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Summary

Objective: Recent advances in the field of biomedicine, specifically in the field of
genomics, have led to an increase in the information available for conducting
expression analysis. Expression analysis is a technique used in transcriptomics, a
branch of genomics that deals with the study of messenger ribonucleic acid (mRNA)
and the extraction of information contained in the genes. This increase in information
is reflected in the exon arrays, which require the use of new techniques in order to
extract the information. The purpose of this study is to provide a tool based on a
mixture of experts model that allows the analysis of the information contained in the
exon arrays, from which automatic classifications for decision support in diagnoses of
leukemia patients can be made. The proposed model integrates several cooperative
algorithms characterized for their efficiency for data processing, filtering, classifica-
tion and knowledge extraction. The Cancer Institute of the University of Salamanca is
making an effort to develop tools to automate the evaluation of data and to facilitate
de analysis of information. This proposal is a step forward in this direction and the first
step toward the development of a mixture of experts tool that integrates different
cognitive and statistical approaches to deal with the analysis of exon arrays. The
mixture of experts model presented within this work provides great capacities for
learning and adaptation to the characteristics of the problem in consideration, using
novel algorithms in each of the stages of the analysis process that can be easily
configured and combined, and provides results that notably improve those provided
by the existing methods for exon arrays analysis.
Material and methods: The material used consists of data from exon arrays provided
by the Cancer Institute that contain samples from leukemia patients. The methodol-
ogy used consists of a system based on a mixture of experts. Each one of the experts
incorporates novel artificial intelligence techniques that improve the process of
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carrying out various tasks such as pre-processing, filtering, classification and extrac-
tion of knowledge. This article will detail the manner in which individual experts are
combined so that together they generate a system capable of extracting knowledge,
thus permitting patients to be classified in an automatic and efficient manner that is
also comprehensible for medical personnel.
Results and conclusion: The system has been tested in a real setting and has been
used for classifying patients who suffer from different forms of leukemia at various
stages. Personnel from the Cancer Institute supervised and participated throughout
the testing period. Preliminary results are promising, notably improving the results
obtained with previously used tools. The medical staff from the Cancer Institute
considers the tools that have been developed to be positive and very useful in a
supporting capacity for carrying out their daily tasks. Additionally the mixture of
experts supplies a tool for the extraction of necessary information in order to explain
the associations that have been made in simple terms. That is, it permits the
extraction of knowledge for each classification made and generalized in order to
be used in subsequent classifications. This allows for a large amount of learning and
adaptation within the proposed system.
# 2008 Elsevier B.V. All rights reserved.
1. Introduction

During the last few years, there have been great
advances in the field of Biomedicine [1]. The incor-
poration of computational techniques and artificial
intelligence in medicine has led to notable progress
in the prevention and detection of diseases [1]. One
of the areas of medicine that is in its height of
development and is fundamental in the application
of techniques that facilitate the automatic treat-
ment of data and the extraction of knowledge is
genomics. Genomics involves the study of genes,
their genetic sequencing, structure and relationship
[2]. There are four distinct fields within the study of
genomics. One of them is transcriptomics, which
deals with the study of messenger ribonucleic acid
(mRNA) using techniques such as expression analysis
[3]. These techniques study the ribonucleic acid
(RNA) strands by identifying the expression level
for each of the genes studied. They consist of the
exposure of the DNA molecules to complementary
DNA (cDNA) molecules obtained from messenger
RNA (mRNA). The mRNA molecules are marked with
different bold dyes. The DNA and cDNA molecules
are matched by pairs. In this process, the cDNA
molecules that are not paired with any gene will
be eliminated from the microarray. Finally, using a
scanner, an image of the microarray is obtained by
measuring levels of color. The different levels of
fluorescence obtained can be analyzed and repre-
sented as a data array. The methods and tools
traditionally used were developed to work with
expression arrays that contain approximately
50,000 data points. However, the emergence of
exon arrays [4] denotes an important breakthrough
in biomedicine. The exon arrays need new tools and
methods that can work with quantities of up to
5,500,000 data points.

This study presents a system that is consistent
with a mixture of experts model that facilitates the
analysis and classification of data obtained from
exon arrays from leukemia patients. Leukemia, or
blood cancer, is a disease that has a high cure rate
with early detection [5]. The proposed system
within the context of this study focuses on the
detection of cancerous patterns found in the data
extracted from the exon arrays taken from patient
samples provided by the Cancer Institute of the
University of Salamanca. The system provides sug-
gestions about the classification of leukemia
patients and represents the analysis process by
means of rules. Through these rules the medical
staff can extract knowledge about the entire clas-
sification process, including the decisions taken by
each of the expert models. It is assembled from a
selection and mixture of expert systems considered
optimal for use in each of the following stages: (i)
pre-processing and filtering of data, (ii) the applica-
tion of clustering techniques, and (iii) the extraction
of knowledge from an expression analysis. The
selection of each one of these expert systems was
made by considering the characteristics of the data
corresponding to the leukemia patients, and was
validated by comparing against other techniques
and methods used for resolving problems with simi-
lar characteristics. The proposed model integrates
several cooperative algorithms characterized for
their efficiency for data processing, filtering, clas-
sification and knowledge extraction. The Cancer
Institute of the University of Salamanca is making
an effort to develop tools to automate the evalua-
tion of data and to facilitate de analysis of informa-
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tion. This proposal is a step forward in this direction
and the first step toward the development of a
mixture of experts system that integrates different
cognitive and statistical approaches to deal with the
analysis of exon arrays.

Exon arrays are chips with a significantly higher
number of functions compared to their predecessors
[6]. The characteristics of exon arrays allow for a
large number of data to be analyzed and classified
for each patient (approximately 5.5 million features
per array). However, the high dimensionality of data
produced by an exon array makes it impossible to
use the majority of the previously employed tech-
niques for expression array analysis (which contain
approximately 50,000 probes), and calls for the
development of new techniques and tools. The high
dimensionality of data supplied by each exon array
presents problems in handling and processing, thus
making it necessary to improve each of the steps of
expression array analysis in order to obtain an effi-
cient method of classification. An expression ana-
lysis basically consists of three steps: normalization
and filtering, clustering and classification, and
extraction of knowledge. These steps can be auto-
mated and included within an expert system. The
first step is fundamental for achieving a good stan-
dardization of data, and a preliminary filtering pro-
cess to reduce the dimensionality of the set of data
used [7]. Since the problem at hand deals with high
dimensional arrays, it is important to have a very
good pre-processing technique that can facilitate
automatic decision-making with regards to selecting
the most vitally important variables for the classi-
fication process. In light of these decisions, it will be
possible to reduce the set of original data. Addi-
tionally, the selection of a clustering technique in
the second phase of analysis allows the data to be
grouped according to certain variables that control
the behavior of the group [8]. After the organization
of groups, patients can be classified and assigned
into the group with which they share the most
similarities. Finally, an extraction of knowledge
system facilitates the interpretation of the results
obtained after the pre-processing and classification
steps, thus making it possible to learn from the
information acquired from the results [9]. The pro-
cess of extracting knowledge shapes the knowledge
obtained into a set of rules that can be used for
improving new classifications [9].

