions of the room (Table 10). There are
other service providers such as P2P file sharing, film play-
back (Table 4), and conversion services like VideoPlayer
(Table 9). In addition, the operating system provides its own
services which are associated to the Operating System Agent
(Table 8).

4.2 Execution trace

We have considered that a user wants to see a movie when
he/she arrives home, with a minimum quality of 720p and
paying no more than 5 euros. The user also prefers to
avoid Paypal as a payment method. The user employs an
external application (which acts as an interface agent) to
introduce the user’s desires as an active goal into the DGOC
framework. An electronic interface that employs the Open-
Mind Commonsense knowledge base (Singh 2002) and
ConceptNet (Liu and Singh 2004) is used to transform the
user’s desires and preferences into goals of the framework
(Lieberman and Espinosa 2006). There are also other inter-
faces available that employ natural language processing
(like Siri on Apple devices) or gesture recognition (like
Kinect on XBOX from Microsoft) that could be used by
users to introduce their goals.

With regard to our design, once user requirements are
captured and transformed into a framework goal, we obtain
an XML-based representation as shown in Listing 1. The
goal representation language is an extension of the language

@ Springer

used in JadeX' with the addition of the temporal require-
ments needed in our system. To do this, we have added the
temporal operators begin and end, which allow us to express
whether a condition must be true before or after a specific
time point.

Once the user’s goal is selected by the Deliberation
Engine, the On-line Planner tries to locate those plans that
reach the goal. Taking into account the available services
(see Tables 1, 2, 3,4, 5, 6,7, 8 and 9), the On-line Plan-
ner will return a set of plans as a plan graph that contains
all possible paths (i.e., set of services) that can be exe-
cuted to accomplish the goal (see Fig. 3). In the plan graph,
there are several alternatives depending on the film provider,
the payment method, or the movie playback. The planner
found three possible movie search services from different
providers: Netflix and iTunes, which are paid services, and
a P2P downloading service, which is free. Also, since the
video playback service requires some ambient preconditions
(i.e., to turn off the lights and close the curtains), the ambient
services related to the lights and curtains should be executed
sequentially before the playback of the movie. In the pre-
and post-condition predicates of the services, there are five
different ontologies: film for movie search management and
rental, bank for the bank payment management, ambient for
the domotic services that manage the scenes of the smart-
home, os for services related to the operating system (these
services are depicted with a dotted line), and video for video
playback and encoding services.

The On-line Planner performs the plan composition
following a backward strategy. Starting from the goal, it
searches for services whose postconditions match the con-
ditions of the goal. During this process, the On-line Planner
connects services until a known state is reached (i.e., a
fact or set of facts that are known by the agents). To do
this, the On-line Planner queries the knowledge base of
the agent that represents the user, taking into account the
input parameters of the goal. The On-line Planner does not
return a single fixed plan; it returns a graph with different
options and information to be instantiated at runtime. This is

"http://www.activecomponents.org.

http://www.activecomponents.org

Inf Syst Front

Table 5 Services offered by
VISA agent

Table 6 Services offered by
MasterCard agent

Table 7 Services offered by
PayPal agent

Table 8 Services offered by
the OS agent

Table 9 Services offered by
VideoPlayer agent

ID

Name

Conditions

bank:pay

?bank:price
?bank:objectToPurchase
?bank :objectPurchased
?bank:confirmationMethod
?bank :paymentMethod (VISA)

ID

Name

Conditions

bank:pay

0 0 O Y ©»

?bank:price
?bank:objectToPurchase
?bank:objectPurchased
?bank:confirmationMethod
?bank : paymentMethod (MC)

ID

Name Conditions

bank:pay

0 0O O Y 9

?bank:price
?bank:objectToPurchase
?bank:objectPurchased
?bank:confirmationMethod
?bank :paymentMethod (PayPal)

ID

Name

Conditions

os:download.url

os:move_file

P: ?os:url

?os:file

?os:file
?0s:where

?os:file_available

ID

Name

Conditions

video:prepare_film

video:encode

video:play

video:play_stream

P: ?os:file_available
P: ?os:file
Q: (or

(?video:ready)
(?video:need_encode)

)

?os:file_available
?os:file
?video:need_encode
?video:ready
?video:ready

?video:viewed (?film:title)

?os:url

O " O " O "W v o

?video:viewed (?film:title)

