
234 Int. J. Computer Applications in Technology, Vol. 39, No. 4, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

Applying a service-oriented approach for developing
a distributed multi-agent system for healthcare

Dante I. Tapia*, Juan Francisco De Paz,
Sara Rodríguez, Cristian Pinzón,
Rosa Cano, Javier Bajo and Juan M. Corchado
Departamento de Informática y Automática,
Universidad de Salamanca,
Plaza de la Merced s/n, 37008,
Salamanca, Spain
E-mail: dantetapia@usal.es
E-mail: fcofds@usal.es
E-mail: srg@usal.es
E-mail: cristian_ivanp@usal.es
E-mail: rcano@usal.es
E-mail: jbajope@usal.es
E-mail: corchado@usal.es
*Corresponding author

Abstract: This paper presents a service-oriented architecture that allows a more efficient
distribution of resources and functionalities. The architecture has been used to develop a
multi-agent system aimed at enhancing the assistance and healthcare for Alzheimer patients
living in geriatric residences. Most of the system functionalities have been modelled as
independent and distributed services, including reasoning, planning and security mechanisms.
The results obtained after testing the architecture in a real healthcare scenario demonstrate that a
service-oriented approach is far more robust and has better performance than a centralised one.

Keywords: multi-agent systems; service-oriented architectures; case-based reasoning; case-based
planning; healthcare; security.

Reference to this paper should be made as follows: Tapia, D.I., De Paz, J.F., Rodríguez, S.,
Pinzón, C., Cano, R., Bajo, J. and Corchado, J.M. (2010) ‘Applying a service-oriented approach
for developing a distributed multi-agent system for healthcare’, Int. J. Computer Applications in
Technology, Vol. 39, No. 4, pp.234–244.

Biographical notes: Dante I. Tapia received a PhD in Computer Science from the University of
Salamanca (Spain) in 2009. He obtained the Engineering degree in Computer Sciences in 2001
and the MSc in Telematics from the University of Colima (Mexico) in 2004. He has collaborated
with the Government of the State of Colima (Mexico), where he obtained a scholarship to
complete his academic formation. He has been involved in several R&D projects. He has been a
member of the organising and scientific committee of several international symposiums. He has
also been co-author of papers published in recognised journals, workshops and symposiums.

Juan Francisco De Paz is a PhD student at the University of Salamanca. He obtained a research
scholarship from the Science and Education Ministry, and is involved in several R&D projects.
He obtained the Engineering degree in Informatics in 2005 and the Statistics Diploma in 2007
from the University of Salamanca. He has been a member of the organising and scientific
committee of several international symposiums. He has also been co-author of papers published
in recognised journals, workshops and symposiums.

Sara Rodríguez is a PhD student at the University of Salamanca. She obtained the Engineering
degree in Informatics from the University of Salamanca in 2007. She has been a member of the
organising and scientific committee of several international symposiums. She has also been
co-author of papers published in recognised journals, workshops and symposiums.

Cristian Pinzón is a PhD student at the University of Salamanca. He obtained a research
scholarship from the National Secretary of Science, Technology and Innovation (SENACYT-
Panama) to complete his academic formation. He obtained the Bachelor degree in Informatics
from the Technological University of Panama (Panama) in 2003. He obtained a Master in
Intelligent Systems from the University of Salamanca in 2007. He has been co-author of papers
published in recognised journals, workshops and symposiums.

 Applying a service-oriented approach 235

Rosa Cano is a PhD student at the University of Salamanca. She obtained the Engineering degree
in Informatics in 1986 and the MSc in Computer Sciences from the Instituto Tecnológico y de
Estudios Superiores de Monterrey (ITESM), México, in 1991. She has collaborated with the
government and private industry in México. She has been involved in several R&D projects.
She has been a member of the organising and scientific committee of several international
symposiums. She has also been co-author of papers published in recognised journals, workshops
and symposiums.

Javier Bajo received a PhD in Computer Science from the University of Salamanca in 2007.
He is an Assistant Professor at the University of Salamanca. He obtained the Information
Technology degree from the University of Valladolid (Spain) in 2001 and Engineering in
Computer Sciences degree from the Pontifical University of Salamanca (Spain) in 2003. He has
been a member of the organising and scientific committee of several international symposiums.
He has also been co-author of papers published in recognised journals, workshops and
symposiums.

Juan M. Corchado is Dean of the Faculty of Sciences at the University of Salamanca. He received
a PhD in Computer Science from the University of Salamanca in 1998 and a PhD in Artificial
Intelligence from the University of Paisley, Glasgow, UK, in 2000. He has led several artificial
intelligence research projects sponsored by Spanish and European public and private institutions
and has supervised several PhD students. He is co-author of over 130 books, book chapters,
journal papers, technical reports, etc. He has been the President of the organising and scientific
committee of several international symposiums.

