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Abstract. Kernel Maximum Likelihood Hebbian Learning Scale Invariant Maps is a 
novel technique developed to facilitate the clustering of complex data effectively and effi-
ciently and that is characterised for converging remarkably quickly. Kernels were origi-
nally derived in the context of Support Vector Machines which identify the smallest num-
ber of data points necessary to solve a particular problem, such as regression and classifi-
cation. The combination of Maximum Likelihood Hebbian Learning Scale Invariant Map 
and the Kernel Space provides  a very smooth scale invariant quantisation which can be 
used as a clustering technique. The efficiency of this method have been used to analyse an 
oceanographic problem.  

1   Introduction 

This paper presents an efficient technique for data clustering. Kernel Maximum Like-
lihood Hebbian Learning Scale Invariant Map (K-MLSIM) is based on a modification 
of a new type of topology preserving map that can be used for scale invariant 
classification [6]. Kernel models were first developed within the context of Support 
Vector Machines [16]. Support Vector Machines attempt to identify a small number 
of data points (the support vectors) which are necessary to solve a particular problem 
to the required accuracy. Kernels have been successfully used in the unsupervised 
investigation of structure in data sets[15] [11] [9]. Kernel methods map a data set into 
a Feature space using a nonlinear mapping. Then typically a linear operation is per-
formed in the feature space; this is equivalent to performing a nonlinear operation on 
the original data set. The Scale Invariant Map is an implementation of the negative 
feedback network to form a topology preserving mapping. A kernel method is applied 
in this paper to an extension of the Scale Invariant Map (SIM) which is based on the  
application of the Maximum Likelihood Hebbian Learning (MLHL) method [4]and 
its possibilities are explored. The proposed methodology groups cases with similar 
structure, identifying clusters automatically in a data set in an unsupervised mode. 
The method has been successfully used to improve the reasoning process of a distrib-
uted oceanographic system developed for monitoring and predicting toxic episodes in 
coastal waters. 



2. Kernel Scale Invariant Map 

This section reviews the techniques used to construct the K-MLSIM method. 

2.1 Scale Invariant Map 

 
Consider a network with N dimensional input data and having M output neurons. 
Then the activation of the ith output neuron is given by 
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Now if we invoke a competition between the output neurons, it is possible to have a 
number of different competitions between output neurons, two obvious examples are: 
Type A: The neuron with greatest activation wins. 
Type B:  The neuron closest to the input vector wins. 
The Kohonen network typically uses the second since the first requires specific re-
normalisation to ensure that all neurons have a chance of winning a competition. We 
have shown that the scale invariant mapping produced by the new network does not 
require any additional competition limiting procedure when using the first criterion. 
In both cases, the winning neuron, the pth, is deemed to be maximally firing (=1) and 
all other output neurons are suppressed(=0). Its firing is then fed back through the 
same weights to the input neurons as inhibition. 
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where p is the winning neuron. Now the winning neuron excites those neurons close 
to it i.e. we have a neighbourhood function ),( jpΛ which ),(),( kpjp Λ≤Λ  for 

all kpjpkj −≥−:, where . is the Euclidean norm. In the simulations described 

in this paper, we use a Gaussian whose radius is decreased during the course of the 
simulation. Then simple Hebbian learning gives 
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where we have used xj as the activation of the jth input neuron and wij is the weight 
between this and the ith output neuron. For the pth  winning neuron, the network is 
performing simple competitive learning but note the direct effect the pth output neu-
ron's weight has on the learning of other neurons. This algorithm introduces competi-
tion into the same network used in [5] to perform a Principal Component Analysis 
and in [7] to perform an Exploratory Projection Pursuit. 

2.2 Kernel K-means Clustering 

We will follow the derivation of [14] who has shown that the k means algorithm can 
be performed in Kernel space. The basic idea of the set of methods known as kernel 
methods is that the data set is transformed into a nonlinear feature space 



( )( xx )φφ →: . Any linear operation now performed in this feature space is equiva-
lent to a nonlinear operation in the original space. 
 The aim is to find k means, m , so that each point is close to one of the means. First 

we note that each mean may be described as lying in the manifold spanned by the 
observations, 