0,78 156

0,97 412

0,71 412

@ Springer

Inf Syst Front

Table 10 Services offered by

Scene agent ID Name Conditions PS T
R ambient :shutdown_lights P: ?ambient:lights_on 0,99 2
Q: ambient:lights_off
S ambient:close_curtains P: ?ambient:curtains_opened 0,90 30
Q: ?ambient:curtains_closed
Listing 1: Use Case Goal.
<goal type=’achieve’ retry="true’ retrydelay="0"

s

recur="false
name="ViewFilm’ >

<targetcondition >

</targetcondition >
<softcondition >

</softcondition >
<contextcondition >

</contextcondition >
<dropcondition >
(and
(> bank:price 5)

"23:59:59")

)
</dropcondition >
<deliberation >

<inhibits
</deliberation >
</goal>

exclude="when_failed’

<parameter name=’film:title *>Casablanca </parameter>

<parameter name=’film:quality *>720p</parameter>
(video:viewed ?film: title)

(>= (film:current—quality ?film: title) ?film:quality)

(> (begin (video:ready ?film: title))

(= bank:paymentMethod

(<= (end (video:viewed ?film: title))

rel="ScreenSaver />

"21:15:00")

*PayPal *)

because some variables cannot be solved until runtime and
it is better to keep alternatives just in case a condition fails
during execution (instead of restarting the composition pro-
cess of a new plan). During the composition process, if there
are alternative paths, the On-line Planner uses a CHOICE
node. Similarly, if the On-line Planner finds logical opera-
tors (such as OR), it may introduce conditional nodes such
as IF-THEN-ELSE to follow one path or another. At this
point, the Deliberation Engine decides which path is the
best to take during the plan execution.

For example, Fig. 4 shows the shortest path of the plan
graph and, initially, the more advantageous. The plan has
the lowest number of services, and it does not need to pass

@ Springer

through the payment provider, which ensures the condition
of not paying more than a certain price for the film. Also,
the plan avoids the download of the film using the stream-
ing playback, which presumably saves time. During the
execution, at the second CHOICE node of the plan (i.e.,
where the system must choose between downloading or
streaming the movie), the Deliberation Engine detects that
the video:play_stream service has the effect: decrease
1000mAh ?battery (i.e., a constraint that appears in
execution time). Therefore, the Deliberation Engine will not
select this service because it has the effect of decreasing
the battery, which will result in not having enough battery
power to complete the execution.

Inf Syst Front

Another situation that may occur if the same execu-
tion path is selected is the following. The P2P film service
provider is the cheapest one since it is based on the content
sharing among users of the network. However, the quality
is usually not optimal in P2P networks. The quality, which
is an input of the goal, can only be solved after the execu-
tion of the service. Therefore, it will be at that time when
the Deliberation Engine selects the next execution step. If
the condition of quality is a dropcondition (i.e., a compul-
sory condition that implies the immediate cancelation of the
goal, if it is not satisfied), the Deliberation Engine must find
an alternative path using Netflix or iTunes service providers.
However, since it is a softcondition (i.e., a desirable condi-
tion, that is not compulsory to satisfy), the plan execution
could continue. In the case of an empty search, the plan exe-
cution fails and forces an execution restart that, in the worst
case could require a replanning. Furthermore, since the goal

©

IN ?bank:CC_number

IN 2fiimitle 2fiim:quality
NETFLIX
film:search_film

OUT Zbankiprice

\

NETFLIX
film:buy_film

VISA
bank:pay

OUT: ?bank:confirmationNumber

©®
O

includes not using PayPal service as the payment method
as a dropcondition, the payment service bank:pay of the
PayPal service provider will not be selected for execution.

Once the On-line Planner has calculated the set of pos-
sible paths that can be executed, it delivers the set of plans
to the Commitment Manager in order to establish the pre-
liminary agreements with the services that compose those
plans. The Commitment Manager will choose which plans
are the most appropriate to deal with the user’s goal based
on the user’s constraints and service provider execution
times.

