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Abstract. A hybrid neuro-symbolic problem solving model is presented
in which the aim is to forecast parameters of a complex and dynamic
environment in an unsupervised way. In situations in which the rules
that determine a system are unknown, the prediction of the parameter
values that determine the characteristic behaviour of the system can be a
problematic task. The proposed system employs a case-based reasoning
model that incorporates a growing cell structures network, a radial basis
function network and a set of Sugeno fuzzy models to provide an accurate
prediction. Each of these techniques is used in a different stage of the
reasoning cycle of the case-based reasoning system to retrieve, to adapt
and to review the proposed solution to the problem. This system has
been used to predict the red tides that appear in the coastal waters of
the north west of the Iberian Peninsula. The results obtained from those
experiments are presented.

1 Introduction

Forecasting the behaviour of a dynamic system is, in general, a difficult task,
especially if the prediction needs to be achieved in real time. In such a situation
one strategy is to create an adaptive system which possesses the flexibility to
behave in different ways depending on the state of the environment. This paper
presents a hybrid artificial intelligence (AI) model for forecasting the evolution
of complex and dynamic environments. The effectiveness of this model is demon-
strated in an oceanographic problem in which neither artificial neural network
nor statistical models have been sufficiently successful.

Several researchers [1, 2] have used k-nearest-neighbour algorithms for time
series predictions. Although a k-nearest-neighbour algorithm does not, in itself,
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constitute a CBR system, it may be regarded as a very basic and limited form
of CBR operation in numerical domains. [1] uses a relatively complex hybrid
CBR-ANN system. In contrast, [2] forecast a data set just by searching in a
given sequence of data values for segments that closely match the pattern of the
last n measurements and then, by supposing that similar antecedent segments
are likely to be followed by similar consequent segments. Other examples of CBR
systems that carry out predictions can be found in [3], [4], [5], [6] and [7].

In most cases, the CBR systems used in forecasting problems have flat memo-
ries with simple data representation structures using k-nearest-neighbour metric
in their retrieve phase. K-nearest-neighbour metric are acceptable if the sys-
tem is relatively stable and well understood, but if the system is dynamic and
the forecast is required in real time, it may not be possible to easily redefine
the k-nearest-neighbour metrics adequately. The dominant characteristic of the
adaptation stage used in these models are similarity metrics or statistical mod-
els, although, in some systems, case adaptation is accomplished manually. If the
problem is very complex, there may be no planned adaptation strategy and the
most similar case is used directly, but it is believed that adequate adaptation is
one of the keys to a successful CBR paradigm. In the majority of the systems
surveyed, case revision (if carried out at all) is performed by human expert, and
in all the cases the CBR systems are provided with a small case-base. A survey
of such forecasting CBR systems can be found in [8].

Traditionally, CBR systems have been combined with other technologies like
artificial neural networks, rule-based systems, constraint satisfaction problems
and others, producing successful results to solve specific problems [9, 10]. Al-
though, in general each specific problem and domain requires a particular so-
lution, this paper proposes a CBR based solution for forecasting the evolution
of a complex problem, with a high degree of dynamism for which there is a
lack of knowledge, and for which an adaptive learning system is required. This
paper also presents, a method for automating the CBR reasoning process for
the solution of problems in which the cases are characterised predominantly by
numerical information.

Successful results have been already obtained with hybrid case-based rea-
soning systems [11–13] and used to predict the evolution of the temperature of
the water ahead of an ongoing vessel, in real time. The hybrid system proposed
in this paper presents a new synthesis that brings several AI subfields together
(CBR, ANN and Fuzzy inferencing). The retrieval, reuse, revision and learning
stages of the CBR system presented in this paper use the previously mentioned
technologies to facilitate the CBR adaptation to a wide range of complex problem
domains (for instance, the afore-mentioned red tides problem) and to completely
automate the reasoning process of the proposed forecasting mechanism

The structure of the paper is as follows: first the hybrid neuro-symbolic model
is explained in detail; a case study is then briefly outlined; the results obtained
to date with the proposed forecasting system are analyzed, and finally, the con-
clusions and future work are presented.



