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Abstract. This paper reviews one nonlinear and two linear projection
architectures, in the context of a comparative study, which are used as either
alternative or complementary tools in the identification and analysis of
anomalous situations by Intrusion Detection Systems (IDSs). Three neural
projection models are empirically compared, using real traffic data sets in an
IDS framework. The specific multivariate data analysis techniques that drive
these models are able to identify different factors or components by studying
higher order statistics - variance and kurtosis - in order to display the most
interesting projections or dimensions. Our research describes how a network
manager is able to diagnose anomalous behaviour in data traffic through visual
projection of network traffic. We also emphasize the importance of the time-
dependent variable in the application of these projection methods.
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1 Introduction

An Intrusion Detection System (IDS) is designed to monitor computer systems or
network events and to detect undesired and unauthorised entries, mainly via the
internet. An IDS has become a necessary additional tool to the security infrastructure
of a computer system as network attacks have risen dramatically over recent years.
Our research addresses the use of projection methods as either an alternative or a
complementary tool that allows the network administrator to visualize traffic data
patterns. In complex clustering domains, some data sets may hide their own
structures. Projection models [1] are used as tools to identify and remove correlations
between problem variables, which enables us to carry out dimensionality reduction,
visualization or exploratory data analysis. These tools search for interesting
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projections or dimensions based on the analysis of different statistical features, such
as Principal Component Analysis (PCA) [2], [3] and Exploratory Projection Pursuit
(EPP) [1], [4], among others.

The projection system that we propose exploits projection models to arrive at a
compact visualization of traffic evolution. The resulting IDS is designed to assist the
network manager by providing an effective visual tool to detect anomalous situations
based on the identification of high temporal distributions of the packets, moving in
non-parallel or unorthodox directions to the normal ones. One of the main benefits of
these neural network-based models is their ability to identify new attacks, known as
“day-0 attacks”, without updating the IDS.

This paper reports a review of one nonlinear and two linear neural projection
models that can all be effectively applied to an IDS, which is followed by a
comparative study of their respective performances. Following this introduction,
section 2 goes on to introduce the projection models under examination; section 3
describes the data sets used in the experiments; and, finally, section 4 discusses the
results, puts forward a number of conclusions and pointers for future work.

2 Unsupervised Neural Projection Models

Several attempts have been made to apply Neural Architectures (such as Self-
Organising Maps [5], [6] Multilayer Perceptron [7], Radial Basis Function Networks
[8]) to the field of network security [9], [10]. Most of them have focused on a
classificatory approach to the intrusion detection task. A different approach is
followed in this research, in which the main goal is to provide the network
administrator with a snapshot of the network traffic, not only to detect anomalous
situations but also to visualize protocol interactions and traffic volume. Three
different models dealing with this issue are applied and their performance has been
compared.

Unsupervised learning was chosen for this research, because in a real-life situation
there is no target reference with which to compare the response of the network. The
use of this kind of learning is very appropriate, for instance in the case of identifying
“day-0 attacks”.

2.1 Principal Component Analysis

PCA originated in work by Pearson [2], and independently by Hotelling [3] to
describe the multivariate data set variations in terms of uncorrelated variables each of
which is a linear combination of the original variables. Its main goal is to derive new
variables, in decreasing order of importance, that are linear combinations of the
original variables and are uncorrelated with each other. It is a well-known technique,
and it can be implemented by a number of connectionist models [11], [12].

2.2 Neural Implementation of Exploratory Projection Pursuit

The standard statistical method of EPP [1] also provides a linear projection of a data
set, but it projects the data onto a set of basis vectors which best reveal the interesting
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structure in data; interestingness is usually defined in terms of how far the distribution
is from the Gaussian distribution.

One neural implementation of EPP is Maximum Likelihood Hebbian Learning
(MLHL) [4], [13]. It identifies interestingness by maximising the probability of the
residuals under specific probability density functions which are non-Gaussian.

One extended version of this model is the Cooperative Maximum Likelihood
Hebbian Learning (CMLHL) [14] model. CMLHL is based on MLHL [4], [13]
adding lateral connections [14], [15] which have been derived from the Rectified
Gaussian Distribution [16]. The resultant net can find the independent factors of a
data set but does so in a way that captures some type of global ordering in the data set.

