
Hybrid System for Mobile Image Recognition

through Convolutional Neural Networks
and Discrete Graphical Models

William Raveane and Maŕıa Angélica González Arrieta

Universidad de Salamanca, Salamanca, Spain

Abstract. A system is presented which combines deep neural networks
with discrete inference techniques for the successful recognition of an
image. The system presented builds upon the classical sliding window
method but applied in parallel over an entire input image. The result
is discretized by treating each classified window as a node in a markov
random field and applying a minimization of its associated energy levels.
Two important benefits are observed with this system: a gain in per-
formance by virtue of the system’s parallel nature, and an improvement
in the localization precision due to the inherent connectivity between
classified windows.

Keywords: computer vision, deep neural networks, graphical models.

1 Introduction

Hybrid intelligent systems have consistently shown benefits that outperform
those of their individual components in many tasks, especially when used along
neural computing [1]. In recent years, two main areas of computer vision have
gained considerable strength and support: On one side, soft computing tech-
niques based on non-exact but very accurate machine learning models like neural
networks, which have been successful for high level image classification [7]. Con-
trasting these systems, computer vision techniques modeled by graphical models
have enjoyed great reception when performing low level image processing tasks
such as image completion [6]. In this paper, we combine both of these techniques
to successfully classify and localize a region of interest within an input image.

We use Convolutional Neural Networks (CNN) [3] for the classification of im-
age content. CNNs have become a general solution for image recognition with
variable input data, as their results have outclassed other machine learning ap-
proaches in large scale image recognition tasks [4]. Paired to this CNN classifier,
we use energy minimization of a Markov Random Field (MRF) [8] for inference
and localization of the target within the image space. Graphical models such as
this have been implemented in areas of computer vision where the relationship
between neighboring regions plays a crucial role [2].

We review the implementation of this system specifically within a mobile de-
vice. With the increasing use of mobile hardware, it has become a priority to

M. Polycarpou et al. (Eds.): HAIS 2014, LNAI 8480, pp. 365–376, 2014.
c© Springer International Publishing Switzerland 2014

366 W. Raveane and M.A. González Arrieta

provide these devices with computer vision capabilities. Due to the high compu-
tational requirements, this need has mostly been met by outsourcing the analysis
to a remote server over the internet. This approach introduces large delays and
is hardly appropriate when interactivity and responsiveness are paramount. Em-
bedded environments have intrinsic architecture constraints which require algo-
rithms to make the best use of the available computing capacity. The proposed
system exploits this specific platform by reducing the overall required memory
throughput via a parallel execution approach. This is achieved by applying layer
computations over the entire image space, as opposed to running smaller patches
individually, as is common with the sliding window approach normally used in
this type of image classification.

2 Background

The network on which our system is based upon is a standard CNN. Figure 1
depicts the layer structure of such a network, and it is the reference architecture
used throughout this paper to describe the concepts of the framework presented.

128L

10×10 5×5 1×1
(Scalar)

INPUT

32×32
Neuron
Map Size:

12C5 + 12MP2

28×28 14×14

32C5 + 32MP2 2L (OUTPUT)

1×1
(Scalar)

Fig. 1. A typical convolutional neural network architecture, with three input neurons
for each color channel of an analyzed image patch, two feature extraction stages of
convolutional and max-pooling layers, and two linear layers to produce a final one-vs-
all classification output

In the initial stages of the CNN, a neuron consists of a two-dimensional grid
of independent computing units, each producing an output value. As a result,
every neuron will itself output a grid of numerical values, a data structure in
R

2 referred to as a map. When applying CNNs to image analysis, these maps
represent an internal state of the image after being processed through a con-
nective path leading to that particular neuron. Consequently, maps will usually
bear a direct positonal and feature-wise relationship to the input image space.
As data progresses through the network, however, this represenation turns more
abstract as the dimentionality is reduced. Eventually, these maps are passed
through one or more linear classifiers, layers consisting of traditional single unit
neurons which output a single value each. For consistency, the outputs of these
neurons are treated as 1×1 single pixel image maps, although they are nothing
more than scalar values in R

0.

