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Abstract. MOVICAB-IDS has been previously proposed as a hybrid intelligent 
Intrusion Detection System (IDS). This on-going research aims to be one step 
towards adding automatic response to this visualization-based IDS by means of 
clustering techniques. As a sample case of study for the proposed clustering ex-
tension, it has been applied to the identification of different network scans. The 
aim is checking whether clustering and projection techniques could be compati-
ble and consequently applied to a continuous network flow for intrusion detec-
tion. A comprehensive experimental study has been carried out on previously 
generated real-life data sets. Empirical results suggest that projection and clus-
tering techniques could work in unison to enhance MOVICAB-IDS. 

Keywords: Network Intrusion Detection, Computational Intelligence, Explora-
tory Projection Pursuit, Clustering, Automatic Response. 

1 Introduction 

The ever-changing nature of attack technologies and strategies is one of the most 
harmful issues of attacks and intrusions, which increases the difficulty of protecting 
computer systems. For that reason, among others, Intrusion Detection Systems (IDSs) 
[1-3] have become an essential asset in addition to the computer security infrastruc-
ture of most organizations.  

In the context of computer networks, an IDS can roughly be defined as a tool de-
signed to detect suspicious patterns that may be related to a network or system attack. 
Intrusion Detection (ID) is therefore a field that focuses on the identification of at-
tempted or ongoing attacks on a computer system (Host IDS - HIDS) or network 
(Network IDS - NIDS). 

MOVICAB-IDS (MObile VIsualisation Connectionist Agent-Based IDS) has been 
proposed [4, 5] as a novel IDS comprising a Hybrid Artificial Intelligent System 
(HAIS). It monitors the network activity to identify intrusive events. This hybrid 
intelligent IDS combines different AI paradigms to visualise network traffic for ID at 

mailto:ahcosio@ubu.es


packet level. Its main goal is to provide security personnel with an intuitive and in-
formative visualization of network traffic to ease intrusion detection. The proposed 
MOVICAB-IDS applies an unsupervised neural projection model to extract interest-
ing traffic dataset projections and to display them through a mobile visualisation in-
terface 

A port scan may be defined as a series of messages sent to different port numbers 
to gain information on their activity status. These messages can be sent by an external 
agent attempting to access a host to find out more about the network services the host 
is providing. A port scan provides information on where to probe for weaknesses, for 
which reason scanning generally precedes any further intrusive activity. This work 
focuses on the identification of network scans, in which the same port is the target for 
a number of computers. A network scan is one of the most common techniques used 
to identify services that might then be accessed without permission [6]. Because of 
that, the proposed extension of MOVICAB-IDS is faced up with this kind of simple 
but usual situations.  

Clustering is the unsupervised classification of patterns (observations, data items, 
or feature vectors) into groups (clusters). The clustering problem has been addressed 
in many contexts and by researchers in many disciplines; this reflects its broad appeal 
and usefulness as one of the steps in exploratory data analysis. 

The remaining sections of this study are structured as follows: section 2 introduces 
the proposed framework and applied models and techniques. Experimental results are 
presented in section 3 while the conclusions of this study are discussed in section 4, as 
well as future work. 

2 On the Network Data Visualization and Analysis 

The general framework for the proposed projection-based intrusion detection taking 
part in MOVICAB-IDS is depicted in Fig. 1.  
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Fig. 1. MOVICAB-IDS general architecture. 

This framework could be described as follows: 
 packets traveling through the network are intercepted by a capture device;  
 traffic is coded by a set of features spanning a multidimensional vector space;  
 a projection model operates on feature vectors and yields as output a suitable 

representation of the network traffic. The projection model clearly is the actual 



core of the overall IDS. That module is designed to yield an effective and intuitive 
representation of network traffic, thus providing a powerful tool for the security 
staff to visualize network traffic.  
Present work focuses on the upgrading of the previous framework, to incorporate 

now new facilities as depicted in Fig. 2. It is now required and enhanced visualization 
by combining projection and clustering results to ease traffic by personnel. By doing 
so, further information on the nature of the travelling packets could be compressed in 
the visualization. On the other hand automatic response is an additional feature of 
some IDSs that could be incorporated in MOVICAB-IDS. Additionally to some clas-
sifiers for the automatic detection, clustering is proposed for those cases in which 
classifiers do usually fail (0-day attacks for example). 
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Fig. 2. Clustering extension of MOVICAB-IDS. 

