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Abstract—Distributed flooding is a fundamental information4
sharing method to get network consensus via peer-to-peer commu-5
nication. However, a unified consensus-oriented formulation of the6
algorithm and its convergence performance are not yet explicitly7
available in the literature. To fill this void in this paper, set-theoretic8
flooding rules are defined by encapsulating the information of inter-9
est in finite sets (one set per node), namely distributed set-theoretic10
information flooding (DSIF). This leads to a new type of consensus11
referred to as “collecting consensus,” which aims to ensure that all12
nodes get the same information. Convergence and optimality anal-13
yses are provided based on a consistent measure of the degree of14
consensus of the network. Compared with the prevailing averaging15
consensus, the proposed DSIF protocol benefits from avoiding re-16
peated use of any information and offering the highest converging17
efficiency for network consensus while being exposed to increasing18
node-storage requirements against communication iterations and19
higher communication load. The protocol has been advocated for20
distributed nonlinear Bayesian filtering, where each node operates

Q1

Q2

21
a separate particle filter, and the collecting consensus is pursued on22
the sensor data alone or jointly with intermediate local estimates.23
Simulations are provided in detail to demonstrate the theoretical24
findings.

Q3

25

Index Terms—Consensus, diffusion, distributed tracking,26
particle filter, sensor network.27

I. INTRODUCTION28

D STRIBUTED computation has gained immense attention29

in the past decade, accompanying the rapid development30

and popularity of wireless sensor networks. In the successful31

networking operation, it is often of high interest that each node32

iteratively shares information with its intermediate neighbors33

(namely peer-to-peer communication) and consequently the en-34

tire network tends to reach a global alignment [1]/consensus35

[2]–[4] (to a certain degree). Compared to the centralized net-36

working solutions based on a fusion center, distributed network-37

ing offers several advantages regarding scalability to adding or38
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removing nodes, immunity to node failure, and dynamic adapt- 39

ability to network topology changes. 40

However, there is a significant conflict between the degree of 41

consensus (DoC) and communication requirement, as a higher 42

DoC requires more communication, either more communicating 43

iterations or higher communicating bandwidth which are lim- 44

ited by real time implementation and the communicating afford- 45

ability of the nodes, respectively. Therefore, it is of paramount 46

significance to seek a good balance for the trade-off so that the 47

network achieves a satisfactory consensus in real-time and with 48

affordable communication costs, which forms the majority of 49

the research in the literature. 50

One of the most fundamental solutions for network informa- 51

tion sharing is the flooding carried out in a distributed manner, 52

by which all nodes synchronously broadcast their information 53

to neighbors from the near to the distant. This protocol is well 54

known in a few areas such as the communications [6]. Given 55

that the network is strongly connected, it is able to achieve com- 56

plete consensus (CC, i.e., all nodes have exactly the same set of 57

information) after a certain number of iterations of peer-to-peer 58

communication. This is quite appealing in theory but poses cru- 59

cial challenges to the storage and communication requirement 60

for large networks in practice. In fact, flooding has rarely been 61

investigated in literature for distributed filtering (except for a 62

few works, e.g., [7], [8]) even for small networks, regardless of 63

its fast convergence (to be explicitly demonstrated in this paper) 64

and ease of implementation. To note, there is one work that also 65

refers to distributed flooding [9] which transmits the informa- 66

tion of one single node over the network for routing. It is very 67

different from the distributed protocol we consider here. 68

To date, a unified consensus-oriented formulation of the 69

flooding algorithm and its convergence analysis are still missing 70

in the literature. On one hand, there are cases in which DoC is 71

required in the first priority while the sensor nodes have suf- 72

ficient node-storage and communicating affordability to do so, 73

for which flooding or even CC is simply preferable. On the other 74

hand, instead of CC, it is more desired to perform flooding in a 75

fewer, affordable, number of iterations for real time realization. 76

What then can be expected and how can the number of iterations 77

be properly determined? 78

To address the void and to answer the questions above, this 79

paper aims to contribute from three aspects: 80

1) Formulate the flooding algorithm by encapsulating the 81

information of interest in a finite set at each node and 82

define set-theoretic flooding rules, namely distributed set- 83

theoretic information flooding (DSIF), raising a new type 84

of consensus termed collecting consensus. 85

2) Analysis the convergence and optimality of the DSIF pro- 86

tocol, based on a novel, consistent, metric of the DoC. 87
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It is shown that DSIF enjoys the highest efficiency for net-88

work consensus among all distributed peer-to-peer com-89

munication schemes while suffering from heavier storage90

and communicational costs.91

3) Show how the proposed DSIF scheme can be applied for92

and can benefit distributed Bayesian filtering, in which93

each node runs a separate particle filter (PF). Local PFs94

share sensor data alone or jointly with intermediate pos-95

teriors via DSIF. The latter usually needs to be parame-96

terized in order to to reduce the communication cost. The97

gain and loss to do so are analyzed and demonstrated in98

simulations.99

The reminder of this paper is organized as follows. Notations100

and definitions regarding networking and three prevailing dis-101

tributed information sharing protocols are given in Section II.102

As the main theoretical contribution, the collecting consensus-103

oriented DSIF is formulated in Section III with an analysis of104

its convergence and optimality. Section IV shows how to apply105

DSIF for distributed PF (DPF), with a brief literature review106

for DPF also given. Simulations are given in Section V and we107

conclude in Section VI.108

II. NOTATION, DEFINITION AND BACKGROUND109

A. Notation110

The network topology is represented by a directed graph111

G = (V,E) with the set of nodes V = {1, 2, · · · , N} and the set112

of edges E ⊆ V × V . In the directed graph, any edge is denoted113

by an ordered pair of nodes (i, j) ∈ E, which means node j is114

directly reachable from node i, where i is called the in-neighbor115

of j while j is the out-neighbor of i. For any j ∈ V , denote116

Nj := {i ∈ V |(i, j) ∈ E, i �= j}, which is the set of all the in-117

neighbors of node j excluding node j itself. Undirected graph118

is a special type of directed graph where for any (i, j) ∈ E, we119

must have (j, i) ∈ E. If there exists a sequence of connected120

edges as follows121

{
(i, ·), · · · , (·, j)

}
⊆ E (1)

This sequence of edges is called a path from node i to node j122

(denoted as Pathi−···−j ) and node j is said to be “reachable”123

from node i. A digraph is said to be ”strongly connected” (SC)124

if any node is reachable from all the other nodes, which is the125

digraph that can reach CC. For undirected graphs, SC is the126

same as connectivity [3].127

The length of a path is given by the number of edges on that128

path. The length of the shortest path (perhaps, not unique) from129

node i to node j is called the distance from node i to node j, de-130

noted as D(i − j). Particularly, D(i − i) = 0 and if (i, j) ∈ E,131

D(i − j) = 1. We denote the set of all the nodes that are of132

distance t ∈ N = {0, 1, 2, ...} to j as Nj (t) and that of dis-133

tance t ∈ N or smaller to j as Nj (≤ t), namely Nj (t) := {n ∈134

V |D(n − j) = t}, Nj (≤ t) := {n ∈ V |D(n − j) ≤ t}. Obvi-135

ously, we have Nj (1) = Nj ,Nj (0) = j.136

The largest distance between any two nodes, denoted as Dm ,137

is called the diameter of the graph which is given by138

Dm = max
i,j∈V

D(i − j) (2)

Clearly, Dm only exist in SC networks. For any SC networks 139

of at least two nodes, we have Dm ∈ [1, N − 1], where the 140

left bound corresponds to the fully connected network in which 141

all nodes are in-neighbors of the others, while the right bound 142

corresponds to the weakest connected network where all nodes 143

are on a single chain in order, each having no more than two 144

intermediate neighbors. 145

With particular regard to the distributed filtering problem, 146

we assume that each node has independent abilities for: (i) 147

filtering calculation, (ii) sensing to collect observations and (iii) 148

communicating to neighbors. The communication is carried out 149

in recursive iterations between neighboring nodes, each iteration 150

consisting of sending no more than one data packet and receiving 151

no more than one data packet. In addition, we need to clarify 152

the following two definitions. 153

Definition 1 (real time communication): Communication is 154

fully carried out between two successive observations and 155

causes no sensor data missing or time-delay to the filter. 156

Definition 2 (communication bandwidth): The maximum 157

size of the data packet that one node can send to or receive 158

from its neighbor per communication. 159

B. Averaging/Maximum/Minimum Consensus 160

Here we assume that each node has a local scalar value, 161

referred to as state, and it is of interest to compute the average of 162

these values. An averaging consensus algorithm [2], [3] of zero 163

communication time-delay is to reach an agreement regarding 164

the state xi each node has with local adapting dynamics ui(t), 165

which can be written in discrete-time as 166

xi(t + 1) = xi(t) + ui(t) (3)

where t ∈ N denotes the communication iteration, xi(0) and 167

xi(t) denote the initial and updated state of node i after iteration 168

t, respectively. 169

In most of the time, the dynamics ui(t) is defined as 170

ui(t) =
∑

j∈Ni

ωj→i

(
xj (t) − xi(t)

)
(4)

where ωj→i is neighboring weight from node j to node i [2]–[4]. 171

The complete convergence of averaging consensus: at itera- 172

tion t states that, for any i, j ∈ V , 173

xi(t) = xj (t) (5)

and asymptotically convergence (in the sense that t → ∞) 174

‖xi(t) − xj (t)‖ ≤ ε (6)

where ‖x − y‖ is a measure of the discrepancy between x and 175

y, and ε is an error bound or margin [10]. 176

In contrast to the average, one might be only interested in the 177

maximum/minimum state, namely maximum/minimum consen- 178

sus, which defines the iteration as 179

xi(t + 1) = max /min
{
xi(t), {xj (t)}j∈Ni

}
(7)

The averaging consensus was well investigated in the com- 180

munity of control and systems [2]–[5]. One major concern is 181

with the convergence, for which the spectral properties of the 182
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graph Laplacian play a crucial role [2], [3], [10]-[12]. The sec-183

ond concern is raised by the information correlation/dependence184

among neighbors (especially when they own in part the same185

information). To account for this, fusion weights will be as-186

signed to coordinate the nodes, e.g., covariance intersection187

[14],[15], which has inspired many strategies. In the absence of188

clear information about the correlation or relative quality of the189

information among nodes, two weighting methods have been190

proposed: one is to weight all nodes equally [16] and the other191

is to weight them according to the size of their neighborhood192

(named Metropolis weights [17]).193

Particularly for the tracking problem, the sensors may updates194

their observation frequently, preventing sufficient peer-to-peer195

communicating to get the network converge. This necessitates196

limiting the number of communicating iterations to gain a trade-197

off or compromise between a high DoC and little missing or198

time-delay of sensor data.199

C. Gossip and Diffusion200

To save communication, one alternative is to apply gossip201

to randomly choose fewer neighbors at each time (rather than202

to all neighbors) for averaging. It turns out that under mild203

conditions this process converges over time asymptotically [18].204

Gossip based distributed filtering has been reported in, e.g.,205

[19],[20]. However, gossip experiences the same problem as206

inefficient/repeated computations, for example, the same set (or207

largely similar set) of nodes repeatedly fusing their information208

at different points in time.209

As another alternative, diffusion [22]–[24] performs only one210

iteration of peer-to-peer communication (i.e., the sensing and211

consensus time scales are the same), avoiding the problem of212

repeated use of any information. Based on it, the distributed213

Kalman filter (DKF) [23],[24] does not only share sensor data,214

but also local intermediate estimates through a diffusion update215

step. By this, the one-iteration-only communication is actually216

carried out on two types of data: the sensor data for the in-217

cremental update, and the estimates for the diffusion update.218

Hybrid fusion has been previously studied in the network using219

a fusion center, e.g., [21].220

III. COLLECTING CONSENSUS AND DSIF221

A. Collecting Consensus222

In this paper, we are interested in an information sharing pro-223

tocol that does not repeatedly use any information, and that will224

converge to CC in a definite number of iterations. By CC, we225

mean that all the nodes have exactly the same information of226

interest. Such a consensus model in which each node aims to227

collect information from all reachable nodes via the shortest228

paths is referred to as collecting consensus. Different to aver-229

aging consensus, the information from different nodes remains230

conditionally independent (or more precisely stated, unfused)231

until the end of the communication, which requires that nodes232

have sufficient storage allowance.233

To perform collecting consensus, the information that needs234

to be communicated is encapsulated as a set, and the DSIF235

algorithm defines the information set dynamics (in contrast to236

(3)) based on the union operation 237

Ii(t + 1) = Ii(t) ∪ ui(t) (8)

where Ii(t) and ui(t) denote the existing and new incom- 238

ing information set of node i at iteration t ∈ N respectively, 239

Ii(0) denotes the initial information set at node i with the size 240

|Ii(0)| = 1,∀i ∈ V , and ui(0) the initial dynamics. 241

As a result of CC, all nodes shall have exactly the same 242

information set, i.e., ∀i ∈ V, t ≥ Dm , 243

Ii(t) =
⋃

j∈V

Ij (0) (9)

