

C. Ramos et al. (eds.), Ambient Intelligence - Software and Applications,
Advances in Intelligent Systems and Computing 291,

81

DOI: 10.1007/978-3-319-07596-9_9, © Springer International Publishing Switzerland 2014

Easy Development and Use of Dialogue Services

José Javier Durán1, Alberto Fernández1, Sara Rodríguez2,
Vicente Julián3, and Holger Billhardt1

1 CETINIA, University Rey Juan Carlos, Móstoles, Spain
{josejavier.duran,alberto.fernandez,holger.billhardt}@urjc.es

2 Universidad de Salamanca, Salamanca, Spain
srg@usal.es

3 Universidad Politécnica de Valencia, Spain
vinglada@dsic.upv.es

Abstract. We present a framework for Dialogue-Based Web Services (DBWS),
i.e. services that require several message exchanges during their execution. Ser-
vice development is simplified with the use of script languages and abstracting
the communication layer. Service advertisements are carried out with a seman-
tic Web Service directory with search and reputation capabilities. Execution can
be performed from a mobile user interface that includes capabilities for user as-
sistance. Our framework aims at filling the gap between services and non-IT
users/experts. An example illustrates our proposal.

Keywords: Web services, Service directory, Middleware, User assistance.

1 Introduction

When humans request support from experts in some field, they do not usually ex-
change a single message with the problem description and an answer/solution from
the expert. However, they typically engage in several interactions where the expert
asks for context information, desires, etc., where questions may depend on previous
answers and expert knowledge. The same approach should apply when one (or sev-
eral) of the previous roles (usually the expert) are played by software agents.

Building such software systems is not an easy task. Even though many experts are
able to program software pieces (knowledge bases) like rule-based, logic, scripts, etc.
they usually lack skills to create software accessible by humans or agents (Web appli-
cations, Web services, software agents, …).

An additional problem is how a user can access those services. Firstly, the user
needs to find a service that might be of interest. Then, the service has to be used, i.e.
invoked passing the necessary parameters, possibly requiring several interactions as
mentioned above.

In this paper we propose a framework focused on filling the gap between Web Ser-
vices (WS) and humans, at different levels. First, the framework supports the devel-
opment of WS using different scripting languages, and isolates the communication
layer associated to WS from the dialogue process. Next, services are indexed in a

82 J.J. Durán et al.

directory capable of searching services using different techniques (including free
text). Also, that directory enriches search results with reputation information, in order
to assist users to choose the most reliable/best service, based on other user’s expe-
riences. Finally, a generic interface is provided for service invocation, which covers
mobile devices and offers an assistant that helps users with context information.

The rest of the paper is organized as follows. In section 2 we analyze other related
works. Section 3 describes the architecture of our framework. Section 4 explains the
development support middleware. An example of using our framework is described in
section 5. We finish with conclusions and future works.

2 Related Work

Description languages and transport protocols are important parts of Web services
development. There are two main technologies: REST services with JSON payload
(mainly described using WADL), and SOAP (as WSDL services). The former is
lightweight, easier for developers to understand, and more adaptable. The latter is
more widely adopted in industry due to existing standards (WS-*) and tools [1-2].
Deployment environment is another important aspect in the development of Web
services. Nowadays industry is moving towards PaaS (Platform as a Service) envi-
ronments [3] in which different applications are deployed together sharing resources
and its highly useful when different applications share a common structure and/or
they are used in the same way (e.g. Heroku platform is running more than 3 million
applications1).

There are different solutions focused on the creation of dynamic interfaces for Web
services. Usually, the user interface is created depending on the type of service to use,
or the parameters required for its execution. Some of these solutions translate a
WSDL description into a Web interface that represents the different kinds of restric-
tions and input types using HTML widgets [4]. Others are focused on testing services
by creating requests based on service definitions, but offering an interface more ap-
propriate to software developers [5]. There are other options that integrate both a
directory of services with a test user interface for such services, even including op-
tions for user feedback. In particular, there are several existing public service directo-
ries. In Table 1 we enumerate the different characteristics that we think should be
present in a Web Service directory, and how they are implemented in different solu-
tions. The first characteristic is whether the directory provides search capabilities.
Registry defines whether users can register their own services or the directory is
closed. A useful information for selecting services is reputation. There are different
mechanisms for reputation, such as: rating, users’ feedback as comments, or wiki-like
in which users can update the description of a service in order to correct any wrong
information. By execution we mean if it is possible to invoke the service directly from
the directory web interface, without needing to develop an ad-hoc application, or if
there is specific documentation of that process (e.g. example script, or unitary tests of
the service). Finally, format represents the kind of services that can be registered
(SOAP/WSDL, REST, …).

