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Summary

The increasing demand for environmental safety, energy efficiency and high
product quality specifications dictate the development of advanced control
algorithms in order to improve the operation and performance of indus-
trial processes. Motivated by the fact that many industrially important
processes are characterized by strong nonlinearities, model uncertainty and
constraints, and the lack of general linear or nonlinear control methods for
such systems, the first broad objective of this thesis is to develop a rigorous,
but practical, unified framework for the design of control laws for nonlinear
processes with input constraints, that integrates explicit constraint-handling
capabilities in the controller designs and provide an explicit characterization
of the stability and performance properties of the designed controllers. The
second goal is to provide fundamental understanding and insight into the
nature of the control problem for nonlinear processes as well as the limita-
tions imposed by nonlinearities and constraints on our ability to steer the
dynamics of such systems. The final aim is to evaluate the developed control
strategies through simulation models, in a WWTP as case study.

The rest of the thesis is organized as follows. Chapter 2 contains a short
description of WWTP and its different treatment steps. It also presents
the details of three models of Activated Sludge Process (ASP) that will be
used in subsequent chapters. Then, we describe the disturbances that af-
fect the process, some dynamic indices of effluent quality and the operating
conditions required for a suitable functioning. This chapter ends with the
description of the control problem. Chapter 3 presents some theoretical
notions and some tools that will be used later. After the chapter 3, the
thesis is composed by two parts with different methodologies proposed. The
first one is presents the control strategies based on positive invariance con-
cept and the second one the control strategies based on dynamic real time
optimization.

The first controller developed in the first part is a nonlinear feedback law
that will cause the output to track a hight amplitude step input rapidly with-
out experiencing large overshoot and without the adverse actuator satura-
tion effects and ensuring stability and constraints fulfillment. The controller
consists of a linear feedback law computed using the invariance positive con-
cept and a nonlinear feedback law without any switching element. The linear
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feedback part is designed to yield a closed-loop system with a small damping
ratio for a quick response, while at the same time not exceeding the actuator
limits for the desired command input levels. The nonlinear feedback law is
used to increase the damping ratio of the closed-loop system as the system
output approaches the target reference to reduce the overshoot caused by the
linear part. The second controller is a closed loop MPC using polyhedral
invariant sets that gives a simple solution to this type of control, ensur-
ing stability and respecting constraints on control magnitude and moves in
both modes of operation of the dual controller. The proposed solution can
take into account symmetric and asymmetric constraints, and reduces sig-
nificantly the computational burden associated with the constrained MPC
problem in the presence of these constraints.

The second part is composed also by two controllers, the first one a new
single layer Nonlinear Closed-Loop Generalized Predictive Control based on
an economic nonlinear GPC, as an efficient advanced control technique for
improving economics in the operation of nonlinear plants. The second con-
troller focuses on integrating dynamic economic and nonlinear closed loop
MPC. The architecture is composed by two-layer. The upper layer consisting
of an economic MPC that receives state feedback and time dependent eco-
nomic information, for computing economically optimal time-varying oper-
ating trajectories for the process, by optimizing a time-dependent economic
cost function over a finite prediction horizon. The lower layer, utilizes a
nonlinear closed loop MPC to compute a feedback control actions that force
the outputs of the process to track the trajectories received from the upper
layer. It is also proved that the deviation between the state of the closed
loop system and the economically time varying trajectory is bounded.



Resumen

La creciente demanda de seguridad ambiental, eficiencia energética y altas
especificaciones de calidad del producto promueven el desarrollo de algorit-
mos de control avanzado para mejorar el funcionamiento y el rendimiento de
los procesos industriales. Motivado por el hecho de que muchos procesos in-
dustriales relevantes se caracterizan por fuertes no linealidades, incertidum-
bre y restricciones del modelo, y la falta de métodos generales de control
lineal o no lineal para tales sistemas, el primer objetivo general de esta tesis
es desarrollar una metodología rigurosa, práctica y unificada para el diseño
de leyes de control para procesos no lineales con restricciones de entrada, que
integra capacidades explícitas de manejo de restricciones en los diseños de
controlador y proporciona una caracterización explícita de las propiedades
de estabilidad y rendimiento de los controladores diseñados. El segundo
objetivo es proporcionar una comprensión fundamental de la naturaleza del
problema de control no lineal, así como de las limitaciones impuestas por
las no linealidades y restricciones para dirigir la dinámica de tales sistemas.
El objetivo final es evaluar el control y estrategias desarrolladas mediante
modelos de simulación, utilizando EDAR como caso de estudio.

El resto de la tesis se organiza de la siguiente manera. El capítulo
2 contiene una breve descripción de la EDAR y sus diferentes etapas de
tratamiento. También presenta los detalles de tres modelos del proceso de
fangos activados (ASP) que se utilizarán en los capítulos siguientes. A con-
tinuación se describen las perturbaciones que afectan al proceso, algunos
índices dinámicos de calidad del efluente y las condiciones operativas re-
queridas para un funcionamiento adecuado. Este capítulo termina con la
descripción del problema de control. El capítulo 3 presenta algunas no-
ciones teóricas y algunas herramientas que se utilizarán en las metodologías
propuestas. A partir de ahí, la tesis se compone de dos partes con es-
trategias de control diferentes. La primera está formada por estrategias de
control basadas en el concepto de invariancia positiva y la segunda funda-
mentalmente por estrategias de control basadas en optimización dinámica
en tiempo real.

El primer controlador desarrollado en la primera parte es una ley de
retroalimentación no lineal que hará que la salida siga rápidamente una en-
trada escalón de gran amplitud sin experimentar un sobreimpulso grande y
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sin los efectos adversos de saturación del actuador y asegurando la estabili-
dad y el cumplimiento de las restricciones. El controlador consiste en una ley
de realimentación lineal calculada usando el concepto de invariancia positiva
y una ley de realimentación no lineal sin ningún elemento de conmutación.
La parte de realimentación lineal está diseñada para producir un sistema en
lazo cerrado con una pequeña relación de amortiguación para una respuesta
rápida, mientras que al mismo tiempo no excede los límites del actuador
para los niveles de entrada requeridos. La ley de realimentación no lineal se
utiliza para aumentar la relación de amortiguación del sistema en lazo cer-
rado cuando la salida del sistema se aproxima a la referencia para reducir el
sobreimpulso causado por la parte lineal. El segundo controlador es un MPC
en lazo cerrado utilizando conjuntos invariantes poliédricos que proporciona
una solución simple a este tipo de control, garantizando la estabilidad y re-
spetando las restricciones sobre magnitud de control y sus incrementos en
ambos modos de funcionamiento del controlador dual. La solución propuesta
puede tener en cuenta restricciones simétricas y asimétricas, y reduce sig-
nificativamente la carga computacional asociada con el problema del MPC
con restricciones. La segunda parte presenta también dos metodologías de
control, la primera de ellas consiste en un nuevo Control Predictivo Gen-
eralizado en lazo cerrado no lineal basado en un GPC no lineal económico,
como una técnica de control avanzada eficiente para mejorar la economía en
la operación de plantas no lineales. El segundo controlador se centra en la
integración de optimización dinámica económica y un controlador MPC en
lazo cerrado no lineal. La arquitectura está compuesta por dos capas. La
capa superior, consistente en un MPC económico que recibe información de
estado e información económica dependiente del tiempo, calcula trayectorias
de operación variables en el tiempo económicamente óptimas para el pro-
ceso, optimizando una función de coste económico dependiente del tiempo
sobre un horizonte de predicción finito. La capa inferior utiliza un MPC
en lazo cerrado no lineal para calcular acciones de control que obligan a las
salidas del proceso a seguir las trayectorias recibidas desde la capa superior.
En esta última metodología, se demuestra que la desviación entre el estado
del sistema en lazo cerrado y la trayectoria económica que debe seguir está
acotada, asegurando la estabilidad
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SNO,nit : Nitrate in the aerated tank
SO,nit : Oxygen in the aerated tank
XA,denit : Autotroph biomass in the anoxic tank
XH,denit : Heterotroph biomass in the anoxic tank
SS,denit : Substrate in the anoxic tank
SNH,denit : Ammonium in the anoxic tank
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3

SS,in : Organic matter concentration
SNH,in : Ammonium compounds concentration
Qa : Internal recycle flow
V1 : Anoxic reactor volume
V2 : Aerobic reactor volume
ixb : Nitrogen fraction in biomass
ρ1 : Aerobic growth of heterotrophic biomass
ρ2 : Anoxic growth of heterotrophic biomass
ρ3 : Aerobic growths of autotrophic biomass
R : Set of real numbers
R∗+ : Set of real numbers strictly positive
Rn : Real space of dimension n
Rn×m : Set of real matrices of dimension n×m
σ(A) : Spectrum of matrix A
λ(A) : The eigenvalues of A ∈ Rn×n
Re(λ(A)) : Real part of the eigenvalues of A
||v|| : Euclidean norm of v
v̇ : Derivative of v



4 0. NOMENCLATURE

List of abbreviations
WWTP : Wastewater Treatment Plant
ASP : Activated Sludge Process
MPC : Model Predictive Control
RTO : Real Time Optimization
D −RTO : Dynamic Real Time Optimization
NLP : Nonlinear Programming
ASM1 : Activated Sludge Model 1
BSM1 : Benchmark Simulation Model 1
GPC : Generalized Predictive Control
BIO − P : Biological Phosphorous
M1 : Mathematical model number 1
M2 : Mathematical model number 2
M3 : Mathematical model number 3
IAWQ : International Association on Water Quality
COST : European Cooperation in Science and Technology
IWA : International Water Association
ISE : Integral Square Error
EQ : Effluent Quality
AE : Aeration Energy
PE : Pumping Energy
COD : Chemical Oxygen demand
BOD : Biological Oxygen Demand
TSS : Total Production of Sludge
QP : Quadratic Programming
IQ : Influent Quality
DO : Dissolved Oxygen
CLMPC : Closed Loop Model Predictive Control
NGPC : Nonlinear Generalized Predictive Control
NEGPC : Nonlinear Economic Generalized Predictive Control
NCLMPC : Nonlinear Closed Loop Model Predictive Control
NECLGPC : Nonlinear Economic Closed Loop GPC
OCI : Overall Cost Index



1

Introduction

1.1 Motivation

Nowadays, modern industrial processes have become highly integrated with
respect to material and energy flows, constrained tightly by high quality
product specifications, and subject to increasingly strict safety and environ-
mental regulations. These more stringent operating conditions have placed
new constraints on the operating flexibility of chemical processes and made
the performance requirements for process plants increasingly difficult to sat-
isfy. The increased emphasis placed on safe and efficient plant operation
dictates the need for continuous monitoring of the operation of a chemical
plant and effective external intervention (control) to guarantee satisfaction
of the operational objectives. In this light, it is natural that the subject
of process control has become increasingly important in both the academic
and industrial communities. In fact, without process control it would not
be possible to operate most modern processes safely and profitably, while
satisfying plant quality standards.

The design of effective, advanced process control and monitoring systems
that can meet these demands, however, can be quite a challenging under-
taking given the multitude of fundamental and practical problems that arise
in process control systems and transcend the boundaries of specific applica-
tions. Although they may vary from one application to another and have
different levels of significance, these issues remain generic in their relation-
ship to the control design objectives.

1.2 Previous work

Industrial plants usually involve constrained operation due to different types
of constraints, such as limitations on the magnitude and/or increment of
some variables, typically the control signals. For this reason, the design
of control systems satisfying stability and performance conditions in the
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presence of constraints is a topic of ongoing interest. In the literature, there
are several approaches to solve this type of problems, such as the invariant
sets theory [1, 2] and Model Predictive Control (MPC) [3, 4].

The invariant sets theory is a useful instrument used in several branches
of engineering systems, for reachability and stability analysis, as well as for
the synthesis of constrained control laws. A positively invariant set is a sub-
set of the state space of a system with the property that, if the system state
is in this set at some initial condition, then the trajectories of the system
will continue in this set in the future [5]. This motivates the development
of effective constructive approaches to compute positively invariant sets for
dynamical systems. One approach to obtain positively invariant sets can
be obtained by noticing that the level surfaces of a Lyapunov function are
also boundaries of positively invariant sets. For example, the terminal cost
and constraints set approach in MPC [6] requires that the terminal set is
positively invariant under some appropriate local feedback law. In [7], the
authors studied the regulator problem for linear systems with constraints
on both control and its increment in the state space representation using
the invariant set technique, the controller is designed to yield a closed loop
system with a small damping ratio for a quick response, while at the same
time does not exceed the actuator limits for the desired command input and
its rate levels.

Apart from control, the positive invariant set is also useful for exami-
nation and validation in fault detection cases. It can be used to study the
safety properties of a system, that is, properties that specify that a system
can never be in a pre-specified subset of ”risky” or ”hazardous” states, as
well as stability issues [8].

The other approach to design control systems in the presence of con-
straints is MPC. MPC has become the accepted technique for complex con-
strained multivariable control problems in the process industries. MPC is
an optimal control-based strategy that uses a plant model to predict the
effect of an input profile on the state of the plant. At each sampling time,
a constrained optimal control problem is solved over a finite horizon. The
updated plant information is used in the next time step, to formulate and
solve a new optimal problem, thereby providing feedback from the plant to
the model, and the process is repeated. This technique yields a receding
horizon control formulation. The solution relies on a linear dynamic model
and satisfies all input and output constraints. The use of a quadratic per-
formance index together with various constraints can be used to express
real performance objectives, providing excellent MPC performance. Over
the last decade, a solid theoretical foundation for MPC has emerged so
that in real life, large-scale multi-input and multi-output applications con-
trollers with non-conservative stability guarantees can be designed routinely
[9]. The big drawback of the MPC is the large on-line computational ef-
fort needed, which limits its applicability to relatively fast systems. Also,
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the MPC can be used in closed loop control as it has been shown that this
procedure is an effective strategy and has been exploited to decrease com-
putational demand of solving optimization control problems. Traditionally,
in this type of control two modes of operation are considered over an infi-
nite prediction horizon at each sampling time, being a reformulation of a
classical dual mode predictive control [10]. The predicted control moves are
centered around a stabilizing control law, over the whole prediction hori-
zon, but some additive degrees of freedom are added over a finite horizon
to handle constraints and to guarantee feasibility improving performance.
Therefore there is an implicit switching between one mode of operation and
the other as the process converges to the desired state. Researchers in the
MPC field due to its good properties have progressively adopted the closed
loop MPC. For instance, it gives better numerical conditioning of the opti-
mization [11, 12] and it makes robustness analysis more straightforward even
for the constrained case [13, 14].

In addition, industry requires optimal operation procedures and ad-
vanced control systems to cope with the different factors that affect plant
economics and process performance. The two-layer real time optimization
strategy (RTO) has been successfully and widely applied in chemical pro-
cesses for the economic optimization of plant operation. This process control
architecture consists of the steady state real time optimization (RTO) of the
trajectories for the regulated variables in terms of costs, in an upper level,
followed by a model predictive controller (MPC) that executes the direct
control actions on shorter time-scales, in a lower level [15, 16, 17].

Nevertheless, the steady state RTO approach may not be satisfactory
in some cases leading to sub-optimal economic plant performance [18, 19,
20, 21, 22]. An important weakness of this approach is the inconsistency
between the nonlinear steady-state models used in the RTO layer and the
usual linear dynamic models used in the regulatory MPC layer. Another
drawback is the delay in the optimization associated with the steady-state
assumption in the RTO layer; moreover, it can produce an incorrect predic-
tion of the operational point in the presence of frequent disturbances. The
Dynamic Real Time Optimization (D-RTO) has been proposed to overcome
the limitations of the stationary RTO accounting for the dynamic nonlinear
behaviour of processes [23, 24].

The optimization of plant economic performance based on the integra-
tion of RTO and MPC has been addressed by in single level and two level
strategies [21, 24]. In the single level strategies the economic optimization
and control objectives are included in a single MPC algorithm in order to
improve both economic and control performance in a cohesive manner. In
[25], an optimizing MPC is defined to achieve both tasks by adding an
economic objective term to the standard MPC objective function, observing
that the one-layer procedure could react to frequent disturbances faster than
the multilayer approach. However, a disadvantage of this procedure is that
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the incorporation of the economic objective turns the optimization problem,
which is solved by an MPC algorithm, into a Nonlinear Programming (NLP)
problem, where the objective function is nonlinear and there are nonlinear
constraints corresponding to the steady-state model of the process system.
Consequently, the expected computational effort required to compute the
control sequence can be much higher than in the conventional MPC. As a
solution, [26] propose a simplified version of the one-layer optimizing MPC.
In their approach, the objective function of the MPC controller is also mod-
ified to include a term related to the economic objective, but the economic
information is restricted to an estimation of the gradient of the economic
objective. In [27] a stable MPC controller is presented that efficiently in-
corporate the stationary-control objectives into a single control formulation
considering a velocity model in the input increment instead of the input.

1.3 Scope and outline of thesis

Motivated by the fact that many industrially important processes are char-
acterized by strong nonlinearities, model uncertainty and constraints , and
the lack of general linear or nonlinear control methods for such systems, the
broad objectives of this thesis are:

• To develop a rigorous, but practical, unified framework for the design
of control laws for nonlinear processes with input constraints, that in-
tegrates explicit constraint-handling capabilities in the controller de-
signs and provide an explicit characterization of the stability and per-
formance properties of the designed controllers.

• To provide fundamental understanding and insight into the nature of
the control problem for nonlinear processes as well as the limitations
imposed by nonlinearities and constraints on our ability to steer the
dynamics of such systems.

• To evaluate the developed control strategies through simulation mod-
els, in a WWTP as case study.

The rest of the thesis is organized as follows. Chapter 2 contains a short
description of WWTP and its different treatment steps. It also presents
the details of three models of Activated Sludge Process (ASP) that will
be used in subsequent chapters. In the first place, a plant with a reactor
and a secondary settler is selected, and a mathematical model of the pro-
cess is presented only with removal of organic matter, to further describe
other nitrogen removal models. Then, we describe the disturbances that
affect the process, some dynamic indices of effluent quality and the operat-
ing conditions required for a suitable functioning. This chapter ends with
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the description of the control problem. Chapter 3 presents some theoretical
notions and some tools that will be used later. First, the problem of the
stability of constrained linear systems, in particular the notion of Lyapunov
function and the domain of attraction of the equilibrium is presented. Sec-
ondly, basic concepts of positive invariance theory are presented. Finally,
this chapter is concluded by presenting some basic notion of predictive con-
trol.

The goal of chapter 4 is to design a nonlinear feedback law that will cause
the output to track a hight amplitude step input rapidly without experienc-
ing large overshoot and, without the adverse actuator saturation effects and
ensuring stability and constraints fulfillment . The controller consists of a
linear feedback law computed using the invariance positive concept and a
nonlinear feedback law without any switching element. The linear feedback
part is designed to yield a closed-loop system with a small damping ratio for
a quick response, while at the same time not exceeding the actuator limits
for the desired command input levels. The nonlinear feedback law is used to
increase the damping ratio of the closed-loop system as the system output
approaches the target reference to reduce the overshoot caused by the linear
part. The state feedback control designs are subsequently combined with
appropriate Luenberger observers to yield output feedback controllers.

Chapter 5 presents a novel methodology to design a closed loop MPC
using polyhedral invariant sets that gives a simple solution to this type of
control, ensuring stability and respecting constraints on control magnitude
and moves in both modes of operation of the dual controller. It is well
known that closed loop predictive control procedure is an effective strategy
and has been exploited to decrease computational demand of solving opti-
mization control problems. To achieve the objectives, the first step consists
of the development of necessary and sufficient conditions for a linear system
and a state feedback control law for the satisfaction of the constraints on
both control and its increment over an infinite prediction horizon, proving
also the asymptotic stability at the origin. Later on, these conditions are
used to obtain the state feedback control law for the prediction computa-
tion which guarantees stability while fulfilling constraints and performance
requirement of the closed loop system. The proposed solution can take into
account symmetric and asymmetric constraints, and reduces significantly
the computational burden associated with the constrained MPC problem in
the presence of these constraints.

In the chapter 6, the principal scope is the proposal of a new single
layer Non- linear Closed-Loop Generalized Predictive Control based on an
economic nonlinear GPC, as an efficient advanced control technique for im-
proving economics in the operation of nonlinear plants. The proposed ap-
proach, in contrast to classic closed loop MPC scheme, where the terminal
control law is computed offline by solving a linear quadratic regulator prob-
lem, computes analytically the terminal control law online by solving an
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unconstrained Nonlinear Generalized Predictive Control minimizing a cost
function constituted by tracking errors and economic costs. In order to be
able to obtain an analytical solution of this non linear optimization problem
two considerations have been made in the present work. Firstly, the predic-
tion model consisting of a nonlinear phenomenological model of the plant
is written in the extended linearization form or state dependent coefficient
form, which actually allows having nonlinear model expressed with linear
structure and state dependent matrices. Secondly, instead of including the
nonlinear economic cost in the objective function, an approximation of the
reduced gradient of the economic function is used. In this way the problem
becomes a quadratic one, and can be solved analytically, at each sampling
time, as in the linear case to obtain the terminal control law to be used
within the closed loop MPC scheme.

Finally, chapter 7 focuses on integrating dynamic economic and non-
linear closed loop MPC. The architecture is composed by two-layer. The
upper layer, consisting of an economic MPC that receives state feedback
and time dependent economic information, for computing economically op-
timal time-varying operating trajectories for the process, by optimizing a
time-dependent economic cost function over a finite prediction horizon. The
lower layer, utilize a nonlinear closed loop MPC to compute a feedback con-
trol actions that force the outputs of the process to track the trajectories
received from the upper layer. Also, proves that the deviation between the
state of the closed loop system and the economically time varying trajectory
is bounded. The proposed approach is based on the use of non-linear phe-
nomenological models of the process to describe all relevant dynamics and
to cover a wide operating range, providing accurate predictions and ensuring
the performance of the control systems.

The proposed control methods are illustrated through their application
to WWTP and compared with more traditional process control strategies.

1.4 Main contributions summary

The main contributions of this thesis are:

• The design of a nonlinear feedback law that will cause the output to
track a hight amplitude step input rapidly without experiencing large
overshoot and, without the adverse actuator saturation effects and
ensuring stability and constraints.

• A novel methodology to design a closed loop MPC using polyhedral
invariant sets that gives a simple solution to this type of control, en-
suring stability and respecting constraints on control magnitude and
moves in both modes of operation of the dual controller. Moreover, the
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proposed algorithm takes advantage of the design of a state feedback
to increase the degrees of freedom in the design procedure.

• The proposal of a new single layer Nonlinear Closed-Loop Generalized
Predictive Control based on an economic nonlinear GPC, as an efficient
advanced control technique for improving economics in the operation
of nonlinear plants.

• The proposal of a two layer strategy framework for integrating dy-
namic economic optimization and model predictive control for optimal
operation of nonlinear process systems.

The thesis in particularly focussed on stability issues and constraint fulfill-
ment in the design step of each control system.
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Activated Sludge Processes
for WWTP: Case Studies

2.1 Introduction

This chapter contains a short description of wastewater treatment process
(WWTP) and its different treatment steps. Secondly, the activated sludge
process (ASP) are briefly described. Third, three different processes of ASP
and their models are detailed. In the first place, a plant with a reactor and
a secondary settler is selected, and a mathematical model of the process
is presented only with removal of organic matter, to further describe other
nitrogen removal models. Then, we describe the disturbances that affect
the process, some indices of effluent quality and the operating conditions
required for a suitable functioning are described. The chapter ends with the
description of the control problem.

2.1.1 WWTP description

WWTP is just one component in the urban water cycle; however, it is an im-
portant one since it ensures that the environmental impact of human usage
of water is significantly reduced. It consists of several processes: biological,
chemical and physical processes. That aim to reduce nitrogen, phosphorous,
organic matter and suspended solids. To achieve that, WWTP have been
designed with four treatment steps: a primarily mechanical pre-treatment
step, a biological treatment step, a chemical treatment step and a sludge
treatment step. (See Figure 2.1.)

2.1.1.1 The Primary Mechanical Pre-treatment

The purpose of the mechanical pre-treatment step is to remove various types
of suspended solids from the incoming influent. Typically, it consists of grids
that remove larger objects in the WWTP, an aerated sand filter that removes
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sand and a primary sedimentation unit that reduces the content of suspended
solids in the wastewater by sedimentation. The primary sedimentation may
also remove considerable amounts of organic matter in the particulate form
and, hence, reduce the need for aeration later in the process.

	  

Figure 2.1: Layout of a typical wastewater treatment plant

2.1.1.2 The Biological Treatment Step

Traditionally, the aim of the biological treatment step has originally been
solely to remove organic matter. However, nowday many WWTP are also
designed for the biological removal of nitrogen and phosphorous. The most
common type of biological treatment step is based on the activated sludge
process. The simplest type of an activated sludge wastewater treatment sys-
tem is illustrated in Figure 2.2. The biological reactor contains a mixture
of microorganisms suspended in wastewater; called activated sludge. The
microorganisms degrade the content of organic matter in the wastewater
aerobically, i.e. when air is supplied to the biological reactor. To retain
the sludge in the system, the biological reactor is followed by a sedimenta-
tion unit that separates the clean effluent wastewater from the sludge. The
sludge is then recycled into the biological reactor. Due to the growth of the
microorganisms, sludge has to be removed from the system continuously via
the sludge outtake. In this simple system, the main control handles are:
aeration, sludge outtake and sludge recirculation. These variables should
be controlled to ensure a suitable treatment efficiency of the process, which
includes maintaining a correct amount of sludge in the system.

