Engineering Applications of Artificial Intelligence 24 (2011) 895-910

journal homepage: www.elsevier.com/locate/engappai

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

Artificial
Intelligence

Agent-based virtual organization architecture

S. Rodriguez?, V. Julian®* J. Bajo¢, C. Carrascosa®, V. BottiP, J.M. Corchado?

2 Departamento Informdtica y Automdtica, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
b Departamento Sistemas Informadticos y Computacién, Universidad Politécnica de Valenciam, 46022 Valencia, Spain

€ Universidad Pontificia de Salamanca, C/Compaiiia 5, 37002 Salamanca, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 25 January 2010
Received in revised form

22 October 2010

Accepted 7 February 2011
Available online 26 March 2011

Keywords:

Multiagent systems

Virtual organizations
Dynamic architectures
Adaptive environments
Service Oriented Architectures

The purpose of this paper is to present the applicability of THOMAS, an architecture specially designed
to model agent-based virtual organizations, in the development of a multiagent system for managing
and planning routes for clients in a mall. In order to build virtual organizations, THOMAS offers
mechanisms to take into account their structure, behaviour, dynamic, norms and environment.
Moreover, one of the primary characteristics of the THOMAS architecture is the use of agents with
reasoning and planning capabilities. These agents can perform a dynamic reorganization when they
detect changes in the environment. The proposed architecture is composed of a set of related modules
that are appropriate for developing systems in highly volatile environments similar to the one
presented in this study. This paper presents THOMAS as well as the results obtained after having
applied the system to a case study.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Computation as interaction paradigm can be considered the
most promising technological evolution in the areas of Computer
Science and Communication in the last few years (Luck et al.,
2005). According to this new paradigm, computation is something
that occurs by means of and through communication among
computational entities. In this approximation, large systems can
be seen, in a natural way, in terms of the services offered or
demanded, and consequently, in terms of the entities (probably
agents) providing or consuming services (Luck and McBurney,
2008). It is necessary to remark that these entities may not have
been designed in a joint way or even by the same development
team. Entities may enter or leave different organizations in
different moments and due to different reasons. Moreover, they
may form coalitions or organizations between themselves to
attain their current goals. Obviously, the development of these
types of systems is complex and, therefore, it is necessary to
analyse in detail the intrinsic characteristics of these typical
application environments. Recent tendencies have conducted to
the use of virtual organizations (VOs), which can be considered as
a set of individuals and institutions that need to coordinate
resources and services across institutional boundaries (Foster
et al., 2001; Boella et al., 2005). Therefore, a VO is an open system
formed by the grouping and collaboration of heterogeneous

* Corresponding author: Tel.: +34 96 387 70 07 +73583;
fax: +34 96 387 73 59.
E-mail address: vinglada@dsic.upv.es (V. Julian).

0952-1976/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engappai.2011.02.003

entities and there is a separation between form and function that
requires defining how a behaviour will take place. Multiagent
systems (MAS) technology, which allows forming dynamic agent
organizations, is particularly well suited as a support for the
development of these open systems. An open MAS organization
modelling makes it possible to describe structural composition
(i.e. roles, agent groups, interaction patterns, role relationships)
and functional behaviour (i.e. agent tasks, plans or services),
and it can incorporate normative regulations for controlling
agent behaviour, dynamic entry/exit of components and dynamic
formation of agent groups. The development of open MAS is
still a recent field of the multiagent system paradigm, in this
sense, it is necessary to investigate new methods to model open
agent-based virtual organizations, as well as innovative techni-
ques to provide advanced organizational abilities to virtual
organizations.

The main goal of this study is to propose a new open
multiagent system architecture consisting of a related set of
modules that are suitable for the development of virtual organi-
zations in open dynamic environments. This study focuses on the
definition of a high-level design of a related abstract architecture
to build virtual organizations. In this design, all components
required to cover all characteristics and needs of systems of this
kind are determined. This new architecture has been named
THOMAS (MeTHods, Techniques and Tools for Open Multiagent
Systems) and provides a novel perspective to model virtual
organizations. Based on this proposal, an agent execution frame-
work has been implemented, which allows to produce software
wholly independent of any internal agent platform, and as such,
that is fully addressed for open systems.

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.02.003
mailto:vinglada@dsic.upv.es
dx.doi.org/10.1016/j.engappai.2011.02.003

896 S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

In order to evaluate the THOMAS architecture we have chosen a
case study consisting in the implementation of an open virtual
organization, focused in designing and building a system for guiding
and advising users in a shopping mall. The case study makes use of
the THOMAS architecture to obtain an open virtual organization that
can be viewed as a temporary alliance between various partners
(clients of the mall and shoppers) and services (offered basically by
the shops) to support certain activity or a set of activities in an open
market (the mall). In an environment as dynamic and evolving as
this, it becomes increasingly necessary to establish risk manage-
ment security policies that can control conditions, performance and
conflictive situations, thus contributing to improve the quality of
services for the clients and enhancing their bargain. We have
developed a planning service that has been integrated within the
developed MAS (Bajo et al., 2009) and modelled through THOMAS. It
involves a self-adapting mechanism that facilitates the automatic
assignment of tasks within the shopping mall.

The rest of the paper is structured as follows: Section 2 focuses on
the analysis of related work; Section 3 shows the THOMAS approach
describing its main components and the execution framework;
Section 4 describes a case study which makes use of this approach
and, finally, results and conclusions are shown in Sections 5 and 6.

2. Related work

Social aspects of multiagent system organizations are increas-
ingly important for specifying agent interactions in open and
dynamic worlds. Research into open MAS organizations has ranged
from basic organizational concepts, such as groups, communities,
roles, functions (Jennings and Wooldridge, 2002; Zambonelli and
Parunak, 2002; Ferber and Gutknecht, 1998; Odell et al., 2005),
organizational modelling (Horling and Lesser, 2005; Ferber and
Gutknecht, 1998; Dignum et al., 2005), Human Organization Theory
(Argente et al.,, 2006), structural topologies (Horling and Lesser,
2004; Argente et al., 2007), to normative research, including internal
representation of norms (Lopez et al., 2006), deontic logics (Dignum
and Dignum, 2007) and institutional approaches (Esteva et al., 2001;
Arcos et al., 2005). But there is no such agent platform, which covers
all the needed execution management of an agent organization.
Therefore, new approaches are needed in order to support the
evolution of those infrastructures and to enable their growing and
updating through execution time, due to the inherent features of
those open environments. In general, some standards and platforms
for agent interoperability, which take into account those require-
ments, need to be defined.

One of the key problems for open MAS organizations devel-
opment is the vision of agents and organizations as service-
provider entities. This vision needs a main effort in the integration
of agents and web services directed at masking services for
redirection, aggregation, integration or administration purposes
(Greenwood and Calisti, 2004). Although the evolution of MAS
and web services has been completely different, both technolo-
gies have pursued common goals such as providing dynamic and
open architectures. In order to solve their differences and to give
interoperation and integration possibilities, there are some
approaches that focus on finding the best way to facilitate this
interoperation: WSIG, WD2JADE and WSAIL The Web Service
Integration Gateway Service (WSIG) architecture (Greenwood
and Calisti, 2004) allows agents and web services to register
and publish their service descriptions to potential consumers. It
contains an intermediary entity that provides translations
between FIPA agents and web services in a transparent and
bidirectional way. WS2JADE (Nguyen and Kowalczyk, 2005)
integrates Web Service and agents, proposing a Web service to
FIPA Agent Service gateway. This architecture is based on an

interconnecting layer (with special agents capable of communi-
cating with web services) and a management layer, responsible of
creating and managing the dynamic interconnection between
entities. Finally, the Web Services Agent Integration (WSAI')
allowed web service clients to use agent services, being also
possible to publish an agent as a web service.

Regarding virtual organization modelling, recently, researchers
have carried out several studies that offer new procedures and
methodologies to enable designing open MAS, focused on the
organizational aspects of the agent society. Some examples of
these approaches are Gaia (Zambonelli et al., 2003), AGR (Ferber
et al., 2004), MOISE (Hubner et al., 2002), OperA (Dignum, 2003)
(based on ISLANDER (Esteva et al., 2001) framework), Tropos
(Bresciani et al., 2004), PASSI (Cossentino, 2005), SODA (Molesini
et al., 2006), MenSA (Ali et al., 2008), O-MASE (DeLoach, 2009),
INGENIAS (Pavon et al., 2005) and VOM (Criado et al., 2009).
Many of the recent works not only focus on the employment of
organizational structures during the design process, but also on
the regulation of open MAS (standing out E-Institutions (Noriega
and Sierra, 2002; Aldewereld et al., 2006), Moise (Hubner et al.,
2002), Moise™* (Giteau et al., 2006)). Albeit some of the plat-
forms tackle with organizational concepts as design patterns, they
cannot be directly applied to the development of open multiagent
systems where organizational structures can emerge and change
dynamically at runtime. The abstractions and tools currently
available are still not enough for many kinds of open MAS that
deal with real world problems. Most of these works are, in a
certain way, incomplete as they do not include all the phases and
requirements for the entire development of systems of this kind
(Argente et al., 2008). Moreover, none of them take into account
the problems associated with the last development phases, in
which the software engineer must translate the specific proper-
ties of the VOs, specified in the analysis and design models, to
executable code for agent platforms.

