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whose mission is to monitor the interaction between the
ocean surface and the atmosphere, and to learn from
the available data. The system was initially used to
evaluate and predict the quantity of CO2 exchanged in
the North Atlantic Ocean by mining the data that was
coming from satellite observations.

The aim of the present study is to obtain an archi-
tecture that makes it possible to construct dynamic sys-
tems capable of growing in dimension and adapting
their knowledge to environmental changes. Multiagent
systems seem to be a more than appropriated option to
achieve this objective, given their capacities to resolve
distributed and dynamic problems.The mission of the
multiagent system is to globally monitor the interaction
between the ocean surface and the atmosphere, facili-
tating the work of oceanographers. The system i1s being
used in order to evaluate and predict the amount of car-
bon dioxide (CO3) absorbed or expelled by the ocean
in the North Atlantic [14]. Several architectures have
been proposed for building deliberative agents, most of
them based on the BDI model. In the BDI model the
internal structure of an agent, and therefore its ability to
choose a course of action, is based on mental attitudes.
The advantage of using mental attitudes in the design
and realization of agents and multi-agent systems is the
natural (human-like) modeling and the high abstraction
level. The BDI (Beliefs, Desires, Intentions) model us-
es Beliefs as information attitudes, Desires as motiva-
tional attitudes, and Intentions as deliberative attitudes
for each agent. A BDI agent can incorporate a CBR
engine to improve its autonomy, learning and reason-
ing capacities [8]. The CBR-BDI agents presented in
the framework of this research incorporate innovative
techniques in each of the stages of the CBR cycle. The
retrieve phase incorporates a novel strategy based on
growing cell structure neural network that provides a
set of cases grouped in meshes according to similarity
criteria. The reuse phase 1s composed of a multilayer
perceptron neural network [1] and a Jacobean sensitive
matrix. The revise phase is carried out by means of
a pondered weight technique. Finally, the retain stage
updates the growing cell structure neural network.

The next section reviews the environmental problem
that motivates the majority of this research. Section
three describes the multiagent architecture specifically
developed to monitor the air-sea interaction. Section
four presents the CBR-BDI agent based system devel-
oped. Finally the conclusions and some preliminary
results are presented.

2. Air sea interaction problem

In recent years a great interest has emerged in cli-
mactic behaviour and the impact that mankind has had
on the climate. One of the most worrying factors is
the quantity of CO» present in the atmosphere. Until
only a few years ago, the photosynthesis and breathing
processes in plants were considered to be the regulatory
system that controls the presence of CO» in the atmo-
sphere. However, the role of the ocean in the regulation
of carbon volume 1s very significant and so far remains
indefinite [45]. Current technology makes it possible
to obtain data and estimates that were beyond expecta-
tions only a few years ago. The goal of this project s to
construct a model that calculates the global air-sea flux
of CO5 exchanged between the atmosphere and the sur-
face waters of the ocean. In order to create a new model
for the CO4 exchange between the atmosphere and the
oceanic surface a number of important parameters must
be taken into consideration: sea surface temperature,
air temperature, sea surface salinity, atmospheric and
hydrostatic pressures, the presence of nutrients and the
wind speed vector (module and direction) [47].

These parameters can be obtained from oceano-
graphic ships as well as from satellite images. Satellites
provide a great amount of daily information and there is
a growing need for the ability to automatically process
and learn from this source of knowledge. These param-
eters allow us to calculate the variables that define our
models, such as the velocity of gas transfer, solubility,
or the differentiation between partial pressures on the
atmosphere and sea surface (a case structure is shown
in Table 1).

