
A Multiagent Based Strategy for Detecting

Attacks in Databases in a Distributed Mode

Cristian Pinzón
1
, Yanira De Paz

2
, Javier Bajo

1

1
Departamento Informática y Automática, Universidad de Salamanca,

Plaza de la Merced s/n 37008, Salamanca, Spain

2
Universidad Europea de Madrid, Tajo s/n 28670, Villaviciosa de Odón, Spain

cristian_ivanp@usal.es; yanira@usal.es; jbajope@usal.es

Abstract This paper presents a distributed hierarchical multiagent architecture for

detecting SQL injection attacks against databases. It uses a novel strategy, which

is supported by a Case-Based Reasoning mechanism, which provides to the clas-

sifier agents with a great capacity of learning and adaptation to face this type of at-

tack. The architecture combines strategies of intrusion detection systems such as

misuse detection and anomaly detection. It has been tested and the results are pre-

sented in this paper.

Keywords: Multi-agent, SQL injection, Security database, case-based reasoning,

IDS.

1 Introduction

The exponential growth of the computer network and the increase in the intercon-

nection between networks has extended the offer of new services within the cyber-

space [1]. The information volume with a sensitive value for the organizations is

stored on information structures denominated databases and this information gen-

erally is transmitted across computer network. Databases are the core of many in-

formation systems, reason for which databases are increasingly coming under

large number of attacks. Every day are founded new vulnerabilities in security

systems intended to protect databases. These vulnerabilities are used by hackers in

order to carry out attacks on the stored data. A special intrusion type within of da-

2

tabases is the SQL injection attack, which occurs when the intended effect of a

SQL sentence is changed by inserting SQL keywords or special symbols [2].

Nowadays, the majority of approaches had addressed the problem of SQL in-

jection attack from a centralized perspective, such as the one described by [3] and

[2]. However, the solutions are limited to solve only a part of the problem. Re-

garding this, other approaches had implemented strategies based on intrusion de-

tection systems in order to block a SQL injection attack, such as [4] and [5]. These

proposals have as main drawbacks the highest error rate and a limited capacity of

learning and adapting when changes occur in the patterns of attacks.

Our proposal aims the SQL injection attacks in a distributed, dynamic and

flexible mode. This proposal is founded in a hierarchical multiagent architecture

using agents based on the BDI (Belief, Desire and Intention) model [6]. Agents

are typically integrated into multiagent systems or agent societies, exchanging in-

formation and resolving problems in a distributed way [7]. Agents can be charac-

terized through their capacities such as autonomy, reactivity, pro-activity, social

abilities, reasoning, learning and mobility [6]. Our proposal incorporates classifier

agents supported by a Case-based reasoning mechanism (CBR) [8] that includes a

mixture of neural networks capable of making short term predictions [9]. Our

multi-agent architecture is adequate to block the SQL injection attack, because it

is designed for working in distributed and dynamic environments.

The rest of the paper is structured as follows: section 2 presents the problem

that has prompted most of this research work. Section 3 focuses on the details of

the multiagent architecture, the different levels of the architecture, the interaction

possibilities and communication between the agents; section 4 explains in detail

the classification model integrated within the classifier agent. Finally, section 5

describes how the classifier agent has been tested inside a multi-agent system and

presents the results obtained.

 2 SQL Injection Attacks description

The impact of a SQL injection attack in a database has many consequences within

of the organization and individuals. Personal, financial and legal information is

compromised when this type attack is carried out. A SQL injection attack takes

place when a hacker changes the semantic or syntactic logic of a SQL text string

by inserting SQL keywords or special symbols on the original SQL command that

will be executed at the database layer of an application [10], [2]. The results of

this attack can produce unauthorized handling of data, retrieval of confidential in-

formation, and in the worst possible case, taking over control of application

server. One particular inconvenient of the SQL injection attack is the biggest

number of variants. Some strategies can be extremely complex due to the high

number of variables that they can generate, thus making their detection very diffi-

cult.

