
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 119 (2016) 115–127
http://d
0165-16

n Corr
Spain (O
fax: þ3

E-m
sdsun@
corchad
journal homepage: www.elsevier.com/locate/sigpro
Algorithm design for parallel implementation of the SMC-PHD
filter

Tiancheng Li a,b,n, Shudong Sun b, Miodrag Bolić c, Juan M. Corchado a,d

a The BISITE group, Faculty of Science, University of Salamanca, 37008 Salamanca, Spain
b School of Mechanical Engineering, Northwestern Polytechnical University, 710072 Xi’an, PR China
c School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
d Osaka Institute of Technology, Asahi-ku Ohmiya, 535-8585 Osaka, Japan
a r t i c l e i n f o

Article history:
Received 28 November 2014
Received in revised form
7 July 2015
Accepted 16 July 2015
Available online 4 August 2015

Keywords:
Multi-target tracking
Particle filter
Probability hypothesis density filter
Parallelization
x.doi.org/10.1016/j.sigpro.2015.07.013
84/& 2015 Elsevier B.V. All rights reserved.

espondence to: Edificio IþDþ I, C/ Espejo, s/
ffice). Tel.: þ34 923 012 045; mobile: þ34
4 923 294 514.
ail addresses: tiancheng.li1985@gmail.com, t
nwpu.edu.cn (S. Sun), mbolic@site.uottawa.c
o@usal.es (J.M. Corchado).
a b s t r a c t

The sequential Monte Carlo (SMC) implementation of the probability hypothesis density
(PHD) filter suffers from low computational efficiency since a large number of particles are
often required, especially when there are a large number of targets and dense clutter. In
order to speed up the computation, an algorithmic framework for parallel SMC-PHD
filtering based on multiple processors is proposed. The algorithm makes full paralleliza-
tion of all four steps of the SMC-PHD filter and the computational load is approximately
equal among parallel processors, rendering a high parallelization benefit when there are
multiple targets and dense clutter. The parallelization is theoretically unbiased as it
provides the same result as the serial implementation, without introducing any approx-
imation. Experiments on multi-core computers have demonstrated that our parallel
implementation has gained considerable speedup compared to the serial implementation
of the same algorithm.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multi-target tracking (MTT) involves the joint estima-
tion of the number of multiple targets and their states in
the presence of spontaneous birth/spawn/death of targets
and clutter. MTT has a long history of research over a half
of century, with many applications in both military and
commercial realms [1]. Apart from handling the noises in
the state dynamics and observation models, one has to
contend with many more challenges, such as: (i) The
number of targets is unknown and time varying because
n, 37008 Salamanca,
655 24 8188;

.c.li@usal.es (T. Li),
a (M. Bolić),
of the spontaneous birth, spawn and death of targets;
(ii) clutter exists and can be significant; (iii) targets can be
miss-detected; (iv) most challenging, data association
between observations and targets in the presence of
clutter that is required in traditional trackers is difficult.

The states of targets and observations in such an
environment are finite-set-valued random variables that
are random in both the number of elements and the values
of the elements. The idea of modelling the states and
observations as random finite set (RFS) is natural and it
allows for overcoming the difficulty of data association
[2,3] in the filtering stage. With the incorporation of RFS
and point process theory in the MTT problem, the prob-
ability hypothesis density (PHD) filter provides a concise
and tractable alternative to the optimal Bayesian filter that
works by propagating the first-order moment associated
with the multi-target Bayesian posterior and is essentially
a density estimator.

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2015.07.013
http://dx.doi.org/10.1016/j.sigpro.2015.07.013
http://dx.doi.org/10.1016/j.sigpro.2015.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2015.07.013&domain=pdf
mailto:tiancheng.li1985@gmail.com
mailto:t.c.li@usal.es
mailto:sdsun@nwpu.edu.cn
mailto:mbolic@site.uottawa.ca
mailto:corchado@usal.es
http://dx.doi.org/10.1016/j.sigpro.2015.07.013


T. Li et al. / Signal Processing 119 (2016) 115–127116
The PHD filter is attracting increasing attention, moti-
vating different derivations, interpretations and imple-
mentations. It is found that the PHD filter asymptotically
behaves as a mixture of Gaussian components, whose
number is the true number of targets, and whose peaks
collapse in the neighbourhood of the classical maximum
likelihood estimates, with a spread ruled by the Fisher
information [4]. A connection between the PHD recursion
and spatial branching processes is established in [5], which
gives a generalized Feynman–Kac systems interpretation
of the PHD recursive equations and enables the derivation
of mean-field implementations. A physical interpretation
of the PHD filter based on the bin model is given in [6]
which gives a more intuitive understanding of the PHD
filter. The PHD filter has also been extended to solve more
MTT-centric complex problems such as distributed sensor
localization [7], parameter estimation [8] and mobile robot
simultaneous localization and mapping [9], to name a few.
Presently, the PHD filter has been implemented in forms of
weighted particles [10], finite Gaussian mixtures (GM) [11]
or their hybrids [12]. In particular, the sequential Monte
Carlo (SMC) implementation that is often referred to the
SMC-PHD filter is gaining special attention [13–15], which
has also prompted new developments of SMC based on the
RFS framework e.g. [16].

The advantage of SMC over GM is that it is free of linear
and Gaussian assumptions. However, to maintain a sufficient
approximation accuracy, a large number of particles are
usually required causing a heavy computational burden. The
situation gets worse in the SMC-PHD filter where the compu-
tational requirements also grow with the number of targets/
observations [17]. Thence, fast computing techniques such as
gating [18,19] and parallel processing [20–23] appear as
promising approaches to ensure real-time performance,
which however are often based on significant approximations.
With the fast development of multi-core and multi-threading
compatible hardware and software, the parallelization
becomes increasingly attractive and even necessary. To the
best of our knowledge, a fully parallel implementation of the
SMC-PHD filter that is able to provide the same result as the
serial implementation is still lacking. Such a parallel SMC-PHD
filter is the focus of this paper.

There are four main steps in the implementation of
particle filters (PFs) including state updating, weight
updating, resampling and estimate extraction. The essence
of parallelization is distributing calculation operations to
different processing elements (PEs) for parallel computing.
In the conventional parallel implementation of particle
filters, particles are distributed among PEs. However, even
for the PF targeted for single target tracking (referred to
the basic PF hereafter), the resampling prevents direct
parallel processing due to joint processing of all particles.
The parallelization technique for resampling achieved in
these particle filters e.g. [24–25] may be applied in the
MTT-based particle PHD filter as they have been done in
[20–22] at the price of inevitable considerable commu-
nication overhead. However, there are more challenging
operations that consist of joint processing of particles in
the SMC-PHD filter in addition to the resampling. First, the
weight updating of each particle in the PHD updater
requires the weight information of all the other particles
thereby preventing the parallelization that distributes parti-
cles among PEs. Secondly, what used in [20–23] for extracting
multiple estimates in the SMC-PHD filter is still the (k-means)
clustering method which is computationally intensive and is
less suitable for parallelization. It is unclear how the k-means
clustering can be parallelized without introducing significant
communication overhead. These operations together with the
resampling step form the primary challenges for paralleliza-
tion of the SMC-PHD filter.

To overcome the parallel computing difficulty in resam-
pling, weight updating and estimate extraction, these
steps are parallelized in a novel manner that is based on
distributing observations instead of distributing particles
while the prediction is carried out on the distributed
resampling particles in each PE. In particular, new resam-
pling and estimate extraction methods that are suitable for
parallel processing are proposed. Significantly different
from [20–23], our parallelization is able to obtain the
same estimation result as the serial implementation. All
four steps of the SMC-PHD filter are fully paralleled and
significant speedup is achieved. The parallel algorithm is
described with regard to the multi-core computer that
consists of one central unit (CU) and several PEs.