As shown in Table 1, the most influential parameters
obtained from the satellite images within our models
are: temperature of the water and air, salinity of the wa-
ter, wind strength, wind direction and biological param-
eters such as chlorophyll. These parameters allow us to
calculate the variables that define our models, such as
the velocity of gas transfer, solubility, or the differenti-
ation between partial pressures on the atmosphere and
sea surface. The majority of CO5 either dissolves in the
sea water because of phytoplankton, or accumulates at
the bottom of the ocean in the form of organic material.
The phytoplankton present in deep areas of the ocean
rises to the surface by surges or surface appearances
that are simply large upward movements of cold water
that bring nutrients to the sea surface. The principal
cause of the surges is the winds. The most effective way
to detect them through satellites is to study the images
captured with sensors that are sensitive to longitudes
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Table |

Case attributes
Case field Measurement
DATE Date (dd/mm/yyyy)
LAT Latitude (decimal degrees)
LONG Longitude (decimal degrees)
SST Temperature (°C)
S Salinity (unitless)
WS Wind strength (m/s)
WD Wind direction (unitless)
Fluo_calibrated  fluorescence calibrated with chlorophyll
SW pCO2 surface partial pressure of CO, (micro Atmospheres)
Air pCO2 air partial pressure of CO» (micro Atmospheres)
Flux of CO2 CO> exchange flux (Moles/m?)

of thermal infrared waves (capable of detecting the sea
surface temperature SST) and to 1dentity the cold wa-
ters. Another possible way to detect them is to monitor
the activity of the chlorophyll through sensors with-
in the spectrum range found between blue and green,
which are associated with the presence of phytoplank-
ton. In order to obtain the satellite images that contain
information about these parameters it 1S necessary to
use different sensors. The earth observation satellites
that have been used to obtain images in the Northern
Atlantic are NOAA, Orbview-2 and primarily, the EN-
VISAT satellite of the European Space Agency. Below
we shall briefly describe the sensor used in each one of
these and the software for the digital processing of the
images [40].

Satellite information is vital for the construction of
oceanographic models. In this case, the use of artifi-
cial intelligence models produces estimates of air-sea
fluxes of CO2 with much higher spatial and temporal
resolution that what can be achieved realistically by
direct in situ sampling of upper ocean CO». In order
to handle all the potentially useful data to create daily
models in reasonable time and at a reasonable cost, it
IS necessary to use automated distributed systems ca-
pable of incorporating new knowledge. Our proposal
is presented in the following section.

3. Multiagent architecture for monitoring the
air-sea interaction

Our final aim 1s to model the Air-Sea interaction
with data obtained from the open ocean, working under
the assumption that by assimilating Earth Observation
(EO) data into artificial intelligence models the prob-
lem of predicting the CO2 exchange may be solved.
Earth observation data (both for assimilation and for
validation) are vital for the successful development of
reliable models that can describe the complex physi-

cal and biogeochemical interactions involved in marine
carbon cycling. Satellite information is vital for con-
structing oceanographic models. In this case, artificial
intelligence models can produce estimates of air-sea
fluxes of carbon dioxide with a much higher spatial and
temporal resolution than what can be achieved by di-
rect in situ sampling of upper ocean carbon dioxide. A
model 1s an abstract conceptualization of the CO4 ex-
change between the ocean surface and the atmosphere.
The parameters which have most influence within our
models are: temperature of the water and air, salinity
of the water, wind strength, wind direction and bio-
logical parameters such as chlorophyll. These param-
eters allow us to calculate the variables that define our
models, such as the velocity of gas transfer, solubility,
or the differentiation between partial pressures on the
atmosphere and sea surface. To handle all the poten-
tially useful data to create daily models in a reasonable
time and with a reasonable cost, it 1S necessary to use
automated distributed systems capable of incorporat-
ing new knowledge. Our proposal consists of a mul-
tiagent system whose main characteristic 1s the use of
CBR-BDI agents.