3

Some approaches based on firewall and intrusion detection system (IDS) are a

few effective due the strategy of detection, which requires an updated patterns da-

tabase. Other approaches more specifics to face SQL injection attacks are founded

in a technique of string analysis, some carrying out static analysis such as JSA

(Java String Analyzer) [3]. Other more complex using dynamic and hybrid analy-

sis is AMNESIA (Analysis and Monitoring for Neutralizing SQL Injection At-

tacks) [2]. These approaches generally have as main drawback that aim just one

part of the problem, moreover the approaches based on models for detecting SQL

injection attacks are very sensitive. With only slight variations of accuracy, they

generate a large number of false positive and negatives

Several approaches based on artificial techniques and hybrid systems propose a

novel alternative. Web Application Vulnerability and Error Scanner (WAVES)

[11] uses a black-box technique which includes a machine learning approach.

Valeur [4] presents an IDS approach which uses a machine learning technique

based on a dataset of legal transactions. These transactions are used during the

training phase prior to monitoring and classifying malicious accesses. Rietta [5]

put forward an IDS at the application layer using an anomaly detection model. Fi-

nally, Skaruz [12] proposes the use of a recurrent neural network (RNN). The de-

tection problem is became a time serial prediction problem. Generally, this ap-

proaches present as main problem, generating a large number of false positive and

false negative. In the case of the IDSs systems, they are unable to recognize un-

known attacks because they depend on a signature database that requires a dy-

namic updating.

The multi-agent architecture aims the problem from a distributed context more

dynamic and flexible to work according to the device used to execute a SQL injec-

tion attack. The incorporation of a CBR technique to the classifier agents allows

them to offer a robust learning and adaptable solution that respond to an unlimited

number of variants of SQL injection attacks. Finally, a combination of strategies

based on intrusion detection system that covers misuse detection and anomaly de-

tection grants to the architecture a highest level performance in the tasks of classi-

fication. It is important to highlight that the combination of these strategies reduce

at a minimum the false positives and false negatives.

3 The Agent Based Architecture

Agents are characterized by their autonomy; which gives them the ability to work

independently in real-time environments [13]. Agents are especially adequate to

work in dynamic and distributed environments when they are integrated into mul-

tiagent systems [7]. Environments especially complex for protecting are the appli-

cation that working with a relational database to provide information to different

users. A distributed multiagent architecture presents a great capacity of error reco-

4

vering, allowing using autonomous agents for decision making and adapting a new

variant of a SQL injection attack.

Several architectures have been proposed to build deliberative agents, most of

them based on the BDI (Belief, Desire, Intention) model [6]. In this model, the in-

tern structure of the agents and their election capacities are based on mental apti-

tudes [14]. The main characteristic of the architecture proposes in this paper is the

incorporation of CBR-BDI deliberative agents, which are capable protecting data-

bases of the applications by means of SQL queries classification. CBR-BDI classi-

fier agents use an intrusion detection techniques (anomaly detection) [15], identi-

fying elements of SQL injection in the database queries.

Our proposal is a distributed hierarchical multiagent architecture integrated for

4 levels with distinct BDI agents. The hierarchical structure allows distributing

tasks on levels of the architecture, defining specific responsibilities, even though

the interaction and communication between the agents is continuous in order to

request services and delivering results. The architecture presented in figure 1

shows the four levels and BDI agents organized according to their roles.

Fig. 1. Multi-agent architecture with BDI agents

5

Next, the details of the functionality of each agent located at each level of the

architecture are described:

 Sensor agents: These agents are located at the level 1 of the architecture. They

are incorporated at each device with access to database. They have been as-

signed 3 functions: the capture of datagrams, the ordering of the TCP frag-

ments for extracting the SQL query string, and the syntactic analysis. The

tasks of the Sensor agents end when the results (the SQL string transformed

by the analysis, the result of the analysis and the user data) are sent to the next

level of the architecture.

 Analyzer agents: These agents are located at the level 2. They receive the

transformed SQL string, the result of the analysis and user data. This informa-

tion is assigned to a specific agent. The Analyzer agent receives the data sent

by the Sensor agent and then it executes searching process and compares

known SQL string patterns. These SQL string patterns are stored in a pre-

viously built database. The Analyzer agent works in coordination with the

DbPattern agent for searching and saving SQL string patterns on the database.

The creation of the Analyzer agents is dynamic and it depends on the work-

load at a given time. When an Analyzer agent is created it receives an in-

stance number. The Analyzer agent finishes its task when it sends results to

the next level. The results consist of the SQL string transformed, the result of

the analysis, the user data and the result by misuse detection.

