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ABSTRACT 

   The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture 
and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 
2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture 
Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been 
extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can 
be considered a small-scale network that covers a 1300 km2 region. The second network is a 
large-scale network that covers the main part of the Duero Basin (65000 km2). At an existing 
meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were 
installed in 2012 to provide data until 2014. Comparisons of the temporal series using different 
strategies (total average, land use, and soil type) as well as using the collocated data at each 
location were performed. Additionally, spatial correlations on each date were computed for 
specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the 
Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture 
estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results 
of this work showed that SMOS estimates were consistent with in situ measurements in the 
time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) 
higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the 
soil-texture averages. The results obtained at the Inforiego network showed slightly better 
results than REMEDHUS, which may be related to the larger scale of the former network. 
Moreover, the best results were obtained when all networks were jointly considered. In 
contrast, the spatial matching produced worse results for all the cases studied. 

   These results showed that the recent reprocessing of the L2 products (v5.51) improved the 
accuracy of soil moisture retrievals such that they are now suitable for developing new L3 
products, such as the presented in this work. Additionally, the validation based on 
comparisons between dense/sparse networks and satellite retrievals at a coarse resolution 
showed that temporal patterns in the soil moisture are better reproduced than spatial 
patterns. 

 

Keywords: SMOS; Soil Moisture; Validation; Extended Triple Collocation; Hydrological 
Modeling 
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RESUMEN 

   El producto L2 de humedad del suelo proporcionado por el satélite Soil Moisture Ocean 
Salinity (SMOS) de la Agencia Espacial Europea (ESA) y el nuevo producto L3 del Barcelona 
Expert Centre (BEC) fueron validados para el periodo comprendido entre enero de 2010 y junio 
de 2014. Para ello se utilizaron dos redes de estaciones de medición in situ de humedad del 
suelo localizadas en España. La primera red que se utilizó fue la Red de Estaciones de Medición 
de Humedad del Suelo de la Universidad de Salamanca (REMEDHUS), la cual ha sido 
ampliamente utilizada para validar estimaciones de humedad del suelo de forma remota. 
REMEDHUS puede ser considerada como una red de pequeña escala, ya que cubre un área 
aproximada de 1300 km2. La segunda red utilizada fue una red meteorológica (Inforiego) que 
cubre la parte principal de la Cuenca del Duero (65000 km2). En esta red, existente en la región 
de Castilla y León, se instalaron sondas de humedad del suelo en 2012, proporcionando datos 
hasta 2014. Para validar ambos productos se realizaron comparaciones de las series 
temporales de humedad proporcionadas por el satélite y las estaciones, utilizando diferentes 
estrategias (promedio total, uso y tipo de suelo), así como el uso de los datos geolocalizados 
en cada ubicación. Además, se calcularon las correlaciones espaciales en cada fecha para 
algunos días específicos. Por último, se utilizó una versión mejorada del método denominado 
Triple Colocationn (TC), es decir, la Extended Triple Colocation (ETC), para comparar las 
estimaciones de la humedad del suelo por satélite e in situ con las estimaciones de humedad 
del suelo del modelo Soil Water Balance Model-Green-Ampt (SWBM-GA). Los resultados de 
este trabajo mostraron que las estimaciones de SMOS eran consistentes con las mediciones in 
situ entre las comparaciones de las series temporales, con coeficientes de correlación de 
Pearson (R) y un Agreement Index (AI) mayores de 0.8 para el promedio total y los promedios 
de uso de suelo, y mayor de 0.85 para los promedios de la textura del suelo. Los resultados 
obtenidos en la red Inforiego fueron ligeramente mejores que en REMEDHUS, lo que puede 
estar relacionado con el mayor tamaño de la red. Además, los resultados fueron mejores 
cuando se consideraron conjuntamente las dos redes in situ. Por el contrario, la validación 
espacial obtuvo malos resultados para todos los casos estudiados. 

   Este estudio mostró que la versión 5.51 del producto L2 mejoró la precisión de las 
estimaciones anteriores de la humedad del suelo de tal manera que ahora son adecuados para 
desarrollar nuevos productos L3, tales como los presentados en este trabajo. Además, la 
validación basada en comparaciones entre redes densas y redes dispersas con las estimaciones 
satelitales a una baja resolución espacial mostró que los patrones temporales de la humedad 
del suelo se reproducen mejor que los patrones espaciales. 

 

Palabras clave: SMOS; Humedad del suelo; Validación; Triple Colocación Extendida; 
Modelización hidrológica 
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2.1. Introduction 

   Although soil moisture represents a small portion of the water volume of the planet, it is a 
key parameter in several hydrologic and atmospheric processes. Soil moisture controls the 
hydrological interactions between soil, vegetation and climate forcing, and it affects the 
balance of water and energy between the land surface-atmosphere interface. Moreover, soil 
moisture is crucial in agriculture because it represents the actual reservoir of the plant 
available water. In 2010, soil moisture was introduced as one of the Essential Climate Variables 
established by the World Meteorological Organization (WMO), the Global Climate Observing 
System and the Committee on Earth Observation Satellites, among others, considering it as 
”technically and economically feasible for systematic observation” (WMO, 2010). Monitoring 
soil moisture is critical for improving agricultural productivity, forestry, and ecosystem health. 
Much effort has been focused on measuring soil moisture using diverse approaches, ranging 
from in situ measurement networks and hydrological models to satellite sensors, which are the 
only practical means of providing global mapping. Data from individual in situ networks across 
the globe are disseminated though the International Soil Moisture Network (Dorigo et al., 
2011). A variety of sensors and systems have been used for measuring soil moisture, and 
several satellite soil moisture data services are currently operational. The microwave spectra 
has been identified as the most suitable for soil moisture sensing based on the contrast 
between the dielectric properties of liquid water and soil material. Passive and active 
techniques have been satisfactorily used (Schmugge et al., 2002; Wagner et al., 2013). Active 
sensors (radars) have a high spatial resolution (~1 km), whereas passive sensors (radiometers) 
typically have a low resolution (~40 km). Although synthetic aperture radar can achieve spatial 
resolutions of meters, its temporal resolution needs considerable improvement; furthermore, 
its signal is significantly affected by soil roughness and vegetation, which hinders the accuracy 
of soil moisture retrievals (Jackson et al., 1996). The most common active sensors are the 
European Remote Sensing satellites, ERS-1 and ERS-2, with a spatial resolution of 50 km for the 
vertical polarization in the C-band (5.3 GHz), and its successor, the Advanced Scatterometer 
(ASCAT), which has a spatial resolution of 25 km and a temporal resolution of 1-2 days 
(Wagner et al., 2007a). In terms of passive sensors, the first microwave radiometer was the 
Scanning Multichannel Microwave Radiometer (SMMR), which achieved a spatial resolution of 
148 km x 95 km in the 6.6 GHz channel (Gloersen and Barath, 1977). Later, the Advanced 
Microwave Scanning Radiometer, AMSR-E (with six bands ranging from 6.9 to 89 GHz at the 
HH–VV polarization) operated on board the Aqua satellite from 2002 to 2011. AMSR-E was the 
first satellite sensor to incorporate soil moisture as a standard product with an accuracy goal of 
0.06 m3/m3 and a spatial resolution of 74 km x 43 km (Njoku et al., 2003). 