Figure 1 illustrates a multiagent system in which the
types of agents are defined taking into account a social
criteria. The agents play the roles of the human users
involved 1n the ocean monitoring process. In Fig. 1 1s
it possible to observe how a Modelling agent with a
CBR-BDI architecture is responsible for the creation
and evaluation of models in terms of the data received
from the Store, Vessel and User agents. This model
makes 1t possible to monitor and predict the carbon
dioxide exchange between the ocean surface and the
atmosphere. The Store agent processes the images from
the satellite and transforms them for use by the system.
Each Vessel agent is installed in a ship and collects
information in-situ that makes it possible to evaluate
the models created by the Modelling agent. The User
agent can interact with any of the other agents [50]
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Create, Evaluate, Consult, Change, Save
Models, Calculate Exchange

Fig. 1. Diagram of the architecture of our MAS.

and allows the oceanographers to access and evaluate
the models. Figure 1 shows how the agents interact
with each other and with their surroundings [1,10]. In
order to resolve the problem from an oceanographic
perspective, the ocean was divided into a series of zones
in each of which there 1s a Modelling Agent, a Store
Agent, and various Vessel Agents.

The models generated by the Modelling agent pro-
vide accurate predictions about the CO5 exchange be-
tween the ocean surface and the atmosphere. To create
a new model it is necessary to have information avail-
able about the description of the problem that will be
modeled. The problem description is obtained from
the data extracted from satellite images. Store agent is
the one responsible for processing the satellite images
and extracting the information that will be used by the
system. Figure 2 shows a screenshot of the Store agent,
in which it is possible to observe the data obtained by
means of satellite images filtered over an a specific pe-
riod of time, for the given intervals of latitudes and
longitudes. The data obtained from the satellite images
are mainly chlorophile, salinity and temperature. To
process the satellite images, some specific algorithms
are used by the Store agent [16,30]. Figure 2 shows
some processed data obtained for specific zones of the
North Atlantic Ocean. The processed data are sent to
the Modelling agent which creates a new model. The
model is then evaluated in order to revise its efficien-
cy. To do this, it is necessary to use the information
provided by the Vessel agents, which are installed in
vessels and obtain in-situ data that can use the models
generated by the Modelling agent to evaluate the results
provided.

The User agent can interact with each of the agents
In the system and can be executed in mobile devices
such as PDAs in addition to laptops, which notably
facilitates the work of the oceanographers, providing
ubiquitous access regardless of the physical location.
There i1s a User agent for each of the oceanographers
that acts as a personal interface to access the multiagent
system.

A user can access the system rapidly and efficiently
using their personal agent. This agent is able to sit
within a “light” device and can communicate through
wireless technology with the other system agents. This
allows oceanographers work independently and unhin-
dered by location. Figure 3 shows the interface of a Us-
er agent accessed via a personal digital assistant. It is
possible to see how the user can access the Modelling,
Store or Vessel agent. The appropriate Store or Ves-
sel can be selected through a simple interface that only
presents the necessary information and avoids showing
too many elements on the screen. The oceanographers
themselves can decide the amount of elements that they
wish to see. Figure 3b) presents the options that can
be executed by the Modelling agent: request the cre-
ation of a new model, for which it will be necessary
to enter the appropriate parameters; predict the level
of exchange in a particular zone of the ocean; make
an inquiry about the models stored; evaluate a model
by entering real data or saving the corresponding data
to the models that are being currently used. The User
agent offers similar menus that allow the user to inter-
act with the Vessel and Store agents. Figure 3¢) shows
the parameters that an oceanographer needs to enter
when wishing to inquire about the cases stored by the
Store agent for the zone of the Atlantic Ocean situated




the cases are shown to the user in a table, as shown In
Fig. 3d). The user can select each one of these cases
and modify the parameters.

The multiagent system has been implemented using
the JADE platform [9] and the Jadex tool [40], an add-
on for Jade that incorporates a BDI architecture to the
Jade agents.

4. CBR-BDI modelling agent

The agents are equipped with capabilities, such as
mobility, pro-activity or social abilities, as well as the
possibility of solving problems in a distributed way.
These characteristics make the agents perfectly suited
for constructing intelligent distributed environments.
There are many architectures for constructing deliber-
ative agents, many of which are based on the Beliefs
Desires Intentions (BDI) model [8]. In this model, the
internal structure of an agent and its ability to choose
is based on mental aptitudes: agent behaviour is com-
posed of beliefs, desires, and intentions. The beliefs
represent the agent’s information state, what the agent
knows about itself and its environment. The desires are

Intentions are sequences of actions that can be 1denti-
fied as plans.