1 https://blog.heroku.com/archives/2013/4/24/europe-region

 Easy Development and Use of Dialogue Services 83

Table 1. Comparison of different web service directories

 Search Registry Reputation Execution Format

Membrane
SOA registry

No (list) Yes Rating Yes
Low-level

SOAP

WS-index.org Text No Rating No Unknown
API-Hub Text + Filters Yes No No Any
Programmable
web

Text + Filters Yes Rating No Any

X Methods No (list) Yes No No SOAP
BioCatalogue Text + Filters

+ In/Out
Yes No (wiki) Examples SOAP, REST

Embrace Text No Comments Unitary
tests

SOAP,
REST, DAS,
BioMOBY

Membrane SOA Registry2 includes a five-star rating system and a (low-level)

SOAP invocation user interface, but lacks of a search capability. WS-index.org is a
directory of web-pages related to web services, but a standard format is not applied to
the entries, and most of the entries are out-dated. API-Hub3 and Programmable Web4
focus on API documentation and both offer text and filter-based search. X Methods5
offers a WSDL-only directory, but it lacks of search capabilities and reputation
mechanisms. BioCatalogue6 offers a complex search mechanism able to filter by text,
tags, and kind of input and/or output, but instead of offering an execution mechanism,
it serves as a repository of execution examples. Embrace7 is a specialized directory
for medical services (support for domain description formats like DAS and Bio-
MOBY), which offers access to unitary tests that are run in background in order to
measure the reliability of the services. Despite the existence of all those tools, there is
a lack of a solution that integrates all the important Web service mediation character-
istics together. Programmable Web is the most complete regarding those characteris-
tics, but it does not allow execution, which is only supported by Membrane.
Moreover, they do not provide support for service development.

2 http://www.service-repository.com/
3 http://www.apihub.com
4 http://www.programmableweb.com/
5 http://www.xmethods.com/
6 https://www.biocatalogue.org/
7 http://www.embraceregistry.net/

84 J.J. Durán et al.

3 Architecture

Fig. 1 shows our framework architecture. There are three main components: a service
directory, a middleware and a Web interface.

Fig. 1. Framework components

The Service Directory acts as a mediator (yellow pages) among services and users.
Agents advertise the services they provide by registering with the directory. A service
registration includes (i) a description of its functionality, (ii) a grounding specifying
the endpoint where the service can be invoked, and (iii) the agent/organisation that
created or owns the service (for reputation management). The service directory coor-
dination is carried out by means of a heterogeneous service directory called Nuwa [6],
and reputation management is based on a simplification of the reputation mechanism
proposed by Hermoso et al. [7] for task oriented multi-agent systems. In this paper we
do not focus on the description of our service directory, which can be found in the
references above.

The Development support middleware is a set of tools that facilitate the de-
velopment of dialogue-based services. A Script Engine takes script code and gener-
ates a Web service implementation (WS) and its GCM and WADL descriptions, as is
detailed in next sections. Additionally, the framework includes a compiler to translate
ESTA8 knowledge bases into JavaScript code.

The Web Interface is a generic Web application that provides a human interface to
search and invoke services registered with the directory, as well as providing feed-
back about service use.

4 Service Development Support Middleware

In order to ease the implementation and integration of Web Services using our
framework, we have developed a middleware that deals with process workflow and
message exchange. The advantage of this middleware is that it is possible to create a
DBWS without implementing any Web functionality, since the communication
part is isolated from the application itself. Also, this middleware offers a sandbox

8 Expert System Shell for Text Animation

 Easy Development and Use of Dialogue Services 85

environment in which multiple applications can be run together isolated among them,
and where errors are properly managed by the middleware.