µ
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the means, , to minimise the Euclidean distance between the points and the clos-

est mean 
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i.e. the distance calculation can be accomplished in Kernel space by means of the K 
matrix alone. Let Miµ be the cluster assignment variable. i.e.  Miµ=1 if )( ixφ  is in the 
µth cluster and is 0 otherwise. [14] initialises the means to the first training patterns 
and then  each new training point, ktt >++ 1),( 1xφ , is assigned to the closest mean 
and its cluster assignment variable calculated using 
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In terms of the kernel function (noting that  k(x,x) is common to all calculations) we 
have 
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We must then update the mean, mα to take account of the (t+1)th data point   
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where we have used the term m   to designate the updated  mean which takes into 

account the new data point and 
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Now (7) may be written as 
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which leads to an update equation of 
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2.2.1 Kernel Self Organising Map 
We have previously used the above analysis to derive a Self Organising Map [10] in 
Kernel space. The SOM algorithm is a k means algorithm with an attempt to distrib-
ute the means in an organised manner and so the first change to the above algorithm 
is to update the closest neuron's weights and those of its neighbours. Thus we find the 
winning neuron (the closest in feature space) as above but now instead of (6), we use 
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where α is the identifier of the closest neuron and ( )µα ,Λ  is a neighbourhood func-
tion which in the experiments reported herein was a gaussian. Thus the winning neu-
ron has a value of M=1 while the value of M for other neurons decreases monotoni-
cally with distance (in neuron space) away from the winning neuron. For the experi-
ments reported in this paper, we used a one dimensional vector of output neurons 
numbered 1 to 20 or 30. The remainder of the algorithm is exactly as reported in the 
previous section. 
The Kernel SOM was reported in [10][2] to have very fast convergence and results in 
that paper were based on Gaussian kernels. In [2], we showed that the reason for this 
very fast convergence was the interaction between the learning method (a combina-
tion of one-shot learning and incremental decay) and the fact that we are working (for 
linear kernels) in data space but using the data points as basis vectors for that space. 
We now investigate the application of similar  methods to the Scale Invariant Map. 

2.2.2 The Kernel Scale Invariant Map 
We will, in this Section, consider only linear kernels though the extension to other 
kernels is straightforward. Since every point in data space can be represented by a 

linear combination of the training data set  { }Nii ,...,1, =x  , we have  ∃  
for all x  in the data space. Similarly the weight vectors can be represented in the 
same way. Thus we can represent 
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2.2.2.1 The Competition 
 

Now we wish to have a competition to find out which output will win for a particular 
input, xl, and so the first question to be addressed is the nature of the competition. If 
we are working in data space with the above overcomplete basis, then every member 
of the training set is representable as a vector which is all zeros except for the lth posi-
tion which is set to 1. Therefore we identify the lth column of the kernel matrix, and 
determine the output which wins the competition to represent xl  as 
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where we have used kl as the vector from the lth column of the kernel matrix. 



 2.2.2.2 The Weight Update 
 

We have experimented with two methods: 
1. The Kernel method of the previous section. With the notation above, we have 
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with ζ defined as for the Kernel SOM. This continues to be one-shot learning with a 
subsequent gradual decay. 
 
The neural method used with the standard SIM. Note that since we are working in the 
space spanned by the data as basis vectors, the input vector has a zero everywhere but 
the lth position and we are subtracting  vα ( α being the winning neuron). Thus  

αvxe −=                           (16) 
in this basis. We then apply the standard learning rule so that 

( ) ii ev µαηµ ,Λ=∆                                       (17) 

Even though this method is an iterative method as is usual in neural methods, we find 
that only a few (less than 10, often just 2 or 3) iterations through a data set are enough 
to form the mapping. 
 
2.3 Maximum Likelihood Hebbian Learning 

 
We have previously  [2][10] considered a general cost function associated with a 
negative feedback PCA network. 
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If the residual after the feedback has probability density function 
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Then we can denote a general cost function associated with this network as 
KpJ p +=−= ||)(log ee                                      (20) 

where K is a constant. Finding the minimum of J corresponds to finding the maxi-
mum of  p(e) i.e. we are maximising the probability that the residual comes from a 
particular distribution. We do this by adjusting the weights. Therefore performing 
gradient descent on J we have 
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We would expect that for leptokurtotic residuals (more kurtotic than a Gaussian dis-
tribution), values of p < 2 would be appropriate, while platykurtotic residuals (less 
kurtotic than a Gaussian), values of p > 2 would be appropriate. We have previously 
[8]  [3] [13]shown that this network can perform Exploratory  Projection Pursuit. 

