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Abstract A novel hybrid forecasting Case-Based Reason-
ing (CBR) system is presented in this interdisciplinary
study in which an isotropic buffer operator is applied for
case-based creation. Commonly used as an image analysis
technique by commercial Geographic Information Systems
(GIS), the buffer operator in this particular system calcu-
lates the area of an oil slick for prediction and visualization
tasks. The use of the buffer operator improves the quality of
the data used by the system and in consequence the quality
of the results obtained. The system generates predictions by
using historical data on oil-slick formation following a spill.

Keywords Isotropic image analysis · Hybrid intelligent
system · Case-Based Reasoning · Forecasting · Oil spill

1 Introduction

The emergency response to minimize the environmental im-
pact when an oil spill occurs should be precise, fast and
well-coordinated. The use of contingency response systems
can facilitate planning and task allocation when organiz-
ing resources, especially when multiple teams and systems
are deployed. This research presents a novel hybrid system
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for helping to manage such situations that involves a Case-
Based Reasoning model to predict oil slick formation and
the direction of oil slick drifts in a certain areas of the ocean.
It also applies a buffer operator to calculate the size of the
oil slicks in satellite images.

The term buffer operator, also known as the buffering or
influence zone is used by all customized Geographical In-
formation Systems (GIS). This operator is defined as the ge-
ometric space of the points that are at a shorter or similar
distance to a given object (point, polyline or polygon) [12].
This definition is isotropic or directionally uniform, since
the distance of the object to the edge of the buffer is constant
in any direction on the plane. Among other fields, this oper-
ator is used in the simulated visualization of environmental
processes, such as surveys of pesticide and chemical fertil-
izer contamination in shallow water tables in hydrographic
basins; the influence of nitrates and silt levels on the growth
of local flora, the environmental impact of installing new
industries in close proximity to urban centers, the determi-
nation of areas of high seismic risk and so on.

There are two methods for the generation of influence ar-
eas: Voronoi triangulation and the Minkowski Sum [39]. In
the latter method, a secondary polygon or generating poly-
gon is defined as located on a point or moving on a polyline
or polygon and generating a surface formed by the points
over which the generating polygon moves. In the isotropic
buffer, the generating polygon is a circle, which implies a
constant distance between the border of the buffer and the
object.

Case-Based Reasoning (CBR) [27] systems make use of
past information in order to generate new solutions to new
problems. The quality of the information stored within the
case base will determine the quality of the solutions offered
by these systems. Thus, the isotropic buffer operator is an
important element in image analysis, and in this frame it pro-
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vides the CBR system with accurate information that may be
used in future situations.

The rest of the paper is organized as follows. The follow-
ing section gives a brief explanation of CBR methodology.
Section 3 develops the concept of isotropic image analysis,
introducing the main terms of the directional statistics, af-
ter which Sect. 4 describes the use of the buffer operator in
the existing GIS, and Sect. 5 provides an explanation of the
CBR system presented in this study. The penultimate and
final sections are respectively dedicated to the results ob-
tained from applying the system to a real-life case study and
the conclusions.

2 Case-Based Reasoning

Case-Based Reasoning is a technique that has its origin in
knowledge-based systems. CBR systems learn from previ-
ous situations [1]. The main element of a CBR system is the
case base; a structure that stores problems, elements (cases),
and their solutions. So, a case base can be visualized as a
database that stores a collection of problems with some sort
of relationship to the solutions to every new problem, which
gives the system the ability to generalize in order to solve
new problems.

The learning capabilities of CBR systems rely on their
own structures, which consist of four main phases [2]: re-
trieval, reuse, revision and retention. Figure 1 shows a
graphical representation of those four phases. The retrieval
phase consists of finding the cases in the case base that most
closely resemble the proposed problem. Once a series of
cases have been extracted from the case base, they must then
be reused by the system. In this second phase, the selected
cases are adapted to fit the current problem. After offering a
solution to the problem, it is then revised, to check whether
the proposed alternative is in fact a reliable solution to the
problem. If the proposal is confirmed, it is retained by the
system and could eventually serve as a solution to future
problems.

Because it is a methodology [50], Case-Based Reasoning
has been used to solve a great variety of problems. It is a
cognitive structure that can be easily applied to solve prob-
lems such as those related to soft computing [37], since the
procedures it uses are quite easy to assimilate in the soft-
computing approaches. CBR has also helped to create ap-
plications for a variety of environments, such as health sci-
ences [10, 38], where images can often play an important
role [4, 24], or eLearning [3, 13]. As it has evolved, CBR
has been used to solve new problems, applied as a methodol-
ogy to create plans, and broken down into a distributed ver-
sion [42]. Oceanographic problems [17] have also been ad-
dressed using these techniques in order to predict the value
of highly inconsistent parameters.