   Recent proposals for dedicated soil-moisture missions have chiefly relied on passive 
microwave techniques in the frequency band from 1 to 2 GHz (L-band) (Jackson et al., 2012) 
due to its high soil-penetration depth, considering that vegetation is semi-transparent up to 
moderate densities (Jackson and Schmugge, 1991). Thus, the Soil Moisture and Ocean Salinity 
(SMOS) mission launched in 2009 by the European Space Agency (ESA). The baseline SMOS 
payload is an L-Band (1.413 GHz) Y-shaped two-dimensional interferometric radiometer, with 
multi-angular and full-polarimetric capabilities. SMOS is in a sun-synchronous polar orbit, and 
it provides global measurements of the Earth’s brightness temperature (TB) with a spatial 
resolution of 43 km (Kerr et al., 2010). Another mission is scheduled to launch in January 2015, 
the National Aeronautics and Space Administration (NASA)’s Soil Moisture Active Passive 
(SMAP) mission, which aims to retrieve soil moisture and the freeze/thaw state. The satellite 
includes an L-band radiometer and a synthetic aperture radar to improve the spatial resolution 
of soil moisture estimates at 36, 9 and 3 km spatial resolutions (Entekhabi et al., 2010). 
Another instrument launched on board the international Aquarius/SAC-D mission by NASA and 
Argentina's space agency is primarily designed to retrieve ocean salinity. Aquarius uses an       
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L-band radiometer and a real aperture radar (Lagerloef et al., 2008) that acquires 
measurements at a very coarse resolution (~100 km2). Recently, the National Snow & Ice Data 
Center (NSIDC) released the Aquarius soil moisture products (http://nsidc.org/data/aquarius/). 

   Remotely sensed soil moisture has the advantage of covering large areas and identifying 
large-scale events, but it aggregates heterogeneities from local to regional scales, which 
renders validation difficult (Ochsner et al., 2013). The point scale of in situ-based 
measurements contrasts with the footprint-scale of remote soil moisture estimates. 
Establishing credible ground validation approaches for soil moisture requires bridging the gap 
between the two resolutions (Crow et al., 2012). An increasing number of permanent in situ 
soil moisture measurement networks have provided data for potential validation activities 
from the large scale to the regional/local scale (Crow et al., 2012; Ochsner et al., 2013). As the 
data increases (from both satellite and ground-based networks), the need to optimize and 
standardize the comparisons to reference measurements are more critical. Additionally, 
upscaling strategies from point measurements to the satellite footprint must be developed. 

   Following the classification of Crow et al., (2012), two types of networks used for the 
validation of remote sensing products can be found: the large scale (>10000 km2 extent) and 
the small scale (between 100 km2 and 10000 km2). The first type has the advantage of covering 
large areas and a larger range of land cover soil types, but it typically lacks sampling densities 
that provide multiple measurements per footprint. Conversely, small-scale networks have the 
advantage of higher spatial densities that provide multiple measurements within a single 
footprint and that allow for the examination of the sub-footprint scale. A large number of 
dedicated studies have validated products of soil moisture from different remote sensors 
worldwide, i.e., AMSR-E products (Njoku et al., 2003; Sahoo et al., 2008; Draper et al., 2009; 
Gruhier et al., 2010; Jackson et al., 2010; Xie et al., 2014), ERS soil moisture products (Wang et 
al., 2009; Reimer et al., 2012), ASCAT (Wagner et al., 2013; Paulik et al., 2014) and SMOS 
(Albergel et al., 2012a; Albergel et al., 2012b; Bircher et al., 2012; Dall'Amico et al., 2012; 
Dente et al., 2012a; Jackson et al., 2012; Sánchez et al., 2012a; Petropoulos et al., 2014; Rötzer 
et al., 2014), among others. The validations based on ground-based networks show that the 
temporal soil moisture patterns of ground observations are well reproduced by satellite data in 
terms of the error estimates. However, the instantaneous spatial matching at a particular time 
step is still an unresolved issue, particularly for passive observations. The coarse resolution of 
these observations hinders a proper spatial comparison with scattered ground data, including 
for large networks in which the low-density sampling results in less than one observation 
within each grid cell. This issue is also apparent for small networks in which a small number of 
cells should be compared. 

   This work aims to thoroughly test the latest version of SMOS L2 (v.5.51) and a new SMOS BEC 
L3 v.001 data, obtained by quality-filtering and re-gridding of SMOS L2 v.551 data from ISEA to 
the 25 km EASE grid (details are given in Section 2.2.2) over the Duero Basin in Spain from 
January 2010 to June 2014. ESA L2 and BEC L3 series were compared with in situ soil moisture 
series from two networks in Spain. Considering the different spatial scales of each network, 
another objective was to study the influence of using different sets of stations with very 
different spatial distributions. Owing the very different observations compared, the validation 
methods were discussed. Then, a newly extended version of the Triple Collocation (TC) 
methodology was applied. Spatio-temporal correlations of the L2 and L3 soil moisture series 
were analyzed through a comparison with point-scale measurements at the two networks and 
area-averaged, land-use-averaged and soil-texture-averaged data. 
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2.2. Data sets 

2.2.1. In situ soil moisture data set 

   For the remotely sensed data set validation, two networks were used, so-called “small-scale” 
and “large-scale” networks. The first network provided multiple measurements within a single 
footprint, and the latter network provided a single point observation overlapping a unique 
footprint over a wider area (Fig. 2.1). 

 

 

Figure 2.1. Network locations and distributions overlaid with the SMOS L2 product in the Duero Basin (Spain). The 
soil moisture map corresponds to 04/24/2011. DGG cells where soil moisture was missing are depicted in white. 

 

2.2.1.1. REMEDHUS Network 

   The Soil Moisture Measurement Stations Network of the University of Salamanca 
(REMEDHUS) is located in the central Duero Basin (Fig. 2.1) over an area of 1300 km2 (41.1° to 
41.5°N and 5.1° to 5.7°W in Spain). This network is equipped with 23 automated stations that 
include capacitance probes (Hydra Probes, Stevens Water Monitoring System, Inc.), which 
measure hourly soil moisture in the top 5 cm of the soil. The homogeneity of the area makes it 
ideal for validating soil moisture products, as shown in many validation exercises of remotely 
sensed soil moisture data (Ceballos et al., 2005; Wagner et al., 2007b; Wagner et al., 2008), 
including SMOS products (Sánchez et al., 2012b; Petropoulos et al., 2014; Piles et al., 2014). 
The main land use is agriculture, with rainfed cereals in most cases, irrigated crops, vineyards 
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and forest-pasture areas. This area is nearly flat, ranging from 700 to 900 m.a.s.l. The climate 
of this region is continental semi-arid Mediterranean, with an average annual precipitation of 
385 mm and a mean temperature of 12°C. A more detailed description of the equipment and 
the area of REMEDHUS can be found in previous works (Sánchez et al., 2010; Sánchez et al., 
2012a; Sánchez-Ruiz et al., 2014). Soil moisture at the satellite overpass times was obtained for 
each date for a total of 1642 data records for the entire period. 