2 The Hybrid CBR based Forecasting System

This section proposes a CBR based model for forecasting the evolution of param-
eters related to problems that can be numerically represented, that evolve with
time, for which there is an incomplete knowledge and for which the forecasting
system has to be completely automated.

In this context, in order to forecast the value of any variable, a problem
descriptor should be generated. A problem descriptor is composed of a vector
with the variables that describe the problem and the solution. In this case, this
vector holds numerical variables.

Figure 1 illustrates the relationships between the processes and components
of the hybrid CBR system. In general, we can say that the forecast values are
obtained using a neural network enhanced hybrid case-base reasoning system.
The cyclic CBR process shown in the figure has been inspired by the work of
[11] and [12]. The diagram shows the technology used at each stage, where the
four basic phases of the CBR cycle are shown as rectangles.

Fig. 1. Hybrid neuro-symbolic system.

The retrieval stage is carried out using a Growing Cell Structures (GCS) ANN
[14]. The GCS facilitates the indexing of cases and the selection of those that
are most similar to the problem descriptor. The reuse and adaptation of cases
is carried out with a Radial Basis Function (RBF) ANN [15], which generates



an initial solution creating a forecasting model with the retrieved cases. The
revision is carried out using a group of fuzzy systems that identify potential
incorrect solutions. Finally, the learning stage is carried out when the real value
of the variable to predict is measured and the error value is calculated, updating
the knowledge structure of the whole system. Now we present the working cycle
of the CBR system illustrated in Figure 1.

When a new problem is presented to the system a new problem descriptor
(case) is created, and the GCS neuronal network is used to recover from the
case-base the k more similar cases to the given problem (identifying the class to
which the problem belongs, see Figure 2).

In the reuse phase, the values of the weights and centers of the RBF neural
network used in the previous forecast are retrieved from the knowledge base.
These network parameters together with the k retrieved cases are then used
to retrain the RBF network and to obtain an initial forecast (see Figure 2).
During this process the values of the parameters that characterise the network
are updated.

Fig. 2. Summary of technologies employed by the hybrid model.

In the revision phase, the initial solution proposed by the RBF neural network
is modified according to the response of the fuzzy revision subsystem (a set of
fuzzy models). Each fuzzy system has been created from the RBF network using
neurofuzzy techniques [16].

The revised forecast is then retained temporarily in the forecast database.
When the real value of the variable to predict is measured, the forecast value
for the variable can then be evaluated, through comparison of the actual and
forecast value and the error obtained (see Figure 2). A new case, corresponding
to this forecasting operation, is then stored in the case-base. The forecasting
error value is also used to update several parameters associated with the GCS
network, the RBF network and the fuzzy systems.



2.1 Growing Cell Structures Operation

To illustrate the working model of the GCS network inside the whole system, a
two-dimensional space will be used, where the cells (neurons) are connected and
organized into triangles [14]. Initially, three vectors are randomly chosen from
the training data set. Each cell in the network (representing a generic case), is
associated with a weight vector, w, of the same dimension (problem descriptor
+ solution) that cases stored in the case-base. At the beginning of the learning
process, the weight vector of each cell is initialized with random values [17]. The
basic learning process in a GCS network consists of topology modification and
weight vector adaptations carried out in three steps. The training vectors of the
GCS network are the cases stored in the CBR case-base, as indicated in Figure
1.

In the first step of each learning cycle, the cell c, with the smallest euclidean
distance between its weight vector, wc, and the actual case, x, is chosen as the
winner cell or best-match cell. The second step consists in the adaptation of the
weight vector of the winning cell and their neighbours (positioning the vectors
more near to the actual case). In the third step, a signal counter is assigned to
each cell, which reflects how often a cell has been chosen as winner. Growing cell
structures also modify the overall network structure by inserting new cells into
those regions that represent large portions of the input data (with a higher value
of the signal counter), or removing cells that do not contribute to the input data
representation.

Repeating this process several times, for all the cases of the case-base, a
network of cells will be created. Each cell will have associated cases that have a
similar structure and each cell will represent a class. These cells can be seen as
a “prototype” that identifies a set of similar problem descriptors.