Fig. 1 Basic representation of the CBR cycle

The use of past knowledge to generate new solutions
makes CBR systems very useful as decision support sys-
tems. Distributed and multi-agent [7] systems have used the
CBR methodology to exploit its decision-support capabili-
ties as an addition to their characteristics. On the other hand,
as it is a methodology, CBR has been successfully applied to
quite different knowledge fields and combined with a great
variety of techniques. Most of the techniques used within
CBR systems serve to classify, adapt, revise solutions, etc.
Artificial neural networks such as ART-Kohonen neural net-
works and fuzzy logic have also been used to complement
the capabilities of the CBR methodology [25]. Similarity
measures, such as the k − NN (k nearest neighbors) and
also modern variations such as Significant Nearest Neigh-
bor [49] where the value of k, which is the number of neigh-
bors to consider, is calculated by taking into account the dis-
similarity between the new case and the past cases stored
in the case base, have been used to retrieve cases from the
case base. Numeric situations, like those used in microarray
problems, can be reused through neural networks, such as
Growing Cells Structures (GCS) [14], where the aim is to
cluster the retrieved information. Another way of using neu-
ral networks to adapt the retrieved information is to change
the weight of the connection between the neurons depending
on the retrieved cases [54]. Changing the weights allows the
system to adapt the solution to the problem, as the retrieved
cases will depend directly on the proposed problem. If the
case-base structure is integrated into a neural network, then
the revision phase consists of changing the organization of
the case base, depending on the correction of the proposed
result and other neural variables such as neuron age, acti-
vation value and last use [51]. Genetic algorithms (GA) are
also used to revise the correction of the solutions [40]. After
running those algorithms, the solutions can be accepted, and
added to the case base.
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Current trends in CBR are exploring the possibility of
providing explanations from the actual CBR systems [47].
These techniques allow the CBR systems to give the users a
better solution, adding additional information to the solution
proposed by the system in the form of an explanation. With
the explanations generated by the system, the solutions it
proposes are justified and may be better understood.

Applying CBR to solve a problem generally implies com-
plementing it with other artificial intelligence techniques.
These models do not only provide simple ways of structur-
ing the reutilization of the information, but they can also
combine different techniques to improve on individual re-
sults. CBR has been used in combination with artificial in-
telligence techniques to boost the power of the core method-
ology [29]. Different kinds of neural networks, such as ART-
Kohonen neural networks [20, 52, 53], have been used with
CBR to create the internal structure of the case base auto-
matically [7]. Even fuzzy logic [18] has been used to com-
plement the capabilities of the CBR methodology. In this
case, Growing Cell Structures will be used to structure the
case base and to easily and accurately recover the most sim-
ilar cases from the case base.

3 Directional Statistics

Directional statistics [19] is concerned with data that repre-
sent vectors on a plane or in 3D space. In the former case,
the sample space is a circle and in the second, a sphere. In
order to take the structure of these sampling spaces into ac-
count, special statistical methods are needed. Some exam-
ples of circular data are the directions of the predominant
winds, the flight of migratory birds; indeed, any data that
can be measured and converted into degrees or radius may
be considered circular data.

Circular data may be represented as a point on a unit cir-
cle or as a unitary vector on the plane. Take a direction as the
origin and choosing a direction, each circular datum may be
specified as having an angle θ between the initial direction
and the direction that corresponds to the datum (Fig. 2). The
direction of the vector is characterized by the angle θ . The
simplest way of representing circular data is to draw them as
points on the unit circle and, when a direction repeats, place
the new points outside the circle on the corresponding radius
(Fig. 3).

We can define the circular variables [36] as those that rep-
resent directions on the plane, which is quantified by angles
that vary from 0 to 2π . One of the most important differ-
ences in comparison with linear variables is that while these
can take values of the whole straight line, circular variables
take cyclic values and, consequently, the sum or difference
of observations can surpass 360° or can even take a negative
value; it being possible in these cases to find an equivalent

Fig. 2 Representation of a unitary vector on the plane on a circular
graphic

Fig. 3 Representation of circular data as points on the unit circle

value in the interval 0–360°. This characteristic means that
circular variables may be treated in a different way to the
linear ones, through statistical methods, correlation analysis
and specific distributions for this type of variables.