 

2.2.1.2. Inforiego Network 

   The Inforiego network is located in the northwestern Iberian Peninsula over an area of 
approximately 65000 km2 (Fig. 2.1). The network is deployed over the Duero River Basin. The 
area has a gentle topography that is surrounded by mountains to the north, south and east. 
The average height is 800 m.a.s.l. Similarly to the REMEDHUS area, the climate of the region is 
continental semi-arid Mediterranean, with an average annual precipitation of 450 mm and a 
mean temperature of 11.7°C. The main land uses in the Inforiego area are rainfed crops in 
winter and spring and irrigated crops in summer. 

   The soil moisture network was installed within a meteorological network that is dedicated to 
irrigation assessment (http://www.inforiego.org/). Out of the 56 original stations, 17 stations 
were selected between July 2012 and July 2013 (hereafter Inforiego-2012), and 16 stations 
were selected between August 2013 and August 2014 (hereafter Inforiego-2013). The criteria 
applied for the selection of the 33 stations were the distribution and localization of the main 
sub-basins of the Duero River Basin, the quality of the data collected by the weather stations, 
and the representativeness with respect to the environmental characteristics of the entire 
area, such as soil type and land use. At each of these selected stations, a Hydra probe was 
installed at a 5 cm depth alongside the meteorological equipment. As in the REMEDHUS 
network, an analysis of soil samples was conducted to validate the Hydra probes and to 
retrieve the soil properties at each station. As for the REMEDHUS network, the soil moisture 
values nearest in time to SMOS overpasses were considered. In total, 363 observations were 
available for Inforiego-2012 and 334 were available for Inforiego-2013. 

 

2.2.2. Satellite imagery 

2.2.2.1. SMOS L2 soil moisture product 

   SMOS is the first mission that is specifically dedicated to globally measuring the Earth’s 
surface soil moisture (Kerr et al., 2010) with a high target accuracy (0.04 m3m-3) and a revisit of 
3 days. The SMOS Soil Moisture Level 2 User Data Product (SMUDP2 file), which is delivered 
through ESA, contains the retrieved geophysical parameters (i.e., soil moisture and optical 
thickness) and complementary parameters (number of TB records used, atmospheric water 
vapor content, radio frequency interference and other flags) for the users consideration. The 
product is provided over the Icosahedral Snyder Equal Area Earth (ISEA-4H9) grid with equally 
spaced nodes at ~15 km, known as the Discrete Global Grid (DGG). A detailed description of 
the L2 algorithm used for the retrievals is provided in Kerr et al., (2012). Since the launch of 
SMOS, the L2 algorithms have been modified and refined, resulting in more precise soil 
moisture retrievals. The Level 2 Soil Moisture Processor (L2SM) has been in operation with a 
stable configuration since November 2011. In June 2012, the L2SM v5.51 processor was 
distributed with improvements in the Radio Frequency Interference (RFI) detection and the 
dielectric constant model, which was modified from the Dobson model to the Mironov 
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formulation (Mironov et al., 2004). Hence, the entire soil moisture data archives were aligned 
with the currently used L2SM processor baseline v5.51. A complete data set from January 2010 
to the present is available using this improved version. Data of L2 soil moisture v5.51 from 
January 2010 to June 2014 over the Iberian Peninsula were used in this research. Two filter 
criteria were used. First, because each soil moisture retrieval is associated with a Data Quality 
Index (DQX) that represents the uncertainty of the retrieval, a threshold DQX of 0.04 
(volumetric soil moisture units) was used to select the best-quality SMOS retrievals. This 
threshold restricts the retrieval to the theoretical accuracy of the SMOS targeted accuracy and 
fits the more demanding validation experiments. The second filter is based on the probability 
of occurrence of RFIs, which is updated in a new field (RFI_Prob flag) in the SMUDP2 product 
v5.51 for each grid node. Users can use this indicator as a predictor of the RFI corruption, 
ranging from 0 (no RFI probability) to 1 (expected corrupted data). The user-given threshold of 
RFI_Prob was variable among the literature, depending on the study site and data availability. 
In areas with a high occurrence of RFIs, the threshold could be negligible to maximize the 
spatio-temporal window of the data (Merlin et al., 2013), but the usual thresholds range from 
0.1 to 0.4 (Bircher et al., 2013), meaning a probability of RFIs<40%. For this study, the use of 
several thresholds was explored. When a filter of 0.4 was applied, the number of data was 
reduced by 3.8% for ascending orbits and 3.1% for descending orbits. For a more restrictive 
filter of 0.3, the data reduction was 5.8% for ascending and 6.4% for descending orbits. Thus, 
prior to further analysis, three constraint levels of the SMOS L2 data set were tested regarding 
RFI filtering: applying a threshold of 0.4 or 0.3 and no filtering. Because there were no 
meaningful differences in the validation results, except in the RMSD (the average was reduced 
by 0.01%), the data were not filtered in an attempt to not overly restrict the availability of 
dates containing good data. Thus, only DQX filtering was applied, leading to a total of 835 
(881) dates for ascending (descending) orbits for the REMEDHUS network, 1041 (1084) dates 
for ascending (descending) orbits of Inforiego-2012 and 1021 (1116) dates for ascending 
(descending) orbits of Inforiego-2013. Considering only the period when the stations were 
installed, 229 ascending and 248 descending dates for Inforiego-2012 remained, while 234 
ascending and 233 descending dates remained for Inforiego-2013. Remarkably, the amount of 
data increases as the mission strengthens and consolidates over time. The REMEDHUS area is 
covered by 11 DGGs, and Inforiego area is covered by approximately 300 DGGs. 

 

2.2.2.2. SMOS BEC L3 Product 

   The L3 global product is generated and freely distributed by the SMOS Barcelona Expert 
Center (BEC) web service (http://cp34-bec.cmima.csic.es/). The BEC L3 product is developed 
from the operational ESA SMUDP2 product, and it includes geophysical parameters, a 
theoretical estimate of their accuracy, and a set of product flags and descriptors. The original 
L2 products were previously filtered such that grid points with negative soil moisture values 
and/or DQX values greater than 0.07 were discarded. Also, the failed retrievals or outliers are 
discarded. A weighted average is applied to bin the data to a 25 km EASE-ML regular grid. The 
products are provided in NetCDF format. 