 DbPattern Agent: this agent is located at the level 2. It is the responsible to

save the new SQL string patterns on the database and search for patterns

when the Analyzer agent requests it.

 Classifier agents: These agents are in charge of carrying out the task of classi-

fication of SQL queries. These agents are located at the level 3, and imple-

ments a technique based on anomaly detection. A classifier agent incorporates

a CBR mechanism, which allows the evaluation of the new SQL query

through the search of similar cases stored in the memory cases, looking for a

solution to the new problem. At this level there exist n instances of the classi-

fier agents and their creation is dynamic and depends of the workload at a

given time. Classifier agents work together with the LogUser agent and Man-

ager agent for carrying out their tasks.

 LogUser agent: this agent is located at the level 3, records the actions of the

user and searches for the user profile (the historical profile and the user statis-

tics) when it is requested by a Classifier agent.

 Manager agent: this agent works at the level 4. It has many tasks: monitors,

evaluates and coordinates the classifiers agents. It ensures the capacity for er-

rors recovering and the distribution of the workload within the architecture.

An expert through of the Manager agent allows evaluating the results of the

classification and the final decision that have been carried out. Moreover, this

agent is in charge of managing the alert of attacks and the coordination of the

required actions to take over an attack when it has been detected. A Classifier

6

agent is promoted to be a Manager agent when the Manager agent fails. This

agent is selected by means of a voting method between the classifier agents.

 DbAdmin agent: this agent is also located at the level 4. It is in charge of exe-

cuting the query on the database and obtaining the results.

 Interface agent: this agent is located at the level 4. The Interface agent allows

the interaction of the user of the security system with the architecture. The in-

terface agent communicates the details of an attack to the security personnel

when an attack is detected. This agent has the capacity to work on mobile de-

vices such as PDAs, mobile telephones and laptops. This capacity allows a

ubiquitous communication. Moreover, the interface agent provides an access

mechanism for carrying out certain adjustments in the configuration of the ar-

chitecture and the verification of the status of the Manager agent.

4 Classifier Model of SQL Injection Attacks

The CBR-BDI classifier agent [16] incorporates a case-based reasoning system

that allows the prevention and detection of anomalies by means of a prediction

model based on neural networks, configured for short-term predictions of intru-

sions by SQL injections. This mechanism uses a memory of cases which identifies

past experiences with the corresponding indicators that characterize each of the at-

tacks. This paper presents a novel classification system that combines the advan-

tages of the CBR systems, such as learning and adaptation, with the predictive ca-

pabilities of a mixture of neural networks. These features make the system very

appropriate for its use in dynamic environments. Working with this type of sys-

tems, the key concept is the case”. A case is defined as a previous experience and

is composed of three elements: a description of the problem; a solution; and the fi-

nal state. A CBR cycle consists of four steps: retrieve, reuse, revise and retain.

The elements of the SQL query classification are described as follows:

 (a) Problem Description that describes the initial information available for

generating a plan. As can see in table 1, the problem description consists of a case

identification, user session and SQL query elements. (b) Solution that describes

the action carried out in order to solve the problem description. As can see in the

table 1, it contains the case identification and the applied solution. (c) Final State

that describes the state achieved after that the solution has been applied.

Table 1. Structure of the problem definition and solution for a case of SQL query classification

Problem Description fields Solution fields

IdCase

Sesion

User

IP_Adress

Integer

Session

String

String

Idcase

Classification_Query

Integer

Integer

7

Query_SQL

Affected_table

Affected_field

Command_type

Word_GroupBy

Word_Having

Word_OrderBy

Numer_And

Numer_Or

Number_literals

Number_LOL

Length_SQL_String

Cost_Time_CPU

Start_Time_Execution

End_Time_Execution

Query_Category

Query_SQL

Integer

Integer

Integer

Boolean

Boolean

Boolean

Integer

Integer

Integer

Integer

Integer

Float

Time

Time

Integer

In the following section, the performance of the classifying system is described

in detail. The proposed mechanism is responsible to classify SQL database queries

made by users. When a user makes a new request, it is checked for pattern match-

ing. This being the case, it is automatically identified as an attack. In order to iden-

tify the rest of the SQL attacks, the mechanism uses CBR, which must have a

memory of cases dating back at least 4 weeks, and store the variables showed in

the Table 1.