Finally, the main problem for obtaining executable code for
VOs is the lack of agent platforms supporting open agent system
functionalities. The main function of an agent platform is to offer
an execution framework for all agents that belong to it. In the last
years, many research and commercial approaches have appeared
trying to offer this execution framework. Examples of proposed
agent platforms are JADE,? FIPA-OS,? Grasshopper (Baumer et al.,
2000), Jack (Howden et al., 2001), ZEUS (Nwana et al., 1999),
MadKit (Gutknecht and Ferber, 1997), EIDE (Esteva et al., 2001),
RICA-] (Serrano et al., 2004), S-Moise+ (Hubner et al., 2006), Jack
Teams (which is an extension to JACK) (Agent-Oriented-Software,
2004), SIMBA (Soler et al., 2002) and SPADE (Escriva et al., 2006).
This paper does not try to analyse the different proposals,
a detailed comparison of relevant agent platforms can be found
in Argente et al. (2004). Taking only organizational aspects into
account, although some of the platforms deal with organizational
concepts as design patterns, they cannot be directly applied to the
development of open MAS where organizational structures can
emerge and change dynamically at runtime.

According to the current situation, any application implemen-
ted as an open multiagent virtual organization demands an
execution environment with support for:

e Organization representation: in virtual organizations agents
may need an explicit representation of the organization that
has been defined. Thus, an agent is able to reason about it in
order to initiate cooperation with other agents. Previous

! http://wsai.sourceforge.net/.
2 http://jade.tilab.com/
3 http:/fipa-os.sourceforge.net/.

http://wsai.sourceforge.net/
http://jade.tilab.com/
http:/fipa-os.sourceforge.net/

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910 897

works, which incorporate this idea, are S-Moise+ and Ameli
(Esteva et al., 2004). Nevertheless, analysed organization
approaches are static, we express the necessity of adaptive
mechanisms for creating organizational structures that allow
optimizing the coordination in open systems taking into
account the heterogeneity of agents and services.

e Control mechanisms: the platform should have control mechan-
isms that ensure the satisfaction of the organizational con-
straints. It is necessary to define dynamic regulatory
mechanisms that guarantee a globally efficient coordination
in open systems taking into account the impossibility of
controlling (the majority of) the agents and services directly.

e Description of the organizations: the organization should have
an available description in a standard language. This allows
external and internal agents to get specific information about
the organization at runtime. This feature is not only useful in
open systems but also when considering a reorganization
process. A good example of organization specification can be
found in the S-Moise+ platform.

e AMS and DF* extension: the AMS and the DF offered by
traditional MAS platforms should be improved. The AMS
should have information on the existing organizations and
their members. The DF should publish the services offered by
agents individually and the services offered by organizations.
It should not only have the name of the service offered, but
also its description to allow open systems. Finally, it may have
composition meta-services capable of on-the-fly orchestration
of services with regard to a given query.

e Communication layer: the kind of communication layer used in
communicative acts is a very important feature. Some of them,
such as FIPA-ACL (used by AMELI) and KQML (used by
S-Moise+), are more suitable for open systems than TCP/IP,
CORBA and RMI (Ferber et al., 2004).

e Monitoring: the platform should offer a mechanism for monitor-
ing the states of agents and organizations, which helps in the
validation and verification processes but also could be used by
organizations and agents in the system to perceive their envir-
onment without having to actively notify each change to the rest
of the entities, which could be interested in what they do.

e Modelling concepts support: the platform and the programming
language should cover all of the concepts related to the virtual
organization. For example, which types of topologies are defined
within the platform, which kind of norms is modelled, etc. Not all
platforms have complete modelling concept support. For exam-
ple, AMELI is focused on the management of rules and norms but
does not support the definition of complex topologies. Jack
Teams platform allows the creation of composed “Teams” but
it does not take into account other topologies.

e Organizational API: the platform should offer an API that makes
it possible to create, destroy and modify organizations; consult
and modify the organization description; add, query and
delete agents of an organization; send messages to a whole
organization, etc. (Argente et al., 2007; Criado et al., 2007).

The present paper represents a step forward on these require-
ments; the proposed architecture includes the integration of
organizational and individual perspectives, and the dynamic
adaptation of models to organizational and environmental
changes. Our architecture offers dynamical services for allowing
agents to take/leave roles at runtime or offer/demand services,
accordingly to the established organizational norms. Moreover, all
this functionality has been designed following a Service Oriented

4 AMS (Agent Management System) and DF (Directory Facilitator) are the
management components of a typical FIPA—compliant platform (www.fipa.org).

approach. THOMAS gives also support for the coordination among
agents, which belong to different platforms. In addition, all
services are registered and published by the architecture in order
to allow agents to discover them and to know how to make use of
them. THOMAS also offers structural services for allowing the
organizational structure to be modified at runtime, supporting
the organizational structure evolution and facilitating its growth
and update through execution time.

3. The THOMAS approach

This section describes the main characteristics of THOMAS
architecture, paying special attention to the abstract architecture
and the execution framework.

3.1. Abstract architecture

THOMAS (Giret et al., 2009; Carrascosa et al., 2009) is an
architecture for open MAS that tries to update the FIPA abstract
architecture applying ideas from the Service Oriented Architec-
ture (SOA) field along with allowing dealing with agents grouped
in virtual organizations (VO).

Agents’ dealing with services is a concept present in the FIPA
abstract architecture since its first instalments. But, it is a concept
not enough developed. The information and mechanisms used by
the traditional FIPA Directory Facilitator (DF) are not good enough to
deal with open systems and system dynamics, having several
limitations as their very basic service descriptions (name, type,
protocol, ontology, language, ownership and properties) and allowed
functionalities (register, deregister, modify and search) not consid-
ering any one of their virtual organizations. Another DF limitation is
regarding service discovery, as its search algorithm does not use any
semantic information and it does not consider service compositions.
As Service Oriented Architectures have dealt these aspects in depth,
THOMAS architecture proposes to incorporate this SOA vision to the
way services are dealt in an agent platform.

On the other hand, FIPA abstract architecture does not permit
to deal with virtual organizations, another key concept to work
with open systems by modelling the organization aspects of the
agent society. Therefore, there is no way to manage the creation/
destruction of virtual organizations, the way an agent may
become part of an existing virtual organization, and how the
behaviour of agents within a virtual organization is controlled.

In this way, the THOMAS abstract architecture updates the
FIPA approach by presenting all the architecture functionalities
specified as SOA services, updating the Directory Facilitator (DF),
that is, FIPA module in charge of managing services, to use
services specified according to SOA standards. This module, called
now Service Facilitator (SF), allows not only registering offering
services, but also demanding. Moreover, these services can be
related not only to agents, but also to organizational units. The SF
provides three different kinds of services:

e Registration: to manage the registering, modifying and remov-
ing of services in the SF (RegisterProfile, RegisterProcess, Mod-
ifyProfile, ModifyProcess).

e Affordability: to link providers with their services (AddProvider,
RemoveProvider).

e Discovery: to allow to search and compose services on demand
(SearchService, GetProfile, GetProcess).

Last but not least, the THOMAS abstract architecture includes
a new module called Organization Management Service (OMS)
in charge of managing virtual organizations lifecycle (as AMS
deals with agents one) along with some norm management.

www.fipa.org
www.fipa.org
www.fipa.org
www.fipa.org

898 S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

More specifically, it controls how virtual organizations (called
here Organizational Units) are created and the way entities
participate inside such organizations (which entities, how they
are related to each other and which roles they play). To do this,
the OMS provides three different kinds of services:

e Structural services: to define/change the structure and norms of
the organizational units (RegisterRole, DeregisterRole, Register-
Norm, DeregisterNorm, RegisterUnit, DeregisterUnit).

e Informative services: to get information of the current state of
organizational units (InformUnitRoles, InformAgentRoles,
InformMembers, InformQuantity, InformUnit, InformRoleProfiles,
InformRoleNorms).

e Dynamic services: to allow the dynamic evolution of organiza-
tional units (AcquireRole, LeaveRole, Expulse).

Table 1 summarizes the different services offered in THOMAS.
Moreover, Fig. 1 shows the final composition of the THOMAS
abstract architecture that, along with the above-mentioned SF and
OMS modules, presents also a Platform Kernel (PK) module that
includes functionalities for managing agents lifecycle (module AMS
of FIPA) and communications (module Network Layer of FIPA).

3.2. Execution framework

As has been detailed in the previous section, the THOMAS
abstract architecture presents two new modules (OMS and SF)
above a well-known module, as it is the PK. This last module
controls not only the communication but also the life cycle of
internal agents. It is a classical standard FIPA abstract architecture

Table 1
Summary of THOMAS offered services.

PK module. The novelty here is in those new modules, OMS and
SF, and the way they are addressed to manage open systems.
Moreover, they can be seen as a whole, as a platform-independent
set of services in a framework to manage virtual organizations for
open systems. That is called, THOMAS Framework.

THOMAS Framework allows any agent (from any kind of agent
platform) to create its own virtual organization with the structure
and norms to manage it, along with the offering and demanding
services required. The framework will manage the structure,
norms and life cycle of the virtual organization, along with the
visibility of offering and demanding services and the fulfilment of
the conditions to use them.

To be as accessible as possible, all the THOMAS Framework
functionalities are offered in two different ways: as a set of

OomMS SF
1 1
AMS

Network Layer

Platform Kernel (PK)

Fig. 1. THOMAS abstract architecture.

SF services
Type SF service

Description

Registration Register Profile
RegisterProcess
ModifyProfile
ModifyProcess
DeregisterProfile

DeregisterProcess

Affordability AddProvider

RemoveProvider

SearchService
GetProfile
GetProcess

Discovery

OMS services
Type OMS service

Creates a new service description

Creates a particular implementation (process) for a service
Modifies an existing service profile

Modifies an existing service process

Removes a service description

Removes a service process

Adds a new provider to an existing service process
Removes a provider from a service process

Searches for a service that satisfies the user requirements
Gets the description (profile) of a specific service
Gets the implementation (process) of a specific service

Description

Structural RegisterRole
RegisterNorm
RegisterUnit
DeregisterRole
DeregisterNorm

DeregisterUnit

Information InformAgentRole
InformMembers
QuantityMembers
InformUnit
InformUnitRoles
InformRoleProfiles

Infor, RoleNorms

Dynamic AcquireRole
LeaveRole

Expulse

Creates a new role within a unit

Includes a new norm within a unit

Creates a new unit within a specific organization
Removes a specific role description from a unit
Removes a specific norm description

Removes a unit from an organization

Indicates roles adopted by an agent

Indicates entities that are members of a specific unit

Provides the number of current members of a specific unit
Provides unit description

Indicates which roles are the ones defined within a specific unit
Indicates all profiles associated to a specific role

Provides all norms addressed to a specific role

Requests the adoption of a specific role within a unit
Requests to leave a role
Forces an agent to leave a specific role

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

independent services available via WSDL descriptions, as com-
mon web services, that can be allocated in any host or set of
hosts; or via ACL messages that allow a higher level communica-
tion or even negotiation processes.