Considering an N-dimensional input vector (X ), and an M-dimensional output

vector (y ), with VVij being the weight (linking input j to output i), then CMLHL
can be expressed [14], [15] as:

1. Feed-forward step:

N
V= > Wx Vi . (1)
j=1
2. Lateral activation passing:
yi(t+1):[yi(t)+f(b_Ay)]+ . 2)
3. Feedback step:
M
ejzxj—ZWin,Vj . 3)
i=1
4. Weight change:
_ : -1
AW, = n.yi.szgn(ej)l e I”" . %)

Where: 7] is the learning rate, 7 is the "strength" of the lateral connections, b the

bias parameter, p a parameter related to the energy function [4], [13], [14] and A a

symmetric matrix used to modify the response to the data [14]. The effect of this
matrix is based on the relation between the distances separating the output neurons.

2.3 Nonlinear Principal Component Analysis

Nonlinear Principal Component Analysis (NLPCA) [17] was designed to circumvent
the limitations of linearity inherent in the PCA model. NLPCA is based on an auto-
associative neural network and employs a Multi-Layer Perceptron (MLP) structure,
which belongs to the feedforward class of neural networks [18].

The conventional MLP model implements a stimulus-response behaviour by
combining several layers of elementary units (‘neurons’). Each unit involves a simple,
nonlinear transformation of weighted inputs; theoretical proof is available that
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feedforward networks embedding a sigmoidal nonlinearity support arbitrary mappings
[19], [20]. A conventional MLP includes three layers (input, ‘hidden’ and output), and
associates an input vector, xe RP , with an output vector, ye %Q, computed as:

N, D
Y, (x)= W;,o + Z w;,q Ol W, +Zwu’kxk ;q=1..0 . (5)
u=l

k=1

where, N, is the depth of the sigmoid series expansion, and W represents the
coefficients of the weights for the interconnections between the two upper layers. An
empirical fitting process tunes the weights, W, so that the network best reproduces the
desired (x, y) mapping over a given training set. The classical cost function measuring
the mapping distortion is the mean square error, Ey, between the desired response (or
‘target’), for a given input vector and the actual network output. Thus, the network-
training process is formulated as an optimization problem expressed in the following
terms:

¢ _ y(x(” 1‘2 . ©)

. I
min £y, =m1n—2‘
w WV n =

where £’ is the desired output for the s-th training vector, x*, and 7 is the number of
training pairs (x*, £%). In practice, the learning problem (6) is tackled efficiently and
effectively by the Back-Propagation (BP) algorithm [18], which uses a stochastic
gradient-descent strategy over the weight space.

Auto-Associative BP (AABP) networks constitute an unsupervised variant of the
general MLP model, in which the desired outputs coincide with the network inputs: t
= x. The aim is a reduction in dimensionality by forcing the network to replicate the
training sample distribution in this way, as the hidden layer is typically smaller than
the input/output ones. At run-time, an AABP network associates each input vector
with the ‘coding’ values computed by the hidden neurons; these mapping outputs
support the (lossy) transformation from the input space into a lower-dimensional
representation. A three-layer AABP network implements a mapping that is, in fact,
affine to PCA. As such, the resultant mapping can suffer from the same drawbacks
that affect PCA-like representations, such as a remarkable sensitivity to outliers in the
training set. Hence, the NLPCA architecture (Fig. 1) that involved a sophisticated
AABP model was proposed to tackle this issue.

As with conventional three-layer AABP, the output layer imposes the input values
as targets and a hidden layer continues to support dimensionality reduction. The
crucial difference with regard to the conventional AABP lies in the compression and
reconstruction sections, each of which include an additional layer of neurons, whence
the five-layer network. The NLPCA architecture retains the universal approximation
ability of BP networks [17], and still adheres to the principle of unsupervised training.
The run-time use of the resulting network, after completion of training, is equivalent
to the use of a three-layer AABP structure, as the mapping outputs of the middle
‘coding’ layer provide the low-dimensional representation of each input vector.

Moreover, this increased power of representation conveyed by the NLPCA
augmentation is remarkable. The problem is, of course, that nobody knows the N,
target values in advance that should be imposed on the lower section of the network
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for learning the compression task. In the NLPCA approach, those target values are
implicitly imposed by forcing the network to reconstruct the original sample in the
upper section. Thus, the ‘reconstruction’ section and the compression section will
always be symmetrical and will therefore always yield equivalent, universal (inverse)
mapping capabilities.