To this end, the DSIF algorithm consists of two stages: 244

1) In the starting iteration, each node collects information 245

from all its in-neighbors 246

ui(0) =
⋃

j∈Ni

Ij (0) (10)

2) In the following iterations t ∈ N+ = {1, 2, · · · }, each 247

node collects the new information that its in-neighbors 248

have received at the preceding iteration 249

ui(t) =
⋃

j∈Ni

{
Ij (t) \ Ij (t − 1)

}
(11)

where A \ B is the set difference of A and B, namely the 250

set of all elements that are members of A but not of B and 251

when t ≥ Dm , we will actually have ui(t) = ∅. 252

As shown in (11), the receiving neighbors will sort out the new 253

received data, which they then transmit to their out-neighbors 254

in the next iteration. In this process, the same information may 255

be repeatedly received over edges, leading to information over- 256

use and communication power waste, which is one defect of 257

the naive flooding protocol, named implosion [6]. To avoid this, 258

we define the set-theoretic information flooding rules in the 259

following. 260

B. Set-Theoretic Flooding Rules 261

Rule 1 (data sending): Each node only sends to its out- 262

neighbors the new information that has never been flooded be- 263

fore, and does so no more than once in each iteration. 264

Rule 2 (data accepting): Each node will not repeatedly take 265

in the same information either from different in-neighbors or 266

from the same node at different iterations, but only accept the 267

information at its first arrival. 268

For both rules above, the data from each node shall be associ- 269

ated with a unique ID for distinguishing. Given these two rules 270

respected, we will have ∀i ∈ V, t ∈ N, 271

|Ii(t)| = |Ni(≤ t)| (12)

To combat time-increasing storage requirement and commu- 272

nication load (when t < Dm ), each element of data (often called 273

a tuple) may be somehow compressed via e.g., dimension re- 274

duction [25] and polynomial encoding [13], under the premise 275

that little or even no information would be lost and the data from 276

different nodes remain conditionally independent. 277

It is worth noting that in the case of maximum or minimum 278

consensus, there is neither a problem of information set-size 279
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growing nor information overuse as the fusion result is always280

a single maximum or minimum value.281

C. Convergence and Optimality of DSIF282

To gain insights of the convergence of the proposed DSIF283

scheme, we need a metric to measure the DoC for collecting284

consensus, for which we propose a metric based on the size of285

the information set as follows.286

Definition 3 (DoC): The DoC, denoted as Co , of a network287

with N nodes, is defined as follows288

Co(t) =
∑N

i=1 |Ii(t)| − N

N(N − 1)
(13)

where t ∈ N denotes the number of DSIF iterations that has289

been performed and in the following we limit it to t ≤ Dm .290

On the DoC, we have the following theorem, which states the291

convergence property of the DSIF protocol.292

Theorem 1: 0 ≤ Co(t1) < Co(t2)≤1,∀0≤ t1 < t2 ≤Dm .293

Proof: Before performing DSIF, each node has its original294

one unit of data, i.e., |Ii(0)| = 1,∀i ∈ V . That gives Co(0) =295

0. After t ≥ Dm DSIF iterations, CC will be reached as all296

nodes will have the same information, i.e., |Ii(t)| = N,∀i ∈ V .297

Furthermore, we have the following two straightforward Claims298

(for which we omit any proof):299

Claim 1: As stated by (12), the size of the information set300

owned by sensor i ∈ V will not be reduced during flooding ex-301

cept that data fusion or removal is taken, i.e., |Ii(t1)| ≤ |Ii(t2)|302

for any 0 ≤ t1 < t2 .303

Claim 2: Supposing two nodes g and q are of distance Dm304

(namely D(g − q) = Dm ), for any 0 < t ≤ Dm , there must305

exist at least one node j ∈ Nq (t) on Pathg−···−j−···−q satisfying306

D(j − q) = t whose information will arrive to node q exactly307

at iteration t and then, we have |Iq (t − 1)| + 1 ≤ |Iq (t)|.308

From these two claims, we may conclude that Co(t1) <309

Co(t2),∀0 ≤ t1 < t2 ≤ Dm , to accomplish the proof. �310

Theorem 2: In the sense of DoC as given in (13), the pro-311

posed DSIF achieves the highest converging efficiency among312

all distributed peer-to-peer communication schemes.313

Proof: From the definition of the distance between nodes314

and the DSIF peer-to-peer communication rules, we have two315

additional straightforward Claims:316

Claim 3: All nodes whose information can reach node i in t317

iterations of peer-to-peer communication belong to Ni(≤ t).318

Claim 4: All nodes q ∈ Ni(≤ t) will surely flood their in-319

formation to node i in t DSIF iterations.320

A combination of Claims 3 and 4 indicates that the DSIF321

will gain the largest possible |Ii(t)| for any i ∈ V and t ∈ N as322

claimed, which entails the converging optimality. �323

D. Trade-off between DoC and Number of Iterations324

For a given network topology, the DoC is uniquely determined325

by the number of DSIF iterations. In turn, one can also determine326

the required number of iterations for a desired DoC, e.g.,327

Tc = 0.5. That is, the DSIF stops at iteration t once328

Co(t) ≥ Tc (14)

Algorithm 1: DSIF operations at node i for DoC Tc .
INITIALIZATION:
1: t ← 1;Co(0) ← 0
2: Ii(t) = Ii(t − 1) ∪

⋃
j∈Ni

Ij (t − 1)
RECURSIVE FLOODING ITERATION:
3: While Co(t) < Tc

4: t ← t + 1
5: Ii(t) ← Ii(t − 1) ∪

⋃
j∈Ni

{Ij (t − 1) \ Ij (t − 2)}
6: Co(t) ←

∑ N
i = 1 |Ii (t)|−N
N (N −1)

7: End while
8: Return: Ii(t)

Algorithm 1 summarizes the communicating operations that 329

need to be performed on node i for a given DoC Tc . 330

For a constant network of a known topology, the minimum 331

number of iterations can be determined a priori by (14). However 332

for time-varying dynamic networks, it needs to be calculated 333

online via a consensus algorithm. To facilitate the use in time- 334

varying networks without burdening any consensus procedures, 335

we define the local DoC metric as follows: 336

Definition 4 (Local DoC): The DoC of node i ∈ V , denoted 337

as Co
i , after t DSIF iterations, is given as 338

Co
i (t) =

|Ii(t)| − 1
Nk − 1

(15)

where Nk is number of nodes in the network at time k, which 339

needs to be estimated if unknown. From here we derive the 340

following theorem as the local-node version of Theorem 1. 341

Theorem 3: 0 ≤ Co
i (t1) ≤ Co

i (t2) ≤ 1,∀0 ≤ t1 <t2 ≤Dm 342

Proof: This theorem states the same content as Claim 1. As 343

a key difference to Theorem 1, the equality Co
i (t1) = Co

i (t2) 344

holds when and only when the number of nodes that are of 345

distance t1 to node i ∈ V is the same as that of distance t2 , i.e., 346

|Ni(t1)| = |Ni(t2)|. � 347

Setting a threshold, e.g., Tc = 0.5 which can be the same 348

or different for different nodes, on the desired local DoC, the 349

consensus updating at node i may stop at iteration t once 350

Co
i (t) ≥ Tc (16)

Furthermore, based on DoC we can define the convergence 351

speed (CoS), either globally or locally, to measure the change 352

of the size of the information set at each iteration, which also 353

indicates the local real-time communication bandwidth. 354

Definition 5 (CoS): At iteration t ∈ N, the global CoS, 355

denoted as Cs , is defined as, 356

Cs(t) = Co(t) − Co(t − 1) (17)

and the local CoS of node i ∈ V is defined as 357

Cs
i (t) = Co

i (t) − Co
i (t − 1) (18)

Theorem 4: Cs(t) > 0, Cs
i (t) ≥ 0,∀1 ≤ t ≤ Dm 358

Proof: The theorem is immediate from Theorems 1 and 3 as 359

for any 1 ≤ t ≤ Dm , i ∈ V , we have Cs(t) = Co(t) − Co(t − 360

1) > 0 from Theorem 1, and Cs
i (t) = Co

i (t) − Co
i (t − 1) ≥ 0 361

from Theorem 3. � 362

Theorems 1, 3 and 4 entail an appealing property of the DSIF 363

protocol which will not only converge definitively, but also 364
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has a guaranteed converging speed that is globally positive and365

locally non-negative everywhere and at any iteration until CC366

is reached. We refer to this as strong convergence. It, however,367

also indicates a (non-negative) increasing storage requirement368

against communicating iterations. As an alternative to (16), we369

can build the predetermined threshold on the local CoS, e.g.,370

Ts = 0.1, then the minimum number of iterations t needs to371

satisfy372

Cs
i (t) ≤ Ts (19)

But it is critical to note that we do not have any monotonicity373

on the CoS, e.g., Cs(t2) ≤ Cs(t1) or Cs
i (t2) ≤ Cs

i (t1) for 1 ≤374

t1 < t2 ≤ Dm . Therefore, the CoS at iteration t does not say375

anything of the CoS at iteration t + 1.376

E. Comparison and Practical Consideration377

Both metrics of DoC and CoS are clearly defined and easier378

to calculate than the one proposed for averaging consensus, e.g.,379

convergence rate [10]–[12], steady-state mean-square deviation380

[4] or disagreement vector [2], [3]. As indicated by Theorem 2,381

no peer-to-peer communication protocols converge faster than382

DSIF in terms of DoC. This superiority, however, is achieved383

at the expense of higher node storage requirements and heavier384

communication bandwidths. If the size of the data set at one385

node exceeds its communication bandwidth, multiple iterations386

will then be needed for that data set, otherwise data fusion is387

required to control the data size. In the former case, the required388

number of iterations will increase, while in the latter case the389

information completeness or independence may not be kept.390

However, we will not address this issue further here, which is391

quite problem dependent. In brief, we have the following remark392

on the respective advantages of averaging consensus, diffusion393

and collecting consensus.394

Remark 1: The averaging consensus takes the lowest com-395

municating bandwidth (always one unit of data) but more it-396

erations to reach any DoCs while the diffusion severely limits397

the number of iterations (to one only) which may insufficiently398

use the communication affordability (i.e., more iterations are399

actually allowed in real time communication). In contrast, the400

proposed DSIF protocol aims to get the best possible consensus401

in an real-time-allowed number of iterations, which is therefore402

particularly suited to small and moderate networks for which403

the nodes have sufficient storage and communicating power. A404

means to facilitate its use in large networks is to selectively405

apply data fusion such as averaging in every several flooding406

iterations in order to control the data-set size. This will lead to407

a hybrid protocol that iterates between flooding and averaging408

consensus, to gain a balance between benefiting from high com-409

munication efficiency and suffering from information overuse410

and slower convergence.411

IV. DISTRIBUTED BAYESIAN FILTERING USING DSIF412

A. State-of-the-art DPF Protocols413

Before presenting our DPF framework based on DSIF, a brief414

revisit of the PF algorithm and existing DPF protocols is given415

below. Suppose that at time k, the local (marginal) posterior at 416

sensor i is represented by a local PF 417

p(xk |zi,1:k ) ≈
Mi , k∑

m=1

w
(m )
i,k δ

(
xk − x(m )

i,k

)
(20)

where δ(x − y) is the Dirac delta impulse, which equals to 418

one if x = y and to zero otherwise, xk is the true state vector, 419

zi,1:k is the observation serial, x(m )
i,k and w

(m )
i,k are the state and 420

normalized weight of the mth particle respectively, Mi,k is the 421

total number of particles at filtering time k. 422

The essence of the PF is to assess how well each particle 423

conforms to the state model and explains the observations, using 424

this assessment to generate a weighted sample approximation 425

to the Bayesian posterior, and thereby form sub-optimal state 426

estimates. Given local measurement zi,k , i ∈ V , the weights of 427

the particles are evaluated over time based on the sequential 428

importance sampling (SIS) principle as 429

w
(m )
i,k ∝ w

(m )
i,k−1

p(zi,k |x(m )
i,k )p(x(m )

i,k |x(m )
i,k−1)