2.3.1 Application to Kernel Scale Invariant Map 
 



Now the SIM was originally derived by introducing competition to the negative feed-
back PCA network. Therefore we introduce the Maximum Likelihood Hebbian learn-
ing concept of the last section to the Scale Invariant Map (SIM). Consider the feed-
back in 16. Let us  present a particular input, xl= (0,..,0,1,0,..0) which has 1 in the lth  
position, to the network. Then if neuron α wins the competition, it is because the 
weights vα have a high dot product with the elements of l's column of the k matrix; 
either vαl   is large or vαk (for input k which will be grouped with l) is large. Thus the 
residuals after  feedback will have a bimodal distribution - either the residuals will 
tend towards 0 or the residuals will be large. 
This suggests maximising the likelihood that the residuals come from a sub-gaussian 
distribution; therefore, we proposed the learning rules 
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This has an interesting effect on the learning rules in that a pie slice of the data is 
learned but the actual positions of the neuron centres themselves (when transformed 
back into data space) lie outside the data set. This enables a very smooth scale invari-
ant quantisation as shown in Figure 1. The  v weight vectors are shown in Figure 2. 
The data set, drawn uniformly from [-1,1]*[-1,1], is shown by the crosses. The 
weights of the converged Kernel Scale Invariant Map have been joined to form al-
most a circle. The corresponding vector in data space based on the data as basis vec-
tors is shown in Figure 2 each line of the diagram represents the weights of one out-
put neuron in terms of the data points (the v weights in fact). 

 
Fig. 1. The data set is shown by the red crosses. It was drawn uniformly from[-1,1]*[-1,1]. The 
weights of the converged KSIM have been joined to form almost a circle. 

 
Fig. 2.  The v weights as represented in the data basis. Each line is the weight vector into an 
output neuron and is shown. 

.2.3.2 The p parameter 
 

We have found that even a very small departure from the standard K-SIM parameter 
(with p=2) gives a visible change to the representation of the data set. In the top left 
of Figure 3, we show the converged weights after 7 iterations of the K-SIM algorithm 
when p=1.8; the weights are well enclosed in the data. In the top right of that figure, 
we show the weights when p=2.1 was used; the weights are beginning to move out-
side the data set. In the bottom figure, we show what happens when p=2.5. Now the 
weights are well outside the data. 



 
Fig.3:  The left figure shows the weights after 7 iterations of the K-SIM algorithm with p=1.8 
on the standard artificial data set. The one in the middle shows the weights with p=2.1. The 
right figure shows the weights when p=2.5.  

Consider the situation in which there are n points in the pie slice won by  yα . Without 
loss of  generality let us write wα=(a1},a2,...,an,0,0,...,0) i.e. the vector wα  has non-
zero components corresponding to the points (in the training set), x1,…, xn while its 
components corresponding to  xn+1…xN   are all zero. Then  

( ) ( ) 1, −=∆ psignw eeΛ µαηα                        (23) 

Let us consider only the situation in which the points x1,…,xn  are presented to the 
network and so the output  yα  is the winner; thus ( )µα ,Λ =1. Let point x1 be pre-
sented and so x=(1,0,0,...,0). Then 
e = (1-a1,-a2,...,-an, 0,...,0)                                    (24) 
When point  x2 is presented, x=(0,1,0,...,0) and 
e = (-a1,1-a2,...,-an, 0,...,0)                                    (25) 
We will consider the effect of the update rules on this weight vector for different 
values of p. 
p=1. Focus now on the first element of  wα, the element of the weight vector linking 
input x1 to output yα, then at convergence ( ) ( )( ) 011 ==∆ esignEwE α . Clearly if  
a1<0, sign(e1) is always positive. Therefore a1>0 .Thus there can only be two non-
zero elements in this vector. Impossible. 
p=2. This is the standard K-SIM. Then at convergence ( ) ( )( ) 01

111 ==∆ eesignEwE α  

and so 
1-a1 + (n-1)*(-a1)=0                                                                            (26)     
Thus a1=1/n. This argument applies equally to all non-zero elements of wα and so 







= 0,...,0,1,...,1,1

nnnαw  which when we translate back to the original basis means 

that the centre of the KSIM is given by 

nnnn
c xxx 1...11

21 +++=α                                     (27) 

the mean of the data points for which neuron α is responsible for representing.  
p=3. At convergence ( ) ( )( ) 02
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 and so, for 0<a1<1, 
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Solving this, we find that    ( )
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practise, we have never seen the latter result but it seems, in principle, possible. Note 
that the solution is an equally weighted sum of the data points where the weights are 



greater than 
n
1

. Thus the centre, where C is a constant and   is the 

mean of the data points defined in 26. 
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This gives the broad picture. Intermediate values of p will give solutions somewhere 
between the results given above. In general, at convergence 
( ) ( )( ) 01

111 ==∆ −peesignEwE α       and so 

 
(1-a1)p-1 - (n-1)*(a1)p-1=0                                                 (29) 
if a1>0. This implies
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The effect of varying p with n=10 is shown in Figure 4. We see that for values close 

to 1, a1 remains close to 0, while for values approaching 2, we reach the  value. 