The main characteristics of the proposed middleware are: (i) isolate the communi-
cation layer from the application, (ii) transform Web requests into software objects
used by the application, (iii) do not impose a programming language, or paradigm,
and (iv) avoid the use of special structures, or patterns, for dialogue management.

4.1 Interaction Protocol

In this section we describe the most important aspects of our framework: a workflow
process for dialogue-based services, and a format for message exchange.

Workflow. In order to use dialogue-based services, a record of the interaction has to
be kept. Services could be invoked in two states: initialisation and resume. During
initialisation a service communicates to the client which parameters must be provided.
During resume, the service takes the parameters received and returns a message that
may include additional information (parameters) required to continue the execution or
the result. The message content is explained next.

Message Format. We divide the dialogue message in three parts:

• State information: includes a set of variables representing the service state. This
information is used when interacting with stateless services and must be sent to
the service again in order to keep a track of the dialogue.

• Response: a set of messages that are sent to the client for its use. Each message
can be, for example, a text, an HTML document, a picture, or an RDF document.
Those messages are considered the output of the service.

• Question: When a service requires more information, or asks the user to wait for
a time condition to be reached, a question is sent to the client. That question has a
textual condition (the question), a motivation (why it is needed, and/or some se-
mantic information about the question), a parameter name (id) (used to send
back a client response), and a rule of accepted values (combination of type and
values).

4.2 Script Engine Middleware

The script engine relies on the implementation of the JSR-2239 API present in the
Java runtime. This API is capable of loading applications created in different script
languages (such as Java, JavaScript, Python, Scheme, Ruby, etc.), offering an abstrac-
tion of the communication between Java classes and script applications. The advan-
tage of this approach is that it is possible to access applications independently of the
programming language as long as a parser for that language is available.

9 http://www.jcp.org/en/jsr/detail?id=223

86 J.J. Durán et al.

4.3 Web Interface for Web Service Invocation

Since our framework defines a common interface for multiple services (the message
protocol) it is possible to reuse a user interface to access different services. In our
case, we have developed a user interface that covers the main aspects of our proposal:
search, invocation, and feedback.

Search. The user interface accesses to the service directory, and offers two kinds of
search methods: by keywords or free text. The service directory returns the matching
services with their degree of match and reputation. The results are shown to the user
ordered by these two parameters. The user can switch between both.

Invocation. The proposed protocol includes information needed for a dialogue stage,
i.e. parameter required (question field) and response messages. The user interface
shows the response messages followed by the parameter question and by a log of
previous responses in the dialogue. The parameter question contains two elements:
the parameter question (enriched with motivation information) and the input field.
The latter is created with the most appropriate HTML input.

Feedback. During the invocation process, the current reputation score is shown, and
the user can submit a feedback about the service. The feedback can include a score, a
text about the user’s experience and the dialogue log (e.g. for debugging).

In addition to those main functionalities, our Web interface includes a question as-
sistant module that provides information related to the current question, e.g. main
concept or language translation. The current implementation uses WordReference
(synonyms of main terms), and a natural language question answering system
(START10) to clarify the meaning of a concept or even suggest an answer for a ques-
tion (e.g. if the question is asking about the value of a biochemical parameter, it will
offer the textual description of that parameter from Wikipedia.org). Access to Google
Translate has been implemented but it is disabled because of its commercial license.

5 Case Study

In this section we use an example to illustrate the process of adapting a specific dia-
logue-based application to our architecture. We chose a simple application that assists
users in deciding what cocktail to make, by asking the user questions about desired
ingredients or restrictions (e.g. % alcohol). Fig. 2 shows the interactions involved
during a cocktail drinks’ assistance. Solid arrows represent user to service messages,
while dashed arrows represent service to user ones.