The Commitment Manager calculates the probabil-
ity of success of each path to make the final deci-
sion (i.e., which path of the plan will be executed).
Every path that passes through the service K (bank:pay)
of the PayPal service provider is pruned because the
statement bank:paymentmethod(PayPal) fulfils one of the

IN film:title ?film:quality IN ?film:title ?film:quality IN: ?ambient:lights_on TN: Zambient.curiains._opened
| TTUNES ambient.shutdown AMBIENT
film:search_film film:search_film Iighs ambient:close_curtains
OUT 7bankiprice oUT. 7am]ien.:,igh.57°" OUT. 7amblentourtains_ciosed
iTUNES
film:buy_film
CHOICE
IN ?bank:CC_number IN ?bank:user
MASTERCARD @ PAYPAL
bank:pay bank:pay

OUT: ?bank:confirmationNumber

OUT: Zbank-confirmationNumber

e

NETFLIX

film:prepare_download

iTUNES

film:prepare_download

\>

¥
CHOICE
e it 1
!

/

©

film:prepare_download

P2P

L [

| @l OPERATING |

| SYSTEM < SYSTEM |

L os:move_file L os:download_url :

1 T T 1 1 o 1
VIDEOPLAYER @ VIDEOPLAYER

video:prepare_film

OUT: 2videoready

video:encode

[(

hasEffect

(decrease

THEN

SEQUENCE

7battery
500mAh)

TN: ?video:ready’ T 7videorreat
IN: ?ambientlights_off

IN: ?ambient:curtains_closed

IN: ?ambient:lights_off
IN: ?ambient: ins_closed

hasEffect
(decrease
“battery

1000mAh)

VIDEOPLAYER
video:play

O ©

VIDEOPLAYER
video:play_stream

OUT: video_canvas OUT: video_canvas

Fig. 3 Plan graph of the proposed use case

@ Springer

Inf Syst Front

dropconditions of the goal. To estimate the execution time
when an IF-THEN-ELSE sentence appears in the path, the
Deliberation Engine takes the worst case and limits the
cycles to at most two iterations to avoid loops.

In order to estimate the suitability of each plan taking into
account the user requirements, the Commitment Manager
establishes a ranking, taking where each path has an associ-
ated value that represents the aggregation of the probability
of success and the estimated execution time. Therefore, for
each path x, the Commitment Manager calculates the prob-
ability of success P Sy (i.e., the probability of a successful
execution of all the services that are part of the path) and
its estimated execution time 7 (i.e., the time required for
the complete execution of all the services that are part of

N
the path). P S, is calculated as follows: PS, = [] PS;*w;

i=0
and its estimated execution time is calculated by the equa-
N
tion T, = Y 7;. In order to simplify this trace, we consider
i=0

that the base case does not yet have previous experiences,

Table 11 Set of possible execution paths (1 to 5)

OO
=
i O

T = 0.0066

O O=0
OO
2 O

75 = 0.0001

PS>

O OO
=

3)

T3 = 1078 73 = 0.0131

===
=)
4 ©

PS; =0.13 Ty = 1080 Ty = 0.0066
VTN TN N
@ == N _'o
5 <
PSs =0.14 Ts = 1090 T5 = —0.0259

and, therefore, we set the value of w; = 1. Finally, we nor-
malize the value of 7. To do this, we use the average value
of all the Ty, which is called T, and the standard devia-
tion o. The normalized value is calculated by the equation:
fx =1- ¥ With this information, the paths extracted
from the plan graph depicted in Fig. 3 and their values P Sy,
T, and fx are shown in Tables 11 and 12.

Once the probability PS, and the estimated execution
time fx values for each path of the plan are calculated, in the
next step, the Commitment Manager compares all the paths
and makes a decision. The Commitment Manager deter-
mines that the best rated path is path #7 (P S7 + ﬁ = 2.45).
After this, the Commitment Manager confirms the temporal
commitments with service providers and sends this infor-
mation to the Runtime Engine for their execution. Similarly,
the rest of the previously established commitments for ser-
vice providers that are not part of the selected path will be
canceled, releasing the reservation made with the providers
of those services (Table 4).

Table 12 Set of possible execution paths (6 to 10)

I

PS¢ =0.20

Te = 474 13

1.9739

PS7 =045 2.0064

Ty = 464 7

PSg =0.30

Ty = 466 % = 1.9999

9
PSo =0.27 Ty = 462 Ty = 2.0129
B Y
@ N L T
10 D
PSy =0.18 Ty = 464 710 = 2.0064

@ Springer

Inf Syst Front

Plan recovery would be executed if any service of the
selected plan fails (i.e., there would be a replanning from
the last successful execution point). The previously gathered
information can be reused to establish new temporal com-
mitments. If it is not possible to use any of the previously
calculated options (for instance, because a provider is off-
line), the On-line Planner will try to generate a new plan.
Finally, in the worst case, if no new plan can be found, the
goal would be marked as unreachable.