   Soil moisture maps are calculated by BEC L3 product as follows: 

〈𝑆𝑀〉𝑘 = ∑ 𝑤𝑖𝑆𝑀𝑖                                                            (2.1)𝑁
𝑖=1   

where <SMk> is the soil moisture value of each pixel, N is the number of the ISEA DGGs 
contained in the pixel, SMi is the soil moisture value of the DGG, and wi is a weighting factor 
determined by: 
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𝐷𝑄𝑋𝑗
2

𝑁
𝑗=1

                                                               (2.2) 

wi gives a specific weight to each DGG within the pixel, N is the number of the DGGs within the 
pixel, depending on the accuracy of the estimation of the original L2. 

   The pixel <DQXk> is computed as: 

1

〈𝐷𝑄𝑋〉𝑘
2 = ∑

1

𝐷𝑄𝑋𝑖
2

𝑁
𝑖=1                                                              (2.3) 

where DQXi is the DQX value of the DGGs within the pixel and N is the number of the DGGs. 

   The resulting L3 data were collected by applying the same filter to the L2 data                  
(DQX<0.04 m3m-3). For the period of study, 804, 1040, and 1012 dates were selected for the 
ascending orbit data and 851, 1101, and 1113 dates were selected for the descending orbit 
data for REMEDHUS, Inforiego-2012, and Inforiego-2013, respectively. For L2, taking into 
account only the usable period, 226 (233) dates of ascending data and 251 (235) dates of 
descending data were selected for Inforiego-2012 (Inforiego-2013). The REMEDHUS area is 
covered by 4 L3 pixels, and Inforiego is covered by approximately 100 pixels. 

 

2.2.3. Modeled soil moisture 

   The fourth data set comes from the Soil Water Balance Model Green-Ampt (SWBM-GA) 
modeled soil moisture, which was previously validated in the REMEDHUS area (Gumuzzio et 

al., 2015) and in different test sites across Europe (Lacava et al., 2012; Brocca et al., 
2013) with satisfactory results. The modeled soil moisture time series were estimated with the 
parsimonious and lumped soil water balance model SWBM-GA, which was developed by 
Brocca et al., (2008). The model employs the Green-Ampt equation for infiltration, a gravity-
driven non-linear relationship for percolation (Famiglietti and Wood, 1994) and a linear 
relation between the actual and potential evapotranspiration (Doorenbos and Pruitt, 1977). 
Model simulations were performed over all the REMEDHUS and Inforiego stations using 
surface in situ measurements as a benchmark with an hourly temporal resolution. The model 
was previously calibrated with in situ measurements from both networks. The calibrated 
periods were 2008 to 2009 for REMEDHUS, July to December 2012 for Inforiego-2012, and 
August 2013 to January 2014 for Inforiego-2013; these periods are different from the period of 
validation for both networks in order to make the in situ and modeled data independent. The 
model inputs are rainfall and air temperature, which are computed each hour based on the 
weather station nearest to the soil moisture stations. Although the model was not applied as a 
spatially distributed model here and was not strictly an upscaling strategy, it embedded 
spatially averaged forcing data (e.g., precipitation and temperature). The simulations were set 
to represent the surface soil moisture, and outputs were used to validate satellite 
measurements through the Triple Collocation technique, as described in section 3. 
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2.3. Validation strategies 

   The L2 and L3 data sets were compared with the in situ data at the two spatial scales 
provided by the two networks. Spatial and temporal strategies of validation were adhered to. 
The first strategy followed in the validation is the temporal validation. For the temporal 
comparisons, the entire time series of the satellite soil moisture were compared with ground 
measurements that were previously collocated in time with the SMOS overpasses. Four 
comparisons were performed for both networks in the temporal comparisons: area-averaged, 
land-use-averaged, soil-texture-averaged, and point-scale measurements at each station with 
its collocated DGG (L2) and pixel (L3). The results are analyzed for the SMOS ascending and 
descending passes in order to assess their individual performances. 

   Soil texture and land use are closely related to soil moisture content (Crow et al., 2012); 
hence, clustered in situ soil moisture time series per category (texture and land use) were 
compared with the remotely sensed estimates, and the consistency of the results at the point 
scale and the area-averaged comparisons was evaluated. Regarding the land use, four 
categories were taken into account (rainfed cereals, vineyard, forest-pasture and irrigated). 
For texture, four soil categories were considered. The relationship between the soil texture 
category and the textural classes is shown in Table 2.1. The distribution of the soil texture 
compositions of the 56 stations showed that, even though a slightly higher sand content is 
present at most of the stations, a noticeable texture variability can be used to assess the 
texture impact on the soil moisture retrieval accuracy. 

 

Soil Texture Category Textural Class # Stations 

Fine 

Silty Clay Loam 4 

Clay Loam 4 

Clay 2 

Loam 10 

Medium 
Sandy Loam 17 

Sandy Clay Loam 7 

Coarse Loamy Sand 7 

Very Coarse Sand 5 

Table 2.1. Number of stations by textural class and soil texture category. 

 

   The second strategy is the so-called spatial validation, even though there is no consensus 
regarding the terminology. Because of the different scales of the data sets, the term “spatial” 
may not be appropriate; thus, “daily-validation” is preferred because it characterizes a 
comparison of the data for each individual day. The meaning behind these terms relies on 
testing the soil moisture at all of the spatial locations at a given time. Spatially collocated 
SMOS and in situ observations for each time series day were compared. Each station with its 
corresponding (geolocated) DGG or pixel was compared for each day of data. A threshold of 16 
concurrent observations was established as the minimum to compute statistics; this value is a 
compromise between the number of the stations in each network and preserving a robust 
comparison. 
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   Both for the spatial/daily and temporal comparisons, a set of statistical metrics should be 
chosen. A correlation coefficient (R of Pearson) was selected for measuring the relationship 
between the two series. The relationship is defined by equation 2.4, where xi and yi are vectors 
of collocated (spatially/daily or temporally) in situ and satellite observations, respectively. The 
average soil moisture for those data sets is indicated by a bar. 

R =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

                                          (2.4) 

   A measure of the differences between the data sets is provided by the root mean square 
difference, RMSD (Eq. 2.5), and the centered root mean square difference, cRMSD (Eq. 2.6), 
which avoid possible biases introduced by the RMSD between in situ data and satellite 
products (Taylor, 2001). Bias (Eq. 2.7, as the difference in situ minus SMOS), and standard 
deviation, std (Eq. 2.8), were also added to the metrics. 