1 Introduction

The continuous growth of the internet requires frameworks
for web application integration (Oren et al., 2007). Web
applications are executed in distributed environments, and each
part that composes the program can be located in a different
machine. The absence of a strategy for integrating applications
generates multiple points of failure that can affect the systems’
performance. Some of the technologies that have acquired a
relevant paper in the web during the last years are the multi-
agent systems and Service-Oriented Architectures (SOA). This
work describes a novel architecture for developing multi-agent
systems and explains how it has been designed and applied to a
real scenario. The architecture presents important improvements
in the vision of the integration of web applications. One of the
most important characteristics is the use of intelligent agents
as the main components in employing a service-oriented
approach, focusing on distributing the majority of the systems’
functionalities into remote and local services and applications.
The architecture proposes a new and easier method of building
distributed multi-agent systems, where the functionalities of
the systems are not integrated into the structure of the agents;
rather they are modelled as distributed services which are invoked
by the agents acting as controllers and coordinators.

Agents have a set of characteristics, such as autonomy,
reasoning, reactivity, social abilities, pro-activity, mobility,
organisation, etc., which allow them to cover several needs for
highly dynamic environments. Agent and multi-agent systems
have been successfully applied to several scenarios, such as
education, culture, entertainment, medicine, robotics, etc.
(Corchado et al., 2008b). The characteristics of the agents make
them appropriate for developing dynamic and distributed
systems, as they possess the capability of adapting themselves
to the users and environmental characteristics (Jayaputera et al.,
2007). Most of the agents are based on the deliberative Belief,

Desire, Intention (BDI) model (Wooldridge and Jennings,
1995), where the agents’ internal structure and capabilities are
based on mental aptitudes, using beliefs, desires and intentions
(Bratman, 1987). Nevertheless, complex systems need higher
adaptation, learning and autonomy levels than pure BDI model
(Bratman, 1987). This is achieved by modelling the agents’
characteristics (Wooldridge and Jennings, 1995) to provide
them with mechanisms that allow solving complex problems
and autonomous learning. Some of these mechanisms are
Case-Based Reasoning (CBR) (Aamodt and Plaza, 1994) and
Case-Based Planning (CBP) (De Paz et al., 2008), where
problems are solved by using solutions to similar past problems
(Corchado et al., 2008a; Corchado et al., 2008b). Solutions are
stored into a case memory, which the mechanisms can consult
in order to find better solutions for new problems. CBR and
CBP mechanisms have been modelled as external services.
Deliberative agents use these services to learn from past
experiences and to adapt their behaviour according the context.

This paper briefly describes a Flexible User and ServIces
Oriented multi-ageNt Architecture (FUSION@), a service-
oriented alternative for distributed multi-agent architecture.
This architecture has been used for developing ALZ-MAS 2.0,
a multi-agent system aimed at enhancing the assistance and
healthcare for Alzheimer patients living in geriatric residences.
ALZ-MAS 2.0 is based on FUSION@ and implements a
services oriented approach, where functionalities, including
CBR and CBP mechanisms, are not integrated into the structure
of the agents, rather they are modelled as distributed services
and applications which are invoked by the agents. This paper
also describes the security mechanisms used for protecting
sensitive information.

In the next section, the problem description that motivated
this work is presented. Section 3 briefly presents the
FUSION@ architecture and different functionalities. Section 4
describes the basic components of ALZ-MAS 2.0 and shows

236 D.I. Tapia et al.

how this system has been designed according the distributed
approach defined by FUSION@. Finally, Section 5 presents
the results and conclusions obtained in this work.

2 Problem description

Excessive centralisation of services negatively affects the
systems’ functionalities, overcharging or limiting their
capabilities. Classical functional architectures are characterised
by trying to find modularity and a structure oriented to the
system itself. Modern functional architectures like SOA
(Service-Oriented Architecture) consider integration and
performance aspects that must be taken into account when
functionalities are created outside the system. These architectures
are aimed at the interoperability between different systems,
distribution of resources and the lack of dependency of
programming languages (Cerami, 2002). As described by
OASIS (2008), “A SOA-based system is a network of
independent services, machines, the people who operate, affect,
use, and govern those services as well as the suppliers of
equipment and personnel to these people and services”. The
term service can be defined as a mechanism that facilitates the
access to one or more functionalities (e.g. functions, network
capabilities, etc.). Services are linked by means of standard
communication protocols that must be used by applications in
order to share resources in the services network (Ardissono
et al., 2004). The compatibility and management of messages
that the services generate to provide their functionalities is an
important and complex element in any of these approaches.

One of the most prevalent alternatives to these architectures
is the multi-agent systems technology which can help to distribute
resources and reduce the central unit tasks (Ardissono et al.,
2004). A distributed agents-based architecture provides more
flexible ways to move functions to where actions are needed,
thus obtaining better responses at execution time, autonomy,
services continuity, and superior levels of flexibility and
scalability than centralised architectures (Camarinha-Matos and
Afsarmanesh, 2007). Additionally, the programming effort is
reduced because the agents cooperate in solving problems and
reaching specific goals, thus giving the systems the ability to
generate knowledge and experience.

Agent and multi-agent systems combine classical and
modern functional architecture aspects. Multi-agent systems
are structured by taking into account the modularity in the
system, and by reuse, integration and performance. Nevertheless,
integration is not always achieved because of the incompatibility
among the agents’ platforms. The integration and interoperability
of agents and multi-agent systems with SOA and Web Services
approaches has been recently explored (Ardissono et al., 2004).
Some developments are centred on communication between
these models, while others are centred on the integration of
distributed services, especially Web Services, into the structure
of the agents (Li et al., 2004; Shafiq et al., 2006; Liu, 2007;
Ricci et al., 2007). Although these developments provide an
adequate background for developing distributed multi-agent
systems integrating a service-oriented approach, most of them
are in early stages of development, so it is not possible to
actually know their potential in real scenarios.