4.3 Evaluation

We ran several experiments to evaluate the proposed archi-
tecture applied to the goal-oriented smart-home environ-
ment scenario. We built an adhoc simulator that allowed us
to validate different scenarios. The software developed for
these experiments is an agent-based simulator which cre-
ates as many agents as each experiment has defined. The
simulator allows us to configure synthetic scenarios where
we can define a load, the behavior of each component and
some events that will be triggered at defined instants of
time. The simulator is also responsible of collecting all the
intermediate information during the execution of the simu-
lation in order to validate how changing some parameters
improves the resulting metrics (number of completed goals,
number of executed services, etc.). Then, it emulates a full
network of connected agents within an environment where
the execution of agent-provided services is emulated in a
discretized implementation of the simulator. This emulated
execution of services allows us to introduce some forced
errors in the simulation that help the observer to validate the
self-adaptation capabilities of the implementation. The exe-
cution of experiments is designed to accept some parameters
to validate different behaviors of the prototype in different
situations. It is possible to set the probability of success for
the execution of each service to simulate the possibility of
non-fulfilment of a commitment, the worst-case execution
time of a service or some events that change the/ scenario
at a defined instant of time (e.g. we can change the pre-
defined probability of success of a service at the middle of
the simulation). We have released as open source (LGPL
license) the main components of our software in an agent
platform called SPADE.? This is a platform developed and
maintained since 2006 which includes all the significant
components of this proposal. Specifically, the SPADE plat-
form includes the main component of the On-line Planner,
which is the Case-Based Planner, the Knowledge Base (KB)
to allow agents to set goals and the protocol to offer and
consume services remotely, make plans and run services
that help to achieve their goals. This protocol is based on

Zhttp://github.com/javipalanca/spade.

jabber-rpc® and takes as inputs the knowledge stored in the
agent’s KB and pushes the results of the service invocation
also in the agent’s KB. The SPADE platform is developed
in Python and based on the XMPP* protocol (also known
as Jabber) to perform communications. SPADE agents can
publish their services to a Service Discovery agent. Other
agents can search and find these services and invoke them,
interacting with the Service Discovery agent. The Case-
Base Planner is also prepared to search in this Service
Discovery agent to look for the services that allow the agent
to achieve its goals.

In the following experiments, in order to consider a more
real scenario, we have increased the number of movie and
payment providers that we have presented in the Execution
Trace section . As a result, the number of possible ser-
vice combinations to obtain the final plan to be executed
increased. A more detailed description of the simulator can
be found in Palanca et al. (2012). In this case, we designed
a client agent that represented the behavior of the user.
Moreover, the different movie providers, payment meth-
ods, and auxiliary services were controlled by a dynamic
set of agents playing the role of service providers. In each
execution, a client agent activated its goal and then the
Deliberation Engine selected a plan to perform this goal.
After the execution of the plan, the client agent stored its
results in the K B; and re-activated the goal once more for
the next experiment.

4.4 Evaluation of the degree of success

The first experiment evaluated the percentage of success in
the fulfilment of the goals in three different scenarios (see
Fig. 5). In the first case (Own), each agent only employed
its stored plans in order to fulfil the goal, and, consequently,
its degree of success was below the minimum considered
to be acceptable. In the second case (Shared), the agents
could share their plans and, obviously, the degree of suc-
cess increased considerably. In the third case, the agents
included the on-line planner, which allowed them to com-
pose new plans considering services offered by other agents.
In this case, the degree of success obtained stood out from
the rest. The results of this experiment show that collabora-
tion among service providers and the inclusion of an On-line
Planner produce an important increase in the success rate
of goal fulfilment.

On the other hand, Fig. 6 shows similar results from
another perspective, taking into account the number of avail-
able pre-compiled plans. The figure shows that the success

3https://xmpp.org/extensions/xep-0009.html.
“https://xmpp.org.

