
Y. Demazeau et al. (Eds.): 7th International Conference on PAAMS'09, AISC 55, pp. 246–255.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

An Attack Detection Mechanism Based on a
Distributed Hierarchical Multi-agent Architecture for
Protecting Databases

Cristian Pinzón1, Yanira de Paz2, Rosa Cano3, and Manuel P. Rubio4

1 Universidad Tecnológica de Panamá, Av. Manuel Espinosa Batista, Panama
cristian.pinzon@utp.ac.pa

2 Universidad Europea de Madrid, Tajo s/n 28670, Villaviciosa de Odón, Spain
yanirarosario.depaz@uem.es

3 Instituto Tecnológico de Colima, Av. Tecnológico s/n, 28976, Mexico
rdegca@gmail.com

4 Escuela Politécnica Superior de Zamora, Av. Cardenal Cisneros 34, 49022, Zamora, Spain
mprc@usal.es

Abstract. This paper presents an innovative approach to detect and classify SQL injection at-
tacks. The existing approaches are centralized while this proposal is based on a distributed hier-
archical architecture to provide a robust and dynamic strategy. The strategy for the classification
and detection of SQL injection attacks uses a combination based on detection by anomalies and
misuses. The detection by anomaly uses a case-based reasoning mechanism incorporating a mix-
ture of neural networks. The approach has been tested and the results are presented in this paper.

Keywords: SQL injection, Security database, IDS, Multi-agent, case-based reasoning.

1 Introduction

A potential security problem on the database is a SQL injection attack. This attack se-
riously affects the database and it takes place when an original query is modified and
is executed on the database by a hacker. The SQL injection attack has been addressed
by the majority of the proposal from a centralized perspective [1] [2]. The main draw-
back of these approaches is that they solve the SQL injection attacks partially. Other
solutions more sophisticated apply intrusion detection techniques [3] [4], but they
have as drawback their large rate of cases poorly classified.

The proposal presented in this work tackles the SQL injection attack problem
through a distributed hierarchical multi-agent architecture. Within the architecture are
implemented strategies based on misuse and anomaly detection [5]. The key compo-
nent of the architecture is a type of BDI (Belief, Desire and Intention) deliberative
agent [6] which incorporates a based-case reasoning (CBR) mechanism [7]. The idea
of a CBR mechanism is to exploit the experience gained from similar problems in the
past and to adapt then successful solution to the current problem. This CBR-BDI type
of agent [8] has been specially adapted to resolve the SQL injection attack problem.
This agents use the CBR concept to gain autonomy and improve their problem-solving

 An Attack Detection Mechanism 247

capabilities. In addition, it integrates a novel strategy of classification that lies in a
mixture of neural networks which allows carrying out short term attack predictions.
This work presents an entirely new approach in order to face the problem of SQL in-
jection attack and describing an architecture that is unique in its conception.

The rest of the paper is structured as follows: section 2 presents the problem that
has prompted most of this research work. Section 3 focuses on the details of the mul-
tiagent architecture, section 4 explains in detail the classification model integrated
within the classifier agent. Finally, section 5 describes how the classifier agent has
been tested inside a multi-agent system and presents the results obtained.

2 SQL Injection Attacks

A SQL injection attack takes place when a hacker changes the semantic or syntactic
logic of a SQL text string by inserting SQL keywords or special symbols within the
original SQL command that will be executed at the database layer of an application
[1] [9]. The results of this attack can produce unauthorized handling of data, retrieval
of confidential information, and in the worst possible case, taking over control of ap-
plication server. The main problem for the detecting of SQL injection attack is the
large number of variants. The detection of some SQL injection results trivial whereas
that the detection of other result extremely complex due to large number of possible
strategies.