Conceptually, a circular distribution can be considered a
bivariated linear distribution where the total probability (or
total mass) is dispersed around the circle unit. Therefore, as
in the bivariated linear statistic, a mean vector m̄ of module
r and mean angle Φ̄ exists in circular statistics, at the tip of
which is the mass center C of the distribution (Fig. 4).

3.1 Mean Vector

The mean statistical vector m̄ is calculated by assigning to
each of the points n of the unit radius circle in Fig. 5, a mass
M , from which the centre of mass or gravity C is calculated.
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Fig. 4 Circular distribution with mean vector of module r and mean
angle Φ̄ . C is the mass centre of the distribution

Fig. 5 Mean vector

The projections x̄ and ȳ of m̄ are given by the expressions:

x̄ = 1

n

j∑

i=1

ni CosΦi

ȳ = 1

n

j∑

i=1

ni SinΦi

n =
j∑

i=1

ni

(1)

Let Z(Φ) be the random variable. If we take a mono-
modal sample of frequencies n1, n2, . . . , nj in the directions
φ1, φ2, . . . , φj , the mean vector m̄(r, φ̄) is defined as

r =
√

x̄2 + ȳ2

Φ̄ =
{

Arctan[ȳ/x̄] if x̄ > 0
180 + Arctan[ȳ/x̄] if x̄ < 0

} (2)

where x̄ and ȳ are the projections of m̄ on the X and Y

axes respectively. The direction of the vector is found on the

straight line that joins C with the coordinates of the origin
O . When the data are grouped in arcs j with a length of λ =
2π
j

, the values of x̄ and ȳ are as follows:

x̄ = 1

n

[
n1 cosΦ1 + n1 cosΦ1 + · · · + nj cosΦj

]

ȳ = 1

n

[
n1 sinΦ1 + n1 sinΦ1 + · · · + nj sinΦj

] (3)

where, n1, n2, . . . , nj are the frequencies of the mean points
φ1, φ2, . . . , φj of the arcs j . The value θ is estimated in the
same way as in grouped samples. However, it needs a correc-
tion factor. Without correction, r tends to be a little smaller.
Therefore, r has to be multiplied by a factor of c > 1. The
corrected module is rc = r • c where the correction factor c

is:

c = λ/2

Sin(λ/2)
(λ in radians) (4)

The calculation described for m̄ is valid for mono-modal
samples. There exist many algorithms that allow to obtain
the better fitting circles to the data graphically shown in
Fig. 4. In [28], an analysis of currently used algorithms used
to make that adjustement is done and a new one is proposed,
based on left and right side partial derivatives. However, the
experience shows that the phenomena linked to orographic
discontinuities may be plurimodal. The process of v-modal
samples (where v is the number of modes) differs from what
is described, as these should be treated as if they were sam-
ples generated by v unimodal distributions, which is why we
can talk about a mixture of distributions.

The v-modal samples should be considered as extracted
from a distribution that is generated by the overlap of
v monomodal distributions. When the distances between
modes are arbitrary, no standard methods exist to breakdown
a v-modal sample into v-mono-modal samples; in nature,
plurimodal samples usually appear as bimodal and diamet-
rically opposed. In this case, it is possible to reduce the bi-
modal sample to a monomodal sample by duplicating the
angles. With the new angles, the mean vector m̄2(r2, Φ̄2) is
calculated by using (1)–(3). In order to obtain the symmetric
modal angle Φ̄1 from the original sample, we have to cancel
out the effect of the duplication of the angles, as follows:

Φ̄1 = Φ̄2/2 or Φ̄1 = Φ̄2/2 + 180◦ (5)

3.2 Von Misses Distribution

Among the existing circular distributions [22, 46], one of
the most widely used for the modeling of circular variables
is the Von Misses distribution, in which the density function
for v-modal and symmetric samples is

f (Φ) = 1

2ΠI0(k)
Exp[k Cosv(Φ − Θ)] (6)



216 J Math Imaging Vis (2012) 42:212–224

where I0 is the Bessel function of an imaginary pure argu-
ment of order 0, v is the number of modes, and k is the con-
centration parameter [44], that indicates the extent to which
the distribution around the dominant direction Θ is concen-
trated.

For k = 0, f (Φ) degenerates in an uniform distribution.
Mardia demonstrated [33] that the maximum likelihood es-
timation θ̂ and ρ̂ for parameters θ and ρ of a Von Misses
distribution are respectively Φ̄ and r . Likewise,

I1(k̂)

I0(k̂)
= r (7)

is fulfilled. Hence, the solution to (7) is the maximum like-
lihood k̂.