The system proposed in this study presents a novel
synthesis that encompasses various fields of artificial
intelligence (filtering techniques, clustering, artifi-
cial neural networks, and extraction of knowledge).
Specifically, the system presented in this article uses
amodel that combines the advantages of three novel
methods for the analysis of data from exon arrays.
The default Affymetrix background correction and
robust multi-array average (RMA) are improved by
means of novel algorithms that are used for a better
data pre-processing, filtering and reduction in the
dimensionality of the data. These techniques also
eliminate those data that do not contribute to the
classification process. An enhanced self-organizing
incremental neuronal network (ESOINN) clustering
technique [10] has also been integrated in the pro-
posed model. It allows both the incorporation of the
distribution process along the entire surface of clas-
sification, and the separation into lowdensity groups.
Finally the classification and regression trees (CART)
has been included in the tool and identified as an
excellent knowledge extraction technique [11] that
facilitates the observation and study of the com-
pleted classificationprocess, aswell as the deduction
of rules that can be applied for improving subsequent
analyses. The proposed model introduces significant
improvements in the analysis process, leading to an
increased success rate in the classification of patients
and a decrease in the number of false positives. The
proposed model facilitates the analysis of data in an
automatic way, providing learning and adaptation
capacities, and integrates several cognitive techni-
ques in a way that has never been done. The main
advantage of the development of the tool is that
facilitate the treatment of a huge amount of data in a
simpleandsupervisedwayandthatprovides together
with the solution an explanation in the form of rules.
In this way artificial intelligence is not any more a
black box and the users of the tool will be able to
follow how the solution to a problem is constructed.

The article is organized as follows: first we pre-
sent a description of the problem that that insti-
gated this research: the classification of patients
suffering from cancer of the blood based on samples
obtained from exon arrays. Traditional techniques
used in each phase of data analysis such as data pre-
processing, data clustering, and extraction of
knowledge are outlined in this section. Section 3
presents the proposed model consisting of a mixture
of experts for the analysis and classification of data
corresponding to leukemia patients. Section 4 shows
the results obtained from the proposed model and
compares them with the results obtained by using
other techniques. Finally, Section 5 describes the
conclusions obtained from the given results.

2. Computational methods in the
investigation of cancer

Hematological cancers such as leukemia have been
the object of genetic and chromosomal analyses for
many years [12—14]. The relationship between
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chromosomal alterations and the prognosis of leu-
kemia and lymphomas are well situated within this
field of study. Recently, conventional studies on
expression arrays have demonstrated that chromo-
somal alterations are associated with characteristic
patterns of expression. Leukemia is a type of blood
cancer that results from an abnormal functioning of
the bone marrow, which tends to cause an abnormal
proliferation of white or red blood cells [15]. The
four most important types of leukemia are: acute
and chronic myeloid leukemia (AML, CML), and
acute and chronic lymphocytic leukemia (ALL,
CLL) [15]. Although there have been extensive stu-
dies on the subject, the actual cause of leukemia
continues to be a mystery. Nearly 25,000 new cases
of acute and chronic leukemia appear every year.
The majority of those cases occur in adults and
people approximately age 60 and older, but the
number of cases of acute lymphocytic leukemia in
children has increased over the last few years. Each
year approximately 10,000 adult cases are diag-
nosed as AML, 8000 as CLL, 500 as CML, and 3500
as ALL [16]. The rest are unclassified types of blood
cancer. A recent study [17], surveillance epidemiol-
ogy and end results, 2007, shows an estimated
19,900 new cases of myeloma diagnosed in the
United States in 2007.

Microarrays have been successfully tested in
identifying leukemia prognoses. They have become
an essential tool in genomics research, making it
possible to investigate the global genetic expression
in all aspects of human disease [1,18]. In the exon
arrays, the information is divided into probe selec-
tion regions (PSRs). The PSRs are contiguous and do
not overlap in genomic space, they are grouped in
exon clusters and in turn, these are grouped into
transcript clusters. Finally, a transcript cluster
roughly corresponds to a gene. Subsequently, the
data from the PSR are used for measuring the
expression of a particular gene by means of fluor-
escent intensities. This process of studying micro-
arrays is called expression analysis and consists of
four phases: obtaining data, pre-processing data,
statistical analysis and biological interpretation.
Figure 1 Exon array structure. Probe design of exon arrays.
introns, rest represent exons. Introns are not drawn to scale.
putative exon. (3) Probe design of 30expression arrays. Probe
The development of microarray technology can
generate enormous amounts of data. For this rea-
son, data mining and machine learning techniques
have been aptly used in incipient areas of investiga-
tion that have resulted from microarray analysis
[19]. Additionally, a new generation of microarrays
was recently designed with a much greater wave
density than was previously available, thus allowing
the waves to be organized in exons. As a result, the
study of gene expression can be performed in much
greater detail than ever before. Affymetrix Gene-
Chip microarray, one of the most popular organiza-
tions for measuring gene expression, has released
this new generation of microarrays, exon arrays,
designed to interrogate exon-level expression [6].
Exon arrays, as can be seen in Fig. 1 (modified from
Affymetrix exon array design datasheet [20]), differ
significantly from their predecessor arrays (30

expression arrays) in the number and placement
of the oligonucleotide probes and in the design of
control probes for background correction. The Affy-
metrix human exon 1.0 ST array contains approxi-
mately 5.5 million probes, forming 1.4 million probe
sets [4]. Thus, there are about six times as many
features as in the previous generation of chips.

Exon arrays contribute to the dramatic increase
in data available to improve the quantitative esti-
mation of gene-level expression. However, it is
necessary to develop new techniques capable of
working with data provided by the exon arrays.
Previous research related to the expression analysis
of exon arrays is outlined below. The main techni-
ques used in the analysis of exon arrays are briefly
explained in the following paragraphs, focusing on
the lacks of the existing techniques and the advan-
tages provided by our proposal.

Prior to analyzing microarray data, it is important
to complete the pre-processing phase, which elim-
inates defective samples and standardizes the data.
This phase is normally divided into 3 sub-phases:
background correction, standardization, and sum-
marization. There currently exists a limited group of
algorithms that investigators use for performing
these steps. The most common are Affymetrix
(1) Exon—intron structure of a gene. Gray boxes represent
(2) Probe design of exon arrays. Four probes target each
target the 30end of mRNA sequence.
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microarray suite 5.0 (MAS5.0) [20], probe logarith-
mic intensity error (PLIER) [21], and RMA [22].
Table 1 shows each of their most important char-
acteristics. As can be seen in Table 1, MAS5.0 is
suitable for single arrays and is less sensitive than
PLIER and RMA to small changes in the data. RMA is
frequently used because it minimizes the variance
seen across the arrays, however, PLIER is preferred
when it is important to detect fold changes. Once
the data have been pre-processed, it is necessary to
filter the information obtained so that it will be
possible to reduce the number of probes and facil-
itate the execution of the subsequent experts. The
technique chosen for the model proposed in the
framework of this investigation is a combination
of statistical tests.