3 The FUSION@ architecture

The continuous evolution of software requires creating
increasingly complex and flexible applications, so there is a
trend towards reusing resources and share compatible platforms
or architectures. In some cases, applications require similar
functionalities already implemented into other systems which
are not always compatible. At this point, developers can face
this problem through two options: reuse functionalities already
implemented into other systems; or re-deploy the capabilities
required, which means more time for development, although
this is the easiest and safest option in most cases. While the
first option is more adequate in the long run, the second one is
most chosen by developers, which leads to have replicated
functionalities as well as greater difficulty in migrating systems
and applications. This is a poorly scalable and flexible model
with reduced response to change, in which applications are
designed from the outset as independent software islands.

FUSION@ has been designed to facilitate the development
of distributed multi-agent systems with high levels of human-
system-environment interaction, since agents have the ability to
dynamically adapt their behaviour at execution time. It also
provides an advanced flexibility and customisation to easily
add, modify or remove applications or services on demand,
independently of the programming language. FUSION@ is
based on a SOA approach, but modifying this model to fit our
requirements and goals. FUSION@ formalises four basic blocks:
Applications, Services, Agents Platform and Communication
Protocol. These blocks provide all the functionalities of the
architecture:

1 Applications: These represent all the programs that can be
used to exploit the system functionalities. Applications are
dynamic and adaptable to context, reacting differently
according to the particular situations and the services
invoked. They can be executed locally or remotely, even
on mobile devices with limited processing capabilities,
because computing tasks are largely delegated to the
agents and services.

2 Agents Platform: This is the core of FUSION@, integrating
a set of agents, each one with special characteristics and
behaviour. An important feature in this architecture is
that the agents act as controllers and administrators for
all applications and services, managing the adequate
functioning of the system, from services, applications,
communication and performance to reasoning and
decision-making. In FUSION@, services are managed and
coordinated by deliberative BDI agents. The agents
modify their behaviour according to the users’ preferences,
the knowledge acquired from previous interactions, as
well as the choices available to respond to a given
situation.

3 Services: These represent the activities that the architecture
offers. They are the bulk of the functionalities of the
system at the processing, delivery and information
acquisition levels. Services are designed to be invoked
locally or remotely. Services can be organised as local
services, web services, GRID services, or even as

 Applying a service-oriented approach 237

individual stand alone services. Services can make use of
other services to provide the functionalities that users
require. FUSION@ has a flexible and scalable directory
of services, so they can be invoked, modified, added, or
eliminated dynamically and on demand. It is absolutely
necessary that all services follow the communication
protocol to interact with the rest of the architecture
components.

4 Communication Protocol: This allows applications and
services to communicate directly with the agents’ platform.
The protocol is completely open and independent of any
programming language. This protocol is based on SOAP
specification to capture all messages between the platform
and the services and applications (Cerami, 2002). Services
and applications communicate with the agents’ platform
via SOAP messages. A response is sent back to the
specific service or application that made the request.
All external communications follow the same protocol,
while the communication among agents in the platform
follows the FIPA Agent Communication Language (ACL)
specification. This is especially useful when applications
run on limited processing capable devices (e.g. cell phones
or PDAs). Applications can make use of agents platforms
to communicate directly (using FIPA ACL specification)
with the agents in FUSION@, so while the communication
protocol is not needed in all instances, it is absolutely
required for all services. These blocks are managed by
means of pre-defined agents that provide the basic
functionalities of FUSION@:

• CommApp Agent: This agent is responsible for all
communications between applications and the
platform. It manages the incoming requests from the
applications to be processed by services. It also
manages responses from services (via the platform)
to applications. CommApp Agent is always on
‘listening mode’. Applications send XML messages
to the agent requesting a service and then the agent
creates a new thread to start communication by using
sockets. The agent sends all requests to the Manager
Agent which processes the request. The socket
remains open until a response to the specific request
is sent back to the application using another XML
message. All messages are sent to Security Agent for
their structure and syntax to be analysed.

• CommServ Agent: It is responsible for all
communications between services and the platform.
The functionalities are similar to CommApp Agent
but backwards. This agent is always on ‘listening
mode’ waiting for responses of services. Manager
Agent signals to CommServ Agent which service
must be invoked. Then, CommServ Agent creates a
new thread with its respective socket and sends an
XML message to the service. The socket remains
open until the service sends back a response. All
messages are sent to Security Agent for their
structure and syntax to be analysed. This agent also
periodically checks the status of all services to know
if they are idle, busy, or crashed.