The following subsections describe the different techniques that take part in the pro-
posed solution. For the dimensionality reduction as a projection method, Cooperative 
Maximum Likelihood Hebbian Learning [7] is explained as it proved to be the most 
informative one among many considered [5]. It is described in section 2.1. On the 
other hand, to test clustering performance some of the standard methods have been 
tested, namely: k-means and agglomerative clustering. They are described in sections 
2.2 and 2.3 respectively. 

2.1 Cooperative Maximum Likelihood Hebbian Learning 

The standard statistical method of Exploratory Projection Pursuit (EPP) [8] provides a 
linear projection of a data set, but it projects the data onto a set of basis vectors which 
best reveal the interesting structure in data; interestingness is usually defined in terms 
of how far the distribution is from the Gaussian distribution.  

One neural implementation of EPP is Maximum Likelihood Hebbian Learning 
(MLHL) [9], [10]. It identifies interestingness by maximising the probability of the 
residuals under specific probability density functions which are non-Gaussian. 



One extended version of this model is the Cooperative Maximum Likelihood Heb-
bian Learning (CMLHL) [7] model. CMLHL is based on MLHL [9], [10] adding 
lateral connections [7], [11] which have been derived from the Rectified Gaussian 
Distribution [12]. The resultant net can find the independent factors of a data set but 
does so in a way that captures some type of global ordering in the data set. 

Considering an N-dimensional input vector ( x ), and an M-dimensional output 

vector ( y ), with being the weight (linking inputijW j  to output i ), then CMLHL 

can be expressed [7], [11] as:  
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4. Weight change: 
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Where:   is the learning rate,  is the "strength" of the lateral connections,  the 

bias parameter, 

b
p a parameter related to the energy function [9], [10], [7] and  a 

symmetric matrix used to modify the response to the data [

A
7]. The effect of this ma-

trix is based on the relation between the distances separating the output neurons. 

2.2 Clustering 

Cluster analysis [13] is the organization of a collection of data items or patterns (usu-
ally represented as a vector of measurements, or a point in a multidimensional space) 
into clusters based on similarity. Hence, patterns within a valid cluster are more simi-
lar to each other than they are to a pattern belonging to a different cluster. This notion 
of similarity can be expressed in very different ways. 

Pattern proximity is usually measured by a distance function defined on pairs of 
patterns. A variety of distance measures are in use in the various communities [14], 
[15], [16]. A simple distance measure such as the Euclidean distance is often used to 
reflect dissimilarity between two patterns, whereas other similarity measures can be 
used to characterize the conceptual similarity between patterns [17], it depends on the 
type of data we want to analyse. Furthermore, the clustering output can be hard (allo-
cates each pattern to a single cluster) or fuzzy (where each pattern has a variable de-
gree of membership in each of the output clusters). A fuzzy clustering can be con-
verted to a hard clustering by assigning each pattern to the cluster with the largest 
measure of membership. 



There are different approaches to clustering data [13], [15], but given the high 
number and the strong diversity of the existent clustering methods, we have focused 
on the ones shown in Figure 3 based on the suggestions in [13]. 

 

Fig. 3. Clustering methods used on this paper: one hierarchical (Agglomerative) and other 
partitional method (K-means). 

Hierarchical methods generally fall into two types: 
1. Agglomerative: an agglomerative approach begins with each pattern in a distinct 

cluster, and successively joins clusters together until a stopping criterion is satis-
fied or until a single cluster is formed.  

2. Divisive: a divisive method begins with all patterns in a single cluster and performs 
splitting until a stopping criterion is met or every pattern is in a different cluster. 
This method is neither applied nor discussed in this paper. 

Partitional clustering aims to directly obtain a single partition of the data instead of a 
clustering structure, such as the dendrogram produced by a hierarchical technique.  
There is no clustering technique that is generally applicable in the clustering of the 
different structures presented in multidimensional data sets. Humans can competi-
tively and automatically cluster data in two dimensions, but most real problems in-
volve clustering in a higher dimensional space, that is the case of network security 
data sets. It is difficult to obtain an intuitive interpretation of data in those spaces.  

Since similarity is fundamental to the definition of a cluster, a measure of the simi-
larity is essential to most clustering methods and it must be chosen carefully. We will 
focus on the well-known distance measures used for patterns whose features are all 
continuous: 

Table 1. Some of the well-known distance measures that are usually employed in clustering 
methods. 

Metric Description 
Euclidean Euclidean distance:  
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Where:  
 xaj , xbj values taken by the jth variable for the objects a and b, re-

spectively in the multi-variable space. 
 p number of dimensions. 