The Organic matter elimination process can be summarized in the fol-
lowing chemical reactions:
Energy:

Organic matter +O2
microorganisms−−−−−−−−−−→ CO2 +H2O + other products+energy

Synthesis: Organic matter +O2 + energy microorganisms−−−−−−−−−−→ new cells
Decay: Microorganisms +O2 → CO2 +H2O + energy

The nitrogen removal process is somehow more complicated, as the pro-
cess requires both aerobic and anoxic conditions. A simplified process di-



2.1. INTRODUCTION 15

	   Influent	  

Sludge	  outtake	  Sludge	  recirculation	  

Aeration	  

Effluent	  
Bioreactor	  

Figure 2.2: Simple activated sludge system

agram of the whole process can be seen in Figure 2.3. The first step is
an aerobic nitrification process where nitrifies (i.e. microorganisms able to
perform nitrification) convert ammonium to nitrate. This is followed by an
anoxic process, known as denitrification, where nitrate is converted to free
gaseous nitrogen, which leaves the water through the surface into the air.
For this process, the denitrifying microorganisms use easily biodegradable
organic matter.

Several types of wastewater treatment plants can perform the nitrogen
removal processes; see an overview in e.g. [28]. One of the most widespread
plant designs is the pre-denitrification system, which is depicted in Figure
2.4. To satisfy the need for easily degradable organic matter in the denitri-
fication process the denitrifying biological reactor is located first so, that it
can use the organic matter in the influent wastewater. To ensure the pres-
ence of nitrate in this reactor, the wastewater from the following nitrifying
biological reactor is recycled via the internal recirculation.

Figure 2.3: Nitrogen removal process

To maintain the sludge in the system there is also a sludge recirculation
stream, which further supplements the internal recirculation by recycling
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more nitrates to the denitrification biological reactor.

	   Influent	  

Sludge	  outtake	  Sludge	  
recirculation	  

Internal	  
recirculation	  

Effluent	  

	  
Aerobic	  
reactor	  

	  
Anoxic	  reactor	  

Figure 2.4: Pre-denitrification plant design

The main control handles in this process are: aeration, internal recircu-
lation, sludge outtake and sludge recirculation. The Nitrogen elimination
process can be summarized in the following chemical reactions, where the
two first ones are for nitrification and the last one for denitrification:

NH+
4 + 3

2O2
nitrosomonas−−−−−−−−→ NO−2 +H2O + 2H+ +New biomass

NO−2 + 1
2O2

nitrobacter−−−−−−−→ NO−3

NO−3 + 5
6CH3OH →

1
2N2 + 5

6CO2 + 7
6H2O +OH−

Finally, phosphorous removal can be performed biologically or chemically
by using advanced techniques [ref]. The chemical process is described later.
The enhanced biological phosphorous removal is a fairly new process in the
history of wastewater treatment. The process is performed by phospho-
rous accumulating organisms (PAOs). The PAOs release phosphate during
anaerobic conditions (i.e. neither nitrate nor dissolved oxygen present) and
take up phosphate during aerobic or anoxic conditions. As the uptake is
larger than the release, it leads to a net uptake of phosphorous.

The process depends on the presence of volatile fatty acids (VFA), which
are easily degradable organic matter. Wastewater treatment plant designs
for biological phosphorous removal are typically similar to designs with ni-
trogen removal. Additionally, the plants are supplied with an anaerobic
biological phosphorous release reactor (BIO-P reactor) preceding the nitro-
gen removal system, see Figure 2.5.

2.1.1.3 Sedimentation Process

In the biological treatment of wastewater, the sedimentation process enables
to separate the treated wastewater from the biomass sludge and produces
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Figure 2.5: Activated sludge system designed for biological phosphorous
removal

a clean treated effluent. In addition to clarification, secondary settler tanks
or clarifiers have the function of thickening the activated sludge for return-
ing it to the bioreactor and even the sludge. Settling problems are mainly
associated to hydraulic loads or sludge characteristics ( they arise from an
unbalanced composition of the bacterial community and from the excessive
proliferation of filamentous bacteria). Therefore, the identification and mon-
itoring of these bacteria are critical to estimate the settling capacity of the
activated sludge.

By all these reasons, secondary settling tanks have been considered es-
sential and often they can be limiting factors for good removal efficiencies
of the activated sludge system. T ákacs and assistants developed the first
model of settling process that can consider or not possible biological reac-
tions in the clarifier [29]. Simulation of sedimentation has enabled a better
understanding of the settling tanks.

2.1.1.4 The Chemical Treatment

Before the biological phosphorous removal process was developed, the com-
mon procedure to remove phosphorous was by chemical precipitation. This
is a well-proven technology that is still the dominating way of removing
phosphorous. The purpose of the chemical treatment step is the chemical
removal of phosphorous. The process consists of dosing of a chemical sub-
stance (typically an iron or aluminum salt) that binds phosphate molecules
and forms flocs that can be removed by sedimentation. Hence, the phos-
phorous is removed via a chemical sludge. The process is depicted in Figure
2.6.

For the chemical precipitation process to function, two reactors are
needed: a flocculation chamber where the chemicals are added and the flocs
are formed and a sedimentation unit, which separates the flocs from the
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water. The precipitation process may take place at several locations in the
wastewater treatment plant. In pre-precipitation plants, the process is car-
ried out in the mechanical pre-treatment step. In simultaneous precipitation
the precipitation is performed in the biological step and in post-precipitation
plants the process is carried out in a separate chemical step following the
biological step. These are the basic options, but others exist. Often a com-
bination of two of these structures is used.

	  

Figure 2.6: The process of phosphorous precipitation

2.1.1.5 The Sludge Treatment

The purpose of the sludge treatment step is to prepare the sludge for end
disposal. Anaerobic digestion is probably one of the most used processes
for reducing the amount of sludge. At the same time, the digestion process
produces gas, providing a significant source of energy, which is usually used
at the WWTP. Sludge treatment also includes various dewatering processes,
which reduce weight and volume of the sludge. Sludge treatment is gaining
in importance as it becomes increasingly difficult to dispose of the sludge.
Sludge disposal is in many countries becoming one of the largest costs of
wastewater treatment.

2.1.2 Management of Environmental Processes

Environmental processes are complex systems, involving many interactions
between physical, chemical and biological processes, e.g. chemical or bio-
logical reactions, kinetics, catalysis, transport phenomena, separations, etc.
The successful management of these systems requires multi-disciplinary ap-
proaches and expertise from different social and scientific fields. Some of the
problematic and special features of environmental processes are described
below [30].
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• Intrinsic unsteadiness: most of the chemical and physical properties as
well as the population of microorganisms (both in total quantity and
number of species) involved in environmental processes do not remain
constant over time. For example, in the WWTP, the characteristics
of the influent can be highly variable both in quantity (flow rate)
and in quality (concentrations) and there are different changing inter-
relations between substrates and microorganisms. This means that
the often-assumed stability of these systems is wrong in many cases
[31, 32].

• Ill-structured domain: environmental systems are poor or ill structured
domain, that is, they involve knowledge difficult to clearly formulate
due to its high complexity.

• Uncertainty and imprecision of data: many environmental systems
are stochastic. The parameters used in models defining such processes
are usually uncertain, and their operational ranges are only known
approximately. Most of the information available in environmental
processes involving biological reactions is qualitative and difficult to
translate into numerical values. In the case of WWTP, there is a
complex population community that evolves with time since it adapts
to the process and influent characteristics.

• Huge quantity of data/information: the application of current com-
puter technology to the control and supervisory elements for these
environmental systems has led to a significant increase of amount of
data acquired (improved SCADA equipment enables to acquire large
quantities of data). However, such an increase in frequency, quality,
quantity or diversification (quantitative as well as qualitative) of data
of the same process not always corresponds to a similar increase in the
process understanding and improvement.

• Heterogeneity and scale: because of the media in which environmental
processes take place are not homogeneous and cannot easily be char-
acterized by measurable parameters, data is often heterogeneous. For
environmental real world problem, data comes from numerous sources,
in different format, frequency and quality. In addition to the special
features of environmental systems already explained, WWTP, espe-
cially biological processes, have additional particular features from of
control that viewpoint make them even more difficult to control and
supervise using a single conventional strategy, with respect to any
other environmental process.
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2.2 Models of activated sludge processes

In this section the mathematical models of the activated sludge process that
will be considered in this thesis are described. The models will be used
for control design as well as for testing the different methodologies. This
section starts with a reduced model for organic matter removal, followed by
two models for nitrogen and substrate removal.

2.2.1 Mathematical model for organic matter removal (M1)

The plant layout for M1 constituted by a bioreactor and a settler. The aer-
ator is a well-stirred composed where suspended micro-organisms biochem-
ically degrade the dissolved substrate. The suspended micro-organisms are
separated completely in the secondary settler. A portion of the concentrated
biomass is recycled to the bioreactor (see figure 2.7).

	  

 

Sludge  recycling 

Aerated basin Settler Waste water Treated Water 

Excess sluge removal 

Figure 2.7: Schematic view of an activated sludge process.

The first nonlinear mathematical model considered is described here, and
it will be denominated as M1.

The main characteristics and assumptions are the following:

• Assumptions:

– A dissolved oxygen concentration denoted as (c)
– A single homogeneous population of micro-organisms (x).
– One soluble organic substrate (s).
– A single biological process: bacterial growth and organic degra-

dation. The biological kinetic is modeled by φa(s, c, x) = µ(.)
where µ(.) is the specific growth rate, that may depend on s, c,
x and other external factors.

– The aeration mechanism affects the dynamics of the bioreactor.
– The mechanisms of sedimentation of sludge under the influence

of gravity are negligible.
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– The concentration of soluble substances in the compression zone
of the sludge is negligible.

– The volumes of aeration tanks and sedimentation are assumed
constant.

– The concentration of micro-organisms in the influent is negligible.
– The concentration of oxygen dissolved in the influent is negligible.
– The soluble concentrations in the recycling flow and the concen-

trations of suspended particles in the effluent are supposed to be
negligible

• Equations

The dynamic equations of the model M1 can be described as follow:

ẋ = µ(.)x− (1 + qr(t))D(t)x+ qrD(t)xr
ṡ = −µ(.)x− (1 + qr(t))D(t)s+D(t)sin(t)

ċ = −µ(.)x
Yc
− (1 + qr(t))D(t)c+KLa(cs − c)

ẋr = ωe2(1 + qr(t))D(t)x− ωe2(qp(t) + qr(t))D(t)xr

(2.1)

Where:

• The termKLa(cs−c) is related to aeration of the bioreactor and defines
the transfer of oxygen between the gas and liquid phases.

• cs is the maximum dissolved oxygen concentration.

• The state variables are defined and summarized in table 2.1.

• µ(t) corresponds to the biomass specific growth rate. It assumed to
follow the Olsson model [33]:

µ(t) = µmax
s(t)

Ks + s(t)
c(t)

Kc + c(t) (2.2)

where µmax is the maximum specific growth rate, Ks is the affinity
constant and Kc is the saturation constant.

• D(t) is the dilution rate.

• qr and qp represent the ratio of recycled flow to influent flow and the
ratio of waste flow to influent flow.

• KLa represents the oxygen mass transfer coefficient.

• sin corresponds to the influent substrate concentration.
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Table 2.1: State variables for M1

State Variable State Symbol Units
Biomass x mg/l
Substrate s mg/l
recycled biomass xr mg/l
Dissolved oxygen c mg/l

• Ys and Yc are constants yields coefficients.

• Value of plant parameters.

For the simulation of the equations of the model (M1), typical values of
the model parameters and initial conditions are based on data available in
literature [34, 35, 36] and summarized in the table 2.2.

Table 2.2: Typical values of process and kinetic parameters

Parameters/Functions Values/Expression Units
Specific growth rate µ(t) = µmax

s
Ks+s

c
Kc+c

Kinetics parameters µmax = 0.2 h−1

Ks = 75 mg/l
Kc = 2 mg/l

Stoichiometric parameters Ys = 1.8
Ys = 0.8

Operational parameters ωe2 = 2
qr = 1
qp = 0.05

Process inputs D = 0.4 h−1

KLa = 1.8 h−1

Initial conditions s(0) = 20 mg/l
x(0) = 1225 mg/l
xr(0) = 2333 mg/l
c(0) = 6 mg/l

2.2.2 The mathematical model M2 obtained by simplifica-
tion of ASM1

A simplification of the ASM1 (Activated Sludge Model 1) is considered here
for the removal of carbonaceous and nitrogen materials and it will be de-
noted M2. Consists of an anoxic basin followed by an aerated one, and a
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settler (Fig.2.8). In the presence of dissolved oxygen, the wastewater, is
biodegraded in the reactor. Treated effluent is separated from the sludge in
the secondary settler and fraction is returned to anoxic reactor to maintain
the appropriate substrate-to-biomass ratio [37].

In this model, we consider six basic state variables in each reactor, to-
gether with the concentration of biomass in the settler (Table 2.3) .

In the formulation of the model M2 the following assumptions are
considered:

– the physical properties of fluid are constant;

– there is no concentration gradient across the reactors and settler;

– substrates and dissolved oxygen are considered as a rate-limiting
with a Monod-type kinetic;

– no bio-reaction takes place in the settler.

Based on the above description and assumptions, the full set of ordinary
differential equations (mass balance equations), can be formulated.
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Figure 2.8: General layout for M2 oplant.

The mathematical model consists of the following equations obtained
from mass balances, where the numerical values of the parameters, dimen-
sions and characteristics of the influent are defined in Tables 2.4 and 2.5.

• Modeling of the aerated basin:
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Table 2.3: State variables of M2

Description Units Variables
XA,nit mg/l autotroph biomass in the aerated tank
XH,nit mg/l heterotroph biomass in the aerated tank
SS,nit mg/l substrate in the aerated tank
SNH,nit mg/l ammonium in the aerated tank
SNO,nit mg/l nitrate in the aerated tank
SO,nit mg/l oxygen in the aerated tank
XA,denit mg/l autotroph biomass in the anoxic tank
XH,denit mg/l heterotroph biomass in the anoxic tank
SS,denit mg/l substrate in the anoxic tank
SNH,denit mg/l ammonium in the anoxic tank
SNO,denit mg/l nitrate in the anoxic tank
SO,denit mg/l oxygen in the anoxic tank
Xrec mg/l recycled biomass

Table 2.4: Process characteristics

Variables Value Description
Vnit 1000 m3 volume of nitrification basin
Vdenit 250 m3 volume of nitrification basin
Vdec 1250 m3 volume of of settler
Qin 3000 m3/j influent flow rate
Qr1 2955 m3/j recycled flow rate
Qr2 1500 m3/j internal recycled flow rate
Qw 45 m3/j waste flow rate
XA,in 0 mg/l autotrophs in the influent
XH,in 30 mg/l heterotrophs in the influent
SS,in 200 mg/l substrate in the influent
SNH,in 30 mg/l ammonium in the influent
SNO,in 2 mg/l nitrate in the influent
SO,in 0 mg/l oxygen in the influent
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Table 2.5: Kinetic parameters and stoichiometric coefficients of M2.

Parameter Value Description
YA 0.24 yield of autotroph mass
YH 0.67 yield of heterotroph mass
ixb 0.086
KS 20 mg/l affinity constant
KNH,A 1 mg/l affinity constant
KNH,H 0.05 mg/l affinity constant
KNO 0.5 mg/l affinity constant
KO,A 0.4 mg/l affinity constant
KO,H 0.2 mg/l affinity constant
µAmax 0.8 l/j maximum specific growth rate
µHmax 0.6 l/j maximum specific growth rate
bA 0.2 l/j decay coefficient of autotrophs
bH 0.68 l/j decay coefficient of heterotrophs
ηNO 0.8 l/j correction factor for anoxic growth

ẊA,nit(t) = (1 + r1 + r2)Dnit (XA,denit −XA,nit) + (µA,nit − bA)XA,nit

ẊH,nit(t) = (1 + r1 + r2)Dnit (XH,denit −XH,nit) + (µH,nit − bH)XH,nit

ṠS,nit(t) = (1 + r1 + r2)Dnit (SS,denit − SS,nit) + (µH,nit + µHa,nit)XH,nit/YH

ṠNH,nit(t) = (1 + r1 + r2)Dnit (SNH,denit − SNH,nit) +
(
ixb + 1

YA

)
µA,nitXA,nit

− (µH,nit + µHa,nit) ixbXH,nit

ṠNO,nit(t) = (1 + r1 + r2)Dnit (SNO,denit − SNO,nit) + µA,nit
XA,nit

YA

− 4.57− YA
2.86YA

µHa,nitXH,nit

ṠO,nit(t) = (1 + r1 + r2)Dnit (SO,denit − SO,nit) + a0Qair(CS − SO,nit)

− 4.57− YA
YA

µHa,nitXH,nit −
1− YH
YH

µHa, nitXH,nit

(2.3)

• Modeling of the anoxic basin:
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ẊA,denit(t) = Ddenit(XA,in + r1XA,nit)− (1 + r1 + r2)DdenitXA,denit

+ αr2DdenitXrec + (µA,denit − bA)XA,denit

ẊH,denit(t) = Ddenit(XH,in + r1XH,nit)− (1 + r1 + r2)DdenitXH,denit

+ (1− α)r2DdenitXrec + (µH,denit − bH)XH,denit

ṠS,denit(t) = −(µH,denit−µHa,denit
)XH,denit

YH
− (1 + r1 + r2)DdenitSS,denit

+Ddenit(SS,in − r1SS,nit)
ṠNH,denit(t) = Ddenit(SNH,in − r1SNH,nit)− (1 + r1 + r2)DdenitSNH,denit

− (ixb + 1/YA)µA,denitXA,denit − (µH,denit + µHa,denit) ixbXH,denit

ṠNO,denit(t) = Ddenit(SNO,in − r1SNO,nit)− (1 + r1 + r2)DdenitSNO,denit

+ µA,denitXA,denit

YA
− 1− YH

2.86YH
µHa,denitXH,denit

(2.4)

• Modeling of the settler

Ẋrec = (1 + r2)Ddec(XA,nit +XH,nit)− (r2 + w)DdecXrec (2.5)
Where the growth rates of autotrophs, heterotrophs and in both aerobic and
anoxic conditions are defined as follow:



µA,nit = µA,max.
SNH,nit

(KNH,A+SNH,nit) .
SO,nit

(KO,A+SO,nit)

µH,nit = µH,max.
SS,nit

(KS+SS,nit) .
SNH,nit

(KNH,H+SNH,nit) .
SO,nit

(KO,H+SO,nit)

µHa,nit = µH,max.
SS,nit

(KS+SS,nit) .
SNH,nit

(KNH,H+SNH,nit) .
KO,H

(KO,H+SO,nit) .

SNO,nit

(KNO+SNO,nit) .ηNO

µA,denit = µA,max.
SNH,denit

(KNH,A+SNH,denit)
µH,denit = µH,max.

SS,denit

(KS+SS,denit) .
SNH,denit

(KNH,H+SNH,denit)
µHa,denit = µH,max.

SS,denit

(KS+SS,denit) .
SNH,denit

(KNH,H+SNH,denit) .
SNO,denit

(KNO+SNO,denit) .ηNO

Other variables r1,r2 and w, that represent respectively, the ratio of the
internal recycled flow Qr1 to influent flow Qin, the ratio of the recycled flow
Qr2 to the influent flow and the ratio of purge flow Qp, CS is the maximum
dissolved oxygen concentration. Dnit, Ddenit and Ddec are the dilution rates
of nitrification, denitrification basins and settler tank respectively, Xrec is
the concentration of the recycled biomass.

2.2.3 The mathematical model M3 obtained by simplifica-
tion of BSM1

• The standard simulation platform BSM1
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The idea to produce a standardized ’simulation benchmark’ was first de-
vised and developed by the first IAWQ Task Group on Respirometry-Based
Control of the Activated Sludge Process [38]. This original benchmark was
subsequently modified by the European Cooperation in the field of Scientific
and Technical Research (COST) 682/624 Actions in co-operation with the
second IWA Respirometry Task Group [39, 40, 41]. In an attempt to stan-
dardize the simulation procedure and the evaluation of all types of control
strategies, the two groups have jointly developed a consistent simulation
protocol.

The ’simulation benchmark’ plant design is comprised of five reactors in
series with a 10-layer secondary settling tank. Figure 2.9 shows a schematic
representation of the layout. The tanks 1 and 2 are 1000m3 each, unaerated
and fully mixed. The tanks 4, 5 and 6 are 1333m3 each and aerated.

	  
 

Figure 2.9: Schematic representation of the BSM1.

Other layout characteristic are:

– DO saturation in tanks 3, 4 and 5 of 8gO2/m
3

– a non-reactive secondary settler with a volume of 6000m3 (area
of 1500m2 and a depth of 4m) subdivided into 10 layers

– a feed point to the settler at 2.2m from the bottom (i.e. feed
enters the settler in the middle of the sixth layer)

– two recycles:
∗ nitrate internal recycle from the 5th to the 1st tank
∗ Activated sludge recycle from the underflow of the secondary
settler to the front end of the plant

– Activated sludge wastage is pumped continuously from the sec-
ondary settler underflow
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The physical attributes of the biological reactors and the settler are listed
in Table 2.6 and a selection of system variables are listed in Table 2.7.

Table 2.6: Physical attributes of the biological reactors and settling tank for
the COST ’simulation benchmark’ process configuration.

Physical configuration Units
Volume-Tnak 1 1000 m3

Volume-Tnak 2 1000 m3

Volume-Tnak 3 1333 m3

Volume-Tnak 4 1333 m3

Volume-Tnak 5 1333 m3

Depth-Settler 4 m

Area-Settler 1500 m2

Volume-Settler 6000 m3

Table 2.7: A selection of system variables.

Default System Units
Flow Rates

Influent flow rate 18446 m3day−1

Recycle flow rate 18446 m3day−1

Internal recycle flow rate 55338 m3day−1

Wastage flow rate 385 m3day−1

KLa-Tank 1 n/a −
KLa-Tank 2 n/a −
KLa-Tank 3 10 h−1

KLa-Tank 4 10 h−1

KLa-Tank 5 3.5 h−1

The ’simulation benchmark’ has 13 states variables and 8 processes. This
model representation is included here only as a reference only. A complete
description of the model and its development are available elsewhere [42].
Table 2.8 lists the BSM1 state variables, the associated symbols and the
state variable units.

• Simplification of BSM1

A simplified version of BSM1 in [43, 44] is described here, where only sig-
nificant variables are taken into account on an average time scale. Slower
processes, generally related to insoluble compounds such as hydrolysis and
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Table 2.8: State variables for BSM1

State Variable Description State Symbol Units
Soluble inert organic matter SI gCOD/m3

Readily biodegradable substrate SS gCOD/m3

Particulate inert organic matter XI gCOD/m3

Slowly biodegradable substrate XS gCOD/m3

Active heterotrophic biomass XB,H gCOD/m3

Active autotrophic biomass XB,A gCOD/m3

Particulate products arising XP gCOD/m3

from biomass decay
Oxygen SO gCOD/m3

Nitrate and nitrite nitrogen SNO gN/m3

NH+
4 +NH3 nitrogen SNH gN/m3

Soluble biodegradable organic nitrogen SND gN/m3

Particulate biodegradable organic nitrogen XND gN/m3

Alkalinity SALK mol/L

ammonification of organic nitrogen, are not considered and it is assumed
that heterotrophic and autotrophic biomass does not vary, so that the num-
ber of states in each reactor is reduced from 13 to 4.

In this simplification of the BSM1, the complete system is reduced to
one anoxic and one aerobic reactor, with a volume equivalent to the total
volume of the Benchmark’s anoxic and aerobic compartments (figure 2.10).
it is assumed that the denitrification process only take place in the anoxic
tank and the denitrification process occurs only in the aerated tank. The
settler is approximated by a mixing point and the external reflux is assumed
to be constant.
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Figure 2.10: Schematic representation of the plant M3.

By simplifying the equations representing the mass balances, reaction
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rates and biological processes involved in BSM1, we obtain the set of differ-
ential equations for the simplified model M3, where the index 1 is referred
to the anoxic tank and the index 2 is referred to the aerobic tank.

• Anoxic reactor:

ṠNH1 = 1
V1

[QinSNHin +QaSNH2 − (Qin +Qa)SNH1]− ixbρ11 − ixbρ21

− (ixb + 1
YA

)ρ31

ṠNO1 = 1
V1

[QaSNO2 − (Qin +Qa)SNO1]− 1− YH
2.86YH

ρ21 + 1
YA

ρ31

ṠS1 = 1
V1

[QinSSin +QaSS2 − (Qin +Qa)SS1]− 1
YH

ρ11 −
1
YH

ρ21

ṠO1 = 1
V1

[QaSO2 − (Qin +Qa)SO1]− 1− YH
YH

ρ11 − (4.57
YA

+ 1)ρ31

(2.6)

• Aerobic reactor:

ṠNH2 = 1
V2

[(Qin +Qa)(SNH1 − SNH2)]− ixbρ12 − (ixb + 1
YA

)ρ32

ṠNO2 = 1
V2

[(Qin +Qa)(SNO1 − SNO2)]− 1− YH
2.86YA

ρ22 + 1
YA

ρ32

ṠS2 = 1
V2

[(Qin +Qa)(SS1 − SS2)]− 1
YH

ρ12 −
1
YH

ρ22

ṠO2 = 1
V2

[(Qin +Qa)(SO1 − SO2)]− 1− YH
YH

ρ12 −
4.57− YA

YA
ρ32

+KLa(SO,Sat − SO2)

(2.7)

In the first reactor, the anoxic growth of heterotrophic biomass is the
main biological process, related to denitrification:

ρ21 = µH .(
SS1

KS + SS1
).( KO,H

KO,H + SO1
).( SNO1
KNO + SS1

)ηgXB,H (2.8)

In the second reactor, where there is a higher concentration of oxygen,
the aerobic growths of heterotrophic and autotrophic biomass are considered,
related to nitrification:

ρ12 = µH .(
SS2

KS + SS2
).( SO2
KO,H + SO2

).XB,H

ρ3(2) = µA.(
SNH2

KNH + SNH2
).( SO2
KO,A + SO2

).XB,A

(2.9)

The rest of processes ρ are assumed to be zero in equations (2.7) and (2.8).
The definitions of the state variables are given in table2.9. The defini-

tions of kinetic and physical parameters are presented in tables 2.10 and
2.11, their values are the same as for BSM1 [41].
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Table 2.9: List of state variables of M3.