After the pre-processing and filtering the next
step in the analysis process is to perform the clus-
tering of individuals based on their proximity
according to their probes. Since the problem on
which this study is based contained no prior classi-
fication with which training could take place, a
technique of unsupervised classification was used.
There is a wide range of possibilities. Some of these
techniques are artificial neural networks such as
self-organizing map (SOM) [23], growing neural
gas [24] resulting from the union of techniques,
competitive Hebbian learning (CHL) [25] and neural
gas (NG) [26], growing cell structure (GCS) 0, grow-
ing grid or the self-organizing incremental neuronal
network (SOINN) [27]. Some of the methods, such as
self-organized Kohonen maps, set the number of
clusters in the initial phase of training when using
the algorithm of the k-means learning method. This
is the reason that these methods cannot be used for
the problem at hand, since in this case the number
of clusters is unknown. However, the number of
groups could be varied and the degree of waste
compaction checked so that according to this value,
the final number of groups could be set. This solution
would require too much computing time and it
would be difficult to limit the number of groups
to include. The self-organized maps have other
variants of learning methods that base their beha-
vior on methods similar to the NG. They create a
mesh that is adjusted automatically to a specific
area. The greatest disadvantage, however, is that
both the number of neurons that are distributed
Table 1 Comparison of traditional pre-processing techniqu

Advantage

MAS5.0 Single-array algorithm is independent of other
data in data set

PLIER Ability to detect small fold changes
RMA Minimizes the variance seen across the arrays
over the surface and the degree of proximity are set
beforehand, resulting in the number remaining con-
stant throughout the entire training process, thus
complicating, to a certain extend, the adaptation of
the mesh. Unlike the SOM based on meshes, growing
grid or GCS do not set the number of neurons, or the
degree of connectivity, but they do establish the
dimensionality of each mesh. This complicates the
separation phase between groups once it is distrib-
uted evenly across the surface. After analyzing
different techniques and checking the problems
they might present so that they might be applied
to the problem at hand, we have decided to use a
variation of SOINN [27], called ESOINN [10] in the
proposed model.

Finally, once the clustering has finished, it is
important to learn from the classification obtained.
The general objective of extraction of knowledge
techniques is to provide a human expert with infor-
mation about the system-generated classification by
means of a set of rules that are provided to support
the decision-making process. It should be noted that
extraction of knowledge techniques are not intended
to substitute the rationale andexperienceof ahuman
expert during a diagnosis, rather to complement the
process and serve as an additional methodology or
guideline for common procedures in analysis.

Among all of the techniques used for extraction of
knowledge, the most useful are those within the
field of machine learning. A familiar component in
this area is the neural networks, from which a
number of applications have been developed with
satisfactory results. The use of neural networks for
discovering clusters within the data presents the
occasional problem of trying to extrapolate a mean-
ing for every grouping. There are two ways of solving
this problem. The first refers to obtaining the med-
ian value for each characteristic within the data.
The second requires passing each cluster through a
machine learning algorithm in order to generate a
set of rules that describe the characteristics of that
grouping [28]. An alternative to the neural networks
can be found by focusing on rough sets [29]. The
rough sets theory assumes that knowledge can be
represented in a decision table. The output pro-
duced by this method depends in large part on the
attributes or variables of elements of the universe,
and the values that the attributes can have. If the
es.

Disadvantage

Not as sensitive as either RMA or PLIER to small changes
in target abundances
More variance in individual signals than seen with RMA
Compresses fold changes for low-intensity probe sets



184 J.M. Corchado et al.
number of attributes is too high, as is the case study
presented in this work, the output decreases con-
siderably. Furthermore, by analyzing the function-
ing of this theory, it is possible to see that it is geared
more towards qualitative than quantitative vari-
ables. Nevertheless, the methods that offer the best
results for extraction of knowledge are the rule
induction and decision tree systems. Examples of
those that have made a significant impact within the
field of biomedicine include concept learning sys-
tem [30], induction decision trees [31], CART [11],
oblique classier 1 [32], ASSISTANT [33], and C4.5,
C5.0/See5 [34]. For example, it is possible to find
applications of the previously mentioned algorithms
in extraction of knowledge that can help to make
predictions from the analysis of genes [35].

In this study we have concentrated on the meth-
ods that use induction rule and decision tree algo-
rithms since they more easily adaptable to the
characteristics of the problems we are attempting
to solve. The CART algorithm was chosen as the
technique to apply to the model proposed in this
study because of its wide acceptance and proven
efficiency in extraction of knowledge. This type of
classification system presents important advantages
[11,36] for its application within the realm of bioin-
formatics. Some of them include:

� It does not depend on the distribution of depen-
dent and independent variables since it is a non-
parametric method.

� Variables do not need to be independent.
� The variables can be qualitative, quantitative or a

combination of both.
� It lends itself to working with a large number of

variables in an efficient matter.
� It is superior to expert systems in that human

expert intervention is not necessary for the infer-
ence of classification rules, since these are auto-
matically generated.

� It has the advantage over neural networks in that
the rules that are generated are much more
comprehensible for the user than the network
interface topology. A neural network, for however
easy it may be, follows the black box model which
does not value the relative importance of each of
the explicative variables.

� It allows the use of probability values for classify-
ing individuals, as shown in the results presented
in Section 5 of this article.

� It is ‘‘independent’’ from the transformation of
independent variables.

� It handles atypical values in an efficient manner.

The next section introduces the model proposed
in this study, which incorporates the mixture of
experts model presented in the current section.
Additionally, we present a method in which the
mixture of experts can be integrated to obtain a
model that allows leukemia patients to be classified
in an efficient manner.

3. Mixture of experts model

The proposed model, that incorporates the mix-
ture of three experts in sequential form, is pre-
sented in detail in this section. This model has the
advantage of integrating different techniques, in a
novel way, considered to be optimal for using in
the stages of the expression analysis for the pro-
blem of classifying leukemia patients. This way,
the techniques that offer good results in each
phase are combined to obtain the most optimal
result overall. The proposed model considers the
characteristics of each expert in order to achieve
an appropriate integration.

The proposed model for the system consists of
generating a series of independent procedures
that are based on different paradigms that are
performed by a series of independent subtasks.
These procedures are distributed over various
modules thus making it possible to integrate the
different experts. Because the experts can now
communicate directly, it is possible to generate a
global result. The proposed model within the
scope of this investigation can be divided into
three modules that will each be responsible for
carrying out a set of tasks, specifically: pre-pro-
cessing/filtering, clustering, and extraction of
knowledge. Additionally, another module is incor-
porated to represent the information and present
the results to medical personnel in a comprehen-
sible manner. The structure of these modules can
be observed in Fig. 2. Fig. 2 represents the mod-
ules as arrows with their corresponding assigned
task: pre-processed/filtered, clustering, extrac-
tion of knowledge and representation. Each of
the modules receives certain input data and pro-
vides output data in a fixed format. As can be seen
in Fig. 2, the different modules work indepen-
dently in order to facilitate the modification of
any of the proposed experts, or to incorporate
simple new techniques (including new experts).
This incorporation would only affect the expert of
a single module, while the others remain unchan-
ged. This allows a generalization of the model so
that problems with different characteristics can
be studied, thus facilitating the introduction of
different experts in each module and making it
possible to select the expert best suited to apply
in each particular problem.
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Figure 2 Proposed expert model. The initial problem description is composed of all the individuals (t) together with the
n probes. The first expert pre-processes and filters the probes, reducing the set of probes to s elements but maintaining
the t individuals. The second expert executes the clustering, creates r groups and assigns the new individual (t + 1) to one
of these groups. The third expert explains how the individual elements have been classified into groups by means of a
knowledge extraction technique, and by obtaining a graphical representation (a tree). The final module represents the
probability of assigning individuals to each of the groups depending on the probes selected, taking into account the
knowledge extracted.
Fig. 2 shows a scheme of the bio-inspired model
intended to resolve the problem described in Sec-
tion 2. The proposed model follows the procedures
that are performed in medical centres. Data is first
pre-processed and filtered using the improved Affy-
metrix background corrections and RMA methods,
the data clusters are identified using an ESOINN
network and finally the knowledge extraction is
carried out with a non-parametric statistical
method called CART. As can be seen in Fig. 2, a
previous phase, external to the model and critical in
the expression analysis, consists of a set of tests
which allow us to obtain data from the chips and are
carried out by the laboratory personnel. The chips
are hybridized and explored by means of a scanner,
obtaining information on the marking of several
genes based on the fluorescence. At that point,
the model starts to process the data obtained from
the exon arrays. The system receives a huge amount
of data D, which needs to be reduced in order to
apply classification techniques. In the pre-proces-
sing/filtering module the data is pre-processed to
eliminate defective samples and get standardized
measures. Moreover, the pre-processed data is fil-
tered to reduce the dimensionality and to eliminate
those that do not contribute, or do so insignificantly,
any value to the classification process. The result of
this module is represented as D0, as shown in Fig. 2.
D0 is then used as the input for the clustering mod-
ule, which uses the ESOINN algorithm to classify the
data contained in D0 into groups represented as G.
Then, the new individual is presented to the net-
work which assigns it to the group gi. The groups
obtained and the new classification are then studied
by the extraction of knowledge module to update
the set of rules used to support the decision making
process. Finally, Fig. 2 shows how the results pro-
vided by the extraction of knowledge module are
sent to the representation module to present the
data in a comprehensible format to the user. The
next sub-sections will describe in detail the struc-
ture of the three experts used to construct de
analysis model.