Subsequently, a1 continues to rise but shows signs of levelling off (right figure). 
  

          
Fig. 4: As we vary p from 1 to 2, a1 climbs slowly to 0.1 (left figure) and grows more slowly 
subsequently (right figure). 

3. Clustering Real Data using the K-MLSIM 

In the following section we detail the results of the K-MLSIM on the red tides data. 
The K-MLSIM is specially suited to be used on the red tides data because of the 
flexibility of the p-parameter. Changing this parameter affects the update of the cen-
tres and it determines how far each centre will move. This property allows the selec-
tion of different clustering combinations, penalising, or accentuating the representa-
tion of outliers in the clustering. In the case of the red tides data, as each instance of a 
red tide would be considered an outlier, it is necessary for us to use an algorithm to 
deal with these important data points in an appropriate manner. In this section we will 
show that the K-MLSIM is a powerful method that can extract the relevant clustering 
information. 
We have shown previously that the ε-insensitive SIM [12] in data space, which is 
equivalent to using a p value of 0, will place each centre in the median of the cluster. 
This property was extended by [1] to use different values of p to achieve different 
clustering combinations. The larger the value of p the greater the contribution outliers 
will have in the clustering. 



The effect that this parameter has on the clustering is important as it allows us to 
change the clustering to be more representative of the properties of the red tides data 
as it contains small numbers of outliers which are very important for the classifica-
tion. If we were to cluster with a contemporary algorithm, we would likely be left 
with fewer centres that identify instances of red tides than we would like. In contrast 
the K-SIM can be tailored to give us more centres identifying red tides, resulting in a 
more expressive clustering. 
Figure 6 shows the clusters produced by the K-MLSIM with different values of the p 
parameter. This parameter will penalize the effect of outliers in the data. This results 
in the centres being placed in the median of the data cloud. 

 
Fig. 6.a 

 
Fig. 6.b   

 
Fig. 6.c  

Fig. 6: clustering of K-SIM on red tides data using 100 centres and a value of p = 0 (Fig.6a), a 
value of p = 0.5 (Fig 6b) and a value of p = 2 (Fig 6c). 

As we can see from Figure 6a, the clustering is a compact coding with at most 800 
data samples being assigned to one centre. This coding is less interesting for the red 
tides data as the abnormal points are those which are important, and so we wish to 
find a clustering which promotes rather than penalises them. In the figure 6b we use a 
value of p = 0.5 which places more emphasis on the larger changes in the weights, 
which in turn means that outliers, or abnormal data, will have greater effect on the 
learning. Thus we can ensure that the data points representing red tides will be 
strongly represented in the clustering, which is ideal for this problem. In Figure 6b we 
can see that there is a more sparse representation as there is a greater emphasis placed 
on large differences between the winner and the input data. In this figure we can see 
that the dense clusters are assigned fewer centres and that less dense clusters that 
contain outliers are more favoured. Assigning more centres to the less dense clusters 
also allows us to get a better representation within clusters. Commonly in contempo-
rary clustering, one centre in this sparse region of the data would capture a mixture of 
red tides and spurious outliers. As we are now placing more centres in these regions, 
we have a better chance to separate the true red tides from other outliers. 
Figure 6c. shows the clustering of the K-MLSIM on the red tides data using a p value 
of 2. The K-MLSIM is more penalizing to small changes in the weights than with  p = 
0.5. As can be seen from figure 6c it has provided an even more sparse representation 
of the clustering. This is a far more suitable clustering of the red tides data where we 
used smaller values of p. By changing the value of p in the weight update rule the K-
MLSIM can be adapted to penalize or promote outliers in its clustering.   



4 Conclusions  

We have demonstrated a new technique for clustering. Of interest too is the fact that 
the method allows investigation of the nonlinear projection matrix K that readily 
reveals when a new situation behaves similarly, which may be very important in the 
identification of toxin episodes in coastal water. 
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