Notation Definition Unit
SNH NH4 +NH3 concentration grN/m3

SNO Nitrate and nitrite concentration grN/m3

SS Readily biodegradable substrate grCOD/m3

concentration
SO Dissolved oxygen concentration gr/m3

Table 2.10: Process characteristics.

Notation Definition
Qin Influent flow rate
SS,in Influent organic matter concentration
SNH,in Influent ammonium compounds concentration
Qa Internal recycle flow
KLa oxygen transfer coefficient
V1 Anoxic reactor volume
V2 Aerobic reactor volume

Table 2.11: Kinetic parameters and stoichiometric coefficient characteristics.

Notation Definition
SO,sat Oxygen saturation concentration
µH Heterotrophic max. specific growth rate
KS Half saturation coefficient for heterotrophs
KO,H Oxygen saturation coefficient for heterotrophs
KNH Ammonia saturation coefficient for heterotrophs
KO,A Oxygen saturation coefficient for autotrophs
YH Heterotrophic yield
YA Autotrophic yield
ixb Nitrogen fraction in biomass
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2.3 Operating conditions

2.3.1 Influent load and disturbances

The activated sludge process is subjected to strong perturbations in the flow
and the concentration of organic matter and other pollutants in the influent.
As a result the plant is usually in a transient state, the quality of the effluent
is deteriorated and it is difficult to achieve steady state operation.One of
the main control objective is to satisfy the requirements on the quality of
the effluent, therefore to reject the disturbances and to achieve an efficient
operation at the lowest cost is very important.

In order to test the performance of control strategy in different situations,
theBSM1 provides standardized influent data considering different weather
situations. In this work, data for 336 hours, corresponding to 2 weeks are
considered, with a sampling period of 0.25h(= 15min). Figures (2.11), (2.12)
and (2.13) present the profiles for stormy weather.

Figure 2.11: Influent flow Qin for stormy weather.

2.3.2 Manipulated variables

For the modelM1 the manipulated variables are the dilution rate D and the
mass transfer coefficient KLa and the two manipulated variables forM2 and
M3 are the internal recycle flow rate Qa and the mass transfer coefficients
KLa.

2.3.3 Outputs

For the model M1 the control objective is to make the system outputs
that are the residual substrate (s) and the dissolved oxygen (c) to track
the set point. For M2 and M3 the controlled variables are the SO in the
second bioreactor and nitrate SNO levels in the first unit of the bioreactor.
Five effluent variables - the ammonium concentration, the concentration of



2.3. OPERATING CONDITIONS 33

Figure 2.12: Concentration of organic matter in the influent Ssin for stormy
weather.

Figure 2.13: Concentration of ammonium compounds in the influent SNHin

for stormy weather.

suspended solids, the BOD5, the COD and the total nitrogen are used to
demonstrate the performance of the control system.

2.3.4 Bounds

The limits on the effluent for ammonium (SNH,e) concentration, total nitro-
gen (Ntot,e) concentration, suspended solid (SS,e) concentration, biological
oxygen demand over a 5-day period (BOD5,e) and (CODe) are given Table
2.12.

2.3.5 Performance indices

The measures used to characterize the effluent quality and energy usage are
the standard performance indices recommended in the BSM1 platform for
the evaluation of control strategies applied to WWTPs. Therefore, the pa-
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Table 2.12: Bounds of the effluent concentrations.

Effluent Qualities Upper Bound Unit
SNH 4 mg/l
SNO 10 mg/l
Ntot 18 mg/l
TSS 30 mg/l
COD 100 mg/l
KLa 200 d−1

Qa 3850 m3/d

rameters related to the effluent quality and other characteristics of the pro-
cess are expressed in terms of certain composite variables such as chemical
oxygen demand (COD), biological oxygen demand (BOD), total nitrogen
(Ntot) and total production of sludge (TSS) [43]:

COD = (SI + SS +XI +XS +XB,A +XB,H +XP ) gCOD/m3

BOD = 0.25((SS +XS) + (1− 0.08)(XB,A +XB,H)) gCOD/m3

Ntot = SNH + SND +XND + ixb(XB,H +XB,A) + ixp(XP +XI) gN/m3

TSS = 0.75(XS +XI +XP +XB,A +XB,H) gSS/m3

(2.10)

There are also some dynamic effluent quality indices such as the integral
square error (ISE) and the effluent quality (EQ) defined in the BSM1
model for wastewater treatment.

First of all, EQ (Kgpollution/d) is considered as a direct and important
indicator of the performance of the control systems as well as the entire
wastewater treatment plant. For the BSM1, it is defined as a daily average
of a weighted summation of the concentration of different compounds in the
effluent over a certain time period T :

EQ = 1
1000T

∫ t0+T

t0
(2TSSe(t) + CODe(t) + 30Ntot(t)

+ 10SNO(t) + 2BODe(t))Qe(t)dt
(2.11)

With the concentrations measured in the effluent (denoted with the subscript
e), expressed in g/m3 and the flow rate in m3/d.

As for the energy consumption, the total average pumping energy ex-
pressed in KWh/day (PE) over a certain period of time, T , depends di-
rectly on the internal recirculation flaw rate Qa and is calculated as [41]:

PE = 0.04
T

∫ t0+T

t0
(Qr(t) +Qa(t) +Qw(t))dt (2.12)
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Where Qr denotes the return sludge flow rate and Qw the excess sludge flow
rate, both in units of m3/day.

The aeration energy (AE) in KWh/day required to aerate the last three
comportments can in turn be written as:

AE = 24
T

∫ t0+T

t0
(0.4032KLa(t)2 + 7.8408KLa(t))dt (2.13)

Where KLak
is the oxygen transfer function in the kth aerated tank in units

of h−1.

2.4 Description of the control problem
WWTP are large nonlinear systems subject to significant perturbations in
flow and load, together with variation in the composition of the incoming
wastewater. Nevertheless, these plants have to be operated continuously,
meeting strict regulations. The tight effluent requirements defined by the
European Union (European Directive 91/271 ”Urban wastewater”) become
effective in 2005 and this have increased both operational costs and economic
penalties. Many control strategies have been proposed in the literature but
their evaluation and comparison, either practical or based on simulation is
difficult. This is partly due to the variability of the influent, to the com-
plexity of the biological and biochemical phenomena and to the large range
of time constants (from a few minutes to several days) but also to the lack
of standard evaluation criteria (among other things, due to region specific
effluent requirements and cost levels). In addition, the microorganisms that
are involved in the process and their adaptive behavior coupled with nonlin-
ear dynamics of the system make the WWTP to be really challenging from
the control point of view [45, 46, 47].

The main control objective in the activated sludge process is to maintain
the quality of the effluent within limits defined by the current legislation,
which implies the design of a control system that guarantees a good rejection
of the disturbances in the influent. The conditions of the influent vary
depending on the hour or the day of the week as seen in the previous point,
and the plant must try to keep the quality of the effluent constant despite
these strong variations in the influent. Likewise, as in any industrial plant,
another primary objective is the minimization of operating costs, which are
mainly pumping and aeration costs. In addition, some other important
reasons of requirement of advanced control strategies are:

• The increased public awareness as reflected in more stringent regula-
tions is an efficient driving force,

• Economic motivation: There exists a lack of fundamental knowledge
concerning benefits versus costs of automated treatment processes. In
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addition, WWTP processes are not productive and automation can
only contribute to a decrease of operating costs but does not directly
lead to increased profit,

• Rejection of large process disturbances, e.g. large variations in the
load to the plant requires monitoring and process control.

Some other specific features of this process that hinder its control, re-
gardless of the strategy used, are the following [48]:

• Existence of a large amount of residual water to be treated daily.

• The interaction between the different variables is large due to internal
recirculation.

• Existence of few manipulatable variables for the control, and the dif-
ficulty in measuring certain variables of interest.

• The need to maintain continuously the effluent specifications to mini-
mize environmental impact.

For all this, traditionally the implementation of the control system is not im-
plemented and simply operates in an open loop. This way of operating leads
in the best case to the design of oversized plants and high costs of operation,
without obtaining guarantees on the quality of the effluent. However, in the
literature, numerous control strategies have been proposed for the activated
sludge process [49, 50].
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Figure 2.14: Schematic representation of the plant M3.

The control problems raised depend obviously on the model of the pro-
cess considered. In the most simplified model corresponding to plant M1
(figure 2.7), the objective is to investigate the problem of regulating the
process states (s, c) around a specific set points (s∗, c∗) under the following
five assumptions:
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• The dilution rate D(t) and the oxygen transfer coefficient KLa are the
two control variables, which are bounded.

• The biomass, substrate and recycled biomass concentrations (x(t), s(t), xr(t))
are unavailable on-line.

• A noisy measure of the dissolved oxygen concentration c is available.

With regard to nitrogen control in plant M2 (Figure 2.8), the objective
is to maintain the concentration of nitrites and nitrates in the anoxic tank
(SNO1) below certain legal limits and to regulate the dissolved oxygen con-
centration in the aerated tank (SO2), despite of the incoming disturbances.
The manipulated variables used are the internal recirculation flow (Qa) and
aeration in the aerated tank, namely through the oxygen transfer coefficient
(KLa) ([41, 51]). The external recirculation flow rate remains constant in
the chosen control configuration. In the plant M3 corresponding to the
simplified BSM1, the control problem is analogous.

2.5 Conclusions
This chapter describes the process of activated sludge in a WWTP, detail-
ing the simple mathematical model for removal of organic matter (M1) and
two more complex models that include the nitrification and denitrification
processes for nitrogen removal, such as the simplified model of ASM1 (M2)
and the simplification of BSM1 which gives M3. It is a non-linear biologi-
cal process with complicated dynamics, which makes its consideration very
important for study and design of advanced control methodology.

The operation of the process begins with a description of the typical
perturbations that affect the process, following with a description of some
dynamic quality indexes associated with this particular process, defined in
the BSM1 simulation platform, such as the effluent quality index ( EQ),
pumping and aeration energies and other generals such as ISE.

The control problem, which consists of maintaining the quality of the
effluent despite of the disturbances and with a reasonable energy consump-
tion in pumps and aeration turbines, has also been described. In particular,
considering plantM1, the control objective is the regulation of the substrate
and the oxygen around a specifics set points manipulating the dilution rate
and aeration flow rate. For plants M2 and M3, the objective is to maintain
the concentration of nitrites and nitrates in the anoxic zone below certain
limit and regulate the dissolved oxygen concentration in the aerated zone.
The manipulated variables in this case are the internal recirculation flow
rate and the oxygen transfer coefficient.
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3

PRELIMINARY
CONCEPTS

3.1 Introduction

The purpose of this chapter is to present some theoretical notions and some
tools that we will use later. First we detail the problem of stability of
constrained linear systems. We define in particular the notion of Lyapunov
function and the domain of attraction of the equilibrium. We then present
the notion of positive invariance. We conclude this chapter by presenting
some basics of predictive control.

3.2 Background on Analysis of linear Systems

3.2.1 Notation

For a scalar a ∈ R we define a+ = sup(a, 0), a− = sup(−a, 0). For a vector
x ∈ Rn we define x+ = (x+

j ) and x− = (x−j ) for j = 1, ..., n. Furthermore,
for a matrix A = (a)ij , i, j = 1, ..., n, the tilde transform is defined by

Ã =
(
A+ A−

A− A+

)
,

where A+ = (a+)ij and A− = (a−)ij , i, j = 1, ..., n.

Moreover, σ(A) denotes the spectrum of matrix A, Ds denotes the sta-
bility domain for eigenvalues and R∗+ denotes the set of real numbers strictly
positive.

39
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3.2.2 Dynamic system constrained in state space represen-
tation

Let the stationary dynamic system, in continuous time, be described by a
vectorial differential equation of the type:

ẋ(t) = f(x(t), u(t)), t ∈ [0,∞) (3.1)

where f : Rn → Rn it is a continuous vector function, x ∈ X and u ∈ U . If
X ≡ Rn and U ≡ Rn, the dynamic system is said to be unconstrained.

Considiring a control law u : Rn → Rm defined by:

u(t) = g(x(t)) (3.2)

The closed loop system is represented by:

ẋ(t) = f(x(t), g(x(t))),
= h(x(t)), t ∈ [0,∞)

(3.3)

Let φ(t, x(t0), t0) be the transition function or trajectory of the closed-loop
system 3.3. It shows how the state x(t0) at time t0, evolve in time to reach
x(t) at time t > t0. With no loss of generality, suppose that t0 = 0. Thus,

φ(t, x(0), 0) = φ(t, x0)
where x(0) = x0

If X ⊂ Rn is defined by a subset of of constraints applied to the state vector,
x ∈ X , and/or U ⊂ Um is defined by a subset of constraints applied to input
vector u ∈ U , thus the dynamic system (3.3) is a constrained system.

In a large majority of practical constrained control problems, these define
convex polyhedral sets in the state and/or control space.

Definition 3.1 (Convex set) A subset C ⊂ Rn is convex if and only if

∀x ∈ C, ∀y ∈ C (1− λ)x+ λy ∈ C ∀λ ∈]0, 1[ (3.4)

Properties:

• The intersection of an arbitrary convex collection of sets is a convex
set.

• Given any system of linear equations and inequality in n variables, the
set C of solutions is a convex set in Rn.

Definition 3.2 (Convex polyhedral) Any non-empty convex polyhedral of
Rn can be characterized by a matrix G ∈ Rq×n and a vector w ∈ Rq. It is
defined by:

R[G,w] = {x ∈ Rn such as Gx ≤ w}, (3.5)
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Consider then the constraints on the state vector of system (3.1). In
general, the polyhedral of constraints is defined around an operating point
of the dynamic system 3.1, and often it can be written in a symmetrical
or asymmetrically form with respect to the origin (X ≡ L(F, v) ou X ≡
L(F, vM , vm)).
Definition 3.3 (Symmetric polyhedral) A symmetric polyhedron L(F, v) is
defined by (Fig3.1a):

L(F, v) = x ∈ Rn such as Fx 6 v (3.6)

where F ∈ Rq×n, v ∈ Rq with v > 0

Definition 3.4 (Asymmetric polyhedral) A asymmetric polyhedron L(F, vM , vm)
os defined by (Fig3.1b):

L(F, vM , vm) = x ∈ Rn such as − vm 6 Fx 6 vM (3.7)

where F ∈ Rq×n, vM , vm ∈ Rq with vM , vm > 0

Figure 3.1: -(a) Symmetric polyhedral -(b) Asymmetric polyhedral.

3.2.3 Positive invariance and stability

The characterization of positive invariance of a subset of the state space of
a dynamical system is very important for both the stability analysis and the
design of constrained controllers [52, 53, 54]. For linear systems, positively
invariant sets with ’quadratic’ boundary can be obtained by the derivation
of a quadratic Lyapunov function.

Indeed, the positive invariance of a closed set of states of a given dynamic
system ensures that all the trajectories starting from this set remain in this
set. Thus, this property can be used to calculate stabilizing control laws
and such that the system (3.3) admits positively invariant sets inside the
domain generated by constraints. So if the initial states of the system are
constrained to belong within the invariant domain, then the trajectories
emanating from these states respect the constraints.
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3.2.3.1 Positively invariant set

Let D ⊂ Rn be a non-empty set of the state space. The set of trajectories
of (3.3) starting from D is denoted by:

φ(t,D) = φ(t, x0) such as x0 ∈ D (3.8)

We then present the definition of positively invariant set, which will be
used later.

Definition 3.5 Positively invariant set
The closed nonempty set D is a positively invariant set of system (3.3) if

for any initial condition belonging to the set D, the corresponding trajectories
remain in D. In other words, the dynamic system (3.3) has the property:

φ(t,D) ⊆ D, ∀t > 0. (3.9)

3.2.3.2 Stability of dynamic systems

The stability of a system is the ability of the system to return to its equilib-
rium point when it is slightly perturbed. For all control systems, stability
is the primary requirement. One of the most widely used stability concepts
in control theory is that of Lyapunov stability, which we employ throughout
the manuscript. In this section we briefly review basic facts from Lyapunov’s
stability theory. To begin with, we note that Lyapunov stability and asymp-
totic stability are properties not of a dynamical system as a whole, but rather
of its individual solutions.

Definition 3.6 (Equilibrium point)
A vector xe ∈ Rn is called a point or state of equilibrium of (3.3) if and

only if :
f(xe) = 0

Remark 3.1 Any point of equilibrium can be reduced to the origin by a
simple change of variable x− xe → x.

For convenience, we state all definitions and theorems for the case when the
equilibrium point is at the origin of Rn; that is, xe = 0. There is no loss of
generality in doing so since any equilibrium point under investigation can
be translated to the origin via a change of variables.

Definition 3.7 The equilibrium state of system (3.3) is:

• Stable if for every ε > 0 there exists a r = r(ε) such as:

||x(t = 0)|| < r ⇒ ||x(t)|| < ε, ∀t > 0.
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• Unstable, if it is not stable.

• Asymptotically stable if it is stable and r can be chosen so that:

||x(t = 0)|| < r ⇒ lim
t→∞

x(t) = 0.

• Marginally stable, if it is stable without being asymptotically stable

• Exponentially stable if there exist positive real constants r, c, and λ
such that all solutions of Eq.3.3 with ||x(0)|| < r satisfy the inequality:

||x(t)|| 6 c||x(0)||e−λt ∀t > 0.

If this exponential decay estimate holds for all r, the system is said to
be globally exponentially stable.

When the origin is asymptotically stable, we are often interested in deter-
mining how far from the origin the trajectory can still converge to the origin
as t approaches∞. This gives rise to the definition of the region of attraction
(also called region of asymptotic stability, domain of attraction, and basin).

Definition 3.8 (globally attractive)
A system is globally asymptotically stable if its solutions converge to the

origin from all initial conditions.

3.2.3.3 Stability of continuous systems

Consider the following autonomous continuous linear system:

ẋ = Ax (3.10)

Theorem 3.1 The equilibrium xe = 0 of the system (3.10) is said

1. Asymptotically stable if and only if Re(λi(A)) < 0, ∀i = 1, ..., n.

2. Unstable if there exists at least one eigenvalue of A such as Re(λi(A)) >
0.

3. However, when there are certain eigenvalues λ(A), Whose real part is
zero: Re(λi(A)) = 0, with Re(λj(A)) < 0, for i 6= j, the critical case
is obtained, it this case the equilibrium xe = 0 is said critically stable
if and only if the following conditions are satisfied

(a) All the real part of the eigenvalues of A are negative.
(b) To each eigenvalue λi(A) with null real part and multiplicity s

corresponds exactly s eigenvectors.
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4. If in 3 the condition (b) is not satisfied then the equilibrium xe = 0 is
unstable.

Having defined stability and asymptotic stability of equilibrium points, the
next task is to find ways to determine stability. For practical interest, sta-
bility conditions must not require that we explicitly solve Eq.3.1. The di-
rect method of Lyapunov aims at determining the stability properties of an
equilibrium point from the properties of f(x) and its relationship with a
positive-definite function V (x).

Definition 3.9 A function f : Rn × R→ R is

• Definite positive on a set D if there exists a scalar function

Φ : R+ → R+,

Such as

0 < Φ(||x||) 6 f(x, t), ∀x ∈ int(D), ∀t ∈ R+

• Semi-definite positive on D if there exists a neighborhood G of the
origin such as

f(x, t) = 0, ∀x ∈ G, ∀t ∈ R+.

and f(x, t) is definite positive for all x ∈ D\G for all t ∈ R.

Definition 3.10 The function V : W ⊂ Rn → R+ is a Lyapunov function
if it satisfy the two following conditions:

• V (x) is continuous and its partial derivatives ∂V (x)
∂xi

exist and are con-
tinuous, for all i = 1, ..., n,

• V (x) is definite positive.

From this definition, the stability of continuous systems of type (3.10) can
be characterized by the existence of a contractive Lyapunov function along
the trajectories.

Theorem 3.2 In the neighborhood W ⊂ Rn, the equilibrium xe = 0 is:

• Locally stable if there exists a candidate Lyapunov function V : W →
R+ such as:

V̇ (x) 6 0, ∀x ∈W.

• Locally asymptotically stable if there exists a candidate Lyapunov func-
tion V : W → R+ such as

V̇ (x) < 0, ∀x ∈W

V̇ (x) refers to the derivative of V (x) with respect to time along the
trajectories of the system.
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In what follows, we speak of stability of the system instead of talking
about stability of the point of equilibrium.

The theorem proposed above provides sufficient stability conditions but
without giving a guide to the user for the choice of the Lyapunov candidate
function nor to conclude if is possible to find such a function.

A Lyapunov candidate function is a positive definite function whose de-
cay is tested around the equilibrium point. A class of Lyapunov functions
that plays an important role is the class of quadratic functions of the form:

V (x) = xTPx.

This function is a positive definite if P is positive-definite symmetric matrix,
i.e., all eigenvalues of P are positive. So, we write P = P T .

In the case of the continuous linear autonomous system (3.10), a neces-
sary and sufficient condition for the derivative

V̇ (x) = xT (ATP + PA)x

is negative-definite consists of finding a matrix P such as the following in-
equality matrix hold:

ATP + PA < 0

Theorem 3.3 The equilibrium xe = 0 of system (3.10) is asymptotically
stable if and only if for any positive-definite symmetric matrix Q, there exist
a unique positive-definite symmetric matrix P that satisfies the Lyapunov
equation:

ATP + PA = −Q (3.11)
and the function

V (x) = xTPx

is a Lyapunov function.

A continuously differentiable positive-definite function V (x) satisfying Eq.3.11
is called a Lyapunov function. The surface V (x) = c, for some c > 0, is called
a Lyapunov surface or a level surface. The condition V̇ (0) implies that when
a trajectory crosses a Lyapunov surface V (x) = c, it moves inside the set

Ωc = {x ∈ Rn : V (x) 6 c}

and can never come out again. When V̇ (x) < 0, the trajectory moves from
one Lyapunov surface to an inner Lyapunov surface with smaller c. As c
decreases, the Lyapunov surface V (x) = c shrinks to the origin, showing
that the trajectory approaches the origin as time progresses. If we only
know that V̇ (x) 6 0, we cannot be sure that the trajectory will approach
the origin, but we can conclude that the origin is stable since the trajectory
can be contained inside any ball, Bε, by requiring that the initial state x0
to lie inside a Lyapunov surface contained in that ball.
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3.2.3.4 Stability of discrete linear systems

Consider the discrete system described by:

x(k + 1) = Ax(k) (3.12)

The study of the eigenvalues of A allows us to determine the stability of
these systems.

Theorem 3.4

• The system (3.12) is asymptotically stable if and only if ρ(A) < 1.

• if ρ(A) = 1, the system converges to an equilibrium if and only if
ρ(A) = 1 is eigenvalue of the unit circle.

• the system(3.12) is unstable if ρ(A) > 1

The stability of the system (3.12) can also studied by Lyapunov function.

Theorem 3.5 Let xe = 0 be an equilibrium point of the discreet system
(3.12) and

V : W → R+

a continuous function defined in a neighborhood W ⊂ Rn of xe = 0 such as

V (0) = 0, V (x) > 0 for x 6= 0.

Let ∆V (x(k)) = V (x(k + 1))− V (x(k)).

• If ∆V (x(k)) 6 0, ∀x(k) ∈W , then the origin is stable.

• If ∆V (x(k)) < 0, ∀x(k) ∈ W\{0}, then the origin is asymptotically
stable.

Theorem 3.6 The system (3.12) is asymptotically stable at the origin if
and only if, for all Q = QT ∈ Rn×n, Q positive-definite, there exist a unique
matrix P = P T ∈ Rn×n, positive-definite, such as

ATPA−A = Q (3.13)

and the function v(x) = xTPx is a Lyapunov function of the system (3.12).
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3.3 Model predictive control
Model Predictive Control (MPC) is an optimal control strategy based on
numerical optimization. Future control inputs and future plant responses
are predicted using a system model and optimized at regular intervals with
respect to a performance index. From its origins as a computational tech-
nique for improving control performance in applications within the process
and petrochemical industries, predictive control has become arguably the
most widespread advanced control methodology currently in use in industry.
MPC has solid theoretical basis and its stability, optimality, and robustness
properties are well understood.

This section covers the basic principles of model predictive control.

3.3.1 Predictive control strategy

A model predictive control law contains the basic components of prediction,
optimization and receding horizon implementation. A summary of each of
these ingredients is given below.