• Directory Agent: It manages the list of services
that can be used by the system. For security reasons
(Snidaro and Foresti, 2007), the list of services is
static and can only be modified manually; however,
services can be added, erased or modified dynamically.
The list contains the information of all trusted
available services. The name and description of the
service, parameters required and the IP address of the
computer where the service is running are some of the
information stored in the list of services. However,
there is dynamic information that is constantly being
modified: the service performance (average time to
respond to requests), the number of executions and
the quality of the service. This last data is very
important, as it assigns a value between 0 and 1 to all
services. All new services have a Quality of Service
(QoS) value set to 1. This value decreases when the
service fails (e.g. service crashes, no service found,
etc.) or has a subpar performance compared to similar
past executions. QoS is increased each time the
service efficiently processes the tasks assigned.
Information management is especially important on
healthcare environments because the data processed
is very sensitive and personal. Thus, security must be
a major concern when developing this kind of
systems. For this reason FUSION@ does not implement
a service discovery mechanism, requiring systems to
employ only the specified services from a trusted
list of services. However, agents can select the
most appropriate service (or group of services) to
accomplish a specific a task.

• Supervisor Agent: This agent supervises the correct
functioning of the other agents in the system.
Supervisor Agent periodically verifies the status of all
agents registered in the architecture by sending ping
messages. If there is no response, the Supervisor
Agent kills the agent and creates another instance of
that agent.

• Security Agent: This agent analyses the structure and
syntax of all incoming and outgoing XML messages.
If a message is not correct, the Security Agent
informs the corresponding agent (CommApp or
CommServ) that the message cannot be delivered.
This agent also directs the problem to the Directory
Agent, which modifies the QoS of the service where
the message was sent.

• Manager Agent: Decides which agent must be called
by taking into account the QoS and users preferences.
Users can explicitly invoke a service, or can let the
Manager Agent decide which service is best to
accomplish the requested task. If there are several
services that can resolve the task requested by an
application, the agent selects the optimal choice.
An optimal choice has higher QoS and better
performance. Manager Agent has a routing list to
manage messages from all applications and services.
This agent also checks if services are working
properly. It requests the CommServ Agent to send

238 D.I. Tapia et al.

ping messages to each service on a regular basis. If a
service does not respond, CommServ informs
Manager Agent, which tries to find an alternate
service, and informs the Directory Agent to modify
the respective QoS.

• Interface Agent: This kind of agent was designed to
be embedded in users’ applications. Interface agents
communicate directly with the agents in FUSION@
so there is no need to employ the communication
protocol, rather the FIPA ACL specification. The
requests are sent directly to the Security Agent, which
analyses the requests and sends them to the Manager
Agent. The rest of the process follows the same
guidelines for calling any service. These agents must
be simple enough to allow them to be executed on
mobile devices, such as cell phones or PDAs. All high
demand processes must be delegated to services.

3.1 A service example

FUSION@ also facilitates the inclusion of technologies that
allow systems to automatically obtain information from users
and the environment in an evenly distributed way, focusing
on the characteristics of ubiquity, awareness, intelligence,
mobility, etc. The goal in FUSION@ is not only to distribute
services and applications, but to also promote a new way of
developing systems focusing on ubiquity and simplicity.
Figure 1 shows the readCHIP service. This service has been
implemented to facilitate indoor location based on RFID
(Radio Frequency IDentification) technology. When a RFID
reader detects the presence of a chip, the readCHIP service is
automatically invoked. The inputs considered for this service
consists of the device identification, the type of device, and
the location of the device. At this moment the service checks
the type of CHIP and calculates the location information, that
is, the identification for the chip, the user identification and
the coordinates which determine the physical position. This
information is then sent to the Devices Agent of ALZ-MAS
in order to be automatically processed.

Figure 1 Functioning of RFID technology

SERVICE DESCRIPTION

readCHIP This service identificates a chip once it
has been detected for a RFID reader

P
R
O
F
I
L
E

ClientRole

UserAgent

Inputs

NoDivice: string

typeDevice: string

deviceLocation: location

ProviderRole

DevicesAgent

Outputs

[typeCHIP OK]

idCHIP: string

idUser: string

chipLocation: location

[typeCHIP NOT OK]

3.2 A security mechanism for protecting
sensitive data

SOAP-level security mechanisms are very flexible, reason
for which, web services may be vulnerable to a great
number of attacks based on the unauthorised manipulation,
malicious interception and transmission of SOAP messages.
These attacks are referred as XML rewriting attacks
(Rahaman and Schaad, 2007). In the case of FUSION@ the
received messages are executed from many points. This
situation supposes a security risk because of the sensitive
information transmitted on each message.

Several standards have been proposed as a solution
to tackle attacks on web services, such as WS-Security
(OASIS, 2004), WS-Policy (W3C, 2002; W3C, 2008)
among other. We have considered to apply a solution set
that have been implemented y tested in real scenarios and
recommended by the most important institutions in web
service security such as W3C (W3C, 2002; W3C, 2008) and
OASIS (Advancing Open Standards for the information
society) (OASIS, 2004). The main objective is to ensure the
typical requirements such as integrity, confidentiality and
availability of the information transmitted within the SOAP
message.