From a virtual organization point-of-view, all agents included in
the framework must belong to an organization. Thus, the THOMAS
framework provides obtaining virtual organizations in which any
entity is automatically included, as well as a general role that allows
the entity to ask for service descriptions so as to fulfil its needs.
Throughout the service description, the client can be informed of the
roles required to ask for any specific service or the roles needed to
provide a specific service inside the organization.

As commented above, the open service-oriented virtual orga-
nizations that THOMAS is addressed to support, are very complex
MAS, and it is necessary to make available for the designer as
specialized tools as possible. A THOMAS-based system can be
designed through a related set of methodological guidelines to
develop this kind of systems, called GORMAS (Argente et al.,
2009). Moreover, there exists a toolkit named EMFGORMAS
(Garcia et al., 2009) aimed at linking the GORMAS specification
with the THOMAS architecture. EMFGORMAS is an ECLIPSE add-
on that enables the specification of the system by means of
GORMAS models as shown in Fig. 2. Applying this toolkit a
prototype of the designed system is obtained.

Nowadays, a first version of a framework (v0.1) based on
THOMAS is available. More details about this implementation of
the framework can be found at http://www.dsic.upv.es/users/ia/
sma/tools/Thomas.

Next section describes in detail the case study for a shopping
mall scenario.

4. Case study
A multiagent system based on THOMAS was designed to

facilitate the interconnection between users (clients in the mall)
and information on shops, on sales and on leisure activities

899

(entertainment, events, attractions, etc.), delimiting services that it
can be requested or offered. Through the case study it is intended to
show how an organization-based multiagent system fits perfectly
into dynamic environments, in which we have different types of
agents and different types of services that can enter and exit the
system dynamically. A shopping mall is a dynamic environment, in
which shops change, promotions appear and disappear continu-
ously, etc. The proposed system helps users to identify a shopping
or leisure plan as well as to identify other users within a given
shopping mall. A simple example to show what sort of services the
system can offer or request is the route recommender. The mall’s
main entrance has been taken as the origin of coordinates. Different
positions (user, shops, leisure areas) are represented by means of
coordinates on a plane. Taking into account the user’s interests,
places to visit are selected and the routes that include those points
are traced, and the optimum route is proposed. This is done bearing
in mind the time available, and the shopping and leisure activities
schedule. To this end, a unit of our system, RecommendationUnit, is
comprised of services that request recommendations or suggestions
based on user preferences and certain restrictions (time, money,
etc.). It also includes planning and replanning the route that the
user will follow based on the suggested recommendations, and
determines the validity and value of the proposed routes. In this
case, the service “Planning” can be provided, through the organiza-
tion developed with THOMAS, for different types of agents, includ-
ing agents that become part of the system after the design. And
each of them can make planning differently.

The system controls which services each agent must provide.
The internal functionality of these services is the responsibility of
provider agents. However, the system imposes some restrictions
regarding service profiles, service requesting orders and service
results. In the system, agents can enter and exit the system
dynamically performing a specific function within the organiza-
tion. In this open system, the agents can calculate the guiding
routes according to the client profile. The system is capable of
replanning the routes in accordance with time and money
available, and client preferences.

& Java - platform:/resource/Mall/organization.gormas_diagram#_Hgl BoN9tEd60NpZOuUkZKQ - Eclipse Platform

File Edt Diagram Mavigate Search Project Run ‘Window Help
$-0 Q- HHG I ®S A - & |’
g :-5'._: >+ o@ - o J..(J\’ - ?’ + | 100% v
e & fe Hi %n | T O @ organization.gormas W] *organization.gormas_ \d] organization.gormas_di o3 |d] organization.gormas_di W] organization.gormas_di id] organization.gormas_di =08
- = &
SHk= : oo Palette P ’_]
= 3 Mal Qoo ReaD- ;
4! organization.gormas e hopasia Uit s
ingUn = &
] organization.gormas_diagr oppinglny k= Nodes 5
= TouristAgency &3 Organizationallnit |
ARole 87
Contair Sofkas Contairs Clalale Contairs £ Agent
7 Resource
B3 application
% [E] & & E] E Norm
ClientUnit BusinessUnit ManagingUnit RecomendationUnit DeviceUnit (= Relationships
? InheritanceOf
Contsirs Conpes Contairs 7 Contains
A SocialRelationship
Bk Contairs Contaire Contairs
Finder Contairs Contsire Analyst Contaire Contaire DeviceManager
ProfileManager Communicator IncidentManager ClientManager
PromotionsManager WarehouseOperator Planner DirectoryManager
£ >
O el e®

Fig. 2. EMFGORMAS toolkit.

http://www.dsic.upv.es/users/ia/sma/tools/Thomas
http://www.dsic.upv.es/users/ia/sma/tools/Thomas

900 S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

A description of the elements of the shopping mall organiza-
tion is detailed in Section 4.1. Then, an analysis and design of the
selected scenario through THOMAS is explained in Section 4.2. To
this end, the GORMAS methodology (Argente et al., 2008) was
used. The phases proposed by GORMAS cover the analysis and
design of the organizational structure, as well as the design of the
dynamics of the organization. Thanks to GORMAS phases, it is
specified what services the organization offers, its internal struc-
ture and what rules govern their behaviour. Phases A and B cover
an analysis of the motivation of the organization and the services
and tasks that can be performed. In phases C, D and E, it was
analysed and selected the best alternative organization. This
alternative specifies the roles, interactions and norms related to
the structure of the organization. In phase F, the functionality is
offered as an open system, which includes the services that
should be publicized, and acquisition policies and release roles.
Phases G and H are devoted to the measurement, control and
reward systems.

Section 4.2 shows the roles and structural organization obtained
at stages C, D, E and F of the methodology for the case study. First,
the roles, units and relationships between them were identified;
focusing on the structure that best should be applied in the system
(phases C and D). Section 4.2.1 shows how services were reviewed,
identifying all the roles that were responsible for providing and
detailed in the interaction model, which identifies the services
associated with each unit (phase E). Finally, thanks to the norms of
the system, it was determined which services to those required by
the organization, may be provided not only by agents of the system
itself, but also by external agents. Norms will be implemented
internally as part of system actions or work of the agents (phase F).
This will be shown in Section 4.2.2. Section 4.2.3 shows an example
of how all these elements are handled in THOMAS.

4.1. Elements of the shopping mall organization

The selected scenario is a guiding system for users of a
shopping mall that helps them to identify bargains, offers, leisure
activities, etc. An open wireless system was developed and is
capable of incorporating agents that can provide useful guidance
and advice services to the users not only in a shopping centre, but
also in any other similar environment such as the labour market,
educational system, medical care, etc. Users (clients in the mall)
are able to gain access to information on shops and sales and on
leisure activities (entertainment, events, attractions, etc.) by using
their mobile phone or PDA. Mechanisms for route planning when
a user wants to spend time in the mall are also available.
Moreover, the system provides a tool for advertising personalized
offers (shop owners will be able to advertise their offers to the
shopping mall users), and a communication system between
management, the commercial sector or shoppers.

Fig. 3 shows the multiagent based shopping mall scenario.
Clients use their personal agents to consult the catalogue of the
shops in the mall, to receive advice or personalized promotions, to
request guidance suggestions and to locate other clients (RFID
technology is required) (Vrba et al., 2008; Shekar et al., 2003).

The multiagent system provides a powerful tool for advertising
personalized offers (a shop owner will be able to publicise his
offers to the shopping mall users), and a communication system
between management, the commercial sector or shoppers. In this
way, it is possible to obtain an intelligent environment for a
shopping mall based on virtual organizations composed of:

e clients or users

O interested in one or more products or promotions;

O interested in mechanisms for route planning when a user
wants to spend time in the mall;

&! — s e

Client * * Client
%, S
& &
%, i
o, 3
J
§ K 2
£ »
3
§
Guiding Agent
o k—._’
./\ ¥ A I ”fOrmaho ~
%@
Shop Agent Shop Agent
-
=
Restaurant Book Cinema
Shops

Fig. 3. Shopping mall scenario.

o interested in receiving alerts or news;

O interested in contacting other clients in the mall with similar

profiles or interests.

shoppers

interested in a tool for advertising personalized offers (a shop

owner will be able to publicise his offers to the shopping mall

users);

O interested in improving certain aspects of their shops.

e directorship

O requiring updated information to monitor and control the
evolution of the mall and that can be used to obtain knowledge
for decision support;

O requiring novel solutions in terms of security or incidents
resolutions and management.

e context-aware devices (radiofrequency identification—RFID,
temperature sensors)

O providing facilities of control, location and identification of
individuals inside the shopping mall and serving as data
sources to monitor the changing conditions of the
environment.

O e

The identification and characterization of such functionalities
after studying the requirements of the mall problem are the
inputs for the analysis and design of the system and constitute
the base for obtaining the roles in the system from the organiza-
tional point of view. These roles are grouped into units depending
on functionality criteria. A unit represents groups of agents and
establishes the topological structure of the system. It is also a
recursive concept, so units can be defined within other units. It
enables the representation of organizational structures like hier-
archy, matrix, coalition, etc. (Argente et al., 2007). Furthermore,
it indicates what the structural positions of the system are
(i.e. member, supervisor, subordinate), as well as the relationships
among these positions imposed by the structure. The roles are
defined inside each unit and represent the functionality required
to achieve the objective of the unit. The roles can have associated
norms aimed at controlling the actions of the role. The OMS
establishes a hierarchy of roles, so any agent that plays a specific
role is enabled to request or offer services related to superior

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910 901

hierarchical roles, provided that organizational norms do not
explicitly forbid it.