3.3 Minkowski Sum

Given two images, A and B in R2, the Minkowski sum is
defined as [45].

A ⊕ B :=
⋃

b∈B

A + b (8)

Where A is the generating polygon, and B the skeleton or
primary element (point, polyline, or polygon). A⊕B is gen-
erated by moving A though each element b ∈ B , and then by
adding the result of all the translations later on. The transla-
tion of the generating polygon A through the element b ∈ B

is defined as

A + b := {a + b, a ∈ A} (9)

If we take a circle as the generating polygon A, and the
group of points B = {(2,3), (3,4), (2,5, (1,5))} as the pri-
mary element:

A ⊕ B := [A + (2,3)) ∪ (A + (3,4))

∪ (A + (2,5)) ∪ (A + (1,5))] (10)

Figure 6 shows the result, as well as A ⊕ L and A ⊕
P , additions which have respectively taken polyline L and
polygon P as primary elements.

Conceptually, the Minkowski sum is a dilation or expan-
sion of the primary image B , whose form is determined
by the generating polygon A. In the previous example we
have chosen a circle as the generating image. The expansion
of the primary image is directionally uniform or isotropic,
since the generating image is a symmetrical figure with re-
gard to both axes. Most of the times, the complexity is in
the choose of the center coordinates within the buffers. Nor-
mally, an aleatory point is chosen to become the center of
the first buffer. Each point is then assigned to the nearest
center, and each center is recalculated as the mean of all

Fig. 6 Examples of the Minkowski sum taking a circle as the generat-
ing geometric object

Fig. 7 Areas of influence of specific data with a fixed distance

points assigned to it. In most cases, some not necessary cal-
culations are done in [5] proposing an algorithm based on
left and right side partial derivatives that allow to accelerate
the method to choose the centers of the new buffers.

4 Buffers in the Commercial GIS

The majority of commercial GIS have one or various mod-
ules that generate areas of isotropic influence. There are
three methods to generate the buffer or the zone of influ-
ence: the creation of areas of influence of specific data, the
creation of areas of influence of linear data and the creation
of areas of influence of polygonal data. This study will cen-
tre on the creation of areas of influence of specific data.

4.1 The Creation of Areas of Influence of Specific Data

Very frequently, GIS requires the generation of areas of in-
fluence in certain operations that analyze spatial data. The
simplest area of influence is generated around specific data,
as the process only implies the creation of “circular” poly-
gon around each point, with a radius that is equivalent to the
distance from the buffer. There are two ways of assigning the
width of the buffer, the first applies a fixed buffer distance
(specified by the user) to all points of a layer (Fig. 7).

The second (Fig. 8) consists of assigning an individual
distance to each point based on the attributes of another layer
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Fig. 8 Areas of influence of specific data with layer attributes

Fig. 9 Calculation of the intersection of areas of influence

Fig. 10 Calculation of the dissolution of areas of influence of specific
data

of the system (its weighting or weight). The width attributes
of the area of influence in this case will be stored in a feature
attribute table.

In case multiple points need to be analyzed in the layer,
the system should test the existence of overlaps between
the areas of each point (Fig. 9). These overlaps should be
deleted in such a way that the result is a polygonal layer that
represents the zone covered by the union between all the
areas. Hence, this procedure implies the application of two
additional operations: intersection and dissolution (Fig. 10).

The creation of buffers gives as a result a new poly-gonal-
type layer in the system, which represents the areas of in-
fluence generated from both weighted and fixed value dis-
tances. The resulting table of polygons will contain the iden-
tifiers of the polygons created in the procedure, and a new
attribute that indicates whether the polygon is found inside

Fig. 11 Calculation of the dissolution of areas of influence of specific
data with layer attributes

or outside the area of influence (Fig. 11). In this case it is
necessary to model those areas that are not adapted to the
circular shape. In [16] an algorithm is shown, used to sim-
ulate those kind of shapes, taking into account not only the
point within the circle, but also those that are tangent to the
polygon that circumscribes them.

5 A Forecasting Hybrid ISOTROPIC-CBR System

The images to be analyzed in this CBR system are divided
into smaller squares. A squared zone determines the area
that will be independently analyzed. The values of the dif-
ferent variables in a square area at a certain moment, which
define the problem or the situation that has to be solved, is
referred to as a case.