𝑅𝑀𝑆𝐷 = √∑
(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑛

𝑖=1

                                                      (2.5) 

𝑐𝑅𝑀𝑆𝐷 = √
∑ [(𝑥𝑖 − 𝑥̅) − (𝑦𝑖 − 𝑦̅)]2𝑛

𝑖=1

𝑛
                                        (2.6) 

𝐵𝑖𝑎𝑠 =
∑ (𝑥𝑖 − 𝑦𝑖)

𝑛
𝑖=1

𝑛
                                                     (2.7) 

𝑠𝑡𝑑 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥)2

𝑛

𝑖=1

                                               (2.8) 

   Finally, the Agreement Index, AI (Eq. 2.9), typically used in hydrological modeling (Willmott, 
1982) was selected for assessing the accuracy of remotely sensed products. The AI represents 
an alternative way of computing differences; it is not a measure of correlation in a formal 
sense but rather a measure of the degree to which a model’s predictions (remote sensing 
estimates, in this case) are free of error. The AI varies between 0 (total disagreement between 
predicted and observed values) and 1 (perfect agreement). 

𝐴𝐼 = 1 −
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (|𝑥𝑖−𝑥̅|+|𝑦𝑖−𝑥̅|)2𝑛
𝑖=1

                                                (2.9) 

   R, std and cRMSD are complementary but not independent. These values are related by eq. 
2.10 (Taylor, 2001). This relationship allows cRMSD, std and R to be displayed on two-
dimensional plots known as Taylor diagrams. Std is displayed as a radial distance, and the 
correlation with in situ data is an angle in a polar plot. In situ data are represented by a point 
located on the x axis at R=1 and by the given std. 

𝑐𝑅𝑀𝑆𝐷2 = 𝑠𝑡𝑑𝑥
2 + 𝑠𝑡𝑑𝑦

2 − 2 ∗ 𝑠𝑡𝑑𝑥 ∗ 𝑠𝑡𝑑𝑦 ∗ 𝑅                            (2.10)  
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   The third strategy corresponds to the TC method, which combines three data sets to 
determine the errors in each. TC is generally used to resolve approximated linear relationships 
between different measurements (or representations) of a geophysical variable that are 
subject to errors. The method has been utilized in the context of calibration, validation, bias 
correction, and error characterization to allow comparisons of diverse data records from 
various direct and indirect measurement techniques, including in situ, remote sensing and 
model-based approaches (Su et al., 2014). This method is useful for estimating the relative 
amount of error that affects different sources of geophysical measurements. 

   TC uses three temporally collocated time series of N observations to jointly provide sufficient 
constraints for determining the error variance. In this case, if errors in all three soil moisture 
products are mutually independent (uncorrelated) and if all three are degraded by random 
errors (Crow et al., 2012), then this random error can be estimated from equations 2.11 to 
2.13 (Scipal et al., 2008). 

𝑒𝑆𝑀𝑂𝑆 = √|
∑ (𝑆𝑀𝑂𝑆𝑖 − 𝐼𝑛 𝑆𝑖𝑡𝑢𝑖)(𝑆𝑀𝑂𝑆𝑖 − 𝑀𝑜𝑑𝑒𝑙𝑖)

𝑛
𝑖=1

𝑛
|                        (2.11) 

𝑒𝐼𝑛 𝑆𝑖𝑡𝑢 = √|
∑ (𝐼𝑛 𝑆𝑖𝑡𝑢𝑖 − 𝑆𝑀𝑂𝑆𝑖)(𝐼𝑛 𝑆𝑖𝑡𝑢𝑖 − 𝑀𝑜𝑑𝑒𝑙𝑖)

𝑛
𝑖=1

𝑛
|                      (2.12) 

𝑒𝑀𝑜𝑑𝑒𝑙 = √|
∑ (𝑀𝑜𝑑𝑒𝑙𝑖 − 𝑆𝑀𝑂𝑆 𝑖)(𝑀𝑜𝑑𝑒𝑙𝑖 − 𝐼𝑛 𝑆𝑖𝑡𝑢𝑖)

𝑛
𝑖=1

𝑛
|                      (2.13) 

   This approach requires rescaling the data before applying the equations 2.11, 2.12, and 2.13; 
otherwise, the error estimates will be biased. Scipal et al., (2008) proposed using linear least 
squares rescaling. Miralles et al., (2010) showed that the approach is more effective for 
calculating error in soil moisture anomalies after removing the seasonal climatology effect. 
Moreover, the resulting errors should not be interpreted directly but instead normalized with 
the signal variability to express errors in terms of the signal-to-noise ratio, as recently 
proposed by Draper et al., (2013) and McColl et al., (2014). 

   The Extended Triple Collocation (ETC) is a new approach for TC calculations that was recently 
developed and initially applied to wind data sets (McColl et al., 2014). This version of TC 
eliminates the need for de-biasing or rescaling. The choice to base the ETC calculation on raw 
soil moisture series differs from the recommended anomalies in the mean seasonal cycle 
(Draper et al., 2009; Miralles et al., 2010) or scaled values through standard deviation scaling 
of the input data (Dorigo et al., 2010). Rescaling the measurement systems (e.g., by matching 
their temporal variances) will deliver biased RMSD estimates, since error estimation and 
calibration are fundamentally intertwined (Stoffelen, 1998). In addition, ETC is simpler to 
implement and adds no assumptions or computational cost to TC (McColl et al., 2014). This 
method enables a direct estimation of the errors and correlations of each data set. The errors 
are estimated through the covariance between every two data sets, Qij=Cov(Xi,Xj), using 
equation 2.14 if the data sets are not normalized or using equation 2.15 if the data sets are 
normalized. Correlations are calculated with equation 2.16, requiring no additional 
assumptions or computational costs. Using exactly the same assumptions as TC, ETC derives an 
additional performance metric, the correlation coefficient (ρ) with respect to the unknown 
target, to complement the RMSD (σ) (McColl et al., 2014). In this regard, ETC provides new 
useful information that complements present data-validation strategies. 
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                                              (2.16) 

   Triplets of in situ/modeled/SMOS data (L2 and L3 separately) were selected for the ETC 
approach. Both the spatial average and the spatially concurrent series were introduced into 
the ETC model, and σ and ρ were obtained for each triplet. 

 

2.4. Results and discussion 

2.4.1. Time series comparisons 

   The time series of soil moisture (Fig. 2.2; only the average REMEDHUS network is shown) 
reveal that the SMOS series have a larger dynamic range than the in situ data. In situ 
measurements have a maximum of 0.280 in winter to a minimum of 0.052 in summer with a 
std of 0.054 and a mean value of 0.141. However, the SMOS data ranged from 0.356 to 0.003, 
with a std of 0.075, for the ascending orbits. The maximum value (0.439) is higher for the 
descending orbits than for the ascending orbits; the minimum value is 0.009, and the std 
values are similar for both orbits. The SMOS data set followed the temporal dynamics of the 
REMEDHUS data set, although a particular underestimation can be observed, particularly in 
the dry periods. Additionally, a slight time lag between the SMOS response and the in situ 
measurements is noticeable, particularly in 2011 and 2012. The in situ observations response 