π
(
x(m )

i,k |x(m )
i,k−1 , zi,1:k

) (21)

where π(·) is a proposal to generate particles, and in general 430

its design shall take into account both the newest measure- 431

ment zi,k and the prior in order to best match the posterior; see 432

e.g. [19], [28], [31]. The use of the observation in the sampling 433

proposal design is particularly helpful (and even necessary for 434

avoiding sample degeneracy) when the observation is very ac- 435

curate. However, caution should be exercised here since the 436

repeated use of the observation (both for proposal design and 437

in likelihood calculation) may not benefit the filter when the 438

observation suffers from significant noise [42]. 439

In addition to SIS, resampling is usually required to reduce 440

the weight variance when it exceeds a certain threshold, so that 441

all particles will have equal or approximate weights while the 442

posterior distribution can be the best maintained [31], [32]. This 443

has often been referred to as sampling importance resampling 444

(SIR), which is the core of the majority of existing PFs. We 445

assume the reader is familiar with the centralized PF and so 446

limit ourselves hereafter to the distributed implementation, in 447

which local nodes carry out PF calculations in parallel and 448

meanwhile share information with their neighbors to assist their 449

filters. For this, a variety of information sharing protocols have 450

been proposed, which can be classified as follows: 451

1) Sequential information passing: Information transmits in 452

a sequential, predefined manner from a node to one of 453

its neighboring nodes via a cyclic path until the entire 454

network is traversed [43]. The sequential realm is sensitive 455

to the mobility and failure of nodes/edges and is time- 456

consuming. 457

2) Flooding: As addressed, the flooding protocol provides 458

the fastest albeit communication-intensive way to spread 459

information over the network [7], [8], but, neither any clue 460

to determine the number of communication iterations in 461

order to compromise real time realization and DoC nor 462

any convergence results has been shown. 463
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3) Averaging consensus. There is a large body of work con-464

cerning averaging consensus-based distributed filtering.465

The data transmitted between neighboring nodes can be466

posterior statistics in the form of Gaussian component467

[33] /GM [29]–[30] or generalized probability densities468

[36]–[37], likelihood [26]–[28], particle set [34]–[35] or469

raw observations [38]. Excellent surveys are also avail-470

able such as a taxonomy of DPFs [39], a comparison of471

several belief consensus algorithms [40] and a recent sur-472

vey of convergence and error propagation of DPFs [28].473

In summary, complete information sharing affords bet-474

ter accuracy but has higher communication requirements,475

such as [34]–[35] that exchange all particles. Parameter476

approximation [26]–[33] or random gossip [19]–[20] can477

significantly reduce the communication cost, but may lead478

to a deterioration in the filter performance.479

4) Diffusion: The diffusion scheme addressed in Section II.C480

also provides a competitive alternative to the averaging481

consensus for DPF [7]-[8], [41].482

We note that the sensor data can be either simple (e.g., range,483

bearing) or complex (e.g., image data). To avoid distracting484

from the key contribution of this paper on collecting consen-485

sus and the DSIF protocol, we only consider the former case486

for simplicity. For the latter case, one may consider compress-487

ing the sensor data, e.g., [25]-[26], [12]-[13] or transmitting488

the low-dimensional likelihood for replacement [26]–[27]. At489

the current stage, we have not considered complicated network490

issues such as communication constraints, e.g., [45]–[46], and491

asynchronous sensing, e.g., [47]–[48]. However, we note all of492

these issues are valuable to be investigated on the base of the493

proposed DSIF protocol.494

B. DSIF on Sensor Data and on Local Posterior495

In the proposed DPF framework, the DSIF scheme will be496

applied on the sensor data alone or jointly on local posteriors.497

In the latter, we propose parameterizing the posterior to save498

communication. Since a vast number of random numbers are499

required by the PF, it is communication intensive to run consen-500

sus on them, and it is not our intention to do so.501

First, DSIF is implemented on the sensor data including the502

target-observations (and uncertainties) associated with the sen-503

sor ID, all as one unit. To note, the sensor position is often504

required for likelihood calculation and therefore can serve as505

the unique sensor ID for distinguishing. Then, the resultant con-506

sensus on sensor data with sensor profiles given a priori, is507

equivalent to collecting consensus on the likelihood which is508

required for PF updating. A likelihood function contains the509

information of both the sensor data and the sensor profile in a510

more compact manner. But for simplicity of understanding, we511

keep addressing consensus on sensor data.512

The filtering posteriors obtained at different nodes, referred513

to as local posteriors, will be different, even if CC is reached on514

sensor data over the network where the difference attributes to515

the different random numbers. If DoC is low on sensor data, the516

difference between local posteriors will be relatively significant.517

As such, we may apply the second DSIF scheme to fuse local518

posteriors among neighbors as well as to get the local LMS519

(least mean squares) estimate; we refer to this step as diffusion, 520

in parallel to [24]. By this, each node aims to improve their 521

local estimate with regard to their neighbors’ posterior. How- 522

ever, parameter approximation of local posteriors, typically via 523

Gaussian or GM approximation, is needed (otherwise massive 524

communication will be triggered if the complete posterior is 525

communicated by transmitting the entire particle set), which 526

will in turn introduce approximation errors to the posterior. 527

This trade-off is much problem-dependent and will determine 528

whether the second DSIF is worthwhile. 529

The operations that need to be conducted on each sensor in 530

the proposed distributed PF is summarized in Algorithm 2. In 531

it, steps 1-a and 1-b are independent of each other and there- 532

fore can be carried out in either order or in parallel. Sensor 533

data DSIF and posterior DSIF have been implemented t1 and 534

t2 iterations respectively, where t1 and t2 are not necessarily 535

equal but are determined for respective desired or the largest 536

affordable DoCs as addressed in Section III. They show com- 537

plementary features and resemble the Incremental and Diffusion 538

updates of the diffusion-based DKF [24]. But, there are obvious 539

differences: 540

1) Our framework is developed for nonlinear models which 541

releases the requirement of linear system functions and 542

even Gaussian assumption of the posterior; 543

2) Our consensus protocol does not limit information shar- 544

ing between neighbors to one iteration only but instead, 545

the DoC will be pursued as much as the real time commu- 546

nication allows; 547

3) Our diffusion update (Step 5 in Algorithm 2) is an optional 548

step, which is advocated for re-setting local posteriors only 549

when local posteriors are significantly different (as a con- 550

sequence of a low DoC on the sensor data achieved in 551

the first DSIF implementation). When the difference be- 552

tween local posteriors is insignificant (because of a high 553

DoC achieved on the sensor data), there will be less need 554

to further fuse them and so it may be better not to dif- 555

fuse local posteriors since the errors introduced due to 556

parameterization can be more significant than the benefit. 557

This is a critical point. We will demonstrate this in detail 558

through simulations in Section V. In addition, we provide 559

two easy-to-implement diffusion choices. 560

4) We point out that the proposed two DSIF procedures can 561

be performed jointly, although this may not reduce the 562

communication load and the storage requirement in total; 563

see the following Remark 2. 564

Remark 2: Two DSIF implementations regarding the sensor 565

data and the local filter estimates form the starting step and 566

the end step of each filtering iteration, respectively. In the time 567

series, they are adjacent. Therefore, they may be combined in 568

one joint consensus scheme at some stages (which however does 569

not necessarily indicate that t1 = t2), i.e., the local estimates 570

obtained at filtering time k can be combined with sensor data 571

received at time k + 1 as one unit of data, both sharing the same 572

node ID for DSIF. Then, the initial information set at node i ∈ V 573

can be defined as 574

Ii,k (0) := {x̂i,k−1 , Pi,k−1} ∪ zi,k (22)
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Algorithm 2: Distributed PF calculation executed on node i.

Step 1-a Filter prediction: Propagate the particles x(m )
i,k−1 to

x(m )
i,k for all m = 1, · · · ,Mi,k , according to the proposal

function π
(
x(m )

i,k |x(m )
i,k−1 , zi,1:k

)
. At k = 0, particles are

sampled from an initial proposal π0 instead for filter
initialization.
Step 1-b 1st DSIF: Perform t1 DSIF iterations on sensor
data as given in Algorithm 1, resulting in a combined
measurement set Zi,k = {zj,k}j∈Ni (≤t1 ) . This step is
carried out whenever new measurements become available.
Step 2 Filter updating: Re-weight all particles via (21) (zi,t

therein shall be replaced by Zi,k obtained in the 1st DSIF)
and then normalize them as follows

w
(m )
i,k ← w

(m )
i,k

/ Mi , k∑

m=1

w
(m )
i,k (23)

Step 3 Estimate extraction: Extract local estimate x̂i,k and
calculate their covariance Pi,k from the local random

measure χi,k =
{
x(m )

i,k , w
(m )
i,k

}
m=1,2,··· ,Mi , k

as follows

x̂i,k =
Mi , k∑

m=1

w
(m )
i,k x(m )

i,k (24)

Pi,k =
Mi , k∑

m=1

w
(m )
i,k

(
x(m )

i,k − x̂(m )
i,k

) (
x(m )

i,k − x̂(m )
i,k

)T

(25)

Step 4 2nd DSIF: Perform t2 DSIF on local estimates
obtained in Step 3, resulting in a set of intermediate
estimates {x̂j,k , Pj,k}j∈Ni (≤t2 ) , which will be fused in the
LMS sense as follows

x̂LMS
i,k =

∑

j∈Ni (≤t2 )

x̂j,kP−1
j,k (26)

P LMS
i,k =

⎛

⎝
∑

j∈Ni (≤t2 )

P−1
j,k

⎞

⎠

−1

(27)

This also offers the local filter output at sensor i.
Step 5 Diffusion: As an option, the shared filter estimates
given in Step 4 can be used to re-set the local PF posterior
χi,k . If so, there are two choices (the second is expected to
have a higher approximation accuracy than the first).
1) Re-set χi,k as the LMS fused Gaussian distribution, as

is done in the Gaussian PF [49].

χi,k ← N
(
x̂LMS

i,k , P LMS
i,k

)
(28)

2) Re-set χi,k as the shared GM before performing LMS
fusion, as is done in the Gaussian sum PF [50]

χi,k ←
∑

j∈Ni (≤t2 )

N
(
x̂j,k , Pj,k

)
(29)

Step 6 Resampling: Sample from the updated particle set
[32] if the variance of weights exceeds a specified
threshold and if Step 5 is not applied. If Step 5 is applied,
sample from the diffused Gaussian or GM distribution χi,k

given by Step 5 to generate a new particle set. Update
k ← k − 1 and go to the next filtering iteration.

V. SIMULATIONS 575

In this section, we consider tracking a target that moves in 576

the x − y plane by using the proposed DPF based on a con- 577

stant sensor network earlier appeared in [39] as given in Fig. 1. 578

The network has totally 10 sensors and a diameter Dm = 4. 579

The simulation models and parameters are the same to [27]. In 580

specific, we have the initial state as x0 = [4, 0.5, 4, 0.5]T . The 581

Markov transition model that governs the target movement of 582

nearly constant velocity is given by 583

xk =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

⎤

⎥
⎥
⎦xk−1 +

⎡

⎢
⎢
⎣

0.5 0
1 0
0 0.5
0 1

⎤

⎥
⎥
⎦uk (30)

where xk = [px,k , ṗx,k , py ,k , ṗy ,k ]T , [px,k , py ,k ]T gives the po- 584

sition and [ṗx,k , ṗy ,k ]T the velocity, uk ∼ N (02 , 0.00035I2). 585

The target emits an acoustic or radio signal with a known 586

constant transmit power Pt that can be received by all sensors 587

independently, i.e., the scalar measurement function of sensor i 588

located at [si,x , si,y ]T about target xk is 589

zi,k =
∝ Pt

‖[px,k , py ,k ]T − [si,x , si,y ]T ‖γ
+ vk (31)

where ∝ is a constant that depends on several factors such as 590

fast and slow fading, and gains in the transmitter and receiver 591

antennas, γ is the path loss exponent [44], and vk ∼ N (0, σ2
v ) 592

is the measurement noise. In parallel to [27], we set simply 593

∝ Pt = 10, γ = 1, σ2
v = 0.001. 594

When multiple synchronous observations are available, the 595

weight of particles is updated by multiplying the likelihoods 596

given by each available measurement. That is, 597

p
(
Zi,k |x(m )

i,k

)
=

∏

j∈Ni (≤t)

p
(
zj,k |x(m )

i,k

)
(32)

where Zi,k = {zi,k}j∈Ni (≤t) is the measurement set at sensor i 598

gained in the first DSIF procedure of total t iterations. 599

For any sensor i ∈ V , the necessary and sufficient number of 600

iterations, denoted as Dm,i , to receive the information from all 601

the other sensors can be given by 602

Dm,i := max
j∈V

D(j − i) (33)

We design three groups of simulations in the following three 603

subsections that use the same ground truths to evaluate or com- 604

pare the following five PF protocols, where the first three are 605

distributed while the last two are centralized. All PFs use the 606

same number of particles (M = 1000). 607
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Fig. 1. The topology of the sensor network, the target trajectory and its
estimate given a by a global SIR filter in one trial.

