
Data integration in Cloud Computing environment

Fernando De la Prieta
1
, Sara Rodríguez

1
, Javier Bajo

1
, Vivian F. Lopez Batista

1

1
University of Salamanca, Salamanca, Spain

2
Technical Univesity of Madrid, Madrid, Spain

{fer, srg, vivian}@usal.es, jbajo@fi.upm.es

Abstract

Information processed by applications is usually stored in

databases or filing systems, allowing each system to use

its own interface. As the files are not stored transparently,

it is necessary to define data models to efficiently manage

the information. This study proposes a process for storing

information that follows the cloud paradigm defined in

the +Cloud platform, which facilitates the transparent in-

tegration of different sources for the applications without

requiring a description of relational database models.

Keywords: Cloud Computing, Data Integration

1. Introduction

A Information storage is not performed in the same

way today as it was in the past. During the incipient stag-

es of computer sciences, information was stored and ac-

cessed locally in computers. The storage process was per-

formed in different ways: in data files, or through the use

of database management systems that simplified the stor-

age, retrieval and organization of information, and were

able to create a relationship among the data. Subsequent-

ly, data began to be stored remotely, requiring the appli-

cations to access the data in order to distribute system

functions; database system managers facilitated this task

since they could access data remotely through a computer

network. Nevertheless, this method had some drawbacks,

notably that the users had to be aware of where the data

were stored, and how they were organized. Consequently,

there arose a need to create systems to facilitate infor-

mation access and management without knowing the

place or manner in which the information was stored, in

order to best integrate information provided by different

systems

The concept of computing and software has begun to

vary with the appearance of Cloud computing [2][3][5].

Traditional applications are executed and installed locally,

and data can be stored either locally or remotely. Cloud

computing currently allows applications to be executed in

a cloud without requiring a local installation to access

them [1][12]. Furthermore, clouds offer storage services

such as those provide by Amazon in the Amazon Simple

Storage Service (Amazon S3) [4]. However, these sys-

tems do not offer as many possibilities for information

management as were offered by relational database man-

agement systems. As with Amazon S3, one of the applica-

tions of these systems is Storage for data analysis.

This study proposes a Cloud architecture developed in

the +Cloud system to manage information. +Cloud is a

Cloud platform that was developed and makes it possible

to easily develop applications in a cloud. Information ac-

cess is achieved through the use of REST services [17],

which is completely transparent for the installed infra-

structure applications that support the data storage. In or-

der to describe the stored information and facilitate

searches, APIs are used to describe information, making it

possible to search and interact with different sources of

information very simply without knowing the relational

database structure and without losing the functionality

that they provide. Using a Cloud architecture and docu-

ment manager facilitates the integration of information

from different sources that is used by applications, thus

facilitating the exchange of information among the differ-

ent services offered by the Cloud.

This article is divided as follows: section two describes

the state of the art for cloud computing; sections three and

four presents the proposed model and section five pro-

vides conclusions.

2. Cloud computing

There are currently two computing models that domi-

nate information technology: the centralized computing

model, typical in mainframe systems, powerful, and con-

nected to multiple terminals; and the distributed compu-

ting model, with the client-server model being its most

widespread example, and a highly proven efficiency. A

new model has recently appeared. Known as Cloud Com-

puting, it was developed in response to the explosive in-

crease in the number of devices connected to the internet,

and to complement the ever-increasing presence of tech-

nology in our daily lives and, in particular, in the work-

place.

Cloud Computing is an alternative model for acquiring

and providing services that is changing the way a compa-

ny and its clients do business, and the way that suppliers

provide services or products. Cloud Computing refers to

any services or resources that are accessed through a net-

work by multiple devices without the user needing to in-

stall any type of software on their local terminal. The in-

formation is also stored remotely without needing to be

tied to the terminals from which it is accessed. Cloud

Computing incorporates various distribution models:

1. Application (SaaS) [7][11]: software that is found

in the internet, eliminating the need for the client

Eureka-2013. Fourth International Workshop Proceedings

© 2013. The authors - Published by Atlantis Press 407

to install anything. One example could be the

Dropbox service.

2. Platform (PaaS) [8]: subsystems that can host and

run applications, providing a special access API.

Some examples include Google App Engine or

Windows Azure [14].

3. Infrastructure (IaaS) [9][10]: server-type re-

sources, storage and other lower level systems.

Examples include Eucalyptus or Amazon Web

Services (EC2 [13] and S3 [3]).