5.1 Case Base Creation

In this study, we have applied isotropic image analysis based
on the buffer operator using Von Misses distribution and the
Minkowski Sum, both previously introduced in Sect. 3. Ow-
ing to its good adaptation capabilities, this system has been
applied to calculate the areas of different environmental phe-
nomenon, so that they may be modeled.

Once the data is structured, it is stored in the case base.
The temporal situation of each case, which relates it with the
next situation in the same position is stored. That temporal
relationship is what creates the union between problem and
solution. The problem is the past case, and the solution is
the future case, the future state of the square under analysis.

Growing Cell Structures (GCS) [21] are used when intro-
ducing the data into the case base. GCS can create a model
from a situation organizing the different cases by their sim-
ilarity. If a 2D representation is chosen to explain this tech-
nique, the most similar cells (cases in CBR) are near one or
the other. If there is a relationship between the cells, they
are grouped together, and this grouping characteristic helps
the CBR system to retrieve similar cases in the next phase.
When a new cell is introduced into the structure, the closest
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cells move towards the new one, changing the overall struc-
ture of the system as shown in (11) and (12). The weights
of the winning cell, ωc, and its neighbours, ωn, are changed.
The new value is represented by ωc(t +1), and ωn(t +1) re-
spectively. The terms εc and εn represent the learning rates
for the winner and its neighbours, while x represents the
value of the input vector.

ωc(t + 1) = ωc(t) + εc(x − ωc) (11)

ωn(t + 1) = ωn(t) + εn(x − ωn) (12)

5.2 Generating Predictions

Once the historical data is stored in the case base, and the
GCS have been restructured according to the original dis-
tribution of the variables, the system is ready to receive a
new problem. When a new problem is introduced into the
system, GCS are used once again. The stored GCS behave
as if the new problem were stored in the structure, and finds
the cells (cases in the CBR system) that are the most similar
to the problem introduced into the system. In this case, the
GCS does not change its structure, because it is being used
to retrieve the most similar cases to the introduced problem.
Only in the retain phase does the GCS change, introducing
the proposed solution once again, if it is correct.

The similarity of the new problem to the stored cases is
determined by the GCS calculating the distance between
them. Every element in the GCS has a series of values
and the distance between the elements is therefore a multi-
dimensional distance, where all the elements are considered
to establish the distance between cells. Then, after obtaining
the most similar cases from the case base, they are used in
the next phase. The selected case bases will be used to gen-
erate an accurate prediction according to the previous solu-
tions that relate to the problem that was introduced.

Once the most similar cases to the problem to be solved
are recovered from the case base, they are used to generate
the solution. The prediction of the future probability of find-
ing oil slicks in an area is generated by using an artificial
neural network with a hybrid learning system. An adapta-
tion of Radial Basis Functions Networks is used to obtain
that prediction [23, 34]. Basis Function networks were cho-
sen because of their reduced training time, in comparison to
other artificial neural network systems, such as Multilayer
Perceptron (MLP).

Growing RBF networks [26] are used to obtain the pre-
dicted future values that correspond to the proposed prob-
lem. This adaptation of the RBF networks allows the system
to grow during training, gradually increasing the number of
elements (prototypes) which act as the centers of the radial
basis functions. In this case the creation of the Growing RBF
must be made automatically, which implies an adaptation of

the original GRBF system [43]. The definition of the error
for every pattern is shown below in (13):

ei = l/p

p∑

k=1

‖tik − yik‖ (13)

where tik is the desired value of the kth output unit of the ith
training pattern, yik the actual values of the kth output unit
of the ith training pattern. The Growing RBF pseudocode is
shown in Algorithm 1:

Algorithm 1 Growing Radial Basis Function pseu-

docode

1. Calculate the error, ei (3) for

every new possible prototype.

a. If the new candidate is not among

those selected and the calculated error is

less than a threshold error, then the new

candidate is added to the set of accepted

prototypes.

b. If the new candidate already belongs to

the accepted ones and the error is less

than the threshold error, then modify the

weights of the units, in order to adapt

them to the new situation.

2. Select the best prototypes from the

candidates.

a. If there are valid candidates, create a

new cell centered on the valid candidate.

b. Otherwise, increase the iteration

factor. If the iteration factor reaches

10% of the training population, freeze

the process.

3. Calculate global error and update the

weights.

a. If the results are satisfactory, end

the process.

b. If not, go back to step 1.

Once the GRBF network is created, it is used to generate
the solution to the proposed problem. The network is trained
with the same set of historical data that is included in the
case base in every moment. Training data is also used in
the prediction generation process. The data used to train the
GRBF network is stored as part of the case base and it can
be used to generate future predictions without accumulating
any additional “noise” to the prediction process.