 The first phase of the CBR cycle consists of recovering past experience from

the memory of cases, specifically those with a problem description similar to the

current SQL query. In order to do this, a cosine similarity-based algorithm is ap-

plied, allowing the recovery of those cases which are at least 90% similar to the

current SQL query. The cases recovered are used to train the mixture of neural

networks implemented in the recovery phase; the neural network with the sigmoi-

dal function is trained with the recovered cases that were an attack or not, whereas

the neural network with hyperbolic function is trained with all the recovered cases,

including the suspects. A preliminary analysis of correlations is required to deter-

mine the number of neurons of the input layer of the neuronal networks. Addition-

ally, it is to normalize the data (i.e., all data must be values in the interval [0.1]).

The data used to train the mixture of networks must not be correlated. With the

cases stored after eliminating correlated cases, the entries for training the mixture

of networks are normalized. It is considered to be two neural networks. The result

obtained using a mixture of the outputs of the networks provides a balanced re-

sponse and avoids individual tendencies (always taking into account the weights

that determine which of the two networks is more optimal).

8

With la mixture of the neural network we mean to detect attacks, so if one only

network with a sigmoidal activation function was used, then the result provided by

the network would tend to be attack or not attack, and no suspects would be de-

tected. On the other hand, if only one network with a hyperbolic tangent activation

was used, then a potential problem could exist in which the majority of the results

would be identified as suspect although they were clearly attack or not attack. The

mixture provides a more efficient configuration of the networks, since the global

result is determined by merging two filters. This way, if the two networks classify

the user request as an attack, so too will the mixture; and if both agree that it is not

an attack, the mixture will as well. If there is no concurrence, the system uses the

result of the network with the least error in the training process or classifies it as a

suspect. In the reuse phase the two networks are trained by a back-propagation al-

gorithm for the same set of training patterns (in particular, these neural networks

are named Multilayer Perceptron), using a sigmoidal activation function (which

will take values in [0.1], where 0 = Illegal and 1 = legal) for a Multilayer Percep-

tron and a hyperbolic tangent activation function for the other Multilayer Percep-

tron (which take values in [-1.1], where -1 = Suspect, 0 = illegal and 1 = legal).

The response of both networks is combined, obtaining the mixture of networks

denoted by y
2
; where the superscript indicates the number of mixtured networks

r

r

r

r

r

ye

e

y

2

1

1

2

1

1

2 1

(1)

The number of neurons in the output layer for both Multilayer Perceptrons is 1,

and is responsible to decide whether or not there is an attack. The error of the

training phase for each of the neural networks can be quantified with formula (2),

where P is the total number of training patterns.

P

i P

PP

etT

etTForecast

P
Error

1 arg

arg1 (2)

The review stage is performed by an expert, and depending on his opinions, a

decision is made as to whether the case is stored in the memory of cases and

whether the list of well-known patterns has to be updated in the retain phase.

5. Results and Conclusions

The problem of SQL injection attacks on databases supposes a serious threat

against information systems. This paper has presented a new classification system

for detecting SQL injection attacks which combines advantages of multiagent sys-

tems, such as autonomy and distributed problem solving, with the adaptation and

learning capabilities of CBR systems. Additionally, the system incorporates the

9

prediction capabilities that characterize neural networks. An innovative model was

presented that provides a significant reduction of the error rate during the classifi-

cation of attacks. To check the validity of the proposed model, a series of test were

elaborated which were executed on a memory of cases, specifically developed for

these tests, and which generated attack consults. The results shown in Table 2 are

promising: it is possible to observe different techniques to predict attacks at the

database layer and the errors associated with misclassifications. All the techniques

presented in Table 2 have been applied under similar conditions to the same set of

cases, taking the same problem into account in order to obtain a new case common

to all the methods. Note that the technique proposed in this article provides the

best results, with an error in only 0.5% of the cases.