Cloud-based applications or services are changing how

software is being used and files are being stored. Current-

ly, companies such as Google prefer Chromebook for use

with portable devices that do not have a hard drive; these

devices are oriented towards the use of online application

and storage systems. Among other things, they are facili-

tating the possibility of sharing documents, editing them

online through a collaborative effort, and efficiently man-

aging the different versions of the files. These tools will

undoubtedly play an increasingly important role in the

near future.

3. Cloud architecture for managing information / in-

formation management?

The system has a layered structure that covers the main

layers of cloud computing[5]. Figure 1 displays the archi-

tectural structure for the system.

Figure 1. Cloud architecture storage system

The SaaS (Software as a Service) layer is composed of

the management applications for the environment (control

of users, installed applications, etc.), and other more gen-

eral third party applications that use the services from the

PaaS (Platform as a Service) layer. At this level, each user

has a personalized virtual desktop from which they have

access to their applications in the Cloud environment, and

to a personally configured area as well.

The PaaS layer provides services through REST web

services in API format. One of the more notable services

among the APIs is the identification of users and applica-

tions, a simple non-relational database service and a file

storage area that controls versions and simulates a direc-

tory structure.

All management and general purpose applications, and

all services at the platform layer are deployed using the

IaaS (Infrastructure as a Service) layer, which provides a

virtual hosting service with automatic scaling and func-

tions for balancing workload.

3.1. PaaS Layer: REST APIs

The services anticipated for the platform layer are pre-

sented in the form of stateless web services. The data cod-

ing format used is JSON (JavaScript Object Notation),

which is more easily readable than XML and includes

enough expression capability for the present case.

JSON is a widely accepted format that contains numer-

ous libraries for different programming languages, which

allows instances of classes to be converted to the JSON

format (e.g., Google-Gson for Java).

3.2. File Storage Service

The file storage service provides an interface for a con-

tainer of files, emulating a directory structure, in which

the files are stored with a set of metadata, thus facilitating

retrieval, indexing, search, etc.

The most relevant characteristics are the simulation of a

directory structure, with which the software developer can

interact as they would with a physical filing system, and a

simple mechanism for version control.

When overwriting a file, which is to say that the space

occupied by one file is made available to another, the con-

tent of the original is not actually erased, a new version is

created instead. Something similar occurs with elimina-

tion: instead of erasing the content of the file, it is marked

as eliminated. At any moment it is possible to access the

available versions of a file by using the API functions.

In addition to being organized hierarchically, files can

be organized with taxonomies, using text tags, which fa-

cilitates the semantic search for information by making it

more efficient.

In addition to its context, the following information is

stored for each file present in the system:

 Its virtual path (parent directory and complete

name).

 Its length or size.

 An array of tags to organize the information se-

mantically.

 A set of metadata.

 Its md5 sum to confirm correct transfers.

 Its previous versions.

The incorporation of semantic searches can be im-

proved by including content searches, using Apache Solr

[4], Lucene[3], etc.

REST Methods

The methods provided by the services to manage the

files stored in a cloud are:

 PutFile: creates a new file (or a versión of an ex-

isting file) in response to a request contained in

the file and basic metadata (path, name and tags)

in JSON, structured in a standard multipart re-

quest.

 MoveFile: changes the path of a file.

 DeleteFile: eliminates a file.

 GetFolderContents: returns a JSON array with the

content of a specific directory.

408

 GetMetadata: returns the metadata of a file or di-

rectory according to its identifier (path, name,

size, md5, etc.).

 GetAvailableVersions: returns the available ver-

sions of a file.

 DownloadFile: returns the file content (previous

versions can be specified).

Supporting architecture:

Web services are implemented through the use of the

web application framework Tornado, which relies on

some functions in the reverse proxy Nginx[16]. Figure 2

displays the configuration of the architecture that supports

the file management system in Cloud.

Figure 2. File storage system

 File content is saved in the distributed file system so

that the service can be scalable, and the multiple entry

points used can be managed by a load balancer; it also

allows information to be replicated. Several tests were

performed with NFS and GlusterFS; a transparent migra-

tion was used for the rest of the service since the interface

with those systems is limited to an assembly point in the

Unix VFS (Virtual File System).

File metadata and the path indicators for accessing data

content are both stored in the MongoDB B[14][15] dis-

tributed database, which has high speed and scalability

and provides adequate guarantees of integrity as required

by this application.

Web service nodes deploy Tornado and Nginx as well

as the distributed file systems GlusterFS or NFS, and ac-

cess a MongoDB cluster, which can be located either

within or exterior to the nodes.