3.3.1.1 Prediction

The future response of the controlled plant is predicted using a dynamic
model. This course is concerned mainly with the case of discrete-time linear
systems with state-space representation

x(k + 1) = Ax(k) +Bu(k) (3.14)

where x(k) and u(k) are the model state and input vector at the kth sampling
instant. Given a predicted input sequence, the corresponding sequence of
state predictions is generated by simulating the model forward over the
prediction horizon, of say N sampling intervals. For notational convenience,
these predicted sequences are often stacked into vectors U , X defined by

U(k) =


u(k|k)
u(k + 1|k)
...
u(k +N − 1|k)

 , X(k) =


x(k|k)
x(k + 1|k)
...
x(k +N |k)


Here u(k + i|k) and x(k + i|k) denote input and state vectors at time

k+ i that are predicted at time k, and x(k+ i|k) therefore evolves according
to the prediction model:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k), i = 0, 1, · · · (3.15)

with initial condition (at the beginning of the prediction horizon) defined

x(k|k) = x(k)
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3.3.1.2 Optimization

The predictive control feedback law is computed by minimizing a predicted
performance cost, which is defined in terms of the predicted sequences U , X.
This thesis is mainly concerned with the case of quadratic cost, for which
the predicted cost has the general form:

J(k) =
N∑
i=0

(||x(k + i|k)||2Q + ||u(k + i|k)||2R) (3.16)

Where Q and R are weight matrices with appropriate dimensions. Clearly
J(k) is a function of u(k), and the optimal input sequence for the problem
of minimizing J(k) is denoted u∗(k).

3.3.1.3 Reciding horizon implementation

Only the first element of the optimal predicted input sequence u∗(k) is input
to the plant:

u(k) = u∗(k|k).
The process of computing u∗(k) by minimizing the predicted cost and im-
plementing the first element of u∗ is then repeated at each sampling instant
k = 0, 1, .... For this reason the optimization defining u∗ is known as an on-
line optimization. The prediction horizon remains the same length despite
the repetition of the optimization at future time instants (Fig.3.2), and the
approach is therefore known as a receding horizon strategy.

Figure 3.2: The receding horizon strategy

3.3.2 Prediction model

A very wide class of plant model can be incorporated in a predictive con-
trol strategy. This includes linear, nonlinear, discrete and continuous-time
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models. Prediction models may be deterministic, stochastic, or fuzzy.

3.3.2.1 Linear plant model

For linear systems, the dependence of predictions x(k) on u(k) is linear. A
quadratic predicted cost such as (3.16) is therefore a quadratic function of
the input sequence u(k). Thus J(k) can be expressed as a function of U in
the form

J(k) = UT (k)HU(k) + 2fTu(k) + g (3.17)

where H is a constant positive definite (or possibly positive semidefinite)
matrix, and f , g are respectively a vector and scalar which depend on x(k).
Linear input and state constraints likewise imply linear constraints on u(k)
which can be expressed

AcU(k) 6 bc

where Ac is a constant matrix and, depending on the form of the constraints,
the vector be may be a function of X(k).

3.3.2.2 Nonlinear plant model

If a nonlinear prediction model is employed, then due to the nonlinear depen-
dence of the state predictions x(k) on u(k), the MPC optimization problem
is significantly harder than for the linear model case. This is because the
cost in equation (3.16), which can be written as J(U(k), x(k)), and the con-
straints, g(u(k), x(k)) 6 0, are in general non convex of U(k), so that the
optimization:

min
u

J(U, x(k))

subject to g(U, x(k)) 6 0
(3.18)

becomes a non convex nonlinear programming (NLP) problem. As a result
there will in general be no guarantee that a solver will converge to a global
minimum of (3.18), and the times required to find even a local solution are
typically orders of magnitude greater than for QP problems of similar size.

3.3.3 Constraint handling

In addition to the obvious equality constraints, which are the model dynam-
ics fulfillment of states and inputs, inequality constraints on input and state
variables are found in every control problem. While the equality constraints
are usually handled implicitly (i.e. the plant model is used to write predicted
state trajectories as functions of initial conditions and input trajectories),
the inequality constraints are imposed as explicit constraints within the on-
line optimization problem.
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3.4 Conclusion
In this chapter we have briefly reviewed the tools on which we will base our
work, namely, the concept of stability and positive invariance for dynamic
systems in continuous and discrete time, and the notions of stability of
Lyapunov. Finally, a summary of model predictive control fundamentals
are given.



Part I

CONTROL STRATEGIES
BASED ON POSITIVE

INVARIANCE CONCEPT
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4

Nonlinear State Feedback
Control Based on Positive
Invariance

4.1 Introduction

The goal of this chapter is to present the design a nonlinear feedback law
that will cause the output of the system to track a hight amplitude step
input rapidly without experiencing large overshoot and, without the adverse
actuator saturation effects and ensuring stability and constraints.

The controller consists of a linear feedback law computed using the in-
variance positive concept and a nonlinear feedback law without any switch-
ing element. The linear feedback part is designed to yield a closed-loop
system with a small damping ratio for a quick response, while at the same
time not exceeding the actuator limits for the desired command input lev-
els. The nonlinear feedback law is used to increase the damping ratio of the
closed-loop system as the system output approaches the target reference to
reduce the overshoot caused by the linear part.

The obtained control scheme combines the problems of non availability
of the state to measure with the limitations of some variables. The con-
trol is achieved by an observer based controller that can take into account
constraints on the control and on observation error. The control strategy
is worked out to meet all design required conditions. The efficiency of the
controller is showed via simulations of a WWTP.
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4.2 Problem statment
Consider a linear time-invariant system represented in the state space by:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) (4.1)

Where x(t) ∈ Rn is a vector of state variables, y(t) ∈ Rp a vector of outputs
or measured variables and u(t) ∈ Rm is the input vector, which is constrained
to evolve in the following domain:

Du = {u(.) ∈ Rm, −umin 6 u(.) 6 umax, umin, umax ∈ Rm+}. (4.2)

The controller proposed in this chapter is a control law that is composed
by combining a linear and nonlinear state feedback laws such as:

u(t) = Fx(t) +Gr + g(x(t), r). (4.3)

where

• Fx(t) is a linear stabilizing state feedback control law which is com-
puted using the positive invariance concept such that the closed loop
system remains asymptotically stable and respecting constraints.

• Gr is a step command input, to lead the system output to set point r.

• g(x(t), r) is a nonlinear state feedback control law, which used to
change the system closed loop damping ratio as the output approaches
the step command input reducing the overshoot, and at the same time,
ensuring stability and respecting constraints.

The design of the proposed controller is sequential. First a linear feed-
back law is designed and then, based on this linear state feedback law, a
nonlinear state feedback law is constructed.

The implementation of the proposed control strategy is depends on the
availability of on-line information about the current state of the process.
But due to lack or prohibitive cost, in many instances, of on-line sensors for
these components and due to expense and duration (several days or hours)
of laboratory analyses, sometimes there is a need to develop and implement
algorithms which are capable of reconstructing the time evolution of the
unmeasured state variables on the base of the available on-line data. To
overcame this problem a Luenberger observer is used in this work.

4.3 Controller design
As mentioned before the design of the controller is sequential, so first we
begin with the design of the linear state feedback law ,uL, and then, using
this controller to construct the nonlinear part g(x(t), r).
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4.3.1 The Linear State Feedback Control

In this section, we present the linear control scheme that it is designed for
a linearized obtained system. The control strategy is based on the positive
invariance concept that has shown efficiency in handling constrained control
systems. Moreover, as the system state is composed by non measurable
quantities, observers as software sensors are introduced.

Let us first recall the observer based regulator with constraints. To this
end, the matrices A and B of the system (4.1) are constant of appropriate
dimension and (A,B) is supposed to be controllable and it assumed that A
possesses at least (n−m) stable eigenvalues.

The control uL is constrained in the set Ω defined as follow:

Ω = {uL ∈ Rm\ − uLmin 6 uL 6 uLmax, uLmin, uLmax ∈ Rm+} (4.4)

First, we will use a feedback control given by:

uL = sat(Fx(t)) =


uLmax if Fx > uLmax
uL if −uLmin < Fx < uLmax
−uLmin if Fx 6 −uLmin

(4.5)

that leads to a domain of linear behavior for the closed loop system that is
given by

D(F, uLmin, uLmax) = {x ∈ Rn\ − uLmin 6 Fx 6 uLmax} (4.6)

and the closed loop system in this case is defined by

ẋ(t) = (A+BF )x(t) (4.7)

Hence, if the domain (4.6) is positively invariant, in the sense of the definition
given below, one guarantees the respect of the control constraints for all
t > 0.

Definition 4.1 A subset D of Rm is said to be positively invariant with
respect to system (4.7) if the condition x(t0) ∈ D implies that x(t) ∈ D
∀t > t0.

At this level, one may introduce the observer for this class of systems.
Note that the proposed observer is a reduced order one as the measurable
part of the output is a linear combination of the states. Hence, only a part
of the state is needed to be reconstructed via the reduced order observer
[55].

Let this part be noted as

z(.) = Tx(t) z ∈ Rn−p (4.8)
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where matrix T ∈ Rn−p×n is chosen in such a way that the matrix
(
C
T

)
is

invertible, z(.) is the state of the observer dynamics that may be generated
from an auxiliary dynamical system as follows:

ż(.) = Dz(.) + Ey(.) +GuL(.) (4.9)

At this stage, our problem can be stated as finding matrices F , D, E
and G such that the closed loop system (4.7) is asymptotically stable and
the input constraints are respected.

The observer state is given by:

x̂ =
(
C
T

)−1(
y(.)
z(.)

)
=
(
V Po

)( y(.)
z(.)

)
(4.10)

Where the matrices V,C, T, Po, satisfy

V C + PoT = I. (4.11)

Recall that the matrices of the observer of minimal order are given in
[56] and can be expressed as:

D = TAPo, E = TAV, G = TB (4.12)

or equivalently, the matrices are calculated to satisfy the following relation

TA− EC = DT (4.13)

where the matrix Po is chosen to ensure asymptotic stability of the matrix
D. In fact, matrix D defines the dynamic of the observation error and it
guarantees a vanishing error [57].

Note that

ε̇(t) = ż(t)− T ẋ(t)
= Dz(t) + Ey(t) +GuL(t)− T (Ax(t) +BuL(t))
= Dz(t) + ECx(t)− TAx(t)
= Dz(t)−DTx(t)
= Dε(t)

For the observation error, we define the field D(I, εmax, εmin) that give us
the limits within which we allow change of the error ε(.).

The reconstruction error is always given by

e(t) = x̂(t)− x(t) (4.14)
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and it is related to the observation error in the following way:

e(t) = V y(t) + Poz(t)− x(t)
= V Cx(t) + Poz(t)− (V C + PoT )x(t)
= Po(z(t)− Tx(t))
= Poε(t)

The evolution of the control uL(t) can be written using previous rela-
tionship (4.11), (4.12), (4.13):

u̇L(t) = F ˙̂x
= FPoż(t) + FV Cẋ(t)
= FPo(Dz(t) + Ey(t) +Gu(t)) + FV C(Ax(t) +BuL(t))
= FPo(TAPoz(t) + TAV y(t)) + (FPTB + FV CB)uL(t) + FV CAx(t)
= FPoTA(Pz(t) + V y(t)) + F (PT + V C)BuL(t) + FV CAx(t)
= FPoTAx̂(t) + FBuL(t) + FV CA(x̂(t)− e(t))
= (FA+ FBF )x̂(t)− FV CAe(t)
= HoFx̂(t)− FV CAPoε(t)
= HouL(t) + Lrε(t)

Therefore the system formed by the control uL(t) and the error ε(t), can
be expressed as: (

u̇L(t)
ε̇(t)

)
=
(
Ho Lr
0 D

)(
uL(t)
ε(t)

)

This background enables one to recall the theorem [58] giving conditions
for computing the controller that respects all the need requirements:

Theorem 4.1 The field D(I, umax, umin)×D(I, εmax, εmin) is positively in-

variant with respect to the system trajectory
(
uL(t)
ε(t)

)
if and only if, there

exists a matrix Ho in Rm×m such that:{
HoF = FA+ FBF

M̃qε ≤ 0 (4.15)

where

M =
(
Ho Lr
0 D

)
; qε =


umax
εmax
umin
εmin

; Lr = −FV CAPo

for every pair: (u(0), ε(0)) ∈ D(I, umax, umin)×D(I, εmax, εmin)
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To compute the feedback gain, the inverse procedure is used [58]. Hence,
matrix Ho satisfying all required conditions is chosen and the feedback F is
obtained as a solution to the equation:

HoF = FA+ FBF (4.16)

Without loss of generality, we can assume that matrix A has (n−m) stable
eigenvalues. Resolution of equation (4.16) gives a state feedback assign-
ing spectrum of matrix Ho (σ(Ho) ⊂ Ds) together with the stable part of
spectrum of matrix A in closed loop.

For this equation to have a valid solution, matrix Ho must satisfy:
σ(Ho) ∩ σ(A)
Bζi, i = 1, ...,m
ζi, i = 1, ...,m are linearly independent

(4.17)

for ζi eigenvectors of matrix Ho.
Note that an unique solution to equation (4.16) exists if and only if
{χ1 ... χn} are linearly independent
where χi, i = m+1, ..., n are eigenvectors associated to stable eigenvalues

of matrix A, and χi, i = 1, ...,m are computed by
χi = (λiIn −A)−1Bζi, i = 1, ...,m
The solution for the controller is given by:

F = [ζ1 ... ζm0 ... 0] [χ1 ... χmχm+1 ... χn]−1 (4.18)

Remark 4.1 The control law in (4.18) is computed under the assumption
that the system presents (n − m) stable eigenvalues. If the system matrix
does not fulfill such requirement, it is always possible to augment the repre-
sentation.

Let v ∈ R be a vector of fictitious inputs such that −vmin 6 v 6 vmax,
where vmin and vmax are freely chosen constraints.

In this case, vectors U and ∆ become:

Uc =


uLmax
vmax
uLmin
vmin


The augmented system is then given by:

x(k + 1) = Ax(k) + [B 0]
[
uL(k)
v(k)

]
(4.19)

It is easy to see that for the obtained square system the problem of (n−m)
stable eigenvalues is eliminated and controllability is not changed.
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Remark 4.2 Note here that all computation effort in the design procedure
is handled off line. By choosing an adequate matrix Ho satisfying all required
conditions in [60], solution of equation (4.16) is detailed in [63].

4.3.1.1 Step command input

The variables (x̂, u, y) in (4.1) are deviation variables around the origin, so
we need to apply a step command input to return the system to their original
absolute value, rewriting the control law obtained from (4.17) as

uL = Fx̂(t) +Gr (4.20)

where r is a step command input and G is a scalar given by:
The command input Gr is applied to the system to lead the output to

r.
lim
t→∞

y(t) = r (4.21)

Using the Eq. (4.20), the closed loop system is given by:

˙̂x(t) = (A+BF )x̂(t) +BGr (4.22)

The Laplace transform of (4.22) and (4.1) gives:

Y (s) = CX̂(s) = C(sI−A−BF )−1BGr (4.23)

And by the final value theorem we have :

lim
t→∞

y(t) = lim
s→0

Y (s) = r (4.24)

Which gives
G = −[C(A+BF )−1B]−1 (4.25)

Here, we note that G is well defined because A+BF is stable.

4.3.2 The Nonlinear Feedback Control

The objective here is to design a nonlinear feedback control law for the
system (4.3) with the constraints (4.2) that will cause the output to track a
step input rapidly without expressing large overshoot.

The following assumptions on the system matrices are required:

1) (A,B) is stabilizable.

2) (A,B,C) is invertible and has no zero at s = 0.
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In this section, we follow the idea of the work presented in [30] to develop
a nonlinear feedback control technique for the case where we have (n − p)
states of the plant (4.1) are measurable as mentioned before.

Then, the nonlinear feedback control law g(x̂(t), r) is given by:

g(x̂(t), r) = ρ(r, y)BTP (x̂− xe) (4.26)

Where

• ρ(r, y) is a nonpositive scalar function, locally Lipschitz in y, and is
to be chosen to improve the performance of the closed loop system.
The freedom to choose the function ρ(r, y) is used to tune the control
laws so as to improve the performance of the closed loop system as the
controller output y approaches to set point, reducing time, by adding
a significant value to the control input when the tracking error , r− y,
is small.

• P ∈ Rn× n is a positive-definite matrix solution of the following Lya-
punov equation:

(A+BF )TP + P (A+BF ) = −W (4.27)

For a given W ∈ Rn×n

Note that such a P exists since A+BF is asymptotically stable.

• xe is the steady state of x defined by

lim
t→∞

x̂(t) = xe. (4.28)

And by using (4.23) and (4.25), we get

xe := Ger := −(A+BF )−1BGr (4.29)

4.3.3 Stability

The linear and nonlinear feedback laws derived in the previous steps are
now combined to form a composite nonlinear feedback controller:

u = uL + g(x̂(t), r)
= Fx̂+Gr + ρ(r, y)BTP (x̂− xe).

(4.30)

The following theorem shows that the closed-loop system comprising
the given plant in (4.1) and the nonlinear feedback control law in (4.2) is
asymptotically stable. It also determines the magnitude of r that can be
tracked by such a control law without exceeding the control limit.
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Theorem 4.2 Consider the given system in (4.1), the linear control law of
(4.12) and the nonlinear feedback control law of (4.28). For any α ∈ (0, 1),
let cα > 0 be the largest positive scalar satisfying the following condition:

|Fx̂| ≤ umax(1− α), ∀x̂ ∈ Xalpha := {x̂ : x̂TPx̂ ≤ cα} (4.31)

Then the linear control law of (4.12) is capable of driving the system con-
troller output y(t) to track asymptotically a step command input r, provided
that the initial state x0 and r satisfy

x̃0 = (x̂0 − xe) ∈ Xalpha, |Hr| ≤ αumax. (4.32)

Furthermore, for any nonpositive function ρ(r, y), locally Lipschitz in y, the
composite nonlinear feedback law in (4.32) is capable of driving the system
controller output y(t) to track asymptotically the step command input of
amplitude r, provided that the initial state x0 and r satisfy (4.26).

Proof: Let x̃ = x− xe. It is simple to verify that the linear control law of
(4.22) can be rewritten as

uL = Fx̃(t) + [1− F (A+BF )−1B]Gr
= Fx̃(t) +Hr.

Hence, for all x̃ ∈ Xalpha and, provided that |Hr| ≤ αumax, |Fx̃+Hr| ≤
umax and the closed-loop system is linear and it is given by

˙̃x = (A+BF )x̃+Axe +BHr. (4.33)

Noting that

Axe +BHr = B[1− F (A+BF )−1B]Gr −A(A+BF )−1BGr

= [I −BF (A+BF )−1]BGr −A(A+BF )−1BGr

= 0.

the closed-loop system in (4.35) can then be simplified as

˙̃x = (Ao +BoF )x̃ (4.34)

Similarly, the closed-loop system comprising the given plant in (4.1) and the
nonlinear feedback control (4.32) can be expressed as

˙̃x = (A+BF )x̃+Bow (4.35)

where
w = sat(Fx̃+Hr + g(x̂(t), r))− Fx̃−Hr. (4.36)

Clearly, for the given x0 satisfying (4.26), we have x̃0 = (x0−xe) ∈ Xα. We
not that (4.37) is reduced to (4.22) if ρ = 0. Thus, we can prove the results,
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respectively, under the linear control and the non linear feedback control in
one shot.

Next, we define a Lyapunov function v = x̃TPx̃, and evaluate the deriva-
tion of v along the trajectories of the closed-loop system in (4.37), i.e.,

v̇ = ˙̃xTPx̃+ x̃TP ˙̃x
= x̃T (A+BF )TPx̃+ x̃TP (A+BF )x̃+ 2x̃TPBw
= −x̃TWx̃+ 2x̃TPBw

(4.37)

Note that for all

x̃ ∈ Xα = {x̃ : x̃TPx̃ ≤ cα} ⇒ |Fx̃| ≤ umax(1− α) (4.38)

We next study the v̇ for the different case of the constraints on the input.

• Case 1): If |Fx̃+Hr + g(x̂(t), r)| ≤ umax, then w = uN = ρBTPx̃
thus

v̇ = −x̃TWx̃+ 2ρx̃TPBBTPx̃ ≤ −x̃TWx̃ (4.39)

• Case 2): If Fx̃+Hr+g(x̂(t), r) � umax, and by construction |Fx̃+Hr| ≤
umax, we have

0 ≺ w = umax − Fx̃−Hr ≺ uN = ρBTPx̃ (4.40)

which implies that x̃TPB ≺ 0 and hence

v̇ = −x̃TWx̃+ 2x̃TPBw ≤ −x̃TWx̃. (4.41)

• Case 3): Finally, if Fx̃+Hr + g(x̂(t), r) ≤ −umin, we have

ρBTPx̃ = un ≺ −umin − Fx̃−Hr ≺ 0 (4.42)

implying x̃TPB � 0 and hence v̇ ≤ −x̃TWx̃

In conclusion, we have shown that

v̇ ≤ −x̃TWx̃, ∀x̃ ∈ Xalpha (4.43)

which implies that Xalpha is an invariant set of the closed-loop system in
(4.37). This, in turn, indicates that, for all initial states x0 and the step
command input of amplitude r that satisfy (4.34)

limt→∞x̂(t) = xe ⇒ limt→∞y(t) = r (4.44)

This completes the proof.
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4.4 Application to the WWTP
In this section, the above nonlinear feedback control law design method is
applied to WWTP.

4.4.1 Process Model

A typical, conventional activated sludge plant M2 for the removal of car-
bonaceous and nitrogen materials consists of an anoxic basin followed by an
aerated one, which is aerated by a submerged air bubble system or mechan-
ical agitation at its surface and a settler (fig.4.1).
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Figure 4.1: Schematic view of M2

The modelM2 used in this application account for six basic components
in the wastewater: autotrophic bacteria XA, heterotrophic bacteria XH ,
readily biodegradable carbonaceous substrates SS , nitrogen substrates SNH ,
SNO and dissolved oxygen SO, where XA, XH , SS , SNH , SNO, and SO
represents the concentrations of these elements.

4.4.2 Linearization

To obtain a model in the state space of the model M2, the state vector is
considered as

X(t) = [XA,nit(t) XH,nit(t) SS,nit(t) SNH,nit(t) SNO,nit(t)
SO,nit(t) XA,denit(t) XH,denit(t) SS,denit(t) SNH,denit(t)
SNO,denit(t) Xrec(t)]T

(4.45)

Further, to complete the model, the following input and output vectors are
used:

Y (t) = [SNH,nit(t) SNO,nit(t) SO,nit(t)]T (4.46)

U(t) = [Qr1 Qr2 Qair]T (4.47)
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Linearizing the system around the equilibrium point computed from the
nonlinear equations of M2 leads to the new variables (x, u, y) that are now
deviation variables. That is, they are deviations from the point the model is
linearized about, not their original absolute values. The equilibrium point
is given by

x̄(t) =[69.6 623 13.5 3.2 10.4 2.4
68.9 624.6 20.9 8.9 5.3 1356.8]T

(4.48)

The matrices of the linearized model are:

A =



−29.07 0 0 2.65 0 2.17
0 −29.48 6.04 0.642 0 4.40
0 −0.34 −38.99 −1.02 −0.05 5.01

−2.22 −0.02 −0.55 −40.74 0 12.23
2.18 0 −0.06 11.05 −29.41 9.64
−9.45 0 −0.18 −47.90 −0.02 −167.01
2.30 0 0 0 0 0

0 2.30 0 0 0 0
0 0 2.30 0 0 0
0 0 0 2.30 0 0
0 0 0 0 2.30 0

6.14 6.14 0 0 0 0

29.40 0 0 0 0 0
0 29.40 0 0 0 0
0 0 29.40 0 0 0
0 0 0 29.40 0 0
0 0 0 0 29.40 0
0 0 0 0 0 0

−38.67 0 0 0.55 0 1.84
0 −39.18 4.44 0.12 0 16.60
0 −0.78 −50.67 −0.30 −3.42 0

−3.06 −0.04 −0.66 −39.33 −0.19 0
2.99 −0.03 −0.55 1.14 −39.58 0

0 0 0 0 0 −3.13


;

B = 104



−0.0011 −0.0011 0
0.0023 0.0023 0
0.0102 0.0102 0
0.0079 0.0079 0
−0.0071 −0.0071 0
−0.0033 −0.0033 0.0008
0.0014 0.1233 0
−0.0031 1.1003 0
−0.0386 −0.0386 0
−0.0105 −0.0165 0
0.0094 −0.0097 0

0 −0.2042 0


C =

[ 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

]
4.4.3 Decomposition

In order to apply the concept of positive-invariance, the studied system must
be controllable and observable. However, our system does not completely
satisfy the two later conditions. For this reason, we used the decomposition
process that allow us to extract only the controllable and observable part.

Any representation in the state space can be transformed into the equiv-
alent form by using the transformation Z = Tox [55]:{

Ż = ĀZ + B̄u

y(t) = C̄Z
(4.49)

with:
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Ā =
(
Ano A12

0 Ao

)
; B̄ =

(
Bno
Bo

)

C̄ =
(

0 Co
)
; Z =

(
Zno
Zo

)

So we obtain the following system of equations:
Żno = AnoZno +A12Zo +Bnou

Żo = AoZo +Bou
y = CoZo

(4.50)

where Ao and Co are constant matrices of appropriate dimension and the
pair (Ao, Bo) is controllable. Its assumed that Ao possesses at last (n−m)
stable eigenvalues.