The paper is arranged as follows. A novel insight of the
SMC-PHD filter that partitions the weight of particles into
components with respect to observations is provided in
Section 2, which forms the foundation of our approach.
Related works are also briefly described in this section. The
technical details of our approach are presented in Section 3.
Qualitative analysis and quantitative experiments are given
in Sections 4 and 5 respectively. We conclude in Section 6.

2. Background and related work

2.1. An observation-based view of the PHD equation

To model the discrete filtering problem, the state is
assumed to follow a Markov process in the state space
χDℝnx , with a transition density f kjk�1ðU jU Þ. That is, a
given state xk�1 at time k�1 will either die with prob-
ability 1�pS;kðxk�1Þ or continue to exist at time k with
survival probability pS;kðxk�1Þ and move to a new state
with a transition probability density f kjk�1ðxkjxk�1 Þ. The
Markov process is partially observed in the observation
space ZDℝnz . That is, at time k, a given target xkAXk is
either miss-detected with probability 1�pD;kðxkÞ or
detected with detection probability pD;k xkð Þ and generates
an observation zkAZk with likelihood gkðzkjxkÞ.

The collections of target states and observations at scan
k can be represented as finite sets Xk ¼ fxk;1;…; xk;Nk

gAFðχÞ
and Zk ¼ fzk;1;…; zk;Mk

gAFðZÞ, where Nk and Mk are the
number of targets and the number of observations respec-
tively, while FðχÞ and F Zð Þ are the collections of all finite
subsets of targets and observations, respectively.

Based on the finite set statistics, the PHD filter derived
by Mahler estimates jointly the number and the state of
targets by propagating in time the intensity function
(namely the PHD function) [2]. The following assumptions
are required in the PHD filter: (A.1) each target is assumed
to evolve and generate observations independently of
others; (A.2) the clutter distribution is assumed to be



T. Li et al. / Signal Processing 119 (2016) 115–127 117
Poisson and independent of the observations; (A.3) one
target can generate no more than one observation at each
scan; and (A.4) the appearing target process is Poisson. Let
Dkjk and Dkjk�1 be the intensity (PHD) functions associa-
ted to the posterior point processes f kjkðxkjZ1:kÞ a
nd f kjk�1ðxkjZ1:k�1Þ, namely Dkjk ¼DkjkðxkjZ1:kÞ, Dkjk�1 ¼
Dkjk�1ðxkjZ1:k�1Þ. The PHD filter propagates the following
Bayesian recursions connected by predictors and updaters:

:::-Dk�1jk�1-Dkjk�1-Dkjk-:::

The PHD predictor (state updating) is

Dk k�1j ¼
Z
χ
ϕk k�1j x ujð ÞDk�1 k�1j uð Þduþγk xð Þ ð1Þ

where the following abbreviation is used:

ϕk k�1j x ujð Þ ¼ pS;k uð Þf k k�1j x ujð Þþbk x ujð Þ

where bkðxjuÞ denotes the intensity function of the RFS
BkðxjuÞ of targets spawned from the previous state u, and
γkðxÞ is the birth intensity function of new targets at scan k.

The PHD updater (weight updating) is

Dk kj xð Þ ¼ 1�pD;k xð Þþ
X
zAZk

pD;k xð Þgk z xjð Þ
κk zð ÞþCkðzÞ

 !
Dk k�1j xð Þ ð2Þ

where κkðzÞ denotes the clutter intensity at time k and

CkðzÞ ¼
Z

pD;k uð Þgk z xjð ÞDk k�1j uð Þdu ð3Þ

The SMC-PHD filter uses a set of particles to approximate
the PHD predictor and updater. Given the importance
densities pkðU jZkÞ (for new born particles), qk U jxk�1; Zkð Þ
(for existing particles) and assuming that there are Lk�1

particles in time step k�1 (which does not apply for the
initial step of the filter) and that Jk new particles are
allocated for possible new-born targets, the PHD predictor
Dkjk�1 can be written as

Dk k�1j xkð Þ ¼
XLk� 1 þ Jk

i ¼ 1

w ið Þ
k k�1j δx ið Þ

k
xkð Þ ð4Þ

where the particle state and weight are given as

xðiÞk � qk U xðiÞk�1; Zk

���� �
; i¼ 1; :::; Lk�1 ð5aÞ

xðiÞk � pk U Zk

��� �
; i¼ Lk�1þ1; :::; Lk�1þ Jk ð5bÞ

w ið Þ
k k�1j ¼

ϕk k�1j x ið Þ
k x ið Þ

k�1

���� �
w ið Þ

k�1

qk x ið Þ
k x ið Þ

k�1

��� ; Zk

� � ; i¼ 1; :::; Lk�1 ð6aÞ

w ið Þ
k k�1j ¼

γk x ið Þ
k

� �
Jkpk x ið Þ

k Zk

��� �; i¼ Lk�1þ1; :::; Lk�1þ Jk ð6bÞ

where δxðU Þ denotes the delta-Dirac mass located in x.
The SMC-PHD updater Dkjk can be written as

Dk kj xkð Þ ¼
XLk� 1 þ Jk

i ¼ 1

w ið Þ
k kj δx ið Þ

k
xkð Þ ð7Þ
where

w ið Þ
k kj ¼ 1�pD;k x ið Þ

k

� �
þ
X

zAZk

pD;k x ið Þ
k

� �
gk z x ið Þ

k

���� �
κk zð ÞþCk zð Þ

0
@

1
Aw ið Þ

k k�1j

ð8Þ

Ck zð Þ ¼
XLk� 1 þ Jk

j ¼ 1

pD;k x jð Þ
k

� �
gk z xj jð Þ

k

� �
w jð Þ

k k�1j ð9Þ

Correspondingly, we define its decomposition unit as

ck z; jð Þ: ¼ pD;k x jð Þ
k

� �
gk z xj jð Þ

k

� �
w jð Þ

k k�1j ð10Þ

Also, the weight of particles can be divided as

wk z; jð Þ: ¼
ck z;jð Þ

κk zð ÞþCk zð Þ; zAZk

1�pD;k x jð Þ
k

� �� �
w jð Þ

k k�1j ; z¼ z0

8><
>: ð11Þ

where the symbol z0 is introduced for consistency to
represent the missed observation(s). wk z; jð Þ; zAfz0; Zkg
are referred to as weight components in the paper.
Straightforwardly, we have

w jð Þ
k kj ¼

X
zA z0 ;Zkf g

wk z; jð Þ ð12Þ

The sum of the weight components for each zA z0; Zk
� �

can be defined as

Wk zð Þ: ¼
XLk� 1 þ Jk

j ¼ 1

wk z; jð Þ ð13Þ

Obviously, we have

XLk� 1 þ Jk

j ¼ 1

wðjÞ
k kj ¼

X
zA z0 ;Zkf g

Wk zð Þ ð14Þ

The PHD represents the local density of the distribution of
targets, and its integration in a region corresponds to the
expected number of targets in that region. In the SMC
implementation, the expected number N̂k of targets
can be determined based on the total weight mass
Wk ¼

P
z
WkðzÞ as

N̂k ¼ Wk½ � ¼
X

zA fz0 ;Zkg
WkðzÞ

h i
ð15Þ

where the operator [∙] rounds the content to the nearest
integer.