Optimizing file uploads and downloads:

In order to efficiently manage file uploads, the Nginx

proxy for each basic node intercepts the web request, ex-

tracts the file travelling inside, writes it on the hard drive

using the nginx_upload_module (very fast and efficient

code written in C), and transfers the request, without the

file, to the real web service, indicating only the path

where the file is stored. This path will be the definitive

path in the shared file system, to avoid the unnecessary

movement of files, which negatively impacts the server’s

performance and the time that it would take for the infor-

mation to be available for another request.

This optimization in uploading files is necessary to

make the service viable: web requests in Tornado use up

all of the main memory (RAM) when they are processed.

These requests include uploading files, and it is easy to

see how some files can be big enough to easily overload

the service.

Nginx is also used to mange file downloads efficiently.

Web server responses do not directly contain the file to be

downloaded; instead they have a special header that indi-

cates the proxy where the file is stored (in the shared file

system) and add it to the response in an efficient manner.

These interactions between the real server and the

proxy are produced in a way that is transparent to the us-

er, who believes to be working with a single homogene-

ous server.

The system’s design makes is possible to manage mul-

tiple and simultaneous uploads of large files without for-

going the flexibility of the Python environment (an inter-

preted language with great semantic capability) for the

logic in the service. The highly optimized and tested code

C from Nginx manages file transfers, and the Python code

manages everything else: confirming identities, managing

metadata, etc.

Processing a request to upload a file
1. When the request arrives, the load balancer re-

routes it to one of the web service nodes.

2. The Nginx instance of the node intercepts the re-
quest and saves the file content provisionally in
the distributed file system.

3. After saving the file, it sends the modified re-
quest (which no longer contains the file, but a
temporary path, its length and md5 sum, and the
metadata provided by the client) to the web ser-
vice implemented in Python.

4. The web service processes the request and con-
firms authentication using an asynchronous
REST request to the identity manager service
(IdentityManager).

5. When the identity service responds, the pro-
cessing of the request is renewed.

6. If the authentication of the application is correct,
the metadata present in the request are con-
firmed.

7. If the metadata are correct, they are stored in the
MongoDB cluster with the path for the file con-
tent.

8. The metadata for the saved file is returned to the
user.

If an error occurs during any one of the steps, the user

is informed with an HTTP error code, and the file content

is erased from the storage.

Processing a request to download a file:
1. When the request arrives, the load balancer re-

routes it to one of the web service nodes.

2. The web service processes the request and con-
firms the authentication using an asynchronous

409

REST request to the identity manager service
(IdentityManager).

3. When the identity service responds, the pro-
cessing of the request is renewed.

4. If the authentication of the application is correct,
the file identifier present in the request is con-
firmed.

5. If the identifier is valid, the path for the file con-
tent is searched for in the MongoDB cluster.

6. The server responds with a header that indicates
the file path to the local proxy.

7. The local proxy initiates the file download.

If an error occurs, the user is informed with an HTTP

error code.

3.3. Object Storage Service

The object storage service provides a simple and flexi-

ble schemaless data base service oriented towards docu-

ments. In this context, a document is a set of keyword-

value pairs where the values can be documents (in an

anitable model) or references to other documents (with a

very weak integrity model).

Schemaless database

The objects or documents are automatically assigned a

unique alphanumeric identifier and are sorted into groups

(similar to relational database tables). It is not necessary

for the objects from a group to share a set of attributes,

although they normally have one subset in common since

they tend to represent entities from the applications. This

common subset is what will be used to perform searches

and filter objects (although it is not necessary that they all

share it).

The permissible types of data are limited to the basic

types from JSON: alphanumeric, numeric, maps (embed-

ded documents) and arrays for any of these types.

By not needing to previously define the set of attributes

for the objects in each group, the migration between dif-

ferent versions of the applications and the definition of

the relationship among the data become much easier.

Adding an extra field to a group is as easy as sending dic-

tionary objects with an extra keyword. A search on that

keyword would only look in objects that contain it.

JSON queries:

The query language is base don JSON searches: dic-

tionary objects are created and the search returns objects

from the group that satisfies the criteria of equality with

the dictionary object search. In other words, if we want to

search for objects with the name “Robert” from the con-

tact group, our query would be {first_name”: “Robert”}.

In the future, different methods will be incorporated to

increase the search criteria beyond equality, possibly

adopting a query language similar to MongoDB.

REST Methods:

The service provides the basic services expected from a

database manager:

 Create: creates a new object according to the data
provided. Returns this object, adding the newly
generated identifier.