4.2. Analysis and design of the mall scenario

Once we were able to examine the elements that constitute
our scenario, the motivation for our system and its objectives, we
could begin to define the roles that would form part of the
architecture, taking into account the advantages of the THOMAS
architecture. These include the following:

e Communicator: Role in charge of managing the connections
that each user makes.

e Finder: Role in charge of finding users with similar tastes.

e Profile Manager: Role in charge of creating and defining the
client profile.

e Promotions Manager: Role in charge of suggesting promotions
and offers.

e Warehouse Operator: Role in charge of managing all inquiries
made on the warehouse, managing updates and monitoring
product shortages.

e Analyst: Role in charge of auditing sales information and the
degree of client satisfaction.

e Planner: Role that offers recommendation and guidance ser-
vices to the shopping mall clients. This role is able to
dynamically plan and replan in execution time. It suggests
routes that clients might want to take through the mall,
according to their individual preferences.

e (lient Manager: Role in charge of managing the connections
between the mall clients, managing the profiles for clients that
are visiting the mall, monitoring the state of the clients and
managing the notification service for the mall.

e Incident Manager: Role that manages and resolves incidents,
offers a client location service, and manages an alarm system.

e Directory Manager: Role responsible for managing the mall’s store
directory, including businesses, products, promotions and offers.

e Device Manager: Role that allows the interactive elements
within the environment to interact. It deals with devices that
use technologies such as RFID, etc.

20 (

ShoppingUnit
PafentUnit ParentUnit
ClientUnit BusinessUnit
inUnit ‘
inUnit
SN
SN SN s N ‘ l

| i i
Finder

ProfileManager /\

AN AN

WarehouseOperator

Communicator

PromotionsManager

[]

Manag Unit RecomendationUnit DeviceUnit
4\ !
inUnit

inUnit / N

i I
—_— DeviceM

i Analyst eviceManager
SN AN

IncidentManager

The structural design of the system is also carried out, follow-
ing, as noted above, the methodological guide GORMAS. First the
dimensions are analysed, and then the most appropriate struc-
tural organization (Argente et al., 2009) is identified.

For our case study, this process is modelled as a congregation
(ShopppingUnit) with five units, each of which is dedicated to a
type of functionality within the scenario.

These five units are:

e C(lientUnit, contains the roles associated with the client: Com-
municator, Finder, and Profile Manager;

e BusinessUnit, contains the roles associated with a business:
Promotions Manager, Warehouse Operator;

o ManagingUnit, contains the roles assigned with global manage-
ment tasks for the mall: Incident Manager, Client Manager,
and Analyst;

o RecommendationUnit, contains the roles dealing with recom-
mendations or suggestions made to the client: Planner and
Directory Manager;

e DeviceUnit, which contains the roles associated with the
management of devices: Device Manager.

The diagram of the structural view of the organizational
model, adapted according to the congregation pattern, is shown
in Fig. 4 (the notation is explained in Argente et al., 2009).

The notation used in Fig. 4 is simple. Fig. 4 represents the
system’s units grouped by the functionality of their roles (Clien-
tUnit, BussinesUnit, etc.). The roles are represented within each
unit. So for example, the roles Planner and DirectoryManager are
within RecomendationUnit. These roles may be taken by an agent
of the system and may offer or request services associated with
that role.

The next step in the analysis and design process consists of
detailing the services for each organization unit. Fig. 5 provides
an example of the internal unit structure of the ClientUnit. The
basic service offered by the ClientUnit is “ManageConnection”,
which is provided by the agents who have assumed the
Communicator role.

Notation

20 20

ClientManager i ‘

Planner

DirectoryManager

Fig. 4. Diagram of organization model: structural view.

902 S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

The next subsections describe the services, norms and the
planning mechanism for the case study. As the case study is very
extensive, we will focus on a general description as well as on
concrete and representative examples.

4.2.1. Services

A diagram representing the internal model is created for each
unit (ClientUnit, BussinessUnit, ManagingUnit, RecomendationU-
nit and DeviceUnit). These models identify the services associated
with each unit. A modelling of the functional view of the units is
carried out, which allows us to identify the specific services for
each domain. Then we detail as precisely as possible how each of
the organizational services performs, how they interact within
the environment, what interactions are established between the
system entities, and how they handle the aspects related to open
systems. For example, the basic service provided by the ClientUnit
is “ManageConnection”, which is provided by the different types
of agents that assume the Communicator role. As shown in
Table 2, the functionality offered by this service makes it possible
for the clients to manage their connection to the system.

L 1]

ClientUnit

offer

\
. Y
ManageConnection \\ iisa
by
SN

Communicator

provide

ClientManager

Fig. 5. Diagram of organization model: functional view of ClientUnit.

Table 2
ManageConnection service in ClientUnit.

Similarly, within the BusinessUnit there are roles associated
with a particular business and as a result, the services offered will
be related to the corresponding promotions, products and sales
(e.g., SendPromotion or RetrievePromotion). The services related
to ManagingUnit involve the overall management tasks within a
shopping mall (e.g., system incidents, data analysis, surveys,
client management, notices, etc.). RecommendationUnit is com-
prised of services that request recommendations or suggestions
based on user preferences and certain restrictions (time, money,
etc.). It also includes planning and replanning the route that the
user will follow based on the suggested recommendations, and
determines the validity and value of the proposed routes. The
DeviceUnit services deal with the sensors embedded in the
physical system (RFID).

4.2.2. Norms

Upon completing the modelling of the functional views of the
units, which allows us to identify the services particular to each
domain and to detail the performance of the organizational
services as precisely as possible, the next step is to define the
norms in order to establish the control and management of the
services. The type of services that can be offered is controlled by
the system through the norms. Each possible type of performance
within the system is controlled by the norms as defined by the
following syntax (according to the normative language defined in
(Criado et al., 2009)):

<norm> ::= <deontic_concept > (<action>
[<temporal_situation>]
[ITF <if_condition>]) [SANCTION(<state>)]
[REWARD (< state >)]

where < deontic_concept > ::=OBLIGED|FORBIDDEN|PERMITTED
and the action will be a dialogue action (send message) or an
action to request, provide or register a service, (REQUEST|SERVE|R-
EGISTER < service >). With < if_condition > it will be possible to
indicate the results of the functions or services.

The internal functionality of the services is the responsibility
of the agents that offer them, although it is the system that
specifies the service profiles as well as the norms regarding the
order of requests or the results that can be offered. This allows the
system to respond with sanctions against any illicit or inappropri-
ate behaviour on behalf of the user. The OMS will internally store
the list of norms (classified according to type) that define the

Service specification
Name: ManageConnection
Description: Manage client connection
Supplied by: SF
Required by:
ClientRole: ClientManager
ProviderRole:Comunnicator

Name Description Mand. Type Value range Default
Input parameters

Requesttime Connection time Yes Date

Connectiondata Connection Data Yes String

Operation Kind Connection Yes String

Output parameters

Connection Connection established Yes Connection

Precondition

Postcondition

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910 903

affected role, the content of the norm and the roles in charge of
controlling whether the norm is followed. The OMS will also keep
a list of existing roles for the units and their relationships, as well
as the role they assume, i.e., which role is assumed for each entity
and in which unit at any given time. Upon the initialization of the
system, the OMS has the structural information of the system
(roles, units, relationship between units and roles, relationship
between roles and agents), so it can create the complete structure
of the organization of agents.

A set of norms was defined in our system in order to control
the performance within each of the units. This set of norms is
managed by the OMS due to the fact that this performance is
carried out by means of the services offered by the OMS. As it has
been mentioned, further control of the norms regulating the
system will be carried out by the agents playing the proper roles
(the ones in charge of controlling such norms) and techniques
coded by their designer (agents that may be developed in any
toolkit but that should communicate in FIPA-ACL and offer/use
services in THOMAS). This way, for example, an agent acting as
Communicator within the ClientUnit is required to register
ManageConnection services, and the OMS is in charge of control-
ling it. If it does not abide by this norm, it will be sanctioned and
banished from the unit. The sanction is logical since if there is no
connection established within a set amount of time, none of the
other system tasks can be carried out:

OBLIGED Communicator REGISTER manageConenction
(?requestTime, ?connexionData, ?operacion)
BEFORE deadline SANCTION (OBLIGED OMS SERVE
Expulse (?agentID Communicator ClientUnit))

Likewise, we defined a complete set of norms that control all
of the system performances.

4.2.3. Example of service organizing with THOMAS

One of the primary capabilities of the MAS proposed in this
paper is the capability of reorganization. This is a very common
feature in the organizations, but has not been addressed by the
existing approaches and requires novel solutions. In this way,
THOMAS incorporates a planning-based approach in order to
provide a reorganization capability. We have developed a plan-
ning service that has been integrated within the multiagent
system (Bajo et al.,, 2009) and modelled through THOMAS. It
involves a self-adapting mechanism that facilitates the automatic
assignment of tasks within the multiagent system. This section
demonstrates the sequence of tasks that are executed within the
system when a planning service is requested, and how THOMAS
can generate the organization configuration and ensure the
planning takes place. We will demonstrate the manner in which
the architecture permits the reorganization of the MAS when new
agents are introduced. The system evolves by replanning the
guiding routes that clients can follow. The system considers the
client objectives, the available time, and financial limitations, and
proposes the optimal route according to the client’s profile.