Table 2. Results obtained after testing different classification techniques

Forecasting Techniques Successful (%) Approximated Time (secs)

CBR-BDI Agent (mixture NN) 99.5 2

Back-Propagation Neural Networks 99.2 2

Bayesian Forecasting Method 98.2 11

Exponential Regression 97.8 9

Polynomial Regression 97.7 8

Linear Regression 97.6 5

As shown in Table 2, the Bayesian method is the most accurate statistical

method since it is based on the likelihood of the events observed. But it has the

disadvantage of determining the initial parameters of the algorithm, although it is

the fastest of the statistical methods. Taking the errors obtained with the different

methods into account, after the CBR-BDI Agent together with the mixture of neu-

ral networks and Bayesian methods we find the regression models. Because of the

non linear behaviour of the hackers, linear regression offers the worst results, fol-

lowed by the polynomial and exponential regression. This can be explained by

looking at hacker behaviour: as the hackers break security measures, the time for

their attacks to obtain information decreases exponentially. The empirical results

show that the best methods are those that involve the use of neural networks. With

a mixture of two neural networks, the predictions are notably improved.

Acknowledgments. This development has been partially supported by the Spanish

Ministry of Science project TIN2006-14630-C03-03.

10

References

1. Kandula S, Singh S (2002) Argus: A distributed network-intrusion detection system. In:

Proceedings of the 3rd International SANE’02 Conference. Netherlands

2. Halfond W, Orso A (2005) AMNESIA: Analysis and Monitoring for Neutralizing SQL-

injection Attacks. In: 20th IEEE/ACM international Conference on Automated software

engineering, pp. 174-183. ACM, New York

3. Christensen AS, Moller A, Schwartzbach MI (2003) Precise Analysis of String Expres-

sions. In: 10th International Static Analysis Symposium, pp. 1-18. Springer-Verlag

4. Valeur F, Mutz D, Vigna G (2005) A Learning-Based Approach to the Detection of SQL

Attacks. In: Conference on Detection of Intrusions and Malware and Vulnerability Assess-

ment, pp. 123-140. Vienna

5. Rietta F (2006) Application layer intrusion detection for SQL injection. In: 44th annual

Southeast regional conference, pp. 531-536. ACM, New York

6. Woolridge M, Wooldridge MJ (2002) Introduction to Multiagent Systems, John Wiley &

Sons, Inc., New York

7. Corchado JM, Bajo J, Abraham A (2008) GerAmi: Improving Healthcare Delivery in Ge-

riatric Residences, Vol. 23, pp. 19-25. Intelligent Systems, IEEE

8. Corchado JM, Laza R, Borrajo L, De Luis YA, Valiño M (2003) Increasing the Autonomy

of Deliberative Agents with a Case-Based Reasoning System. Vol 3, pp. 101-118. Interna-

tional Journal of Computational Intelligence and Applications

9. Ramasubramanian P, Kannan A (2004) Quickprop Neural Network Ensemble Forecasting a

Database Intrusion Prediction System. In: 7th International Conference Artificial on Intelli-

gence and Soft Computing, Neural Information Processing. Vol 5, pp. 847-852

10. Anley C (2002) Advanced SQL Injection In SQL Server Applications.

http://nextgenss.com/papers/advanced-sql-injection.pdf. Accessed 02 march 2008

11. Huang Y, Huang S, Lin T, Tsai C (2003) Web application security assessment by fault in-

jection and behavior monitoring. In: 12th international conference on World Wide Web, pp.

148-159. ACM

12. Skaruz J, Seredynski F (2007) Recurrent neural networks towards detection of SQL attacks.

In: 21th International Parallel and Distributed Processing Symposium, pp. 1-8. IEEE Inter-

national

13. Carrascosa C, Bajo J, Julian V, Corchado JM, Botti V (2008) Hybrid multi-agent architec-

ture as a real-time problem-solving model, Vol. 34, pp. 2-17. Expert Systems With Applica-

tions

14. Corchado JM, Pavón J, Corchado ES, Castillo LF (2004) Development of CBR-BDI

Agents. Springer Berlin / Heidelberg, ed. Advances in Case-Based Reasoning

15. Abraham A, Jain R, Thomas J, Han, SY (2007) D-SCIDS: distributed soft computing intru-

sion detection system, Vol. 30, pp. 81-98. Journal of Network and Computer Applications

16. Pinzon C, De Paz Y, Cano R (2008) Classification Agent-Based Techniques for Detecting

Intrusions in Databases. In: 3rd International Workshop on Hybrid Artificial Intelligence

Systems