 Retrieve: retrieves an object according to a
JSON query.

 Update: updates an object according to the data
provided (the identifier for locating the object to
be updated must be provided).

 Delete: deletes an object according to the JSON
query.

Supporting architecture:

As with the object storing service, the web services are

implemented with Python and the Tornado framework.

By not managing files, there is no need to use the inverse

proxy that manages them in every node; therefore only

Nginx is used to balance the workload at the entry point

for the service.

Figure 3 shows the architecture that permits data stor-

age in the Cloud system.

Figure 3. File Storage System

3.4. Identity Manager

The IdentityManager is the module from +Cloud in

charge of offering authentication services to clients and

applications. Among the functionalities that it includes

are access control to data and files stored in the Cloud

through user authentication and validation.

Notable functionalities provided by the identification

module are:

1. A web authentication mechanism that permits in-

tegrated applications in +Cloud to know which

users have access privileges to their application

without the application itself implementing the

authentication system.

2. REST calls to authenticate applications/users and

assign/obtain their roles in applications within

+Cloud, following the single sign on model.

3. New user registration.

The authentication process is shown in figure 4; the steps

taken for identification as are follows:

1. A user accesses an application from +Cloud.

410

2. The application detects that the user is not authen-

ticated and reroutes the user to the

IdentityManager by following these steps:

a. Request a temporary authentication iden-

tifier with a REST call to

GetAuthenticationToken, using the nec-

essary parameters for this call.

b. Reroute the user to the web authentica-

tion module, accompanying the token as

a GET parameter in the request.

3. IdentityManager now performs the authentication

and returns the application to the user who re-

quested it, providing a session identifier within

the +Cloud system.

4. The application accepts the user and confirms the

validity of the sesión identifier in +Cloud with a

REST call to TokenIsValid. It also gets the user

roles within the application.

Figure 4. User authentication process

3.5. Scalability and high availability

In order for the platform level services to respond to

the increasing demand of requests and volume of data, or

to respond appropriately to failures in the individual

nodes, the use of replication mechanisms and information

division is applied, allowing the problems to be ap-

proached on three separate fronts: MongoDB clusters,

distributed file systems, and API web services.

1. Replication and division of information in the

MongoDB systems: uses the mechanism provided

by SGBD. The information is divided into seg-

ments that are distributed among replica sets. The

nodes from one replica set contain copies of the

same information. The queries are made to a spe-

cial node (or various nodes for security) that act

as a load balancer and sent the queries to nodes

that are live and contain the necessary segment of

information.

2. Distributed file system: with GlusterFS, nodes

can be added to the file system in a configuration

similar to that of MongoB, although without

needing to have special nodes to balance the

workload.

3. API web servers: the API servers are replicated in

order to manage large workloads and to overcome

node failures. The Nginx reverse proxy is used at

the system point of entry to function as a work-

load balancer between them.

4. Sharing computational resources among services

The development a Cloud Computing platform like +

Cloud does not only allow to store information without

schema, but also to share the computational resources

provided by the cloud environment among the storage

services (FSS, OSS).

Thus, +Cloud incorporates an information service, where-

in each of the computing resources and offered services

periodically have to send status information, as shown in

Figure 5.

Figure 5. Service information model

As shown in the following graphs, it is possible to have

information about different services centralized in a cen-

tralized web.

Figure 6. Usage of resources (Memory, disk and CPU)

With this model, it is possible to not only display infor-

mation (Figure 6), but also to manage the computational

resources and share them about the offered services.

411

The following graphs show how the system adapts itself

to cope with the peaks on the demands. Figure 7 shows

how the current memory of an individual virtual machine

(red line) is increased to cope with the demand (blue line)

1 6121 41 81 101
6

11
16 26

31
36 46

51
56 66

71
76 86

91
96 106

111
116

121
126

131
136

141
146

151
156

161
166

171
176

181
186

191
196

201
206

211
216

221
226

231
236

241
246

251
256

261
266

271
276

281
286

291
296

301
306

311
316

321
326

331
336

341

0

100

200

300

400

500

600

700

800

Memoria usada

Memoria asignada

Figure 7. Redistribution resources: Memory

In the same way, Figure 8 shows how the CPU is adapt-

ing depend on the demand.