A security solutions set has been included as a
service within FUSION@. The Security Agent in FUSION@
manages the security functions. When a message is received,
the Security Agent captures the message and carrying out a
call for a security service. The SOAP message is examined
and a response is returned about the validity of the SOAP
message. The security strategy implemented as a service
within FUSION@ is based on XML Digital Signature (W3C,
2008) and XML Encryption (W3C, 2002). XML Digital
Signature describes how to attach a digital signature to
some XML data. This will ensure data integrity and non
repudiation. XML Encryption describes how to encode an
XML document or some parts of it, so that its confidentiality
can be preserved. This process is implemented by means of
XML Security Library (XMLSec Library) (Sanin, 2008).
XML Security Library performs signature or encryption by
processing input xml or binary data and a template that
specifies a signature or encryption skeleton: the transforms,
algorithms and the key selection process. XML Security
Library supports a variety of features and algorithms. XML
security Library is divided in two parts: core library (xmlsec)
and crypto library. In this case, the mechanism for the
signature and verification of the message is built on by using
X.509 certificate. Once the XML security Library has been
correctly installed and configured, all the SOAP messages
may be validated and signed. Finally, other element
incorporated within the security service of FUSION@ is a
mechanism to make valid the syntax of each SOAP message.
We use Libxml2 (Libxml2-WEB, 2008), which supports the
XML 1.0 and contains advanced parser functionality such

 Applying a service-oriented approach 239

as W3C’s XML Schema recommendation 1.0 among other.
When a SOAP message with bugs is detected, a message is
returned by the security service to the Security agent for
immediately to block its entrance and execution within the
FUSION@’s service database.

Figure 2 shows the security solution set incorporated in
FUSION@ for validating each incoming and outgoing
SOAP message and avoiding events that can endanger
the security in FUSION@. Each incoming SOAP message
is verified whether the digital signature has not been
changed throughout the path between sender and recipient.
Next, sensitive XML data included in the body of the
SOAP message are decrypted for finally to analyse its

syntactical structure. If the SOAP message is valid then the
request of the service is processed. On the other hand, when
an outgoing message of response is sent from FUSION@,
the first phase is to carry out a syntactical analysis and
remove any bug within the message. Next, the sensitive
XML data are encrypted and finally the SOAP message is
signed for send back the response to the user. By using
XML security Library to the digital signature and
encryption and Libxml2 as syntactical analyser for the
SOAP message, the performance to the architecture is little
impacted taking the advantages into account provided by
these solutions and theirs close relationship with the SOAP
service technology.

Figure 2 Security solution adopted in FUSION@

240 D.I. Tapia et al.

In the next section, ALZ-MAS 2.0 is presented, where
FUSION@ has helped to distribute most of its functionalities
and re-design a completely functional multi-agent system
aimed at improving several aspects of dependent people.

4 ALZ-MAS 2.0

ALZ-MAS 2.0 is an improved version of ALZ-MAS
(ALZheimer Multi-Agent System) (Corchado et al., 2008a;
Corchado et al., 2008b), a multi-agent system aimed at
enhancing the assistance and healthcare for Alzheimer patients
living in geriatric residences. The main functionalities in the
system are managed by deliberative BDI agents, including
Case-Based Reasoning (CBR) and Case-Based Planning (CBP)
mechanisms.

ALZ-MAS structure has five different deliberative
agents based on the BDI model (BDI Agents), each one
with specific roles and capabilities:

• User Agent: This agent manages the users’ personal data
and behaviour (monitoring, location, daily tasks and
anomalies). The User Agent beliefs and goals applied to
every user depend on the plan or plans defined by the
super-users.

• SuperUser Agent: This agent inserts new tasks into the
Manager Agent to be processed by a CBR and CBP
mechanisms.

• ScheduleUser Agent: It is a BDI agent with a CBP
mechanism embedded in its structure. It schedules the
users’ daily activities and obtains dynamic plans depending
on the tasks needed for each user. There is one ScheduleUser
Agents for each nurse connected to the system.

• Admin Agent: It runs on a Workstation and plays two
roles: the security role that monitors the users’ location
and physical building status (temperature, lights, alarms,
etc.) through continuous communication with the Devices
Agent; and the manager role that handles the databases
and the task assignment.

• Devices Agent: This agent controls all the hardware devices.
It monitors the users’ location (continuously obtaining/
updating data from sensors), interacts with sensors and
actuators to receive information and control physical services
(wireless devices status, communication, temperature,
lights, door locks, alarms, etc.).

In the initial version of ALZ-MAS, each agent integrated its
own functionalities into their structure. If an agent needs
to perform a task which involves another agent, it must
communicate with that agent to request it. So, if the agent is
disengaged, all its functionalities will be unavailable to the rest
of agents. This has been an important issue in ALZ-MAS, since
agents running on PDAs are constantly disconnecting from the
platform and consequently crashing, making it necessary to
restart (killing and launching new instances) those agents.
Another important issue is that the CBR and CBP mechanisms
are integrated into the agents. These mechanisms are busy
almost all the time, overloading the respective agents. Because
CBR and CBP mechanisms are the core of the system, they

must be available at all times. The system depends on these
mechanisms to generate all decisions, so it is essential that
they have all processing power available in order to increase
overall performance. In addition, the use of CBR and CBP
mechanisms into deliberative BDI agents makes these
agents complex and unable to be executed on mobile devices.
In ALZ-MAS 2.0, these mechanisms have been modelled as
services to distribute resources.