1) C-SIR: we apply DSIF only on the sensor data, named608

Consensus without Diffusion (i.e., Steps 4 and 5 are not609

applied in Algorithm 2). In this case, each local PF is a610

SIR filter that is free of any Gaussian assumption;611

2) CD-GMPF: we apply DSIF on both sensor data and612

local estimates named Consensus with Diffusion (i.e.613

Steps 4 and 5 are applied in Algorithm 2). In this case,614

each local PF is a Gaussian sum PF that applies (29) for615

posterior approximation and fusion;616

3) L-C-SIR: the Likelihood Consensus-based SIR filter [27]617

can be viewed as a special case of our C-SIR filter that618

applies sensor data averaging consensus (for likelihood619

multiplying) at each iteration. For fast converging, the620

Metropolis weights strategy [52] is employed for averag-621

ing in the L-C-SIR filter;622

4) Local-SIR/GMPF: local SIR filter or GMPF that does not623

communicate with each other at all;624

5) Global-SIR: a centralized SIR filter that is able to access625

all sensor observations at all times.626

To mitigate the problem of sample impoverishment that is627

often caused by resampling in the SIR filters, the minimum-628

sampling-variance resampling [32] is applied when and only629

when the effective sample size is smaller than M/2 and if ap-630

plied, a roughening noise that is equivalent to half of uk will be631

used [31].632

To measure the filtering accuracy, we calculate the root mean633

square error (RMSE) on both the position estimate and the634

velocity estimate, respectively, as follows635

RMSEposk =

√√
√
√ 1

C

C∑

c=1

(xk,c − x̂k ,c)2 + (yk,c − ŷk ,c)2 (34)

RMSEvelk =

√√
√
√ 1

C

C∑

c=1

(ẋk ,c − ˆ̇xk,c)2 + (ẏk ,c − ˆ̇yk,c)2 (35)

where [x̂k ,c , ŷk ,c ]T and [ˆ̇xk,c , ˆ̇yk,c ]T are the position-estimate636

and velocity-estimate given at filtering time k in trial c, respec-637

tively, and C = 20 is the total number of MC trials. Further, the638

TABLE I
DOC ACHIEVED AT EACH DSIF ITERATION (LOCAL AND GLOBAL)

Sensor 4 Sensor 5 Sensor 7 Sensor 10 Global

t = 0 0 0 0 0 0
t = 1 5/9 5/9 1/9 2/9 26/90
t = 2 1 8/9 3/9 6/9 61/90
t = 3 1 1 7/9 8/9 86/90
t = 4 1 1 1 1 1

average position RMSE is defined as the mean of RMSEposk 639

over the entire simulation period of 100 filtering iterations. In 640

each trial, the ground truth is independently generated (for gen- 641

erality). In all trials, the prior distribution of the particle set 642

is initialized around the true state as N (x0 , P0), with P0 = 643

diag[2, 0.001, 2, 0.001]T . 644

In particular, we will assess the filter performance at four rep- 645

resentative sensors, marked in Fig. 1 as sensors 4, 5, 7 and 10. For 646

them, we have Dm,4 = 2,Dm,5 = 3,Dm,7 = 4,Dm,10 = 4. 647

This means that sensor 4 will achieve CC first (after 2 itera- 648

tions) while sensors 7 and 10 will be the last (after 4 iterations). 649

For different numbers of DSIF iterations, the global and local 650

DoCs are given in Table I. Particularly, for t = 1, we have the 651

global DoC determined as 652

Co(1) =
|E|

N(N − 1)
(36)

where |E| is the number of edges; (a, b) and (b, a) are counted 653

as two different edges. 654

A. Consensus without Diffusion 655

In this case, each sensor operates a separate SIR filter. Sensors 656

are assumed conditionally independent and use different random 657

numbers. The posteriors obtained by sensors will be different 658

from both each other and the global/local PF, even given that 659

they all reach CC on sensor data. 660

For different numbers of DSIF iterations from 0 (no consen- 661

sus at all) to 4 (Dm ), the RMSEs of the position and velocity 662

estimation of local C-SIR filters and the global SIR filter are 663

given in Fig. 2.(a)-(e) respectively, corresponding to different 664

DoCs. The average RMSEs over 100 filtering steps against the 665

number of DSIF iterations are given in Fig. 2.(f). The results 666

clearly demonstrate that: 667

1) A single passive sensor is not capable of delivering good 668

tracking in this problem as the RMSEs given by local 669

PFs are much higher than that provided by DPFs; this 670

necessitates the collaboration of multiple geographically 671

dispersed sensors; 672

2) The more informative sensor data used, the better the filter 673

performance; 674

3) The larger DoC, the closer the local PF performance to 675

the centralized PF, i.e., local filters converge to the global 676

filter against iterations as the DoC increases; 677

4) Once CC is reached, the performance of the local PF is 678

very close to that of the centralized PF (with regard to 679



IEE
E P

ro
of

LI et al.: CONVERGENCE OF DISTRIBUTED FLOODING AND ITS APPLICATION FOR DISTRIBUTED BAYESIAN FILTERING 9

Fig. 2. Position and velocity RMSE of C-SIR filters with different numbers of DSIF iterations, comparing with the global SIR filter.

both position and velocity) but still not the same, since680

different random numbers are used.681

Based on the measure of DoC, we are able to approximately682

determine how much information divergence different nodes683

will have and what payoff can be expected if one more or one684

less iteration of peer-to-peer communication is employed. For685

example, when the number of iterations is t = 3, the global686

DoC is as high as 86/90, close to 1, which agrees with the slight687

difference between Fig. 3(a) and (b). This is a valuable part of688

the metric of DoC.689

B. Consensus with Diffusion690

In this case, each sensor runs a separate GMPF. Collecting691

consensus are applied on both the sensor data and intermediate692

estimates jointly in a single DSIF procedure (and set t1 = t2).693

Because of the GM diffusion of intermediate estimates, the694

local fused estimates are expected to be closer to each other.695

If CC is reached, they shall be exactly the same. In parallel to696

the last simulation, different numbers of DSIF iterations from697

0 to 4 are employed to the CD-GMPFs, which are compared with698

the (centralized) global SIR PF in Fig. 3(a)–(e) respectively.699

The average RMSEs of these filters against the number of DSIF700

iterations are given in Fig. 3(f).701

We use the same ground truth (20 MC trials) regarding the702

trajectories and sensor observations as the last simulation. Com-703

pared to the last simulation, we can find that704

1) A single passive sensor can still hardly work well when705

the local SIR filters are replaced by local GMPFs;706

2) Given the same number of DSIF iterations t = 1, 2, CD- 707

GMPFs perform much better than C-SIR and are much 708

closer to each other; this is because of the second DSIF 709

scheme on the posteriors over the network which enhances 710

the consensus to improve local estimates; 711

3) Given t = 3, 4 iterations, the local CD-GMPFs perform 712

almost the same but different to the global SIR filter; 713

4) Given CC achieved, the RMSEs of all local GMPFs are 714

exactly the same but are inferior to the global SIR fil- 715

ter, especially at the later stage in this tracking example. 716

Analysis and discussion will be given next. 717

C. Comparison and Discussion 718

Finally, we compare both types of DSIF-based DPFs with the 719

L-C-SIR filter [27], [39]. The key difference of the likelihood 720

consensus to DSIF is that each node fuses information interme- 721

diately after receiving them and therefore the communication 722

cost is lower, but it is exposed to repeated use of information 723

and slower convergence. 724

First, for t = 4, the average (over all nodes) position RMSEs 725

of the C-SIR, CD-GMPF and the L-C-SIR filters are given 726

in Fig. 4. It shows that the C-SIR filter achieves the closest 727

performance to that of the centralized filter. We further calculate 728

the mean of these average RMSEs for t = 0 to 8 and the results 729

are given in Fig. 5. It shows that these consensus protocols can 730

all significantly improve the filter performance as compared to 731

the local filter that applies no consensus and converges against 732

communication iterations. 733
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Fig. 3. Position and velocity RMSE of CD-GMPFs with different numbers of DSIF iterations, comparing to the global SIR filter.

Fig. 4. Position RMSE of different DPFs applying 4 iterations of peer-to-peer
communication.

Furthermore, we have the following observations, which734

show more insights of these three types of DPFs:735

1) DSIF based C-SIR and CD-GMPF converge faster than736

the averaging consensus-based L-C-SIR filter at the ex-737

pense of higher communication cost. CD-GMPF con-738

verges the fastest but it suffers from a larger RMSE at739

the end, all due to its diffusion step that shares informa-740

tion among nodes more thoroughly than without diffusion741

but also introduce errors;742

Fig. 5. Average position RMSE of different DPFs over 100 filtering steps
against the number of peer-to-peer communication iterations.

2) For a relatively small number of iterations that correspond 743

to a low DoC on observation (which may lead to a large 744

discrepancy between local nodes’ posteriors), the C-SIR 745

filter is inferior to the CD-GMPF, as shown in Fig. 5 (also 746

told by comparing between Figs. 2(f) and 3(f)). In this 747

case, the diffusion update leads to earlier convergence 748

and better performance for the filter. This is in line with 749

the findings reported in [23]; 750
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3) For a large number of iterations that correspond to a high751

DoC on observation and consequently on posterior (leav-752

ing little space to benefit from posterior fusion), the diffu-753

sion update of the CD-GMPF is not so preferable; instead,754

the GM approximation error caused in the diffusion might755

be more significant than the benefit it can offer, resulting756

in an overall filter degradation. We must note that if the757

whole particle sets are transmitted for diffusion without758

any approximations, and also the dependence between the759

posteriors are accounted for properly in the diffusion up-760

date, it shall always be beneficial in theory regardless of761

the much greater cost in communication and local fusion762

calculation.763

These results confirm our theoretical prediction and demon-764

strate further that, both approximation and data fusion during765

communication can be either beneficial or counterproductive.766

Generally speaking, parametric approximation can speed up the767

convergence but also introduces errors. Data fusion such as aver-768

aging will reduce communication costs but will also slow down769

the convergence (primarily because of repeated use of infor-770

mation in data fusion). In practice, we have to contend with771

a compromise between fast convergence, accurate information772

sharing and low storage and communication cost. Inspired by773

these findings, a problem-oriented hybrid protocol that takes774

the advantages of different approaches while minimizing the775

side-effects will be valuable.776

VI. CONCLUSION777

Flooding is an efficient albeit simple solution for information778

sharing over networks and is the basis of many other networking779

protocols. In this paper, we formulated it from a set-theoretic780

perspective, named distributed set-theoretic information flood-781

ing (DSIF). This led to a novel consensus protocol for network-782

ing referred to as collecting consensus, which has significant783

both advantages and disadvantages over averaging consensus784

and diffusion. We have analyzed the explicit convergence and785

optimality of DSIF based on a novel metric of DoC (degree786

of consensus). Practical solutions have been proposed either to787

determine the minimum number of iterations required for any788

desired DoC or to calculate the DoC that can be achieved by789

an actual number of iterations. It has also been noted that to790

save communication, data fusion (such as averaging) can be791

employed during flooding, which however may cause repeated792

information use and slower convergence. This trade-off has been793

analyzed.794

Based on the theoretical results, a distributed particle filter795

framework is proposed and implemented for nonlinear target796

tracking which applies DSIF on sensor data alone or jointly797

with intermediate estimates. Simulations have demonstrated the798

convergence of the DSIF (faster than averaging consensus), the799

relationship between the filter performance and the DoC, and800

the advantage and disadvantage of applying parameterized ap-801

proximation and data fusion for networking.802
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Convergence of Distributed Flooding and Its
Application for Distributed Bayesian Filtering

1

2

Tiancheng Li, Juan M. Corchado, Member, IEEE, and Javier Prieto, Member, IEEE3

Abstract—Distributed flooding is a fundamental information4
sharing method to get network consensus via peer-to-peer commu-5
nication. However, a unified consensus-oriented formulation of the6
algorithm and its convergence performance are not yet explicitly7
available in the literature. To fill this void in this paper, set-theoretic8
flooding rules are defined by encapsulating the information of inter-9
est in finite sets (one set per node), namely distributed set-theoretic10
information flooding (DSIF). This leads to a new type of consensus11
referred to as “collecting consensus,” which aims to ensure that all12
nodes get the same information. Convergence and optimality anal-13
yses are provided based on a consistent measure of the degree of14
consensus of the network. Compared with the prevailing averaging15
consensus, the proposed DSIF protocol benefits from avoiding re-16
peated use of any information and offering the highest converging17
efficiency for network consensus while being exposed to increasing18
node-storage requirements against communication iterations and19
higher communication load. The protocol has been advocated for20
distributed nonlinear Bayesian filtering, where each node operates

Q1

Q2

21
a separate particle filter, and the collecting consensus is pursued on22
the sensor data alone or jointly with intermediate local estimates.23
Simulations are provided in detail to demonstrate the theoretical24
findings.