Hybrid Mobile Image Recognition 367

2.1 CNN Layer Types

The first layer in the network consists of the image data to be analyzed, usually
composed as the three color channels. The notationNjXKj is used to describe all
subsequent layers, where Nj is the neuron map count of layer j, X ∈ {C,MP,L}
denotes the layer type group (Convolutional, Max-Pooling, and Linear), and Kj

is the parameter value for that layer.
The first part of every C → MP feature extraction stage is a convolutional

layer. Here, each neuron linearly combines the convolution of one or more pre-
ceding maps. The result is a map slightly smaller than the input size by an
amount known as the kernel padding, which arises from the boundary condi-
tions of the valid convolution algorithm. It is defined as Kj/2 − 1, where Kj is
convolutional kernels size of layer j. Therefore, the layer’s map size will be given
by Mj = Mj−1 − Kj/2 − 1, where Mj−1 is the the preceding layer’s map size.

A max-pooling neuron acts on a single map from a preceding convolutional
neuron, and its task is to subsample a pooled region of size Kj. The result is a
map size that is inversely proportional to said parameter by Mj = Mj−1/Kj.

Linear layers classify feature maps extracted on preceding layers through a
linear combination as in a perceptron – always working with scalar values – such
that Mj = 1 at every layer of this type.

Finally, the output of the final classification layer decides the best matching
label describing the input image. Fig. 2 shows the information flow leading to
this classification for a given image patch, where the CNN has been trained to
identify a particular company logo.

Fig. 2. Visualization of the first three neuron maps at each stage of the CNN. Note
the data size reduction induced at each stage. The output of this execution consists of
two scalar values, each one representing the likelihood that the analyzed input image
belongs to that neuron’s corresponding class. In this case the logo has been successfully
recognized by the higher valued output neuron for class “Logo”.

368 W. Raveane and M.A. González Arrieta

2.2 The Sliding Window Method

Recognition of images larger than the CNN input size is achieved by the sliding
window approach. This algorithm is defined by two quantities, the window size
S, usually fixed to match the CNN’s designed input size; and the window stride
T , which specifies the distance at which consecutive windows are spaced apart.
This stride distance establishes the total number of windows analyzed W for a
given input image. For an image of size Iw × Ih, the window count is given by:

W =

(
Iw − S

T
+ 1

)(
Ih − S

T
+ 1

)
=⇒ W ∝ IwIh

T 2
(1)

Figure 3 shows this method applied on an input image downsampled to
144×92, extracting windows of S = 32 for the simple case where T = S/2. A
network analyzing this image would require 40 executions to fully analyze all ex-
tracted windows. The computational requirement is further compounded when
a smaller stride is selected – an action necessary to improve the resolving power
of the classifier: at T = S/8, 464 separate CNN executions would be required.

Fig. 3. An overview of the sliding window method, where an input image is subdivided
into smaller overlapping image patches, each being individually analyzed by a CNN. A
classification result is then obtained for each individual window.

3 Optimized Network Execution

The method proposed introduces a framework where the stride has no significant
impact on the execution time of the C → MP stages, as long as the selected stride
is among a constrained set of possible values. This is achieved by allowing layers
to process the full image as a single shared map instead of individual windows.
Constraints in the possible stride values will result in pixel calculations to be
correctly aligned throughout the layers.

3.1 Shared Window Maps

CNNs have a built-in positional tolerance due to the reuse of the same convo-
lutional kernels over the entire neuron map. As a result of this behavior, their
output is independent of any pixel offset within the map, such that overlapping
windows will share convolved values. This is demonstrated in Fig. 4.

Hybrid Mobile Image Recognition 369

Fig. 4. Two adjacent windows extracted from an input image, passed through the 12C5
+ 12MP5 feature extractor. A detailed view of the convolved maps in the overlapping
top-right and bottom-left quarters of each window shows that these areas fully match.