The GRBF network stays under a training process that
continues until the results are considered good enough. To
determine when a result is good enough, historical cases not
used in the training process are presented to the network and
the values that the GRBF yields as outputs are compared
with their corresponding historical values. The results are
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considered valid if these “Slick Area” values differ within a
threshold that is defined with respect to the real values. The
threshold is calculated by taking account of the number of
cases stored in the case base: the more information available,
the better the solutions should be, so the threshold used will
be lower. For example, when, within the system, the number
of stored cases is under 1000 different elements, the differ-
ence between the predicted value and the actual one can be
up to a 30% of the actual value and considered a valid so-
lution. When the amount of information stored is increased
to, for example, 3000 elements, the difference between the
prediction and the actual measure should be under 15% to
be considered a good prediction.

After the training process, the GRBF is used to generate
the solutions using the cases retrieved from the case base.
This solution consists of a number representing the area of
sea covered with oil (in km2). When a problem is introduced
into the system, the network generates a solution for every
recovered case similar to the problem and the average of
those solutions is the proposed solution. The solution will
be the output of the network using the selected cases from
the case base as input data. When new data is introduced in
the case base, the GRBF is trained again, to adapt it to the
new elements that are introduced.

The correction of the proposed solution is known when
using test data, as all test data is part of the historical in-
formation obtained at the time of the oil spill or after it, by
acquiring it from different means (satellites, direct observa-
tions, etc.) so it is possible to compare the solution proposed
by the system with the real registered value.

5.3 Revising the Proposed Solution

Once generated, the prediction shows the analyzed area di-
vided into small squares to the user. The squares are colored
depending on the presence or otherwise of slicks in those
squares. The intensity of the color corresponds to the pos-
sibility of finding oil slicks in that area. The areas colored
with a higher intensity are those with the highest probabil-
ity of finding oil slicks in them. Representing the prediction
by coloring the different small squared areas depending on
the probability of finding oil slicks on them allows the user
to check the correction of the proposed solution, comparing
the proposed prediction with the actual data. But the system
provides an automatic revision method that must, in either
case, be checked by an expert user.

Explanations are used to check the correction of the pro-
posed solution and to justify the solution [47]. To obtain a
justification for a given solution, the cases selected from the
case base are used once again. To create an explanation, a
comparison between different possibilities was used. All the
selected cases have their own associated future situation. If
we consider the case and its solution as two vectors, we can

establish a distance between them, calculating the evolution
of the situation under the considered conditions. If the dis-
tance between the proposed problem and the solution given
is not greater than the distances obtained from the selected
cases, then the solution is a good one, according to the struc-
ture of the case base.

The explanations pseudocode is shown in Algorithm 2:

Algorithm 2 Explanations pseudocode

1. For every selected case in the retrieval

phase, the distance between the case and

its solution is calculated.

2. The distance between the proposed problem

and the proposed solution is also

calculated.

3. If the difference between the distance of

the proposed solution and those of the

selected cases is below a certain

threshold value, then the solution is

considered valid.

4. If not, the user is informed and the

process goes back to the retrieval

phase, where new cases are selected

from the case base.

5. If, after a series of iterations, the

system does not produce a good enough

solution, then the user is asked to

consider accepting the best of the

generated solutions.

The distances are calculated by considering the sign of
the values, not using its absolute value. This decision is eas-
ily justified by the fact that is not the same to move north as
it is to move south, even if the distance between two points
were equal. If the prediction is considered correct, it will
be stored in the case base, and it can then be used in future
predictions to obtain new solutions. It will have the same
category as the historical data previously stored in the sys-
tem.

When inserting a new case in the case base, GCS are used
again. When adapting to the new solution introduced in the
case base, the stored structure grows and improves its capa-
bility of generating good results since new knowledge has
been introduced in the system. After explaining the system
presented in this research, then, the results obtained by ap-
plying it to the oil spill problem will be shown. In next sec-
tion, a resume of the results obtained with the presented sys-
tem will be explained, as well as a comparison with previous
solutions generated for the oil spill problem.

6 Application and Results

The novel system explained above has been applied to a real
life case study to check the correction of the system itself
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Fig. 12 Satellite SAR image of an oil spill near the north–western
coast of Spain

as well as the isotropic image analysis. The system has been
used to generate predictions in oil spill situations.