The main advantage is that the compressed representation does not relate to any
linear model (as in PCA), but stems instead from a mainly general, internal
representation that is empirically learned. NLPCA techniques seem to fit those
domains in which 1) a nonlinear representation best encompasses the observed
empirical phenomenon, and at the same time, 2) a considerable number of empirical
samples are available.

Qutput layer

Reconstr.
layer

Reconstruction

Mapping

|aye|’ Campressian

Input layer

Fig. 1. A Nonlinear AABP network includes five layers to reduce data dimensionality

2.4 A General Architecture for an Intrusion Detection System

The projection models described above could work embedded in an IDS, performing
a data analysis step, in an architecture akin to the MObile VIsualization Connectionist
Agent-Based IDS (MOVICAB-IDS) [21], [22]. It has also been shown that this
general architecture can be improved by the inclusion of the multiagent paradigm.

3 Real Data Set

In this work, the above mentioned neural models have been applied to a real traffic
data set [22] containing normal traffic and anomalous situations. These anomalous
situations are related to Simple Network Management Protocol (SNMP), known for
its vulnerabilities [23]. The data set includes: SNMP ports sweeps (scanning of
network computers for different ports - a random port number: 3750, and SNMP
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default port numbers: 161 and 162 - using sniffing methods), and a Management
Information Base (MIB) - the SNMP database - information transfer.

The used data set contains only five variables extracted from the packet headers:
timestamp (the time when the packet was sent), protocol, source port (the port of the
source host that sent the packet), destination port (the destination host port number to
which the packet is sent) and size: (total packet size in Bytes). This ‘made-to-
measure’ data set was generated by the research team in a medium-sized network
such that the “normal” and anomalous traffic flows were known in advance.

Emphasizing the importance of the time-dependence variable is one of the aims of
this work. In line with this idea, 2 different data set variations (inclusion or exclusion
of time information) were used.

4 Results and Conclusions

In this work, we have compared the performance of the three projection models
(PCA, CMLHL and NLPCA) under review in order to analyse their response to the
data set described above.

.JGioupB

Time

Fig. 2. NLPCA projection against time Fig. 3. CMLHL projection

In Fig. 2 and Fig. 3, we can see how the NLPCA and the CMLHL model are both
able to identify the two anomalous situations contained in the data set. The MIB
information transfer (Groups A and B in Fig. 2 and Fig. 3) is identified due to its
orthogonal direction with respect to the normal traffic (vertical and parallel straight
lines) and to the high density of packets. The sweeps (Groups C, D and E in Fig. 2
and Fig. 3) are identified due to their non-parallel direction to the normal one.

The results shown in Fig. 2 were obtained by using only four variables (excluding
time information) for training the NLPCA network and plotting the 2-D projection
(X, Y) against time. In contrast, the results on the CMLHL network (Fig. 3) were
obtained by using the five variables to obtain a 3-D projection (X, Y and Z). This
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outcome shows the intrinsic robustness of CMLHL, which is able to respond properly
to a complex data set that includes time as a variable.

Finally, PCA was applied to the problem, firstly by including time information as a
variable (Fig. 4), and then by excluding time information and plotting the two
principal components against time (Fig. 5).

PCA was only able to identify the port sweeps (Group A in Fig. 4 and Fig. 5). As
may be seen, it failed to detect the MIB information transfer because the packets in
this anomalous situation evolve in a direction parallel to the “normal” one.

Fig. 4. The three first principal components Fig. 5. The two first principal components
against time

In conclusion, our work upholds the view that projection methods are an
interesting and powerful tool in the identification of anomalous situations through
visualization. A network administrator can easily identify a network scan represented
by its evolution along a non-parallel direction to the normal one while an MIB
transfer is characterized by its high packet density and its orthogonal direction with
respect to the normal traffic. Another interesting issue is the capability of CMLHL to
process time information as one of the data variables. In contrast, the NL-PCA
network can not deal with the time variable, even though it obtains similar results to
CMLHL by plotting its results against time, as shown in Fig. 2.

These two models outperform PCA, as the latter is unable to identify one of the
anomalous situations: the MIB information transfer (including and excluding time
infomation), while it always identifies the port sweeps.

Further work will focus on the application of high-performance computing
clusters. Increased system power will be used to enable the IDS to process and display
the traffic data in real time.
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