3.1. Pre-processing and filtering:
improved Affymetrix background
correction and RMA

The default Affymetrix background correction and
RMA techniques has been used for normalization and
summarization. We have chosen RMA method as a
‘‘best practice’’ owing to itswide use andbecausewe
are highly confident of RMA based on previous experi-
ences.Wewant to stress that the focus of our experi-
ment is primarily to prove the feasibility of new
clustering methods rather than optimizing the pre-
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processing phase. RMA consists of three steps: (i)
background correction: probe-level data for each
chip are background corrected independently using
a probabilisticmodel; (ii) quantile normalization: the
background corrected probe-level data on each chip
are normalized to a common set of quantiles, derived
from background corrected data from all chips, the
goal of which is to make the distribution of probe
intensities the same for arrays; and (iii) expression
calculation: performed separately for each probe set
n. To obtain an expression measure we assume that
for each probe set n, the background adjusted, nor-
malized and log transformed intensities, denoted
with Y, follow a linear additive model

xi jn ¼ min þ a jn þ ei jn with i ¼ 1; . . . ; I; j

¼ 1; . . . ; J; n ¼ 1; . . . ;N;
X
j

a j ¼ 0 (1)

where aj is a probe affinity effect, mi represents the
log2 scale expression level for array i and eij repre-
sents an independent identically distributed error
term with mean 0. Median polish 0 is used to obtain
estimates of the values.

Once the pre-processing phase has been com-
pleted, the filtering phase begins. The purpose of
this initial phase is to significantly reduce the
dimensionality of the data and to eliminate those
that do not contribute, or do so insignificantly, any
value to the classification process. This can be
considered the recovery phase of important vari-
ables needed for the classification process. This
study proposes a novel filtering method that is
separated into the 5 stages that will be described
in the following sections.

3.1.1. Control
During this phase, all probes used for testing hybri-
dization are eliminated. These probes have no rele-
vance at the time when individuals are classified, as
there are no more than a few control points which
should contain the same values for all individuals. If
they have different values, the case should be dis-
carded. Therefore, the probes control will not be
useful in grouping individuals.

3.1.2. Errors
On occasion, some of the measures made during
hybridization may be erroneous; not so with the
control variables. In this case, the erroneous probes
that were marked during the implementation of the
RMA must be eliminated.

3.1.3. Variability
Once both the control and the erroneous probes
have been eliminated, the filtering begins. The first
stage is to remove the probes that have low varia-
bility. This work is carried out according to the
following steps:

1. Calculate the standard deviation for each of the
probes j

s� j ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1
ðm̄� j � xi jÞ2

vuut (2)

where N is the number of items total, m̄� j is the
average population for the variable j, xij is the
value of the probe j for the individual i.

2. Standardize the above values

zi ¼
s� j � m

s
(3)

3. Discard of probes for which the value of z meet
the following condition: z < �1.0 given that
P(z < �1.0) = 0.1587. This will effect the
removal of about 16% of the probes if the variable
follows a uniform distribution.

3.1.4. Uniform distribution
Finally, all remaining variables that follow a uniform
distribution are eliminated. The variables that fol-
low a uniform distribution will not allow the separa-
tion of individuals. Therefore, the variables that do
not follow this distribution will be really useful
variables in the classification of the cases. The
contrast of assumptions followed is explained
below, using the Kolmogorov—Smirnov [38] test as
an example. H0: The data follow a uniform distribu-
tion; H1: The analyzed data do not follow a uniform
distribution. Statistical contrast:

D ¼ max Dþ;D�
� �

(4)

where

Dþ ¼ max
1�i�n

i

n
� F0ðxiÞ

� �
; D�

¼ max
1�i�n

F0ðxiÞ �
i� 1

n

� �

with i as the pattern of entry, n the number of items
and F0(xi) the probability of observing values less
than i with H0 being true. The value of statistical
contrast is compared to the next value:

Da ¼
Ca

kðnÞ (5)

in the special case of uniform distribution kðnÞ ¼ffiffiffi
n
p
þ 0:12þ ð0:11=

ffiffiffi
n
p
Þ and a level of significance

a = 0.05 Ca = 1.358 a = 0.1 Ca = 1.224.

3.1.5. Correlations
At the last stage of the filtering process, correlated
variables are eliminated so that only the indepen-
dent variables remain. To this end, the linear cor-



Model of experts for diagnosis of leukemia patients 187
relation index of Pearson is calculated and the
probes meeting the following condition are elimi-
nated.

rx�iy� j >a (6)

being a = 0.95, where sx�ix: j is the covariance
between probes i and j.

Once filtered and standardized, the probes pro-
duce a set of values xij with i = 1,. . ., N, j = 1,. . ., s
where N is the total number of cases, s the number
of end probes. The proposed filtering process is very
novel since we are not aware of any previous
research that uses a filter with the same character-
istics as those found in this type of problem.

The pre-processing and filtering technique helps
to notably reduce the dimension of the initial data-
set, which is one of themain problems when working
with exon arrays. At this moment the data is ready
to be classified using clustering techniques. The
expert system proposed in the framework of this
research proposes an ESOINN neural network as a
novel clustering method for exon arrays. The
ESOINN clustering technique is explained in detail
in the next section.

3.2. Clustering technique: ESOINN

ESOINN is the network selected as the second
expert. It consists of a single layer, so it is not
necessary to determine the manner in which the
training of the first layer changes to the second.
With a single layer, ESOINN is able to incorporate
both the distribution process along the surface and
the separation between low density groups. The
operation and training of the network presents
many similarities with those used in GCS networks
as far as distribution over the surface is concerned,
but not as far as the dimensionality of the meshes.
Nevertheless, it more closely resembles a merger
between a CHL and a NG: it has characteristics of a
network CHL in the initial phases of the algorithm,
by which it could be understood as a phase of
competition, while in a second phase, the network
of nodes begins to expand just as with a NG network.
This process is conducted in an iterative way until it
reaches stability. Only the changes in the training
phase are detailed below:

(a) Update the weights of neurons by following a
process similar to the SOINN, but introducing a
new definition for the learning rate in order to
provide greater stability for the model. This
learning rate has produced good results in other
networks such as SOM [39].