Nowadays, this type of attack has been handled from distinct perspectives. The
string analysis [10] has been the support of many others approaches such as [1] and
[11], which carried out an analysis more complete applying a treatment dynamic and
hybrid over the SQL string. In other cases, artificial intelligence techniques have been
applied to face the SQL injection attack, such as [12] with WAVES (Web Application
Vulnerability and Error Scanner). This proposal uses a black-box technique which in-
cludes a machine learning approach. Valeur [3] presented an IDS approach which
uses a machine learning technique based on a dataset of legal transactions. These are
used during the training phase prior to monitoring and classifying malicious accesses.
Rietta [4] proposed an IDS at the application layer using an anomaly detection model.
Finally, Skaruz [13] proposed the use of a recurrent neural network (RNN). The de-
tection problem becomes a time serial prediction problem. Usually, many approaches
present a large number of false positive and false negative. The proposals based on in-
trusion detection depend on database, which requires a continue updating in order to
detect new attacks.

Our approach takes advantage of the multi-agent system to reanalyze the problem
in a distributed mode. Moreover, intrusion detection technique based on misuse and
anomaly has been incorporated at strategic level into the architecture. The detection
by anomaly is built by means of a case-based reasoning (CBR) mechanism [7], whose
characteristics do it especially suitable to tackle classification problems and this is re-
inforced with the predictive capacity of a mixture of neural network [14]. The capture
of SQL queries is carried out through of distributed agents and the detection can be
executed in a distributed mode. Moreover, the architecture presents a high scalability,
flexibility and learning capacity that allows it a greater adaptation for distributed envi-
ronments and new strategic of attacks.

248 C. Pinzón et al.

3 Detection SQL Injection Based on Multi-agent Architecture

The agents are characterized through their capacities such as autonomy, reactivity, pro-
activity, social abilities, reasoning, learning and mobility [6]. One of the main features
of agents is their ability to carry out cooperative and collaborative work, when they are
grouped into multi-agent systems to solve problems in a distributed way [15], [16] [17]
These features make to the agents suitable to face the SQL injection attack problem. A
distributed hierarchical multi-agent presents a great capacity for the distribution of task
and responsibilities, error recovering, adaptation to new changes and high level of
learning. These factors are keys to achieve a robust and efficient solution. One main
innovation of the architecture is the use of a CBR-BDI agent [8], which presents a
great capacity of learning and adaptation. The agents BDI have a deliberative structure
based on the BDI model [6]. Moreover, a BDI agent integrates a case-based reasoning
mechanism [7] that allow it solve problems through the use de past experiences. As the
core of the strategy for the classification of SQL queries is based on an anomaly detec-
tion technique, it seems appropriate to use a CBR mechanism [7] that leverage past ex-
perience to detect anomaly. This CBR mechanism additionally incorporates a mixture
of neural networks [14] in its reuse phase. Using a mixture of neural networks im-
proves the performance provided by other classification techniques such as Back-
Propagation Neural Networks, Bayesian Forecasting Method, Exponential Regression,
Polynomial Regression, Linear Regression, but also improves performance provided
by the neural networks working individually. The number of cases where the classifier
mechanism can not provide a decision is small and in few cases would be needed the
intervention of a human expert.

An additional advantage provided by the architecture is the ability for executing
agents on mobile devices. It is common to find SQL queries that can be originated
from different mobile devices including assistant personals (PDA), mobile phones,
notebook computers and workstations. Specialized agents (misuse and anomaly) can
be organized in a distributed way to take advantage of available resources and im-
prove the performance of the classification process, regardless of the nature of the
physical devices. Finally, another advantage to use this type of agents is the ability to
inform to security staff about events that are happening regardless of their physical
location, sending alerts on mobile devices. All these advantages are achieved through
an organizational design based on a hierarchical multi-agent architecture. These
agents are distributed so when a classification starts, each type of agent knows its
concrete tasks; the data required to carry out its job and where to send its results. The
interaction and communication between the agents is crucial to achieve the goal of
classification of the new SQL query:

Next, is described each type of agent within of the architecture:

• Sensor agents: Located in each of the devices accessing the database. They have
3 specific functions: a) The capture of datagrams launched by the devices. b) Or-
der TCP fragments to extract the request’s SQL string. c) Syntactic analysis of
the request’s SQL string. The duties of the agent Sensor end when the results (the
SQL string transformed by the analysis, the result of the analysis of the SQL
string and the user data) are sent to the next agent at the hierarchy of the classifi-
cation process.