This leads to the possibility of streamlining the feature extractors by running
their algorithms over the full input image at once. Hence, each C → MP neuron
will output a single map shared among all windows. This greatly reduces the
expense of calculating again convolutions on overlapping regions of each window.
Figure 5 shows an overview of the shared map process, which passes the input
image in its entirety through each stage of the network.

Fig. 5. The shared map execution method for a convolutional neural network, where
each layer processes an entire image in a single pass, and each neuron is now able to
process maps with dimensions that far exceed the layer’s designed input size

By doing this, the output layer now produces a continuous and localized class
distribution over the image space, a result which contrasts greatly to that of a
single classification value as was previously seen in Fig. 2. The output of this
execution consists of image maps where each pixel yields the relative position of
all simultaneously classified windows.

Similar to the per-window execution method, the intensity value of a pixel
in the output map represents the classification likelihood of the corresponding

370 W. Raveane and M.A. González Arrieta

window. Note how the relative position of the logo in the input image has been
discovered after only one shared map execution of the network. An account of
the window size and stride is also displayed, illustrating how it evolves after each
layer, while the total window count remains the same. Here, the correspondence
of each 32×32 window in the input image can be traced to each one of the pixels
in the output maps.

3.2 Window Configuration

The operation of the shared map process relies greatly on the details of the
dimensionality reduction occurring at each layer within the network. For this
reason, it is necessary to lay certain constraints that must be enforced when
choosing the optimum sliding window stride.

At each layer, the window size and stride are reduced until they eventually
become single pixel values at the final linear layers. The amount of reduction at
each stage varies according to the type of the layer and its parameters. All of
these quantities can be found in a well defined manner as given by:

Sj =

⎧⎪⎨
⎪⎩
Sj−1 −Kj − 1 if j ∈ C
Sj−1/Kj if j ∈ MP
Sj−1 if j ∈ L

(2)

Tj =

{
Tj−1 if j ∈ C ∪ L
Tj−1/Kj if j ∈ MP (3)

Where the window size Sj and its stride Tj at layer j depends on the various
parametersKj of the layer and the window size and stride values at the preceding
j − 1 layer. This equation set can be applied over the total number of layers of
the network, while keeping as the target constraint that the final size and stride
must remain whole integer values. By regressing these calculations back to the
input layer j = 0, one can find that the single remaining constraint at that layer
is given by:

T0 ≡ 0 mod
∏

j ∈ MP
Kj (4)

In other words, the input window stride must be perfectly divisible by the
product of the pooling size of all max-pooling layers in the network. Choosing
the initial window stride in this manner, will ensure that every pixel in the final
output map is correctly aligned thoughout all shared maps and corresponds to
exactly one input window. Fig. 6 follows the evolution of the window image data
along the various layers of the sample network architecture, showing this pixel
alignment throughout the CNN.

Hybrid Mobile Image Recognition 371

INPUT
12C5

12MP5
32C5

32MP5 128L OUTPUT

T0 = 4
S0 = 32

T1
 = 4

S1
 = 28

T2
 = 2

S2
 = 14

T3
 = 2

S3
 = 10

T4
 = 1

S4
 = 5

T5
 = 1

S5
 = 5

T6
 = 1

S6
 = 5

 W1

W2

W1

 W2

Fig. 6. The CNN layers and their effect on the window pixel space, illustrated in
one dimension for simplicity. Two successive 32×32 windows W 1 and W 2 are shown.
Overlapping pixels at each layer are shaded. Starting with an input layer window stride
T0 = 4, the final output layer results in a packed T6 = 1 window stride, so that each
output map pixel corresponds to a positional shift of 4 pixels in the input windows, a
relationship depicted by the darkened column path traversing all layers.

4 Discrete Inference of CNN Output

The common practice to obtain a final classification from an output value set
as seen in Fig. 5 is to identify which class has a higher output value from the
CNN at each each window (here, each pixel in the output map). While efficient,
results from this procedure are not always ideal because they only take into
account each window separately.