The similarity matrix T used to compute the matrices Ao, Bo and Co:

T =



0.0001 0.9975 −0.0395 0 0 0
−0.0014 0.0589 0.0680 0 0 0

0 −0.0184 0.0007 0 0 0
−0.0200 0.0355 0.9965 0 0 0
−0.0001 0 0.0041 0 0 0
0.0001 −0.0002 −0.0064 0 0 0
−0.9929 −0.0007 −0.0188 0 0 0
−0.0017 0.0005 0.0146 0 0 0
0.1173 0.0004 0.0122 0 0 0

0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0

0 −0.0561 0.0034 −0.0001 0 0.0185
0.0009 0.9943 −0.0573 0.0012 0.0003 −0.0003

0 0.0013 −0.0001 0 0 0.9998
0.0064 −0.0703 0.0001 0.0172 0.0037 0
−0.0214 0.0572 0.9981 0.0001 0 0
0.9997 0.0008 0.0214 −0.0001 0 0

0 0 0 −0.0842 0.0821 0
0 0 0 −0.6895 −0.7242 0
0 0 0 −0.7192 0.6847 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


;

Thereafter decomposition, the obtained system represented by (4.45), Ao, Bo, Co
are injected in closed loop and coupled with a minimal order Luenberger ob-
server which has the role of estimating the non-measurable states from the
measurable ones (SNH,nit, SNO,nit, SO,nit).

Ao =


−38.85 28.99 −0.01 0.18 0.01

2.33 −50.29 −0.27 −0.25 2.72
0.01 −0.44 −38.68 −2.34 −0.33
0.01 0.07 −28.69 −29.23 −0.04
−0.01 1.29 −0.08 0.11 −38.99
0.04 0.28 7.71 −1.26 −0.51

0 0 0 −9.39 −0.01
0 0 0 −0.24 21.29
0 0 0 0.25 20.27

−0.02 −5.10 0.05 1.01
−2.09 −0.02 0 0.01
−0.17 0.03 0 −0.01
−1.26 2.26 −0.19 2.81
0.81 −0.07 1.67 1.60
−39.77 −0.32 −1.57 1.35

1.11 −167.01 −0.02 −47.91
−20.38 9.65 −29.41 11.05
21.41 12.24 −0.01 −40.75

 ;
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Bo = 103


0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0
0.0332 0.0332 −0.0076
0.0708 0.0708 0
−0.0789 −0.0789 0


Co =

[
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0

]
The matrix T is chosen such that only the part z(t) = TZco(t) is esti-

mated. Further, matrix Po is chosen to ensure asymptotic stability of matrix
D = TAcoP . In fact, in this case matrix T and Po are given by:

T =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 Po =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


According to Equation (4.10), the matrices D, G and E are computed.

D =


−38.8580 28.9925 −0.0070 0.1784 0.0119 −0.0185

2.3306 −50.2968 −0.2666 −0.2478 2.7231 −2.0948
0.0147 −0.4418 −38.6780 −2.3376 −0.3296 −0.1756
0.0119 0.0735 −28.6943 −29.2308 −0.0443 −1.2648
−0.0105 1.2947 −0.0824 0.1128 −38.9935 0.8130
0.0442 0.2873 7.7115 −1.2630 −0.5140 −39.7722



G = 103

 0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0



E =


−1.0078 −0.0489 5.1034
−0.0042 −0.0002 0.0205
0.0064 0.0003 −0.0327
−2.8104 0.1898 −2.2577
−1.6047 −1.6664 0.0718
−1.3549 1.5741 0.3185


We assume that in our case the control constraints are such as

umax =

 5000
18466
110

 , umin =

 2000
18425

80


and reconstruction errors limits are such as:

εmax = [1 1 0.5 1 1 1]
εmin = [0.5 0.5 0.25 0.8250 0.5 0.5]
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we choose the matrix Ho assigning spectrum {−170;−55;−51} as follows:

Ho =

 −170 0 0
0 −55 0
0 0 −51


Hence, solving equation (4.13) leads to:

F =
[

0.0010 −0.0044 0.0319 0.0725
0.0001 −0.0005 0.0000 0.0001
0.0148 −0.0774 0.1421 0.0036

−0.0791 −0.0944 1.0349 −0.0000 0.4162
0.0000 −0.0002 0.0017 −0.0000 0.0007
−0.1591 −0.2023 −0.0352 −0.0024 0.0864

]

4.4.4 Simulation Results

Figures below are devoted to present the evolution of the disturbances ,
outputs and inputs of the system. In fact, the nonlinear feedback controller,
as defined in the sections above, is applied to the WWTP. The linear and
non linear feedback controllers are compared by computing the indices IQ,
EQ, PE and ISE as summarized in tables (4.1) and (4.2). The output
variables evolution, that are SNH,nit, SNO,nit and the dissolved oxygen con-
centrations, and their corresponding reference trajectories are 3.2, 10.4 and
2.4 , respectively.
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Figure 4.2: Evolution of the disturbance Sin1.

As general remarks asymptotic stability is obtained, all constraints are
respected and the the amount of all non desired organic matter is reduced
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Figure 4.3: Evolutions of the concentrations SNH,nit and SNO,nit .

in the output to the desired values. The figures (4.3 − 4.5) and (4.7 − 4.9)
shows the performance and the effectiveness of the regulator. In particular,
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Figure 4.4: Evolutions of the dissolved oxygen concentration SO and the
oxygen transfer coefficient KLa.

one can appreciate the ability of the controller to track the desired values of
the controlled variables. Hence, and in practice, the nonlinear controller is
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Figure 4.5: Evolutions of the recycled flows Qr1 and Qr2.

capable to reduce the EQ, AE and ISE with an important percentage and
this is clear from the tables (4.1) and (4.2). No change in IQ because the
influent is constant.
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Figure 4.6: Evolution of the disturbance Sin2.

Table 4.1: Indices of the plant with the first disturbance

Indices u = uL u = uL + uN Units
IQ 5.4306e+007 5.4306e+007 gPUd−1

EQ 8.9048e+007 8.9015e+007 gPUd−1

PE 8.5923e+004 8.5923e+004 Whd−1

AE 2.8433e+004 2.8173e+004 Whd−1
ISE 10.3677 1.9225

4.5 Conclusion

In this chapter, we introduced the nonlinear feedback control of a non lin-
ear system with input constraints. In fact, positive invariance techniques
together with minimal order observer (software sensor) are used to control
the linearized model of a WWTP. For this process, modeled as a linear
process, some state variables are unavailable to measure and more than
that no adequate sensor exists. Hence, the introduction of the observer is
of great interest. Further, in general case, linearizing a non linear process
leads the variables (control in our case) to be limited within neighborhood
of the steady point functioning. The positive invariance techniques that had
emerged as very efficient to handle similar problems of constrained control
is successfully used to control the nitrogen removal process. The observer
based constrained control, as presented above may compete with approaches
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Figure 4.7: Evolutions of the concentrations SNH,nit and SNO,nit .

in easiness, applicability and computing effort.
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Figure 4.8: Evolutions of the dissolved oxygen concentration SO and the
oxygen transfer coefficient KLa.
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Figure 4.9: Evolutions of the recycled flows Qr1 and Qr2.
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Table 4.2: Indices of the plant with the second disturbance

Indices u = uL u = uL + uN Units
IQ 5.4678e+007 5.4678e+007 gPUd−1

EQ 9.1354e+007 9.1306e+007 gPUd−1

PE 8.5923e+004 8.5923e+004 Whd−1

AE 2.8712e+004 2.8313e+004 Whd−1

ISE 15.8029 5.2772
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5

A Constrained Closed Loop
MPC Based on Positive
Invariance Concept

5.1 Introduction

In this chapter we present a novel methodology to design a closed loop MPC
using polyhedral invariant sets that gives a simple solution to this type of
control, ensuring stability and respecting constraints on control magnitude
and moves in both modes of operation of the dual controller. To achieve
our objective, the first step consists of the development of necessary and
sufficient conditions for a linear system and a state feedback control law for
the satisfaction of the constraints on both control and its increment over
an infinite prediction horizon, proving also the asymptotic stability at the
origin. Later on, these conditions are used to obtain the state feedback
control law for the prediction computation which guarantees stability while
fulfilling constraints and performance requirement of the closed loop system.
The proposed solution can take into account symmetric and asymmetric
constraints, and reduces significantly the computational burden associated
with the constrained MPC problem in the presence of these constraints. The
objective to that is to transfer as much as possible the constraints handling
to the off line computation.

The controller is applied for validation to an activated sludge process in a
WWTP , where the bacteria and other microorganisms remove contaminants
by degradation. The control problem is the regulation of the pollutant
substrate and the dissolved oxygen (DO) concentrations around pre-specified
levels.

77
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5.2 Problem Statement
Consider the discrete-time linear system that is obtained by discretizing the
continuous model of the process using the Euler integration method and
rearranged into the state-space form as:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) (5.1)

where x(k) ∈ Rn is a vector variables reflecting the systems state, called
state variables, y(k) ∈ Rp a vector outputs or measured variables and
u(k) ∈ Rm is the input vector, which is constrained to evolve in the fol-
lowing domain:

Du = {u(.) ∈ Rm, −umin 6 u(.) 6 umax, umin, umax ∈ Rm∗+ } (5.2)

and the control increment is constrained as follow:

−∆min 6 u(k + 1)− u(k) 6 ∆max (5.3)

The controller proposed in this chapter is a CLMPC designed using the pos-
itive invariance concept. The predicted control moves are centered around
a stabilizing feedback control law u = Fx over the whole prediction horizon
nc, but adding some degrees of freedom c over a finite horizon nc a controller
to handle constraints fulfillment:

u(k) = Fx(k) + c(k) (5.4)

Particularly, we want to obtain a stabilizing state feedback Fx(k) computed
using polyhedral invariance sets such as the CLMPC is asymptotically stable
and the constraints on both the control signal magnitude and the control
increment are respected.

5.3 Closed loop predictive control
Consider the following cost function:

J(k) =
ny∑
i=1

(xT (k + i|k)Qx(k + i|k))+

nc−1∑
i=0

(uT (k + i|k)Ru(k + i|k)) + xT (k + nc|k)Qx(k + nc|k)

with the constraints
− umin ≤ u(k + i|k) ≤ umax

−∆min ≤ u(k + i+ 1|k)− u(k + i|k) ≤ ∆max

(5.5)
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for i = 0, ..., nc − 1

where Q, R are positive definite matrices, and nc, ny are the control
and prediction horizons respectively. Here u(k+ i|k) and x(k+ i|k) denotes
input and state predictions vectors at time k+ i according to the prediction
model:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k), i = 0, 1, · · · , ny (5.6)

with initial condition defined by:

x(k|k) = x(k)

In order to improve the numerical conditioning of the optimization and
the controller performance, a closed loop MPC has been considered by defin-
ing the predicted input sequence in a dual mode fashion as:

u(k) =



Fx(k) + c(k)
Fx(k + 1) + c(k + 1)

...
Fx(k + nc − 1) + c(k + nc − 1)

Fx(k + nc)
...

FΦny−1x(k + nc)


(5.7)

with Φ = A+BF .
With the new predictions model:

x(k + i+ 1) = Ax(k + i|k) +Bu(k + i|k);
u(k + i|k) = Fx(k + i|k) + c(k + i|k), i = 0, .., nc − 1. (mode1)
u(k + i|k) = Fx(k + i|k), i > nc. (mode2)

(5.8)

where: F ∈ Rm×n is a stabilizing linear state feedback controller de-
signed using positive invariance concept. In this thesis, we propose the
design of F using positive invariance concepts as explained later.

The system model becomes

x(k) = (A+BF )x(k) +Bc(k). (5.9)

where c(k) is the new manipulated input.
That is, assume a finite number nc of nonzero values for c. Beyond nc

the perturbations are zero and the closed loop system is linear, equivalently
to mode 2 of the dual mode predictions. Thus, the algorithm to obtain the
control signal is , for each sampling time k:
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• Solve the optimization problem

c∗ = argmin
c(k)

J(x(k), c(k))

subject to
−cmin 6 c(k + i|k) 6 cmax

x(k + i+ 1|k) = Φx(k + i|k) +Bc(k + i|k),
for i = 0, .., nc − 1

x(k + i+ 1|k) = Φx(k + i|k),
for i > nc

(5.10)

• Implement u(k) = Fx(k) + c∗(k)

where c(k) =
[
cT (k|k) · · · cT (k + nc − 1|k)

]T
and c∗(k) is the first

element of c∗(k)

In order to solve (5.10), J needs to be formulated in terms of the degree
of freedom c(k).

The future response of the controlled plant is obtained using the predic-
tion model (5.8).

Removing the dependent variable u(k + i|k),

x(k + i|k) = (A+BF )x(k + i− 1|k) +Bc(k + i|k); (5.11)

Then the closed loop predictions with Φ = A+BF are;

x(k) = Pxx(k) +Hxc(k) (5.12)

u(k) = Pux(k) +Huc(k) (5.13)

Where

Px =


Φ
Φ2

Φ3

...
Φnc

 , Hx =


B 0 0 · · · 0
ΦB B 0 · · · 0
Φ2B ΦB B · · · 0
...

...
... . . . 0

ΦncB · · · · · · · · · B

 ,

Pu =


F
FΦ
FΦ2

...
FΦnc−1

 , Hu =


I 0 0 · · · 0
FB I 0 · · · 0
FΦB FB I · · · 0
...

...
... . . . 0

FΦnc−1B · · · · · · · · · I

 ,
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And

x(k) =
[
xT (k|k) · · · xT (k + nc|k)

]T
;

c(k) =
[
cT (k|k) · · · cT (k + nc − 1|k)

]T
;

u(k) =
[
uT (k + 1) · · · uT (k + nc − 1)

]T
;

The state after nc steps will be denoted as:

x(k + nc) = Pncx(k) +Hncc(k) (5.14)

Where Pnc and Hnc are the last block rows of prediction (5.12).
Then, for linear systems, the dependence of predictions x(k) on c(k) is

linear, and therefore (5.5) is a quadratic function of the input sequence c(k).
Assuming that c(k) comprises only a finite number of nonzero values, then
the cost function can be set up as for dual mode predictions where mode 2
is the part where c(k) = 0. Using the prediction equations (5.12), (5.13)
and (5.14), J(k) can be expressed as a function of c(k) in the form:

min
c
J(k) = cT (k)Scc(k) + 2cT (k)Scxx(k) (5.15)

where

Sc = HT
x diag(Q)Hx +HT

u diag(R)Hu +HT
ncPoHnc

Scx = HT
x diag(Q)Px +HT

u diag(R)Pu +HT
ncPoPnc

The matrix Po is the solution of the following Lyapunov equation:

ΦTPoΦ = Po − ΦTQΦ− F TRF (5.16)

In this point, we present a novel algorithm to design a stable CLMPC
using positive invariant sets. First, necessary and sufficient conditions are
obtained for the satisfaction of the constraints on control magnitude and in-
crements and also for the proof of asymptotic stability at the origin. Later,
these conditions are used to obtain the state feedback control law F for
the prediction computation, which guaranties stability respecting the con-
straints.

5.4 Controller Design
In this section, a method that gives a simple solution to stability to design a
closed loop MPC with both constraints on control magnitude and its incre-
ment has been developed for stabilizing dynamical linear discrete system.
The procedure starts with the development of necessary and sufficient con-
ditions are given with respect to the autonomous system with disturbance



82 5. A CONSTRAINED CLOSED LOOP MPC

for constraints satisfaction. Furthermore, a link between these conditions
and a pole assignment procedure is used to find the stabilizing controller
law.

In [58, 61], the authors solve the problem of stabilizing a linear system
subject to constraints, using the positive invariance concept to find a sta-
bilizing controller by state feedback. In this chapter, we follow a similar
approach to extend this problem to a closed loop MPC based on positive
invariance by the assumption that c(k) is a bounded additive disturbance.

5.4.1 Preliminary results

In this point, the concepts of positive invariance are presented and the con-
ditions for respecting constraints for the autonomous system.

Consider the following linear discrete time invariant autonomous system

z(k + 1) = Hz(k) +BNc(k), z(k0) = z0 (5.17)
where z ∈ Rm is the state constrained to evolve in

Dz = {z ∈ Rm,−zmin 6 z(k) 6 zmax, zmin, zmax ∈ Rm∗+ } (5.18)

and the perturbation c(k) is bounded in the domain

Dc = {c(k) ∈ Rnc×m,−cmin 6 c(k) 6 cmax, cmin, cmax ∈ Rnc×m∗
+ } (5.19)

and N = [Im, 0, · · · , 0], I denoting the identity matrix of adequate
dimensions.

Consider also that the state increment is constrained as follows:

−∆z
min 6 z(k + 1)− z(k) 6 ∆z

max (5.20)

First, recall the definition of Dc−positive invariance of domain Dz which
will be used in the sequel.

Definition 5.1 The domain Dz given by (5.18) is Dc−positive invariant
w.r.t. motion of system (5.17) if for all initial condition z0 ∈ Dz, the tra-
jectory of the system z(k, k0, z0) ∈ Dz for all c(k) ∈ Dc, k > k0.

To design a closed loop MPC based on positive invariance that ensure
constraint fulfillment for both control and increment, we begin by estab-
lishing conditions such that the state increment ∆z(k) constraints for the
autonomous system (5.17) are respected. Further, for the proposed con-
troller strategy presented later, control increment dynamics are separated
from control dynamics in order to be studied sequentially. It will be easy
then, to mix the conditions obtained separately for both control and incre-
ment constraints to obtain the controller that respects both of them. Hence,
the following lemma studies the fulfillment of incremental state constraints
for system (5.17).
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Lemma 5.1 The evolution of the autonomous system (5.17) respects incre-
mental constraints (5.20) if and only if the matrix H satisfies:

˜(H − I)Z + B̃N

(
cmax
cmin

)
6 ∆ (5.21)

where Z =
(
zmax
zmin

)
, ∆ =

(
∆z
max

∆z
min

)
and N = [Im, 0, · · · , 0]

Proof 5.1 If part Assume that condition (5.21) is satisfied. it is known
that

−zmin 6 z(k) 6 zmax (5.22)

hence, it is possible to write

z(k + 1)− z(k) = Hz(k) +BNc(k)− z(k)
= (H − I)z(k) +BNc(k)
= Gz(k) +BNc(k)

where we note G = H − I,Next, decompose matrix G = G+ − G−, pre-
multiplying (5.24) by G+ and −G−, gives

−G+zmin 6 G+z(k) 6 G+zmax (5.23)

−G−zmax 6 −G−z(k) 6 G−zmin (5.24)

and the addition of (5.23) and (5.24) enables to write

−G+zmin −G−zmax 6 Gz(k) 6 G+zmax +G−zmin (5.25)

Further, the perturbation is bounded:

−cmin 6 c(k) 6 cmax (5.26)

and the same reasoning with matrix BN and the c(k) leads to the following
inequalities:

−(BN)+cmin 6 (BN)+c(k) 6 (BN)+cmax (5.27)

−(BN)−cmax 6 −(BN)−c(k) 6 (BN)−cmin (5.28)

the addition of obtained inequalities gives the following:

−G+zmin −G−zmax − (BN)+cmin − (BN)−cmax
6 Gz(k) +BNc(k) 6

G+zmax +G−zmin + (BN)+cmax + (BN)−cmin
(5.29)
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according to condition (5.21)

∆z
min 6 −G+zmin −G−zmax − (BN)+cmin − (BN)−cmax

6 Gz(k) +BNc(k)
(5.30)

and

Gz(k) +BNc(k) 6 G+zmax +G−zmin + (BN)+cmax + (BN)−cmin
6 ∆z

max

(5.31)

this is equivalent to

∆z
min 6 z(k + 1)− z(k) 6 ∆z

max. (5.32)

Only if part Assume that ∆z = z(k+ 1)− z(k) respect the constraints and
the condition (5.23) is not satisfied for an index 1 6 i 6 n such that,

[
G̃Z

]
i
+
[
B̃N

[
cmax
cmin

]]
i

> ∆i (5.33)

[
G+Zmax +G−Zmin

]
i > ∆i

max Then, the following state vector for the sys-
tem can be selected

φ(k) =
{ zjmax if hij > 0

0 if hij = 0
zjmin if hij < 0

j = 1, ..., n.

It is easy to check that φ(k) is an admissible state for the system. Further
the following admissible perturbation may occur:

ω(k) =
{ cjmax if gij > 0

0 if gij = 0
cjmin if gij < 0

j = 1, ..., n.

where gij are the elements of matrix BN
Calculation of the ith component of the increment of this state give

[φ(k + 1)− φ(k)]i = [Gφ(k) +BNc(k)]i
=

n∑
j=1

hijφi(k) +
n∑
j=1

gijωi(k)

=
[
G+zmax +G−zmin

]
i

+
[
(BN)+cmax + (BN)−cmin

]
i

taking into account inequality (5.33), it is possible to write

[φ(k + 1)− φ(k)]i > ∆i
max
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which contradicts the assumption.

Evolution of the autonomous system (5.17) will respect both constraints
on the state z(k) and constraints on its increment if domain Dz, given by
(5.18) is Dc-positively invariant and conditions given in the previous lemma
are satisfied. But it was assumed that the state z(k) does not leave domain
Dz given by (5.18) which is not guaranteed in general case. For this we must
also ensure the positive invariance of the domain Dc. Positive invariance
conditions of polyhedral domains of type Dc have already been reported by
[?, ?] and [?]. Combining these conditions to those proposed in Lemma 1
enables us to claim the following:

Lemma 5.2 The domain Dz is Dc-positively invariant respect to motion of
system (5.18), and incremental constraints (5.20) are respected if and only
if

i) ˜(H − I)Z + B̃N

(
cmax
cmin

)
6 ∆ (5.34)

ii) H̃0W 6W (5.35)

where H0 =
(
H BN
0 M

)
, M =


0 Im 0 · · · 0
0 0 Im · · · 0
...

...
... . . . ...

0 0 0 · · · Im
0 0 0 · · · 0

, Z =
(
zmax
zmin

)
,

∆ =
(

∆z
max

∆z
min

)
, W =


zmax
cmax
zmin
cmin

, and N = [Im, 0, · · · , 0]

Proof 5.2 First, note that the dynamics of the system state and those of
the state increment are independent. Secondly, condition (5.35) implies that
the magnitude bounds holds, and finally, condition (5.34) implies that the
increment bounds also hold.

Note also that M is a zero block matrix (whose partition is conformal
with that of c) and whose i, i+ 1 block are all the identity matrix. The role
of M is to shift all the vector elements of c by one position and to replace
the last vector element by zero; ensuring that all but the first element of the
c sequence are used again at the next time instant.

Relating the previous lemmas 5.1 and 5.2 to the so called inverse proce-
dure a pole assignment procedure [60, 62] makes possible to solve the prob-
lem stated in the chapter, matrix H satisfying all required conditions exists
and the feedback F is obtained as a solution to the equation :

HF = FA+ FBF (5.36)
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Remark 5.1 Note here that all computation effort is handled off line. Choice
of an adequate matrix H with all required conditions is studied in [63].

5.4.2 Main results

With this background, we are able to solve the problem stated in Section
5.3.1. Consider the discrete linear time invariant system (5.1) with con-
straints on both control magnitude and control increments (5.2) − (5.3).
Using the feedback control law

u(k) = Fx(k) + c(k), F ∈ Rm×n and c(k) ∈ Rm,
σ(A+BF ) ∈ Ds

(5.37)

induces the following domain of linear behavior in the state space

Du = {x ∈ Rn, −umin 6 Fx(k) + c(k) 6 umax, umin, umax ∈ Rm+} (5.38)

Where Ds denotes the stability domain for eigenvalues (that is, the unit
disk).

If the state does not leave the domain (5.38), the control signal does not
violate the constraints. That is, the set Du is Dcpositively invariant w.r.t
motion of system (5.1). This gives the following result:

Theorem 5.3 System (5.1) with state feedback (5.37) is asymptotically sta-
ble at the origin with constraints on both the control and its increment if
there exist a matrix H ∈ Rm×m such that:

i) FA+ FBF = HF

ii) H̃0U 6 U

iii) H̃1U 6 ∆
(5.39)

where

H0 =
(
H FBN +NM −HN
0 M

)
;

H1 =
(
H − I FBN +NM −HN

)
;

U =


umax
cmax
umin
cmin

 and ∆ =
[

∆max

∆min

]

.
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Proof 5.3 Introduce the following change of coordinates z = Fx + c, it is
possible to write

z(k + 1) = Fx(k + 1) +Nc(k + 1)
= F (A+BF )x(k) + FBNc(k) +NMc(k)
= HFx(k) + (FBN +NM)c(k)
= H(Fx(k) +Nc(k)−Nc(k))
+ (FBN +NM)c(k)
= Hz(k) + (FBN +NM −HN)c(k).

(5.40)

With this transformation, domain Du is transformed to domain Dz given by
(5.18). Furthermore, with conditions (5.39), it is easy to note that domain
Dz is Dc−positive invariant w.r.t the system (5.40) while the constraints on
the control increments are respected. Bearing in mind that σ(A+BF ) ∈ Ds
and that the linear behavior is guaranteed, it is possible to conclude to the
asymptotic stability of the closed-loop system.

Steps to follow for design of such controllers are summarized in the al-
gorithm below:

Algorithm 5.1 Closed loop predictive control design based on the positive
invariance concept.