@ Springer

http://github.com/javipalanca/spade
https://xmpp.org/extensions/xep-0009.html
https://xmpp.org

Inf Syst Front

IN 2film:itle 2fim:quality

iTUNES
film:search_film

OUT ?bank:price OUT ?bank:price

¥ \

IN Zfilmtitle 2fim:quality

NETFLIX
film:search_film

IN Zfilmtitle 2fim:quality

—
IN: 7ambient.ights_on TN 7amblent.cuntains_opened

P2P
film:search_film

AMBIENT

@ ambient:shutdown CLLEEN
_lighs

ambient:close_curtains

OUT: ?ambient:curtains_closed

OUT: ?ambien(:lights_o"
—

NETFLIX iTUNES
film:buy_film film:buy_film
CHOICE
TN 7bank:CC_number IN ?bank:CC_number IRyl
VISA MASTERCARD PAYPAL
bank:pay bank:pay bank:pay
OUT: ?bank:confirmationNumber 'OUT: ?bank:confirmationNumber OUT: 7bank confirmationNumber.

o
NETFLIX iTUNES
film:prepare_download film:prepare_download

©

e e U o 1
|

LINGZ05Tvhe e R P |
| OPERATING | @I OPERATING |
| SYSTEM l«—==1 sysTEM |
| os:move_file |) os:download_url |
1, U 1 1

VIDEOPLAYER
video:encode

VIDEOPLAYER
video:prepare_film

OUT: ?video:ready.

hasEffect

(decrease
2battery
500mAR)

TN: 7videoready Tvideoready
IN: ?ambient:lights_off

IN: ?ambient:curtains_closed IN: ?:

film:prepare_download

P2pP

IN: ?ambient:lights_off
I closed

hasEffect
(decrease

battery
1000mAh)

VIDEOPLAYER
video:play

O ©

VIDEOPLAYER
video:play_stream

OUT: video_canvas OUT: video_canvas

Fig. 4 Shortest path of the plan

rate for goal fulfilment grows faster when the number of
available agents increases than when the number of pre-
compiled plans available increases. Therefore, the system
achieves greater efficiency by increasing the number of
agents that offer services in the system than by increasing
the number of precompiled plans.

4.5 Self-adaptation evaluation

The next experiment (see Figs. 7 and 8) shows how the pro-
posed system is able to adapt itself to changes in the envi-
ronment. Self-adaptation is very important since it allows
the system to have a dynamic behavior (i.e., the system
reconfigures itself to take full advantage of current circum-
stances). This self-adaptation feature allows the system to

@ Springer

be able to re-plan any running plan that is being executed
by the Runtime Agent when any of the services included
in the plan is no longer available (a network error, a ser-
vice outage...). But self-adaptation not only allows plans to
be recovered when some errors appear, it also allows agents
to change their selections when composing new plans. This
is done because agents take into account the reliability of
the service provider agents based on a trust value, which
takes into account the probability of success of a service
execution. To calculate trust they use the execution history
of its provider agent by means of the cases stored in the
Case-Based Planner. This way, agents adapt their behavior
by selecting at any time the most reliable service providers
based on their own experience (stored as cases) and the
shared experience of other agents by means of shared plans.

Inf Syst Front

Fig. 5 Study degree of success
finding a plan

Goal Success Degree

100

80

40

Success Degree

60_

T T T T

— Own
+—— Shared
~—= Composed ||

1 1

In this experiment, we modified the accuracy of the prob-
ability of success parameter PS of some nodes in order
to analyze how the system adapts itself to changes in the
environment. We activated three events that modified the
environment. Specifically, the scheduled events were:

e (time 50000) Hulu node increases its accuracy up to 0.8

e (time 300000) P2P node increases its accuracy up to 0.9
and iTunes node decreases up to 0.1

e (time 600000) P2P node decreases its accuracy up to
0.5 and Hulu node decreases up to 0.01

Fig. 6 Study of success degree
finding a plan taking into
account the number of available
precompiled plans

2a1ba(ss220ns pasodwo)

‘ans 10 20

i
40 60
Number of Agents

100

Figure 7 shows how the trust that the client had in the
provider nodes (y-axis) changed over time (x-axis) and how
the environment executed scheduled changes (wrapped in
the figure by vertical rectangles) in the reliability of some
provider nodes. The self-adaptation took some time (see
Fig. 7), since the Deliberation Engine (Palanca et al. 2012)
took a while to realize that the reliability of some of the
provider nodes had been reduced. The Fig. 7 also shows
at instant 50000 how trust in the Hulu node increased
due to the first scheduled change. Note that this adap-
tation took time to consolidate. When the second event