Furthermore, maximum value inference is prone to false positives over the
full image area. Due to their non-exact nature, neural network accuracy can de-
crease by finding patterns in random stimuli which eventually trigger neurons in
the final classification layer. However, such occurrences tend to appear in isola-
tion around other successfully classified image regions. It is therefore possible to
improve the performance of the classifier by taking into account nearby windows.

There exist many statistical approaches in which this can be implemented,
such as (i) influencing the value of each window by a weighted average of neigh-
boring windows, or (ii) boosting output values by the presence of similarly clas-
sified windows in the surrounding area. However, we propose discrete energy
minimization through belief propagation as a more general method to determine
the final classification within a set of CNN output maps. The main reason being
that graphical models are more flexible in adapting to image conditions and can
usually converge on a globally optimal solution.

372 W. Raveane and M.A. González Arrieta

4.1 Pairwise Markov Random Field Model

Images can be treated as an undirected cyclical graph G = (N , E), where nodes
ni ∈ N represent an entity such as a pixel in the image, and graph edges eij ∈ E
represent the relationship between these nodes. If, for simplicity, 4-connectivity
is used to represent the relationship between successive nodes in a graph; then
each node will be connected to four others corresponding to its neighbors above,
below, and to each side of the current element.

The output space of the convolutional neural network can therefore be rep-
resented in this manner through a graph. However, instead of describing pixel
intensity values, each node in the graph represents the classification state of
the corresponding window. This state takes on a discrete value among a set
of class labels c ∈ C ≡ {BG,Logo} corresponding to the classification targets
of the CNN. Thus, each node in the graph can take on one of several discrete
values, expressing the predicted class of the window that the node represents.
Fig. 7 (Left) displays the structure of such a graph.

It can be seen that if nodes represent classification outcomes, there is a strong
relationship between them. The reason is that continuity throughout a map
tends to be preserved over neighboring regions due to strong local correlation in
in input images. This inflicts a Markovian property in the graph nodes where
there is a dependency between successive nodes. Therefore, this graph follows
the same structure as an MRF, and any operations available to this kind of
structure will be likewise applicable to the output map.

4.2 Energy Allocation

To implement energy minimization on an MRF, it is necessary to assign energy
potentials to each node and edge. These energies are usually adapted from ob-
served variables, and in this case, they correspond to the values of the output
maps and combinations thereof. Therefore, MRF optimization over a graph G
can be carried out by minimizing its Markov random energy E, given by:

E(G) = E(N , E) =
∑

ni ∈ N
Θi(ni) +

∑
eij ∈ E

Θij(eij) (5)

Here, Θi(·) corresponds to the singleton energy potential of node ni, andΘij(·)
is a pairwise potential between nodes ni and nj . Starting from the CNN output
map observations, the singleton potentials can be assigned as:

Θi =

⎡
⎢⎢⎢⎣
ω 0

i

ω 1
i
...

ω C
i

⎤
⎥⎥⎥⎦ (6)

ω a
i =

∑
c ∈ C

{
1− (O c

i)
2 if a = c

(O c
i)

2 otherwise
(7)

Hybrid Mobile Image Recognition 373

Where C is the total number of classes in set C (2 in the sample CNN archi-
tecture), and O c

i is the observed CNN value for window ni ∈ N and class c ∈ C.
In this manner, each ωa

i value is an MSE-like metric that measures how far off
from ideal training target values did the CNN classify window ni as. Thus, a
lower potential value will be assigned to the most likely class, while a higher
potential value will be given to other possible classes at this node.

Pairwise potentials can be defined as:

Θij =

⎡
⎢⎢⎢⎣
δ 00

ij δ 01
ij . . . δ 0C

ij

δ 10
ij δ 11

ij δ 1C
ij

...
. . .