The first step is to define the structural components of the
organization, i.e., the units that will be used (which are initially
empty), the system roles and the norms. The requirements for the
indicated services will be registered in the SF, thus establishing
their respective profile (structure for the entrances/exists, pre-
conditions/postconditions that should be met). To accomplish
this, it is possible to either call on the basic services from the
OMS registry for the structural components, or use the API that
directly executes the same functionality. As a result, a congrega-
tion type ShoppingUnit is created, which represents the organiza-
tion whose objective is to control the mall that will be monitored.

There are five basic internal units, ClientUnit, BusinessUnit, Man-
agingUnit, RecommentationUnit and DeviceUnit, each one dedi-
cated to the functionalities that have been previously noted. The
list of system units will remain registered in the UnitList of the
OMS, as shown in Fig. 6. The roles for each unit are defined, and
each of their attributes indicated (visibility, position and heri-
tage). Because it is possible for the same name of a role to appear
in different units, the name of the unit should also be mentioned.
This information is stored in the OMS RoleList.

The SF will list the services that are needed for the function-
ality of the system. The basic services are those that are essential
(as defined by the norms) when the units are being created. The
SF will keep a registry of the services offered by each entity, the
action taken by the service, the type of role that can request
(client role) and offer (client provider) the service, and its profile.
These services are only assigned one profile, i.e., one structure of
entrances/exits, preconditions/postconditions that they must
carry out. However, since it is not yet known which role will
perform the service, they cannot have a process or grounding
assigned to them. That is, there is still no agent within the system
that is taking this role and is implementing this service in some
way (it has not an assigned grounding). As a result, the Entity-
PlayList for the OMS will still be empty. The agents have not yet
begun to “play” within the system.

At this point, external agents can request the current list of
services and decide whether to enter and form part of the
organization, and with which type of role. In the following
example, two clients will use their mobile device to send a
request to the system in order to find the most optimal route
for them to follow so they can perform their conditions (time,
money, etc.). To do so, there must be:

e Agents C1 and C2: represent the clients that would like to
receive a planning route in the mall; they will enter the
system.

e Col, Pel and PI1 acting as agents that will carry out the roles
of Communicator, ProfileManager and Planner, respectively, and
can offer and/or request services from others with whom they
are associated according to the SF.

All of these agents are first initiated on the THOMAS platform
and associated to the virtual “world” organization. As such, in the
OMS they will play the “member” role in the “world” organiza-
tion. Asking the SF about which services exist in the system will
generate the following answer:

ClientUnit Requires ManageConnection ClientRo-
le=ClientManager; ProvRole=Communicator;

The ClientUnit, BusinessUnit, ManagingUnit, RecommentationUnit
and DeviceUnit, will already be visible in the “world” with a series
of available services for the agents that wish to perform these tasks
according to the roles they assume (Fig. 7). The service has no
assigned “grounding”, which cannot therefore be requested. That
is, there is still no agent has taken the role can perform this service,
that is able to implement it in some way. However it can have a
functionality added and thus take on the role of Communicator. The
Co1 agent would like to offer this functionality, and so requests the
Communicator role from the ClientUnit: AcquireRole (ClientU-
nit, Communicator).

If all goes well, the OMS will register that Co1 is assuming the
role of Communicator in ClientUnit within the Entity Play List. As
we can see in Table 3, the Entity Play List shows the roles adopted
by agents within THOMAS. The Co1 agent has taken all the normal
steps for acquiring a role within THOMAS.

904

ClientUnit ManagingUnit

RecomendationUnit

DeviceUnit

BussinesUnit

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

SF

Entity|Action|Service|ClientRole|ProvRole|Profile
ClientUnit|Requires|ManageConnection|ClientManager|Communicator|ClientSP

ClientUnit: ManageConnection, ConsultUser, UpdateUser, ObtainConnection,
FinishConnection, UserStale, FindUser

ManagingUnit: Consutincident, Updatelncident, Informincident, IncidentPending,
Statelncident, SendMSG, GenerateProfile, ConsultProfile, UpdateProfile, MSGstate,
UpdateMSGstate, Validateldentification, RecoverUserProfile, Requestinform,
Aceptinformation, Finishinformation, Consultinformation, FindInformation,
Updatelinformation, Ratelnformation

ShoppingUnit BussinesUnit: SendPromotion, RecoverPromotion, UpdatePromotion, ConsultProduct,
UpdateProduct, UpdateStock, ConsultStock, ConsuitSale,
RegisterSale, UnregisterSale
DeviceUnit: ConsultSensors, ConsultEnvironment, ActEnvironment, Locate,
LocationState, UpdateLocationState
RecomendationUnit: Planing, Repianing, ValidateRoute, RateRoute, RecoverShopList
,FinishBoundary, ConsultCatalog, RemoveProductCatalog , AddProductCatalog,
UpdateProductCatalog
OMS UnitList NormList RoleList EntityPlayList
UnitName|SuperUnit|Goal|Type UnitName|Role Name|Attributes|is_a
: OBLIGED Communicator REGISTER |
| Virtual (Word)|-|-|Flat ManageConnection(?requestTime, ClientUnit|Comunnicator|accesible,
ShoppingUnit|Virtual|ControlScenario|C ?connexionData, ?operacion) BEFORE position=member|Client,Provider
ongregation deadline SANCTION (OBLIGED OMS
n ” " : " SERVE Expulse (?agentiD ClientUnit|[Finder|accesible,
‘C;Illentun\t|ShoppmgUnlt|ControIC\|enl|F Communicator ClientUnit)) position=member|Client
ManagingUnit|ShoppingUnit|ControlSS | ClientManager, Planner, IncidentManager,
hoppingMall|Flat OBLIGED ... InformationManager, ProfileManager,
BussinesUnit|ShoppingUnit|ControlBus DeviceManager...
sines|Flat
DeviceUnit|SShoppingUnit|ControlDevi
ces|Flat
RecomendatioUnit|SShoppingUnit|Cont
rolRecomendation|Flat
AMS
External
Agents
Network Layer c1
c2
Platform Kernel (PK)
Fig. 6. Architecture of the initial system with an empty framework.
5.AdquireRole(Communicator,.ClientUnit) 1.SearchService(CommunicatorinformationServiceProfile)
3.GetProfile(manageConnection)
OoMs
SF
Entity Play List
RoleList P ;
: S List
UnitList 6.0K 2.(<manageConnection,1>) Ps)r:iz::rL:zt

Co1

4.<manageConnectionGoal, manageConnectionPF)

Fig. 7. Agent Co registering.

Fig. 7 illustrates these steps. Once Col has been registered as a
member of the THOMAS platform; it asks SF which defined services
have a profile similar to its own “communicator information service”.

This request is carried out using the SF SearchService (message 1), in
which CommunicatorinformationServiceProfile corresponds to the
profile of the “ManageConnection” service implemented by Col.

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910 905

Table 3
Entity play list.

Entity Unit Role
Pl World Member
Col ClientUnit Communicator

The SF returns service identifiers that satisfy these search
requirements together with a ranking value for each service
(message 2). Ranking value indicates the degree of suitability
between a service and a specified service purpose. Then Col
executes GetProfile (message 3) in order to obtain detailed
information about the ManageConnection service. Service outputs
are “service goal” and “profile” (message 4). The ManageConnec-
tion profile specifies that service providers have to play a Com-
municator role within ClientUnit. Thus, Col requests the
AcquireRole service from the OMS in order to acquire this
provider role (message 5). AcquireRole service is carried out
successfully (message 6), because ClientUnit is accessible from
virtual organization, thus Co1 is registered as a Communicator.

Within each unit there will be another request to know which
services exist. BusinessUnit, ManagingUnit, RecommentationUnit,
and DeviceUnit will return the services that are necessary for
planning. The profiles function will determine that Col is also
interested in assuming the DeviceManager role since in this case it
wants to interact with elements within the environment. Co1 will
use this role to act as intermediary to process the signals that
come from the user’s devices and make them comprehensible
within the system. It will allow the order requested by a user
through a device to be understood and executed by the specific
device that is the object of the order: AdquireRole(DeviceUnit,
DeviceManager). It will now be registered as a member of
DeviceUnit in the role of DeviceManager. This role will require
the agent to register the Locate service and associate the process
and grounding that it considers most suitable. If this is not
accomplished within a determined amount of time, it will be
banished. The norm specifically is:

OBLIGED DeviceManager REGISTER Locate(?route)
BEFORE deadline SANCTION (OBLIGED OMS SERVE Expulse
(?agentID DeviceManager DeviceUnit))

The agent will be informed of this norm upon performing the
AcquireRole, so that it can reason out the norm if it is a norm
agent (or ignore it otherwise). To keep other external agents from
assuming the DeviceManager role, the agent will register a new
incompatibility norm within the system. This norm makes it
impossible for other agents to assume the same role.

RegisterNorm (“normal”, “FORBIDDEN Member REQUEST
AcquireRole Message (CONTENT (role ‘DeviceManager))”)

Agents C1 and C2 will act in a similar fashion. They will
request to acquire the ClientManager role in order to access the
basic services: FindClient, GenerateProfile, ConsultProfile, Upda-
teProfile, MSGState and UpdateMSGState. The Entity Play List and
the units will end up as shown in Fig. 8.

Within the execution framework, we have the congregation
type of ShoppingUnit that represents the organization, while
internally we have the four basic units ClientUnit, ManagingUnit,
RecomendationUnit and BussinesUnit y DeviceUnit. The list contain-
ing the system units is registered in the OMS UnitList, the norms
are registered with the NormlList and the roles with the RoleList.
Both the NormList and the EntityPlayList will continue to be

updated dynamically to register the performance, norms and
agent roles within the system.

