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Abstract. Accuracy in indoor Real-Time Locating Systems (RTLS) is still a 

problem requiring novel solutions. Wireless Sensor Networks are an alternative 

to develop RTLS aimed at indoor environments. However, there are some 

effects associated to the propagation of radio frequency waves, such as 

attenuation, diffraction, reflection and scattering that depends on the materials 

and the objects in the environment, especially indoors. These effects can lead to 

other undesired problems, such as multipath. When the ground is the main 

responsible for waves reflections, multipath can be modeled as the ground 

reflection effect. This paper presents a model for improving the accuracy of 

RTLS, focusing on the mitigation of the ground reflection effect and the 

estimation of the final position by using Neural Networks. 

Keywords. Applications of sensor and actuator networks, wireless sensor 

networks, real-time location systems, ground reflection effect. 

1. Introduction 

Indoor Real-Time Location Systems (RTLS) are gaining relevance during the recent 

years and represent a currently growing market. The most important factors in the 

locating process are the kinds of sensors used and the techniques applied for the 

calculation of the position based on the information recovered by these sensors. 

Indoor locating (e.g., inside buildings or tunnels) needs still more development, 

especially with respect to accuracy and low-cost and efficient infrastructures [12; 15]. 

One of the main challenges is to deal with the problems that arise from the effects of 

the propagation of radio frequency waves, such as attenuation, diffraction, reflection 

and scattering. These effects can lead to other undesired problems, such as multipath. 

When the ground is the main responsible for waves reflections, multipath can be 

modeled as the ground reflection effect. Due to these effects, the energy of the 

transmitted electromagnetic waves is substantially modified between transmitter and 

receiver antennas in these systems. Therefore, it is necessary to develop Real-Time 

Locating Systems that allow performing efficient indoor locating in terms of precision 

and optimization of resources.  
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Amongst the technologies that are most currently used in the development of 

RTLS we have RFID (Radio Frequency IDentification), Wi-Fi and ZigBee [7]. 

However, in addition to the technology used, it is necessary to establish mathematic 

models that allow us to determine the position from the recovered signals. For this 

reason, different algorithms exist, such as triangulation, fingerprinting and 

multilateration [7; 8]. However, these models present important disadvantages when 

developing a precise locating system, especially indoors. Therefore, it is necessary to 

define new models that allow the improvement of precision in this type of system. 

Reflection, diffraction, scattering, reflection effect can provoke which is known as 

multipath effect, and, more specifically to indoor RTLS based on WSNs, the ground 

reflection effect [6]. Therefore, it is necessary to define new models and techniques 

that allow the improvement of accuracy in these kinds of systems. 

In this paper, a new model is presented in order to improve the precision of RTLS 

based on wireless sensor networks. This model uses Artificial Neural Networks 

(ANNs) [13] as a new component to mitigate the ground reflection effect and 

calculate the position of the elements. The basic functioning of the system is as 

follows. Firstly, it is necessary to place a network of fixed nodes within the space 

where location will be carried out. In addition, there are a set of mobile nodes, 

generally called “tags”, which periodically transmit a signal that contains their 

identifier in the network. That signal is detected by the fixed nodes within their 

coverage area, containing power (RSSI – Received Signal Strength Indication) and 

quality (LQI – Link Quality Indicator) measurements of the received signal. A central 

node collects all the reference measurements from all of the fixed nodes in the 

network and sends them to a computer to be processed.  

The paper is structured as follows: Section 2 explains the problems that the ground 

reflection effect introduces in RTLS and describes a new proposal for reducing the 

ground reflection effect by using ANNs. Section 3 describes the case study. Finally, 

Section 4 describes a set of tests evaluating our proposal. 

2. The RTLS Model 

The infrastructure of a Real-Time Locating System contains a network of reference 

nodes called readers [7] and mobile nodes, known as tags [15; 7]. Tags send a 

broadcast signal which includes a unique identifier associated to each tag. Then, 

readers obtain the identifier, as well as specific measurements of the signal. These 

measurements give information about the power of the received signal (e.g., RSSI), 

its quality (e.g., LQI), the Signal to Noise Ratio (SNR) or the Angle of Arrival (AoA) 

to the reader, amongst many others. These signals are gathered and processed in order 

to calculate the position of each tag. 