Case-based Reasoning (CBR) is a type of reasoning
based on the use of past experiences [21]. The purpose
of case-based reasoning systems 1s to solve new prob-
lems by adapting solutions that have been used to solve
similar problems in the past. The fundamental concept
when working with case-based reasoning is the concept
of case. A case can be defined as a past experience, and
is composed of three elements: A problem description
which describes the initial problem, a solution which
provides the sequence of actions carried out in order to
solve the problem, and the final state which describes
the state achieved once the solution was applied. A
case-based reasoning system manages cases (past ex-
periences) to solve new problems. The way in which
cases are managed is known as the case-based reason-
ing cycle, which 1s composed of four sequential stages:
retrieve, reuse, revise and retain [21].

The deliberative agents proposed in the framework
of this investigation use this concept to gain autonomy
and improve their problem-solving capabilities. The
method proposed in [ 13] facilitates the incorporation of
case-based reasoning systems as a deliberative mech-



136 J. Bajo et al. / Multi-agent system to monitor oceanic environments

S Air-Sea Frojecl w ?g 4= 12:54 Q

- ;ﬂll-‘i{h: Frojecl W ?! 4z 12:55 e

Welcome admin!
Select agent type:

: - |

Consult Store Cases:
Latitude

Min(°C) |30 | Max(®C) |60
Longitude

Min(°C) |-50 | Max(°C) {-10
Date

Init |21/6/200

St S e
* r o INShmrst, |
G

T o gt o M

i 5 - f_,_.- i
: 7
EREEER R -

320 |11 79898
104.251 106362 168527 |
254,305 242106  1204.064
209.046 198520  1010.461

143.422 143.062 29.724
164.051 157.874  554.143
189,591 183,742  522.324

T [m I

~Uemtecae | [ ChangeCass

el o R,
i
> .
: '
- A e
‘

(d)

Fig. 3. User agent. Interaction model for the system through PDAs.

anism within BDI agents, allowing them to learn and
adapt themselves, lending them a greater level of au-
tonomy than pure BDI architectures [8]. Accordingly,
CBR-agents implemented using case-based reasoning
systems can reason autonomously and therefore adapt
themselves to environmental changes. The case-based
reasoning system is completely integrated within the
agents’ architecture.

The relationship between case-based reasoning sys-
tems and BDI agents can be established by implement-
ing cases as beliefs, intentions and desires which lead
to the resolution of a problem. As described in [13],
each state in a CBR-BDI agent is considered as a be-
lief; the objective to be reached may also be a belief.
The intentions are plans of actions that the agent has
to carry out in order to achieve its objectives, which
makes every intention is an ordered set of actions; and
each change from state to state is made after carrying
out an action (the agent remembers the action carried
out in the past, when it was in a specified state, and
the subsequent result). A desire will be any of the final

states reached in the past (if the agent has to deal with
a situation, which is similar to a past one, it will try to
achieve a similar result to that previously obtained).

Figure 4 presents the class diagram for the Mod-
elling agent, a CBR-BDI agent that has two principal
functions. The first function is to generate models that
are capable of predicting the atmospheric/oceanic in-
teraction in a particular area of the ocean in advance.
The second is to permit the use of such models. The
reasoning cycle of a CBR system is included among
the activities, and is comprised of the retrieval, reuse,
revise and retain stages. An additional stage is used to
introduce an expert’s knowledge. This reasoning cycle
must correspond to the sequential execution of some of
the agent roles. The Modelling agent carries out roles
to generate models such as Jacobean Sensitivity Matrix
(JSM), Pondered Weigh Technique (PWT), Revision
Simulated Equation (RSE), and other roles that allow
it to operate with the calculating models, like Forecast
Exchange Rate, Evaluate Model or Consult model. The
roles used to carry out the stages of the CBR cycle are
described as follows.
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Fig. 4. Class diagram for the modelling agent.