 An Attack Detection Mechanism 249

• FingerPrint agents: The numbers of agents FingerPrint depend on the workload at
a given time. An agent FingerPrint receives the information of a Sensor agent and
executes a pattern matching known attacks stored at a previously built database.
The FingerPrint agent finishes its task when it sends its results to the Anomaly
agent. The results of the FingerPrint agent consist of the SQL string transformed
by the analysis, the result of the analysis of the SQL string, the user data and the
results achieved by pattern matching.

• Pattern Agent: It is the responsible to save the new SQL string patterns in the da-
tabase and search for patterns when the FingerPrint agent requests it.

• Anomaly agents: These agents are based on the CBR-BDI model. They are the
key component within the classification process. Their strategy is based on a
case-based reasoning mechanism that incorporates a mixture of neural networks.
These agents retrieval those similar past cases to the new case of classification,
training the neural networks with the recovered cases and generating the final
classification. The numbers of Anomaly agents depend on the workload at a
given time. The result of the classification is sent to the Manager agent for the
evaluation.

• Loguser agent: This agent records the actions of the user and searching for the
user profile (the historical profile and the user statistics) when it is requested by
the Anomaly agent.

• Manager agent: It is the agent responsible for decision-making, evaluation and
coordination of the overall operation of architecture. It evaluates the final deci-
sions for classifications, manages alerts of attacks and coordinates the actions
necessary when an attack is detected. It selects an Anomaly agent by means of a
voting method.

Fig. 1. Description of the hierarchical multi-agent architecture

250 C. Pinzón et al.

• Interface agent: This agent allows the interaction of the user of the security sys-
tem with the architecture. The interface agent communicates the details of an at-
tack to the security personnel when an attack is detected. It has the ability to work
on mobile devices. This capacity allows a ubiquitous communication to attend
the alerts immediately.

• DB agent: It is in charge of executing the query in the database when the classifi-
cation of the SQL query is legal, that is, the SQL query is not malicious.

• Response agent: This agent provides an answer to the user once obtained a solu-
tion of the classification. If the query has been classified as legal, the result of the
query is sent to the user interface. Otherwise, if the query has been classified as
illegal, it is sent to the user interface a warning message.

In figure 1 is presented the hierarchical multi-agent architecture showing different
types of agents in charge of the classification of SQL queries.

4 Classifier Model of SQL Injection Attacks

The Anomaly agent type has been specially adapted to resolve the SQL injection at-
tack problem. This agent is based on CBR-BDI model [8], which incorporates a case-
based reasoning system that allows the detection and blocking of SQL injection at-
tacks reusing previous experiences. This mechanism uses a prediction model based on
neural networks, configured for short-term predictions of intrusions. To carry out this
short-term prediction, the CBR mechanism uses a memory of cases which identifies
past experiences with the corresponding indicators that characterize each of the at-
tacks. A case is defined as a previous experience and is composed of three elements: a
description of the problem; a solution; and the final state. To introduce a CBR motor
into a BDI agent, we represent CBR system cases using BDI and implement a CBR
cycle. This CBR cycle consists of four steps: retrieve, reuse, revise and retain. The
elements of the SQL query classification problem are described as follows:

• Problem Description: It describes the initial information available for generating
a classification. As can see in Table 1, the problem description consists of a case
identification, user session and SQL query elements.

• Solution: Describes the action carried out to solve the problem description. As
shown in Table 1, contains the case identification and the applied solution.

• Final State: Describes the achieved state after that the solution has been applied.
It takes three possible values: attack, not attack o suspect. The Manager agent al-
lows an expert to evaluate the classification.