RTLS can be categorized by the kind of its wireless sensor infrastructure and by 

the locating techniques used to calculate the position of the tags. This way, there is a 

range of several wireless technologies, such as RFID, Wi-Fi, UWB, Bluetooth and 

ZigBee, and also a wide range of locating techniques that can be used for determining 

the position of the tags. Amongst the most widely used locating techniques we have 
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signpost, fingerprinting, triangulation, trilateration and multilateration [7; 8]. The set 

of the locating techniques that a RTLS integrates is known as the locating engine [7]. 

This way, the position of each tag is estimated no matter the position of the readers 

in the environment. However, two main aspects have to be taken into account when 

calculating the position of the tags. On the one hand, it is necessary to establish a 

relationship between the RSSI levels of the signals sent by the tags and the distance 

between such a tag and a set of readers. In order to do this, it is necessary to model the 

ground reflection effect, which distorts considerably the relationship between a 

certain range of RSSI levels and distances. On the other hand, it is necessary to apply 

an algorithm that allows estimating the final position of each tag basing on the 

distances calculated according to the measured RSSI levels.  

2.1. Modeling of the Ground Reflection Effect 

In ideal conditions, the modeling of the relationship between RSSI levels and 

distances between antennas has a decaying exponential shape. Nevertheless, as shown 

in Figure 1, when ground reflection effect is taken into account, the process of 

approximation of the relationship between the RSSI levels and the distances between 

antennas is complex and problematic. Therefore, it is necessary to use other models 

that allow considering the ground reflection effect in order to obtain a reliable 

estimation of the distances between tags and readers. 

 

 
 

Fig. 1. The X axis represents the distance and the Y axis represents the RSSI at the 

receiver antenna. The black line shows the values of the signal in an ideal situation, 

with no ground reflection effect. The red line shows the signal affected by the ground 

reflection effect. 

 

Currently there is a wide range of models for function approximation. Amongst the 

most widely used, we have the regression models. Some alternatives to these 

regression models are the Support Vector Regression (SVR) [16; 14], and Polynomial 

interpolation methods [2; 17]. These methods allow approximating values from a 

certain tabbed data set. Other regression methods applied when the distribution of 

data and their relationships are unknown are supervised learning neural networks. In 

the work of Kalogirou [9] it is presented a complete review of case studies where 

these artificial neural networks have been applied. Amongst supervised learning 

networks we have the Multi-Layer Perceptron (MLP) or the radial basis function 
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(RBF) networks [1]. Artificial Neural Networks are applied to a wide range of 

function approximation problems. 

Artificial Neural Networks allow working with time series. The use of time series 

facilitates the forecast if it is not possible to make estimations of non-independent 

values with consecutive samples. This way, it is provided a more realistic forecast of 

values. Indeed, this is a fundamental feature for the forecast of distances from the 

RSSI levels, thus mitigating the ground reflection effect. This is because the ground 

reflection effect mainly occurs inside certain ranges of the distances. 

There are fluctuations in the distance values regarding the RSSI levels for a certain 

range of RSSI values. Thus, a certain RSSI value can mean distinct distances. In order 

to model the ground reflection effect we utilize time series applied to Artificial Neural 

Networks. Artificial Neural Networks allow forecasting a value according to the 

received historical values. Therefore, in this work the neural network is provided as 

inputs with both the current detected RSSI value and the RSSI values detected in 

previous time instants. This is the way we intend to mitigate the ground reflection 

effect. In order to improve the forecast of the time series it was opted to incorporate 

the RSSI levels provided by other readers into the neural network. This way, the 

distances forecasting is done using a subset of the deployed readers in the system 

simultaneously. The architecture of the neural network is depicted in the Figure 2. 

This neural network has k input groups with n neurons each of them. These n neurons 

correspond with the n values of the time series. Likewise, the k groups correspond 

with number of readers that are considered for the distance estimation. This number 

of readers is set in advance, thus selecting the readers with highest measured RSSI 

levels from the tag. The intermediate layer is made up of 2(k + n) + 1 neurons, 

whereas output layer is formed by k neurons (i.e., a neuron per each reader). 

The groups of input neurons are ordered according to the current RSSI level from 

highest to lowest. Therefore, the first output of the neurons is associated to the reader 

that received the highest RSSI level and so on. 