At this point, the participating agents within THOMAS have
requested and acquired the services and roles necessary to carry
out the planning needed for each of the users. Each of the
behavioural performance norms that were established within
the THOMAS organizational structure were defined and respected
when the units were initially empty, as well as when they were
dynamically generated by each of the agents. Once the agents are
in the system, the organization can evolve according to the plans
that are carried out. The steps for planning a route for one of the
agents, C1, can be summarized as follows:

e Once inside the THOMAS platform, C1 obtains a connection
using the obtainConnection service provided by the Commu-
nicator role that has acquired the Co1 agent already immersed
within the system.

e (1 locates the user’s mobile device within the system acting as
a client through the Locate service provided by Col.

e Likewise, C1 will generate its profile using the GenerateProfile
service and will be subsequently used by the ProfileManager
PI1 agent to know the data for that client.

e C1 uses the Planning service to request the Planner P1 agent to
recommend a route based on the restrictions within its own
user profile.

e At the same time P1 acts on PI1 to use the RecoverShopLists
service and obtain the points required to generate the route.

e P1 will provide the route to C1 who in turn will validate the
route using the ValidateRoute service obtained from P1.

e C1 will update the profile data with the data obtained from the
system using the UpdateProfile and UpdateMSGState services.

e At this time the path to follow is shown on the user’s device.

5. Evaluation results

This section presents the results obtained after testing the
THOMAS architecture in a real scenario. Initially, the organiza-
tional skills of THOMAS were evaluated. In order to do so, the
options available in THOMAS to create organizational models
were compared to other existing alternative architectures. After
this, the improvements provided by the virtual organizations
paradigm in the mall scenario are discussed.

5.1. Organizational models

The THOMAS architecture can be compared to other options
currently available that can be used to create organizational
models, platforms and agent architectures. New organizational-
oriented platforms or middleware should consider aspects like
organizational structure (group support, topology, role hierarchy,
interactions and social norms) and organizational dynamics
(i.e. agents joining into the organization, role enactment, agents’
life cycle, behaviour control, adaptation).

A comparison of those aspects are considered by different
platforms (including Jade as the most well-known platform) is
shown in Table 4. As can be seen, THOMAS supports the most
important aspects for the implementation and execution of
organizational-oriented systems. These aspects, that are not
directly supported by Jade, have been used in the design and
subsequent implementation of the new version of the system.
Besides, THOMAS incorporates certain organizational features
that are not supported by Madkit, Jack Teams, Ameli or S-Moise +.
The availability of these organizational characteristics makes
THOMAS unique in its conception and has provided many profits,

906 S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

ClientUnit ManagingUnit

L &, &

&7 RecomendationUnit Pe
C1
Pl DeviceUnit
BussinesUnit
Col
ShoppingUnit
NormList

SF

Entity|Action|Service|ClientRole|ProvRole|Profile
ClientUnit|Requires|manageConnection|ClientManager|Communicator|ClientSP

ClientUnit: ManageConnection, ConsultUser, UpdateUser, ObtainConnection,
FinishConnection, UserState, FindUser

ManagingUnit: Consutincident, Updateincident, Informincident, IncidentPending,
Statelncident, SendMSG, GenerateProfile, ConsuitProfile, UpdateProfile, MSGstate,
UpdateMSGstate, Validateldentification, RecoverUserProfile, Requestinform,
Aceptinformation, Finishinformation, Consultinformation, Findinformation,
Updatelnformation, Ratelnformation

BussinesUnit: SendPromotion, RecoverPromotion, UpdatePromaotion, ConsultProduct,
UpdateProduct, UpdateStock, ConsultStock, ConsultSale, RegisterSale, UnregisterSale

DeviceUnit: ConsultSensors, ConsultEnvironment, ActEnvironment, Locate,
LocationState, UpdatelocationState

RecomendationUnit: Planing, Replaning, ValidateRoute, RateRoute, RecoverShopList
,FinishBoundary, ConsultCatalog, RemoveProductCatalog , AddProductCatalog,
UpdateProductCatalog

RoleList EntityPlayList

omMs UnitList
UnitName|SuperUnit|Goal|Type

Virtual (Word)|-|-|Flat

ShoppingUnit|Virtual|ControlScenario|C
ongregation

‘ ClientUnit|ShoppingUnit|ControlClient|F]
at

ManagingUnit|ShoppingUnit|ControlSSh

oppingMall|Flat

ines|Flat

DeviceUnit|SShoppingUnit|ControlDevic
es|Flat

RecomendatioUnit|SShoppingUnit|Cont

BussinesUnit|ShoppingUnit|ControlBuss [

OBLIGED Communicator REGISTER
ManageConnection(?requestTime,
?connexionData, ?operacion) BEFORE
deadline SANCTION (OBLIGED OMS
SERVE Expulse (?agentiD
Communicator ClientUnit))

OBLIGED DeviceManager REGISTER
Localizar(?ruta) BEFORE deadline
SANCTION (OBLIGED OMS SERVE
Expulse (?agentlD DeviceManager
DeviceUnit))

RegisterNorm(*norma1”, “FORBIDDEN
Member REQUEST AcquireRole
Message(CONTENT(role
‘DeviceManager))”)

UnitName|Role Name|Attributes|is_a

ClientUnit|Comunnicator|accesible,
position=member|Client,Provider

ClientUnit|Finder|accesible,
position=member|Client

ClientManager, Planner, IncidentManager,
InformationManager, ProfileManager,
DeviceManager...

Entity|Unit|Rol
Co1|ClientUnit|Communicator
Co1|DeviceUnit|DeviceManager
Pl|RecomendationUnit|Planner
C1|ClientUnit|ClientManager
C2|ClientUnit|ClientManager

Pe|ManagingUnit|ProfileManager

rolRecomendation|Flat

AMS

Network Layer

Platform Kernel (PK)

External
Agents

c2

Fig. 8. System architecture with execution framework.

as demonstrated in the new version of the system presented in
the case study.

However, in order to evaluate the impact of the new and easier
method to develop MAS using an organizational paradigm, it is
necessary to revise the behaviour of the multiagent system in
terms of performance. A prototype was constructed in the mall
scenario based on THOMAS that could be compared to the
previous existing system (Bajo et al., 2009) and the improvements
obtained could be quantified, as can be seen in the results shown
in the next subsection (Figs. 10 and 11). The initial prototype was
modelled as a fixed society of agents: the CBP guiding agent, Shop
agents situated in each shop and User agents situated in the user
mobile device (Bajo et al., 2009). The MAS shown in Fig. 2 is not
open and the re-organizational abilities are limited, since the

roles and norms cannot be dynamically adapted. As can be seen in
Table 5, the system proposed in this paper provides several
functional, taxonomic, normative, dynamics and adaptation prop-
erties. The organizational properties are a key factor in an
architecture of this kind, but the capacity for dynamic adaption
in execution time, not only for routes (functional adaption), but
also for the structure of the organization, can be considered as a
differential characteristic of the THOMAS architecture.

The initial system (v1) was designed using a combination of
the Gaia and AUML design methodologies that do not provide
mechanisms for modelling using an organizational paradigm. The
new version of the system (v2) was designed using organizational
oriented methodologies, and more concretely the GORMAS
methodology (Argente et al., 2009) supported by the THOMAS

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

Table 4
Comparison of organizational features considered in different platforms.

907

Organizational features Jade Ameli

MadKit®

Jack Teams S-Moise + THOMAS

Agent Model %

Estructure
Group
Topology
Roles
Interactions
Norms

AN YA

Dynamics
Agent joining
Role enactment
Behaviour control
Org. joining
Adaptation

AN WA

X\

P

X\
AVA VA VA WA
AV VA VA WA

AN WA
YY YN

2 Madkit: www.madkit.org

Table 5
Comparison of previous and current system.

Properties System v1 System v2

Functional
BDI Model
Taxonomic
Group
Topology
Roles
Interactions
Normative
Norms
Dynamics
Agent joining
Role enactment
Behaviour control
Org. joining
Adaptation
Taxonomic
Normative
Functional

A W W W W A ¥

AN AY

AVANAY

architecture. The phases proposed by GORMAS cover the analysis
and design of the organizational structure, as well as the design of
the dynamics of the organization. The design of the dynamics
of the architecture is a very important characteristic, since one of
the substantial improvements of the system in the second proto-
type is the ability for dynamic adaption at execution time. Fig. 8
makes use of the GORMAS notation to illustrate an example of
change in the taxonomic dimension of the organization, when a
BusinessUnit is transformed in a federation. A federation is a group
of agents with a broker that represents the group and is respon-
sible of receiving the messages of its group and sending messages
to another brokers. The mall can be modelled as an organization
with three main business (entertainment, food and clothes),
which functionalities are defined attending at the services pro-
vided. At any given moment, the organizational structure of the
system can be re-adapted transforming the BussinesUnit in a
federation. In this way, every BussinesUnit can be treated in the
organization with its own norms. In the federation there exists an
initial unit of the Team type, which integrates the different
federations that are implemented following a hierarchy. The
BussinesUnit, once acquires a federation structure, can be mod-
elled as a team, where the member can communicate each others
to achieve the common functional objectives.

In the case study presented in this paper, the common
objectives can be clearly identified, as the business are aimed at
attracting as clients as possible, improving the quality of the

services and their overall productivity. The supervisor role
appears in the system, and is adopted by the internal agents of
the system. This role receives requests and stores information
about the members (business). As such, the supervisor acts as an
interface between every business and those agents in the mall
playing the PromotionsManager and WarehouseOperator roles.

THOMAS offers the necessary functional facilities to complete
this process in an easier manner, with the definition and speci-
fication of the new units and roles in the organization. This fact
was not possible in the initial version of the system, and to
distinguish the functional characteristics of these agent types it
would be necessary to define a new agent type, with its own
functionalities and requirements. Furthermore, the overall system
should be modified in order to take into account the character-
istics of the new agent type in a global manner. THOMAS provides
a novel mechanism to dynamically redefine and reorganize the
functional, structural and normative characteristics of the system,
and this can be achieved in a simple way, using the registration or
deregistration services of the architecture for roles, norms and
units. As can be seen in Fig. 9, the self-adaptation capability is a
key factor in the system not only to react to the changes in the
environment, but also to improve the overall functioning of the
organization.