Theorem 1. 8zAZk: 0rWkðzÞr1

Proof. By substituting (11) into (13) under the condition
zAZk, WkðzÞ can be expanded as

Wk zð Þ ¼
XLk� 1 þ Jk

i ¼ 1

ck z; ið Þ

κk zð Þþ PLk� 1 þ Jk

j ¼ 1
ck z; jð Þ

A 0;1½ �

This only occurs when pDðU Þ ¼ 0;Wk zð Þ ¼ 0 and only
when κk zð Þ ¼ 0;Wk zð Þ ¼ 1.

The relationship among components wk z; jð Þ, Wk zð Þ and
wkjk can be depicted as shown in Fig. 1, which provides an
insight of the weight of particles that is contributed jointly
by the previous weight (i.e. the part wk z0; jð Þ) and by the



Fig. 1. Visualization of the decomposition of the weight of particles.

T. Li et al. / Signal Processing 119 (2016) 115–127118
underlying observations (the part wk z; jð Þ; zAZk). The
height of the cylinder represents the weight value, and
the colour indicates different components zAfz0; Zkg. As
an example, the figure shows that large weight compo-
nents related to z1 and z3 correspond to two potential
targets (see the following subsection). It is necessary to
note, our parallelization algorithm uses weight compo-
nents wk z; jð Þ and WkðzÞ, zAfz0; Zkg for updating and
resampling of particles, and uses WkðzÞ; ck z; jð Þ and Ck zð Þ;
zAZk for estimate extraction, with regard to the distrib-
uted observations.

2.2. Estimate extraction

The SMC-PHD filter, however, has not provided any
solution for multiple estimate extraction; instead, a sepa-
rate multiple estimate extraction method is required.
There are two main types of solutions that differ based
on whether the estimate extraction relies on the whole
weight of the particles or on their components. In the first
class that is based on the whole weight of particles, one of
the most common means is clustering. However, cluster-
ing is essentially an iteration process that is computation-
ally intensive and unreliable. Furthermore, the clustering
does not scale well with the number of targets, and the
performance of clustering depends on the estimation
quality of the number of targets. The unreliability of
clustering techniques for estimate extraction eschews the
SMC-PHD filter, not to mention its slow computation.
More importantly, most clustering algorithms are inher-
ently serial and are hard to be parallelized.

The other group of estimate extraction methods is free
of clustering and is executed with regard to individual
observations including the methods proposed in [26–28]
and the multi-EAP (Expected a Posterior, MEAP) method
[29,30]. The original version of the MEAP estimator is
given in Algorithm 1, in which ΞðaÞ is the RFS of particles
that are associated to observation a based on the near and
nearest neighbor (NNN) principle (i.e. each particle is
associated to its nearest observation and also the observa-
tion lying in a validation area specified by a gate around
the particle). For simplicity, ΞðaÞ can be defined as the
whole particle set which will not affect the result much in
most general cases (but can significantly save computa-
tion), namely abandoning the NNN association, otherwise
one needs to associate particles to observations in advance
before parallel computing. This allows direct paralleliza-
tion based on distributed observations in our approach.
The MEAP (without the NNN association), which is shown
to be more accurate, computationally fast and reliable than
clustering, will be incorporated into our parallelization
framework with a slight change.

Algorithm 1. Multi-EAP (MEAP)

FOR j¼ 1;…; minðN̂k; Zk

�� ��Þ DO
a¼ arg

z
max fWkðzÞg Zkj j

z ¼ 1
ð16Þ
xEAPj ¼
P

iA ΞðaÞgk a xj ið Þ
k

� �
w ið Þ

k k� 1j xðiÞ
k k� 1jP

iA ΞðaÞgk a xj ið Þ
k

� �
w ið Þ

k k� 1j
Wk að Þ ¼ 0

ð17Þ
2.3. Parallelization challenges

As shown in the calculation for the PHD updater, there
are many joint processing operations of all particles which
prevent the traditional parallelization. As such, quite less
work has been reported on parallel processing of the SMC-
PHD filter; instead, there has been related work where
parallel processing is attempted even though paralleliza-
tion was not the main focus. For example, a multiple-
model SMC-PHD filter capable of handling uncertain target
dynamics is proposed in [31]. In this case, several filters,
each matched to a different target motion mode, operate
in parallel, and the overall state estimate is given by a
weighted sum of the estimates from each filter.

More directly, the distributed resampling algorithms e.
g. [24,25,32] that are based on dividing particles among
PEs can be applied in the SMC-PHD filter. This enables
some level of parallelization in the form of dividing
particles, as with the basic PF [20]. Further understanding
that the resampling does not need normalization in the
SMC-PHD filter enables a higher level parallelization of the
SMC-PHD filter [21]. To overcome the hardware challenge
in field programmable gate array (FPGA) platforms that
require a fixed number of observation processing ele-
ments, only selected observations were used while the
others were abandoned [22]. A similar operation has been
carried out in the simplified updating of particles [20]
while possible independences are assumed between
groups of particles that are associated to targets that are
distant from each other in the state space. It is critical to
note that these ad-hoc approaches may result in a change
of the PHD equations and often suffer from approximation.
As a consequence, approaches presented in [20–23] are



T. Li et al. / Signal Processing 119 (2016) 115–127 119
not able to obtain the same result as the serial implemen-
tation. In addition to resampling, there are more challen-
ging operations to handle for parallelization: (i) Updating
the weight of each particle requires the likelihood of other
particles. (ii) Multiple estimate-extraction by using meth-
ods such as clustering is much more time-consuming than
the single estimate-extraction in the basic PF. Together
with the resampling step, these are the primary barriers
for the parallelization of the SMC-PHD filter. Since the two
critical steps of resampling (using known threshold-based
or approximated sampling method) and the estimate
extraction (using the serial k-means clustering) have not
been parallelized properly in [20–22], the speedup
obtained is primarily from gating rather than parallel
processing. More importantly, so far there is no parallel
approach that is able to obtain the same result as serial
implementation.

Outside of the focus of this paper, distributed multi-
target tracking based on a distributed sensor network is
also becoming an important problem, where each node
runs its own PHD estimator (generally one filter per node)
and generally “consensus” is pursued among the nodes.
For this special concern, readers are referred to [7,33–35]
and [36,37]. Particularly, the parallel GM implementation
of the single cluster (SC) PHD filter is proposed based on
the graphics processing unit (GPU) [38]. Different to the
general PHD filter, the Gaussian mixture SC-PHD filter
propagates the parent state as a collection of particles,
with each particle being linked to a daughter GM PHD
conditioned on the state and trajectory of that particle. Our
approach is also different to [39] which decomposes the
state of particles into two parts.

Our approach focuses on the algorithm design and is
not hardware-specific. To achieve high-level of parallelism,
we develope parallel algorithms separately for all the four
steps of the SMC-PHD filter. The prediction step is paralle-
lized in terms of distributing particles achieved by the
resampling; the weight updating, resampling and estimate
extraction steps are parallelized in terms of distributing
observations. This paradigm of two different distributing
solutions is novel and critical for obtaining unbiased
estimates and achieving full parallelization. In addition,
new resampling and estimate extraction
methods that are suitable for parallel processing are
proposed. All of these make the significant and distin-
guishing difference of our parallelization framework to
existing works.

3. Parallelization of the SMC-PHD filter

This section will detail the parallel algorithm design
with respect to the four steps of the SMC-PHD filter.