lags behind SMOS by 5 day. SMOS shows a quicker reactivity to rainfall events and dry-downs 
than the in situ probes. Both effects, underestimation and reactivity, were detected in previous 
experiments on validations in the same area (Sánchez et al., 2012a) in a more general manner. 
The dry bias is also consistent with recent and ongoing calibration/validation studies on SMOS 
at other sites, which tend to indicate a general underestimation of the SMOS previous versions 
data with respect to 0–5 cm soil moisture measurements (Al Bitar et al., 2012; Dall'Amico et 
al., 2012; Gherboudj et al., 2012; Sánchez et al., 2012a; Merlin et al., 2013). However, the 
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underestimation observed in this study is considerably smaller than that obtained with 
previous SMOS L2 versions. The reprocessed version 5.51 reduces outliers and leads to a more 
accurate estimation. The temporal patterns between SMOS L2 and L3 products matched the in 
situ soil moisture series of the two networks (area-averaged) and of the ascending and 
descending overpasses, with values of R~0.80 and AI~0.75; the correlation is higher for the 
Inforiego networks (Fig. 2.3). This result is very satisfactory, surpassing the standards of 
previous validations of SMOS with former reprocessing versions, e.g., for the v4.00: R of 0.43 in 
Albergel et al., (2012b), 0.6 in Albergel et al., (2012a), 0.73 in Bircher et al., (2012), 0.3 in 
Dall'Amico et al., (2012), 0.79 in Jackson et al., (2012) and 0.7 in; for v5.01: 0.73 in Dente et al., 
(2012a); and 0.28 for v5.51 in Rötzer et al., (2014). The SMOS cRSMD reached the expected 
accuracy of 0.04 m3m-3, and the bias was always positive (i.e., indicating underestimation); the 
value is higher for both Inforiego networks (Fig. 2.3) than for REMEDHUS. This effect can be 
explained by the length of the time series, which is shorter for Inforiego, resulting in more 
accentuated seasonal effects that are smoothed in the longer time series of REMEDHUS. From 
the time series comparison, it can be stated that the SMOS soil moisture products were 
generally underestimated; this underestimation appears to be larger for the ascending 
products than for the descending (Fig. 2.3c-d) and for shorter time series (i.e., the Inforiego 
networks). Regarding the products and orbits, there was no difference between the L2 and L3 
performances, and the ascending and descending series were similar in terms of R and cRMSD, 
with the bias noticeably smaller for the descending series (Fig. 2.3a-b). 

 

 

Figure 2.2. Soil moisture evolution of the in situ measurements (average of stations) and SMOS products (average of 
DGGs/Pixels), along with rainfall, during the study period (January 2010-June 2014) for the REMEDHUS network. 

 

   When computing the comparison of all 56 stations (REMEDHUS + two Inforiego), the 
statistics slightly improved. Increasing the number of stations and integrating the scales led to 
a smaller bias. It can be seen that the second period in the Inforiego network (Inforiego-2013) 
performed better than the first period, with a lower bias and cRMSD (Fig. 2.3a-d). 

   A spatially concurrent time series comparison of the two networks (each station with the 
corresponding L2 DGG or L3 pixel) using Taylor diagrams (Fig. 2.4, only L3 data was shown for 
convenience) and the REMEDHUS network revealed an R range between 0.41 and 0.8 for the 
L2/L3 and ascending/descending data; cRMSD is between 0.045 and 0.145. Similar metrics 
were obtained for all stations. The worst results were obtained for K9, H7 and I6. These poor 
results in H7 and I6 can be attributed to the very high sand content at these stations (85% and 
90%, respectively) (Fig. 2.4). This result is consistent with a particular behavior of these soils 
that cannot be captured by the average values of SMOS. Panciera, (2009) and Crow et al., 
(2012) found that soil moisture variability within a satellite footprint could be related to spatial 
patterns of the land use type and soil texture. Soils with higher sand content exhibited 



Capítulo II 

- 74 - 

persistently drier soil moisture conditions than soils with finer textures. The K9 station is 
located in an irrigated area, where the soil moisture pattern is controlled by repetitive 
irrigations events. 

   In 13 out of 23 REMEDHUS stations and in 26 out of 33 Inforiego stations, the bias was 
positive, indicating underestimations (not shown). Overall, the bias for each station in both 
networks ranged between -0.084 and 0.215. 

 

 

Figure 2.3. Results of the comparison between the spatially averaged series of soil moisture for the three networks 
in each usable time series. Figures a) and b) represent the L2 and L3 series for each network, respectively. Figures c) 

and d) represent the ascending and descending overpasses, respectively. 

 

 

Figure 2.4. Results of the comparison between each station in the REMEDHUS network and its corresponding L3 
descending pixel. Only stations with results discussed in the text are labeled. 
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Figure 2.5. Results of the comparison between each station in the Inforiego-2012 network and its corresponding L3 
descending pixel. Only stations with results discussed in the text are labeled. 

 

 

Figure 2.6. Results of the comparison between each station in the Inforiego-2013 network and its corresponding L3 
descending pixel. Only stations with results discussed in the text are labeled. 

 

   The results of the comparisons, which account for soil use and texture (Fig. 2.7), showed a 
generally better match for the Inforiego network than for REMEDHUS in agreement with the 
results obtained in the area-averaged and point-scale analyses. Additionally, similar results for 
the ascending and descending orbits were detected (Fig. 2.7a-c). In general, values of R>0.80 
and AI>0.60 were obtained, except for the irrigated land use and very coarse textures. Poor 
results for irrigated soils were also found in previous validation exercises in the area due to the 
high temporal rate of the water cycle in these soils. Fluctuating values of the actual water 
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content of the crops due to the high irrigation frequency could not be captured using the 
remotely sensed observations at a low temporal resolution (Piles et al., 2014). Similarly, 
inconsistency between station data and SMOS was previously detected for coarse soil textures. 
The high sand content (coinciding with vineyard land use) led to high temporal variability in the 
soil moisture and to rapid soil moisture decrease in the top layer as a result of the quick 
infiltration and evaporation processes. More sandy soils have more pronounced effects, 
hindering a suitable match with SMOS readings. Nevertheless, a lower bias occurred for both 
very-coarse-textured soils and vineyard land use, which can be explained by the lower soil 
moisture content. In contrast, for the higher soil moisture contents (forest-pasture and fine 
textures), the bias is the highest. Rainfed land use and medium soil textures, which are 
common in the area, exhibited the best results in terms of R, AI, bias and cRMSD. 