88
80
72
64
56
48
40
32

ents

of of A9

Num®

@ Springer

Inf Syst Front

Fig. 7 Evolution of the trust of
provider nodes when changes in
the environment occur

— iTunes

= Netflix — P2P = Hulu

Trust

0.0

occurred at time 300000, trust in the P2P node began to
increase (it increased close to 60 %). Meanwhile, confi-
dence in the iTunes node decreased. The rest of the nodes
held their values. The third event changed the behavior
of the system, giving less reliability to the Hulu node,
which decreased to 10 %. At the same time, the Net-
flix node maintained its confidence throughout the entire
experiment. These results show that the proposed system is
able to adapt itself when unexpected events occur and the
environment changes. In this experiment, the client agent

Fig. 8 Study of the service
provider’s reorganization taking
into account the # of services
(aggregated)

70000

60000

50000

40000

30000

Provided Services

20000

10000

@ Springer

= iTunes

Hulu—>0.8 P2P-->0.9, iTunes—>0.1 P2P-->0.5, Hulu—->0.01
)

/ S -

200000 400000 600000 800000 1000000

Time

changed its trust values that were associated to the ser-
vice provider nodes. Therefore, the number of requests that
the client made to each node changed. Figure 8 shows
an aggregated view of the number of services provided
for each node when the three events occurred. It can be
observed that the slopes of the lines that represent each
node change over time according to the scheduled events.
An interesting aspect to consider is the behavior of the
Netflix node. The node was not directly affected by the
events; however, indirectly, its number of service requests

= Netflix — P2P = Hulu

Hulu->0.8

P2P->0.9, iTunes—>0.1
// . P

P2P->0.5, Hulu—->0.01

200000 400000 600000 800000 1000000

Time

Inf Syst Front

increased over time due to the loss of accuracy of the other
providers.

Summarizing, the obtained results show that the pro-
posed self-adaptive architecture is suitable for dynamic
environments where there is not a predefined set of services
and the users goals and restrictions (specifically temporal
restrictions) change over time. Nevertheless, other aspects
should be considered in real-life situations. For instance,
one of the issues that can appear is related to services that
are not semantically annotated. This would difficult their
discovery and their inclusion in new plan compositions.
Also, there could be services that are semantically annotated
but with different ontologies. Therefore, it would be neces-
sary to perform an ontology alignment in order to facilitate
the composition of new plans. Another issue to consider in
real-life scenarios is the complexity in the representation of
complex user’s goals. This complexity can be reduced using
friendly user-interfaces.

5 Conclusions

This paper presents a goal-oriented smart environment that
is based on the Distributed Goal-Oriented Computing archi-
tecture. We consider this approach to be appropriate for
the development of smart environments where the immer-
sion of users is a key factor. In the proposed architecture,
users express their goals, and the architecture is in charge
of achieving these goals by means of a service-oriented
approach. The architecture facilitates the interaction from
the perspective of users. This interaction could be per-
formed through objects and actions that a person accus-
tomed to using. Thus, the architecture allows users to
reach a high level of immersion in the multi-agent sys-
tem, minimizing the level of difficulty of the interaction.
In other words, the satisfaction level of the user will be
improved.

We have described how to define the properties of a goal
and the parameters related to the goodness of a plan in a
smart-home scenario. Moreover, a detailed execution trace
of the whole process has been presented and several exper-
iments have been done in order to evaluate the proposal. A
prototype of the proposed architecture that covers all of the
described functionalities was developed for the experiment.
This scenario has allowed us to perform experiments under
real environment conditions.

This proposal performs well with a low scalability thresh-
old. Very high thresholds can lead to significant increases
in terms of run-time and case-base size, while at the same
time decreasing the agent’s performance. However, since
the number of cases also increases for more complex scenar-
ios, a better handling of large scale case-bases is a problem
that will have to be addressed in the future. When using the

current approach in larger scenarios higher similarity thresh-
olds might also be required to distinctively separate between
cases. Optimizing the case-retrieval with a more sophis-
ticated method can improve the performance of the CBP
component of the proposed framework keeping run times
at reasonable levels. The next steps should also include the
ability to manage groups of people at service level. At the
moment, the agents’ behavior does not take into account
the different preferences of a group of people (i.e., multi-
occupancy), or conflict resolution among agents when they
have competing goals. In the future, we would like to change
this to enable more team-oriented strategies, which is a sig-
nificant increase in complexity. We also plan to consider
the inclusion of QoS (quality of service) of the available
services in the negotiation process. This could be easily
included to improve the current version.