The integration CBR-BDI [8] allows a BDI agent to use case-based reasoning to re-
solve the problem of classifying of a SQL query and blocking SQL injection attack.
Regarding each state of a CBR system equivalent to a belief, the intention will be the
plan that contains an ordered set of actions that the CBR-BDI agent should make to
achieve the goals and each desire corresponds to one or more of the achieved final
states in the past. The result of classifying a SQL query as attack, not attack or suspect
is the desire that the agent seeks to achieve.

 An Attack Detection Mechanism 251

Table 1. Problem definition and solution for a case of SQL query classification

Problem Description fields Solution fields
IdCase
Sesion

User
IP_Adress

Query_SQL
Affected_table
Affected_field
Command_type
Word_GroupBy
Word_Having
Word_OrderBy
Numer_And
Numer_Or
Number_literals
Length_SQL_String
Cost_Time_CPU
Start_Time_Execution
End_Time_Execution
Query_Category

Integer
Session
String
String
Query_SQL
Integer
Integer
Integer
Boolean
Boolean
Boolean
Integer
Integer
Integer
Integer
Float
Time
Time
Integer

Idcase
Classification_Query

Integer
Integer

The proposed mechanism is responsible for classifying SQL database requests
made by users. When a user makes a new request, it is checked for matching well-
known patterns of attack by a FingerPrint agent (misuse detection). These patterns are
stored at a database that handles a significant number of signature not allowed on user
level such as symbol combination, binary and hexadecimal encoding and reserved
statement of language (union, execute, drop, revoke, concat,
length, asc, chr among others). If the FingerPrint agent detects some
known signature, it is automatically identified as an attack. In order to identify the rest
of the SQL attacks, the Anomaly agent uses a CBR mechanism, which must have a
memory of cases dating back at least 4 weeks, with the structure described in Table 1.
The problem description of a case is obtained by means of a string analysis technique
on the SQL query. This process can be understood easily through the following ex-
ample: It is captured a SQL query with the following syntax: Select field1,
field2, field3 from table1 where field1 = input1 and
field2=input2. If we assume that the fields input1 and input2 are used to
bypass the authentication mechanism with the following input data: Input1=‘ or
9876= 9876 -- and Input2= (blank). The result of these input data would
alter the SQL string as follows: Select field1, field2, field3 from
table1 where field1 =” or 9876 = 9876 –- ‘and field2=’’

A syntactical analysis of the SQL string would generate the result presented in the Ta-
ble 2 with the following fields: Affected_table(c1), Affected_field(c2), Command_type(c3),
Word_GroupBy(c4), Word_Having(c5), Word_OrderBy(c6), Numer_And(c7), Numer_Or(c8),

Number_literals(c9), Length_SQL_String(c10), Cost_Time_CPU(c11). The fields Com-
mand_type and Query_Category have been encoding with the following nomenclature
Command_Type: 0=select, 1=insert, 2=update, 3=delete; Query_Category: -1= suspect,
0=illegal, 1=legal.

252 C. Pinzón et al.

Table 2. SQL String transformed through a syntactical analysis technique

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
1 3 0 0 0 0 1 1 2 81 0,3 0

The first phase of the CBR cycle consists of a retrieval past experience from the
memory of cases, specifically those with a similar problem description to the current
case. In order to carry out this process, a cosine similarity-based algorithm is applied,
allowing the retrieval of those cases which are at least 90% similar to the current case.
The cases recovered are used to train the mixture of neural networks implemented in
the reuse phase; the neural network with the sigmoidal function is trained with the re-
trieved cases that were an attack or not, whereas the neural network with hyperbolic
function is trained with all the recovered cases (including the suspects). A preliminary
analysis of correlations is required to determine the number of neurons of the input
layer of the neuronal networks. Additionally, it is necessary to normalize the data
(i.e., all data must be values in the interval [0,1]). The data used to train the mixture of
networks must not be correlated. With the cases stored after deleting correlated cases,
the inputs for training the mixture of networks are normalized. It is considered to be
two neural networks. The result obtained using a mixture of the outputs of the net-
works provides a balanced response and avoids individual tendencies (always taking
into account the weights that determine which of the two networks is more optimal).
Figure 2 explains the four steps of CBR cycle, which incorporates a mixture of neural
networks through an algorithm. This strategy of classification is carried out within the
Anomaly CBR-BDI agent. This Anomaly CBR-BDI agent is located on a strategic
level into the architecture.