The entire ALZ-MAS structure has been modified,
separating most of the agents’ functionalities from those to be
modelled as services. However, all functionalities are the same
in both approaches, since we have considered it appropriated
to compare the performance of both systems in identical
conditions. As an example showing the differences between
both approaches, the next sub-section describes the CBP
mechanism that has been extracted from the ScheduleUser
Agent structure and modelled as a service.

As seen on Figure 3, the entire ALZ-MAS structure has
been modified according to FUSION@ model, separating
most of the agents’ functionalities from those to be modelled
as services. However, all functionalities are the same in
both approaches, since we have considered it appropriated to
compare the performance of both systems to prove the
efficiency of FUSION@ model.

4.1 A case-based planning mechanism for scheduling
daily activities

As previously mentioned, some agents in ALZ-MAS
integrate CBR and CBP mechanisms (then modelled as
services in ALZ-MAS 2.0), which allow them to make use of
past experiences to create better plans and achieve their goals.
These mechanisms provide the agents greater learning and
adaptation capabilities. The main characteristics of the CBP
mechanism are described in the remainder of this section.

Case-Based Reasoning (CBR) is a type of reasoning
based on past experiences (Aamodt and Plaza, 1994). CBR
solve new problems by adapting solutions that have been
used to solve similar problems in the past, and learn from
each new experience. The primary concept when working
with CBR is the concept of case, which is described as a
past experience composed of three elements: an initial state
or problem description that is represented as a belief; a
solution, which provides the sequence of actions carried
out in order to solve the problem; and a final state, which
is represented as a set of goals. CBR manages cases (past
experiences) to solve new problems. The way cases are
managed is known as the CBR cycle, and consists of four
sequential phases: retrieve, reuse, revise and retain. The
retrieve phase starts when a new problem description is
received. Similarity algorithms are applied so that the cases
with the problem description most similar to the current one
can be retrieved from the cases memory. Once the most
similar cases have been retrieved, the reuse phase begins by
adapting the solutions for the retrieved cases in order to
obtain the best solution for the current case. The revise
phase consists of an expert revision of the proposed
solution. Finally, the retain phase allows the system to learn
from the experiences obtained in the three previous phases,
and consequently updates the cases memory.

 Applying a service-oriented approach 241

Figure 3 ALZ-MAS 2.0 basic structure (see online version for colours)

CBP comes from CBR, but is specially designed to generate
plans (sequence of actions) (Corchado et al., 2008a;
Corchado et al., 2008b). In CBP, the proposed solution for
solving a given problem is a plan. This solution is generated
by taking into account the plans applied for solving similar
problems in the past. The problems and their corresponding
plans are stored in a plans memory. The reasoning
mechanism generates plans using past experiences and
planning strategies, which is how the concept of Case-Based
Planning is obtained (Corchado et al., 2008b; De Paz et al.,
2008). CBP consists of four sequential stages: the retrieve
stage, which recovers the past experiences most similar to
the current one; the reuse stage, which combines the
retrieved solutions in order to obtain a new optimal solution;
the revise stage, which evaluates the obtained solution; and
retain stage, which learns from the new experience. Problem
description (initial state) and solution (situation when final
state is achieved) are represented as beliefs, the final state as
a goal (or set of goals), and the sequences of actions as
plans. The CBP cycle is implemented through goals and
plans. When the goal corresponding to one of the stages is
triggered, different plans (algorithms) can be executed
concurrently to achieve the goal or objective. Each plan can
trigger new sub-goals and, consequently, cause the
execution of new plans. In practice, what is stored is not
only a specific problem with a specific solution, but also
additional information about how the plans have been
derived. As with CBR, the case representation, the plans
memory organisation, and the algorithms used in every
stage of the CBP cycle are essential in defining an efficient
planner.

In the initial version of ALZ-MAS, the CBR and CBP
mechanisms are deeply integrated into the agents’ structure.
In ALZ-MAS 2.0, these mechanisms have been modelled as

services linked to agents, thus increasing the system’s overall
performance. To generate a new plan, a ScheduleUser Agent
(running on a PDA) sends a request to the platform. The
message is processed and the platform invokes the mechanism
(or service). The mechanism receives the message and starts to
generate a new plan. Then, the solution is sent to the platform
which delivers the new plan to all ScheduleUser Agents
running. The CBP service creates optimal paths and scheduling
in order to facilitate the completion of all tasks defined for the
nurses connected to the system (Corchado et al., 2008b).

5 Results and conclusions

This paper has presented FUSION@, an architecture which
proposes a novel approach for integrating: applications,
agents and services. FUSION@ also facilitates the inclusion
of technologies that allow systems to automatically obtain
information from users and the environment in an evenly
distributed way. FUSION@ has been employed to develop
an improved version of ALZ-MAS (ALZheimer Multi-
Agent System) (Corchado et al., 2008a), a multi-agent
system aimed at enhancing assistance and healthcare for
Alzheimer patients in geriatric residences. Figure 4 shows
the main user interface of ALZ-MAS (left) and ALZ-MAS
2.0. These systems have the same functionalities and share
almost the same user interface. The interfaces show basic
information about nurses and patients (name, tasks that must
be accomplished, schedule, location inside the residence,
etc.) and the building (outside temperature, specific room
temperature, lights status, etc.). Both interfaces are managed
by the Manager Agent and appear similar to users. However,
the performance of ALZ-MAS 2.0 has been highly improved,
mainly because most of the functionalities have been
modelled as distributed and independent services.