One of the main differences regarding the initial system is that
the functionalities of the agents are not inside their structure
(Bajo et al., 2009) but modelled as services (offered or demanded),
and entities (agents) providing or consuming these services. This
new perspective provides the system with a higher ability to
recover from errors and a better flexibility to change their
behaviour at execution time. Next subsection presents the
empirical results obtained in the mall scenario aimed at quanti-
tatively evaluate the proposed approach.

5.2. Results in the mall scenario

Several tests have been carried out in order to compare the
overall performance of the shopping mall multiagent system
regarding its previous version, the latter having used THOMAS.
The tests were basically aimed at comparing response times and
number of crashes in both systems, and consisted of a set of
requests delivered to the services planning mechanism available
in the mall for generating guidance suggestions. The performance
of the new prototype improved progressively as the system learnt
from the past experiences acquired during the simulation. The
planning mechanism uses a case-based reasoning (CBR) engine
(Aamodt and Plaza, 1994; Corchado et al., 2004, 2008), that allows
it to make use of past experiences to find the best plans to achieve
goals. The purpose of CBR is to solve new problems by adapting

www.madkit.org

908

OContalnsRoI

(y—

Member

A

PromotionsManager WarehouseOperator

OContainsA—Agent

@ o

Solicitor

Enter‘(alnmentUnlt

/OContainsRoI

- ()

Supervisor

Fig. 9. Business

solutions that have been used to solve similar problems in the
past. The CBR system performs a reasoning cycle that consists of
four sequential phases: retrieve, reuse, revise and retain (Aamodt
and Plaza, 1994). Each of these activities can be automated, which
implies that the whole reasoning process can be automated to a
certain extent (Corchado and Lee, 2001). According to this, agents
implemented using CBR systems could reason autonomously and
therefore adapt themselves to environmental changes.

We noted a significant improvement of the behaviour of the
architecture agents at the organizational and resource level. The
results obtained from these tests demonstrate a notably improve-
ment in the average time required to accomplish the plans, the
number of crashed agents, and the number of crashed services.

Fig. 10 illustrates the improvement that was achieved with
regards to the system response times, due primarily to the
structural change. As can be seen in Fig. 10, as the number of
simultaneous agents increases, the performance of the previous
prototype in terms of response time decreases, while the response
time for the THOMAS-based prototype remains stable. In other
words, the system went from having a mainly centralized internal
composition in which a coordinating agent was in charge of
directing the primary tasks for generating guiding routes, to
having an organizational and dynamic agent-based structure in
which each specific role or service can be acquired by indepen-
dent agents. As a result it is possible to distribute computationally
complex tasks such as planning into services, thus reducing the
response time for changes in the environment that provoke a
replanning of guiding routes. This reduction was shown to
optimize the workday for the clients in the mall, increasing their
time of productivity by 7% by dynamically assigning the points,
which minimized the area and the time to cover during the
guiding routes.

In addition to having a non-centralized organization, we were
able to achieve an improvement in the robustness and scalability
of the system. One of the main problems of the initial prototype
was the number of agent’s crashes, since the agents have a high
computational load. Fig. 11 illustrates the results obtained with
regards to the number of agents with errors in both systems.

BusmessUnlt

OContaingA-Agent

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

a—

ShoppingUnit
ParentUnit

OContainsA-Agent

ntainsA-Agent

—

FoodUnit

CIothesUnlt
OContalnsRoI

Solicitor
WFPIays

OContainsRol

WFPIays
Solicitor Superwsor

Superwsor

unit structural view.

40
—+ Time Before(sec)

Time After(sec)
35

30
25

20

Time (sec)

15

v

3 4 5
Simultaneous Clients

10 15

Fig. 10. Time needed for both systems to generate guidance suggestions for a
group of clients.

As shown, the rate of agents with errors is reduced by an average
of 21%. This reduction is essentially due to the distribution of
computationally complex system tasks. The THOMAS architecture
allows the agents to integrate within web services, and this fact
causes a reduction of the agent’s computational load.

Additionally, the agents with errors in the new system can be
instantiated again and assume their role within the organization
once more, because of the reorganization feature provided by
THOMAS. These data demonstrate that this approach provides
a higher ability to recover from errors and a good ability for
self-organizing.

S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910 909

B Number of crashed agents
Befare

B Number of crashed agents
After

10 ¢

~oDww’

1 5 10 15 20
Simultaneos Chients

Crashed agents
o N & ;Y &R

Fig. 11. Number of agents and services crashed for both versions of the system.

6. Conclusions

An important issue in the development of real open MAS
aimed at modelling virtual organizations is to provide developers
with methods, tools and appropriate architectures which support
all of the requirements of these kinds of systems. Traditional MAS
development methodologies are not suitable for developing open
agent-based virtual organizations because they assume a fixed
number of agents that are specified during the system analysis
phase. It then becomes necessary to have an infrastructure that
can use the concept of agent technology in the development
process, and apply decomposition, abstraction and reorganization
methods. Based on this and taking into account the virtual
organization’s paradigm, we identified a set of requirements for
the construction of complex software open systems that address
this kind of problems and have come up with a set of require-
ments for a multiagent architecture aimed at notoriously open
environments: THOMAS. In presenting this architecture, we have
considered each of these points in the process of integrating our
previous study (Bajo et al., 2009).

The hypothesis in the present study involved applying auton-
omous capabilities to a virtual organization, thus allowing a
dynamic response when facing the expected changing situations
produced by the adaption and/or evolution of the organization. As
a result, the organization would be capable of detecting potential
situations of interest, such as functioning errors, and be able to
manage them by maximizing its flexibility and adaptive ability.
The adaption of the organization involves, among other aspects,
its norms, agreements, obligations and topological structure. The
multiagent system presented in this paper manages these tech-
niques by using the THOMAS architecture in a dynamic environ-
ment, and provides self-adaptation capabilities. In this sense, our
proposal adapts previous studies in the area of MAS (Bajo et al.,
2009) to our domain, specifically with the paradigm developed in
the THOMAS architecture. In this study, the use of THOMAS
allowed us to dynamically model and develop concepts for a
route planning system. Specifically, our proposal allowed us to
directly model the organization for a shopping mall according to a
previous basic analysis, to define agent roles, functionalities and
restrictions in a dynamic and open manner, and to add service
management capabilities (discovery, directory, etc.) within the
platform beforehand.

We can conclude that THOMAS was able to provide the
necessary level of abstraction for developing our system, and
the set of tools for facilitating its development. In the THOMAS
architecture, agents can offer and invoke services in a transparent

way from other agents, virtual organizations or entities. Addi-
tionally, external entities can interact with agents through the use
of the services offered. A case-study example was employed to
illustrate not only the usage of THOMAS components and ser-
vices, but also the dynamics of the applications to be developed
with such architecture. Examples of THOMAS service calls were
shown through the use of several scenarios, along with the
evolution of different dynamic virtual organizations.

Acknowledgements

This work has been supported by the Spanish Ministry of
Industry, Tourism and Commerce, project MCYT—TIN 2009-
13839.

References

Aamodt, A, Plaza, E., 1994. Case-based reasoning: foundational issues, methodo-
logical variations, and system approaches. Al Communications 7, 39-59.
Aldewereld, H., Dignum, F., Garcia-Camino, A., Noriega, P., Antonio Rodriguez-
Aguilar, ., Sierra, C., 2006. Operationalisation of norms for electronic institu-

tions. In: AAMAS 2006 and ECAI 2006 International Workshops, COIN.

Ali, R, Bryl, V., Cabri, G., Cossentino, M., Dalpiaz, F., Giorgini, P., Molesini, A.,
Omicini, A., Puviani, M., Seidita, V., 2008. MEnSA Project—Methodologies
for the Engineering of Complex Software Systems: Agent-based Approach.
Technical Report 1.2, UniTn.

Arcos,].L, Esteva, M., Noriega, P., Rodriguez-Aguilar, J.A., Sierra, C., 2005. Engineer-
ing open environments with electronic institutions. Engineering Applications
of Artificial Intelligence 18 (2), 191-204.

Argente, E., Giret, A, Valero, S., Julian, V., Botti, V., 2004. Survey of MAS
methods and platforms focusing on organizational concepts. In: Vitria,].,
Radeva, p., Aguilo, I (Eds.), Frontiers in Artificial Intelligence and Applications,
pp. 309-316.

Agent-Oriented-Software. JACK intelligent agents: JACK teams manual. Release
4.1, 2004.

Argente, E., Julian, V., Botti, V., 2006. Multi-agent system development based on
organizations. Electronic Notes in Theoretical Computer Science 150, 55-71.

Argente, E., Palanca,]., Aranda, G., Julian, V., et al., 2007. Supporting agent
organizations. In: Proceedings of the CEEMAS’07, pp. 236-245.

Argente, E., Julian, V., Botti., V., 2008. MAS modelling based on organizations. In:
Luck, Michael, Gomez-Sanz, Jorge]J. (Eds.), Agent Oriented Software Engineer-
ing IX LNCS, vol. 5386, pp. 16-30.

Argente, E., Botti, V., Julian, V., 2009. GORMAS: an organizational-oriented
methodological guideline for open MAS. In: 10th International WS on Agent-
Oriented Software Engineering, pp. 85-96.

Bajo, J., Corchado, .M., De Paz, Y., De Paz, J.F., Rodriguez, S., Martin, Q., Abraham., A.,
2009. SHOMAS: intelligent guidance and suggestions in shopping centres.
Applied Soft Computing.

Baumer, G., Breugst, M., Choy, S., Magedanz, T., 2000. Grasshopper: A Universal
Agent Platform Based on OMG MASIF and FIPA Standars. Agents Technology in
Europe.