 

 

Figure 2.7. Results of the comparison between the temporal series of the soil moisture of the three networks after 
land-use and land-type clustering. a) REMEDHUS network, b) Inforiego-2012, and c) Inforiego-2013. 
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2.4.2. Spatial series comparison 

   Spatially collocated SMOS L2, L3 with in situ observations (REMEDHUS, Inforiego-2012 and 
Inforiego-2013) for each day were compared. Given a threshold of 16 concurrent pairwise 
observations for a calculation, the number of dates was reduced by one-fourth. For 
REMEDHUS, the L2 ascending product contained 463 days, the L2 descending product 
contained 461 days, and the L3 ascending and L3 descending products contained 584 and 598 
days, respectively. For Inforiego, the number of days that meet the criteria also diminished: 23 
days for L2 ascending, 28 days for L2 descending, 22 days for L3 ascending and 37 days for L3 
descending for Inforiego-2012; and 5, 3, 1 and 3 days for Inforiego-2013. Of all the dates 
studied, only 13.9% of the comparisons have a p-value<0.05; negative and positive correlations 
existed for the series, and a very low AI was found for all products and networks. 

   Among the results with statistical significance (Fig. 2.8), the L2 and L3 products over 
REMEDHUS had correlation coefficients between R~-0.67 and R~0.72 and an agreement index 
between AI~0.00 and AI~0.63. The difference between the L2 and L3 products is negligible. The 
results are similar for the Inforiego networks, with a minimum R of -0.51, a maximum of 0.66 
and an agreement index between AI~0.08 and AI~0.71. RMSD and cRMSD are similar in both 
networks, with a minimum of 0.045, a RMSD maximum of 0.214 and a cRMSD maximum of 
0.201. The bias is negative in 85.21% of the cases, resulting in underestimation similar to the 
temporal validation (not shown). A representative example of the lack of significance of the 
spatial agreement is the BEC L3 ascending product compared to in situ measurements from 
Inforiego-2012. Out of the all dataset only two days have a correlation with statistical 
significance, where one day has a positive R and the other day negative. 

 

 

Figure 2.8. Box plot of the representing statistic of the spatial validation in REMEDHUS. For the L2 ascending (L2A) 
the number of significant days is 60, for L2 descending (L2D) is 64, for L3 ascending (L3A) is 99 and for L3 descending 

(L3D) is 82. Inforiego-2012 and Inforiego-2013 not shown because of the few significant days. 

 

   By merging the 56 stations, as conducted for the temporal validation, the significant results 
increase to 26.87%, but the other statistical metrics produce similar results to those studied in 
each individual network (not shown). 

   The daily validation showed poor results for both REMEDHUS (small-scale network) and 
Inforiego (large-scale network). It seems clear that given the spatial variability in the soil 
moisture fields, the mismatch between the ground sampling and the footprint scale of the 
remote estimates makes their direct comparison unsatisfactory. The variability between the 
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satellite products (15 km equally spaced grid for L2 and pixels of 25 km for L3) and the in situ 
measurements (point scale) is extremely large. Thus, a new daily correlation was performed 
(not shown) using a SMOS-derived product at a 1 km spatial resolution (Piles et al., 2014). One 
may assume that if the spatial resolution of the remote estimations was enhanced, the results 
of the comparison may be improved; however, poor results were obtained, even at 1 km. No 
significant correlation was found at the 95% confidence level for either network or for the daily 
correlation at a 1 km resolution. 

   Validations based on comparisons between sparse networks and satellite retrievals at a 
coarse resolution showed that the temporal patterns of the soil moisture were better 
reproduced at both coarse and high spatial resolutions compared with the spatial patterns. As 
seen in most comparisons of satellite soil moisture, temporal soil moisture is well reproduced 
by satellite retrievals, in contrast to the spatial patterns. The lack of spatial matching should 
not be misattributed to retrieval uncertainty or to a degraded accuracy of remote soil moisture 
products; instead, the validation exercise is questionable based on such drastically different 
observations. In addition, the instantaneous value of several measurements of soil moisture 
over a large area could not be representative of the general behavior of this variable. It seems 
more efficient to compare the temporal evolution than a particular pattern. This issue may be 
overcome with dedicated and intensive field measurements, upscaling strategies or using 
spatially distributed surface models. 

 

2.4.3. Extended Triple Collocation 

   Prior to the application of ETC, the modeled data set was validated against in situ 
observations at each station to examine the reliability of the model in simulating near-surface 
soil moisture in the REMEDHUS area and for the two Inforiego networks over the entire 
periods used in this study. In total, 1462 REMEDHUS, 213 Inforiego-2012 and 179        
Inforiego-2013 daily data points were simulated. The results showed a good agreement 
between the modeled and in situ data sets, with average correlation coefficients of 0.76 for 
REMEDHUS and 0.89 for both Inforiego networks; acceptable RMSDs of 0.042, 0.051 and 0.040 
m3m-3 were obtained for REMEDHUS, Inforiego-2012 and Inforiego-2013, respectively. 

   The errors obtained with ETC are shown in Table 2.2. The σ is remarkably higher for SMOS 
(between 0.012 and 0.04 m3m-3) than for the in situ (between 0.003 and 0.007 m3m-3) and 
modeled (0.007 and 0.01 m3m-3) series. The correlations showed the same behavior, with the 
poorest ρ (between 0.818 and 0.902) for SMOS compared with in situ (between 0.942 and 
0.993) and modeled (between 0.923 and 0.994) data. SMOS L2 and L3 series exhibited the 
highest errors and lowest correlations. These ETC results synthetize the mismatch between the 
spatial scales of the input data and clearly identify the complexity of comparing point-based in 
situ measurements and model simulations versus SMOS-averaged DGG soil moisture data. 

   No appreciable differences were found between the two satellite-derived products and the 
two networks studied. However, when all the stations were analyzed together, the 
correlations did not change, but the errors associated with the data set decreased by 
approximately one order of magnitude (reaching near-zero values). This result agreed with 
that obtained in the temporal comparisons, which showed that when all networks were jointly 
computed, the best results were obtained.  
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σ (m

3
m

-3
) ρ 

SMOS In Situ Model SMOS In Situ Model 

L2 

REMEDHUS 
Ascending 0.0399 0.0166 0.0073 0.846 0.949 0.993 

Descending 0.0390 0.0170 0.0075 0.858 0.946 0.992 

Inforiego-2012 
Ascending 0.0391 0.0098 0.0223 0.840 0.994 0.954 

Descending 0.0296 0.0182 0.0177 0.894 0.981 0.974 

Inforiego-2013 
Ascending 0.0360 0.0159 0.0079 0.875 0.977 0.995 

Descending 0.0346 0.0171 0.0042 0.874 0.973 0.998 

All 
Ascending 0.0093 0.0031 0.0018 0.816 0.961 0.990 

Descending 0.0066 0.0031 0.0016 0.867 0.961 0.992 

         

L3 

REMEDHUS 
Ascending 0.0375 0.0165 0.0077 0.849 0.948 0.992 

Descending 0.0383 0.0175 0.0065 0.843 0.942 0.994 

Inforiego-2012 
Ascending 0.0360 0.0102 0.0225 0.844 0.994 0.952 

Descending 0.0292 0.0201 0.0164 0.888 0.977 0.978 

Inforiego-2013 
Ascending 0.0331 0.0154 0.0090 0.886 0.978 0.993 

Descending 0.0427 0.0159 0.0077 0.815 0.976 0.995 

All 
Ascending 0.0090 0.0031 0.0018 0.818 0.962 0.989 

Descending 0.0067 0.0032 0.0013 0.860 0.959 0.994 

Table 2.2. Errors (σ) and correlations (ρ) for the averaged in situ, model and satellite products resulting from the ETC 
method. 