For each class identified by the GCS neural network a vector of values is
maintained (see Figure 1). This “importance” vector is initialized with a same
value for all its components whose sum is one, and represents the accuracy of
each fuzzy system (used during the revision stage) with respect to that class.
During revision, the importance vector associated to the class to which the prob-
lem case belongs, is used to ponder the outputs of each fuzzy system. Each value
of the importance vector is associated with one of the fuzzy systems. For each
forecasting cycle, the value of the importance vector associated with the most
accurate fuzzy system is increased and the other values are proportionally de-
creased. This is done in order to give more relevance to the most accurate fuzzy
system of the revision subsystem.

The neural network topology of a GCS network is incrementally constructed
on the basis of the cases presented to the network. Effectively, such a topology
represents the result of the basic clustering procedure and it has the added
advantage that inter-cluster distances can be precisely quantified. Since such
networks contain explicit distance information, they can be used effectively in
CBR to represent: (i) an indexing structure which indexes sets of cases in the
case base and, (ii) a similarity measure between case sets [18].



When dealing with complex, dynamic, stochastic problems that can be nu-
merically represented, the decision of what retrieval model is better to use for
a CBR that need to be completely automated is not a trivial task. The main
characteristics that should have the retrieval model are: an adequate adaptation
capacity to the problem domain and strong learning capability. In such a situ-
ation, GCS neural networks offer several advantages over other approaches and
well know metrics:

– GCS is a neural network which is able to automatically generate a k dimen-
sional network structure highly adapted to a given but not explicitly known
probability distribution. The adaptation rules of the GCS also enable the
processing of data with changing probability distributions, what helps in the
construction of dynamic systems for complex problems.

– Its ability to perform problem-dependent error measures allows the imple-
mentation of better adaptive data representations (insertion and deletion of
cells) in comparison with static-topology models. This characteristic guar-
antees the adaptation capacity above mentioned.

– Its ability to interrupt a learning process or to continue a previously inter-
rupted one permits the construction of incremental and dynamic learning
systems.

– The GCS self-organising model consists of a small number of constant param-
eters. There is therefore no need to define time-dependent or decay schedule
parameters, what facilitates the implementation of autonomous systems.

– GCS networks have demonstrated their capacity to process both small and
high dimensionality data in several application domains and can operate in
either unsupervised or supervised learning modes. This characteristic guar-
antees the construction of dynamic learning systems.

Another specially interesting fact is that the GCS network are structurally
similar to the RBF network. The GCS network provides consistent classifications
that can be used by the RBF network to auto-tune its forecasting model. (given
a new problem descriptor the GCS network finds its class and retrieves all cases
belonging to that class). Irregularities, discontinuities and exceptions in the data
are avoided if the classifications are consistent. In our model, this is achieved
by means of taking into account the whole case (problem descriptor + solution)
during the training of the GCS network.

In the light of all these reasons, the GCS neural network has been selected
to solve the problem of the classification and indexing in our hybrid CBR based
forecasting system.

2.2 Radial Basis Function Operation

Case adaptation is one of the most problematic aspects of the CBR cycle, mainly
if we have to deal with problems with a high degree of dynamism and for which
there is a lack of knowledge. In such a situation, RBF networks have demon-
strated their utility as universal approximators for closely modelling these con-
tinuous processes [9]. In our system, the term adaptation is used to represent



the process of adapting the configuration of the RBF network using the k most
similar cases retrieved by the GCS network, instead of the classic meaning in
CBR theory.

Again to illustrate how the RBF networks work, a simple architecture will be
presented. Initially, three vectors are randomly chosen from the training data set
and used as centers in the middle layer of the RBF network. All the centers are
associated with a Gaussian function, the width of which, for all the functions, is
set to the value of the distance to the nearest center multiplied by 0.5 (see [15]
for more information about RBF network).

Training of the network is carried out by presenting pairs of correspond-
ing input and desired output vectors. After an input vector has activated each
Gaussian unit, the activations are propagated forward through the weighted con-
nections to the output units, which sum all incoming signals. The comparison
of actual and desired output values enables the mean square error (the quantity
to be minimized) to be calculated.