242 D.I. Tapia et al.

Figure 4 (a) ALZ-MAS main user interface; (b) ALZ-MAS 2.0 main user interface (see online version for colours)

(a) (b)

Several tests have been done to demonstrate if a distributed
approach is appropriate to optimise the performance of
multi-agent systems, in this case ALZ-MAS 2.0. The tests
consisted of a set of requests delivered to the CBP
mechanism which in turn had to generate paths for each set
of tasks (i.e. scheduling). For every new test, the cases
memory of the CBP mechanism was deleted in order to
avoid a learning capability, thus requiring the mechanism
to accomplish the entire planning process. As can be seen
in Table 1, a task is a Java object that contains a set of
parameters. ScheduleTime is the time in which a specific
task must be accomplished, although the priority level of
other tasks needing to be accomplished at the same time is
factored in. The CBP mechanism increases or decreases
ScheduleTime and MaxTime according to the priority of the
task: ScheduleTime = ScheduleTime-5min*TaskPriority
and MaxTime = MaxTime+5min*TaskPriority. Once these
times have been calculated, the path is generated taking the
RoomCoordinates into account. There were 30 defined
agendas each with 50 tasks. Tasks had different priorities
and orders on each agenda. Tests were carried out on
seven different test groups, with 1, 5, 10, 15, 20, 25 and
30 simultaneous agendas to be processed by the CBP
mechanism. 50 runs for each test group were performed, all
of them on machines with equal characteristics. Several data
have been obtained from these tests, notably the average
time to accomplish the plans, the number of crashed agents,
and the number of crashed services. For ALZ-MAS 2.0,
five CBP services with exactly the same characteristics were
replicated.

Figure 5 shows the average time needed by both systems to
generate the paths for a fixed number of simultaneous agendas.
The previous version of ALZ-MAS was unable to handle 15
simultaneous agendas and time increases to infinite because
it was impossible to perform those requests. However,
ALZ-MAS 2.0 had five replicated services available, so the
workflow was distributed and allowed the system to complete
the plans for 30 simultaneous agendas. Another important data
is that although the previous version of ALZ-MAS performed
slightly faster when processing a single agenda, performance
was constantly reduced when new simultaneous agendas were
added. This fact demonstrates that the overall performance of
ALZ-MAS 2.0 is better when handling distributed and
simultaneous tasks (e.g. agendas), instead of single tasks.

Table 1 Tasks description

Task Data

TaskId 36
TaskType 32
TaskDescript Description
TaskPriority 3
TaskObjective 0
TaskIncidents 0
UserId 7
UserNecessities 2
MinTime 10 min
MaxTime 60 min
ScheduleTime 12:00
RoomCoordinates (1, 3)
TaskResources 2,4,8

Figure 5 Time needed for both systems to generate paths
for a group of simultaneous agendas

Figure 6 shows the number of crashed agents for both
versions of ALZ-MAS during tests. None of the tests where
agents or services crashed were taken into account to
calculate the data presented in Figure 6, so these tests were
repeated. As can be seen, the previous version of ALZ-MAS
is far more unstable than ALZ-MAS 2.0. These data
demonstrate that this approach provides a higher ability to
recover from errors.

 Applying a service-oriented approach 243

Figure 6 Number of agents crashed

Although these tests have provided us with very useful
data, it is necessary to continue experimenting with
FUSION@. A SOA approach is an efficient way to
distribute resources and develop more robust multi-agent
systems, especially when handling complex mechanisms as
the CBP presented.

Moreover, another important aspect in FUSION@ is the
security issue. Frequently, the security is not considered as
an important issue in the first stages of the software
development. This situation endangers the use and the
quality of the product, in this case the software application.
FUSION@ incorporates a security mechanism based on
XML Digital Signature and XML Encryption for analysing
the integrity of the syntactical structure of each incoming
and outgoing SOAP message.

We are currently exploring alternative case studies for
applying this architecture and demonstrate that the service-
oriented approach presented is flexible enough to be
implemented in other scenarios. One main issue to be taken
into account is that the architecture is still under
development so it is necessary to define it by means of
Agent-Oriented Software Engineering (AOSE) tools (Chan
and Sterling, 2003) such as INGENIAS (Pavón et al., 2005),
MESSAGE (Caire et al., 2002), GAIA (Wooldridge et al.,
2000) or MaSE (DeLoach, 2001) among others.

Acknowledgements

This work has been supported by the IMSERSO 137/2007,
the UPSA U05E1A-07L01 and the MCYT TIN2006-14630-
C03-03 projects.

References
Aamodt, A. and Plaza, E. (1994) ‘Case-based reasoning:

foundational issues, methodological variations, and system
approaches’, AI Communications, Vol. 7, pp.39–59.

Ardissono, L., Petrone, G. and Segnan, M. (2004) ‘A conversational
approach to the interaction with Web Services’, Computational
Intelligence, Vol. 20, pp.693–709.