 

 

Figure 2.9. Errors (top) and correlations (bottom) obtained using the ETC method for the concurrent in situ 
REMEDHUS measurements, modeled data and SMOS L3 descending product. 



Capítulo II 

- 80 - 

 

Figure 2.10. Errors (top) and correlations (bottom) obtained using the ETC method for the concurrent in situ 
Inforiego-2012 measurements, modeled data and SMOS L3 descending product. 

 

 

Figure 2.11. Errors (top) and correlations (bottom) obtained using the ETC method for the concurrent in situ 
Inforiego-2013 measurements, modeled data and SMOS L3 descending product. In SG01, the correlation of the 

model is outside of the expected range. 

 

   When the analysis was conducted for every station separately, although the errors are low 
(between 0.049 and 0.331 for SMOS, 0.001 and 0.264 for in situ and 0.001 and 0.301 m3m-3 for 
the model), the SMOS-associated errors are higher than the in situ and model errors (Fig. 2.9-
2.11), similarly seen in the previous analysis using network-averaged soil moisture. When 
observing each station, two particular conditions occurred for which the ETC detected the 
highest errors. One case is over H9 and M13 (Fig. 2.9). These are the stations with the highest 
water content in REMEDHUS. For this case, the in situ data set had the highest errors because 
the ETC compared the high in situ water content with SMOS and the modeled soil moisture, 
which was remarkably drier. The other case is SG01 (Fig. 2.11), which is an extremely sand 
area. The ETC error was very high, and the ρ estimation resulted in a non-physical value, 
meaning that there is no relationship. The highly variable water content in the crops due to the 
hourly irrigation frequency could not be captured using the remotely sensed observations, as 
found in previous studies (Piles et al., 2014). 

   A correlation that lies outside the expected range of -1 to 1 at some stations may be related 
to size problems in the sample. In cases where the signal-to-noise ratio is relatively low, which 
is common for remotely sensed soil moisture data sets, 1642 data points are not sufficient to 
obtain precise estimates of ρ. Note that this is a problem for classical Triple Collocation, not 
only ETC. For soil moisture, non-negligible cross-correlations between the errors and/or 
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representatively differences are common between global soil moisture data sets, potentially 
leading to violations of these assumptions (Draper et al., 2013). Because this study is, to our 
knowledge, the first to apply ETC to soil moisture data sets, further research is needed for a 
thorough analysis. 

 

2.5. Conclusions 

   Comparisons between satellite, in situ and modeled data are critical in the assessment of 
new soil moisture products and in the release of new versions of reprocessed data. In the 
context of the SMOS mission, continuous validation activities using in situ networks have been 
performed over upgraded processing versions in several locations worldwide. The comparisons 
provide error estimates and a basis for modifying algorithms and/or parameters. For the 
existing and future missions devoted to soil-moisture sensing, there is a need to validate the 
agreement between the in situ data at each site (at various temporal and spatial scales) and 
the satellite estimates. The main challenge when comparing remote sensing data and in situ 
network observations is adequately addressing the mismatch between sparse ground-based 
observations (both for large- and small-scale networks) and footprint-scale soil moisture 
estimates. 

   This study conducted a validation of SMOS L2 and L3 products of soil moisture using two 
spatial scales provided by two in situ networks, along with modeled data at in situ stations. The 
products were quantitatively compared with data collected at two in situ networks: the 
REMEDHUS network, which is approximately 1300 km2, and the Inforiego network, which is 
approximately 65000 km2. Compared with previous SMOS validation exercises, this research 
took advantage of the latest reprocessing of the L2 product, as well as the release of new L3 
products and the availability of 4-year SMOS data. Additionally, the new ETC methodology was 
applied with data simulated by the SWBM-GA model for both networks. A detailed analysis of 
soil types and land coverages was performed. Upscaling techniques and a new statistical 
comparison using the hydrological AI were performed.  

   The time series comparison results showed that the SMOS soil moisture products are 
generally underestimating the soil moisture observed at the studied sites in Spain, effect that 
appears to be larger for the ascending products and for the shorter time series. Regarding the 
products and orbits, there was no difference between the L2 and L3 performances; the 
ascending and descending series were similar. Comparisons at the point scale confirmed these 
favorable results, except at stations with particular conditions (very sandy soil and irrigated 
plots). A general dry bias is observed in the SMOS L2 and L3 series. Both for spatial/daily and 
temporal correlations and for ETC, the results obtained for the large-scale network were 
slightly better than those for the small-scale site, indicating that enlarging the spatial extent of 
the network resulted in a better match to averaged SMOS values. Thus, when all networks 
were jointly computed, the best results were obtained. However, the second period in the 
Inforiego network (Inforiego-2013) performed better than the first period. Thus, the 
improvement in the results for the Inforiego networks may be due to the increasing number of 
SMOS data over time, rather than an augmented spatial definition of the in situ references. 

   When the soil characteristics (soil texture and land use) were considered in the upscaling, 
better results were achieved, except for particular conditions (irrigated land use and very-
coarse-textured soils). High sand content (coinciding with vineyard use) led to a quick soil 
moisture decrease in the top soil layer, hindering a good estimation. Conversely, a lower bias 
in very coarse soils and vineyard cover was found, probably due to their typically lower soil 
moisture content. The prevalent type of soils in the area (medium texture) and land use 
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(rainfed crops) exhibited the best results for all the statistics used. In this case, the data 
representativeness and favorable results are correlated. 

   The in situ soil moisture temporal patterns were correctly captured by the SMOS estimates in 
all cases and spatial domains, reaching the expected accuracy of the mission (4% vol.); 
however, the spatial patterns did not reach the expected accuracy. No significant correlation 
was found at the 95% confidence level for either network in terms of the daily correlations. 
From these results, it seems impossible (and likely useless) to depict the soil moisture spatial 
distribution at all stations at a single time. This result has been observed in all studies on soil-
moisture retrievals from space using passive coarse-resolution radiometers, mostly due to the 
contrast between in situ measurements, which provide point-scale measurements under very 
different conditions at each location compared with the large footprint of the radiometer 
observations. 

   ETC is a new validation methodology that had not been applied before to soil moisture data 
sets. This technique proved useful for detecting particular conditions of soil moisture that are 
difficult to monitor from space. Although the obtained errors are relatively low, SMOS shows 
lightly worse results than the other data sets, which is confirmed throughout the ETC 
correlations.  

   The general results of this study showed that the newly reprocessed L2 products (5.51) 
improved the accuracy of soil-moisture retrievals, making them suitable for developing new L3 
products as presented in this work. 