The closest center to each particular input vector is moved toward the input
vector by a percentage a of the present distance between them. By using this
technique the centers are positioned close to the highest densities of the input
vector data set. The aim of this adaptation is to force the centers to be as close
as possible to as many vectors from the input space as possible. The value of a is
linearly decreased by the number of iterations until its value becomes zero; then
the network is trained for a number of iterations (1/4 of the total of established
iterations for the period of training) in order to obtain the best possible weights
for the final value of the centers.

A new center is inserted into the network when the average error in the
training data set does not fall during a given period. There are different methods
to identify the place where the new center will be inserted.

The main advantages of this type of networks can be summarized as follows:

– The RBF network is capable of approximating nonlinear mappings effec-
tively.

– The training time of the RBF network is quite low compared to that of
other neural network approaches such as the multi-layer perceptron, because
training of the two layers of the network is decoupled.

– The RBF networks are successful for identifying regions of sample data not
in any known class because it uses a non-monotonic transfer function based
on the Gaussian density function.

– RBF network is less sensitive to the order in which data is presented to them
because one basis function takes responsibility for one part of the input space.

The above characteristics together with their good capability of generaliza-
tion, fast convergence, smaller extrapolation errors and higher reliability over
difficult data, make this type of neural networks a good choice that fulfils the
necessities of dealing with this type of problems. It is very important to train
this network with a consistent number of cases. Such consistency in the training
data set is guaranteed by the GCS network that carries out a classification of



the data using the problem descriptor and the solution of the cases stored in the
case-base.

RBF networks can also be used to generate Fuzzy inference systems [16].
This characteristic has been used in this model for the automatic generation of
the revision subsystem as it will be explained in the following section.

2.3 Fuzzy System Operation

Rule extraction from artificial neural networks is considered to be important due
to the following reasons [16]:

– Rule extraction provides artificial neural networks with an explanation ca-
pability, which makes it possible for the user to check on the internal logic
of the system.

– Rule extraction helps to discover previously unknown dependencies in data
sets and thus new knowledge about the system can be acquired.

– It is believed that a rule system with good interpretability improves the
generalization ability of neural networks where training data are insufficient.

The two main objectives of the proposed revision stage are: to validate the
initial prediction generated by the RBF and, to provide a set of simplified rules
that explain the system working mode. The construction of the revision subsys-
tem is carried out in two main steps.

(i) First, a Sugeno-Takagi fuzzy model [19] is generated using the trained
RBF network configuration (centers and weights). In order to transform a RBF
neural network to a well interpretable fuzzy rule system, the following conditions
should be satisfied:

– The basis functions of the RBF neural network have to be Gaussian func-
tions.

– The output of the RBF neural network has to be normalized.
– The basis functions may have different variances.
– A certain number of basis functions for the same input variable should share

a mutual center and a mutual variance.

(ii) A measure of similarity is applied to the fuzzy system [20] with the
purpose of reducing the number of fuzzy sets describing each variable in the
model. Similar fuzzy sets for one parameter are merged to create a common
fuzzy set to replace them in the rule base. If the redundancy in the model is
high, merging similar fuzzy sets for each variable might result in equal rules that
also can be merged, thereby reducing the number of rules as well. When similar
fuzzy sets are replaced by a common fuzzy set representative of the originals,
the system’s capacity for generalization increases.

In this model, the fuzzy systems are associated with each class identified by
the GCS network, mapping each one with its corresponding value of the impor-
tance vector. There is one importance vector for each class or prototype. These
fuzzy systems are used to validate and refine the proposed forecast. Given a



problem descriptor and a proposed forecast for it, each of the fuzzy inference
systems that compose the revision subsystem generates a solution that is pon-
dered according to the importance vector value associated to the GCS class to
which the problem belongs.