6.1 The Oil Spill Problem

After an oil spill issue, it is necessary to determine whether
an area will be contaminated. To determine the presence or
absence of contamination in an area, the behavior of the
slicks generated by the spill has to be understood. The sys-
tem presented here was trained using historical data acquired
during the Prestige oil spill on the Galician west coast of
Spain, from November 2002 to April 2003. Most of the data
used by CROS was acquired from the ECCO (Estimating the
Circulation and Climate of the Ocean) consortium (Mene-
menlis et al. [37]).

First of all, the position, shape and size of the oil slicks
must be identified. The most precise way to acquire that in-
formation is by using satellite imagery. Synthetic Aperture
Radar(SAR) images are the most commonly used to auto-
matically detect this kind of slick [46]. These images have
been interpreted using CBR systems both for monitoring
[30] and for classification [11] purposes. The satellite im-
ages show certain areas where little or no activity is appar-
ent, such as zones with no waves, that are in fact oil slicks.
Figure 12 shows a SAR image of part of the western coast-
line of Galicia, along with some black areas corresponding
to the oil slicks. With SAR images it is possible to distin-
guish between normal sea variability and slicks.

Once the slicks are identified, it is also crucial to know
the meteorological and maritime conditions affecting the
slick at the time of the analysis. Information gathered from
weather satellites is used to obtain the required atmospheric
data. That is how different variables such as temperature, sea
height and salinity are measured in order to obtain a global
model [48] that will explain how the slick is expected to
evolve.

Table 1 Improvement in the results obtained after applying the buffer
operator

Cases RBF O.CBR GRBF+CBR Isot.-CBR

100 1.2% 1.4% 1.7% 2.1%

500 2.7% 2.6% 2.9% 2.9%

1000 3.1% 3.2% 3.6% 3.8%

2000 3.7% 3.9% 4.4% 4.5%

3000 4.2% 4.6% 4.8% 5.4%

4000 4.6% 5.0% 5.2% 6.0%

5000 5.1% 5.3% 5.6% 7.2%

There have been different ways to analyze, evaluate and
predict situations after an oil spill. One approach is by sim-
ulation [6], where a model of a certain area is created, in-
troducing specific parameters (weather, currents and wind)
and working with a forecasting system. Using this method-
ology, it is easy to obtain a good solution for a certain area
[15], but it is quite difficult to generalize in order to solve
the same problem in new zones. It is also possible to create
a model for a specific and problematic area [41], which is
of great, albeit limited assistance, because it is not possible
to apply that same solution to different geographical areas.
Current data must be considered in order to create contin-
gency plans that could help to minimize environmental risks
[8]. The end use of all these systems is in decision-support
systems that can help to take all the decisions that need to be
taken in an organized manner. To achieve this objective, dif-
ferent techniques have been used, ranging from fuzzy logic
[32] to negotiation with multi-agent systems [31].

6.2 Results

Previous versions of the novel system presented here have
been used to generate predictions to this very problem [35].
In this study, the use of the buffer operator introduces an
improvement in the quality of the information. The avail-
able data is more accurate when using the buffer operator as
a novel tool, which is key to an improved image analysis;
the data stored in the case base, which is used to generate
the solutions is more truthful, and so too are the predictions
generated by the system: the more accurate and precise the
information, the greater the improvement to the results.

Table 1 shows a summary of the results. Four differ-
ent techniques were compared, using an incremental case
base containing between 100 to 5,000 cases. The first tech-
nique, represented as “RBF” represents a simple Radial Ba-
sis Function Network that is trained with all the available
data. The network receives an area and its parameters as an
input. The RBF network gives a probability of finding oil
slicks in the analyzed area, as an output, which is consid-
ered a solution to the problem. The second one, an “Oceanic
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Fig. 13 Improvement of the
results after applying the buffer
operator

CBR” system represents a CBR system applied to fore-
cast oceanographic methods [9]. This system uses neural
networks in the adaptation process of the recovered cases,
in particular a Radial Basis Function network. The neural
network has a process of recovering elements from a net-
work knowledge base, from where the neural network re-
trieves the parameters to calibrate the network. This CBR
system has been applied to oceanographic problems. The
Isotropic-CBR system presented here uses the GCS algo-
rithm to structure the case base, improving the organiza-
tional characteristics of the case base and includes GRBF
networks, which generate more accurate predictions than the
RBF network. The third one, called “GRBF+CBR”, corre-
sponds to the possibility of using a GRBF neural network
combined with CBR. Recovery from the CBR is carried out
by using the Manhattan distance to determine the closest
cases to the problem. The GRBF network works in the reuse
phase, adapting the selected cases to obtain the new solution.
Finally, the “Isotropic-CBR” system represents the system
presented here. An increasing number of cases is due both
to the analysis of additional images of oil spills added to the
set of images used in previous tests and to the reuse of so-
lutions proposed by the system. Table 1 shows the evolution
of the results along with the increase in the number of cases
stored in the case base. The numerical results showed in Ta-
ble 1 represent the average of a series of tests completed with
the available information. The number of tests performed in
each iteration (every time the case base grows) represents
ten percent of the size of the case base (if the case base con-
tains 1000 elements, then 100 tests will be performed, and
so on). When amount of available information is increased
by adding new data to the system (new satellite data, new
direct observations), the results are validated again consid-
ering the new conditions offered by the new data. The more