The content of the information stored in the memory
of cases for each of the cases is described in Table 1.
As can be seen, a case consists of a series of variables
that can be represented as atuplec = (d, I, o, t, s, w, 1, f,
P, a, M, e, x), where d represents the date, | the latitude,
o the longitude, t the temperature, s the salinity, w the
wind strength, wd the wind direction, f the fluorescence
calibrated, s the surface partial pressure of COo, a the
air partial pressure of CO2, M the Multilayer Perceptron
(MLP) associated to the case, e the CO» Flux, and 1 the
exchange value. The memory of cases is defined as a
set of cases and is represented as C = {c}. When a new
problem is studied, the system incorporates a new case
cn+1 and a new CBR cycle is executed as shown in the
next subsections.

4.1. Retrieve phase

The retrieval process identifies those cases in the
memory of cases that have the highest level of similarity
with the new case ¢,,41. In order to do so, the memory
of cases is structured 1n such a way so as to group to-
gether the most similar cases. There are different tech-
niques that can be used to create clusters, such as the
use of distance metrics like the cosine [22], euclidean,
etc. or more complex techniques based on algorithms

of different types: hierarchical [45], iterative [21], ge-
netic algorithm [2,21,24], or others based on the use of
neural networks. Neural networks were chosen for this
study since they present certain advantages including
the automatic selection of the number of clusters to cre-
ate, and the ability to adapt themselves to data distri-
butions with irregular surfaces. In order to identity the
neural network that better adapts to the characteristics
of the problem under consideration, we have evaluat-
ed different alternatives [36,44] such as SOM [19,29]
(self-organizing map), GNG [19] (Growing neural Gas)
resulting from the union of techniques CHL [22,37]
(competitive Hebbian Learning) and NG [35] (neural
gas), GCS [19] (Growing Cell Structure). Some of the
methods, such as self-organized Kohonen maps, set the
number of clusters in the initial phase of training when
using the algorithm of the k-means learning method.
This is the reason that these methods cannot be used
for the problem at hand, since in this case the number
of clusters i1s unknown.

However, the number of groups could be varied and
the degree of waste compaction checked so that accord-
Ing to this value, the final number of groups could be
set. This solution would require too much computing
time and it would be difficult to limit the number of
groups to include. The self-organized maps include
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other variants of learning methods that base their be-
haviour on methods similar to the NG by creating a
mesh that is adjusted automatically to a specific area.
The greatest disadvantage, however, is that both the
number of neurons that are distributed over the surface
and the degree of proximity are set beforehand, result-
ing 1n the number remaining constant throughout the
entire training process, thus complicating, to a certain
extent, the adaptation of the mesh. Unlike the self-
organizing maps based on meshes, Growing Grid or
GCS do not set the number of neurons, or the degree of
connectivity. GCS networks adjust the data by means
of a series of disconnected meshes that are obtained
during the training stage of the neural network. In this
sense, the neural network provides a series of distribut-
ed meshes that represent the memory of cases. Each
of the cases of the memory of cases is assigned to the
nearest mesh, so when a new case is studied, the closest
mesh is selected along with the cases associated to the
mesh. These are the cases that will be used in the reuse
phase.

If there exists is a neural network that has been pre-
viously trained with the set of retrieved cases, that is,
a CBR cycle previously executed with the cases of the
selected mesh, then the settings of the neural network
are reloaded.

When the training process finishes, the result ob-
tained is a set of cases grouped in meshes that are repre-
sented as G = {gi;/g: C C}, where g;Ng; = ¢Vi # j.

