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Abstract. We present a novel method based on a recently proposed extension
to a negative feedback network which uses simple Hebbian learning to self-
organise called Maximum Likelihood Hebbian learning [2]. We use the kernel
version of the ML algorithm on data from a spectroscopic analysis of a stained
glass rose window in a Spanish cathedral. It is hoped that in classifying the ori-
gin and date of each segment it will help in the restoration of this and other
historical stain glass windows.

1   Introduction

One problem with the analysis of high dimensional data is identifying structure or
patterns which exist across dimensional boundaries. By projecting the data onto a
different basis of the space, these patterns may become visible. This presents a prob-
lem - how does one decide which basis is optimal for the visualisation of the patterns,
without foreknowledge of the patterns in the data.

One solution is Principal Component Analysis (PCA), which is a statistical tech-
nique aimed at finding the orthogonal basis that maximises the variance of the pro-
jection for a given dimensionality of basis. This involves finding the direction which
accounts for most of the data's variance, the first principal component; this variance is
then filtered out. The next component is the direction of maximum variance from the
remaining data and orthogonal to the 1st PCA basis vector.

We [3, 4] have over the last few years investigated a negative feedback imple-
mentation of PCA defined by (1- 3). Let us have an N-dimensional input vector, x,
and an M-dimensional output vector, y, with Wij being the weight linking the jth input
to the ith output. The learning rate, , is a small value which will be annealed to zero
over the course of training the network. The activation passing from input to output
through the weights is described by (1). The activation is then fed back though the
weights from the outputs and the error, e, calculated for each input dimension. Finally
the weights are updated using simple Hebbian learning.
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We have subsequently modified this network to perform clustering with topology
preservation [5], to perform Factor Analysis [8, 1] and to perform Exploratory Pro-
jection Pursuit (EPP) [7, 6].

2   Maximum Likelihood Hebbian Learning

This paper deals with a recently developed variation of the basic network which also
performs Exploratory Projection Pursuit. We show the validity of our method by
applying it to data from a spectroscopic analysis of the stained glass rose window in a
Spanish cathedral. It is hoped that in classifying the origin and date of each segment it
will help in the restoration of this and other historical stain glass windows.

Let us now consider the residual after the feedback to have probability density
function.
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Then we can denote a general cost function associated with this network as
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where K is a constant. Therefore performing gradient descent on J we have
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We would expect that for leptokurtotic residuals (more kurtotic than a Gaussian dis-
tribution), values of p < 2 would be appropriate, while platykurtotic residuals (less
kurtotic than a Gaussian), values of p > 2 would be appropriate.

3   Kernel Maximum Likelihood

The first step in our kernel version of the ML algorithm can be performed by pro-
jecting our data onto a set of eigenvectors in feature space and thus we obtain sphered
data in feature space. We can subsequently reduce the dimensionality as a further pre-
processing step to the ML method. As the transformed data are actually points in
feature space, we can simply apply the maximum likelihood method on the trans-
formed data, as though it would be in data space.
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Let zk be the datapoint xk transformed into feature space and projected onto the
principal components in feature space. The Kernel Maximum Likelihood (KML)
learning rules then become
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4   Experiments

The data used to illustrate our method is composed of samples from 76 different sec-
tions of the stained glass rose window in a Spanish cathedral. The data contained 450
data vectors obtained from 90 samples each having been analysed 5 times. The data is
1020 dimensions, which after normalisation was reduced to 390 dimensions.

The data was analysed by [9] and during their analysis of the data they found that
it contained three different clusters. These clusters were identified to be separate by
their chemical composition, one belonging to the 16th century, and the other two
classes which were from the 13th century. These clusters were classified by the pro-
portion of sodium and potassium in the glass.

We visualise the data using our KML method on this data so we can look for clus-
ters by eye. As we are interested in projection exhibiting clusters, we wish to extract
sub-gaussian signals and therefore we use a value for p = 0. We compare our results to
those obtained by normal ML.

(a) Kernel Maximum Likelihood (b) Maximum Likelihood

Fig. 1. Projection of the glass data using the KML (left) and the ML methods (right). The
figures show the result of projection onto four directions found. It can be seen that the Kernel
Maximum Likelihood method results in greater separation of the clusters.
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4.1   Results

In Fig. 1., we show the projections obtained by ML (Right) and KML (Left). The first
row of the figures show scatterplots of projections onto the first direction set out
against projections onto first until the fourth directions. The second row shows pro-
jections onto the second direction set out against projections onto first until the fourth
directions and so forth. In both figures we can identify clusters, but the projections
obtained by the KML method generally result in a better separation of the clusters.
The non-linear extension to the standard Maximum Likelihood method has given the
method greater flexibility which allows us to get a different view on the data that cer-
tainly in this case yields much better clustering.

5   Conclusion

In this paper we have introduced a novel extension to the Maximum Likelihood Heb-
bian learning algorithm that allows the method to use non linear projections. The data
is actively being used in research projects to help in future restoration of stain glass
windows. Using our new clustering methods we visualise the data to identify relation-
ships between the different chemical properties of the glass samples.
We have shown that our new non linear extension of Maximum Likelihood has found
clusters in this data set that could not be identified by ML. This new method therefore
allows us to better analyse the data and give us different visualisations of our data set.
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