 

  
 

Fig. 2. Structure of the Multi-Layer Perceptron used in the training stage for the 

mitigation of the ground reflection effect using multiple readers. The ANN contains n 

inputs for each of the k readers and k outputs. 
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2.2. Locating Techniques 

As mentioned before, there are several locating techniques that can set up the locating 

engine of a Real-Time Locating System. In our research, we are centered on three of 

them: signpost, fingerprinting and trilateration. 

The signpost technique is the simplest one and its computational complexity is 

relatively low [7]. In signpost, the location of each tag is estimated from the strongest 

signal received from each reader. Fingerprinting technique is based on the study of 

the characteristics of each area of locations (e.g., buildings), performing 

measurements of distinct radio frequency characteristics and estimating in which area 

of influence each tag is found [8]. Trilateration [7], sometimes wrongly confused to 

triangulation, is a technique that calculates the position of each tag from the distance 

to several readers. Graphically, it is performed an intersection of several spheres in a 

three-dimensional space. 

Our proposed model captures data from the estimation of the positions by the 

trilateration algorithm. It stores these in a memory to subsequently use to carry out the 

training of an MLP (Multi-Layer Perceptron). This way, the neural network allows us 

to make the fastest estimations and is more responsive to variations in the distances 

resulting from the reflections of the emitted waves. Input data in the neural network 

correspond with the distances calculated by means of the MLP described in Section 

2.1 from a pre-fixed number of readers and the position of the readers. These readers 

are selected according to the lowest distances they have to the tag. Output has two 

coordinates, one for each coordinate in a plane. The number of neurons in the hidden 

layer is 2n + 1, where n is the number of neurons in the input layer. Finally, there is 

one neuron in the output layer. The activation function selected for the different layers 

has been the sigmoid. Furthermore, the neurons exiting from the hidden layer of the 

neural network contain sigmoidal neurons. Network training is carried out through the 

error backpropagation algorithm [10]. 

3. Case Study 

In order to test the performance of this model into an indoor environment, we 

proceeded to deploy a WSN infrastructure made up of several ZigBee nodes (i.e., 

readers and tags). As mentioned before, the ZigBee standard is specially intended to 

implement WSNs and allows operating in the frequency range belonging to the radio 

band known as Industrial, Scientific and Medical (ISM), specifically in the 868MHz 

band in Europe, the 915MHz in the USA and the 2.4GHz in almost all over the world. 

The underlying IEEE 802.15.4 standard is designed to work with low-power and 

limited computational resources. The ZigBee standard allows more than 65,000 nodes 

to be connected in a star, tree or mesh topologies. Therefore, RTLS can be 

implemented by means of ZigBee and different locating techniques can be used. 

Each ZigBee node in our case study included an 8-bit RISC (Atmel ATmega 1281) 

microcontroller with 8KB RAM, 4KB EEPROM and 128KB Flash memory, as well 

as an IEEE 802.15.4/ZigBee transceiver (Atmel AT86RF230) [11]. The ZigBee 

network was formed by 15 fixed nodes acting as readers and distributed throughout 
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three rooms. The total size of the monitored area was 19m per 19m with 3 different 

rooms. The distribution of the readers was done in this way in order to each tag could 

be identified by several readers simultaneously. Therefore, the selected locating 

techniques (i.e., signpost, fingerprinting and trilateration) could be applied using 

several simultaneous measurements. 

4. Results and Conclusions 

Several tests were performed in order to validate the mitigation of the ground 

reflection effect and the estimation of the final position. Firstly, as a previous step 

before the estimation of the tags positions, it was carried out the training of the neural 

network built to estimate the distances between nodes from the RSSI levels. A test tag 

was successively moved through different predefined location sequences (i.e., zones 

inside the laboratory). This way, it was calculated the relationship of the measured 

RSSI levels with the real distances between the tag and the readers. For doing this, it 

was measured the detected RSSI levels between the tag and each of the 15 readers. 

Thus, the RSSI–distances measurements were used to make predictions in the time 

series. In total, 200 cases were generated for the training of the neural network 

according to the structure previously shown in Figure 2. In addition, it was randomly 

chosen different positions throughout the zones to generate 100 new cases and 

estimate each position by means of both the neural network and other approximation 

methods to compare them. These other methods were SVR, a linear regression model 

and a logarithmic regression model. The calculation of these relationships is 

necessary because the characteristics of the existing materials affect considerably to 

the detected distances. 