 



sEuclidean Standardized Euclidean distance. Each coordinate difference between rows 
in X is scaled by dividing by the corresponding element of the standard 
deviation. 
 

Cityblock City block metric also known as Manhattan distance: 
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Where:  
 xaj , xbj values taken by the jth variable for the objects a and b, re-

spectively in the multi-variable space. 
 p number of dimensions. 

 
Minkowski Minkowski distance: 
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 xaj , xbj values taken by the jth variable for the objects a and b, re-
spectively in the multi-variable space. 

 p number of dimensions. 
 λ=1 Cityblock distance. 
 λ=2 Euclidean distance. 

 
Chebychev Chebychev distance (maximum coordinate difference). 

 
Mahalanobis Mahalanobis distance, using the sample covariance of X: 
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 xa , xb values of the objects a and b, respectively in the multi-
variable space. 

 S covariance matrix. 
 

Cosine One minus the cosine of the included angle between points (treated as 
vectors). 
 

Correlation One minus the sample correlation between points (treated as sequences of 
values). 

 
The most popular metric for continuous features is the Euclidean distance which is 

a special case of the Minkowski metric (p =2). It works well when a data set has com-
pact or isolated clusters [18]. The problem of using directly the Minkowski metrics is 
the tendency of the largest-scaled feature to dominate the others. Solutions to this 
problem include normalization of the continuous features (sEuclidean distance). 

Linear correlation among features can also distort distance measures, it can be re-
lieved by using the squared Mahalanobis distance that assigns different weights to 
different features based on their variances and pairwise linear correlations. The regu-
larized Mahalanobis distance was used in [18] to extract hyperellipsoidal clusters. 



2.2.1  k-means 

K-means is the simplest and most commonly used partitional algorithm employing a 
squared error criterion [19], but it also can be used with other distance measures. It 
starts with a random initial partition of k clusters (centroids: is the point to which the 
sum of distances from all objects in that cluster is minimized) and assign the patterns 
to clusters based on the similarity between the pattern and the centroid until a conver-
gence criterion is met (e.g. minimize the sum of point-to-centroid distances, summed 
over all k clusters). The k-means algorithm is popular because it is easy to implement, 
and its time complexity is O(n), where n is the number of patterns to cluster. The 
main problem of this algorithm is that it is sensitive to the selection of the initial parti-
tion and may conclude with a local minimum (not a global minimum) depending on 
the initial partition. 

This study uses four different distance measures, the method have been tested on 
all of them and the best result can be seen on the results section. 

Table 2. Distance measures employed for K-means in this study. 

Metric Description 
sqEuclidean Squared Euclidean distance. Each centroid is the mean of the points in that 

cluster. 
 

Cityblock Sum of absolute differences. Each centroid is the component-wise median of 
the points in that cluster. 
 

Cosine One minus the cosine of the included angle between points (treated as vec-
tors). Each centroid is the mean of the points in that cluster, after normalizing 
those points to unit Euclidean length. 
 

Correlation One minus the sample correlation between points (treated as sequences of 
values). Each centroid is the component-wise mean of the points in that 
cluster, after centering and normalizing those points to zero mean and unit 
standard deviation. 

2.2.2  Agglomerative 

A hierarchical algorithm produces a dendrogram representing the nested grouping of 
patterns and similarity levels at which groupings change. The dendrogram can be 
broken at different levels to produce different clusterings of the data. The hierarchical 
agglomerative clustering algorithm has three phases: 
1. First phase: compute the proximity matrix containing the distance between each 

pair of patterns. Treat each pattern as a cluster. 
2. Second phase: find the most similar pair of clusters using the proximity matrix. 

Merge these two clusters into one cluster. Update the proximity matrix to reflect 
this merge operation. 

3. Third phase: if all patterns are in one cluster, stop. Otherwise, go to step 2. 



Based on the way the proximity matrix is updated in the second phase, a variety of 
linking methods can be designed (this study has been developed with the linking 
methods shown in Table 3). 

Table 3. Linkage functions employed for agglomerative clustering in this study. 

Method Description 
Single Shortest distance. 
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Complete Furthest distance. 

  )},(),,(max{},{,' jkdikdjikd   

 
Ward Inner squared distance (minimum variance algorithm), appropriate for Euclid-

ean distances only. 
 

Median Weighted center of mass distance (WPGMC: Weighted Pair Group Method 
with Centroid Averaging), appropriate for Euclidean distances only. 
 

Average Unweighted average distance (UPGMA: Unweighted Pair Group Method with 
Arithmetic Averaging). 
 