DWa1 ¼ n1ðMa1Þðj�Wa1Þ
DWi ¼ n1ðMaiÞðj�WaiÞwith i2Ni

(7)
The new learning tasks included in the algorithm
are n1ðxÞ ¼ 1=

ffiffiffi
x
p

, n2ðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ x2
p

.
(b) Delete the connections with higher age. The

ages are standardized and those whose values
are in the region of rejection with k > 0 are
removed. The assigned value of a is 0.05, there-
fore

zi ¼
ei � m

s
; z�Nð0; 1Þ then fðzÞ

¼ 1ffiffiffiffiffiffi
2p
p Exp

�z2
2

� �
(8)

where P(z < k) = a/2! P(z < k) = 0.975!
Q(z) = 0.975 k = 1.96. Therefore all z values that
are greater than 1.96 are deleted.

The new algorithm defines an automatic
threshold to automatically remove the connec-
tions.

(c) If all input patterns have been passed then a KS-
Test [38] is carried out in order to determine if
the density distribution for the neurons in each
group follows a normal distribution. If so then
the learning procedure is finished; otherwise
the next pattern is processed. The value of a

chosen is 0.05. The algorithm incorporates a
new method is defined to automatically decide
when the classification process should be fin-
ished.

Once, the clusters have been made, the new
sample is classified. Assignments are made based
on the k-nearest neighbour (KNN) algorithm [40]
that allows values of probability to be established
for each neighbour, for which it is necessary to
establish a measure of similarity to calculate the
distance between individuals. The similarity mea-
sure used is as follows:

dðn;mÞ ¼
Xs
i¼1

fðxni; xmiÞwi (9)

where s is the total number variables, n and m the
cases, wi the value obtained in the uniform test and
f the Minkowski distance [41] that is given for the
following equation:

fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

xi � yij j pp

r
con xi; yi 2Rp (10)

This dissimilarity measure weighs those probes
that have a less uniform distribution, since these
variables do not allow a separation. In order to
validate the selected distance, the Kruskal—Wallis
[42] test was carried out. It was verified whether the
proportion of errors in the classification of each one
of the individuals were the same for each group,
bearing in mind the different measure. The results
are shown in Table 2. Table 2 shows the non-para-
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Table 2 Comparison of functions of distance. The
table shows a comparison of equality of medians for
the different functions of distance. The variable con-
sidered is the number of classification errors in each of
the groups. The comparison is based on the Kruskal—
Wallis non-parametric test.

Minkowski Euclidean Max absolute

Minkowski
Euclidean =
Max absolute *(�) *(�)
metric Kruskal—Wallis test for independent group
comparison taking into account their proportion of
errors. The test compares if the samples come from
the same population, then the variable is the pro-
portion of errors for each group obtained in the
classification, taking into account different distance
metrics, is the same for the different methods. In
this way, it is possible to determine if both methods
can be considered as similar for a given confidence
level (in this case the confidence level is stated at
0.05). If the result obtained shows different values
for the proportion, this fact is represented as (�) in
the table, and if the proportion of errors in a column
is lower than the proportion of errors for the ele-
ment in the row, and (+) otherwise. As can be seen in
Table 2, the worst results are obtained for the
absolute distance. In the hypothesis contrast the
null hypothesis has been rejected (samples come
from the same population) *, so the groups have
different averages. Moreover, the proportion of
errors is minor (�). On the other hand, the Min-
kowski and Euclidean distances provides similar
results, and is represented as =.

The clustering technique allows us to classify
leukemia patients and assign them to the groups
represented as clusters. However, it is of interest to
analyze the classification process followed to
extract conclusions that can help to make more
accurate diagnosis in the future. In this sense, it
is necessary to use extraction of knowledge techni-
ques, as explained in the following section.

3.3. Extraction of knowledge techniques:
CART

Knowledge extraction is especially important when
complex algorithms that use hard computing tech-
niques and that generate models in an automatic
way are used. Human experts are much confident
when they know exactly why or at least how a
solution to a problem has been calculated. CART
is a non-parametric statistical method for extrac-
tion of knowledge in classifications. The extracted
information is represented in a binary decision tree,
which allows individuals to be classified from the
root node. Keeping the kind of dependent variable in
mind, CARTcan be separated into two types: classi-
fication tree, if the dependent variable is catego-
rical; and regression tree in the case of a continuous
dependent variable. For example, in the case study
presented in Section 5, only the classification tree is
useful since the dependent variable will be the
patient’s type of illness. The algorithm used for
creating the decision tree used by CART is shown
below:

(a) Define the impurity function i(t) for each vari-
able/wave where t is the current node. In this
case, the Gini impurity function [11,36] was
selected since it is more widely used. There
are others such as Twoing [36] which produce
more balanced trees, but the output follows an
exponential pattern as the number of groups
increases. Furthermore, by observing the
results, it is easy to see that the tree created
by the Gini index is not complex enough to
propose the Twoing alternative.

ivðtÞ ¼ 1�
Xr
j¼1

p2ð jjtÞ (11)

where p(jjt) is the frequency relative to class j
in node T, and vs is the selected variable
v ¼ 1; . . . ; r.

(b) Calculate the value of the split s in each variable
v from node t that maximizes the expression
(12).

Divðs; tÞ ¼ iðtÞ � pl � iðtlÞ � pr � iðtrÞ (12)

where pl is the number of cases that end up at
the left son node for t pr those that end up on
the right, tl is the left node and tr the right
node.

(c) Select the greater of Divðs; tÞ among all vari-
ables v.

(d) Repeat from step 1 for all nodes with no children
having more than one class of elements
Divðs; tÞ ¼ 0 for all variables v.

Once the decision tree for classifying individuals
according to wave values has been formed, the CART
algorithm is applied for the pruning phase, which
consists of eliminating nodes to reduce the complex-
ity and improve the tree’s ability to generalize [36].
A minimal cost complexity pruning function is estab-
lished for the pruning phase. The cost function
depends on the complexity of the tree (number of
leaf nodes n). The error rate for the tree T R(T) and a
is the parameter for complexity.

Ra ¼ RðTÞ þ a � n (13)



Model of experts for diagnosis of leukemia patients 189
At this point the data is modified in order to
optimize the functioning of the CART algorithm.
By analyzing the behavior of the algorithm, it is
easy to note that the number of different levels
for the continuous variables affects their output.
Because of this, the discretization process is applied
to the values corresponding to the continuous vari-
ables that are available. The discretization of the
values allows the efficient generation of the deci-
sion tree. Our proposal incorporates such discreti-
zation to reduce the processing costs. Otherwise, it
was impossible to work with such a large number of
continuous variables. There are 5 levels selected
during discretization, which allows the values for
fluorescence to be represented as: very low, low,
medium, high, and very high. The following section
explains the process that was followed, including
fuzzy logic criteria:

(a) Select the maximum value Mj and the minimum
valuemj for each variable with j = 1,. . ., rwhere
r is the number of variables.