δ C0
ij δ C1

ij δ CC
ij

⎤
⎥⎥⎥⎦ (8)

δ ab
ij =| O a

i −O b
j | (9)

Where each value δabij is a straightforward distance metric that measures the
jump in CNN output values when switching from class a to class b between
windows ni and nj. Thus, these potentials will be small if the same class is
assigned to both nodes, and large otherwise. Fig. 7 (Right) shows all energy
assignments per node pair.

n

G

O O

O

n

n

e

e

n1 n2

Q12
LL

Q12
BB

Q12
BL Q12

LB

Q2
B

Q2
LQ1

L

Q1
B

c = Logo

c = BG

Window 1 Window 2

e12

Fig. 7. Left: A subset of the MRF graph G formed by the CNN output space, where
each node ni represents the classification state of a corresponding window analyzed with
the network, whose outputs are implemented into this system as the observed hidden
variables O. Nodes have a 4-connectivity relationship with each other represented by
the edges eij thus forming a grid-like cyclical graph. Right: A detail of the potential
energies assigned to each of two nodes {n1, n2} connected by edge e12. The singleton
potentials Θ a

i correspond to the energy associated with node i if assigned to class a,
and the pairwise potentials Θ ijab are the changes in energy that occur by assigning
class a to node ni and class b to node nj .

Applying Belief Propagation [5] to find the lowest possible energy state of the
graph will now yield an equilibrium of class assignments throughout the image
output space.

374 W. Raveane and M.A. González Arrieta

5 Results

The test application is developed for the Android mobile OS as an OpenGL ES
shader which makes use of the available computing capabilities of the device
GPU. The main logic of the system is placed within a fragment shader running
the CNN per-pixel over a Surface Texture memory object. The test device is
equipped with a quad core 1.3 GHz Cortex-A9 CPU with a 12-core 520 MHz
Tegra 3 GPU. This SoC architecture embeds 1 Gb of DDR2 RAM shared by
both the CPU and GPU.

The test system executes the same CNN architecture described in Fig. 1,
except for the classification layer having 32 output neurons corresponding to
one background label and 31 different logo labels. This network is exectued over
8 simultaneous 144×92 images forming a multi-scale image pyramid. The energy
minimization technique as described in Section 4 is then applied, but over a 3D
graph formed with 6-connectivity between nodes such that each window is also
aware of window classifications at the corresponding larger and smaller scale
steps. Table 1 gives a summary of the results obtained from this setup.

Table 1. Results of tests with several input layer stride T0 configurations, from the
closest packed 4×4 to the non-overlapping 32×32 layouts. A total window count W
at each pyramid level and over the full 8 level pyramid, as well as the window overlap
coverage OC per input map is given for each of the stride selections. An average over
20 test runs for each of these configurations was taken as the execution time for each
of the methods described herein – the traditional per-window execution method, and
our shared map technique. A speedup factor is calculated showing the performance
improvement of our method over the other.

T0 W OC Execution Time (ms) Speedup

Level Pyramid Per-Window Shared Map

4×4 464 3,712 98.4% 29,730 1,047 28.4x
8×8 112 896 93.8% 7,211 387 18.6x

12×12 60 480 85.9% 3,798 311 12.2x
16×16 32 256 75.0% 2,051 240 8.5x
20×20 24 192 60.9% 1,536 252 6.1x
24×24 15 120 43.8% 945 203 4.7x
28×28 15 120 23.4% 949 200 4.7x
32×32 8 64 0.00% 514 171 3.0x

It is of great interest to note the final 32×32 configuration. Regardless of
the fact that there is no overlap at this stride, a 3.0 speedup is still observed
over running the windows individually. This is due to the inherent reduction in
memory bandwidth through the system’s pipelined execution approach, where
the entire image needs to be loaded only once per execution. This contrasts the
traditional approach where loading separate windows into memory at different

Hybrid Mobile Image Recognition 375

times requires each to be individually sliced from the original memory block – a
very expensive operation in the limited memory throughput of mobile devices.