Boella, G., Hulstijn, J., van der Torre, L., 2005. Virtual Organizations as Normative
Multiagent Systems. HICSS IEEE Computer Society.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos., J., 2004. Tropos:
an agent-oriented software development methodology. AAMAS 8 (3), 203-236
{doi:http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef ».

Carrascosa, C., Giret, A, Julian, V., Rebollo, M., Argente, E., Botti, V., 2009. Service
oriented MAS: an open architecture. In: Decker, Sichman, Sierra, Castelfranchi
(Eds.), Proceedings of the 8th International Conference on AAMAS, pp. 1291-1292.

Corchado, .M., Lee, B., 2001. A hybrid case-based model for forecasting. Applied
Artificial Intelligence 15 (2), 105-127.

Corchado, J.M., Pavén, J., Corchado, E., Castillo, L.F., 2004. Development of CBR-BDI
agents: a tourist guide application. In: Proceedings of the ECCBR'04, Lecture
Notes in Artificial Intelligence, vol. 3155, Springer, Berlin, pp. 547-559. .

Corchado, J.M., Gonzalez-Bedia, M., De Paz, Y., Bajo, J., De Paz,].F., 2008.
Replanning mechanism for deliberative agents in dynamic changing environ-
ments. Computational Intelligence 24 (2), 77-107.

Cossentino, M., 2005. From requirements to code with the Passi methodology.
Agent Oriented Methodologies IV, 79-106.

Criado, N., Argente, E., Julian, V., Botti, V., 2007. Organizational services for Spade
agent platform. In: Proceedings of the 6th International Workshop on PAAMS.

Criado, N., Argente, E., Julian, V., Botti, V., 2009. Designing virtual organizations. In:
7th International Conference on PAAMS2009, vol. 55, pp. 440-449.

Criado, N., Julian, V., Botti, V., Argente, E., 2009 A norm-based organization
management system. AAMAS Workshop COIN, pp. 1-16.

DeLoach, S., 2009. Multi-agent systems: semantics and dynamics of organizational
models, IGI Global, Ch. Organizational Model for Adaptive Complex Systems,
1-26.

⟨doi:http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef⟩

910 S. Rodriguez et al. / Engineering Applications of Artificial Intelligence 24 (2011) 895-910

Dignum, V., 2003. A Model for Organizational Interaction: Based on Agents,
Founded in Logic. Ph.D. Thesis, Utrecht University.

Dignum, V., Dignum, F., 2007. A logic for agent organization. In: Proceedings of the
FAMAS@Agents’007.

Dignum, V., Vazquez-Salceda, J., Dignum, F., 2005. Omni: introducing social
structure, norms and ontologies into agent organizations. Lecture Notes LNAI
3346, Springer.

Escriva, M., Palanca, J., Aranda, G., Garcia-Fornes, A., Julian, V., Botti, V., 2006.
A Jabber-based multi-agent system platform. In: Proceedings of the AAMASO6,
pp. 1282-1284.

Esteva, M., Rodriguez-Aguilar, J., Sierra, C., Arcos, J., Garcia, P., 2001. On the Formal
Specification of Electronic Institutions. Springer-Verlag. LNAI, pp. 126-147.

Esteva, M., Rosell, B., Rodriguez, J. A., Arcos, J. L., 2004. AMELI: an agent-based
middleware for electronic institutions. In: Proceedings of the AAMASO04,
pp. 236-243.

Ferber,], Gutknecht, O., 1998. A meta-model for the analysis and design of
organizations in multi-agent systems. In: Proceedings of the Third International
Conference on Multi-Agent Systems, IEEE Computer Society, pp. 128-135.

Ferber, J., Gutknecht, O., Michel., F., 2004. From agents to organizations: an
organizational view of multi-agent systems. In: Giorgini, P., Muller, J., Odell,
J. (Eds.), Agent-Oriented Software Engineering VI, vol. LNCS 2935. Springer-
Verlag, pp. 214-230.

Foster, I., Kesselman, C., Tuecke., S., 2001. The anatomy of the grid: enabling
scalable virtual organizations. International Journal of High Performance
Computing and Applications 15 (3), 200-222.

Garcia, E., Argente, E., Giret, A, 2009. A modeling tool for service-oriented Open
Multiagent Systems. The 12th International PRIMA 2009, vol. 5925, pp. 345-360.

Gateau, B., Boissier, O., Khadraoui, D., Dubois, E. Controlling an interactive game
with a multi-agent based normative organisational model. In: AAMAS 2006
and ECAI 2006 International Workshops, COIN, 2006.

Giret, A., Julian, V., Rebollo, M., Argente, E., Carrascosa, C., Botti, V. 2009. An open
architecture for service-oriented virtual organizations. Seventh international
Workshop on Programming Multi-Agent Systems, PROMAS 2009, pp. 23-33.

Greenwood, D., Calisti, M., 2004. Engineering web service—agent integration. In:
IEEE International Conference on Systems, Man and Cybernetics, vol. 2,
pp. 1918-1925.

Gutknecht, O., Ferber, J., 1997. Madkit: Organizing Heterogeneity with Groups in a
Platform for Multiple Multi-agent Systems. Technical Report 97188 LIRMM.

Horling, B., Lesser, V., 2004. A survey of multiagent organizational paradigms. The
Knowledge Engineering Review 19, 281-316.

Horling, B., Lesser, V., 2005. Using ODML to model multi-agent organizations. In:
Proceedings of the IEEE/WIC/ACM International Conference on Intelligent
Agent Technology.

Howden, N., Ronnquist, R, Hodgson, A. Lucas, A, 2001. JACK intelligent
agents—summary of an agent infrastructure. In: Proceedings of the 5th ACM
International Conference on Autonomous Agents.

Hubner, J., Sichman, J., Boissier, O., 2002. A model for the structural, functional,
and deontic specification of organizations in mulitagent systems, In:

G. Bittencourt, G. Ramalho (Eds.), 16th Brazilian Symposium on Artificial
Intelligence (SBIA02), vol. 2507 of LNAI, Springer, pp. 118-128.

Hubner, J., Sichman,]J., Boissier, O.. 2006. S-Moise +: a middleware for developing
organised multi-agent systems. In: Proceedings of the Workshop on Organiza-
tions in MAS, from Organizations to Organization Oriented Programming in
MAS, LNCS, vol. 3913, pp. 64-78.

Jennings, N.R., Wooldridge, M., 2002. Agent-oriented Software Engineering. Hand-
book of Agent Technology.

Lopez, F., Luck, M., d’'Inverno., M., 2006. A normative framework for agent-based
systems. Computational and Mathematical Organization Theory 12, 227-250.

Luck, M., McBurney, P., 2008. Computing as interaction: agent and agreement
technologies. In: IEEE SMC Conference on Distributed Human-Machine
Systems, pp. 1-6.

Luck, M., McBurney, P., Shehory, O., Willmott., S., 2005. Agent Technology:
Computing as Interaction (A Roadmap for Agent Based Computing). AgentLink.

Molesini, A., Omicini, A., Denti, E., Ricci, A., 2006. Soda. A roadmap to artefacts.
Engineering Societies in the Agents World VI LNAI 3963, 49-62.

Nguyen, T., Kowalczyk, R., 2005. Ws2jade: Integrating Web Service with Jade
Agents. Technical Report SUTICT-TR2005.03, Centre for Intelligent Agents and
Multi-Agent Systems, Swinburne University of Technology.

Noriega, P., Sierra, C., 2002. Electronic Institutions: Future Trends and Challenges.
CIA, 14-17.

Nwana, S., Ndumu, D.T., Lee, L.C., Collis,].C., 1999. ZEUS: a toolkit and approach for
building distributed multi-agent systems. Agents 1999, 360-361.

Odell, J., Nodine, M., Levy, R., 2005. A metamodel for agents, roles, and groups. In:
James Odell, J.M., Giorgini, P. (Eds.), Agent-Oriented Software Engineering
(AOSE) V, Lecture Notes in Computer Science. Springer.

Pavon, ., Gomez-Sanz, |., Fuentes., R., 2005. The INGENIAS Methodology and Tools.
Idea Group Publishing article IX, pp. 236-276.

Serrano, J.M., Ossowski, S., Fernandez, A., 2004. On the impact of agent commu-
nication languages on the implementation of agent systems. In: Klusch,
Ossowski, Kargupta, Unland (Eds.), Cooperative Information Agents VIIIL
Springer.

Shekar, S., Nair, P., Helal, A., 2003. iGrocer—A ubiquitous and pervasive smart
grocery shopping system. In: Proceedings of the ACM SAC, ACM Press,
pp. 645-652.

Soler, J., Julian, V., Rebollo, M., Carrascosa, C., Botti, V., 2002. Towards a real-time
multi-agent system architecture. In: Proceedings of the Challenge 2002,
AAMAS 2002, Bolonia.

Vrba, P., Macurek, F., Marik, V., 2008. Using radio frequency identification in agent-
based control systems for industrial applications. Engineering Applications of
Artificial Intelligence 21 (3), 331-342.

Zambonelli, F., Parunak, H., 2002. From design to intention: signs of a revolution.
In: Proceedings of the 1st International Joint Conference on AAMAS,
pp. 455-456.

Zambonelli, F., Jennings, N.R., Wooldridge, M., 2003. Developing multiagent
systems: the gaia methodology. ACM Transactions on Software Engineering
and Methodology (TOSEM) 12 (3), 317-370.

	Agent-based virtual organization architecture
	Introduction
	Related work
	The THOMAS approach
	Abstract architecture
	Execution framework

	Case study
	Elements of the shopping mall organization
	Analysis and design of the mall scenario
	Services
	Norms
	Example of service organizing with THOMAS

	Evaluation results
	Organizational models
	Results in the mall scenario

	Conclusions
	Acknowledgements
	References