(b) Transform the data for xij as follows:

xi j ¼
xi j �mj

Mj �mj
(14)

(c) Assign a fuzzy value to the data according to the
following equation

xi j ¼ a ifa� b=2< xi j � aþ b=2 (15)

where a ¼ k=n with k = 1,. . ., n, n is the number
of intervals and b the amplitude of intervals.

Finally, in order to avoid overloading the algo-
rithm, we eliminate all variables with a median
value equal for all groups by using the Kruskal—
Wallis [42] non-parametric test for equality of med-
ians. These variables will not allow a classification of
individuals since the values for the individuals from
different groups are intermixed. We can then con-
clude that the median can be considered equal for
all individuals. Once the discretization for variables
has been applied and all the variables with a null
hypothesis from the previous contrast have been
eliminated, the procedure is completed with the
previous process of adaptation of data preceding the
application of extraction of knowledge. At this time,
the extraction of knowledge process can be applied
by using the previously mentioned CART method.

3.4. Working model

The expert responsible for carrying out the pre-
processing/filtering of data first receives informa-
tion from the laboratory on the various hybrid genes
and the fluorescence values from the exon arrays
that were assigned to each of the individuals or
patients that were subjects in the test. This phase
receives an array with a patient’s data as input
information. It should be noted that there is no
filtering of the patients, since it is the work of
the researcher conducting this task. The step filters
genes but never patients. The aim of this phase is to
reduce the search space to find data from the pre-
vious cases which are similar to the current pro-
blem. The set of patients is represented as
D = {d1,. . ., dt}, where di 2 Rn represents the patient
i and n represents the number of probes taken into
consideration. As explained in Section 3.1, during
the pre-processing phase the data are normalized by
the RMA algorithm [22] and the dimensionality is
reduced bearing in mind, above all, the variability,
distribution and correlation of probes. The result of
this phase reduces any information not considered
meaningful to perform the classification. The new
set of patients is defined through s variables
D0 ¼ fd01; . . . ; d0tgd

0
i 2R

s; s � n.
The second expert, specialized in clustering tech-

niques, uses the information obtained in the previous
step to classify thepatient into a leukemiagroup.The
patients are first grouped into clusters. The data
coming from the pre-processed/filtered phase con-
sists of a group of patients D0 ¼ fd01; . . . ; d0tg con
d0i 2R

s; s � n, each one characterized by a set of
meaningful attributes di = (xi1,. . ., xis), where xij is
thefluorescence valueof theprobe i for thepatient j.
In order to create clusters and consequently obtain
patterns to classify the new patient, the system
implements a novel neural network based on the
ESOINN [10]. The structure of this neural network
has been described in detail in Section 3.2. The net-
work classifies the patients by taking into account
their proximity and their density, in such a way that
the result provided is a set G where G = {g1,. . .,
gr}r < s. gi � D, gi \ gj = f with i 6¼ j and i, j < r.
The set G is composed of a group of clusters, each
of them containing patients with a similar disease.
The clusters have been constructed by taking into
account the similarity between the patient’s mean-
ingful symptoms. Once the clusters have been
obtained, the system can classify the new patient
by assigning him to one of the clusters. The new
patient is defined as d0tþ1 and his membership to a
group is determined by a similarity function defined
in (9). The result of the phase is a group of clusters
G ¼ fg1; . . . ; g0i; . . . ; grgr< s where g0i ¼ gi [fd0tþ1g.

Finally, the third expert performs the extrac-
tion of knowledge with the CART [11] technique
presented in Section 3.3 of this article. The infor-
mation that is input in this module is made up of
the groups selected during the clustering phase,
G = {g1,. . ., gr}, and the influence that each of the
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genes has on the classification process is calcu-
lated. A decision tree is created to generate the
rules that determine the influence that each of
the genes has in the classification. This then
becomes the information that is returned by this
module. Specifically, the information that the
expert system returns is represented as
gi = ( f1,. . ., fs) with f i = (zi, min, max) where zi
is the value of fluorescence, min is the minimum
value and max is the maximum value.

4. Results

The Cancer Institute of the University of Salamanca
conducts various studies regarding the detection,
prediction and treatment of cancer. The depart-
ment of hematology focuses on the study of blood
cancer, or leukemia. This department works with 6
types of pathologies: ALL, AML, CLL, CML, MDS, and
NOL (where A is acute, C is chronic, L is lymphocytic,
and M is myeloid). Each of these pathologies is
characterized by its own symptomatology and by
the effects that indicate their development and
possible treatments.

� ALL. This is a type of cancer of the blood and bone
marrow caused by an abnormal proliferation of
lymphocytes.

� AML. This is a type of cancer in the bone marrow
characterized by the proliferation of myeloblasts,
red blood cells or abnormal platelets.

� CLL. This is a type of cancer characterized by a
proliferation of lymphocytes in the bone marrow.

� CML. This is caused by a proliferation of white
blood cells in the bone marrow.

� MDS (Myelodysplastic Syndromes). This refers to a
group of diseases of the blood and bone marrow in
which the bone marrow does not produce a suffi-
cient amount of healthy cells. This can progress to
acute leukemia.

� NOL (Normal). No leukemias.

The present case study uses 248 samples obtained
by analyses performed on patients either directly
from the bone marrow that were hybridized and
analyzed with exon arrays manufactured by Affy-
metrix. The purpose of the tests is to evaluate the
validity of the model of experts presented in Section
3 of this article. To this end, the model of experts is
applied to the available samples, which results in a
classification of patients for each of the groups
considered. The classification is compared against
the results obtained by the Cancer Institute of the
University of Salamanca which employs traditional
methods.
In the leukemia studies based on data from exon
arrays, the process of filtering data acquires special
importance. In the experiments reported in this
paper, we worked with a database of bone marrow
cases from 248 adult patients with five types of
leukemia, plus a group of 16 samples belonging to
healthy persons (no leukemias). The data consisted
of around 5,500,000 scanned intensities. The system
presents a novel technique to reduce the dimen-
sionality of the data. The total number of variables
selected in our experiments was reduced to 883,
which increased the efficiency of the cluster probe,
while the traditional tools, such as the Affymetrix
expression array console or Partek Suite, only
allowed working with the initial number of vari-
ables. In addition, the selected variables resulted
in a classification similar to that already achieved by
experts from the laboratory of the Cancer Institute
of the University of Salamanca. The error rates have
remained fairly low especially for cases where the
number of patients was high. In an attempt to
increase the reduction of the dimensionality of
the data we applied principal components (PCA)
[43], following the method of eigen values over 1.
A total of 112 factors were generated, collecting
96% of the variability. However, this reduction of the
dimensionality was not appropriate in order to clas-
sify patients correctly, so this step was removed
from the recovery phase. Fig. 3 shows the classifica-
tion performed for patients from groups CLL and
ALL. The X axe represents the probes used in the
classification (883) and the Y axe represents the
individuals. As can be seen in Fig. 3a, represented
in black, most of the people of the CLL group are
together, coinciding with the previous classification
given by the experts at the Cancer Institute of the
University of Salamanca. Only a small portion of the
individuals departed from the initial classification.
Fig. 3b shows the classification obtained for the ALL
patients. In Fig. 3b it can be seen that, although the
ranking is not bad, the proportion of individuals
misclassified is higher. Groups that have fewer indi-
viduals are those with a higher classification error.