3.1. Parallelizing computations

Our Parallel model is based on the typical centralized
distributed system that consists of one CU and several
independent PEs in which there is bidirectional commu-
nication between PEs and the CU and no communication
among PEs. Therefore, our system represents the master-
slave programming model and as such it is convenient for
implementation on contemporary multi-core computers.
Henceforth, computational units that need to be processed
in parallel are called tasks. Parallel tasks are primarily
carried out by distributed PEs and the serial computations
by the CU that also manages task allocations and commu-
nication with PEs. One of the goals of our approach is to
minimize the serial computation and communication
between PEs and the CU in order to maximize parallel
computing.

In this paper, the number of active processors may
change with the number of observations. Let us assume
that there are M tasks that need to be allocated to no more
than P PEs. In our case, the parallel filter aims to use as
many PEs as possible for maximum speed up. However,
there is possibility that the number of tasks is less than the
PEs, i.e.MoP, which will make some PEs idle. There will
be either an equal number of tasks per PE or the number of
tasks per PE can differ by one if it is not divisible by P.

The algorithmic representation of the proposed parallel
framework for the SMC-PHD filter is given in Fig. 2. The
left column indicates the steps processed by PEs, while the
information in the blue rectangle on the right inside
indicates the steps processed by the CU. All of the opera-
tions are processed in order from top to bottom, whereas
operations at the same time level are processed in parallel.
Communication between PEs and the CU is bidirectional
and occurs three times in total. The operations highlighted
in red are processed in parallel including low-level paral-
lelization among the PEs (for weight updating, estimate
calculating, resampling and state prediction) and high-
level parallelization between the CU and PEs (while the
PEs process updating, the CU performs resampling for the
z¼ z0 part; while the PEs process resampling, the CU
selects the desired estimate and extracts them).

The parallelized SMC-PHD filter comprises four parts: state
prediction, partial updating, MEAP estimate extraction and
partial resampling. To simplify the description, wewill present
theweight updating, estimate extraction and resampling steps
first, followed by the prediction step. The steps for one
filtering iteration are described next:

Step 1. Allocation: Given that all underlying particles
and observations are ready for use in the CU, then the
CU distributes separate observations to different PEs
and broadcasts all particles to each PE.
The following Step 2–5 are processed in PEs in parallel
(the low level parallelization) while the high-level
parallelization is realized between PEs and the CU.
Step 2. Weight updating: Each PE processes a set of
observations z in parallel to obtain ck z; jð Þ, Ck zð Þ, wk z; jð Þ
and WkðzÞ. (Concurrently, the CU will resample accord-
ing to wk z0; jð Þ to obtain Mp �Wkðz0Þ

	 

particles, where

Mp is a specified parameter; see Section 3.2.3).
Step 3. Estimate extraction: Each PE calculates its
estimates according to its observations based on
ck z; jð Þ, pD xð Þ, as shown in (17). At the end of this step,
PEs report Ck zð Þ, Wk zð Þ and all the estimates
Xj; j¼ 1;…; Zk

�� �� to the CU.
Step 4. Resampling: Resampling is performed on wk z; jð Þ
with an expected number Wk zð Þ �Mp

	 

of particles to

resample for each zA Zk
� �

in PEs individually. The



Fig. 2. The parallel processing framework of the SMC-PHD filter.

T. Li et al. / Signal Processing 119 (2016) 115–127120
resampled particles are weighted the same as
Wk zð Þ= Wk zð Þ �Mp

	 
� �
Step 5. State Predication: The resampled particles in
each PE perform the state updating according to (5a).
Then, PEs send all predicted states and Lk zð Þ to the CU.
The following step is performed in the CU:
Step 6. Computation within CU (high-level paralleliza-
tion): During the above steps 4 and 5 proceeded in PEs,
the CU calculates the total weight mass Wk ¼

P
z
WkðzÞ

and the estimated number of targets N̂k ¼ Wk½ � and
determines the required observations aj; j¼ 1;…;

minðN̂k; Zk

�� ��Þ based on Wk zð Þ via (16) and correspond-
ingly selects the corresponding estimates obtained in
step 3. Also, the CU generates Jkþ1 new particles
according to the birth target model (5b) and (6b). The
predicted Lk particles reported from PEs in step 5
together with the new generated Jkþ1 particles form
the new particle set in the CU that will be used for the
next filtering iteration.

Then, all steps are repeated for the next iteration kþ1
when new observations are available.

In summary, there are two levels of parallelization in our
approach. The first is the low-level parallelization among PEs,
in which the weight updating, resampling and estimate
extraction are processed in parallel according to the weight
components of particles, and the prediction step is imple-
mented in parallel by dividing particles. The higher level
parallelization refers to concurrent processing of PEs and the



T. Li et al. / Signal Processing 119 (2016) 115–127 121
CU. Most of the computations are parallelized at the first level
with regard to observations, which is the primary part of our
parallelization. In addition to these parallelization steps, the
communication between PEs and the CU can be parallelized
as well, e.g. the allocation operation given in step 1 is handled
in a broadcasting manner.

The following sub-sections provide further analysis
with respect to the four parts of the SMC-PHD filter.

3.2. Primary parallel processing

3.2.1. Partial weight updating

Remark 1. Resampling and MEAP are executed on the
weight components in each PE. The integrated weight of
each particle shown in (8) is not used in the filter and
therefore does not need to be calculated.

Remark 2. The weight updating of particles and MEE are
the primary computational steps of the filter. The compu-
tational load in each PE is proportional to the number of
observations allocated. The number of observations allo-
cated to different PEs is approximately even-balanced and
the difference is no larger than one. Therefore it is fair to
say that the computational load distributed to different
PEs is approximately even-balanced and therefore, there is
no need for a load balancing operation.

3.2.2. Partial MEAP estimate extraction
As shown in Algorithm 1, the Multi-EAP estim-

ate extraction method consists of two steps: rank Wk zð Þ
for all zAZk to identify the largest min N̂k; Zk

�� ��� �
, and

calculate their corresponding EAP estimate
s xEAP1 ;…; xEAPminðNk ; Zkj jÞ .

Determining Eq. (16) requires communication between
PEs in the first step if it is directly applied even the NNN
association is removed. To avoid this in our parallel
processing approach, a slight change is made on the order
of the two steps in calculating MEAP. Firstly, Eq. (17) is
directly processed in PEs with respect to all observations
zkAZk after the updating step. Then, for estimate extrac-
tion, only the estimates corresponding to significant WkðzÞ
are selected to output via Eq. (16) in the CU. Obviously, the
calculation of (17) is approximately even-balanced among
PEs. To note, if the NNN association is applied in the MEAP
(that is particularly beneficial in the case of close-
distributed targets [29,30]), it can be performed in the
CU before distributing observations into PEs. Then, in
addition to the particles and observations, their associa-
tion information is also needed to be sent to PEs; we
omitted the details here.

3.2.3. Partial resampling
Except the resampling step, all the other calculations

are exactly the same between our parallelization and the
serial implementation. Therefore, the unbiasedness of the
resampling lies at the core of the unbiasedness of our
parallelization and we will use exactly the same “unbia-
sedness” principle as serial resampling scheme [32].