4.2. Reuse phase

This phase 1s carried out by means of a multilayer
perceptron [38]. The MLP makes only use of the data
recovered in the retrieve phase instead of working with
all the data stored in the memory of cases. This fact
provides a notable reduction in the time required for the
training stage of the MLP, and improves the prediction
provided by the neural network since the data are more
homogeneous. When the group g; has already executed
a Reuse phase and, as a result, it is associated with a
previously trained MLP, then it is necessary to calculate
the estimate error rate for the cases used by the MLP. If
the condition established by Eq. (1) 1s met, the training
stage 1s not carried out.

N
Z:l Ing (Ci) — miI
1=

N-Z
where N represents the set of cases for the group g,
M. (c;) is the value estimated by the MLP for the case

< U (1)

c;i, ; 18 the exchange value, and u is the threshold that
identifies the limit considered as valid.

Otherwise, when a MLP does not previously exist, it
IS necessary to execute the training phase before making
predictions. To carry out the training phase of the MLP,
It 1s necessary to readjust the data in such a way that
all the data are normalized in the interval [0.2-0.8].
In the input layer of the MLP there i1s a neuron for
each of the parameters shown in Table 1, except the
Flux of CO», which is the solution for the cases. The
number of neurons selected for the hidden layer of the
MLP is determined using the expression 2n+1, where
n 1s the number of neurons in the input layer. This
value was defined following the criteria proposed by
Kolmogorov [38]. Finally, the output layer of the MLP
i1s composed of a neuron that represents the Flux of
COy parameter shown in Table 1. The training stage
finishes when the cross validation, which uses 10% of
the 1nitial cases, provides an error rate that is lower
than i. Once the MLP has been trained, the Jacobean
Sensitivity Matrix (JSM) is calculated.

The Jacobean Sensitivity Matrix method is a novel
approach for feature selection. It can be used to visu-
alize and extract information from complex and high-
ly dynamic data. The model is based in the principal
component analysis and 1s used to identify which in-
put variables have more influence in the output of the
neural network used to perform the principal compo-
nent analysis. The neural network identifies the beliefs
stored by the agent that can be the most useful to solve
a given problem. The mathematical model 1s outlined
as follows.

If JSM is a matrix NxM where N is the number of
input of the neural network and M is the number of
output of the neural network. And if the element Ski in
the matrix represents the sensitivity (influence) of the
output k over the input I, then Eq. (1).

g . _ Y. _ O fr(nety) _ 0 fr(nety)
= 8:1:1- 8333 aﬂﬁ?tk

onetp ayj 8netj B 3fk(netk) 2)

dy; Onet; Ox;  Onety
H
Z - Ofj(net;)
_ 7 Onet;
71=1

Where w;; is the weight of the connection between the
input neuron ¢ and the hidden neuron j. wy; 1s the
weight of the connection between the hidden neuron j
and the output neuron k. yx is the output obtained for
neuron k of the output layer. Then y, = fi (netk). y;
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Is the output obtained for neuron 7 of the hidden layer.
Then y; = f; (netj). x; is the input for neuron ¢ and f},
is the activation function in neuron A. Then

N

net; = Z Wjiy Ty T 93' (3)
j=1
H

nety = Z Wiij, Y + Ok (4)
j=1

Where H is the number of neurons in the hidden layer,
6; 1s the threshold value for neuron j of the hidden
layer and 6. is the threshold value for neuron k& of the
output layer.

Pondered Weigh Technique (PWT): The reuse is car-
ried out using the cases selected during the retrieval
stage. The cases are pondered [17] and the bigger
weight is given to the one that most resembles the cur-
rent problem in the following way:

1 Z
=3 > elerp, (5)
Z e—la—r| r=1

r=l

Where p* is the solution prediction, Z is the number of
retained cases from the base of beliefs, a is the measure
of minimum similarity between the retained cases from
the base of beliefs and the current case, p - is the retained
prediction r-th from the base of beliefs and r 1s the
measure of similarity between the retained cases r-th
from the base of beliefs and the current case.