Q3

25

Index Terms—Consensus, diffusion, distributed tracking,26
particle filter, sensor network.27

I. INTRODUCTION28

D STRIBUTED computation has gained immense attention29

in the past decade, accompanying the rapid development30

and popularity of wireless sensor networks. In the successful31

networking operation, it is often of high interest that each node32

iteratively shares information with its intermediate neighbors33

(namely peer-to-peer communication) and consequently the en-34

tire network tends to reach a global alignment [1]/consensus35

[2]–[4] (to a certain degree). Compared to the centralized net-36

working solutions based on a fusion center, distributed network-37

ing offers several advantages regarding scalability to adding or38
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removing nodes, immunity to node failure, and dynamic adapt- 39

ability to network topology changes. 40

However, there is a significant conflict between the degree of 41

consensus (DoC) and communication requirement, as a higher 42

DoC requires more communication, either more communicating 43

iterations or higher communicating bandwidth which are lim- 44

ited by real time implementation and the communicating afford- 45

ability of the nodes, respectively. Therefore, it is of paramount 46

significance to seek a good balance for the trade-off so that the 47

network achieves a satisfactory consensus in real-time and with 48

affordable communication costs, which forms the majority of 49

the research in the literature. 50

One of the most fundamental solutions for network informa- 51

tion sharing is the flooding carried out in a distributed manner, 52

by which all nodes synchronously broadcast their information 53

to neighbors from the near to the distant. This protocol is well 54

known in a few areas such as the communications [6]. Given 55

that the network is strongly connected, it is able to achieve com- 56

plete consensus (CC, i.e., all nodes have exactly the same set of 57

information) after a certain number of iterations of peer-to-peer 58

communication. This is quite appealing in theory but poses cru- 59

cial challenges to the storage and communication requirement 60

for large networks in practice. In fact, flooding has rarely been 61

investigated in literature for distributed filtering (except for a 62

few works, e.g., [7], [8]) even for small networks, regardless of 63

its fast convergence (to be explicitly demonstrated in this paper) 64

and ease of implementation. To note, there is one work that also 65

refers to distributed flooding [9] which transmits the informa- 66

tion of one single node over the network for routing. It is very 67

different from the distributed protocol we consider here. 68

To date, a unified consensus-oriented formulation of the 69

flooding algorithm and its convergence analysis are still missing 70

in the literature. On one hand, there are cases in which DoC is 71

required in the first priority while the sensor nodes have suf- 72

ficient node-storage and communicating affordability to do so, 73

for which flooding or even CC is simply preferable. On the other 74

hand, instead of CC, it is more desired to perform flooding in a 75

fewer, affordable, number of iterations for real time realization. 76

What then can be expected and how can the number of iterations 77

be properly determined? 78

To address the void and to answer the questions above, this 79

paper aims to contribute from three aspects: 80

1) Formulate the flooding algorithm by encapsulating the 81

information of interest in a finite set at each node and 82

define set-theoretic flooding rules, namely distributed set- 83

theoretic information flooding (DSIF), raising a new type 84

of consensus termed collecting consensus. 85

2) Analysis the convergence and optimality of the DSIF pro- 86

tocol, based on a novel, consistent, metric of the DoC. 87

2373-776X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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It is shown that DSIF enjoys the highest efficiency for net-88

work consensus among all distributed peer-to-peer com-89

munication schemes while suffering from heavier storage90

and communicational costs.91

3) Show how the proposed DSIF scheme can be applied for92

and can benefit distributed Bayesian filtering, in which93

each node runs a separate particle filter (PF). Local PFs94

share sensor data alone or jointly with intermediate pos-95

teriors via DSIF. The latter usually needs to be parame-96

terized in order to to reduce the communication cost. The97

gain and loss to do so are analyzed and demonstrated in98

simulations.99

The reminder of this paper is organized as follows. Notations100

and definitions regarding networking and three prevailing dis-101

tributed information sharing protocols are given in Section II.102

As the main theoretical contribution, the collecting consensus-103

oriented DSIF is formulated in Section III with an analysis of104

its convergence and optimality. Section IV shows how to apply105

DSIF for distributed PF (DPF), with a brief literature review106

for DPF also given. Simulations are given in Section V and we107

conclude in Section VI.108

II. NOTATION, DEFINITION AND BACKGROUND109

A. Notation110

The network topology is represented by a directed graph111

G = (V,E) with the set of nodes V = {1, 2, · · · , N} and the set112

of edges E ⊆ V × V . In the directed graph, any edge is denoted113

by an ordered pair of nodes (i, j) ∈ E, which means node j is114

directly reachable from node i, where i is called the in-neighbor115

of j while j is the out-neighbor of i. For any j ∈ V , denote116

Nj := {i ∈ V |(i, j) ∈ E, i �= j}, which is the set of all the in-117

neighbors of node j excluding node j itself. Undirected graph118

is a special type of directed graph where for any (i, j) ∈ E, we119

must have (j, i) ∈ E. If there exists a sequence of connected120

edges as follows121

{
(i, ·), · · · , (·, j)

}
⊆ E (1)

This sequence of edges is called a path from node i to node j122

(denoted as Pathi−···−j ) and node j is said to be “reachable”123

from node i. A digraph is said to be ”strongly connected” (SC)124

if any node is reachable from all the other nodes, which is the125

digraph that can reach CC. For undirected graphs, SC is the126

same as connectivity [3].127

The length of a path is given by the number of edges on that128

path. The length of the shortest path (perhaps, not unique) from129

node i to node j is called the distance from node i to node j, de-130

noted as D(i − j). Particularly, D(i − i) = 0 and if (i, j) ∈ E,131

D(i − j) = 1. We denote the set of all the nodes that are of132

distance t ∈ N = {0, 1, 2, ...} to j as Nj (t) and that of dis-133

tance t ∈ N or smaller to j as Nj (≤ t), namely Nj (t) := {n ∈134

V |D(n − j) = t}, Nj (≤ t) := {n ∈ V |D(n − j) ≤ t}. Obvi-135

ously, we have Nj (1) = Nj ,Nj (0) = j.136

The largest distance between any two nodes, denoted as Dm ,137

is called the diameter of the graph which is given by138

Dm = max
i,j∈V

D(i − j) (2)

Clearly, Dm only exist in SC networks. For any SC networks 139

of at least two nodes, we have Dm ∈ [1, N − 1], where the 140

left bound corresponds to the fully connected network in which 141

all nodes are in-neighbors of the others, while the right bound 142

corresponds to the weakest connected network where all nodes 143

are on a single chain in order, each having no more than two 144

intermediate neighbors. 145

With particular regard to the distributed filtering problem, 146

we assume that each node has independent abilities for: (i) 147

filtering calculation, (ii) sensing to collect observations and (iii) 148

communicating to neighbors. The communication is carried out 149

in recursive iterations between neighboring nodes, each iteration 150

consisting of sending no more than one data packet and receiving 151

no more than one data packet. In addition, we need to clarify 152

the following two definitions. 153

Definition 1 (real time communication): Communication is 154

fully carried out between two successive observations and 155

causes no sensor data missing or time-delay to the filter. 156

Definition 2 (communication bandwidth): The maximum 157

size of the data packet that one node can send to or receive 158

from its neighbor per communication. 159

B. Averaging/Maximum/Minimum Consensus 160

Here we assume that each node has a local scalar value, 161

referred to as state, and it is of interest to compute the average of 162

these values. An averaging consensus algorithm [2], [3] of zero 163

communication time-delay is to reach an agreement regarding 164

the state xi each node has with local adapting dynamics ui(t), 165

which can be written in discrete-time as 166

xi(t + 1) = xi(t) + ui(t) (3)

where t ∈ N denotes the communication iteration, xi(0) and 167

xi(t) denote the initial and updated state of node i after iteration 168

t, respectively. 169

In most of the time, the dynamics ui(t) is defined as 170

ui(t) =
∑

j∈Ni

ωj→i

(
xj (t) − xi(t)

)
(4)

where ωj→i is neighboring weight from node j to node i [2]–[4]. 171

The complete convergence of averaging consensus: at itera- 172

tion t states that, for any i, j ∈ V , 173

xi(t) = xj (t) (5)

and asymptotically convergence (in the sense that t → ∞) 174

‖xi(t) − xj (t)‖ ≤ ε (6)

where ‖x − y‖ is a measure of the discrepancy between x and 175

y, and ε is an error bound or margin [10]. 176

In contrast to the average, one might be only interested in the 177

maximum/minimum state, namely maximum/minimum consen- 178

sus, which defines the iteration as 179

xi(t + 1) = max /min
{
xi(t), {xj (t)}j∈Ni

}
(7)

The averaging consensus was well investigated in the com- 180

munity of control and systems [2]–[5]. One major concern is 181

with the convergence, for which the spectral properties of the 182



IEE
E P

ro
of

LI et al.: CONVERGENCE OF DISTRIBUTED FLOODING AND ITS APPLICATION FOR DISTRIBUTED BAYESIAN FILTERING 3

graph Laplacian play a crucial role [2], [3], [10]-[12]. The sec-183

ond concern is raised by the information correlation/dependence184

among neighbors (especially when they own in part the same185

information). To account for this, fusion weights will be as-186

signed to coordinate the nodes, e.g., covariance intersection187

[14],[15], which has inspired many strategies. In the absence of188

clear information about the correlation or relative quality of the189

information among nodes, two weighting methods have been190

proposed: one is to weight all nodes equally [16] and the other191

is to weight them according to the size of their neighborhood192

(named Metropolis weights [17]).193

Particularly for the tracking problem, the sensors may updates194

their observation frequently, preventing sufficient peer-to-peer195

communicating to get the network converge. This necessitates196

limiting the number of communicating iterations to gain a trade-197

off or compromise between a high DoC and little missing or198

time-delay of sensor data.199

C. Gossip and Diffusion200

To save communication, one alternative is to apply gossip201

to randomly choose fewer neighbors at each time (rather than202

to all neighbors) for averaging. It turns out that under mild203

conditions this process converges over time asymptotically [18].204

Gossip based distributed filtering has been reported in, e.g.,205

[19],[20]. However, gossip experiences the same problem as206

inefficient/repeated computations, for example, the same set (or207

largely similar set) of nodes repeatedly fusing their information208

at different points in time.209

As another alternative, diffusion [22]–[24] performs only one210

iteration of peer-to-peer communication (i.e., the sensing and211

consensus time scales are the same), avoiding the problem of212

repeated use of any information. Based on it, the distributed213

Kalman filter (DKF) [23],[24] does not only share sensor data,214

but also local intermediate estimates through a diffusion update215

step. By this, the one-iteration-only communication is actually216

carried out on two types of data: the sensor data for the in-217

cremental update, and the estimates for the diffusion update.218

Hybrid fusion has been previously studied in the network using219

a fusion center, e.g., [21].220

III. COLLECTING CONSENSUS AND DSIF221

A. Collecting Consensus222

In this paper, we are interested in an information sharing pro-223

tocol that does not repeatedly use any information, and that will224

converge to CC in a definite number of iterations. By CC, we225

mean that all the nodes have exactly the same information of226

interest. Such a consensus model in which each node aims to227

collect information from all reachable nodes via the shortest228

paths is referred to as collecting consensus. Different to aver-229

aging consensus, the information from different nodes remains230

conditionally independent (or more precisely stated, unfused)231

until the end of the communication, which requires that nodes232

have sufficient storage allowance.233

To perform collecting consensus, the information that needs234

to be communicated is encapsulated as a set, and the DSIF235

algorithm defines the information set dynamics (in contrast to236

(3)) based on the union operation 237

Ii(t + 1) = Ii(t) ∪ ui(t) (8)

where Ii(t) and ui(t) denote the existing and new incom- 238

ing information set of node i at iteration t ∈ N respectively, 239

Ii(0) denotes the initial information set at node i with the size 240

|Ii(0)| = 1,∀i ∈ V , and ui(0) the initial dynamics. 241

As a result of CC, all nodes shall have exactly the same 242

information set, i.e., ∀i ∈ V, t ≥ Dm , 243

Ii(t) =
⋃

j∈V

Ij (0) (9)