 

 
 

Fig. 3. Errors in the estimations of the distances from the RSSI levels for the different 

compared models: SVR, linear regression model, logarithmic model and the MLP. 

 

For the training of the neural network it was carried out both the proper training 

and a crossed validation. The neural network followed the architecture described in 

the Section 2.1, being the number of groups k = 4. The number of measurements for 

each group was 15. This way, the number of inputs was 60. Likewise, the number of 
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outputs was 4, one per each group. In order to generate the distinct compared models 

(SVR, linear, and logarithmic), only the information of the group with highest RSSI 

levels was used. Thus, it was only utilized 15 input values and 1 output value in these 

models. Both in the neural network and the other models it was used 200 cases of the 

training stage and 100 cases to make predictions. 

Figure 3 shows the absolute errors obtained for the SVR, the linear regression 

model, the logarithmic model and the neural network. As can be seen on this figure, 

the neural network obtained better results that the other methods because it presents a 

lower error for the distances estimation. 

The information of mean error and standard deviation in the estimation for each of 

the compared models is shown in Table 1. As can be seen, the typical error and the 

deviation of the neural network are lower than SVR and regression models. 

 

Table 1. Mean error and standard deviation of the distances estimation for each of the 

compared models. 

Model Average Deviation 

SVR 1.09 1.04 

Linear 1.16 0.98 

Logarithmic 0.55 0.78 

MLP 0.36 0.43 

 

In order to analyze the significance of the differences and to determine if we can 

state that the neural network is statistically better than both the SVR and the 

regression models, we applied the t-test. This test determines two values: H0 and H1. 

H0 shows if the data in both groups presents the same average error, whereas H1 

determines if there is difference. Table 2 shows the p-value obtained for the 

comparison method of the row and the corresponding column. Considering a 

significance α = 0.05 we have that the p-value corresponding to linear–SVR and 

logarithmic–MLP is greater than α. Therefore, we cannot discard H0, while it is 

discarded for the equality comparisons of distributions of SVR–MLP and linear–

MLP. Nevertheless, even though it cannot be discarded H0 for the logarithmic–MLP 

case and a significance α = 0.05, the value that it presents, 0.0758, is low. This way, 

taking a significance value α = 0.1, H0 would be discarded. Observing the information 

presented in the Table 2, we can state that the MLP improves the results obtained by 

the logarithmic model. 

 

Table 2. T-Test data distribution equality test for the distances error. 

 SVR Linear Logarithmic MLP 

SVR     

Linear 0.627    

Logarithmic 4.546e-5 1.911e-6   

MLP 5.957e-9 2.915e-11 0.0758  

 

In order to determine the position of each tag, it was carried out a forecast of the 

final positions by means of the application of signpost and trilateration to obtain the 

RSSI levels. For the training of the neural network it was utilized 200 positions 

initially realized and 300 of the carried out with trilateration. The 100 remaining 
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measurements were used to make predictions. Figure 4 shows the absolute error (in 

meters) obtained for the calculation of 100 positions by the different compared 

methods. As can be seen, forecasting based on the neural network improves the 

results of the other methods, reducing the error in the predictions. 

 

 
 

Fig. 4. Comparison of mean absolute prediction error for 100 values using signpost, 

trilateration and MLP. 

 

Amongst the wide range of Wireless Sensor Networks applications, Real-Time 

Locating Systems are emerging as one of the most exciting research areas. There also 

are different wireless technologies that can be used on these systems. The ZigBee 

standard offers interesting features over the rest technologies, as it allows the use of 

large mesh networks of low-power devices and the integration with many other 

applications as it is an international standard using unlicensed frequency bands. 

The operation of Real-Time Locating Systems can be affected by undesired 

phenomena as the multipath effect, and more specifically, the ground reflection effect. 

As demonstrated in this study, the use of Artificial Neural Networks to forecast 

distances from RSSI levels allows improving the estimation of distances when using 

SVR or regression models. In addition, focusing the forecast according to time series 

allows reducing the ground reflection effect that occurs when considering only the 

last RSSI measurement. The results presented in this article demonstrate that the use 

of artificial neural networks allows improving the approximations provided by the 

locating techniques. Nevertheless, it is required a previous data gathering stage. In 

this article, this stage was carried out in a both manual and automatic way by means 

of the trilateration technique. 
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