1
13

25
37

49
61

73
85

97
5

9 17
21 29

33 41
45 53

57 65
69 77

81 89
93 101

105
109

113
117

121
125

129
133

137
141

145
149

153
157

161
165

169
173

177
181

185
189

193
197

201
205

209
213

217
221

225
229

233
237

241
245

249
253

257
261

265
269

273
277

281
285

289
293

0

20

40

60

80

100

120

140

160

180

200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

% CPU Usado

CPU Power Asignado

Figure 8. Redistribution resources: CPU

5. Conclusions and future lines of work

The cloud architecture defined in +Cloud has made it pos-

sible to transparently store information in applications

without having previously established a data model.

The storage and retrieval of information is done trans-

parently for the applications, and the location of the data

and the storage methods are completely transparent to the

user. This characteristic makes it possible to change the

infrastructure layer of the cloud system, facilitating the

scalability and inclusion of new storage systems without

affecting the applications.

JSON can define information that is stored in the archi-

tecture, making it possible to perform queries that are

more complete than those allowed by other cloud sys-

tems.

The storage system can easily compare information be-

tween different applications that can fuse data from dif-

ferent groups and process them as indicated. In this case,

the use of JSON is important to be able to retrieve stored

information without previous knowledge of the infor-

mation stored in the different entities.

As future lines of work, we would like to add semantic

search mechanisms to the files storage system, but not

limited to those based on descriptions established by the

metadata sent by the user.

6. References

[1] Amazon elastic compute cloud (Amazon EC2).
Amazon. http://aws.amazon.com/ec2/

[2] Amazon Web Services. Retrieved April 20, 2010,
from Amazon: http://aws.amazon.com/

[3] Apache Lucene Core. http://lucene.apache.org/core/

[4] Apache Sorl. http://lucene.apache.org/solr/

[5] Armbrust, M., et al. Above the clouds: A Berkeley
view of cloud computing. Tech. Rep. UCB/EECS-
2009-28, EECS Department, U.C. Berkeley, Feb
2009.

[6] CHAPPELL, D.2009. Introducing the Azure Services
Platform. David Chappell & Associates

[7] Dave T (2008) Enabling application agility -
Software as a Service, cloud computing and dynamic
languages. Journal of object technology:29-32

[8] Dawoud W, Takouna I, Meinel C (2010)
Infrastructure as a service security: Challenges and
solutions. 2010 7th international conference on
informatics and systems, INFOS2010, March 28,
2010 - March 30, 2010, Cairo, Egypt,

[9] Espadas J, Molina A, Jimenez G, Molina M, Ramirez
R, Concha D (2011) A tenant-based resource
allocation model for scaling Software- as-a-Service
applications over cloud computing infrastructures.
doi:10.1016/j.future.2011.10.013

[10] Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud
computing and grid computing 360-degree compared.
Grid computing environments workshop, GCE 2008,
November 12, 2008 - November 16, 2008, Austin,
TX, United states,

[11] GlusterFS. http://www.gluster.org/

[12] Mahmood Z (2011) Cloud computing for enterprise
architectures: concepts, principles and approaches.
In: Mahmood Z, Hill R (eds) Cloud computing for
enterprise architectures. Springer, pp 3-10

[13] Mell P, Grance T (2009) The NIST definition of
cloud computing. National institute of standards and
technology,

[14] Membrey, P., Plugge, E., & Hawkins, T. (2010). The
definitive guide to MongoDB: the noSQL database
for cloud and desktop computing. Apress.

[15] MongoDB. http://www.mongodb.org/

[16] NGiNX. http://wiki.nginx.org/Main

[17] Pautasso, C., Zimmermann, O., & Leymann, F.
(2008, April). Restful web services vs. big'web
services: making the right architectural decision.
InProceedings of the 17th international conference
on World Wide Web (pp. 805-814). ACM.

[18] TurnerM,BudgenD,BreretonP(2003)Turningsoftware
intoaservice. Computer 36 (10):38-44.
doi:10.1109/mc.2003.1236470

[19] Wu X, Wang W, Lin B, Miao K (2009) Composable
IO: A novel resource sharing platform in personal
clouds. 1st international conference on cloud
computing, CloudCom 2009, December 1, 2009 -
December 4, 2009, Beijing, China,

[20] Yang H, Wu G, Zhang J (2005) On-demand resource
allocation for service level guarantee in grid
environment. 4th international conference on grid
and cooperative computing - GCC 2005, November
30, 2005 - December 3, 2005, Beijing, China,

[21] Zhang Q, Cheng L, Boutaba R (2010) Cloud
computing: State-of-the-art and research challenges.
Journal of Internet Services and Applications:7- 18.
doi:10.1007/s13174-010-0007-6

412