To this end, the DSIF algorithm consists of two stages: 244

1) In the starting iteration, each node collects information 245

from all its in-neighbors 246

ui(0) =
⋃

j∈Ni

Ij (0) (10)

2) In the following iterations t ∈ N+ = {1, 2, · · · }, each 247

node collects the new information that its in-neighbors 248

have received at the preceding iteration 249

ui(t) =
⋃

j∈Ni

{
Ij (t) \ Ij (t − 1)

}
(11)

where A \ B is the set difference of A and B, namely the 250

set of all elements that are members of A but not of B and 251

when t ≥ Dm , we will actually have ui(t) = ∅. 252

As shown in (11), the receiving neighbors will sort out the new 253

received data, which they then transmit to their out-neighbors 254

in the next iteration. In this process, the same information may 255

be repeatedly received over edges, leading to information over- 256

use and communication power waste, which is one defect of 257

the naive flooding protocol, named implosion [6]. To avoid this, 258

we define the set-theoretic information flooding rules in the 259

following. 260

B. Set-Theoretic Flooding Rules 261

Rule 1 (data sending): Each node only sends to its out- 262

neighbors the new information that has never been flooded be- 263

fore, and does so no more than once in each iteration. 264

Rule 2 (data accepting): Each node will not repeatedly take 265

in the same information either from different in-neighbors or 266

from the same node at different iterations, but only accept the 267

information at its first arrival. 268

For both rules above, the data from each node shall be associ- 269

ated with a unique ID for distinguishing. Given these two rules 270

respected, we will have ∀i ∈ V, t ∈ N, 271

|Ii(t)| = |Ni(≤ t)| (12)

To combat time-increasing storage requirement and commu- 272

nication load (when t < Dm ), each element of data (often called 273

a tuple) may be somehow compressed via e.g., dimension re- 274

duction [25] and polynomial encoding [13], under the premise 275

that little or even no information would be lost and the data from 276

different nodes remain conditionally independent. 277

It is worth noting that in the case of maximum or minimum 278

consensus, there is neither a problem of information set-size 279
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growing nor information overuse as the fusion result is always280

a single maximum or minimum value.281

C. Convergence and Optimality of DSIF282

To gain insights of the convergence of the proposed DSIF283

scheme, we need a metric to measure the DoC for collecting284

consensus, for which we propose a metric based on the size of285

the information set as follows.286

Definition 3 (DoC): The DoC, denoted as Co , of a network287

with N nodes, is defined as follows288

Co(t) =
∑N

i=1 |Ii(t)| − N

N(N − 1)
(13)

where t ∈ N denotes the number of DSIF iterations that has289

been performed and in the following we limit it to t ≤ Dm .290

On the DoC, we have the following theorem, which states the291

convergence property of the DSIF protocol.292

Theorem 1: 0 ≤ Co(t1) < Co(t2)≤1,∀0≤ t1 < t2 ≤Dm .293

Proof: Before performing DSIF, each node has its original294

one unit of data, i.e., |Ii(0)| = 1,∀i ∈ V . That gives Co(0) =295

0. After t ≥ Dm DSIF iterations, CC will be reached as all296

nodes will have the same information, i.e., |Ii(t)| = N,∀i ∈ V .297

Furthermore, we have the following two straightforward Claims298

(for which we omit any proof):299

Claim 1: As stated by (12), the size of the information set300

owned by sensor i ∈ V will not be reduced during flooding ex-301

cept that data fusion or removal is taken, i.e., |Ii(t1)| ≤ |Ii(t2)|302

for any 0 ≤ t1 < t2 .303

Claim 2: Supposing two nodes g and q are of distance Dm304

(namely D(g − q) = Dm ), for any 0 < t ≤ Dm , there must305

exist at least one node j ∈ Nq (t) on Pathg−···−j−···−q satisfying306

D(j − q) = t whose information will arrive to node q exactly307

at iteration t and then, we have |Iq (t − 1)| + 1 ≤ |Iq (t)|.308

From these two claims, we may conclude that Co(t1) <309

Co(t2),∀0 ≤ t1 < t2 ≤ Dm , to accomplish the proof. �310

Theorem 2: In the sense of DoC as given in (13), the pro-311

posed DSIF achieves the highest converging efficiency among312

all distributed peer-to-peer communication schemes.313

Proof: From the definition of the distance between nodes314

and the DSIF peer-to-peer communication rules, we have two315

additional straightforward Claims:316

Claim 3: All nodes whose information can reach node i in t317

iterations of peer-to-peer communication belong to Ni(≤ t).318

Claim 4: All nodes q ∈ Ni(≤ t) will surely flood their in-319

formation to node i in t DSIF iterations.320

A combination of Claims 3 and 4 indicates that the DSIF321

will gain the largest possible |Ii(t)| for any i ∈ V and t ∈ N as322

claimed, which entails the converging optimality. �323

D. Trade-off between DoC and Number of Iterations324

For a given network topology, the DoC is uniquely determined325

by the number of DSIF iterations. In turn, one can also determine326

the required number of iterations for a desired DoC, e.g.,327

Tc = 0.5. That is, the DSIF stops at iteration t once328

Co(t) ≥ Tc (14)

Algorithm 1: DSIF operations at node i for DoC Tc .
INITIALIZATION:
1: t ← 1;Co(0) ← 0
2: Ii(t) = Ii(t − 1) ∪

⋃
j∈Ni

Ij (t − 1)
RECURSIVE FLOODING ITERATION:
3: While Co(t) < Tc

4: t ← t + 1
5: Ii(t) ← Ii(t − 1) ∪

⋃
j∈Ni

{Ij (t − 1) \ Ij (t − 2)}
6: Co(t) ←

∑ N
i = 1 |Ii (t)|−N
N (N −1)

7: End while
8: Return: Ii(t)

Algorithm 1 summarizes the communicating operations that 329

need to be performed on node i for a given DoC Tc . 330

For a constant network of a known topology, the minimum 331

number of iterations can be determined a priori by (14). However 332

for time-varying dynamic networks, it needs to be calculated 333

online via a consensus algorithm. To facilitate the use in time- 334

varying networks without burdening any consensus procedures, 335

we define the local DoC metric as follows: 336

Definition 4 (Local DoC): The DoC of node i ∈ V , denoted 337

as Co
i , after t DSIF iterations, is given as 338

Co
i (t) =

|Ii(t)| − 1
Nk − 1

(15)

where Nk is number of nodes in the network at time k, which 339

needs to be estimated if unknown. From here we derive the 340

following theorem as the local-node version of Theorem 1. 341

Theorem 3: 0 ≤ Co
i (t1) ≤ Co

i (t2) ≤ 1,∀0 ≤ t1 <t2 ≤Dm 342

Proof: This theorem states the same content as Claim 1. As 343

a key difference to Theorem 1, the equality Co
i (t1) = Co

i (t2) 344

holds when and only when the number of nodes that are of 345

distance t1 to node i ∈ V is the same as that of distance t2 , i.e., 346

|Ni(t1)| = |Ni(t2)|. � 347

Setting a threshold, e.g., Tc = 0.5 which can be the same 348

or different for different nodes, on the desired local DoC, the 349

consensus updating at node i may stop at iteration t once 350

Co
i (t) ≥ Tc (16)

Furthermore, based on DoC we can define the convergence 351

speed (CoS), either globally or locally, to measure the change 352

of the size of the information set at each iteration, which also 353

indicates the local real-time communication bandwidth. 354

Definition 5 (CoS): At iteration t ∈ N, the global CoS, 355

denoted as Cs , is defined as, 356

Cs(t) = Co(t) − Co(t − 1) (17)

and the local CoS of node i ∈ V is defined as 357

Cs
i (t) = Co

i (t) − Co
i (t − 1) (18)

Theorem 4: Cs(t) > 0, Cs
i (t) ≥ 0,∀1 ≤ t ≤ Dm 358

Proof: The theorem is immediate from Theorems 1 and 3 as 359

for any 1 ≤ t ≤ Dm , i ∈ V , we have Cs(t) = Co(t) − Co(t − 360

1) > 0 from Theorem 1, and Cs
i (t) = Co

i (t) − Co
i (t − 1) ≥ 0 361

from Theorem 3. � 362

Theorems 1, 3 and 4 entail an appealing property of the DSIF 363

protocol which will not only converge definitively, but also 364
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has a guaranteed converging speed that is globally positive and365

locally non-negative everywhere and at any iteration until CC366

is reached. We refer to this as strong convergence. It, however,367

also indicates a (non-negative) increasing storage requirement368

against communicating iterations. As an alternative to (16), we369

can build the predetermined threshold on the local CoS, e.g.,370

Ts = 0.1, then the minimum number of iterations t needs to371

satisfy372

Cs
i (t) ≤ Ts (19)

But it is critical to note that we do not have any monotonicity373

on the CoS, e.g., Cs(t2) ≤ Cs(t1) or Cs
i (t2) ≤ Cs

i (t1) for 1 ≤374

t1 < t2 ≤ Dm . Therefore, the CoS at iteration t does not say375

anything of the CoS at iteration t + 1.376

E. Comparison and Practical Consideration377

Both metrics of DoC and CoS are clearly defined and easier378

to calculate than the one proposed for averaging consensus, e.g.,379

convergence rate [10]–[12], steady-state mean-square deviation380

[4] or disagreement vector [2], [3]. As indicated by Theorem 2,381

no peer-to-peer communication protocols converge faster than382

DSIF in terms of DoC. This superiority, however, is achieved383

at the expense of higher node storage requirements and heavier384

communication bandwidths. If the size of the data set at one385

node exceeds its communication bandwidth, multiple iterations386

will then be needed for that data set, otherwise data fusion is387

required to control the data size. In the former case, the required388

number of iterations will increase, while in the latter case the389

information completeness or independence may not be kept.390

However, we will not address this issue further here, which is391

quite problem dependent. In brief, we have the following remark392

on the respective advantages of averaging consensus, diffusion393

and collecting consensus.394

Remark 1: The averaging consensus takes the lowest com-395

municating bandwidth (always one unit of data) but more it-396

erations to reach any DoCs while the diffusion severely limits397

the number of iterations (to one only) which may insufficiently398

use the communication affordability (i.e., more iterations are399

actually allowed in real time communication). In contrast, the400

proposed DSIF protocol aims to get the best possible consensus401

in an real-time-allowed number of iterations, which is therefore402

particularly suited to small and moderate networks for which403

the nodes have sufficient storage and communicating power. A404

means to facilitate its use in large networks is to selectively405

apply data fusion such as averaging in every several flooding406

iterations in order to control the data-set size. This will lead to407

a hybrid protocol that iterates between flooding and averaging408

consensus, to gain a balance between benefiting from high com-409

munication efficiency and suffering from information overuse410

and slower convergence.411

IV. DISTRIBUTED BAYESIAN FILTERING USING DSIF412

A. State-of-the-art DPF Protocols413

Before presenting our DPF framework based on DSIF, a brief414

revisit of the PF algorithm and existing DPF protocols is given415

below. Suppose that at time k, the local (marginal) posterior at 416

sensor i is represented by a local PF 417

p(xk |zi,1:k ) ≈
Mi , k∑

m=1

w
(m )
i,k δ

(
xk − x(m )

i,k

)
(20)

where δ(x − y) is the Dirac delta impulse, which equals to 418

one if x = y and to zero otherwise, xk is the true state vector, 419

zi,1:k is the observation serial, x(m )
i,k and w

(m )
i,k are the state and 420

normalized weight of the mth particle respectively, Mi,k is the 421

total number of particles at filtering time k. 422

The essence of the PF is to assess how well each particle 423

conforms to the state model and explains the observations, using 424

this assessment to generate a weighted sample approximation 425

to the Bayesian posterior, and thereby form sub-optimal state 426

estimates. Given local measurement zi,k , i ∈ V , the weights of 427

the particles are evaluated over time based on the sequential 428

importance sampling (SIS) principle as 429

w
(m )
i,k ∝ w

(m )
i,k−1

p(zi,k |x(m )
i,k )p(x(m )

i,k |x(m )
i,k−1)