The value generated by the revision subsystem is compared with the predic-
tion carried out by the RBF and its difference (in percentage) is calculated. If
the initial forecast doesn’t differ by more than a certain threshold of the solution
generated by the revision subsystem, this prediction is supported and its value is
considered as the final forecast. If, on the contrary, the difference is greater than
the defined threshold, the average value between the value obtained by the RBF
and that obtained by the revision subsystem is calculated, and this revised value
adopted as the final output of the system. This problem dependent threshold
must be identified with empirical experiments and following the advice of human
experts. In the theoretical CBR cycle, the main purpose of the revise phase is
to try out the solution for real and change it before it is retained, making use of
knowledge that is external to the system. In our system, this is all done in the
retain phase, implementing the revise phase as a form of validation and using
knowledge that is internal to the system.

Fuzzy systems provide a solution to the revision stage when dealing with
complex problems, with a high degree of dynamism and for which there is a
lack of knowledge. The exposed revision subsystem improves the generalization
ability of the RBF network. Fuzzy models, especially if acquired from data,
may contain redundant information in the form of similarities between fuzzy
sets. As similar fuzzy sets represent compatible concepts in the rule base, a
model with many similar fuzzy sets becomes redundant, unnecessarily complex
and computationally demanding. The simplified rule bases allow us to obtain a
more general knowledge of the system and gain a deeper insight into the logical
structure of the system to be approximated.

The proposed revision method then help us to ensure a more accurate result,
to gain confidence in the system prediction and to learn about the problem and
its solution. The fuzzy inference systems also provides useful information that is
used during the retain stage.

2.4 Retain

As mentioned before, when the real value of the variable to predict is known,
a new case containing the problem descriptor and the solution is stored in the
case-base. The importance vector associated with the retrieved class is updated
in the following way: The error percentage with respect to the real value is
calculated. The fuzzy system that has produced the most accurate prediction is
identified and the error percentage value previously calculated is added to the
degree of importance associated with this fuzzy subsystem. As the sum of the
importance values associated to a class (or prototype) has to be one, the values
are normalized and the sum dividing up accordingly between them. When the
new case is added to the case-base, its class is identified. The class is updated
and the new case is incorporated into the network for future use.



3 A Case of Study: The Red Tides Problem

The oceans of the world form a highly dynamic system for which it is difficult to
create mathematical models [21]. Red tides are the name for the discolourations
caused by dense concentrations of microscopic sea plants, known as phytoplank-
ton. The rapid increase in dinoflagellate numbers, sometimes to millions of cells
per liter of water, is described as a bloom of phytoplankton (concentration levels
above the 100.000 cells per liter). This study focusses on the pseudo-nitzschia
spp diatom dinoflagellate, which causes amnesic shellfish poisoning along the
north west coast of the Iberian Peninsula in late summer and autumn [22].

Surface waters of these blooms are associated with the production of tox-
ins, resulting in mortality of fish and other marine organisms. Toxic blooms of
dinoflagellates fall into three categories: (i) blooms that kill fish but few inver-
tebrates; (ii) blooms that kill primarily invertebrates; (iii) blooms that kill few
marine organisms, but whose toxins are concentrated within the siphons, diges-
tive glands, or mantle cavities of filter-feeding bivalve mollusc such as clams,
oysters, and escallops.

The nature of the red tides problem has changed considerably over the last
two decades around the world. Where formerly a few regions were affected in
scattered locations, now virtually every coastal state is threatened, in many
cases over large geographic areas and by more than one harmful or toxic algal
species [23]. Few would argue that the number of toxic blooms, the economic
losses from them, the types of resources affected, and the number of toxins and
toxic species have all increased dramatically in recent years in all over the world.
Disagreement only arises with respect to the reasons for this expansion.

Models of dinoflagellate blooms have been developed from several different
perspectives [24–26] but the end result is that despite the proven utility of models
in so many oceanographic disciplines, there are no predictive models of popula-
tion development, transport, and toxin accumulation. There is thus a clear need
to develop models for regions subject to red tides, and to incorporate biological
behavior and population dynamics into those simulations [27].

An artificial intelligence (AI) approach to the problem of forecasting in the
ocean environment offers potential advantages over alternative approaches, be-
cause it is able to deal with uncertain, incomplete and even inconsistent data.
Several AI techniques have been used to forecast the evolution of different
oceanographic parameters [28, 11, 12]. The reported work shows how CBR sys-
tems have a greater facility for forecasting oceanographic parameters than other
statistical and AI based models [13].