Centroid Centroid distance (UPGMC: Unweighted Pair Group Method with Centroid 
Averaging), appropriate for Euclidean distances only. 
 

Weighted Weighted average distance (WPGMA: Weighted Pair Group Method with 
Arithmetic Averaging). 

3  Experimental Results 

This section describes the dataset used for evaluating the proposed clustering methods 
and how they were generated. Then, the obtained results are also detailed. 

3.1   Datasets 

Five features were extracted from packet headers to form the data set:  
 Timestamp: the time difference in relation to the first captured packet. Sequential 

integer nonlinear [0:262198]. 
 Source Port: the port of the source host from where the packet is sent. Discrete 

integer values {53, ..., 5353}. 
 Destination Port: the port of the destination host to where the packet is sent. Dis-

crete integer values {53, ..., 36546}. 
 Size: total packet size (in Bytes). Discrete integer values {60, ..., 355}. 
 Protocol ID: we have used values between 1 and 35 to identify the packet proto-

col. Discrete integer values {65, ..., 112}. 



As an initial experiment to enhance MOVICAB-IDS detection capabilities, cluster-
ing techniques have been applied to a simple dataset containing three network scans 
aimed at port numbers 161, 162 and 3750. Additionally, it contains a great back-
ground of network traffic that may be considered as “normal”. 

As previously used in other experiments, further details on the data can be found in 
[4, 5]. 

3.2   Results 

The best results obtained by applying the previously introduced techniques to the 
described datasets are shown in this section. The results are projected through 
CMLHL and further information about the clustering results is added to the projec-
tions, mainly by the glyph metaphor (colors and symbols). All the projections com-
prise a legend that states the color and symbol used to depict each packet, according 
to the original category: normal (Cat. 1), scan #1 (Cat. 2), scan #2 (Cat. 3) or scan #3 
(Cat. 4), and the assigned cluster (Clust.). 

Initially, the well-known k-means algorithm has been applied several times to the 
data by combining the different algorithm options. Best results are shown in Fig. 4. 

 

 

4.a k-means on projected data (k=6 and 
sqEuclidean distance). 

4.b k-means on original data (k=6 and 
sqEuclidean distance). 

Fig. 4. Best clustering result through k-means under the frame of MOVICAB-IDS. 

From Fig. 4 it can be seen that all the packets in each one of the scans (represented 
as non-horizontal small bars) are clustered in the same group. However, some other 
packets, regarded as normal, have been also included in those clusters. Apart from 
these two projections, some more experiments have been conducted, whose details 
(performance, true positive and false positive rates, values of k parameter, etc.) can be 
seen in Table 4. 



Table 4. K-means experiments with different conditions. 