4.3. Revise phase

Revision Simulated Equation (RSE): During the re-
vision stage an equation (F) 1s used to validate the pro-
posed solution p*.

B = AISO(})COQSW — pCOQAIR) (6)

Where F'is the flux of CO», k is the gas transfer velocity
Eq. (6), so is the solubility verifying Eq. (7) and pCO
1s the partial pressure of CO2 Eq. (8).

k= (—>5,204Lat + 0,729Long + 2562, 765)

(7)
/3600
SO = e( Uff}?l?ll.-?' —60,2409+4-23,3585 log(100tk)
8
+S(0,023517—0,023656-lOOtk+0,0047036.1002,gk)) (8)
pCOy = A+ BLong + CLat + DSST %

+FEY ear

As can be seen in Eq. (6), £ depends on Lat (Latitude),
Long (Longitude). As can be seen in Eq. (7) so de-
pends on tk = 273,15 + t. where t is the temperature
and s 1s the salinity. Finally, in Eq. (8) it 1s possible
to observe that pCO4, depends on the SST, which is
the temperature of the marine surface or air as it corre-
sponds to pCO2SW or pCOLAIR. The coefficients of
the Eq. (8) depend on the month.

During the revision, the agent compares the obtained
F value with the predicted one and if the prediction
differs by less than 10% the case 1s stored on the base
of beliefs. As has been shown the CBR-BDI agents
use a CBR system, at a low level of implementation,
which 1s the reason for using cases. One case for the
CBR consists of a problem (initial situation and a num-
ber of goals) and the plans to resolve it. For ocean-
iIc/atmospheric interaction, we define the problem in
terms of the attributes shown in Table 1.

Table 1 shows the description of a case: DATE, LAT,
LONG, SST, S, WS, WD, Fluo_calibrated, SW pCO»
and Air pCOs». Flux of COs3 1s the value to be identified.

4.4. Retain phase

This phase begins once the prediction has been com-
pared to the result provided using the mathematical
model. If the case is considered valid (if the prediction
differs by less than 10%), the case 1s stored in the mem-
ory of cases. When this occurs, it is necessary to train
the GCS network 1n order to include the new case in the
structure of the memory of cases. In this way the new
experience obtained processing the current case will be
taken into consideration for the next prediction.

5. Results

The system described above was tested with data
from the North Atlantic Ocean obtained during 2005.
Although the system is not fully operational and the aim
of the project is to construct a research prototype and
not a commercial tool, the initial results have been very
successful from a technical and scientific point of view.
The construction of the distributed system was rela-
tively simple, using previously developed CBR-BDI li-
braries [6,7,10,13,14] that facilitates the straight map-
ping between the agent definition and the CBR con-
struction. The multiagent system automatically incor-
porated over 50,000 instances during the five months
and eliminated 12% of the initial ones.
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Fig. 5. Vessel agent interface (a) and presentation of the routed followed for a ship by means of the Google Eath tool (b).

Figure 5 shows the appearance of a Vessel agent. The
vessel agent periodically sends information about the
data obtained from its corresponding ship. Oceanogra-
phers can employ the user agent to easily observe the
in-situ data obtained as well as the route followed by
the ship can be easily observed. For this study vessel
simulators that work with real stored data were used.
As can be seen in Fig. 5, the interface facilitated to the
oceanographers is very simple and intuitive and con-

tains all the information required to evaluate the mod-
els. Furthermore, a graphical tool is available to rep-
resent the routes followed by the vessels. The agent
notably improves the evaluation tasks.

The system was tested with data from the last three
months of 2005 and the results were very accurate.
Table 2 presents the results obtained with the Multia-
gent systems and with mathematical Models [31] used
by oceanographers to identify the amount of CO 5 ex-
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Table 2
Million of tones of CO2 exchanged in the North Atlanthic

Oct. 05 Nov. 05 Dec. 06 Jan. 06 Feb. 06

Multiagent System —19 21 33 29 29
Manual models —20 25 40 37 32
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Fig. 6. Screenshot of a Modelling agent during the generation of a model.

changed. The numerical values represent the million
of tonnes of carbon dioxide that have been absorbed
(negative values) or generated (positive value) by the
ocean during each of the three months.