3.1 Forecasting Red Tides

In the current work, the aim is to develop a system for forecasting one week
in advance the concentrations (in cells per liter) of the pseudo-nitzschia spp,
the diatom that produces the most harmful red tides, at different geographical
points. The approach builds on the methods and expertise previously developed
in earlier research.



The problem of forecasting, which is currently being addressed, may be sim-
ply stated as follows:

– Given: a sequence of data values (representative of the current and imme-
diately previous state) relating to some physical and biological parameters,

– Predict: the value of a parameter at some future point(s) or time(s).

The raw data (sea temperature, salinity, PH, oxygen and other physical char-
acteristics of the water mass) which is measured weekly by the monitoring net-
work for toxic proliferations in the CCCMM (Centro de Control da Calidade
do Medio Marino, Oceanographic environment Quality Control Centre, Vigo,
Spain), consists of a vector of discrete sampled values (at 5 meters’ depth) of
each oceanographic parameter used in the experiment, in the form of a time se-
ries. These data values are complemented by data derived from satellite images
stored on a database. The satellite image data values are used to generate cloud
and superficial temperature indexes which are then stored with the problem de-
scriptor and subsequently updated during the CBR operation. Table 1 shows the
variables that characterise the problem. Data from the previous 2 weeks (Wn−1,
Wn) is used to forecast the concentration of pseudo-nitzschia spp one week ahead
(Wn+1).

Table 1. Variables that define a case.

Variable Unit Week

Date dd-mm-yyyy Wn−1, Wn

Temperature Cent. degrees Wn−1, Wn

Oxygen milliliters/liter Wn−1, Wn

PH acid/based Wn−1, Wn

Transmitance % Wn−1, Wn

Fluorescence % Wn−1, Wn

Cloud index % Wn−1, Wn

Recount of diatoms cel/liter Wn−1, Wn

Pseudo-nitzschia spp cel/liter Wn−1, Wn

Pseudo-nitzschia spp (future) cel/liter Wn+1

Our proposed model has been used to build an hybrid forecasting system
that has been tested along the north west coast of the Iberian Peninsula with
data collected by the CCCMM from the year 1992 until the present. The pro-
totype used in this experiment was set up to forecast the concentration of the
pseudo-nitzschia spp diatom of a water mass situated near the coast of Vigo, a
week in advance. Red tides appear when the concentration of pseudo-nitzschia
spp is higher than 100.000 cell/liter. Although the aim of this experiment is to
forecast the value of the concentration, the most important aspect is to identify
in advance if the concentration is going to exceed this threshold.

A case-base was built with the above mentioned data. For this experiment,
four fuzzy inference systems have been created from the RBF network, and



they were initialised with a value of (0.25, 0.25, 0.25, 0.25) for each class (or
prototype) in the GCS network. The RBF network used in the framework of
this experiment, uses 18 input neurons, between three and fifty neurons in the
hidden layer and a single neuron in the output layer, being the output of the
network the concentration of pseudo-nitzschia spp for a given water mass.

The following section discusses the results obtained with the prototype de-
veloped for this experiment.

4 Results

The average error in the forecast was found to be 26.043,66 cell/liter and only
5.5% of the forecasts had an error higher than 100.000 cell/liter. Although
the experiment was carried out using a limited data set (geographical area A0
((42◦28.90’ N, 8◦57.80’ W) 61 m)), it is believed that these error value results
are significant enough to be extrapolated along the whole coast of the Iberian
Peninsula.

Two situations of special interest are those corresponding to the false alarms
and the blooms not detected. The former refers to predictions of bloom (concen-
tration of pseudo-nitzschia ≥ 100.000 cell/liter) which don’t actually materialize
(real concentration ≤ 100.000 cell/liter). The latter, more significant occurrence
arises when a bloom exists but the model fails to detect it.

Table 2 shows the predictions carried out with success (in absolute values
and %) and the erroneous predictions differentiating the not detected blooms
from the false alarms.