Note that one advantage of the SMC-PHD filter over the
basic particle filter is that the weights of particles do not
need to be normalized for resampling. Normalization is
less suitable for parallelization, which fortunately can be
avoided in our approach. The weight mass of particles in a
region corresponds to the expected number of targets in
that region. Based on this, we resample in parallel accord-
ing to the weight components of particles wk z; jð Þ; j¼
1;2;…; Lk�1þ Jk; zAZk in each PE with the same principle
as the sequential procedure according to the integral
weight. For z¼ z0 the resampling is processed in the CU
for the high-level parallelization, independent of the
processing in PEs. Any unbiased sequential resampling
method can be applied (e.g. the fast systematic scheme).
The key is to determine the number of particles (that have
uniform weight) to resample for each component in order
to satisfy the unbiasedness condition. Since the weight
mass of all particles represents the expected number of
particles, the weight mass Wk zð Þ has a clear meaning of
the likelihood that the observation z is from a target. It is
desirable to allocate a proportional number of particles to
the expected number of targets, namely the weight mass
Wk zð Þ. As done in the serial implementation, Mp particles
are allocated for each expected target. For the weight
component wk z; jð Þ; j¼ 1;2;…; Lk�1þ Jk; a total of Lk zð Þ ¼
½Wk zð Þ �Mp� particles are assigned to resample in our
approach. In particular, the unbiasedness property is pre-
served by performing the rounding operation:

Lk zð Þ ¼ Ε Wk zð Þ �Mp
� �

; zA z0; Zk
� � ð18Þ

In what follows, it is explicitly proved that the output of
our component-based sampling approach is equivalent to
the traditional method that is based on the entire/integral
weight. The partial resampling scheme shares a similar
idea with the stratified resampling [19] and if performed in
serial manner, it can be taken as a type of unbiased
compound resampling [32].

Theorem 2. As long as condition (18) is satisfied, the parallel
resampling will obtain the same unbiased result as the serial
resampling based on the integrated weight, namely the
number of times LðjÞk that each particle is resampled satisfies

E L jð Þ
k jw jð Þ

k kj
� �

¼ Lk �
w jð Þ

k kjPLk� 1 þ Jk
j w jð Þ

k kj
ð19Þ

where LðjÞk is the number of times that the jth particle is
resampled, Lk is the final number of resampled particles:

Lk ¼
X

zA fz0 ;Zkg
LkðzÞ ð20Þ

Proof. The unbiasedness condition is satisfied in parallel
resampling in each PE for each z, i.e.

E L jð Þ
k zð Þ

� �
¼ Lk zð Þ �wk z; jð Þ

Wk zð Þ ð21Þ

where LðjÞk ðzÞ denotes the number of times the jth particle is
resampled with respect to observation z. As such, the total
resampled number of the jth particle is

L jð Þ
k ¼

X
zA fz0 ;Zkg

L jð Þ
k ðzÞ ð22Þ



T. Li et al. / Signal Processing 119 (2016) 115–127122
Based on the above premises, Eq. (19) is derived as follows:

Lk �
w jð Þ

k kjPLk� 1 þ Jk
j ¼ 1

w jð Þ
k kj

¼
X

zA fz0 ;Zkg
LkðzÞ �

P
zA fz0 ;Zkgwkðz; jÞP
zA fz0 ;ZkgWkðzÞ

viað12Þ; ð13Þ and ð20Þ

¼
X

zA fz0 ;Zkg
wkðz; jÞ �

P
zA fz0 ;ZkgLkðzÞP
zA fz0 ;ZkgWkðzÞ

¼
X

zA fz0 ;Zkg
wkðz; jÞ �

E
P

zA fz0 ;ZkgWkðzÞ �Mp

� �
P

zA fz0 ;ZkgWkðzÞ
via ð18Þ

¼ E
X

zA fz0 ;Zkg
wkðz; jÞ �Mp

 !

¼ E
X

zA fz0 ;Zkg
wkðz; jÞ �Mp
� � !

¼ E
P

zA fz0 ;Zkg
wkðz; jÞ � LkðzÞ

WkðzÞ

� � !

¼ E
X

zA fz0 ;Zkg
L jð Þ
k ðzÞ

 !
via ð21Þ

¼ E L jð Þ
k jw jð Þ

k kj
� �

3.2.4. Prediction
After resampling, each PE (as well as the CU) will

directly update the state of the resampled particles based
on the dynamic model (5a). These predicted particles are
then sent to the CU. Concurrently, new weighted particles
are generated for possible new-appearing targets in the CU
based on (5b). Here, exchanging particles between PEs
can be useful to balance the number of resampled particles
among PEs, which will cause additional communication
requirements. However, we do not suggest doing so
since the prediction step is relatively computationally
inexpensive, especially when a simple proposal function
is adopted.

As an option, if the obtained number of particles is too
small (e.g. lower than a minimum threshold), it can be
self-resampled in the CU in an unbiased manner to
supplement a specified number of particles.

4. Qualitative comparison of parallel and serial
implementation

Distributing tasks into PEs for parallel processing will
introduce additional communication overhead between
PEs and the CU. The overall computing speed can only be
increased by parallelization when the time of parallel
computation, which includes communication overhead, is
smaller than sequential execution time. To quantitatively
study the parallel efficiency, we denote the following
symbols for computational operations (with regard to
Fig. 2):

Si;CU: Time needed for the CU to broadcast all particles
and divide separate observations to PE i
Si;PE: Time needed for PE i to send all particles, Lk zð Þ and
WkðzÞ to the CU
Si;CW : Time needed for PE i to report CkðzÞ and WkðzÞ
to the CU

Si9Si;CUþSi;PEþSi;CW
PEi;pre: Time used for prediction at PE i
PEi;upd: Time used for updating at PE i
PEi;res: Time used for resampling at PE i
PEi;MEAP: Time used for MEAP and sending to CU at PE i
PEi9PEi;preþPEi;updþPEi;resþPEi;MEAP

CUJ: Time needed for the CU to generate Jk new
particles

CUZ: Time needed for the CU to divide Zk and calculate
Zk

�� ��
CUres: Time needed for the CU to resample according to
z0

CUest: Time needed for the CU to extract estimates
CUOptional: Time needed for the CU to calculate Lk, and
to supplement particles via self-resampling if Lk is too

small
CU9CUJþCUZþCUresþCUestþCUoptional

We introduce the following assumptions in our model:

(a.1) communication between PEs and CU can be
processed one by one and only in one direction at the
same time;
(a.2) all PEs have the same processing capability and for
the same task, the CU will spend λ times more or less
time as compared with one PE.
(a.3) all PEs and the CU are maximally utilized and will
not stop until no task is left to be done.
In the serial computing realised on the CU, there is no

communication required. The computing time required by

the particle PHD filter (including estimate extraction) can
be written as

Tserial ¼
Xp
i ¼ 1

λPEiþCU ð23Þ

The computing time required by our parallel imple-
mentation of the SMC-PHD filter satisfies

Tparallelrmax
i

PEið Þþ
XP
i

SiþCU ð24Þ

As analysed in Remark 2, the most computationally
intensive operations of weight updating and MEE are
naturally well balanced among PEs. Taking into account
assumptions a.2–3, all PEs have the same computing
capabilities and a very similar computational load, result-
ing in PEi � PEj; Si � Sj for any i; j. Then, (24) can be
approximated as

TparallelrPEiþP � SiþCU ð25Þ
The filter can benefit from the parallelization as long as

TparalleloTserial. Comparing (23) with (25), we can easily
obtain a sufficient condition to satisfy TparalleloTserial as

PEi=PþSioλPEi ð26Þ
If the computing capability of the PE is equivalent to the
CU, then, (26) will be simplified into

Sioð1�1=PÞPEi ð27Þ



-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

X

Y

Fig. 3. Trajectories of targets in the scene.