Fig. 2. CBR Cycle Algorithm for classifying SQL query

Additionally, we mean to detect attacks, so if one only network with a sigmoidal
activation function was used, then the result provided by the network would tend to be
attack or not attack, and no suspects would be detected. On the other hand, if only one
network with a hyperbolic tangent activation was used, then a potential problem could
exist in which the majority of the results would be identified as suspect although they

 An Attack Detection Mechanism 253

were clearly attack or not attack. The mixture provides a more efficient configuration
of the networks, since the global result is determined by merging two filters. This
way, if the two networks classify the user request as an attack, so too will the mixture;
and if both agree that it is not an attack, the mixture will as well be. If there is not
concurrence, the system uses the result of the network with the least error in the train-
ing process or classifies the user request as suspect. In the reuse phase the two
networks are trained by a back-propagation algorithm for the same set of training pat-
terns (in particular, these neural networks are named Multilayer Perceptron), using a
sigmoidal activation function (which will take values in [0,1], where 0 = Illegal and 1
= legal) for a Multilayer Perceptron and a hyperbolic tangent activation function for
the other Multilayer Perceptron (which take values in [-1,1], where -1 = Suspect, 0 =
illegal and 1 = legal). The response of both networks is combined, obtaining the mix-
ture of networks y2; where the superscript indicates the number of mixed networks

r

r

r

r

r
ye

e
y ∑

∑ =

−−

=

−−
=

2

1

1

2

1

1

2 1

(1)

∑
=

−
=

P

i PetT
PetTPForecast

P
Error

1 arg

arg1

(2)

The number of neurons in the output layer for both Multilayer Perceptrons is 1, and
is responsible for deciding whether or not there is an attack. The error of the training
phase for each of the neural networks, can be quantified with formula (2), where P is
the total number of training patterns.

5 Results and Conclusions

SQL injection attacks on databases suppose a serious threat against information sys-
tems. This paper has presented a distributed hierarchical multi-agent architecture
incorporating a novel type of agent based on the CBR-BDI model [8] specially de-
signed for detecting and blocking SQL injection attacks. This CBR-BDI agent han-
dles a great adaptation and learning capacities using a CBR mechanism. In addition, it
incorporates the prediction capabilities that characterize neural networks. As a result,
an innovative and robust solution has been presented allowing a significant reduction
of the error rate during the classification to attacks and a different way to tackle SQL
injection attacks using a distributed and hierarchical approach. To check the validity
of the proposed model many tests were done. These tests were executed on a memory
of cases, specifically developed to generate malicious queries. In Table 3 it is possible
to observe techniques for predicting attacks at the database layer and the errors asso-
ciated with misclassifications. All the techniques presented in Table 3 have been ap-
plied under similar conditions to the same set of cases, taking into account the same
problem common to all the methods. Note that the technique proposed in this paper
provides the best results, with an error in only 0.5% of the cases.

As shown in Table 3, the Bayesian is the most accurate statistical method since it is
based on the likelihood of the events observed. But it needs determining the initial

254 C. Pinzón et al.

Table 3. Results obtained after testing different classification techniques

Forecasting Techniques Successful (%) Approximated Time (secs)
Anomaly Agent (CBR-BDI) 99.5 2
Back-Propagation Neural Networks 99.2 2
Bayesian Forecasting Method 98.2 11
Exponential Regression 97.8 9
Polynomial Regression 97.7 8
Linear Regression 97.6 5

parameters of the algorithm. Considering the errors obtained with the different meth-
ods, the Anomaly Agent and Bayesian methods provide the better results. Because of
the non linear behaviour of the hackers, linear regression offers the worst results, fol-
lowed by the polynomial and exponential regression. This can be explained by look-
ing at hacker behaviour: as the hackers break security measures, the time for their
attacks to obtain information decreases exponentially. The empirical results show that
the best methods are those that involve the use of neural networks and, if it is consid-
ered a mixture of two neural networks, the predictions capabilities are remarkably im-
proved. These methods are more accurate than statistical methods for detecting
attacks to databases as the behaviour of the hacker is not linear, dynamic and chaotic.

