
Evaluation of Novel Soft Computing Methods for

the Prediction of the Dental Milling Time-error

Parameter

Pavel Krömer1,2, Tomáš Novosád1, Václav Snášel1,2, Vicente Vera4, Beatriz
Hernando4, Laura García-Hernández7, Héctor Quintián3, Emilio Corchado2,3,

Raquel Redondo5, Javier Sedano6, and Alvaro E. García4

1 Dept. of Computer Science, VŠB-Technical University of Ostrava, Czech Republic
2 IT4Innovations, Ostrava, Czech Republic

pavel.kromer,tomas.novosad,vaclav.snasel@vsb.cz
3 Departamento de Informática y Automática, Universidad de Salamanca, Spain.

escorchado@usal.es
4 Facultad de Odontología, UCM, Madrid, Spain. vicentevera,

aegarcia@odon.ucm.es
5 Department of Civil Engineering, University of Burgos, Burgos, Spain.

rredondo@ubu.es
6 Dept. of AI & Applied Electronics, Castilla y León Technological Institute, Burgos,

Spain. javier.sedano@itcl.es
7 Area of Project Engineering, University of Cordoba, Spain ir1gahel@uco.es

Abstract. This multidisciplinary study presents the application of two
well known soft computing methods – flexible neural trees, and evolu-
tionary fuzzy rules – for the prediction of the error parameter between
real dental milling time and forecast given by the dental milling machine.
In this study a real data set obtained by a dynamic machining center
with five axes simultaneously is analyzed to empirically test the novel
system in order to optimize the time error.
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1 Introduction

Accurate scheduling and planning becomes increasingly important part of mod-
ern industrial processes. To optimize the manufacturing of products and schedule
the utilization of devices, the product manufacturing time has to be known in
advance. However, the predictions given by traditional methods and tools are of-
ten less accurate. Precise prediction of product manufacturing time is important
for industrial production planning in order to meet, industrial, technological,
and economical objectives [2,16]. One of the main goals of a production pro-
cess is to deliver products on time and utilize the resources at maximum during
production cycles. The production time estimate provided either by production
models (i.e. by auxiliary software) or human experts are often less accurate than



desirable [2]. Soft computing techniques can be used for flexible and detailed
modelling of production processes [5]. The area of soft computing represents a
set of various technologies involving non-linear dynamics, computational intel-
ligence, ideas drawn from physics, physicology and several other computational
frameworks. It investigates, simulates and analyzes very complex issues and phe-
nomena in order to solve real-world problems: such as the failures detection in
dental milling process, which requires a multidisciplinary approach [13].

In this study, a real data set obtained by a dynamic machining center with
five axes simultaneously is analyzed by means of two soft computing techniques
to empirically test the system in order to optimize the time error. The rest of
this paper is organized as follows. Section 2 and section 3 present the back-
ground on the methods used to predict dental time-error. Section 4 introduces
the experimental application and in section 5 conclusions are drawn .

2 Flexible neural tree

Flexible neural tree (FNT) [3] is a hierarchical neural network, which is automat-
ically created in order to solve given problem. Its structure is usually determined
using some adaptive mechanism and it is intended to adapt to the problem and
data under investigation [11,10,4]. Due to this property of the FNTs, it is not nec-
essary to setup some generic static network structure not related to the problem
domain beforehand.

A general and enhanced FNT model can be used for problem solving. Based
on the predefined instruction/operator sets, a FNT model can be created and
evolved. In this approach, over-layer connections, different activation functions
for different nodes and input variables selection are allowed. The hierarchical
structure could be evolved by using genetic programming. The fine tuning of the
parameters encoded in the structure could be accomplished by using parameter
optimization algorithms. The FNT evolution used in this study combines both
approaches. Starting with random structures and corresponding parameters, it
first tries to improve the structure and then as soon as an improved structure
is found, it fine tunes its parameters. It then goes back to improving the struc-
ture again and, provided it finds a better structure, it again fine tunes the rules’
parameters. This loop continues until a satisfactory solution is found or a time
limit is reached. A tree-structural based encoding method with specific instruc-
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Fig. 1: A flexible neuron operator (instructor)



tion set is selected for representing a FNT model in this research. The reason
for choosing the representation is that the tree can be created and evolved us-
ing the existing or modified tree-structure-based approaches. The function set F
and terminal instruction set T that can be used to build a FNT model can be
described as follows:

S = F ∪ T = {+2,+3, . . . ,+N} ∪ {x1, x2, . . . , xn} (1)

where +i (i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i argu-
ments. Input variables x1, x2, . . . , xn are leaf nodes’ instructions and taking no
argument each. The output of a non-leaf node is calculated as a flexible neuron
model. From this point of view, the instruction +i is also called a flexible neuron
operator (instructor) with i inputs. A schematic view of the flexible neuron in-
structor is shown in fig. 1. In the creation process of neural tree, if a non-terminal
instruction, i.e., +i is selected, i real values are randomly generated and used for
representing the connection strength between the node +i and its children. In
addition, two adjustable parameters ai and bi are randomly created as flexible
activation function parameters. Activation function can vary according to given
task. In this work we use following classical Gaussian activation function:

f(ai, bi, x) = e
−(

x−ai

bi
)2

(2)

The output of a flexible neuron +n can be calculated as follows. The total exci-
tation of the +n is

netn =

n
∑

j=1

wj × xj (3)

where xj (j = 1, 2, . . . , n) are the inputs to node +n. The output of the node
+n is then calculated by

outn = f(an, bn, netn) = e−(netn−an

bn
)2 (4)

A typical evolved flexible neural tree model is shown in fig. 2. The overall output
of a flexible neural tree can be computed from left to right by depth-first method,
recursively.

The fitness function maps the FNT to a scalar, real-valued fitness values
that reflect the FNT’s performances on a given task. Firstly the fitness func-
tions should be seen as error measures, i.e. mean square error (MSE) or root
mean square error (RMSE). A secondary non-user-defined objective for which
algorithm always optimizes FNTs is FNT size as measured by number of nodes.
Among FNTs with equal fitness smaller ones are always preferred. MSE and
RMSE are given by:

MSE(i) =
1

P

P
∑

j=1

(yj1 − y
j
2)

2, RMSE(i) =
√

MSE(i) (5)
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Fig. 2: A typical representation of neural tree with function instruction set F =
{+2,+3,+4,+5,+6}, and terminal instruction set T = {x1, x2, x3}

where P is the total number of samples, yj1 and y
j
2 are the actual time-series

and the FNT model output of j-th sample. MSE(i) and RMSE(i) denotes the
fitness value of i-th individual.

Finding an optimal or near-optimal flexible neural tree can be accomplished
by various evolutionary and bio-inspired algorithms [11,10,4]. The general learn-
ing procedure for constructing the FNT model can be described in high level as
follows [3]:

1. Set the initial values of parameters used in the GA algorithms. Set the elitist
program as NULL and its fitness value as a biggest positive real number of
the computer at hand. Create a random initial population (flexible neural
trees and their corresponding parameters)

2. Structure optimization by genetic algorithm, in which the fitness function is
calculated by MSE or RMSE

3. If a better structure is found and no better structure is found for certain
number of generations, then go to step (4), otherwise go to step (2)

4. Parameter optimization by genetic algorithms. In this stage, the tree struc-
ture or architecture of flexible neural tree model is fixed, and it is the best
tree taken from the sorted population of trees. All of the parameters used in
the best tree formulated a parameter vector to be optimized by local search

5. If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step (6); otherwise go
to step (4);

6. If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step (2).

Evolutionary methods [1] are in this study used for FNT structure opti-
mization as well as for activation function parameters and tree nodes weights
optimization. The selection, crossover and mutation operators used are the same
as those of standard genetic programming [1]. A genetic algorithm starts with
selection of two parents from current population. The product of crossover oper-
ator can be one or more offspring - two in this study. The mutation of offspring



is performed at the last step of genetic algorithm. After these three steps we
have new offspring which is placed into a newly created population. The process
is repeated until desired new population is built. As soon as the new popula-
tion is built, the new population is evaluated and sorted according to the fitness
function.

Selection is in the FNT evolution implemented using the weighted roulette
wheel algorithm and the tree structure crossover is implemented as an exchange
of randomly selected subtrees of parent chromosomes. The crossover of node
weights and activation function parameters is done in a similar way as in previous
studies applying genetic algorithms to neural network training [6]. A variety of
FNT mutation types were used:

1. Changing one terminal node: randomly select one terminal node in the neural
tree and replace it with another terminal node.