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100

Time

X
 o

bs
er

va
tio

n

0 10 20 30 40 50
-100

0

100

Time

Y
 o

bs
er

va
tio

n

Fig. 4. Trajectories of targets in X and Y dimensions separately.

T. Li et al. / Signal Processing 119 (2016) 115–127 123
For P ¼ 2 (two PEs are used), (27) becomes Sio0:5PEi, for
P ¼ 4, (27) becomes Sio0:75PEi and so on.

Remark 3. Condition (27) indicates that more PEs (fully
used), smaller Si and larger PEi all indicate better paralle-
lization speedup. This is the reason our approach tries to
reduce the communication between PEs and the CU and to
parallelize all calculations to the largest degree.

5. Quantitative experiments

The experiments are based on shared-memory multi-
core architecture computers, where communication
among cores is accomplished through read and write
access to the shared memory. In a simple albeit classic
two-dimensional multi-target tracking scenario over the
region ½�100;100� � ½�100;100�, new targets are assu-
med to appear according to a Poisson point process with
intensity function γk ¼ 0:2Nð:; x;Q Þ, where x¼ ½0;3;0; �3�T ,
Q ¼ diagð½10;1;10;1�T Þ, and diag ðaÞ represents a diagonal
matrix with diagonal a. The Markov transition equation
that characterizes the nearly constant velocity target
dynamics is given as

xk ¼

1 t 0 0
0 1 0 0
0 0 1 t

0 0 0 1

2
6664

3
7775xk�1þ

t2=2 0
t 0
0 t2=2
0 t

2
6664

3
7775

vk;1
vk;2

" #
ð28Þ

where the sampling time t ¼ 1, xk ¼ ½xk;1; xk;2; xk;3; xk;4�T ,
½xk;1; xk;3�T is the position while ½xk;2; xk;4�T is the velocity
at time k. The process noise fvk;1g; fvk;2g are mutually
independent zero-mean Gaussian white noise with a
respective standard deviation of 1 and 0.1.

The Cartesian position observation equation is given by

zk ¼
1 0 0 0
0 0 1 0

" #
xkþ

uk;1

uk;2

" #
ð29Þ

with fuk;1g and fuk;2g as mutually independent zero-mean
Gaussian white noise with the same standard deviation of
2.5. Clutter is uniformly distributed over the region with
an average rate of r points per scan, i.e. κ ¼ ðr=2002Þ.

Without loss of generality, targets may survive for a
long or short period of time, appear jointly, adjacently or
solitarily, and their trajectories may cross each other, be far
away or close as shown in Figs. 3 and 4. The survival
probability and the detection probability of each target are
set as pS ¼ 0:95; pD ¼ 0:95 respectively. Fixed Mp particles
per expected target are used in resampling to adjust the
number of particles. Both the serial and parallel SMC-PHD
filters employ the MEAP estimator (free of the NNN
association) for computing fast and accurate estimate
extraction.

Fig. 5 gives the optimal sub-pattern assignment (OSPA)
metric [40] result (the mean estimate and the standard
deviation over 100 Monte Carlo trials) of both serial and
parallel filters (using 2 PEs) in our first experiment for
r¼ 10; Mp ¼ 500. The output results of both filters are
indeed very close and the difference is less than 0.6% on
average of 100 trials (this slight difference is due to the
random number as the random numbers generated each
time are different). This agrees with the theoretical study
that our parallelization provides the same estimation
result as the serial implementation. In the following
experiments, we put the emphasis on the computing
efficiency of the parallelization.

The computational load required by the SMC-PHD filter
is in proportion to the number of observations and the
number of particles, which depend on the parameters r
and Mp. Without loss of generality, different r and Mp are
explored in a large range to compare the computing speed
of the proposed parallel approach with the serial one. Two
experiment platforms are used respectively and in both,
we first use different degree of clutter, i.e. r is set from 1 to
50 with interval 1, in which Mp ¼ 500. We then use
different Mp from 200 to 2000 with interval 50, in which
r¼ 10; here the observations are the same for all trials.

5.1. Parallel computation with MATLAB

We point out that the presented algorithm is not hard-
ware specified and can be implemented on different parallel
processing platforms. However, we programme on the



0 10 20 30 40 50
0

10

20

30

40

50

60

Different degree of clutter, r

C
om

pu
tin

g 
tim

e 
(s

)

Serial processing
Parallel processing (2 PEs)
Parallel processing (4 PEs)

Fig. 6. Average computing time against different degrees of clutter
(Mp ¼ 500).

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

Average number of particles per target, Mp

C
om

pu
tin

g 
tim

e 
(s

)
Serial processing
Parallel processing (2 PEs)
Parallel processing (4 PEs)

Fig. 7. Average computing time against average number of particles
allocated per target (r¼ 10).

Table 1
Speedup obtained by parallelization versus serial processing (%)

Condition r¼5,
Mp¼1000

r¼50,
Mp¼1000

r¼10,
Mp¼500

r¼10,
Mp¼2000

2 PEs �2.5 8.6 5.3 13.2
4 PEs 36.0 45.8 27.5 49.7

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Time

C
om

pu
tin

g 
tim

e 
(s

)

Serial processing
Parallel processing (2 PEs)
Parallel processing (4 PEs)

Fig. 8. Average computing time of each step (r¼ 0; Mp ¼ 500).

0 10 20 30 40 50
0

2

4

6

8

10

Time

O
SP

A

Serial processing
Parallel processing (2 PEs)

Fig. 5. Mean OSPA and its variance over 100 trials.

T. Li et al. / Signal Processing 119 (2016) 115–127124
MATLABs platform because it is friendly and popular in the
signal processing community, which provides two main
approaches for parallel computation. One is the built-in
multithreading and the other is the multi-core/processor
computation based on the Parallel Computing Toolbox,
which deals with each thread as a separate ‘worker’ (corre-
sponding to the PE in our algorithm). Maximally 4 PEs are
available for the first experiment platform with i5-3450 CPU
while, maximally 8 PEs are available for the second experi-
ment platform with Intel Xeon(R) CPU E5540. To capture the
average performance, we run 10 trials for each experiment
with the same target trajectories and observations.

5.2. Multi-core computing

This experiment is executed on a computer with Intel
i5-3450 CPU that consists of a total of 4 cores and 4
threads with a clock frequency of 3.10 GHz. The operating
system is Windows 7. In this experiment, two and four PEs
are used separately for parallel processing. Fig. 6 shows
average computing time for different degrees of clutter r
and Fig. 7 shows the average computing time for different
numbers of particles Mp per target. The computing speed
increased by parallelization on average as compared to
the serial implementation for some points is summarized
in Table 1.

The average computing time of each step is given
in Fig. 8 for r¼ 0; Mp ¼ 500 and in Fig. 9 for
r¼ 10; Mp ¼ 500. As shown in Fig. 4, there is no target
for kAf1; 50g, only one target for kAf2–4; 46–49g, two
targets for kAf5–8; 36–45g and more targets for
kAf9–40g. The number of targets contributes to the
computing time twofold: first, the more targets, the more
particles; second, the more targets, the more observations.
The computing time increases with both the number of
particles used and the number of observations to handle.
Our parallel approach aims to alleviate the latter (reducing
the increase of the computing time with the number of
observations) but not the former. In particular, when the
number of targets is low (r2) and r¼ 0, the number of
observations is relatively small and parallelization does
not speed up but slows down the processing as compared



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
om

pu
tin

g 
tim

e 
(s

)

Serial processing
Parallel processing (2 PEs)
Parallel processing (4 PEs)

Fig. 9. Average computing time of each step (r ¼ 10; Mp ¼ 500).