Table 2. Summary of results using the CBR-ANN-FS Hybrid System.

OK OK (%) Not detect. False alarms

191/200 95,5% 8 1

Further experiments have been carried out to compare the performance of the
CBR-ANN-FS hybrid system with several other forecasting approaches. These
include standard statistical forecasting algorithms and the application of several
neural networks methods. The results obtained from these experiments are listed
in Table 3.

Table 3 shows the number of successful predictions (in absolute value and
%) as well as the blooms not detected and false alarms for each method. As it
indicates, the combination of different techniques in the form of the hybrid CBR
system previously presented, produces better results that a RBF neural network
working alone and any of the other techniques studied during this investigation.
This is due to the effectiveness of the revision subsystem and the re-training
of the RBF neural network with the cases recovered by the GCS network. The



Table 3. Summary of results using statistical techniques.

Method OK OK (%) N. detect. Fal. alarms

RBF 185/200 92,5% 8 7
ARIMA 174/200 87% 10 16

Quadratic Trend 184/200 92% 16 0
Moving Average 181/200 90,5% 10 9

Simp. Exp. Smooth. 183/200 91,5% 8 9
Lin. Exp. Smooth. 177/200 88,5% 8 15

performance of the hybrid system is better than the other methods at each of
the individual geographical monitoring points.

Table 4 shows the average error obtained with the hybrid model, a standard
RBF network, an ARIMA model, a Quadratic Trend, a Moving Average, a Sim-
ple Exp. Smoothing, a Brown’s Linear Exp. Smoothing and a Finite Impulse
Response ANN [28], which was not able to converge for this type of problem.

Table 4. Average error in the forecast with other techniques and the CBR-ANN-FS
Hybrid System.

Method Type Aver. error (cel/liter)

CBR-ANN-FS Hybrid System 26.043,66
RBF ANN 45.654,20
FIR ANN –

ARIMA Statistics 71.918,15
Quadratic Trend Statistics 70.354,35
Moving Average Statistics 51.969,43

Simple Exp. Smoothing Statistics 41.943,26
Brown’s Linear Exp. Smoothing Statistics 49.038,19

5 Conclusions and Future Work

In summary, this paper has presented an automated hybrid CBR system that
combines a case-based reasoning system integrated with two artificial neural
networks and a set of fuzzy inference systems in order to create a real time au-
tonomous forecasting system. The model employs a case-based reasoning model
that incorporates a growing cell structures network (for the index tasks to orga-
nize and retrieve relevant data), a radial basis function network (that contributes
generalization, learning and adaptation capabilities) and a set of Sugeno fuzzy
models (acting as experts that revise the initial solution) to provide a more ef-
fective prediction. The resulting hybrid system thus combines complementary
properties of both connectionist and symbolic AI methods.



The developed prototype is able to produce a forecast with an acceptable
degree of accuracy. The results obtained may be extrapolated to provide forecasts
further ahead using the same technique, and it is believed that successful results
may be obtained. However, the further ahead the forecast is made, the less
accurate the forecast may be expected to be. The developed prototype can not
be used in a particular geographical area if there are no stored cases from that
area. Once the system is in operation and it is forecasting, a succession of cases
will be generated, enabling the hybrid forecasting mechanism to evolve and to
work autonomously.

In conclusion, the hybrid reasoning problem solving approach provides an
effective strategy for forecasting in an environment in which the raw data is
derived from different sources and it can be represented by means of a vector
of numeric values. This model may be used to forecast in complex situations
where the problem is characterized by a lack of knowledge and where there is a
high degree of dynamism. The model presented here will be tested in different
water masses and a distributed forecasting system will be developed based on
the model in order to monitor 500 km. of the North West coast of the Iberian
Peninsula.

This work is financed by the project: Development of techniques for the auto-
matic prediction of the proliferation of red tides in the Galician coasts, PGIDT-
00MAR30104PR, inside the Marine Program of investigation of Xunta de Gali-
cia. The authors want to thank the support lent by this institution, as well as
the data facilitated by the CCCMM.
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