2. Changing one function node: randomly select one function node and replace
it with a newly generated subtree.

3. Growing: select a random function node in hidden layer of the neural tree
and add newly generated subtree as a new child.

4. Pruning: randomly select a node in the neural tree and delete it in the case
the parent node has more than two child nodes.

The mutation of tree weights and activation function parameters is the same as
in the genetic algorithms for artificial neural networks [6].

3 Fuzzy rules evolved by genetic programming

Fuzzy rules (FR) [7,8,15] inspired by the area of fuzzy information retrieval
(IR) [9] and evolved by genetic programming have been shown to achieve inter-
esting results in the area of data mining and pattern analysis.

The fuzzy rules use similar data structures, basic concepts, and operations
as the fuzzy information retrieval but they can be used for the analysis (i.e.
classification, prediction) of general data. A fuzzy rule has the form of a weighted
symbolic expression roughly corresponding to an extended Boolean query in the
fuzzy IR analogy. The rule consists of weighted feature (attribute) names and
weighted aggregation operators. The evaluation of such an expression assigns
a real value from the range [0, 1] to each data record. Such a valuation can be
interpreted as an ordering or a fuzzy set over the data records. The fuzzy rule is a
symbolic expression that can be parsed into a tree structure. The tree structure
consists of nodes and leaves (i.e. terminal nodes). An example of fuzzy rule is
give below:

feature1:0.5 and:0.4 (feature2[1]:0.3 or:0.1 ([1]:0.1 and:0.2 [2]:0.3))

In the fuzzy rule syntax can be seen three types of nodes: the feature node is
defined by feature name and its weight (feature1:0.5 ) and represents a require-
ment on current value of a feature, past feature node is defined by feature name,
index of previous record, and weight (feature2[1]:0.3 ) and it is requirement on



previous value of a feature. Finally, the past output node is defined by the index
of previous output and weight ([1]:0.5 ) and represents a requirement on previous
value of the predicted output variable. Clearly, such a fuzzy rule can be used for
the analysis of both, data sets consisting of independent records and time series.

The fuzzy rules are evaluated using the formulas and equations from the
area of fuzzy IR and fuzzy sets (see e.g. [7,8,15]). The terminal node weights are
interpreted as threshold for data feature values and operator nodes are mapped
to fuzzy set operators. The fuzzy rule predicting certain value for a given data
set is found using standard genetic programming that evolves a population of
tree representations of the rules in a supervised manner. The whole procedure
is very similar to the evolution of the FNT structure described in eq. (5) but it
differs in the choice of the fitness function which is taken from the area of fuzzy
IR. The correctness of search results in IR can be evaluated using the measures
precision P and recall R. Precision corresponds to the probability of retrieved
document to be relevant and recall can be seen as the probability of retrieving a
relevant document. Precision and recall in the extended Boolean IR model can
be defined using the Σ−count ‖A‖ [19]:

ρ(X|Y ) =

{

‖X∩Y ‖
‖Y ‖ ‖Y ‖ 6= 0

1 ‖Y ‖ = 0
, P = ρ(REL|RET ), R = ρ(RET |REL) (6)

where REL stands for the fuzzy set of all relevant documents, RET for the
fuzzy set of all retrieved documents, and ‖A‖ is the Σ−count, i.e. the sum of
the values of characteristic function µA for all members of the fuzzy set ‖A‖ =
∑

x∈A µA(x) [19]. The F-score F is among the most used scalar combinations of
P and R:

F =
(1 + β2)PR

β2P +R
(7)

For the evolution of fuzzy rules [7,8,15] we map the prediction given for training
data set by the fuzzy rule to RET and the desired values to REL. F corresponds
to the similarity of two fuzzy sets and a fuzzy rule with high F provides good
approximation of the output value.

4 Dental miling time-error prediction in industry

FNTs and FRs were used for the estimation of the time-error parameter in a real
dental milling process. The data was gathered by means of a Machining Milling
Center of HERMLE type-C 20 U (iTNC 530), with swivelling rotary (280 mm),
with a control system using high precision drills and bits.