π
(
x(m )

i,k |x(m )
i,k−1 , zi,1:k

) (21)

where π(·) is a proposal to generate particles, and in general 430

its design shall take into account both the newest measure- 431

ment zi,k and the prior in order to best match the posterior; see 432

e.g. [19], [28], [31]. The use of the observation in the sampling 433

proposal design is particularly helpful (and even necessary for 434

avoiding sample degeneracy) when the observation is very ac- 435

curate. However, caution should be exercised here since the 436

repeated use of the observation (both for proposal design and 437

in likelihood calculation) may not benefit the filter when the 438

observation suffers from significant noise [42]. 439

In addition to SIS, resampling is usually required to reduce 440

the weight variance when it exceeds a certain threshold, so that 441

all particles will have equal or approximate weights while the 442

posterior distribution can be the best maintained [31], [32]. This 443

has often been referred to as sampling importance resampling 444

(SIR), which is the core of the majority of existing PFs. We 445

assume the reader is familiar with the centralized PF and so 446

limit ourselves hereafter to the distributed implementation, in 447

which local nodes carry out PF calculations in parallel and 448

meanwhile share information with their neighbors to assist their 449

filters. For this, a variety of information sharing protocols have 450

been proposed, which can be classified as follows: 451

1) Sequential information passing: Information transmits in 452

a sequential, predefined manner from a node to one of 453

its neighboring nodes via a cyclic path until the entire 454

network is traversed [43]. The sequential realm is sensitive 455

to the mobility and failure of nodes/edges and is time- 456

consuming. 457

2) Flooding: As addressed, the flooding protocol provides 458

the fastest albeit communication-intensive way to spread 459

information over the network [7], [8], but, neither any clue 460

to determine the number of communication iterations in 461

order to compromise real time realization and DoC nor 462

any convergence results has been shown. 463
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3) Averaging consensus. There is a large body of work con-464

cerning averaging consensus-based distributed filtering.465

The data transmitted between neighboring nodes can be466

posterior statistics in the form of Gaussian component467

[33] /GM [29]–[30] or generalized probability densities468

[36]–[37], likelihood [26]–[28], particle set [34]–[35] or469

raw observations [38]. Excellent surveys are also avail-470

able such as a taxonomy of DPFs [39], a comparison of471

several belief consensus algorithms [40] and a recent sur-472

vey of convergence and error propagation of DPFs [28].473

In summary, complete information sharing affords bet-474

ter accuracy but has higher communication requirements,475

such as [34]–[35] that exchange all particles. Parameter476

approximation [26]–[33] or random gossip [19]–[20] can477

significantly reduce the communication cost, but may lead478

to a deterioration in the filter performance.479

4) Diffusion: The diffusion scheme addressed in Section II.C480

also provides a competitive alternative to the averaging481

consensus for DPF [7]-[8], [41].482

We note that the sensor data can be either simple (e.g., range,483

bearing) or complex (e.g., image data). To avoid distracting484

from the key contribution of this paper on collecting consen-485

sus and the DSIF protocol, we only consider the former case486

for simplicity. For the latter case, one may consider compress-487

ing the sensor data, e.g., [25]-[26], [12]-[13] or transmitting488

the low-dimensional likelihood for replacement [26]–[27]. At489

the current stage, we have not considered complicated network490

issues such as communication constraints, e.g., [45]–[46], and491

asynchronous sensing, e.g., [47]–[48]. However, we note all of492

these issues are valuable to be investigated on the base of the493

proposed DSIF protocol.494

B. DSIF on Sensor Data and on Local Posterior495

In the proposed DPF framework, the DSIF scheme will be496

applied on the sensor data alone or jointly on local posteriors.497

In the latter, we propose parameterizing the posterior to save498

communication. Since a vast number of random numbers are499

required by the PF, it is communication intensive to run consen-500

sus on them, and it is not our intention to do so.501

First, DSIF is implemented on the sensor data including the502

target-observations (and uncertainties) associated with the sen-503

sor ID, all as one unit. To note, the sensor position is often504

required for likelihood calculation and therefore can serve as505

the unique sensor ID for distinguishing. Then, the resultant con-506

sensus on sensor data with sensor profiles given a priori, is507

equivalent to collecting consensus on the likelihood which is508

required for PF updating. A likelihood function contains the509

information of both the sensor data and the sensor profile in a510

more compact manner. But for simplicity of understanding, we511

keep addressing consensus on sensor data.512

The filtering posteriors obtained at different nodes, referred513

to as local posteriors, will be different, even if CC is reached on514

sensor data over the network where the difference attributes to515

the different random numbers. If DoC is low on sensor data, the516

difference between local posteriors will be relatively significant.517

As such, we may apply the second DSIF scheme to fuse local518

posteriors among neighbors as well as to get the local LMS519

(least mean squares) estimate; we refer to this step as diffusion, 520

in parallel to [24]. By this, each node aims to improve their 521

local estimate with regard to their neighbors’ posterior. How- 522

ever, parameter approximation of local posteriors, typically via 523

Gaussian or GM approximation, is needed (otherwise massive 524

communication will be triggered if the complete posterior is 525

communicated by transmitting the entire particle set), which 526

will in turn introduce approximation errors to the posterior. 527

This trade-off is much problem-dependent and will determine 528

whether the second DSIF is worthwhile. 529

The operations that need to be conducted on each sensor in 530

the proposed distributed PF is summarized in Algorithm 2. In 531

it, steps 1-a and 1-b are independent of each other and there- 532

fore can be carried out in either order or in parallel. Sensor 533

data DSIF and posterior DSIF have been implemented t1 and 534

t2 iterations respectively, where t1 and t2 are not necessarily 535

equal but are determined for respective desired or the largest 536

affordable DoCs as addressed in Section III. They show com- 537

plementary features and resemble the Incremental and Diffusion 538

updates of the diffusion-based DKF [24]. But, there are obvious 539

differences: 540

1) Our framework is developed for nonlinear models which 541

releases the requirement of linear system functions and 542

even Gaussian assumption of the posterior; 543

2) Our consensus protocol does not limit information shar- 544

ing between neighbors to one iteration only but instead, 545

the DoC will be pursued as much as the real time commu- 546

nication allows; 547

3) Our diffusion update (Step 5 in Algorithm 2) is an optional 548

step, which is advocated for re-setting local posteriors only 549

when local posteriors are significantly different (as a con- 550

sequence of a low DoC on the sensor data achieved in 551

the first DSIF implementation). When the difference be- 552

tween local posteriors is insignificant (because of a high 553

DoC achieved on the sensor data), there will be less need 554

to further fuse them and so it may be better not to dif- 555

fuse local posteriors since the errors introduced due to 556

parameterization can be more significant than the benefit. 557

This is a critical point. We will demonstrate this in detail 558

through simulations in Section V. In addition, we provide 559

two easy-to-implement diffusion choices. 560

4) We point out that the proposed two DSIF procedures can 561

be performed jointly, although this may not reduce the 562

communication load and the storage requirement in total; 563

see the following Remark 2. 564

Remark 2: Two DSIF implementations regarding the sensor 565

data and the local filter estimates form the starting step and 566

the end step of each filtering iteration, respectively. In the time 567

series, they are adjacent. Therefore, they may be combined in 568

one joint consensus scheme at some stages (which however does 569

not necessarily indicate that t1 = t2), i.e., the local estimates 570

obtained at filtering time k can be combined with sensor data 571

received at time k + 1 as one unit of data, both sharing the same 572

node ID for DSIF. Then, the initial information set at node i ∈ V 573

can be defined as 574

Ii,k (0) := {x̂i,k−1 , Pi,k−1} ∪ zi,k (22)
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Algorithm 2: Distributed PF calculation executed on node i.

Step 1-a Filter prediction: Propagate the particles x(m )
i,k−1 to

x(m )
i,k for all m = 1, · · · ,Mi,k , according to the proposal

function π
(
x(m )

i,k |x(m )
i,k−1 , zi,1:k

)
. At k = 0, particles are

sampled from an initial proposal π0 instead for filter
initialization.
Step 1-b 1st DSIF: Perform t1 DSIF iterations on sensor
data as given in Algorithm 1, resulting in a combined
measurement set Zi,k = {zj,k}j∈Ni (≤t1 ) . This step is
carried out whenever new measurements become available.
Step 2 Filter updating: Re-weight all particles via (21) (zi,t

therein shall be replaced by Zi,k obtained in the 1st DSIF)
and then normalize them as follows

w
(m )
i,k ← w

(m )
i,k

/ Mi , k∑

m=1

w
(m )
i,k (23)

Step 3 Estimate extraction: Extract local estimate x̂i,k and
calculate their covariance Pi,k from the local random

measure χi,k =
{
x(m )

i,k , w
(m )
i,k

}
m=1,2,··· ,Mi , k

as follows

x̂i,k =
Mi , k∑

m=1

w
(m )
i,k x(m )

i,k (24)

Pi,k =
Mi , k∑

m=1

w
(m )
i,k

(
x(m )

i,k − x̂(m )
i,k

) (
x(m )

i,k − x̂(m )
i,k

)T

(25)

Step 4 2nd DSIF: Perform t2 DSIF on local estimates
obtained in Step 3, resulting in a set of intermediate
estimates {x̂j,k , Pj,k}j∈Ni (≤t2 ) , which will be fused in the
LMS sense as follows

x̂LMS
i,k =

∑

j∈Ni (≤t2 )

x̂j,kP−1
j,k (26)

P LMS
i,k =

⎛

⎝
∑

j∈Ni (≤t2 )

P−1
j,k

⎞

⎠

−1

(27)

This also offers the local filter output at sensor i.
Step 5 Diffusion: As an option, the shared filter estimates
given in Step 4 can be used to re-set the local PF posterior
χi,k . If so, there are two choices (the second is expected to
have a higher approximation accuracy than the first).
1) Re-set χi,k as the LMS fused Gaussian distribution, as

is done in the Gaussian PF [49].

χi,k ← N
(
x̂LMS

i,k , P LMS
i,k

)
(28)

2) Re-set χi,k as the shared GM before performing LMS
fusion, as is done in the Gaussian sum PF [50]

χi,k ←
∑

j∈Ni (≤t2 )

N
(
x̂j,k , Pj,k

)
(29)

Step 6 Resampling: Sample from the updated particle set
[32] if the variance of weights exceeds a specified
threshold and if Step 5 is not applied. If Step 5 is applied,
sample from the diffused Gaussian or GM distribution χi,k

given by Step 5 to generate a new particle set. Update
k ← k − 1 and go to the next filtering iteration.

V. SIMULATIONS 575

In this section, we consider tracking a target that moves in 576

the x − y plane by using the proposed DPF based on a con- 577

stant sensor network earlier appeared in [39] as given in Fig. 1. 578

The network has totally 10 sensors and a diameter Dm = 4. 579

The simulation models and parameters are the same to [27]. In 580

specific, we have the initial state as x0 = [4, 0.5, 4, 0.5]T . The 581

Markov transition model that governs the target movement of 582

nearly constant velocity is given by 583

xk =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

⎤

⎥
⎥
⎦xk−1 +

⎡

⎢
⎢
⎣

0.5 0
1 0
0 0.5
0 1

⎤

⎥
⎥
⎦uk (30)

where xk = [px,k , ṗx,k , py ,k , ṗy ,k ]T , [px,k , py ,k ]T gives the po- 584

sition and [ṗx,k , ṗy ,k ]T the velocity, uk ∼ N (02 , 0.00035I2). 585

The target emits an acoustic or radio signal with a known 586

constant transmit power Pt that can be received by all sensors 587

independently, i.e., the scalar measurement function of sensor i 588

located at [si,x , si,y ]T about target xk is 589

zi,k =
∝ Pt

‖[px,k , py ,k ]T − [si,x , si,y ]T ‖γ
+ vk (31)

where ∝ is a constant that depends on several factors such as 590

fast and slow fading, and gains in the transmitter and receiver 591

antennas, γ is the path loss exponent [44], and vk ∼ N (0, σ2
v ) 592

is the measurement noise. In parallel to [27], we set simply 593

∝ Pt = 10, γ = 1, σ2
v = 0.001. 594

When multiple synchronous observations are available, the 595

weight of particles is updated by multiplying the likelihoods 596

given by each available measurement. That is, 597

p
(
Zi,k |x(m )

i,k

)
=

∏

j∈Ni (≤t)

p
(
zj,k |x(m )

i,k

)
(32)

where Zi,k = {zi,k}j∈Ni (≤t) is the measurement set at sensor i 598

gained in the first DSIF procedure of total t iterations. 599

For any sensor i ∈ V , the necessary and sufficient number of 600

iterations, denoted as Dm,i , to receive the information from all 601

the other sensors can be given by 602

Dm,i := max
j∈V

D(j − i) (33)

We design three groups of simulations in the following three 603

subsections that use the same ground truths to evaluate or com- 604

pare the following five PF protocols, where the first three are 605

distributed while the last two are centralized. All PFs use the 606

same number of particles (M = 1000). 607
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Fig. 1. The topology of the sensor network, the target trajectory and its
estimate given a by a global SIR filter in one trial.