The results of the inference system are more of a qualitative nature, as it
is difficult to objectively establish a ground truth basis for such experiments.
This system aims to localize classified windows, therefore it is subject to an
interpretation of which windows cover enough of the recognition target to be
counted as a true positive. Regardless, Table 2 gives an indicative comparison of
the system against the competing techniques previousy described. Fig. 8 shows
a visual comparison.

Table 2. Results of various inference algorithms for the final classification, describing
the Accuracy (TP+TN/ALL), PPV (TP/TP+FP), and F1 (2TP/2TP+FP+FN) metrics

Algorithm Accuracy PPV F1

Maximum Value 0.942 0.341 0.498
Weighted Average 0.964 0.391 0.430
Neighbor Boosting 0.972 0.489 0.591
Energy Minimization 0.981 0.747 0.694

Fig. 8. Comparison of the final “Logo” classification and localization, applying the
classical maximum value per class extraction vs. our proposed energy minimization
inference method on the two CNN output maps introduced in Figure 5

6 Conclusions

A system for the optimization of convolutional neural networks has been pre-
sented for the particular application of mobile image recognition. Although a
simple logo classification task was used here as a sample application, CNNs al-
low for many other image recognition tasks to be carried out. Most of these
processes would have great impact on end users if implemented as real time mo-
bile applications. Some examples where CNNs have been successfully used and

376 W. Raveane and M.A. González Arrieta

their possible mobile implementations would be (i) text recognition for visually
interactive language translators, (ii) human action recognition for increased user
interactivity in social applications, or even (iii) traffic sign recognition for em-
bedded automotive applications. Any of these applications could be similarly
optimized and discretized by the system presented here.

In addition to the CNN classifier, the MRF model is very flexible as well and
its implementation can be adjusted to domain-specific requirements as needed
by each application. For example, a visual text recognizer might implement pair-
wise energy potentials which are modeled with the probabilistic distribution of
character bigrams or n-grams over a corpus of text, thereby increasing the overall
text recognition accuracy.

Therefore, we believe this to be a general purpose mobile computer vision
framework which can be deployed for many different uses within the restrictions
imposed by embedded hardware, but also encouraging the limitless possibilities
of mobile applications.

Acknowledgements. This work has been carried out by the project Sociedades
Humano-Agente: Inmersión, Adaptación y Simulación. TIN2012-36586-C03-03.
Ministerio de Economa y Competitividad (Spain). Project co-financed with
FEDER funds.

References

1. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural
intelligent system to predict business failure in small-to-medium-size enterprises.
International Journal of Neural Systems 21(04), 277–296 (2011)

2. Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Appli-
cations. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical
Models in Computer Vision, pp. 79–96. Springer, US (2006)

3. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flex-
ible, High Performance Convolutional Neural Networks for Image Classification.
In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence, pp. 1237–1242 (2011)

4. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Convolutional Neu-
ral Network Committees For Handwritten Character Classification. In: 11th Inter-
national Conference on Document Analysis and Recognition, ICDAR (2011)

5. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Belief Propagation for Early Vi-
sion. International Journal of Computer Vision 70(1), 41–54 (2006)

6. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation
via priority scheduling and dynamic pruning. IEEE Transactions onImage Process-
ing 16(11), 2649–2661 (2007)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks. In: Advances in Neural Information Processing
Systems, vol. (25), pp. 1106–1114 (2012)

8. Wang, C., Paragios, N.: Markov Random Fields in Vision Perception: A Survey.
Rapport de recherche RR-7945, INRIA (September 2012)

	Hybrid System for Mobile Image Recognition
through Convolutional Neural Networks
and Discrete Graphical Models

	1 Introduction
	2 Background
	2.1 CNN Layer Types
	2.2 The Sliding Window Method

	3 Optimized Network Execution
	3.1 Shared Window Maps
	3.2 Window Configuration

	4 Discrete Inference of CNN Output
	4.1 Pairwise Markov Random Field Model
	4.2 Energy Allocation

	5 Results
	6 Conclusions
	References