Figure 6 shows the interface of a Modelling agent,
and more specifically the interface for generating a
model. In Fig. 6 it i1s possible to observe how an
oceanographer can establish the settings for each of the
algorithms used in the stages of the CBR cycle. There
was continual interaction between programmers and
oceanographers during the construction and evaluation
of the prototype. The system was tested under simu-
lation conditions and the Store and Vessel agents were
specifically implemented to generate synthetic cases
from real data obtained in the North Atlantic Ocean (+
37N, 25W). Under these conditions, the models gen-
crated by the multiagent system became progressive-
ly more accurate. However, when the number of cas-
es grew excessively, the efficiency of the system de-
creased. Figure 7 shows a comparison of the real data
and the predictions provided by the multiagent system
working with data from 2003-2004.

6. Conclusions

The application of Artificial Intelligence techniques
Is extremely useful in a field like oceanography, and
specifically in the study of the carbon dioxide exchange
between the ocean surface and the atmosphere. One of
the factors of greatest concern in climactic behaviour
Is the quantity of carbon dioxide present in the atmo-
sphere. The need to quantify the carbon dioxide va-
lence, and the exchange rate between the oceanic water
surface and the atmosphere, has motivated us to devel-
op the distributed system. To handle all the potentially
useful data to create daily models in a reasonable time
and with a reasonable cost, it 1S necessary to use au-
tomated distributed systems capable of incorporating
new knowledge. The use of CBR-BDI agents makes
it much easier to deal with a great amount of satellite
images. The results obtained demonstrates the appro-
priateness of multiagent systems and artificial intelli-
gence models to cover climatic problems. Moreover,
the approach is easily extensible to problems of similar
characteristics.
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Fig. 7. Real CO2 flux and flux prediction.

The values proposed by the CBR-BDI agent are quite
similar to the ones obtained by the standard technique,
with an average rate of similitude of 86,098%. While
the CBR-BDI Modelling Agent generates results on a
daily basis without any human intervention, the Casix
manual modelling techniques require the work of one
researcher processing data during at least four work-
ing days. Although the system proposed requires fur-
ther improvements and more work, the initial results
are very promising. Compared to the previously de-
veloped CBR-BDI models based on Hebbian Learning
(CoHel) [5,11,14] or vanational calculus techniques
(VCBP) [6], the results obtained with the reasoning en-
gine presented in this paper are very similar to those
obtained applying hebbian learning, and they give a
quicker response than VCBP engines. This research
presents the development of new algorithms to improve
the CBR engine incorporated in the BDI agent. These
algorithms are included in each of the stages of the
CBR reasoning cycle.

As shown in Fig. 7 the predictions provided by the
multiagent system are accurate (9 of the 12 models were
accepted as successful). The multiagent system makes
predictions based on previous experiences, taking into
account the similitude with past situations. Figure 7
shows how the precision of the prediction improves
when the number of cases increases. On the other hand,
It 1S necessary to control the number of cases in the
memory of cases in order to avoid an excessive growth
of the cases available. To maintain the memory of
cases, we used a strategy based on priorities, consisting
of a pyramidal structure of efficiencies.

The interaction between the system developers and
oceanographers with the multiagent system has been
continuous during the construction and pruning period.
They have noted that the agents do not represent a mere

software that interacts between the user and the tech-
nology, but also has the capacity to make decisions and
act for themselves in a distributed way, in order to re-
spond and adapt to the changes that are produced within
the environment and within its own internal knowledge
structure.

The multiagent system facilitates the incorporation
of new agents that use different modeling techniques
and learning strategies, so our future work will focus on
the incorporation of new agents with alternative tech-
niques, on improving the retain stage of the CBR sys-
tem to also learn by failure and the execution of addi-
tional experiments.
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