Moreover, it would be necessary to move towards the
integration and deployment of the architecture as a real
OS. As future work, we have begun a study to analyze
the feasibility of modifying an existing operating system.
We are also planning the deployment of our proposal in
the MEDERI living lab (http://mederi.ai2.upv.es/en/) in our
university. This living lab is a multidisciplinary environ-
ment, mainly focused on health technology, that will give
us the needed tools for a real involvement of users in order
to improve the experience and robustness of the proposed
techniques.

Acknowledgments This work is partially supported by the Spanish
Government through the MINECO/FEDER project TIN2015-65515-
C4-1-R.

References

Alam, M. R,, Reaz, M. B. 1., & Ali, M. A. M. (2012). A review of
smart homes: Past, present, and future. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews,
42(6), 1190-1203.

Andrushevich, A., Staub, M., Kistler, R., & Klapproth, A. (2010).
Towards semantic buildings: Goal-driven approach for building
automation service allocation and control. In 2010 IEEE confer-
ence on emerging technologies and factory automation (ETFA)
(pp. 1-6) IEEE.

Ayala, I., Amor, M., & Fuentes, L. (2013). Self-configuring agents
for ambient assisted living applications. Personal and Ubiquitous
Computing, 17(6), 1159-1169.

Cetina, C., Giner, P, Fons, J., & Pelechano, V. (2009). Autonomic
computing through reuse of variability models at runtime: The
case of smart homes. Computer, 42(10), 37-43.

Cook, D. J. (2009). Multi-agent smart environments. Journal of
Ambient Intelligence and Smart Environments, 1(1), 51-55.

Dalpiaz, F.,, Giorgini, P., & Mylopoulos, J. (2009). An architec-
ture for requirements-driven self-reconfiguration. In Advanced
information systems engineering (pp. pp 246-260). Springer.

De Silva, L. C., Morikawa, C., & Petra, I. M. (2012). State of the art of
smart homes. Engineering Applications of Artificial Intelligence,
25(7), 1313-1321.

@ Springer

http://mederi.ai2.upv.es/en/

Inf Syst Front

Huhns, M. et al. (2005). Research directions for service-oriented
multiagent systems. IEEE Internet Computing, 9, 69-70.

Iftikhar, M. U., & Weyns, D. (2014). Activforms: active formal models
for self-adaptation. In SEAMS, (pp 125-134).

Kucher, K., & Weyns, D. (2013). A self-adaptive software system to
support elderly care. Modern Information Technology, MIT.

Lieberman, H., & Espinosa, J. (2006). A goal-oriented interface to
consumer electronics using planning and commonsense reasoning.
In Proceedings of the 11th international conference on Intelligent
user interfaces (pp. 226-233).

Liu, H., & Singh, P. (2004). ConceptNet—a practical common-
sense reasoning tool-kit. BT Technology Journal, 22(4), 211-
226.

Loseto, G., Scioscia, E., Ruta, M., & Di Sciascio, E. (2012). Semantic-
based smart homes: a multi-agent approach. In /3th Workshop on
objects and Agents (WOA 2012) (Vol. 892, pp. 49-55).

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,
Mcllraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T.,
& et al (2004). OWL-S: Semantic markup for web services. W3C
Member Submission, 22, 2007-2004.

Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts,
N. M. (2007). Agent-based land-use models: a review of applica-
tions. Landscape Ecology, 22(10), 1447-1459.

Molina, J. M., Corchado, J. M., & Bajo, J. (2008). Ubiquitous com-
puting for mobile environments. In Issues in multi-agent systems
(pp 33-57). Birkhéuser, Basel.

Palanca, J., Navarro, M., Julian, V., & Garcia-Fornes, A. (2012).
Distributed goal-oriented computing. Journal of Systems and Soft-
ware, 85(7), 1540-1557. doi:101016/jjs5201201045.

Rao, A., & Georgeff, M. (1995). BDI agents: From theory to practice.
In Proceedings of the first international conference on multi-agent
systems (ICMAS95) (pp. 312-319).

Reddy, Y. (2006). Pervasive computing: implications, opportunities
and challenges for the society. In Ist International symposium on
pervasive computing and applications (p. 5).

de Silva, L., & Padgham, L. (2005). Planning as needed in BDI
systems. International Conference on Automated Planning and
Scheduling.