During the filtering phase, we configured several
values for the significance level in order to check the
possibility of increasing or decreasing the filtering,
depending on the selected parameters. Table 3
shows the results obtained after configuring the
parameters which affect the significance level,
and the misclassification errors obtained from dif-
ferent configurations. The value of the parameter k
has been changed in order to study the variability, as
well as the value of the parameter a, uniform test,
and the value of the Pearson lineal correlation. As
can be seen in Table 3, the parameter with a higher
influence in the final number of filtered elements is
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Figure 3 Classification obtained for (a) ALL patients and (b) CLL patients. The X axe represents the probes, while the Y
axe represents the individuals. Each of the values obtained correspond to the fluorescence intensity for an individual and
probe. At the bottom of the image it is shown the fluorescence scale of values, the lowest level is two (blue) while the
highest is 12 (red) In (a), in the bottom of the figure, it is shown a slide representing those individuals assigned to a group,
while the black lines represent the individuals that really belong to that group ALL. In (b) It is represented the same
information for the group CLL. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of the article.)
the one which corresponds to the significance
level of the uniform test, while the parameter with
a lower influence is the correlation test. Even
though for values of a minor to 0.1 we can obtain
the higher filtering, we decided to opt for a more
conservative posture, choosing a value 0.1 for a. In
this sense, the row in bold in Table 3 shows the final
configuration for the filtering stage.

In a similar way we proceeded to evaluate the
classification for the rest of the groups. Fig. 4a
shows the total number of patients with leukemia
from each group (11 in ALL, 53 in AML, 95 in CCL, 26
in CML, and 47 in MDS) and the number of mis-
classifications (4 in ALL, 12 in AML, 4 in CCL, 7 in
CML, and 6 in MDS). As can be seen in Fig. 4a,
groups with fewer patients are those with a greater
error rate. Fig. 4b shows the percentage of error in
each group. Once the validity of the method of
filtration for selecting the most important vari-
ables for classification was verified, the next step
in the evaluation was to assess the functioning of
the classification process. The system was tested
with 15 new patients, who were classified with
both the KNN [40] process and the extraction of
knowledge technique, following the decision tree
shown in Fig. 5, the patients were assigned to the
expected groups. Only one of the patients was
assigned to a different group by both methods.
The healthy patients were eliminated in order to
proceed with the classification.
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Table 3 Filtering. This table shows the number of probes
selected as the confidence levels are modified in the
different phases of the filtering stage. The final column
represents the classification error obtained after the KNN
clustering.

Variability
(z)

Uniform
(a)

Correlation
(a)

Probes Errors

�1.0 0.25 0.95 2965 42
�1.0 0.15 0.90 1450
�1.0 0.15 0.95 1488 40
�0.5 0.15 0.90 1368
�0.5 0.15 0.95 1445
�1.0 0.1 0.95 883 41
�1.0 0.05 0.90 384
�1.0 0.05 0.95 388 51
�0.5 0.05 0.9 362
�0.5 0.05 0.95 363
�1.0 0.01 0.95 66 92
The final classification was compared with the
data obtained using a dendogram [44] and partition-
ing around medoids (PAM) [45]. The proportion of
errors in every group was calculated and the Krus-
kal—Wallis [42] test was applied to determinate if
the median of these proportions were equal.
The results are shown in Table 4. As previously
explained, Table 4 presents the results obtained
after applying a non-parametric test which allows
comparing equal proportions in misclassification.
Figure 4 Classification errors (a) numerical (b) percen-
tage.
In this case, taking into account the mentioned
patient classification methods, the results show that
the proportions of errors is lower if the mixture of
experts is used.

Once the individuals have been classified, the
extraction of knowledgemethod is applied bymeans
of the technique explained in Section 3.3. In the first
step, the Kruskal—Wallis [42] non-parametric test
was applied for equality between medians, where
all variables with a median equal for all groups were
eliminated. As a result, 35 variables were elimi-
nated, leaving a total of 848. In the next step,
the same test was applied on all group pairs, from
which we determined that the median among all
group pairs was different for each of the variables.
Fig. 6 shows the pairs compared for the medians of
all groups. The value of the non-parametric contrast
of the Kruskal—Wallis test is represented for those
probes for which it has been discarded that their
equality between medians be the same for all the
groups. Each of the rows in Fig. 6 represents each of
the possible pairs, and the columns represent the
848 variables. As can be seen in Fig. 6, the medians
for almost all of the pairs are different. There are
only 3 bands that show values for which the equality
of medians can be noted in the variables. Because
these cannot be extended to the other pairs, the
elimination of waves was considered to be com-
pleted. The graphic shown in Fig. 6 also provides
an indication of which of the groups are going to be
difficult to differentiate. By observing the graphic,
we can conclude, for example, that the patients of
type AML—MDS that correspond to the second red
band will be problematic. By looking at Fig. 5 and
Fig. 7, we can prove that the majority of the indi-
viduals incorrectly classified as type AML could be
classified as MDS.

After completing the previous steps, the ex-
traction of knowledge method was applied to
the resulting groups. The groups provided by the
ESOINN network are considered together with
the information (cases) of previous classifications.
Table 4 Comparison of clustering methods. The table
shows a comparison of equality of medians for the
different clustering methods used. The variable con-
sidered is the number of classification errors in each of
the groups. The comparison is based on the Kruskal—
Wallis non-parametric test. Comparison of methods. *
different median and = equal, (�) median of column less
than median of row.

Expert Dendogram PAM

Expert
Dendogram *(�)
PAM *(�) *(�)
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Figure 5 Decision tree for classifying patients. The values of the leaf nodes represent the predicted group and the
number of elements assigned to each of the groups following the order (ALL, AML, CLL, CML, NOL, MDS). The rest of the
nodes represent the probe and the fuzzy value to compare the individual to classify. If the condition is true, then the
branch on the left is selected, otherwise, the branch on the right is selected. The tree helps to obtain an explanation of
the reason why an individual has been assigned to a group.

Figure 6 Test of equality for the medians of all group pairs. The X axe represents the probes and the Y axe represents
the pairs of groups. The color represents the value obtained in the Kruskal—Wallis hypothesis contrast. The red bands
represent those groups which probes contain similar values. The scale of colors represents the values of the test. The blue
region [0, 0.05] is consistent with values of the test for which H0 is rejected while the red color corresponds to the region
which H0 is accepted. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.)
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Figure 8 Intensity of 1555158_at. Shows the values of the probe located in the root of the decision tree created by
means of CART. As can be seen, the probe allows obtaining a good classification for the individuals belonging to the CLL
group.

Figure 7 Detailed information from the decision tree. Each of the rows corresponds to a tree branch that contains the
number of assigned nodes, the condition, the number of nodes correctly classified, the misclassified nodes, and the class
they belong to. The probability of each of the classes being assigned to the nodes (ALL, AML, CLL, CML, NOL, MDS) is
indicated in parentheses.
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The network is only used for individuals without
previous classification. If the network is used with
an individual previously classified and the result
differs from the initial one, then it is necessary the
opinion of a human expert. In order to perform the
extraction of knowledge, as indicated in Section
3.3, a fuzzy logic discretization process was
applied to the values. The results obtained were
very satisfactory since with only a few waves it is
possible to classify patients simply and efficiently.
Fig. 5 shows the decision tree that was obtained.
The top of each branch displays the decision wave,
Figure 9 Classification CLL—ALL. Representation of the pro
1555158_at, 1553279_at and 1552334_at. Both images repre
while the tree leaves display the classification
group and the number of elements classified for
each type (ALL, AML, CLL, CML, NOL, MDS). There-
fore, in order to classify an individual, one would
simply start at the top of the tree and verify the
value of the waves. Figs. 8 and 9, show a graphical
representation of the tree generated. Fig. 8 shows
the values of the probe root 1555158_at. It is
possible to observe that the individuals belonging
to the CLL group possess values which are superior
to those of other individuals, and this fact allow us
to easily identify the individuals of CLL class. Fig. 9
bes of the decision tree which classify the CLL and ALL to
sent the same information, but from different angles.