Acknowledgements. This development has been partially supported by the Spanish
Ministry of Science project TIN2006-14630-C03-03.

References

1. Halfond, W., Orso, A.: AMNESIA: Analysis and Monitoring for Neutralizing SQL-
injection Attacks. In: 20th IEEE/ACM international Conference on Automated software
engineering, pp. 174–183. ACM, New York (2005)

2. Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: Syntactic and
Semantic Analysis for Automated Testing against SQL Injection. In: 23rd Annual Com-
puter Security Applications Conference, pp. 107–117. IEEE Computer Society, Los
Alamitos (2007)

3. Valeur, F., Mutz, D., Vigna, G.: A Learning-Based Approach to the Detection of SQL At-
tacks. In: Conference on Detection of Intrusions and Malware and Vulnerability Assess-
ment, Vienna, pp. 123–140 (2005)

4. Rietta, F.: Application layer intrusion detection for SQL injection. In: 44th annual South-
east regional conference, pp. 531–536. ACM, New York (2006)

5. Abraham, A., Jain, R., Thomas, J., Han, S.Y.: D-SCIDS: distributed soft computing intru-
sion detection system. Journal of Network and Computer Applications 30, 81–98 (2007)

6. Woolridge, M., Wooldridge, M.J.: Introduction to Multiagent Systems. John Wiley &
Sons, Inc., New York (2002)

7. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological varia-
tions, and system approaches. AI Commun. 7, 39–59 (1994)

 An Attack Detection Mechanism 255

8. Laza, R., Pavon, R., Corchado, J.M.: A Reasoning Model for CBR_BDI Agents Using an
Adaptable Fuzzy Inference System. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz,
J.-L. (eds.) CAEPIA/TTIA 2003. LNCS, vol. 3040, pp. 96–106. Springer, Heidelberg
(2004)

9. Anley, C.: Advanced SQL Injection. In: SQL Server Applications (2002),
http://www.nextgenss.com/papers/advancedsqlinjection.pdf

10. Christensen, A.S., Moller, A., Schwartzbach, M.I.: Precise Analysis of String Expressions.
In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003)

11. Su, Z., Wassermann, G.: The essence of command injection attacks in web applications.
In: 33rd Annual Symposium on Principles of Programming Languages, pp. 372–382.
ACM Press, New York (2006)

12. Huang, Y., Huang, S., Lin, T., Tsai, C.: Web application security assessment by fault in-
jection and behavior monitoring. In: 12th international conference on World Wide Web,
pp. 148–159. ACM, New York (2003)

13. Skaruz, J., Seredynski, F.: Recurrent neural networks towards detection of SQL attacks.
In: 21th International Parallel and Distributed Processing Symposium, pp. 1–8. IEEE In-
ternational, Los Alamitos (2007)

14. Ramasubramanian, P., Kannan, A.: Quickprop Neural Network Ensemble Forecasting a
Database Intrusion Prediction System. In: 7th International Conference Artificial on Intel-
ligence and Soft Computing, Neural Information Processing, vol. 5, pp. 847–852 (2004)

15. Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: Improving Healthcare Delivery in Geriat-
ric Residences. Intelligent Systems 23, 19–25 (2008)

16. Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.: Intelligent Environment for Monitoring
Alzheimer Patients, Agent Technology for Health Care. Decision Support Systems 44(2),
382–396 (2008)

17. Corchado, J.M., Gonzalez-Bedia, M., De Paz, Y., Bajo, J., De Paz, J.F.: Replanning
mechanism for deliberative agents in dynamic changing environments. Computational In-
telligence 24(2), 77–107 (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