Step 1. Check if the system is controllable and observable, if not
extract the controllable and observable parts.

Step 2. Check if matrix A has (n − m) stable eigenvalues, if not
augment the system (remark 4.1).

Step 3. Choose the matrix H ∈ Rm×m or H ∈ Rn×n if the system is
augmented satisfying conditions Eq4.19 and Eq.4.20.

Step 4. Compute the gain matrix that is the solution of HF = FA+
FBF (section 4.3).

Step 5. If condition (5.39) is satisfied go to (5.17) for the online
implementation of the CLMPC, else return to step 3 and change the
matrix H.

5.4.3 Selection of the CLMPC parameters

In the proposed CLMPC scheme, a major obstacle for the designer is to get
a balance between the maximal feasible invariant set (affected by F and nc,
cmax, cmin), the computational load (implied by nc) and the performance
(implied by nc and F ). A practical design objective is to enlarge the feasible
invariant sets without sacrificing too much performance and an inexpensive
computational optimization.
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• Horizon of control nc: The influence of nc in the invariant set sizes is
as follows. The size of the invariant sets increases when nc increases
until a maximum value is reached. When nc is small, then mainly
F , cmax, cmin, determine their size. In this case, then the volume
of the maximal controlled admissible set may be dominated by the
implied state feedback F . Note that a highly tuned F could give rise
to small maximal controlled admissible set and loosely tuned F could
provide much larger feasible regions. In contrast, for computational
and sometimes for robustness reasons, nc is chosen to be small.

• Limits cmin and cmax: Note first that these are fictitious limits that
can be chosen with some freedom, since the real physical bounds of
the control signal are specified through umax, umin. They must be
chosen to be small in order not to affect too much the initial positive
invariance set volumes. Note that large values of these limits the
volume is significantly reduced as shown in the remainder of the paper.

• The matrix H: The selection of H can be done as in this article
using an inverse procedure. It consists of starting with the choice of
a matrix H that satisfies the conditions of the theorem 1, following
with the calculation of F through the resolution of equation (5.36).
The matrix H is a degree of freedom that can be exploited to improve
the closed loop responses. When the goal is to enlarge the initial
conditions set, the matrix H can be selected by linear programming
as follows:

minimize ε

subject to[
H+ H−

H− H+

] [
umax
umin

]
6 ε

[
ω1
ω2

]
0 < ε 6 1, H+ > 0 and H− > 0

where ω1 < umax and ω2 < umin are tuning vectors. In fact, if the
feasible solution H+, H− is such that H = H+−H− satisfies required
conditions in theorem 1, useH to obtain F . Else, change vectors ω1and
ω2. A similar linear programming problem for finding simultaneously
both matrices H and F can be found in [64].

5.5 Example
Consider the second order system described by the state-space equation:

x(k + 1) =
[

1.7 −3.3
1.3 0.3

]
x(k) +

[
3.0 2.0
−2.0 2.0

]
u(k)
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The control vector is subject to the following constraints

−
[

6
8

]
6 u(k) 6

[
6
8

]
Assume that the control increment is constrained as follows:

−
[

3.5
4

]
6 u(k + 1)− u(k) 6

[
4
4

]
The design parameters and matrices of the CLMPC are the following. The
parameter c(k) is constrained as:

−
[

0.1
0.2

]
6 c(k) 6

[
0.3
0.9

]
Other parameters selected are: nc = 2, Q = diag(0.5, 0.5), R = diag(1, 1)
and

Po =
[

1.4206 −0.9728
−0.9728 1.7575

]
The unforced system is unstable. The eigenvalues of matrix A are: λ1,2 =
1 ± j1.95. For the matrix H, we choose to assign the following closed loop
eigenvalues {0.61, 0.7} , which leads to the following choice of matrix H:

H =
[

0.61 0
0 0.7

]
Solution of equation (5.36) leads to the following gain matrix F :

F =
[

0.0596 0.5762
−0.5945 0.7363

]

At this step, one has to check that all required conditions (5.39) are
fulfilled. In this case:

H̃0U 6 U

5.2628
6.9089
0.3000
0.9000

0
0

4.4894
7.1516
0.1000
0.2000

0
0



6



6.0000
8.0000
0.3000
0.9000
0.3000
0.9000
6.0000
8.0000
0.1000
0.2000
0.1000
0.2000
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Figure 5.1: Evolutions of states x1 and x2 from the initial condition x0 =
[−5 − 3.5]T
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Figure 5.2: Evolutions of the control signals.

and
H̃1U 6 ∆

3.9428
3.7089
3.1694
3.9516

 6


4.0000
4.0000
3.5000
4.0000


Consequently, both conditions are satisfied and the asymptotic stability

is guaranteed with the obtained control law.
Simulation results are summarized in figures (5.1 − 5.4),comparing the

proposed CLMPC with an existing state feedback control law based on pos-
itive invariance [58]. Fig.5.1 represents the motion of the system from the
initial states condition x0 = [−5 − 3.5]T , while Fig.5.2 represents the
evolutions in time of the inputs. The Fig.5.3 shows the evolution of the
parameter c.
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Figure 5.3: Evolution of parameter c.

Fig.5.5 presents the feasible set dependence on nc, it can be shown that
the size of Du(F, umax, umin) increase when nc increases until a maximum
value is reached.

Fig.5.4 shows the influence of rmax and rmin on the size of the feasible set
Du(F, umax, umin) with c1max = [0.3 0.9]T , r1min = [0.1 0.2]T , c2max =
[0.5 1.9]T , r2min = [0.3 0.5]T , c3max = [1.3 2]T , r3min = [1.5 2]T and
c4max = [2.5 4]T , r4min = [2.5 4]T . As it can be observed, the size of this
set is inversely proportional to cmax and cmin, that is when cmax and/or
cmin increase, the size of Du(F, umax, umin) decreases. For this reason, they
must be chosen to be small in order to not affect too much the size of this
set.

5.6 Application to the WWTP.

In this section, the control scheme presented in the previous sections is
adapted to the special case of the WWTP.

5.6.1 Process Modeling

The activated sludge process is usually constituted by a bioreactor and a
settler. The aerator is taken to be a well-stirred tank in which suspended
micro-organisms biochemically degrade the dissolved substrate. The sus-
pended micro-organisms are separated completely in the settler. A portion
of the concentrated biomass is recycled to the bioreactor. The remainder is
wasted to maintain a limited micro-organism level in the system. The en-
ergy required is supplied by dissolved oxygen and carbon dioxide is in turn
released. We assume that no bioreaction takes place in the settler and the
aerator is considered to be perfectly mixed so that the concentration of each
component is spatially homogeneous (Fig.5.5).
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Figure 5.4: Feasible set Du(F, umax, umin) dependence on cmax and cmin

The equations of the model M1are:

Ẋ = µ (.)X − (1 + qr(t)D(t))X + qr(t)D(t)Xr

Ṡ = −µ (.)
Ys

X − (1 + qr(t)D(t))S +D(t)Sin(t)

Ẋr = (1 + qr(t)D(t))X − (qp + qr(t)D(t))Xr

Ċ = −µ (.)
YC

X − (1 + qr(t)D(t))C +KLa(Cs − C)

Where:

• X(t), S(t), Xr(t) and C(t) are, respectively, the biomass, the substrate,
the recycled biomass and the dissolved oxygen concentrations.

• µ(t) corresponds to the biomass specific growth rate, defined as:

µ(t) = µmax
S(t)

KS + S(t)
C(t)

KC + C(t) (5.41)

where µmax is the maximum specific growth rate, KS is the affinity constant
and KC is saturation constant.

• D(t) is the dilution rate.
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Figure 5.5: Feasible set Du(F, umax, umin) dependence on nc

• qr and qp represent the ratio of recycled flow to influent flow and the
ratio of waste flow to influent flow.

• KLa represents the oxygen mass transfer coefficient.

• Sin corresponds to the influent substrate concentration.

• CS is the maximum dissolved oxygen concentration.

• YS and YC are constants yields coefficients.

With the typical values of process and kinetic parameters qr = 0.6, qp =
0.4,Ys = 100 mg.l−1, Yc = 2 mg.l−1, Cs = 10 mg.l−1,KS = 100 mg/l,
KC = 2 mg/l Sin = 200 mg.l−1 and µmax = 0.15 h−1.

5.6.2 Controller design

To obtain a model in the state space, the state vector is considered as:

x(k) = [X(k) S(k) Xr(k) C(k)]T (5.42)

Furthermore, to complete the model, the following input and output vectors
are used

u(k) = [D(k) Kla(k)]T (5.43)
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Figure 5.6: Schematic view of an activated sludge process.

y(k) = [S(k) C(k)]T (5.44)

The constraints on the control magnitude and on its increment are given by
the following limitations :

Dmin ≤ D ≤ Dmax

Klamin ≤ Kla ≤ Klamax

∆Dmin ≤ ∆D ≤ ∆Dmax

∆Klamin ≤ ∆Kla ≤ ∆Klamax

(5.45)

where Dmin = 0 h−1, Dmax = 0.8 h−1, Klamin = 0 m3.h−1, Klamax =
5 m3.h−1, ∆Dmin = −0.5 h−1, ∆Dmax = 0.5 h−1, ∆Klamin = −2.5 m3.h−1

and ∆Klamax = 2.5 m3.h−1

Linearizing and discretizing the system around the equilibrium point
computed from the non linear equations leads to the new variables (x, u, y)
that are now deviation variables. The equilibrium point is given by

X̄ = [122.7342 49.4714 196.3750 6.8300]T (5.46)

Ū = [0.06 1.35] (5.47)

The linearized system around this equilibrium point leads to the following
discrete linear system :{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) (5.48)
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Where,

A =


0.7685 0.1551 0.0576 0.1273
−0.1438 0.4137 −0.0859 −0.0131
−0.0109 −0.0175 0.0026 −0.0018
0.3396 0.0377 0.0253 0.8335

 (5.49)

B =


−250.0774 0.9268
398.0189 −1.4129
−13.8515 2.0454
102.6287 0.1800

 (5.50)

C =
[

0 1 0 0
0 0 1 0

]
(5.51)

with the constraints on the control and its increment are given by :{
umin ≤ u ≤max
∆umin ≤ ∆u ≤ ∆umax

(5.52)

with umin, umax, ∆umin and ∆umax are computed from (5.42) and
(5.43).

For the choice of matrix H, the selected closed loop eigenvalues are
{0.65, 0.67} , which leads to the following matrix H:

H =
[

0.65 0
0 0.67

]
(5.53)

It is worth noting here that the remaining closed loop eigenvalues are 2
(n − m) stables ones coming from the open loop system. Hence, solving
Equation (5.36) leads to:

F =
[

0.0085 0.0029 0.0067 0.0066
0.0301 0.0194 0.3502 0.0178

]
(5.54)

The design parameters and matrices of the CLMPC are selected by a trial
and error procedure and following the guidelines of section 5.3.3: nc = 4,

R =
[

0.01 0
0 0.01

]
,

Q =


0.005 0 0 0

0 0.005 0 0
0 0 0.005 0
0 0 0 0.005


and the resolution of equation (5.16) leads to:
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Po =


4.1984 −8.3031 −0.0910 −2.7734
−8.3031 16.8677 0.2910 5.7131
−0.0910 0.2910 0.0463 0.1487
−2.7734 5.7131 0.1487 2.0548


At this step, one has to check that all required conditions (5.39) are fulfilled
in order to have a stable controller. In this case, both conditions are satisfied
and the asymptotic stability is guaranteed with the obtained control law.

5.6.3 Simulation Results

Simulation results are given in Figs.5.6 − 5.9, comparing the proposed
CLMPC (u = Fx+ c) and an existing state feedback control law (u = Fx)
computed in the some way as in [?].

Fig.5.6 illustrate the evolution of the output variables and their corre-
sponding set points (equilibrium point). It can be seen the ability of the
controller to track the desired values of the substrate and the dissolved
oxygen after a short transient response. The evolution of the biomass and
recycled biomass are shown in Fig.5.7. The evolution of the control vari-
ables which are the dilution rate and the air flow rate is shown in Fig.5.8.
Finally, the Fig.5.9 shows the evolutions of the parameter c.

Table (5.1) presents the integral of the squared error (ISE) of the out-
puts, and it can be seen that the CLMPC gives better ISE for both outputs.

As general remarks asymptotic stability is obtained, all constraints are
respected.

Table 5.1: Integral of the squared error (ISE)
Outputs u(k) = Fx(k) u(k) = Fx(k) + c(k)
S (mg/l) 19.5055 16.2661
C (mg/l) 1.8419 1.7192

5.7 Conclusion
This chapter presents a new methodology to design a CLMPC, providing
a simple solution that ensures stability and respects non-symmetrical con-
straints on control magnitudes and moves. The positive invariance theory
has been used here, particularly polyhedral invariant sets, since it has been
shown to be very efficient to handle constrained control. The proposed al-
gorithm takes advantage of the design of matrix F to increase the degrees
of freedom, in contrast to other CLMPC approaches. For the controller de-
sign, necessary and sufficient conditions for asymptotic stability at the origin
have been developed, for linear systems and a state feedback control law,
while respecting constraints on both control magnitudes and its increments.
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Figure 5.7: The evolutions of the dissolved oxygen and the substrate con-
centrations.

The proposed methodology has been successfully applied to the acti-
vated sludge process in a wastewater treatment plant (WWTP), forcing the
substrate concentration (organic matter) in the effluent and the dissolved
oxygen concentration in the biological reactor to track a given set point.
Simulation results show that integral squared error of the substrate in the
effluent is reduced in 15% with respect to the other technique presented
in the results, which is a significant improvement in effluent quality. The
methodology of this work is general and can be easily extended to other
applications.
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Figure 5.9: The evolutions of the dilution rate and the oxygen mass transfer
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6

One Layer Economic
Nonlinear Closed-Loop
Predictive Control

6.1 Introduction

The main scope of this chapter is the proposal of a new single layer Non-
linear Economic Closed-Loop Generalized Predictive Control (NECLGPC)
based on an economic nonlinear GPC, as an efficient advanced control tech-
nique for improving economics in the operation of nonlinear plants. It is well
known that closed loop predictive control procedure is an effective strategy
and has been exploited to decrease computational demand of solving op-
timization MPC problems. The proposed approach, in contrast to classic
closed loop MPC schemes, where the terminal control law is computed of-
fline by solving a linear quadratic regulator problem [65, 66, 67], computes
analytically the terminal control law online by solving an unconstrained
Nonlinear Generalized Predictive Control (NGPC) minimizing a cost func-
tion constituted by tracking errors and economic costs. In order to obtain
an analytical solution of this non linear optimization problem two consid-
erations have been made here. Firstly, the prediction model consisting of a
nonlinear phenomenological model of the plant is written in the extended
linearization form or state dependent coefficient form, which actually allows
having nonlinear model expressed with linear structure and state dependent
matrices. Secondly, instead of including the nonlinear economic cost in the
objective function, an approximation of the reduced gradient of the eco-
nomic function is used. In this way the problem becomes a quadratic one,
and can be solved analytically at each sampling time as in the linear case,
to obtain the terminal control law to be used within the closed loop MPC
scheme.

In the present work the NECLGPC is used as an efficient advanced

103
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control technique for improving economics in the operation of the Nitrogen
Removal of WWTP. As it is well known, this is an interesting case study
because these types of plants need to operate efficiently in order to meet
strict environmental regulations with minimum costs.

6.2 Problem statment
Consider the time varying system that is obtained by discretizing the con-
tinuous model of the process using the Euler integration method and re-
arranged into the state-dependent coefficient form [68] as:{

x(k + 1) = A(k)x(k) +B(k)u(k)
y(k) = C(k)x(k) (6.1)

Where x(k) ∈ Rn, y(k) ∈ Rp and u(k) ∈ Rm are the state, the output
and the input vectors respectively at the kth sampling instant.

The general formulation of the problem (Eq.6.2 − 6.5) consists of the
optimization of a cost function that represents the control and economic
objectives, subject to a set of constraints. The objective function includes
the penalization of control error, the penalization of control efforts and a
term (feco) that accounts for the economic objectives:

min
u(k)

= min[
ny∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22

+
nu∑
i=0
||w2∆u(k + i|k)||22

+ w3feco(u(k + nu − 1|k), · · · , u(k|k), y(k + p|k))]

(6.2)

subject to

umin 6 u(k + i|k) 6 umax, i = 0, · · · , nu − 1 (6.3)
ymin 6 y(k + i|k) 6 ymax, i = 1, · · · , ny (6.4)

∆umin 6 ∆u(k + i|k) 6 ∆umax, i = 0, · · · , nu − 1 (6.5)

Where ny and nu are the output and input horizon, respectively; u(k+ i|k)
is the control input computed at time k to be applied at time step k + i;
y(k+ i|k) is the output prediction at time step k+ i; r is the desired value of
the output; ∆u(k+i|k) = u(k+i|k)−u(k+i−1|k); w1, w2 and w3 are positive
definite matrices. Note that the different terms of the cost function must be
weighted such that the economic criterion and the dynamic compensation
of the output error have a similar influence on the values of the overall cost.

The control strategy proposed in this chapter is described schematically
in Fig.6.1, This controller is achieved by using a new closed loop nonlin-
ear predictive control paradigm that combines an unconstrained economic
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nonlinear Generalized Predictive Control law F (k) with the parameteriza-
tion c(k), associated with the closed loop paradigm that allows taking into
account the process constraints and improving the performance of the con-
troller.

Figure 6.1: Control loop with the closed-loop paradigm

Some specific characteristics of this control strategy are:

• The optimizer shown in the control scheme (Fig.6.1) constitutes the
economic nonlinear closed loop paradigm. The predicted control moves
are centered around an unconstrained stabilizing control law, u(k) =
F (x(k)) , over the whole prediction horizon, and some additive degrees
of freedom, c(k), are added over a finite horizon to handle constraints.
The resulting control u(k) = F (x(k)) + c(k) is applied to the plant.

• In the objective function the nonlinear economic term is replaced by
its gradient making this function a quadratic one.

• The prediction model, a nonlinear phenomenological model of the
plant, is written as a state dependent coefficient model, also called
extended linearization, which consists of factorizing the nonlinear sys-
tem in a linear structure with state dependent matrices.

• The above assumptions allow us to design an economic unconstrained
nonlinear GPC analytically, and its stabilizing control law, u(k) =
F (x(k)), and to state the NLCLGPC problem as a QP problem each
sampling time.

6.3 Controller Design
In this section, the CLMPC that is the basis of the one layer economic
controller proposed is presented, starting with the open loop MPC, the pre-
dictions using state dependent coefficient matrices and the optimization.
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The predictions are obtained using a discrete time varying prediction
model of the process along the prediction horizon ny of the form:

x(k+i+1|k) = A(k+i|k)x(k+i|k)+B(k+i|k)u(k+i|k), i = 0, 1, · · · , ny−1
(6.6)

With initial condition established by:

x(k|k) = x(k) (6.7)

The predicted input sequences are often stacked into the matrices u defined
by:

u =


u(k|k)
u(k + 1|k)
...
u(k + nu − 1|k)

 (6.8)

Clearly J(k) is a function of u(k) , and the optimal input sequence for the
problem minimizing J(k) is denoted u∗(k):

u∗ = argmin
u(k)

J(k)

Subject to(6.3), (6.4)and(6.5)
(6.9)

To improve the numerical conditioning of the optimization and the plant
performance, a closed loop MPC has been considered by defining the pre-
dicted input sequence as:

u =



F (k)x(k) + c(k)
F (k + 1)x(k + 1) + c(k + 1)
...
F (k + nu − 1)x(k + nu − 1) + c(k + nu − 1)
F (k + nu)x(k + nu)
...
F (k + nu + ny)Φ(k + nu + ny − 1) · · ·Φ(k + nu)x(k + nu)


(6.10)

Where, F (k) ∈ Rm×n is a nonlinear stabilizing state feedback and Φ(k) =
A(k) +B(k)F (k).

With the new predictions model:

x(k + i|k) = A(k + i− 1|k)x(k + i− 1|k) +B(k + i− 1|k)u(k + i− 1|k);
u(k + i|k) = F (k + i|k)x(k + i|k) + c(k + i|k), i = 0, · · · , nu − 1.
u(k + i|k) = F (k + i|k)x(k + i|k), i > nu.



6.3. CONTROLLER DESIGN 107

The system model becomes{
x(k + 1) = (A(k) +B(k)F (k))x(k) +B(k)c(k)

y(k) = C(k)x(k) (6.11)

Where c(k) ∈ Rm is the new manipulated input.
Thus the problem to be minimized at each sampling time is:

c∗ = argmin
c(k)

J(k)

subjet to
Constraints(6.3), (6.4)and(6.5)

x(k + i+ 1|k) = Φ(k + i|k)x(k + i|k) +B(k + i|k)c(k + i|k)
for i = 0, · · · , nu−1.

x(k + i+ 1|k) = Φ(k + i|k)x(k + 1|k), for i > nu

(6.12)

Where, c(k) = [cT (k|k) · · · cT (k + nu − 1|k)]T and c∗(k) is the first
element of c(k).

The closed loop nonlinear GPC controller is implemented in a moving
horizon framework. At current time step k, the plant state x(k) is used as
the initial condition and the economic optimization problem is solved on a
horizon ny, however, only the first calculated control action is implemented
(u(k) = F (k)x(k) + c∗(k)). At the next time step k + 1, we move the time
frame one step ahead and the problem is solved with the new plant state
x(k + 1) as the initial condition.

In the next section, the procedure for obtaining the controller is detailed.
First, the analytical solution of the unconstrained economic NLGPC law is
computed through the modification of the economic function, later, this law
is used to predict the outputs over a prediction horizon with a Nonlinear
Model Predictive Control.

With the aim to integrate RTO with NGPC in one single layer, the
inclusion of the gradient of the economic function as an additional term
in the cost function is proposed. This approach incorporates the economic
objective into the NGPC controller such that the RTO and NGPC are solved
in a single optimization routine.

6.3.1 The Nonlinear GPC with Economic Objective

The objective of this section is to design a nonlinear GPC controller that
directly accounts for economic objectives. This is achieved designing a one-
layer RTO − GPC controller. The typical nonlinear GPC problem is the
optimization of a nonlinear quadratic function calculated using a nonlinear
steady state process model. In the proposed strategy, due to the presence
of feco, the objective function of the economic (Eq.6.2) is not a quadratic
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function of the manipulated variables of the optimization problem that de-
fines the controller. Thus, the control problem turns into an NLP , which
may result difficult to resolve.

Then, assuming that the vector of the control action is changed to u+∆u,
the first order approximation of the gradient of the economic function

Feco = feco(u, ŷ) (6.13)

can be represented as follows:

ξu+∆u = D +G∆ū (6.14)

D = ∂Feco
∂y

KP + ∂Feco
∂u

(6.15)

G = KT
P

∂2Feco
∂y2 KP + ∂Feco

∂y
(∂

2Feco
∂y∂u

) + ∂2Feco
∂u2 (6.16)

Where KP = ∂y
∂u corresponds to the process gain.

The computation of D and G involve the rigorous predicted steady-state
model as shown in De Souza et al. (2010).

In the equation (6.14), ∆ū = u(k + m − 1|k) − u(k − 1|k) is the total
move of the input vector, D is the gradient vector at the present time and
G is the Hessian of the economic function with respect to the inputs. The
gradient vector ξT(u+∆u) can be considered as a deviation vector, which is
equivalent to considering that the gradient of the economic function is zero
at the optimum. So, if bringing this vector to zero is considered as one of
the controller objectives, the set of error equations represented in (6.14) can
be included in the optimization problem. Thus, feco can be approximated
by a quadratic function as feco = ξT(u+∆u)ξ(u+∆u).

Remark 6.1 In the unconstrained economic optimization, the operating
point where the gradient ξ is equal to zero corresponds to a local maximum
(when G < 0) or local minimum (when G > 0) of the economic function.
However, when the constraints of the control problem are active, the opti-
mum corresponds to the point where the reduced gradient of the economic
function is equal to zero. The reduced gradient is obtained through the pro-
jection of the gradient on the tangent space of the active constraints.

6.3.2 NECLGPC terminal control law F (k)
In this work, the terminal control law in the NECLGPC is determined on-
line by an unconstrained NGPC Control with finite control and predictions
horizons minimizing a cost function constituted by two important terms,
the first one for set point tracking and the second for taking into account
the economic cost that is approximated by means of its gradient.
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The state dependent coefficient form of the model (6.1), in state space
format, is stated as in the conventional GPC formulation, allowing for in-
herent integral action within the model, including the control increment as
system input to the state space model. Consequently, an extra system state
is incorporated. {

χ(k + 1) = Ã(k)χ(k) + B̃(k)∆u(k)
y(k) = C̃(k)χ(k) (6.17)

Where:

Ã(k) =
[
A(k) B(k)
0 I

]
, B̃(k) =

[
B(k)
I

]
,

C̃ =
[
C(k) 0

]
, χ(k) =

[
x(k)
u(k − 1)

]
Considering that the future trajectory of the state of the system is known,

the state-space model (6.11) matrices may be re-calculated for the future.
The resulting state-space model may be seen as a time-varying linear model
and the controller is designed using this model. The future trajectory of the
system can be determined using this model.