Data k Distance 
criteria 

False 
Positive 

False 
Negative 

Replicates/
Iterations 

Sum of Dis-
tances 

Projected 2 sqEuclidean 48,0186 % 0 % 5/4 1705,77 

Original 2 sqEuclidean 46.6200 % 2.0979 % 5/5 9,75E+11 

Projected 4 sqEuclidean 22,9604 % 0 % 5/8 643,352 

Original 4 sqEuclidean 69,1143 % 0 % 5/8 4,38E+11 

Projected 6 sqEuclidean 22,9604 % 0 % 5/8 301,218 

Original 6 sqEuclidean 45,4545 % 0 % 5/24 2,91E+11 

Projected 2 Cityblock 46,2704 % 0 % 5/7 1380,1 

Original 2 Cityblock 49.6503 % 2.0979 % 5/9 3,50E+07 

Projected 4 Cityblock 22,9604 % 0 % 5/8 710,545 

Original 4 Cityblock 72,0249 % 0 % 5/15 2,15E+07 

Projected 6 Cityblock 22,9604 % 0 % 5/14 526,885 

Original 6 Cityblock 48,0187 % 0 % 5/10 1,41E+07 

Projected 2 Cosine 47,9021 % 0 % 5/3 316,193 

Original 2 Cosine 78,5548 % 0 % 5/5 15,4214 

Projected 4 Cosine 22,9604 % 0 % 5/7 86,2315 

Original 4 Cosine 46,8531 % 0 % 5/12 3,79324 

Projected 6 Cosine 22,9604 % 0 % 5/5 35,9083 

Original 6 Cosine 47,2028 % 0 % 5/24 2,51022 

Projected 2 Correlation 52,0979 % 0 % 5/3 273,91 

Original 2 Correlation 80,0699 % 0 % 5/6 20,6143 

Projected 4 Correlation 51,8648 % 0 % 5/7 46,7877 

Original 4 Correlation 47,2028 % 0 % 5/16 5,53442 

Projected 6 Correlation 27,4876 % 0,3497 % 5/12 16,9416 

Original 6 Correlation 47,3193 % 0 % 5/29 3,69279 

The setting of the k parameter is one of the key points in applying k-means. For 
this experimental study, different values of k parameter were tested; the best of them 
(in terms of false positive and negative rates) are the ones in Table 4. One of the 
harmful points in computer security, in general terms, and intrusion detection, in 
particular, is the false negative rate (FNR). It can be easily seen in Table 4 that only in 
few of the experiments the FNR is not zero. For those cases, it keeps as a very low 
value as the number of packets in the network scans is much lower than those from 
normal traffic. On the other hand, there is not a clear difference (in terms of clustering 
error) between the experiments on original and projected data, although for a certain 
number of clusters, the results on projected data are better. Additionally, the number 
of needed iterations is lower for the projected data, as the dimensionality of the data 



has been previously reduced through CMLHL. By looking at the sum of distances 
(sum of point-to-centroid distances, summed over all k clusters), a clear conclusion 
can not be drawn as it depends on the distance method.    

Given that k-means did not achieved satisfactory results on projected/original data, 
agglomerative clustering has been also used. Comprehensive details of the run ex-
periments with no clustering error are shown in Table 5. Some of the results, with 
different values for distance criteria, linkage and number of clusters, are depicted in 
Fig. 5.  

Table 5. Experimental setting of the agglomerative method. 

Data Distance Linkage Cutoff Range Cluster 

Projected Euclidean Single 0,37 0,307 - 0,3803 9 

Projected sEuclidean Single 0,37 0,3087 - 0,3824 9 

Projected Cityblock Single 0,42 0,4125 - 0,443 9 

Projected Minkowski Single 0,38 0,307 - 0,3803 9 

Projected Chebychev Single 0,35 0,2902 - 0,366 9 

Projected Mahalanobis Single 0,35 0,3084 - 0,3824 9 

Original sEuclidean Single 1,80 1,533 - 1,813 5 

Original sEuclidean Complete 4,62 4,62 - 4,628 4 

Original sEuclidean Average 3,00 2,696 -3,271 4 

Original sEuclidean Weighted 3,20 3 - 3,261 4 

Original Mahalanobis Single 2,40 2,289 - 2,438 4 

Original Mahalanobis Complete 6,00 5,35 - 6,553 3 

Original Mahalanobis Average 4,00 3,141 - 4,624 3 

Original Mahalanobis Weighted 4,00 3,504 - 4,536 3 

As previously stated, Table 5 contains those results whit no clustering error. It can 
be seen that in the case of projected data, the minimum number of clusters without 
error is 9, while in the case of original data, it could be lowered to 3 with appropriate 
distance method. From the intrusion detection point of view, a higher number of clus-
ters does not mean a higher error rate because more than one cluster can be assigned 
to both normal and attack traffic. 

In the case of original data, the sEuclidean and Mahalanobis distances are minimiz-
ing the number of clusters without error. On the contrary, some other distances are 
applicable in the case of projected data with same performance regarding clustering 
error. 

The results of one of the experiments from Table 5 are depicted on Fig. 5: traffic 
visualization and the dendrogram associated to agglomerative clustering. It has been 
selected to show how clustering results improve the visualization capabilities of 
MOVICAB-IDS. The following sample has been chosen: Euclidean distance, linkage 
single, cutoff: 0.37, 9 groups without error. It is shown that clusters 1, 4 and 6 are 
associated to the three network scans and the remaining ones are associated to normal 
traffic. 



 

 

5.a Agglomerative clustering on projected 
data. 

5.b Corresponding dendrogram. 

Fig. 5. Best results of agglomerative clustering under the frame of MOVICAB-IDS. 

4 Conclusions and Future Work 

This paper has proposed the use of clustering technics to perform ID on numerical 
traffic data sets. Experimental results show that some of the applied clustering meth-
ods, mainly hierarchical ones, perform a good clustering in the analysed data, accord-
ing to false positive and negative rates. It can then be concluded that the applied 
methods are able to properly detect new attacks when projected together with normal 
traffic. As an unsupervised process is proposed as a whole, the projections ease the 
task of labelling each one of the clusters as normal or attack traffic. 

Future work will be based on the analysis of some other attack situations and the 
broadening of considered clustering methods. Moreover, new distance metrics would 
be developed to improve clustering results on projected data. By doing so, the auto-
matic detection facilities of MOVICAB-IDS would be greatly improved. 
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