196 J.M. Corchado et al.
shows a representation of the first 3 probes of the
tree, 1555158_at, 1553279_at and 1552334_at.
These probes allow us to separate the individuals
from groups CLL and ALL with a high success rate.
Both figures represent the same information, but
from different perspectives.

Fig. 7 shows the information from the decision
tree in detail. Each of the rows corresponds to a tree
branch that contains the number of assigned nodes,
the condition, the number of nodes correctly clas-
sified, the misclassified nodes, and the class they
belong to. The probability of each of the classes
being assigned to the nodes (ALL, AML, CLL, CML,
NOL, MDS) is indicated in parentheses. Fig. 10 is a
graphical representation of the classification errors
obtained from the decision tree. Fig. 10a shows the
number of erroneous and successful classifications
in each group. Fig. 10b shows the same data in
percentages. As can be seen in Fig. 10, the classi-
fication errors were hardly significant.

Because the system was intended to classify leu-
kemia patients, those not suffering from this disease
(from group NOL) were eliminated, and the same
test was conducted again. Fig. 11 shows the decision
tree obtained from this classification. As can be
seen, the complexity of the tree has been reduced
from 10 leaves to 8. However, note that discriminat-
Figure 10 Classification errors (a) numerical (b) per-
centage using the decision tree.
ing waves have not varied with respect to those
shown in Fig. 5. Additionally, the final percentage of
error for all the groups remains constant.

Once the classification model was obtained, its
validity was confirmed. In order to accomplish this,
a detailed prediction was made from the samples
corresponding to individuals from the Cancer
Institute database by determining the probability
of assigning each individual to each one of the
groups. This made it possible to easily observe
which individuals were misclassified and the
degree of certainty for each classification based
on probability. Fig. 12 shows the different prob-
abilities for assigning each individual to each of the
groups according to the CART algorithm [11]. The
x-axis represents the individuals and the y-axis the
probability of assignment to each of the groups.
The line at the bottom of the graph in Fig. 12
corresponds to the origin of each individual, while
the top part of the graph shows the group to which
the patient is finally assigned. This probability is
calculated taking into account the possible
patient assignation related to the selected probes.
The CART algorithm allows obtaining the probes of
more influence for the classification of each of the
types. Fig. 13 shows a graphical representation of
the three probes that better classify the patients
with leukemia of CLL class. As can be seen in
Fig. 13a and b, any of the axes allows a separation
of the CLL individuals from the rest in an efficient
manner.

One of the great contributions of the model
presented is the ability to work with data from exon
arrays because of its great capacity for selecting
significant variables. Nowadays very few tools are
capable of working with data of this kind, due to its
high dimensionality. The proposed model resolves
this problem by using a technique that detects the
most important genes for the classification of dis-
eases by analyzing the available data. As demon-
strated, the proposed system allows the reduction
of the dimensionality based on the filtering of genes
with little variability and those that do not allow a
separation of individuals due to the distribution of
data. It also presents a clustering technique based
on the use of ESOINN 0 neural networks and a
technique for discovering CART rules [11] that can
be viewed as general knowledge summarizing the
relevance of the acquired knowledge. The results
obtained from empirical studies are promising and
highly appreciated by laboratory specialists, as they
are provided with a tool that allows the detection of
genes and those variables that are most important
for discovering a pathology, and facilitates a reliable
classification and diagnosis, as shown by the results
presented in this paper.
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Figure 11 Decision tree for the classification of leukemia patients with out NOL. The values of the leaf nodes represent
the predicted group and the number of elements assigned to each of the groups following the order (ALL, AML, CLL, CML,
MDS). The rest of the nodes represent the probe and the fuzzy value to compare the individual we are trying to classify. If
the condition is true, then the branch on the left is selected, otherwise, the branch on the right. In this way it is possible to
obtain an explanation of the reason why an individual has been assigned to a group.

Figure 12 Probability prediction for assigning each individual to each of the groups, according to the CARTalgorithm.
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Figure 13 Classification CLL from the most important probes extracted by the CART algorithm. Each of the axes
represents one of these probes extracted by CART for the classification of the CLL group.
5. Conclusions

This study has presented a model of experts that
uses exon arrays [4] to perform an automatic diag-
nosis of cancer patients. It is a system that incor-
porates experts at each phase of the microarray
analysis, a process that is capable of extracting
knowledge from diagnoses that have already been
performed, and that has been used to increase the
efficiency of new diagnoses. The model combines
novel techniques that reduce the dimensionality of
the original set of data under study, pre-processing
and data filtering techniques, a novel method of
clustering for classifying patients, and modern
extraction of knowledge techniques. The system
works in a way that is similar to how human specia-
lists work in the laboratory, but is also capable of
working with large amounts of data and making
decisions automatically, thus significantly reducing
both the time needed for making predictions, and
the rate of human error. The study presented within
the scope of this research focused on identifying the
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main variables for each disease so that patients can
be classified accordingly. It would be interesting to
conduct future studies to analyze if different clas-
sifications exist depending on whether the samples
are obtained from the bone marrow or blood.

The advantage of using a mixture of experts lies
in the flexibility and adaptability it affords to the
needs of the problem being studied. Furthermore, it
facilitates the incorporation of different experts in
each of the phases of the model, which can offer
different perspectives for approaching the problem
at each particular phase. These perspectives can be
compared so that the optimal decision can be
selected for each specific situation. One of the
greatest contributions of the model presented is
the ability it has to work with exon array data 0.
Nowadays, very few tools are capable of working
with this type of data because of the high dimen-
sionality. The proposed model resolves this problem
by using a technique that detects the importance of
the genes for the classification of the diseases by
analyzing the available data.

For the time being, three experts have been
designed, one for each phase of the model. They
can adapt to the needs of the problem of diagnosing
leukemia patients and present novel characteristics.
We have proposed a system to reduce the dimension-
ality based on the application of new filtering tech-
niques. Additionally, we have presented a clustering
technique based on the use of ESOINN neural net-
works 0 which allow the classification of individuals.
Finally, we have developed an improved version of
the CART 0 extraction of knowledge algorithm. The
results obtained fromempirical studies are promising
and much appreciated by laboratory specialists, as
they are provided with a tool that allows the detec-
tion of the most important genes and variables
needed for discovering a pathology, and facilitates
a reliable classificationanddiagnosis, as shownby the
results presented in this study. Traditional filtering
techniques are inefficient in terms of selection of
importantprobes for theclassificationprocess,which
greatly complicates the extraction of knowledge.
Themedical staff of the Cancer Institute appreciates
a system capable of providing automatic filtering and
classification, but particularly praises the facility of
decision support, as it helps to explain the analysis
process by means of rules, and provides valuable
knowledge on the meaningful probes that allow clas-
sifying the individuals.
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