The predictive control techniques address calculation of the vector of
current and future controls by solving the following optimization problem:

min
u(k)

= min(
ny∑
i=1
||w1(r(k + i|k)− y(k + i|k))||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

+ ||w3ξ
T
u+∆u||22)

(6.18)

Next the following vectors containing current and future values are intro-
duced:

χ(k) =
[
χT (k) · · · χT (k + ny)

]T
,

∆u(k) =
[
∆uT (k) · · · ∆uT (k + nu−1)

]T
,

y(k) =
[
yT (k) · · · yT (k + ny)

]T
r(k) =

[
rT (k) · · · rT (k + ny)

]T
(6.19)

Then, the cost function (6.18) may be written in the vector form:

J(k) = (r(k)− y(k))Tw1(r(k)− y(k)) + ∆uT (k)w2∆u(k)
+ (D +G∆u(k))Tw3(D +G∆u(k))

(6.20)
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with w1 = diag(w1
1, · · · , w

p
1) and w2 = diag(w1

2, · · · , wm2 ).
Now, it is possible to determine the future state prediction:

χ(k + i) =
[
Ã(k + i− 1)Ã(k + i− 2) · · · Ã(k)

]
χ(k)

+
[
Ã(k + i− 1)Ã(k + i− 2) · · · Ã(k + 1)

]
B̃(k)∆u(k)

+
[
Ã(k + i− 1)Ã(k + i− 2) · · · Ã(k + 2)

]
B̃(k + 1)∆u(k + 1)

+ · · ·

+
[
Ã(k + i− 1)Ã(k + i− 2) · · · Ã(k + nu)

]
B̃(k − 1

+ min(i, nu))∆u(k − 1 + min(i, nu)) Fori = 1, · · · , ny
(6.21)

Note that to obtain the state prediction at time instance k + i the
knowledge of matrix predictions Ã(k) · · · Ã(k + j − l) and B̃(k) · · · B̃(k −
l+ min(i, nu)) is required. The control increments after the control horizon
are assumed to be zero.

Next, the following notation has been introduced:[
nu∏
i=l

Ã(k + i)
]

=
{
Ã(k + nu)Ã(k + nu − 1) · · · Ã(k + l) if l 6 nu
I if l > nu

Where I denotes the identity matrix of appropriate size.
Then (6.21) may represented as:

χ(k + i) = [
i−1∏
i=0

Ã(k + i)]χ(k) + [
i−1∏
i=1

Ã(k + i)]B̃(k)∆u(k)

+ [
i−1∏
i=2

Ã(k + i)]B̃(k + 1)∆u(k + 1)

+ · · ·

+ [
i−1∏
i=nu

Ã(k + i)]B̃(k − 1 + min(i, nu)∆u(k − 1 + min(i, nu)))

(6.22)

Now using (6.22) the following equation for the future state predictions
vector χ(k) is obtained:

χ(k) = Ω(k)Ã(k)χ(k) + Ψ(k)∆u(k) (6.23)

Where

Ω(k) =
[
[

0∏
i=1

Ã(k + i)]T · · · [
ny−1∏
i=1

Ã(k + i)]T
]

(6.24)
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Ψ(k) =


[
∏0

i=1 Ã(k+i)]B̃(k)] 0 ··· 0

[
∏1

i=1 Ã(k+i)]B̃(k)] [
∏0

i=2 Ã(k+i)]B̃(k+1)
. . . ···

...
... . . . ···

[
∏ny−1

i=1 Ã(k+i)]B̃(k) ··· ··· [
∏ny−1

i=nu
Ã(k+i)]B̃(k+nu−1)


From the output equation (6.17) it is clear that

y(k + i) = C(k + i)χ(k + i) (6.25)

Combining the outputs in (6.25) and (6.23) the following relationship be-
tween vectors x(k) and y(k) is obtained:

y(k) = θ(k)χ(k) (6.26)

Where θ(k) = diag(C(k + 1), C(k + 2), · · · , C(k + ny))
Finally substituting in (6.26) χ(k) by (6.23) the following equation for

output prediction is obtained:

y(k) = φ(k)Ã(k)χ(k) + S(k)∆u(k) (6.27)

where
φ(k) = θ(k)Ω(k), S(k) = θ(k)Ψ(k)

Substituting y(k) in the cost function (6.20) by the equation (6.27) and
performing the analytical minimization, ∆u is obtained by deriving the cost
function:

∆u = (ST (k)w1S(k) + w2 +GTw3G)−1[S(k)w1(r(k)− φ(k)Ã(k)χ(k))
−GTw3D]

(6.28)

By denoting:

F (k) = (ST (k)w1S(k) + w2 +GTw3G)−1S(k)w1Φ(k)Ã(k)
d(k) = (ST (k)w1S(k) + w2 +GTw3G)−1[S(k)w1r(k)−GTw3D]

(6.29)

The equation (6.28) becomes:

∆u(k) = −F (k)χ(k) + d(k) (6.30)
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6.3.3 Closed-Loop Paradigm

The dual mode controller proposed in this work differs from others proposed
in the literature by three important points. First of all, usually in the
classical dual mode MPC schemes, the terminal control law defined in the
terminal region is obtained offline by solving a linear quadratic regulator
problem, but in this paper the terminal control law is determined online
by solving an unconstrained nonlinear GPC problem as presented in the
previous paragraph. Secondly, the terminal controller takes into account
the economic costs by including the gradient of the economic function as an
additional term in the objective function of the NGPC. Finally, here, even
though the parameters of NGPC are tuned to assure a good performance
and stability if there are not constraints, the dual mode approach is adopted
in order to handle them when necessary and to ameliorate the performance
of the closed loop system respecting them while maintaining stability.

A common choice is u(k) = Fx(k)+c(k) as in [32] where F is a unchang-
ing feedback gain computed offline and c(k) is the new manipulated variable.
From results of section 6.3.2 and particularly on equation (6.30), the con-
trol parameterization proposed is based on affine function disturbances as
follows, making the controller less conservative.

∆u(k) = −F (k)χ(k) + d(k) + c(k) (6.31)

At each step time k, we assume that the feedback F (k) and d(k) are constant
and c(k) is the new decision variable.

The degrees of freedom are the disturbance c(k) as is it described in
Fig6.1. It is conventional to define these as:

c(k) = [cT (k) · · · cT (k + nu − 1)]T ;
c(k + i+ nu) = 0 for i > 0

(6.32)

That is, suppose a limited number nu of nonzero values for c(k). After nu the
disturbances are zero and the loop acts in a linear fashion and is equivalent
to mode 2 of the dual mode predictions. Then the performance index in (6.2)
and constraints (6.3, 6.4and6.5), must be formulated in function of c(k).

min
u(k)

= min(
ny∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

+ ||w3ξ
T
u+∆u||22)

subject to (6.3), (6.4)and (6.5)

(6.33)
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In order to obtain the prediction equations considering the control parame-
terization (6.31), those equations are rewritten here:

∆u(k) = −F (k)χ(k) + d(k) + c(k)
F (k) = (ST (k)w1S(k) + w2 +GTw3G)−1S(k)w1Φ(k)Ã(k)χ(k)
d(k) = (ST (k)w1S(k) + w2 +GTw3G)−1[S(k)w1r(k)−GTw3D]

(6.34)

The predictions with the new control parameterization are:
χ(k + i+ 1) = Ã(k)χ(k + i) + B̃(k)∆u(k + i);

∆u(k + i) = −F (k)χ(k) + ct(k + i)
(6.35)

With i = 0, · · · , nu − 1.
and ct(k + i) = d(k) + c(k + i).
Eliminating the dependent variable ∆u(k + i) one makes:

χ(k + i+ 1) = (Ã(k)− B̃(k)F (k))χ(k + i) + B̃(k)ct(k + i) (6.36)

Predicting onward in time with Φ(k) = Ã(k)− B̃(k)F (k) one gets;

χ(k) =


Φ
Φ2

Φ3

...

χ(k) +


B̃(k) 0 0 · · ·
ΦB̃(k) B̃(k) 0 · · ·
Φ2B̃(k) ΦB̃(k) B̃(k) · · ·
...

...
...

...

 ct(k) (6.37)

with
χ(k) = [χT (k + 1) χT (k + 2) · · · χT (k + ny)]T

ct(k) = [cTt (k + 1) cTt (k + 2) · · · cTt (k + nu)]T
(6.38)

Or in more compact structure we can redact the equation (6.37) as

χ(k) = Pclχ(k) +Hcct(k) (6.39)

The related input predictions can expressed as

∆u(k) =


−F (k)
−F (k)Φ
−F (k)Φ2

...

χ(k)+


I 0 0 · · ·
−F (k)B̃(k) I 0 · · ·
−F (k)ΦB̃(k) −F (k)B̃(k) I · · ·
...

...
...

...

 ct(k)

(6.40)
with

∆u(k) = [∆uT (k + 1) ∆uT (k + 2) · · · ∆uT (k + nu)]T (6.41)

or
∆u(k) = Pcluχ(k) +Hcuct(k) (6.42)

The state beyond nu steps will be denoted as

χ(k +mnu) = Pcl2χ(k) +Hc2ct(k) (6.43)

Where Pcl2 and Hc2 are the nthy block rows of Pcl and Hc respectively.
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6.4 Application to WWTP
In this point, the control methodology proposed is applied to a WWTP. The
WWTP have to be operated efficiently, minimizing the energy and recourses
consumption while meeting the strict environmental regulations. Therefore,
the advanced control strategies as the NLGPC proposed in this paper are
a promising alternative for improving their performance and economics.

6.4.1 Process Model

This application focuses specifically on the N-Removal process, which occurs
in the biological treatment of the WWTP . The model M4 that represents
the N-Removal process is taken from the Benchmark Simulation Protocol
(BSM1) [41]. In order to represent the N-Removal process, the BSM1 is
reduced to one anoxic and one aerated reactor, as shown in Figure 6.2. The
volumes of the tanks are 2000m3 and 3999m3 respectively, to make them
equivalent to total volumes of the anoxic and the aerobic compartments in
the BSM1.

	  
 

SNH2 
SNtot 
 

Qin 
SSin 

SNHin 

Qw 

Qa 

Qe  
Sno1 

R1 

So2 

Qras 
 

R2 

Kla 

Figure 6.2: Schematic representation of the plant M3.

The equations of the model M3 representing the dynamic behavior of
the plant are detailed in chapter 2.

6.4.2 Control problem

The basic control strategy proposed in the BSM1 is the feedback control of
the dissolved oxygen SO2 level in the reactor by manipulation of the oxygen
transfer coefficient KLa and the control of the nitrites and nitrates con-
centration in the last anoxic compartment by manipulation of the internal
recycle flow rate Qa.

In this work the NECLGPC algorithm is applied for controlling the
oxygen SO2 in the aerobic reactor and nitrate levels SNO1 in the anoxic
reactor. A multivariable control strategy is used where the controlled vari-
ables are SNO1 and SO2, the manipulated variables are oxygen transfer co-
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efficient KLa and the internal recycle flow rate Qa. The considered measur-
able disturbances are the influent flow (Qin) (fig.2.14), the organic matter
concentration (Ssin) (fig.2.15) and the ammonium concentration (SNHin)
(fig.2.16) in the influent.

6.4.3 Performance indices

The measures used to characterize the effluent quality and energy usage
during the N-removal process are the standard performance indices rec-
ommended in the BSM1 platform for the evaluation of control strategies
applied to WWTPs. The performance indices used in this section are the
EQ, AE and PE as described in the section 2.3.

6.5 Simulations results
Different advanced control strategies based on nonlinear model predictive
control are tested in the WWTP . The idea is to compare the proposed
nonlinear GPC proposed in this chapter, including the economic term and
considering the closed loop paradigm to account for restrictions with other
GPC and NMPC formulations.

6.5.1 Case studies

• Case 1 (NGPC): Unconstrained Nonlinear Generalized Predictive
Control (NGPC) that minimize the following cost function that takes
into account only the control objectives, without considering closed
loop predictions:

J(k) =
ny∑
i=1
||w1(r(k + i|k)− y(k + i|k))||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

(6.44)

• Case 2 (NEGPC): Unconstrained Nonlinear Economic Generalized
predictive control (NEGPC) that minimize the following cost function
which accounts for economics, but without considering closed loop
predictions:

J(k) =
ny∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

+ ||w3ξ
T
u+∆u||22

(6.45)
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• Case 3 (NCLGPC): The one layer optimization and control based on
nonlinear closed-loop GPC presented in this work that minimize the
following cost function without economics.

J(k) =
ny∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

subject to (6.3), (6.4)and (6.5)

(6.46)

• Case 4 (NECLGPC): The one layer economic optimization and con-
trol based on nonlinear closed-loop GPC presented in this work that
minimize the following cost function which accounts for economics.

J(k) =
ny∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

+ ||w3ξ
T
u+∆u||22

subject to (6.3), (6.4)and (6.5)

(6.47)

• Case 5 (NEMPC): Nonlinear Model predictive Control (NMPC)
that minimizes the following cost function. Note that in this case
the economics are considered including the full feco in the controller
objective function

min
u(k)

= min(
ny∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22

+
nu−1∑
i=0
||w2∆u(k + i− 1|k)||22

+ w3feco(u(k + nu − 1|k), · · · , u(k − 1|k), y(k + p|k))

(6.48)

subjet to
umin 6 u(k + i|k) 6 umax, i = 0, · · · , nu − 1
ymin 6 u(k + i|k) 6 ymax, i = 1, · · · , ny

∆umin 6 ∆u(k + i|k) 6 ∆umax, i = 0, · · · , nu − 1

Those controllers are summarized in the following table 6.1:
Those control strategies are evaluated and compared by means of closed

loop simulations of the process model (M4) implemented in Matlab. The
simulations have been carried out considering the influent profile described
in figures (2.11), (2.12) and (2.13) (storm weather scenario), and analogous
influents for rain and dry weather described in the BSM1 specifications.
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Table 6.1: Controllers characteristics.

Control Economic Constraints type of Predictions
function predictions model

Case 1: None None Open loop State dependent
coefficient

Case 2: Quadratic None open loop State dependent
Gradient based coefficient

Case 3: None Yes Closed loop State dependent
coefficient

Case 4: Quadratic Yes Closed loop State dependent
Gradient based coefficient

Case 5: Full nonlinear Yes open loop Nonlinear
function phenomenological

model

6.5.2 Tuning parameters and operating conditions

The performance of the plant strongly depends on the selected controller
set points due to the plant nonlinearities. The set point selected for the
performance evaluation correspond to the economically optimal steady state
condition found considering the average values of the inputs in one operating
period. The variable DO (SO2) in the second tank is controlled at a set
point 2.09g/m3 and the variable SNO in the first compartment is controlled
at a set point of 1.66g/m3. The influent considered has been described in
figures (2.11), (2.12) and (2.13). The plant responses and the corresponding
performance indices for 678 (4 weeks) operating hours are compared.

The NECLGPC weights, as well as the prediction and control horizons,
affect the closed loop behavior of the plant, so a proper tuning is required.
In this work, the tuning has been performed evaluating the plant behavior
by means of simulations. The selected tuning parameters for the controllers
described in cases 1, 2, 3 and 4 are: control horizon nu = 2; prediction
horizon ny = 4; output weight w1 = diag(0.155, 0.01); input weight w2 =
diag(0.01, 0.01), the weight of the economic term w3 = 0.01 and sampling
period of 15 minutes.

The control variables and its rates are bounded as shown in Eqs.(6.3, 6.4)
and therefore, the optimization problem (6.2) is a nonlinear and constrained.
The bounds for the input variables and its rate are Qa < 3850m3/d, Kla <
200day−1, −100 < ∆Qa < 100 and −24 < ∆KLa < 24.
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6.5.3 Results

The controller performance evaluation includes the analysis of the temporal
responses and the corresponding performance indices. The first comparison
is presented in figures 6.3 − 6.6, where the NGPC (Case 1) is compared
to the NEGPC (Case 2), for stormy weather disturbances. For both con-
trollers, the set point tracking is particularly good for the SO2, and the SNH
concentration satisfies the legal constraint (table 2.12). The responses are
very similar, and the only remarkable difference is that for SO2 tracking
the NEGPC shows a small offset due to the incorporation of the economic
term. The OCI values (table 6.2) are smaller for NEGPC as expected.

Secondly, in figures 6.7−6.12 a comparison of the proposed NECLGPC
(Case 4) with a NCLGPC (case 3) is presented, also for stormy weather.
The responses are again very similar, only showing a small decrease of the
manipulated variables for the Case 4 controller, due to the inclusion of the
economic term. This is also seen in the OCI values of table6.2. For these
controllers the tracking for SNO improves achieving a better balance between
SO2 and SNO tracking. The two manipulated variables are shown in Figs.6.9
and Figs.6.10 which indicate that suitable control signals Qa and KLa drive
the process to follow the set point, while satisfying the constraints (Eqs.6.3−
6.5) imposed. The rest of constraints for the effluent (table 2.12) are also
satisfied (Fig.6.11), ensuring a proper quality of the effluent. Figure 6.12−
6.13 show the evolution of the parameters c1 and c2, where can be seen
larger variations in c1 due to the larger variations in Qa.

Finally, a comparison of the NECLGPC proposed with a NEMPC
where the economic term is the full economic function without any approx-
imation is presented. Comparing the evolution of SO2 and SNO concentra-
tions, the NEMPC controller (Case 5) presents better tracking for the SNO
than the NECLGPC (Case 4) controller, but a slightly worse one for the
SO2, providing globally a similar performance. In spite of that, in the Case
5 controller, a main drawback is that the SNH concentration does not fulfill
legal regulations. Another advantage of the NECLGPC is that the nonlin-
ear internal model provides a good prediction with smaller computational
effort due to its state dependent coefficient form.

In table6.2, a comparison of different performance indices is shown. Com-
paring the OCI for the different case studies, it is possible to observe that the
introduction of the economic term in the NECLGPC (case 2) and NEGPC
(case 4) improves the economics reducing the OCI index. For instance, for
the storm weather influent it reduces the OCI from 1298.8EUR/d (Case 1)
to 1261.8EUR/d (Case 2) and from 1299.9EUR/d (Case 3) to 1245.8EUR/d
(Case 4). This is observed also for different scenarios, especially when dry
weather influent profile is tested where a reduction of 16% of the OCI is
achieved. Moreover, it can be seen that for the NECLGPC (Case 4) the
OCI values in all weather conditions are smaller than for cases 1, 2 and 3.
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Table 6.2: Comparison of performance indices for case 1 to 4 controllers

Weather Cases Controller AE PE OCI EQ
Kwh/d Kwh/d EUR/d Kg/d

-Storm: Case 1 NGPC 889.65 409.1 1298.8 6412.5
Case 2 NEGPC 849.23 412.57 1261.8 6422.3
Case 3 NCLGPC 889.76 409.25 1299.9 6411.6
Case 4 NECLGPC 833.42 412.39 1245.8 6426.8

-Rain: Case 1 NGPC 870.05 411.93 1282 6401.2
Case 2 NEGPC 830.13 415.13 1246.1 6410.9
Case 3 NCLGPC 870.11 412.30 1282.4 6400.4
Case 4 NECLGPC 816.39 414.75 1231.1 6415.7

-Dry: Case 1 NGPC 927.57 405.76 1333.3 6566.9
Case 2 NEGPC 885.15 408.9 1294.1 6577.6
Case 3 NCLGPC 927.62 405.74 1333.4 6565.9
Case 4 NECLGPC 868.7 408.9 1277.2 6583.1

In order to illustrate the efficiency of the NECLGPC method proposed
(case 4) for WWTP control, a comparative study with a NEMPC where
the economic term is the full economic function without any approximation
is presented, considering the same operating conditions. Comparing the
evolution of SO2 and SNO concentrations, and the corresponding manipu-
lated variables (Figures 6.14, 6.15 and 6.16) the NEMPC controller (Case
5, Figure 6.14) presents better tracking for the SNO than the NECLGPC
(Case 4, Figure 6.8) controller, but a slightly worse one for the SO2, pro-
viding globally similar performance. However, in the NEMPC (Case 5)
controller, a main drawback is that the SNH concentration does not fulfill
legal environmental regulations (Figure 6.16), while the NECLGPC (Case
4) satisfies that constraint (SNH < 4) (Figure 6.11). Another important
advantage of the NECLGPC is that its nonlinear internal model provides
good predictions with less computational effort due to the state dependent
coefficient form. Computational times for the NECLGPC are around 20
minutes, while for the NEMPC are more than 200 minutes, both for the
simulations performed in this work.

Finally, in table 6.3 a comparison of performance indices is shown, where
can be seen that the NEMPC controller (case 5) provides smaller operating
costs than the NECLGPC (case 4), as expected due to the use of the
full nonlinear economic function instead of the gradient approximation, but
through a much higher computational time as mentioned. As for the EQ
index, for both controllers they are similar and dependent on the influent
conditions.
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Table 6.3: Comparison of performance indices for case 4 to 5 controllers

Weather Cases Controller AE PE OCI EQ
Kwh/d Kwh/d EUR/d Kg/d

-Storm: Case 4 NECLGPC 833.42 412.39 1245.8 6426.8
Case 5 NEMPC 780.8 459.7 1240.5 6409.5

-Rain: Case 4 NECLGPC 816.39 414.75 1231.1 6415.7
Case 5 NEMPC 780.3 507.05 1287.4 6654.5

-Dry: Case 4 NECLGPC 868.7 408.9 1277.2 6583.1
Case 5 NEMPC 781.11 422.85 1204 6212.4

6.6 Conclusion
This study presents a nonlinear closed loop generalized predictive control
scheme that uses a nonlinear model for predictions and includes the economic
term in the controller cost function. The reduced gradient of the economic
objective function is included as an additional term of the cost function of the
nonlinear GPC controller. The proposed strategy allows the simultaneous
optimization and control of the plant operation in one layer approach. The
control law is based on direct use of the nonlinear model of the wastewater
treatment processes.
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a):Evolution of SO2

b):Evolution of SO2

Figure 6.3: Responses of SO2 for the case 1 and case 2 controllers (from left
to right).
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a):Evolution of SNO

b):Evolution of SNO

Figure 6.4: Responses of SNO for the case 1 and case 2 controllers (from left
to right)
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a):Evolution of SNH

b):Evolution of SNH

Figure 6.5: Responses of SNH for the case 1 and case 2 controllers (from
left to right)
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a):Evolution of Ntot

b):Evolution of Ntot

Figure 6.6: Responses of N−total for the case 1 and case 2 controllers (from
left to right)
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a):Evolution of SO2

b):Evolution of SO2

Figure 6.7: Responses of SO2 for the case 3 and case 4 controllers (from left
to right).
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a):Evolution of SNO

b):Evolution of SNO

Figure 6.8: Responses of SNO for the case 3 and case 4 controllers (from left
to right)
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a):Evolution of KLa

b):Evolution of KLa

Figure 6.9: Responses of KLa for the case 3 and case 4 controllers (from left
to right)
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a):Evolution of Qa

b):Evolution of Qa

Figure 6.10: Responses of Qa for the case 3 and case 4 controllers (from left
to right)
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a):Evolution of SNH

b):Evolution of SNH

Figure 6.11: Responses of SNH for the case 3 and case 4 controllers (from
left to right).
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a):Evolution of c1

b):Evolution of c1

Figure 6.12: Evolution of the degree of freedom c1 for the case 3 and case 4
controllers (from left to right).
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a):Evolution of c2

b):Evolution of c2

Figure 6.13: Evolution of the degree of freedom c2 for the case 3 and case 4
controllers (from left to right).
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a):Evolution of SO2

b):Evolution of SNO

Figure 6.14: Responses of SO2 and SNO for the case 5.
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a):Evolution of KLa

b):Evolution of Qa

Figure 6.15: Responses of KLa and Qa for the case 5.
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Figure 6.16: Response of SNH for the case 5.



7

Integrating Dynamic
Economic Optimization and
Nonlinear Closed Loop MPC

7.1 Introduction

In this chapter a technique that integrates methods of dynamic economic
optimization (DRTO) and real time control by including economic model
predictive control and closed loop predictive control has been developed,
using a two layer structure. The upper layer, which is constituted by an
economical MPC, makes use of the updated state information to optimize
some economic cost indices and calculate in real time the economically op-
timal trajectories for the process states. The lower layer uses a closed loop
non-linear MPC to calculate the control actions that allow for the outputs
of the process to follow the trajectories received from the upper layer. In
the chapter it is also shown the theoretical demonstration proving that the
deviation between the state of the closed loop system and the economically
time varying trajectory provided by the upper layer is bounded, thus guar-
anteeing stability.

The proposed approach is based on the use of nonlinear phenomeno-
logical models to describe all the relevant process dynamics and cover a
wide operating range, providing accurate predictions and guaranteeing the
performance of the control systems.

7.2 Problem statment

Consider a nonlinear system represented in the state space by the following
equations:

ẋ(t) = A(t)x(t) + ψ(x(t), u(t), w(t)) (7.1)

135



136 7. INTEGRATING DYNAMIC ECONOMIC OPTIMIZATION

where x(t) ∈ <n is the state vector, u(t) ∈ U ⊂ <m is the manipulated input
vector, w(t) ∈ <p is the disturbance vector.

It is also assumed that the inputs are restricted to a non-empty convex
set defined as U := {u ∈ <m||u(t)| 6 umaxi , i = 1, · · · ,m}, A(t) ∈ Rn×n is
Hurwitz ∀t > 0, ψ is supposed to be locally Lipschitz on <n×<m×<p and
the disturbance vector is bounded by the following inequality:

|w(t)| 6 θ (7.2)

where θ > 0
The objective of the control methodology presented in this chapter is to

solve a problem of economic dynamic optimization that provides a profile
of optimal time-varying set points for a non-linear plant. More precisely,
a hierarchical control in two layers is used, where in the upper layer the
reference trajectories are generated by a non-linear economic MPC, satisfy-
ing with the restrictions imposed, and in the lower layer a CLMPC is used
as described in the previous chapter of this thesis, in order to follow the
marked references, also respecting the constraints and rejecting the existing
disturbances.