0 10 20 30 40 50
0

20

40

60

80

100

120

Different degree of clutter, r

C
om

pu
tin

g 
tim

e 
(s

)

Serial processing
Parallel processing (2 PEs)
Parallel processing (4 PEs)
Parallel processing (8 PEs)

Fig. 10. Average computing time against different degree of clutter
(Mp ¼ 500).

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

Average number of particles per target, Mp

C
om

pu
tin

g 
tim

e 
(s

)

Serial processing
Parallel processing (2 PEs)
Parallel processing (4 PEs)
Parallel processing (8 PEs)

Fig. 11. Average computing time against average number of particles
allocated per target (r¼ 10).

T. Li et al. / Signal Processing 119 (2016) 115–127 125
to the serial filter shown in Fig. 8. But if r¼ 10 (the clutter
generates on average 10 observations per scan), our
parallelization is beneficial even when the number of
targets is small, as shown in Fig. 9. These results indicate
that our parallelization can benefit in cases of dense
observations, regardless of whether they are generated
by targets or by clutter. For the scene of relatively small
number of targets and fewer clutter our parallelization
might not be beneficial.

The results show that, the parallelization by using two
processors has not improved the computing speed much
(less than 14%). This indicates Si � 0:5PEi for condition
(27). In contrast, the parallelization by using four proces-
sors has significantly improved the computing speed (from
27% to 50%). When the number of clutter and particles
used is large, the implementation can especially benefit
from parallelization as indicated by Remark 3.

5.3. Multithreading computing

The second experiment is executed on a computer with
Intel Xeon(R) CPU E5540 consisting of a total of 4 cores
running at 2.53 GHz. Maximally 8 threads can be exploited
in this system. The operating system is Linux. In this
experiment, two PEs, four PEs and eight PEs are used
separately for parallel processing. The computing times
consumed by the serial SMC-PHD filter and the parallel
SMC-PHD filter are given in Fig. 10 for different r and in
Fig. 11 for different numbers of particles used per target
Mp. The increase in computing speed with parallelization
as compared to the serial implementation for some con-
ditions is summarized in Table 2.

The results show that the parallelization is beneficial
and that it scales well with the increasing number of PEs
used. Particularly, when the number of clutter and the
number of particles used are both large, parallelization is
the most beneficial. In contrast, when the number of
clutter and the number of particles used are both small,
there is less benefit from parallelization and using more
PEs is not suggested. This is simply because, with the
increase of number of PEs, the resource utilization and the
communication overhead for parallel processing increase
as well. For a certain level of the number of targets and
clutter, there is a trade-off between parallelization level
and the communication overhead.

6. Conclusion

An algorithmic parallel-processing framework for the
popular SMC-PHD filter is proposed, based on the insight-
ful understanding of the filter. To achieve high-level of
parallelism in each calculation of the SMC-PHD filter, we
propose efficient solutions separately for all the four steps
of the filter including state prediction, weight updating,
resampling and multi-estimate extraction. The state pre-
diction step is parallelized in terms of distributing parti-
cles; the weight updating, resampling and estimate
extraction steps are parallelized in terms of distributing
measurements. This combination of two different distri-
buting solutions is based on the unbiased resampling,
which is critical for obtaining unbiased estimates and
achieving full parallelization. On average, the computa-
tional load is approximately equivalent among processors.
More importantly, the proposed parallel implementation
provides the same result as the serial implementation.



Table 2
Speedup obtained by parallelization versus serial processing (%)

Condition r¼5, Mp¼1000 r¼50, Mp¼1000 r¼10, Mp¼500 r¼10, Mp¼2000

2 PEs 22.9 33.3 26.0 30.1
4 PEs 46.7 64.3 53.8 60.3
8 PEs 52.3 77.7 60.7 73.1

T. Li et al. / Signal Processing 119 (2016) 115–127126
Experiments have confirmed the validity of our approach
which has gained considerable parallelization speedup.
Since the software of Matlab does not give enough control
to the programmer, we expect that better speedup can be
obtained by using parallel hardware and software that
allow for lower-level parallel programming.
Acknowledgement

This work is partly supported by Ministry of Economy
and Finance of Spain (ref. TIN2012-36586-C03-03), EU FP7
(ref. PIRSES-GA-2012-318878) and National Natural
Science Foundation of China (ref. 51475383). Tiancheng
Li’s work is supported by the Excellent Doctorate Founda-
tion of Northwestern Polytechnical University and the
Postdoctoral Fellowship of the University of Salamanca.

References

[1] G.W. Pulford, Taxonomy of multiple target tracking methods, IEE
Proc. Radar Sonar Navig. 152 (5) (2005) 291–304.

[2] R. Mahler, Multi-target Bayes filtering via first-order multi-target
moments, IEEE Trans. Aerosp. Electron. Syst. 39 (4) (2003)
1152–1178.

[3] R. Streit, Multisensor multitarget intensity filter, in: Proceedings of
the 11th International Conference on Information Fusion, Cologne,
Germany, June 30–July 3, 2008.

[4] P. Braca, S. Marano, V. Matta, P. Willett, Asymptotic efficiency of the
PHD in multitarget/multisensor estimation, IEEE J. Sel. Top. Signal
Process. 7 (3) (2013) 553–564.

[5] M. Pace, P. Del Moral, Mean-field PHD filters based on generalized
Feynman–Kac flow, IEEE J. Sel. Top. Signal Process. 7 (3) (2013)
484–495.

[6] O. Erdinc, P. Willett, Y. Bar-Shalom, The bin-occupancy filter and its
connection to the PHD filters, IEEE Trans. Signal Process. 57 (11)
(2009) 4232–4246.

[7] M. Uney, B. Mulgrew, D. Clark, Cooperative sensor localisation in
distributed fusion networks by exploiting non-cooperative targets,
in: Proceedings of the 2014 IEEE Workshop on Statistical Signal
Processing, Gold Coast, Australia, 29 June–2 July 2014.

[8] B. Ristic, D.E. Clark, N. Gordon, Calibration of multi-target tracking
algorithms using non-cooperative targets, IEEE J. Sel. Top. Signal
Process. 7 (3) (2013) 390–398.

[9] J. Mullane, B. Vo, M.D. Adams, W.S. Wijesoma, A random set
formulation for Bayesian SLAM, in: Proceedings of the 2008 IEEE/
RSJ International Conference on Intelligent Robots and Systems,
Nice, France, 22–26 September 2008.

[10] B.N. Vo, S. Singh, A. Doucet, Sequential Monte Carlo methods for
multi-target filtering with random finite sets, IEEE Trans. Aerosp.
Electron. Syst. 41 (4) (2005) 1224–1245.

[11] B.N. Vo, W.K. Ma, The Gaussian mixture probability hypothesis
density filter, IEEE Trans. Signal Process. 54 (11) (2006) 4091–4104.

[12] D. Clark, B.T. Vo, B.N. Vo, Gaussian particle implementations of
probability hypothesis density filters, in: Proceedings of the 2007
IEEE Aerospace Conference, Big Sky, Montana, March 2007.

[13] M. Schikora, A. Gning, L. Mihaylova, D. Cremers, W. Koch, Box-
particle probability hypothesis density filtering, IEEE Trans. Aerosp.
Electron. Syst. 50 (3) (2014) 1660–1672.
[14] B. Ristic, B.T. Vo, B.N. Vo, A. Farina, A tutorial on Bernoulli filters:
theory, implementation and applications, IEEE Trans. Signal Process.
61 (13) (2013) 3406–3430.