Bratman, M.E. (1987) Intentions, Plans and Practical Reason,
Harvard University Press, Cambridge, MA.

Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F.,
Gomez-Sanz, J.J., Pavon, J., Kerney, P., Stark, J. and
Massonet, P. (2002) Eurescom P907: MESSAGE – Methodology
for Engineering Systems of Software Agents, Available online
at: http://www.eurescom.de/public/projects/P900-series/p907/
default.asp

Camarinha-Matos, L.M. and Afsarmanesh, H. (2007) ‘A
comprehensive modeling framework for collaborative networked
organizations’, Journal of Intelligent Manufacturing, Vol. 18,
No. 5, pp.529–542.

Cerami, E. (2002) Web Services Essentials Distributed
Applications with XML-RPC, SOAP, UDDI & WSDL, 1st ed.,
O’Reilly & Associates, Inc.

Chan, K. and Sterling, L. (2003) ‘Specifying roles within
agent-oriented software engineering’, Proceedings of the
10th Asia-Pacific Software Engineering Conference, IEEE,
pp.390–395.

Corchado, J.M., Bajo, J. and Abraham, A. (2008a) ‘GERAmI:
improving the delivery of health care’, IEEE Intelligent
Systems, Vol. 23, No. 2, pp.19–25.

Corchado, J.M., Bajo, J., De Paz, Y. and Tapia, D.I. (2008b)
‘Intelligent environment for monitoring Alzheimer Patients,
agent technology for health care’, Decision Support Systems,
Vol. 44, No. 2, pp.382–396.

DeLoach, S. (2001) ‘Analysis and design using MaSE and
agentTool’, Proceedings of the 12th Midwest Artificial
Intelligence and Cognitive Science Conference (MAICS).

De Paz, J.F., Rodríguez, S., Bajo, J. and Corchado, J.M. (2008)
‘Dynamic case based planning’, Proceedings of the 8th
International Conference on Computational and Mathematical
Methods in Science and Engineering, La Manga del Mar
Menor, Spain, Vol. 1, pp.213–224.

Jayaputera, G.T., Zaslavsky, A.B. and Loke, S.W. (2007)
‘Enabling run-time composition and support for
heterogeneous pervasive multi-agent systems’, Journal of
Systems and Software, Vol. 80, No. 12, pp.2039–2062.

Li, Y., Shen, W. and Ghenniwa, H. (2004) ‘Agent-based web services
framework and development environment’, Computational
Intelligence, Vol. 20, No. 4, pp.678–692.

Libxml2-WEB (2008) The XML C parser and toolkit of Gnome.
Available online at: http://xmlsoft.org/index.html

Liu, X. (2007) ‘A multi-agent-based service-oriented architecture for
inter-enterprise cooperation system’, Proceedings of the 2nd
International Conference on Digital Telecommunications,
IEEE Computer Society, Washington, DC.

OASIS (2004) ‘Advancing open standards for the information
society’, Web Services Security: SOAP Message Security 1.0.

OASIS (2008) Reference Architecture for Service Oriented
Architecture Version 1.0, Public Review Draft 1.

Oren, E., Haller, A., Mesnage, C., Hauswirth, M., Heitmann, B.
and Decker, S. (2007) ‘A flexible integration framework for
Semantic Web 2.0 applications’, IEEE Software, Vol. 24,
No. 5, pp.64–71.

Pavón, J., Gómez-Sanz, J.J. and Fuentes-Fernandez, R. (2005) The
INGENIAS Methodology and Tools, Idea Group Publishing,
pp.236–276.

Rahaman, M.A. and Schaad, A. (2007) ‘SOAP-based secure
conversation and collaboration’, Web Services, 2007, ICWS
2007, IEEE International Conference, pp.471–480.

244 D.I. Tapia et al.

Ricci, A., Buda, C. and Zaghini, N. (2007) ‘An agent-oriented
programming model for SOA & web services’, Proceedings
of the 5th IEEE International Conference on Industrial
Informatics, Vienna, Austria, pp.1059–1064.

Sanin, A. (2008) XML Security Library Reference Manual.
Available online at: http://www.aleksey.com/xmlsec/api/
index.html

Shafiq, M.O., Ding, Y. and Fensel, D. (2006) ‘Bridging
multi-agent systems and web services: towards
interoperability between software agents and semantic web
services’, Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference, IEEE
Computer Society, Washington, DC, pp.85–96.

Snidaro, L. and Foresti, G.L. (2007) ‘Knowledge representation
for ambient security’, Expert Systems, Vol. 24, No. 5,
pp.321–333.

Wooldridge, M. and Jennings, N.R. (1995) ‘Intelligent agents:
theory and practice’, The Knowledge Engineering Review,
Vol. 10, No. 2, pp.115–152.

Wooldridge, M., Jennings, N.R. and Kinny, D. (2000) ‘The Gaia
methodology for agent-oriented analysis and design,
autonomous agents and multi-agent systems’, Vol. 3, No. 3,
pp.285–312.

W3C (2002) Web XML encryption syntax and processing.
Available online at: http://www.w3.org/TR/xmlenc-core/

W3C (2008) XML signature syntax and processing. Available
online at: http://www.w3.org/TR/xmlenc-core/