The trajectory vector is denoted as xr(t) ∈ Ω ⊂ <n and the rate of
change of xr(t) is bounded by

|ẋr(t)| 6 γr (7.3)

The error is defined by the deviation between the state trajectory x(t) and
the reference trajectory xr(t) as

e(t) = x(t)− xr(t) (7.4)

The dynamics of the error can be studied from:

ė(t) = ẋ(t)− ẋr(t)
= A(t)e(t) + ψ(x(t), u(t), w(t))− ψ(xr(t), ur(t), 0)

(7.5)

In the sequel, it is shown that this error is bounded thus ensuring the
stability of the control system.

7.3 Controller design
The control strategy proposed in this chapter is described schematically in
Fig.7.1. In the upper layer, the control is achieved by using an economic
MPC, while in the lower layer uses a closed loop nonlinear MPC that com-
bines an unconstrained economic nonlinear feedback control law F (k) with
c(k) the parameterization associated with the closed loop paradigm that al-
lows taking into account the process constraints improving the performance
of the controller.
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Figure 7.1: A block diagram of the proposed two layer framework

7.3.1 Upper layer problem formulation

This layer deals with the following nonlinear economic MPC optimization
problem of the system of Eq.(7.1):

min
ur

∫ tk+Ne

tk

feco(x̃r(τ), ur(τ), τ)dτ

subject to :
˙̃xr(t) = A(t)x̃r(t) + ψ(x̃r(t), ur(t), 0),
x̃r(t) = x(t),
ur(t) ∈ U,
| ˙̃xr(t)| 6 γr, ∀t ∈ [tk, tk+Ne[,
x̃r(t) ∈ Γ

(7.6)

where Ne is the prediction horizon of the economic MPC, feco(x̃r(τ), ur(τ))
is the time-dependent economic cost function, the state x̃r(t) is the predicted
trajectory of the system with the manipulated input ur(t) computed by the
economic MPC and xk(t) is the state measurement obtained at time tk.

The first constraint is the nominal model of the system used to predict
the future evolution of the process state. The second constraint defines the
initial condition of the optimization which is the measurement of the process



138 7. INTEGRATING DYNAMIC ECONOMIC OPTIMIZATION

state at instant tk. The third constraint presents the control limitation of
all manipulated inputs. The fourth constraint limits the rate of change
of the economically state trajectory. The fifth constraint ensure that the
economically optimal state trajectory is maintained in the domain Γ.

In general, the function feco(x̃r(τ), ur(τ), 0) is not a quadratic function
of the decision variables of the stated optimization problem. Consequently,
the problem becomes a nonlinear programming problem which may be dif-
ficult to solve. To overcome this problem The function feco is approximated
by its gradient as in chapter 6. More precisely, the procedure is as follows.
Consider a multivariable system with q outputs and m inputs, and any time
step tk, suppose that the stationary prediction of the controller output re-
lated to the present input ur is ŷr. Also, consider that the economic function
associated with the operation of the system to be concave function whose
maximum has to be searched and this economic function can be represented
as follows:

F = feco(ur, ŷr) (7.7)

Then, assuming that the vector of the control action is changed to ur + δur,
the first order approximation of the gradient of the economic function can
be represented as follows:

ξur+δur = D +Gδūr (7.8)

The calculations of D and G are detailed in [69]. In the equation Eq(7.8),
δūr = ur(tk+Ne−1) − ur(tk−1) is the total move of the input vector. As a
result of these assumptions feco can be approximated by a quadratic function
as feco = ξTu+δuξu+δu and the optimization problem 7.6 becomes:

min
ur

∫ tk+Ne

tk

ξTu(τ)+δu(τ)ξu(τ)+δu(τ)dτ

subject to :
˙̃xr(t) = A(t)x̃r(t) + ψ(x̃r(t), ur(t), 0),
x̃r(t) = x(t),
ur(t) ∈ U,
| ˙̃xr(t)| 6 γr,∀t ∈ [tk, tk+Ne[,
x̃r(t) ∈ Γ

(7.9)

7.3.2 Lower layer problem formulation

This layer uses a nonlinear closed loop MPC to force the process state to
track the economically optimal state trajectory x∗r(t) obtained by the con-
troller of the upper layer solving the nominal model of Eq.(7.1) with ma-
nipulated input u∗r(t).



7.3. CONTROLLER DESIGN 139

The nonlinear closed loop MPC at tj is formulated as:

min
c

∫ tj+N

tj

(|ẽ(τ)|Q + |u(τ)− u∗r(τ)|R)dτ

subject to :
˙̃e(t) = A(t)ẽ(t) + ψ(x(t), u(t), w(t))
− ψ(x∗r(t), u∗r(t), 0),
u(t) = K(t)x(t) + c(t),
u(t) ∈ U,
e(t) = x(t)− x∗r(t)

(7.10)

where N is the prediction horizon of CLMPC, ẽ(t) is the predicted devia-
tion between the state trajectory predicted by the model Eq.(7.1) with the
manipulated inputu(t) and the economically optimal state trajectory x∗r(t).
The optimal solution of the optimization Eq.(7.10) is denoted by u∗(t) de-
fined for t ∈ [tj , tj+N [.

In the optimization problem of Eq.(7.10), the first constraint is the nom-
inal deviation system of Eq.(7.5). The second and third constraint define
the structure of the closed loop controller where K(t) is terminal control law
and the limitations of the manipulated variables u(t) respectively. The last
constraint presents the initial condition of the optimization of Eq.(7.10).

The terminal region is obtained offline, here the terminal control law
K(t) is calculated each iteration as in the previous chapter and [3].

The implementation strategy of the proposed two layer dynamic opti-
mization can be summarized as follows:

1. At time tk the upper layer nonlinear MPC with a prediction horizon Ne

receives the system state x(tk) from the process.

2. The controller of Eq.(7.6) computes the economically optimal state tra-
jectory x∗r(t).

3. The terminal control law K(t) is computed.

4. The solution of the optimization of Eq.(7.9) denoted by u∗(t) = K(t)x(t)+
c∗(t) is calculated to track the economically state trajectory computed
in step 2.

5. Go to step 1, tk = tk+t′

Remark 7.1 t′ is the operating period that can be chosen based on the fre-
quency which the process economic information is updated.

The control is applied in a sample-and-hold fashion for t ∈ [tk, tk + t′ +
∆N [, where tk is the beginning of the operating period, ∆ is the operating
period, and ∆N is the prediction horizon of the closed loop MPC. We suppose
that the manipulated inputs are recomputed synchronously every ∆.
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7.4 Stability

7.4.1 Definitions and Assumptions

We need to make certain definitions and assumptions about the system of
Eq.(7.5) to guarantee that the time-varying trajectory xr(t) can be tracked.
We assume that the nominal system of the Eq.(7.1) is stabilizable at each
fixed xr ∈ Γ.

Scalar comparison functions, known as class K, K∞ and KL, are im-
portant stability analysis tools that are frequently used to characterize the
stability properties of a nonlinear system.

Definition 7.1 A function α : [0, a[→ [0,∞[ is said to be of class K if it is
continuous, strictly increasing, and α(0) = 0. It is said to belong to class
K∞ if a =∞ and α(r)→∞ as r →∞.

Definition 7.2 A function β : [0, a[×[0,∞[→ [0,∞[ is said to be class KL
if, for each fixed t > 0, the mapping β(r, t) is of class K with respect to r
and for each fixed r, the mapping β(r, t) is decreasing with respect to t and
β(r, t)→ 0 as t→∞.

To be of practical interest, stability conditions should not require to solve the
the system of Eq.(7.1) explicitly. The direct method of Lyapunov allows to
determine the stability properties of an equilibrium point from the Eq.(7.5)
and its relationship with a positive-definite function V (e).

Definition 7.3 Consider a C1 (i.e., Continuously differentiable) function
V : <n → <. It is positive-definite if V (0) = 0 and V (e) > 0 for all e 6= 0.
If V (e)→∞ as ||e|| → ∞, then V is said to be radially unbounded.

7.4.2 Stability analysis

In this section, we present the stability properties of the proposed two-layer
control framework presented in the systems Eq.(7.9) and Eq.(7.10). The
following theorem provides sufficient conditions such that the closed loop
MPC can track the economically time varying trajectory x∗r(t).

Theorem 7.1
The system of Eq.(7.1) under the optimizations of Eq.(7.9) and Eq.(7.10)

is exponentially stable if there exist β1 > 0, β2 > 0, γ > 0, Lu > 0, Le > 0,
Lw > 0 and there exist a matrices P > 0 and Q > 0 such that

λmin(Q) > 2β2(Le + Luγ) (7.11)

Then

||e(t)|| 6
√
β2√
β1
exp(1

2α1t)||e(0)|| − α2
α1
√
β1

t−1∑
k=0

exp(1
2α1k) (7.12)
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where λmin stands for the smallest eigenvalue and α1 and α2 are:

α1 = 2β2(Le + Luγ)− λmin(Q)
β1

α2 = 2β2Lwθ√
β1

The proof of this theorem requires the following Lemmas.

Lemma 7.2 [71]
Let u be a regularly persistent input. Then, ∀P (0) a symmetric positive

definite matrix, ∃β1 > 0 and ∃β2 > 0 such that

∀t > 0, β1I 6 P (t) 6 β2I (7.13)

where P (0) is an arbitrary symmetric definite matrix and I is the identity
matrix with the adequate dimension.

Lemma 7.3 [72]
let v(t) be a positive differentiable function satisfying the inequality

v̇(t) 6 f(t)v(t) + g(t)vp(t), t ∈ I = [a, b], (7.14)

where the functions f(t) and g(t) are continuous in I, and p > 0, p 6= 1, is
a constant. Then

v(t) 6exp(
∫ t

a
f(s)ds)

×
[
vq(a) + q

∫ t

a
g(s)exp(−q

∫ s

a
f(τ)dτ)ds

] 1
q

(7.15)

where q = 1− p.

Proof 7.1 [Theorem 7.1]
Let Φ(t, t0) be the transition matrix of the system (1),

d

dt
Φ(t, t0) = A(t)Φ(t, t0)

Φ(t0, t0) = I
(7.16)

Where I is the (n× n) identity matrix.
Let us define a Lyapunov function V (t) = ΦT (t)P (t)Φ(t), and its deriva-

tive is defined as follow:

V̇ (t) = Φ̇T (t, t0)P (t)Φ(t, t0)
+ ΦT (t, t0)Ṗ (t)Φ(t, t0) + ΦT (t, t0)P (t)Φ̇(t, t0)
= ΦT (t, t0)AT (t)P (t)Φ(t, t0) + ΦT (t, t0)P (t)Φ(t, t0)
+ ΦT (t, t0)P (t)A(t)Φ(t, t0)
= ΦT (t, t0)[AT (t)P (t) + Ṗ (t) + P (t)A(t)]Φ(t, t0)

(7.17)
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The derivative is negative if and only if there exist a positive-definite sym-
metric matrix Q such as

AT (t)P (t) + Ṗ (t) + P (t)A(t) = −Q(t) (7.18)

we define a Lyapunov function that verifies the conditions of definition
7.3 as:

V (t) = eT (t)P (t)e(t) (7.19)

where the matrix P (t) is the solution of the following Riccati equation:

AT (t)P (t) + P (t)A(t) + Ṗ (t) = −Q(t) (7.20)

For t ∈ [tk, tk+1]

V̇ (t) = 2eT (t)P (t)ė(t) + eT (t)Ṗ e(t)
= 2eT (t)P (t)[A(t)e(t) + ψ(x(t), u∗(t), w(t))
− ψ(x∗r(t), u∗r(t), 0)] + eT (t)Ṗ (t)e(t)

(7.21)

Using the Eq.(7.18) gives

V̇ (t) = 2eT (t)P (t)ė(t) + eT (t)Ṗ e(t)
= 2eT (t)P (t)[A(t)e(t) + ψ(x(t), u∗(t), w(t))
− ψ(x∗r(t), u∗r(t), 0)]
+ eT (t)[−AT (t)P (t)− P (t)A(t)−Q(t)]e(t)
= −eT (t)Q(t)e(t) + ψ(x(t), u∗(t), w(t))
− ψ(x∗r(t), u∗r(t), 0)
6 −λmin(Q(t))||e(t)||2 + 2||e(t)||.||P (t)||
× ||ψ(x(t), u∗(t), w(t))− ψ(x∗r(t), u∗r(t), 0)||

(7.22)

By the Lipschitz property assumed for the vector ψ, there exist positive con-
stants Lw, Lu and Le such that

||ψ(x(t), u∗(t), w(t))− ψ(x∗r(t), u∗r(t), 0)||
6 Le|x(t)− x∗r(t)|+ Lu|u∗(t)− u∗r(t)|+ Lw|w(t)|
6 Le|e(t)|+ Luγ|e(t)|+ Lwθ

(7.23)

Substituting Eq.(7.23) in Eq.(7.22) and using the Lemma.7.2, the derivative
of the Lyapunov function in Eq.(7.21) becomes

V̇ (t) 6 [2β2(Le + Luγ)− λmin(Q(t))]||e(t)||2

+ 2β2Lwθ||e(t)||
(7.24)

And by the Lemma 7.2

β1||e(t)||2 6 eT (t)P (t)e(t) 6 β2||e(t)||2 (7.25)
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||e(t)||2 6
V (t)
β1

6
β2
β1
||e(t)||2

||e(t)|| 6
√
V (t)√

β1(P (t))
6

√
β2√
β1
||e(t)||

(7.26)

The Eq.(7.24) becomes

V̇ (t) 6 α1V (t) + α2

√
V (t) (7.27)

where

α1 = 2λ2(Le + Luγ)− λmin(Q(t))
β1

α2 = 2β2Lwθ√
β1

By Lemma2 with

f(t) = α1, g(t) = α2

p = 1
2 , I = [tk, tk+1]

Gives √
V (t) 6exp(1

2α1(t− tk))[
√
V (tk)

− α2
α1

(1− exp(1
2α1(t− tk)))]

(7.28)

For ∀t > ttk and if there exist a semi definite symmetric matrix Q(t) such
λmin(Q(t)) > 2β2(Le + Luγ), then

0 6 1− exp(1
2α1(t− tk)) 6 1 (7.29)

The Eq.(7.28) becomes√
V (t) 6 exp(1

2α1(t− tk))[
√
V (tk)−

α2
α1

] (7.30)

By iteration we have
√
V (t) 6 exp(1

2α1t)
√
V (0)− α2

α1

t−1∑
k=0

exp(1
2α1k) (7.31)

Using the second inequality of Eq.(7.26), hence

||e(t)|| 6
√
β2√
β1
exp(1

2α1t)||e(0)|| − α2
α1
√
β1

t−1∑
k=0

exp(1
2α1k) (7.32)
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Consequently, the between the actual system trajectory and the economically
optimal trajectory e(t) = x(t)− xr(t) is bounded by:

lim
t→∞
||e(t)|| 6

√
β2√
β1
||e(0)||. (7.33)

7.5 Application to the WWTP

7.5.1 Process Model

TheWWTP process selected as a case study follows the specifications given
in the BSM1 (model M3). The BSM1 representation is reduced to one
anoxic and one aerated reactor as shown in Figure 7.2.

The volumes of the two tanks are 2000m3 and 3999m3, to make them
equivalent to total volumes of the anoxic and the aerobic compartments in
the BSM1.

	  
 

SNH2 
SNtot 
 

Qin 
SSin 

SNHin 

Qw 

Qa 

Qe  
Sno1 

R1 

So2 

Qras 
 

R2 

Kla 

Figure 7.2: Schematic representation of the plant M3.

The values of the kinetic and physical parameters are assumed to be the
same as for BSM1 [8]. Rewriting the equations of the model M3 as in Eq.1
gives:

ẋ(t) = A(t)x(t) + ψ(x(t), u(t), w(t)) (7.34)

where

x(t) =



SNH1(t)
SNO1(t)
SS1(t)
SO1(t)
SNH2(t)
SNO2(t)
SS2(t)
SO2(t)


,
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A(t) =



−Qin
V1

0 0 0 0 0 0 0
0 −Qin

V1
0 0 0 0 0 0

0 0 −Qin
V1

0 0 0 0 0
0 0 0 −Qin

V1
0 0 0 0

Qin
V2

0 0 0 −Qin
V2

0 0 0
0 Qin

V2
0 0 0 −Qin

V2
0 0

0 0 Qin
V2

0 0 0 −Qin
V2

0
0 0 0 Qin

V2
0 0 0 −Qin

V2


ψ(x(t), u(t), w(t)) =

1
V1

[QinSNHin +QaSNH2 −QaSNH1]− ixbρ11 − ixbρ21 − (ixb + 1
YA

)ρ31
1
V1

[QaSNO2 −QaSNO1]− 1−YH
2.86YH

ρ21 + 1
YA
ρ31

1
V1

[QinSSin +QaSS2 −QaSS1]− 1
YH
ρ11 − 1

YH
ρ21

1
V1

[QaSO2 −QaSO1]− 1−YH
YH

ρ11 − (4.57
YA

+ 1)ρ31
1
V2

[Qa(SNH1 − SNH2)]− ixbρ12 − (ixb + 1
YA

)ρ32
1
V2

[Qa(SNO1 − SNO2)]− 1−YH
2.86YA

ρ22 + 1
YA
ρ32

1
V2

[Qa(SS1 − SS2)]− 1
YH
ρ12 − 1

YH
ρ22

1
V2

[Qa(SO1 − SO2)]− 1−YH
YH

ρ12 − 4.57−YA
YA

ρ32 +KLa(SO,Sat − SO2)


7.5.2 Control Problem

For an efficient N-removal in the ASP, the typical controlled variables are
the dissolved oxygen concentration in the aerated zone SO2 (DO) and the
nitrate concentration in the anoxic zone SNO1. The manipulated variables
are: the internal recycle flow (Qa) and the oxygen transfer coefficient (KLa).
The disturbances are: the influent flow (Qin) (Fig.7.3a), the organic matter
concentration, (SSin) (Fig.7.4) and the ammonium concentration (SNHin)
(Fig.7.3b) in the influent.

The DO concentration in the aerobic zone should be sufficiently high to
supply enough oxygen to the microorganisms in the sludge. However, high
air flow rates can produce an excess in DO concentration in the aerobic
zone that affect negatively the denitrification process through the internal
recycle and increases unnecessarily the energy consumption. Hence, the
control of the DO concentration is crucial for the satisfactory operation of
the activated sludge process. In the denitrification process that takes place
in the anoxic zone, the key variable is the nitrate concentration SNO1.

7.5.3 Performance indices

The measures used to characterize the effluent quality and energy usage
during the N-removal process are the standard performance indices recom-
mended in the BSM1 platform for the evaluation of control strategies applied
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to WWTPs. The performance indices used in this section are the EQ, AE
and PE as described in the section 2.3.

Now, we can define the economic objective feco as follow:

feco = w3(AE + PE) (7.35)

Where w3 is a wight matrix.
The performance assessment is made at two levels. The first level con-

cerns the control design by adding the economic term in the cost function.
The second level measures the effect of the control strategy on plant perfor-
mance.

7.6 Simulations Results
The selected values to tune the NMPC for the upper layer are: the control
control horizon me = 2, prediction horizon Ne = 4 and the weight of the
economic function is w3 = 1 and the tuning parameters of the optimizing
controller for the lower layer are: control horizon m = 2; prediction horizon
N = 4; output weight w1 = diag(0.155, 0.01, 0.155, 0.01) and input weight
w2 = diag(0.01, 0.01).

Figs. 7.2 and 7.3 present the different profiles of perturbations of BSM1
used in this study. In this influent we can observe a strong variations in the
flow and concentrations during the dry weather.

In figures 7.5a and 7.5b present the two output that are respectively the
dissolved oxygen in the aerobic reactor and the nitrate in the anoxic reactor,
from the Fig.7, it can be appreciated the ability of the controller to track
the desired set point and disturbances rejection.

The figures 7.6a and 7.6b present the evolution of the concentrations
SNH2 and N − Total.

The two manipulated variables are shown in Figs.7.7 which indicate that
suitable control signals Kla and Qr drive the process to follow the set point,
while satisfying the constraints imposed. Finally, the figure 7.8 presents the
evolution of the degree of freedom C.

In order to illustrate the efficiency of the two layer method proposed in
this chapter, in table 7.1, a comparison of different performance indices is
shown for the tow layer and one layer strategies. Comparing the two different
case studies, it is possible to observe that the introduction of the two layer
strategy improves the economics reducing the OCI index by 14.99%, AE
by 17.87% and the PE by 4.72%.

7.7 Conclusion
In this work, we proposed a two-layer strategy for integrating dynamic eco-
nomic optimization and nonlinear closed loop MPC for nonlinear system. In
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Table 7.1: Comparison of performance indices for one layer and two layers
strategies

Strategy One layer Two layers %
Index
AE 1449.4 1190.4 -17.87%
PE 421.55 401.64 -4.72 %
EQ 5897 5845 -0.88%
OCI 1870.9 1592.1 -14.99 %

the upper layer the economic function is reduced by its gradient to compute
economically optimal time varying operating trajectory. The lower layer is
used to compute a feedback control actions that force the outputs of the
process to track the trajectories received from the upper layer. We proved
that the deviation between the actual closed loop system and the econom-
ically optimal closed loop trajectory is bounded. The control law is based
on direct exploitation of the nonlinear model of the wastewater treatment
processes.
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8

Conclusions and future
directions

8.1 Conclusions

This thesis proposes advanced methodologies of control systems, which pro-
vide a good rejection of disturbances and optimum operation in terms of of
performance and economic costs. They have the advantage of reducing the
computational load with respect to other alternatives techniques and they
have been successfully applied to different simulation model of Wastewater
treatment plants .

In this thesis, control techniques presented in this thesis are divided in
two parts. The first one Part I, discuss the control strategies based on
positive invariance theory and part II deals with control strategies based on
dynamic real time optimization.

First, a nonlinear feedback control scheme based on a linearized model of
the plant with input constraints is presented. Positive invariance techniques
together with minimal order observer (software sensor) are used to control
a nonlinear model of a WWTP. The positive invariance techniques that had
emerged as very efficient to handle similar problems of constrained control
is successfully used to control the nitrogen removal process. The observer
based constrained control, as presented in this work compete with other
approaches in easiness, applicability and computing effort.

Second, a new methodology to design a CLMPC, providing a simple
solution that ensures stability and respects non-symmetrical constraints on
control magnitudes and moves is developed. The positive invariance theory
has also been used here, particularly polyhedral invariant sets. The pro-
posed algorithm takes advantage of the design of a terminal control law to
increase the degrees of freedom, of other CLMPC approaches guaranteeing
stability and constraints fulfillment for both modes of the CLMPC. For the
controller design, necessary and sufficient conditions for asymptotic stability

155
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at the origin have been developed, for linear systems and a state feedback
control law, while respecting constraints on both control magnitudes and its
increments. The proposed methodology has been successfully applied to the
activated sludge process in a WWTP, forcing the substrate concentration
(organic matter) in the effluent and the dissolved oxygen concentration in
the biological reactor to track a given set point. Simulation results show
that integral squared error of the substrate in the effluent is reduced in 15%
with respect to the other technique presented in the results, which is a sig-
nificant improvement in effluent quality. The methodology of this work is
general and can be easily extended to other applications.

Third, an economic nonlinear closed loop generalized predictive control
scheme is presented. The reduced gradient of the economic objective func-
tion is included as an additional term of the cost function of a nonlinear
unconstrained GPC controller in order to obtain a quadratic function cost
and an explicit terminal control law. The proposed strategy allows the si-
multaneous optimization and control of the plant operation in one layer
approach. The control strategy is based on direct use of a state depen-
dent coefficient representation based on the phenomenological model of a
wastewater treatment processes.

Finally, a two-layer strategy for integrating dynamic economic optimiza-
tion and nonlinear closed loop MPC for nonlinear system is developed. In
the upper layer the economic function is reduced by its gradient to com-
pute economically optimal time varying operating trajectories. The lower
layer is used to compute a feedback control actions that force the outputs
of the process to track the trajectories received from the upper layer. It has
been proved that the deviations between the states of the actual closed loop
system and the economically optimal closed loop trajectories are bounded.
The control law is also based on direct exploitation of the nonlinear model
of the WWTP.

The control results of the activated sludge process shown have been car-
ried out under different conditions, varying the regions of uncertainty, index
weights and optimization strategies. In all of them there is a compromise
between costs, rejection of disturbances and control efforts that the designer
must evaluate according to his needs.

8.2 Future directions

The future work will focus on large scale systems control within the plant
wide control framework in order to obtain solutions according to their global
requirements. Since the use of MPC strategies with distributed and hierar-
chical architectures has shown to be successful to tackle those problems and
they are widespread in industry, solutions based on those techniques are the
main future interest.
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Particularly, the development of control strategies for integrated and net-
worked systems based on hierarchical and distributed MPC structures will
be investigated. Moreover, some properties such us economic and control
performance optimality, stability and environmental quality will be guaran-
teed.

The validation of the proposals will be carried out on different types of
complex systems: integrated urban water systems (sewer, wwtp and river
basin) and water distribution networks.
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