The models were trained using an initial data set of 98 samples obtained by
the dental scanner in the manufacturing of dental pieces with different tool types
(plane, toric, spherical and drill). The data set contained records consisting of
8 input variables (Tool, Radius, Revolutions, Feed rate X, Y and Z, Thickness,
Initial Temperature) and 1 output variable (Time Error for manufacturing) as



shown in table 1. Time error for manufacturing is the difference between the
time estimated by the machine itself and real production time. Negative values
indicate that real time exceeds estimated time. The goal of this study was to

Table 1: Description of variables in the data set.

Variable (Units) Range of values

Type of tool Plane, toric, spherical and drill
Radius (mm.) 0.25 to 1.5
Revolutions per minute (RPM) 7,500 to 38,000
Feed rate X (mm. by minute) 0 to 3,000
Feed rate Y (mm. by minute) 0 to 3,000
Feed rate Z (mm. by minute) 50 to 2,000
Thickness (mm.) 10 to 18
Temperature (◦C) 24.1 to 31
Real time of work (s) 6 to 1,794
Time errors for manufacturing (s) -28 to -255

evaluate the ability of evolutionary evolved FNTs and FRs to predict the dental
milling time-error from the data. The parameters used for the evolution of the
FNT and FR are shown in table 2. They were selected on the basis of initial
experiments and past experience with the methods.

Because the number of records in the data set was small, a 10-fold cross-
validation schema was selected. The final model is obtained using the full data
set. Next, several different indexes were used to validate the models [18,17] such
as the percentage representation of the estimated model, the loss (error) function
(V) and the generalization error value.

The percentage representation of the estimated model was calculated as the
normalised mean error for the prediction (FIT1, FIT) using the validation data
set and full data set respectively. The loss function V is the numeric value of
the MSE that was computed using the training data set, the generalisation error
value is the numeric value of the normalised sum of square errors (NSSE) that
was computed using the test data set [12,14].

The results of both methods are shown in table 3. The presented values are
averages after 10 independent runs for each of the 10 folds. Clearly, the FNT
method was significantly better than FRs which in turn delivered results similar
to those by the previously used soft computing methods [16]. Visual illustration
of the time-error prediction by FNT and FR for first fold is shown in fig. 3
and fig. 4 respectively. Note that both methods are stochastic and the results
may vary for independent runs.

FNT and FR have shown a good ability to learn the relations hidden in
the data as shown in fig. 3a and fig. 4a and indicated by high FIT and low
V in table 3 [16]. The good generalization ability of the methods is illustrated
in fig. 3b and fig. 4b and supported by low NSSE and high FIT1 in fig. 3b.
The results obtained by the FNT model are best-so-far for the dental milling
time-error parameter prediction.



Table 2: FNT and FR evolution parameters.

Method Parameters

FNT pop. size 100, crossover proba-
bility PC 0.8, mutation proba-
bility PM 0.2, limiting number
of 10 generations, fitness func-
tion RMSE, Gaussian activation
function with a, b, and weights
from the range [0, 1]

FR pop. size 100, crossover probabil-
ity PC 0.8, mutation probabil-
ity PM 0.2, limiting number of
1000 generations, no past feature
nodes and no past output nodes
allowed, fitness function F-Score
with β = 1

Table 3: Dental milling time-error
prediction indexes.

Method FIT1[%] FIT[%] V NSSE

FNT 95.89 92.02 0.0041 0.0150
FR 86.80 86.75 0.0079 0.0888
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Fig. 3: Example of visual results of training and prediction by FNT (fold 1).
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Fig. 4: Example of visual results of training and prediction by FRs (fold 1).

5 Conclusions

This study presents the comparison of some performance indexes of two well
known soft computing methods for the prediction of the dental milling time-



error parameter. Both soft computing models were trained on a real-world data
set describing the production of a dental milling machine and their ability to
adapt to the data was compared. To provide a good analysis of the performance
of the methods, a 10-fold cross-validation was performed. The results of the cross-
validation showed that the FNT managed to find models with significantly better
average accuracy in terms of FIT, FIT1, V, and NSSE. The FNTs will be further
studied as predictors of the dental milling time-error and other parameters such
as accuracy.
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