Singh, P. (2002). The public acquisition of commonsense knowledge.
In Proceedings of AAAI Spring symposium acquiring (and using)
linguistic (and world) knowledge for information access.

Javier Palanca works at the GTI-IA Research Group of the Uni-
versitat Politécnica de Valencia, Spain, as a post-doc researcher. His
research includes social recommender systems, social network anal-
ysis, big data analysis, distributed and service-oriented operating
systems, multi-agent systems, agent platforms, and real-time operating
systems.

Elena del Val is a senior researcher at the Universitat Politécnica
de Valencia (UPV). She received her PhD in Computer Science in
2013 and is specialized in the area of Artificial Intelligence. Her
research interests include Multi-Agent Systems, Complex Networks,
Semantics, and Self-Organized systems. She has participated in sev-
eral research projects related to Multi-agent Systems, Service Oriented
Computing and Artificial Intelligence.

@ Springer

Ana Garcia Fornes holds a position of Associate Professor of Com-
puter Science at the Universitat Politecnica de Valencia (UPV) since
1999 where she has taught since 1986. She is co-founder of the GTI-
IA research group and Director of the Area of Research Programs and
Initiatives at the UPV. Previously, she was Director of the Master in
Artificial Intelligence, Pattern Recognition and Digital Image at the
UPV (2010-2011). Ana has participated as researcher in more than
16 projects and she has been Lead Applicant in 8 research projects.
She has more than 30 works published in journals with outstanding
positions in the list of the Journal Citation Reports, and more than
90 articles published in conference proceedings that have a system of
external peer review and dissemination of knowledge comparable to
journals indexed in relevant positions.

Holger Billhardt received his M.Sc. in Computer Science from the
Technical University of Leipzig, Germany, in 1994 and his PhD in
Computer Science at the Universidad Politecnica in Madrid (Spain)
in 2003, where he was working as a research fellow in the area of
medical informatics. Since 2001, he is an associated professor at the
Universidad Rey Juan Carlos in Madrid (Spain), where he is a mem-
ber of the Centre for Intelligent Information Technologies (CETINIA).
His current research is concerned with multiagent systems; in partic-
ular, regulation and coordination mechanisms for distributed dynamic
and open environments. He has published more than 70 papers in
international journals and conferences.

Juan Manuel Corchado is a Spanish computer scientist, professor,
researcher and author. At present He is Vice President for Research
and Technology Transfer since December 2013 and Full Professor with
Chair at the University of Salamanca. He is the Director of the Sci-
ence Park of the University of Salamanca and Director of the Doctoral
School of the University. He has been twice elected Dean at School
of Science of the University of Salamanca. In addition to a PhD in
Computer Sciences from the University of Salamanca, he holds a PhD
in Artificial Intelligence from the University of the West of Scotland.
Corchado is the Director of the BISITE (Bioinformatic, Intelligent
Systems and Educational Technology) Research Group, which he
created in 2.000. He also oversees the Masters programs in Digital Ani-
mation, Security, Mobile Technology, Community Management and
Management for TIC enterprises at the University of Salamanca.

Vicente Julian holds a position of Associate Professor of Computer
Science at the Universitat Politeécnica de Valencia (UPV) where he has
taught since 1996. Vicente Julian is member of the GTI-IA research
group. Previously, he was Director of the Master in Artificial Intel-
ligence, Pattern Recognition and Digital Image at the UPV. Four
international projects, two international excellence networks, twenty
one Spanish projects and four technology transfer projects have cov-
ered the research on Artificial Intelligence. He has more than 50 works
published in journals with outstanding positions in the list of the Jour-
nal Citation Reports, or published in conference proceedings that have
a system of external peer review and dissemination of knowledge com-
parable to journals indexed in relevant positions. Moreover, he has
more than 130 contributions and a h-index of 19, with more than 1300
citations to his published work.

http://dx.doi.org/101016/jjss201201045

	Designing a goal-oriented smart-home environment
	Abstract
	Introduction
	Related work
	Formal model for distributed goal-oriented computing architecture
	Designing a goal-oriented system for a smart-home environment
	Scenario description
	Execution trace
	Evaluation
	Evaluation of the degree of success
	Self-adaptation evaluation

	Conclusions
	Acknowledgments
	References