1) C-SIR: we apply DSIF only on the sensor data, named608

Consensus without Diffusion (i.e., Steps 4 and 5 are not609

applied in Algorithm 2). In this case, each local PF is a610

SIR filter that is free of any Gaussian assumption;611

2) CD-GMPF: we apply DSIF on both sensor data and612

local estimates named Consensus with Diffusion (i.e.613

Steps 4 and 5 are applied in Algorithm 2). In this case,614

each local PF is a Gaussian sum PF that applies (29) for615

posterior approximation and fusion;616

3) L-C-SIR: the Likelihood Consensus-based SIR filter [27]617

can be viewed as a special case of our C-SIR filter that618

applies sensor data averaging consensus (for likelihood619

multiplying) at each iteration. For fast converging, the620

Metropolis weights strategy [52] is employed for averag-621

ing in the L-C-SIR filter;622

4) Local-SIR/GMPF: local SIR filter or GMPF that does not623

communicate with each other at all;624

5) Global-SIR: a centralized SIR filter that is able to access625

all sensor observations at all times.626

To mitigate the problem of sample impoverishment that is627

often caused by resampling in the SIR filters, the minimum-628

sampling-variance resampling [32] is applied when and only629

when the effective sample size is smaller than M/2 and if ap-630

plied, a roughening noise that is equivalent to half of uk will be631

used [31].632

To measure the filtering accuracy, we calculate the root mean633

square error (RMSE) on both the position estimate and the634

velocity estimate, respectively, as follows635

RMSEposk =

√√
√
√ 1

C

C∑

c=1

(xk,c − x̂k ,c)2 + (yk,c − ŷk ,c)2 (34)

RMSEvelk =

√√
√
√ 1

C

C∑

c=1

(ẋk ,c − ˆ̇xk,c)2 + (ẏk ,c − ˆ̇yk,c)2 (35)

where [x̂k ,c , ŷk ,c ]T and [ˆ̇xk,c , ˆ̇yk,c ]T are the position-estimate636

and velocity-estimate given at filtering time k in trial c, respec-637

tively, and C = 20 is the total number of MC trials. Further, the638

TABLE I
DOC ACHIEVED AT EACH DSIF ITERATION (LOCAL AND GLOBAL)

Sensor 4 Sensor 5 Sensor 7 Sensor 10 Global

t = 0 0 0 0 0 0
t = 1 5/9 5/9 1/9 2/9 26/90
t = 2 1 8/9 3/9 6/9 61/90
t = 3 1 1 7/9 8/9 86/90
t = 4 1 1 1 1 1

average position RMSE is defined as the mean of RMSEposk 639

over the entire simulation period of 100 filtering iterations. In 640

each trial, the ground truth is independently generated (for gen- 641

erality). In all trials, the prior distribution of the particle set 642

is initialized around the true state as N (x0 , P0), with P0 = 643

diag[2, 0.001, 2, 0.001]T . 644

In particular, we will assess the filter performance at four rep- 645

resentative sensors, marked in Fig. 1 as sensors 4, 5, 7 and 10. For 646

them, we have Dm,4 = 2,Dm,5 = 3,Dm,7 = 4,Dm,10 = 4. 647

This means that sensor 4 will achieve CC first (after 2 itera- 648

tions) while sensors 7 and 10 will be the last (after 4 iterations). 649

For different numbers of DSIF iterations, the global and local 650

DoCs are given in Table I. Particularly, for t = 1, we have the 651

global DoC determined as 652

Co(1) =
|E|

N(N − 1)
(36)

where |E| is the number of edges; (a, b) and (b, a) are counted 653

as two different edges. 654

A. Consensus without Diffusion 655

In this case, each sensor operates a separate SIR filter. Sensors 656

are assumed conditionally independent and use different random 657

numbers. The posteriors obtained by sensors will be different 658

from both each other and the global/local PF, even given that 659

they all reach CC on sensor data. 660

For different numbers of DSIF iterations from 0 (no consen- 661

sus at all) to 4 (Dm ), the RMSEs of the position and velocity 662

estimation of local C-SIR filters and the global SIR filter are 663

given in Fig. 2.(a)-(e) respectively, corresponding to different 664

DoCs. The average RMSEs over 100 filtering steps against the 665

number of DSIF iterations are given in Fig. 2.(f). The results 666

clearly demonstrate that: 667

1) A single passive sensor is not capable of delivering good 668

tracking in this problem as the RMSEs given by local 669

PFs are much higher than that provided by DPFs; this 670

necessitates the collaboration of multiple geographically 671

dispersed sensors; 672

2) The more informative sensor data used, the better the filter 673

performance; 674

3) The larger DoC, the closer the local PF performance to 675

the centralized PF, i.e., local filters converge to the global 676

filter against iterations as the DoC increases; 677

4) Once CC is reached, the performance of the local PF is 678

very close to that of the centralized PF (with regard to 679
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Fig. 2. Position and velocity RMSE of C-SIR filters with different numbers of DSIF iterations, comparing with the global SIR filter.

both position and velocity) but still not the same, since680

different random numbers are used.681

Based on the measure of DoC, we are able to approximately682

determine how much information divergence different nodes683

will have and what payoff can be expected if one more or one684

less iteration of peer-to-peer communication is employed. For685

example, when the number of iterations is t = 3, the global686

DoC is as high as 86/90, close to 1, which agrees with the slight687

difference between Fig. 3(a) and (b). This is a valuable part of688

the metric of DoC.689

B. Consensus with Diffusion690

In this case, each sensor runs a separate GMPF. Collecting691

consensus are applied on both the sensor data and intermediate692

estimates jointly in a single DSIF procedure (and set t1 = t2).693

Because of the GM diffusion of intermediate estimates, the694

local fused estimates are expected to be closer to each other.695

If CC is reached, they shall be exactly the same. In parallel to696

the last simulation, different numbers of DSIF iterations from697

0 to 4 are employed to the CD-GMPFs, which are compared with698

the (centralized) global SIR PF in Fig. 3(a)–(e) respectively.699

The average RMSEs of these filters against the number of DSIF700

iterations are given in Fig. 3(f).701

We use the same ground truth (20 MC trials) regarding the702

trajectories and sensor observations as the last simulation. Com-703

pared to the last simulation, we can find that704

1) A single passive sensor can still hardly work well when705

the local SIR filters are replaced by local GMPFs;706

2) Given the same number of DSIF iterations t = 1, 2, CD- 707

GMPFs perform much better than C-SIR and are much 708

closer to each other; this is because of the second DSIF 709

scheme on the posteriors over the network which enhances 710

the consensus to improve local estimates; 711

3) Given t = 3, 4 iterations, the local CD-GMPFs perform 712

almost the same but different to the global SIR filter; 713

4) Given CC achieved, the RMSEs of all local GMPFs are 714

exactly the same but are inferior to the global SIR fil- 715

ter, especially at the later stage in this tracking example. 716

Analysis and discussion will be given next. 717

C. Comparison and Discussion 718

Finally, we compare both types of DSIF-based DPFs with the 719

L-C-SIR filter [27], [39]. The key difference of the likelihood 720

consensus to DSIF is that each node fuses information interme- 721

diately after receiving them and therefore the communication 722

cost is lower, but it is exposed to repeated use of information 723

and slower convergence. 724

First, for t = 4, the average (over all nodes) position RMSEs 725

of the C-SIR, CD-GMPF and the L-C-SIR filters are given 726

in Fig. 4. It shows that the C-SIR filter achieves the closest 727

performance to that of the centralized filter. We further calculate 728

the mean of these average RMSEs for t = 0 to 8 and the results 729

are given in Fig. 5. It shows that these consensus protocols can 730

all significantly improve the filter performance as compared to 731

the local filter that applies no consensus and converges against 732

communication iterations. 733
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Fig. 3. Position and velocity RMSE of CD-GMPFs with different numbers of DSIF iterations, comparing to the global SIR filter.

Fig. 4. Position RMSE of different DPFs applying 4 iterations of peer-to-peer
communication.

Furthermore, we have the following observations, which734

show more insights of these three types of DPFs:735

1) DSIF based C-SIR and CD-GMPF converge faster than736

the averaging consensus-based L-C-SIR filter at the ex-737

pense of higher communication cost. CD-GMPF con-738

verges the fastest but it suffers from a larger RMSE at739

the end, all due to its diffusion step that shares informa-740

tion among nodes more thoroughly than without diffusion741

but also introduce errors;742

Fig. 5. Average position RMSE of different DPFs over 100 filtering steps
against the number of peer-to-peer communication iterations.

2) For a relatively small number of iterations that correspond 743

to a low DoC on observation (which may lead to a large 744

discrepancy between local nodes’ posteriors), the C-SIR 745

filter is inferior to the CD-GMPF, as shown in Fig. 5 (also 746

told by comparing between Figs. 2(f) and 3(f)). In this 747

case, the diffusion update leads to earlier convergence 748

and better performance for the filter. This is in line with 749

the findings reported in [23]; 750
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3) For a large number of iterations that correspond to a high751

DoC on observation and consequently on posterior (leav-752

ing little space to benefit from posterior fusion), the diffu-753

sion update of the CD-GMPF is not so preferable; instead,754

the GM approximation error caused in the diffusion might755

be more significant than the benefit it can offer, resulting756

in an overall filter degradation. We must note that if the757

whole particle sets are transmitted for diffusion without758

any approximations, and also the dependence between the759

posteriors are accounted for properly in the diffusion up-760

date, it shall always be beneficial in theory regardless of761

the much greater cost in communication and local fusion762

calculation.763

These results confirm our theoretical prediction and demon-764

strate further that, both approximation and data fusion during765

communication can be either beneficial or counterproductive.766

Generally speaking, parametric approximation can speed up the767

convergence but also introduces errors. Data fusion such as aver-768

aging will reduce communication costs but will also slow down769

the convergence (primarily because of repeated use of infor-770

mation in data fusion). In practice, we have to contend with771

a compromise between fast convergence, accurate information772

sharing and low storage and communication cost. Inspired by773

these findings, a problem-oriented hybrid protocol that takes774

the advantages of different approaches while minimizing the775

side-effects will be valuable.776

VI. CONCLUSION777

Flooding is an efficient albeit simple solution for information778

sharing over networks and is the basis of many other networking779

protocols. In this paper, we formulated it from a set-theoretic780

perspective, named distributed set-theoretic information flood-781

ing (DSIF). This led to a novel consensus protocol for network-782

ing referred to as collecting consensus, which has significant783

both advantages and disadvantages over averaging consensus784

and diffusion. We have analyzed the explicit convergence and785

optimality of DSIF based on a novel metric of DoC (degree786

of consensus). Practical solutions have been proposed either to787

determine the minimum number of iterations required for any788

desired DoC or to calculate the DoC that can be achieved by789

an actual number of iterations. It has also been noted that to790

save communication, data fusion (such as averaging) can be791

employed during flooding, which however may cause repeated792

information use and slower convergence. This trade-off has been793

analyzed.794

Based on the theoretical results, a distributed particle filter795

framework is proposed and implemented for nonlinear target796

tracking which applies DSIF on sensor data alone or jointly797

with intermediate estimates. Simulations have demonstrated the798

convergence of the DSIF (faster than averaging consensus), the799

relationship between the filter performance and the DoC, and800

the advantage and disadvantage of applying parameterized ap-801

proximation and data fusion for networking.802
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