[15] R. Mahler, PHD filters of higher order in target number, IEEE Trans.
Aerosp. Electron.Syst. 43 (4) (2007) 1523–1543.

[16] C. Ouyang, H.B. Ji, Z.Q. Guo, Extensions of the SMC-PHD filters for
jump Markov systems, Signal Process. 92 (6) (2012) 1422–1430.

[17] B.K. Habtemariam, R. Tharmarasa, T. Kirubarajan, PHD filter based
track-before-detect for MIMO radars, Signal Process. 92 (3) (2012)
667–678.

[18] T. Li, S. Sun, T.P. Sattar, High-speed sigma-gating SMC-PHD filter,
Signal Process. 93 (9) (2013) 2586–2593.

[19] T.M. Wood, D. Clark, B. Ristic, Efficient resampling and basic track
continuity for the SMC-PHD filter, in: Proceedings of Cognitive
Systems with Interactive Sensors, Crawley, UK, 2010.

[20] S. Hong, L. Wang, Z. Shi, K. Chen, Simplified particle PHD filters for
multiple target tracking: algorithm and architecture, Prog. Electro-
magn. Res. 120 (2011) 481–498.

[21] Z. Shi, Y. Zheng, X. Bian, Z. Yu, Threshold-based resampling for high-
speed particle PHD filter, Prog. Electromagn. Res. 136 (2013)
369–383.

[22] Z. Shi, Y. Liu, S. Hong, J. Chen, X. Shen, POSE: design of hardware-
friendly particle-based observation selection PHD filter, IEEE Trans.
Ind. Electron. 61 (4) (2014) 1944–1956.

[23] M. Del Coco, A. Cavallaro, Parallel particle-PHD filter, in: Proceedings
of the 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014.

[24] M. Bolić, P.M. Djurić, S. Hong, Resampling algorithms and architec-
tures for distributed particle filters, IEEE Trans. Signal Process. 53 (7)
(2005) 2442–2450.

[25] S.J. Hong, P.M. Djurić, High-throughput scalable parallel resampling
mechanism for effective redistribution of particles, IEEE Trans.
Signal Process. 54 (3) (2006) 1144–1155.

[26] L. Zhao, P. Ma, X. Su, H. Zhang, A new multi-target state estimation
algorithm for PHD particle filter, in: Proceedings of the 13th
International Conference on Information Fusion, Edinburgh, UK,
2010.

[27] B. Ristic, D. Clark, B.N. Vo, Improved SMC implementation of the
PHD filter, in: Proceedings of the 13th International Conference on
Information Fusion, Edinburgh, UK, 2010.

[28] M. Schikora, W. Koch, R. Streit, D. Cremers, Sequential Monte Carlo
method for multi-target tracking with the intensity filter, in:
P. Georgieva, L. Mihaylova, L.C. Jain (Eds.), Springer, 2012,
pp. 55–87.

[29] T. Li, J.M. Corchado, S. Sun, H. Fan, Multi-EAP: extended EAP for
multi-estimate extraction for the SMC-PHD filter, IEEE Trans.
Aerosp. Electron. Syst. (2015). (submitted for publication).

[30] T. Li, S. Sun, J.M. Corchado, M.F. Siyau, A particle dyeing approach for
track continuity for the SMC-PHD filter, in: Proceedings of the 17th
International Conference on Information Fusion, Salamanca, Spain,
July 7–10, 2014.

[31] K. Punithakumar, T. Kirubarajan, A. Sinha, Multiple-model prob-
ability hypothesis density filter for tracking maneuvering targets,
IEEE Trans. Aerosp. Electron. Syst. 44 (1) (2008) 87–98.

[32] T. Li, M. Bolic, P. Djuric, Resampling methods for particle filtering:
classification, implementation, and strategies, IEEE Signal Process.
Mag. 32 (3) (2015) 70–86.

[33] M. Üney, D.E. Clark, S.J. Julier, Distributed fusion of PHD filters via
exponential mixture densities, IEEE J. Sel. Top. Signal Process. 7 (3)
(2013) 521–534.

[34] G. Battistelli, L. Chisci, C. Fantacci, A. Farina, A. Graziano, Consensus
CPHD filter for distributed multitarget tracking, IEEE J. Sel. Top.
Signal Process. 7 (3) (2013) 508–520.

[35] B.K. Habtemariam, A. Aravinthan, R. Tharmarasa, K. Punithakumar,
T. Lang, T. Kirubarajan, Distributed tracking with a PHD filter using
efficient measurement encoding, J. Adv. Inf. Fusion 7 (2) (2012) 1–17.

http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref1
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref1
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref2
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref2
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref2
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref3
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref3
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref3
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref4
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref4
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref4
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref5
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref5
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref5
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref6
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref6
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref6
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref7
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref7
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref7
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref8
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref8
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref741
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref741
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref741
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref10
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref10
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref10
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref11
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref11
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref12
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref12
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref13
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref13
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref13
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref14
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref14
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref15
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref15
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref15
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref16
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref16
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref16
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref17
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref17
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref17
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref18
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref18
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref18
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref19
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref19
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref19
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref20
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref20
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref20
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref20
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref21
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref21
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref21
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref22
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref22
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref22
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref23
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref23
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref23
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref24
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref24
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref24
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref25
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref25
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref25
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref26
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref26
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref26


T. Li et al. / Signal Processing 119 (2016) 115–127 127
[36] O. Hlinka, F. Hlawatsch, P.M. Djurić, Consensus-based distributed
particle filtering with distributed proposal adaptation, IEEE Trans.
Signal Process. 62 (12) (2014) 3029–3041.

[37] O. Hlinka, F. Hlawatsch, P.M. Djurić, Distributed particle filtering in
agent networks, IEEE Signal Process. Mag. 30 (1) (2013) 61–81.

[38] C.S. Lee, J. Franco, J. Houssineau, D. Clark, Accelerating the single
cluster PHD filter with a GPU implementation, in: Proceedings of the
2014 International Conference on Control, Automation and Informa-
tion Sciences, Melbourne, Australia, 11–12 December, 2014.

[39] T. Chen, T.B. Schön, H. Ohlsson, L. Ljung, Decentralized particle filter
with arbitrary state decomposition, IEEE Trans. Signal Process. 59 (2)
(2011) 465–478.

[40] D. Schuhmacher, B.T. Vo, B.N. Vo, A consistent metric for perfor-
mance evaluation in multi-object filtering, IEEE Trans. Signal Pro-
cess. 56 (8) (2008) 3447–3457.

http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref27
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref27
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref27
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref28
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref28
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref29
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref29
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref29
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref30
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref30
http://refhub.elsevier.com/S0165-1684(15)00248-0/sbref30

	Algorithm design for parallel implementation of the SMC-PHD filter
	Introduction
	Background and related work
	An observation-based view of the PHD equation
	Estimate extraction
	Parallelization challenges

	Parallelization of the SMC-PHD filter
	Parallelizing computations
	Primary parallel processing
	Partial weight updating
	Partial MEAP estimate extraction
	Partial resampling
	Prediction


	Qualitative comparison of parallel and serial implementation
	Quantitative experiments
	Parallel computation with MATLAB
	Multi-core computing
	Multithreading computing

	Conclusion
	Acknowledgement
	References