Table 2 Results obtained with the different techniques used for com-
parison

Cases RBF O.CBR GRBF+CBR Isot.-CBR

100 46% 41% 44% 45%

1000 53% 50% 61% 70%

3000 64% 62% 73% 86%

5000 68% 69% 77% 94%

data available, the better results the systems usually gener-
ate. The elements that make part of the ten percent of the
data used to test the correction of the system has not pre-
viously been used in its training. Those cases also come to
form part of the historical information and may be used to
check the correction of the predictions generated by the sys-
tem. For every case stored in the case base there is a future
situation corresponding to the solution of that situation. The
cases used to test the system are randomly chosen from the
overall amount of cases. The results for each of the tech-
niques under analysis improved when the number of cases
stored was increased. Figure 13 shows a graphical represen-
tation of the results in Table 1, clearly showing that the use
of the buffer operator in the Isotropic-CBR leads to an im-
provement in the results. Table 1 shows the improvement
obtained in the different systems previously explained after
applying the buffer operator to them. Those improvements
are measured with a series of identical systems that only dif-
fers from the ones used here in the use of the buffer operator.
It is quite significant to notice that all of them improve their
results, what means that the quality of the information used
to generate the solutions is better when using the buffer op-
erator.

Table 2 shows the average values of the accuracy of the
predictions generated by the different systems used for com-
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Fig. 14 Percentage of good
predictions from the four
different techniques and for
different numbers of cases

parison after applying the buffer operator. The percentage of
good predictions obtained by the different systems is shown
in Table 2. It may be seen that while the number of cases
stored in the system increases, the accuracy of the results
also improves. The results generated by the Isotropic-CBR
system are better than those of the other systems, especially
when a large enough amount of information is stored in the
system. Figure 14 shows a graphical representation of the
data in Table 2. There is a group of columns for every tech-
nique analyzed. The different colours of the columns in the
figure represent the growth of the case base, having different
number of stored cases. It clearly shows the improvements
obtained by the Isotropic-CBR system. When the case base
has 100 elements, it can be seen how the four methods per-
forms in a similar way. Nevertheless, and as expected, when
the number of cases increases, the difference in performance
is higher. When the case base contains 5000 cases, the per-
centage of good predictions achieve a quite high value for
the novel hybrid model( Isotropic-CBR: 94%) when the sec-
ond best model (GBRF+CBR) achieve a value of 77%. The
improvement obtained when the amount of stored elements
is increased is bigger in the presented model than in the other
techniques. This is mainly due to the importance of the reuse
of the information and the optimization of the use of past
successful results.

7 Conclusions

We have presented a novel hybrid CBR system, by using,
for the first time, a GIS technique based on the use of an
isotropic buffer operator.

The areas in our CBR system were calculated by divid-
ing the global images into smaller ones, so that a different

buffer may be applied to each one. Changing the size of the
buffer will help the system to generate a more accurate anal-
ysis, improving the quality of the data in the final case-based
solution, resulting in better prediction results.

The system presented in this study has been applied to
generate predictions in an oil spill environment. The results
shown in Sect. 6 demonstrate the accuracy of the image
analysis performed with the aid of the buffer operator. The
“Isotropic-CBR” system presented here has been compared
with three other systems, explained in the previous section,
showing better results than those systems. When the amount
of information available is increased, the results obtained
by the “Isotropic-CBR” system are significant better than
those obtained with the other systems. When having 5000
elements in the case base, the results obtained by the system
presented here are between 17 and 24% better than those
obtained with the other systems.

The next steps in the development of the buffer opera-
tor applied to this CBR system will be the application of
the system to other case studies and improvements to image
analysis and the use of the buffer operator; thereby introduc-
ing novel techniques that may generate better results in this
and other fields of knowledge.
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