First, the server asks the user which is the limit of alcohol that he wants in the
drink (an enumeration). The user answers ‘< 50%’. For clarity, we simplified the
question field, omitting their description. Then, the service asks whether the user
wants it with some juice (true/false) and the user answered true. Next, Vodka is of-
fered as a possible ingredient (true/false), and the user agrees (true). Finally, the

10 http://start.csail.mit.edu/

 Easy Development and Use of Dialogue Services 87

Fig. 2. HTTP message exchange between a web client and the service. Message format: <state
information, response, question>

Fig. 3. Mobile Web User Interface for the application

service asks the user if he also wants something with orange juice (true/false), which
he agrees (true). As a result, a cocktail is found in the knowledge base, and the service
closes the dialogue with the recipe as a message with no further values to be provided.

Fig. 3 shows several snippets of the user interface, in particular obtained from a
mobile phone access to the service. The first one shows the selection screen, in which
a DBWS can be chosen. Next screens show questions 1 and 3 from the previous se-
quence diagram, including information from the question assistant (Vodka definition).

6 Conclusion

In this paper we have described a framework for developing and interacting with
Dialog-Based Web Services. The main contributions of this paper are (i) a
framework that supports service development by providing an integration component

88 J.J. Durán et al.

for different scripting languages, which definitely facilitates Web service implementa-
tion; and (ii) a generic Web interface that supports the user to invoke such services.
The framework includes a multi-language service directory with registration, search
and reputation mechanisms, which we adopted from previous work.

Although our framework includes several components (Directory, Script Engine,
Web Interface), developers can use their desired functionalities. Then, they might
want to use only the directory functionality by registering their services. Or they
might want to provide a script (or ESTA) implementation to the Script Engine so as to
generate the Web service. Independently of the previous options, the Web Interface
tool can be used to search and/or (v) invoke services if wanted.

The proposed framework has been implemented and we are currently working on
its use for the development of a system to assist clinicians in their diagnosis. The
system integrates 16 different knowledge-based medical decision support systems.
Those systems are programmed in ESTA expert system, and have been integrated in
our framework in straightforward way. We use the user interface presented in this
paper to test that system. We will use that application to evaluate our framework in a
real case, including the reputation mechanism with feedback provided by domain
experts (clinicians).

In the future, we also plan to extend our approach to deal with asynchronous ser-
vices, i.e. services that must pause their execution and resume it later (e.g. an expert is
required to emit a response, or validate a conclusion).

Acknowledgement. Work partially supported by the Spanish Ministry of Science and
Innovation through the project ”AT” (grant CSD2007-0022; CONSOLIDER-
INGENIO 2010) and by the Spanish Ministry of Economy and Competitiveness
through the project iHAS (grant TIN2012-36586-C03-01/02/03).

References

1. Guinard, D., Ion, I., Mayer, S.: In search of an internet of things service architecture: REST
or WS-*? A developers’ perspective. In: Puiatti, A., Gu, T. (eds.) MobiQuitous 2011.
LNICST, vol. 104, pp. 326–337. Springer, Heidelberg (2012)

2. Pautasso, C., Zimmermann, O., Leymann, F.: Rest- ful web services vs. ”big’” web services:
Making the right architectural decision. In: Proceedings of the 17th International Conference
on World Wide Web, WWW 2008, pp. 805–814. ACM (2008)

3. Lawton, G.: Developing software online with platform-as-a- service technology. Comput-
er 41(6), 13–15 (2008)

4. Kopel, M., Sobecki, J., Wasilewski, A.: Automatic web-based user interface delivery for
soa-based systems. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS,
vol. 8083, pp. 110–119. Springer, Heidelberg (2013)

5. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: Ws-taxi: A wsdl-based testing tool for
web services. In: International Conference on Software Testing Verification and Validation,
ICST 2009, pp. 326–335 (2009)

6. Fernandez, A., Cong, Z., Balta, A.: Bridging the gap between service description models in
service matchmaking. Multiagent and Grid Systems 8(1), 83–103 (2012)

7. Hermoso, R., Billhardt, H., Centeno, R., Ossowski, S.: Effective use of organisational ab-
stractions for confidence models. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli,
O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 368–383. Springer, Heidelberg (2007)

	Easy Development and Use of Dialogue Services
	1 Introduction
	2 Related Work
	3 Architecture
	4 Service Development Support Middleware
	4.1 Interaction Protocol
	4.2 Script Engine Middleware
	4.3 Web Interface for Web Service Invocation

	5 Case Study
	6 Conclusion
	References

