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ABSTRACT	
Neurons in primary auditory cortex, thalamus and midbrain show stimulus-specific 

adaptation (SSA), a reduction in response to repetitive stimuli that does not affect neuronal 
responses to deviant tones. This has been proposed as a neuronal correlate of the mismatch 
negativity (MMN), a special evoked potential in response to deviant tones. However, three 
important requirements remain to be demonstrated in order to support the SSA-MMN link: 
(1) MMN is generated mainly within higher-order auditory cortical areas, whereas cortical SSA 
has only been recorded in A1 of different species. (2) MMN is a mid-long latency response, 
peaking between 100-200 ms in humans, whereas SSA has only been observed in early 
responses of A1 neurons. And finally, (3) neuronal responses to oddball stimulation have not 
been tested for deviance detection–enhancement of responses to deviant events—in addition to 
SSA, which is an essential property of any bona-fide mismatch response. In this study, I set 
specific objectives to investigate the relation between SSA and MMN, and moreover, I will test 
the Hierarchical Predictive Coding account for the MMN at the neuronal level, showing that 
single neuron responses to oddball stimulation represent prediction error, which is hierarchically 
organized along the auditory system. 
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INTRODUCTION	
This thesis is about how the sounds around us are represented in the brain. In particular, I 

study how the representation of a sound changes according to the context in which it is 
presented. And, yet more specifically, I will focus on how specific modulations (reduction or 
enhancement) of neuronal responsiveness to a sound may help to detect relevant sounds, while 
ignoring irrelevant ones. Thus, I start this account introducing the general properties and 
functional significance of rapid sensory adaptation for efficient coding. I continue with an 
overall description of the mammalian auditory system, highlighting its hierarchical organization. 
Then, I will introduce the main subject of the present thesis: the representation of novelty in the 
auditory system. Adaptation and deviance detection will be shown to be tightly related and 
complement each other to detect relevant sounds in the environment. I will expose the main 
discoveries and controversies that have dominated the relationship between the two in the past 
decades. Last, I will introduce and discuss the principles that govern the “hierarchical predictive 
coding” framework of brain function, which will appear as a unifying principle capable of 
reconcile and shed new light into this conundrum. 

NEURONAL	ADAPTATION	AND	SENSORY	CODING	

Ever since I learned that our perceptions about the world are direct consequences of the 
electrical activity of neurons within our brain, I wanted to know more about that. How was that 
sensory information represented in living, biological tissue? When I first learned that my Ph.D. 
research will be on neuronal adaptation, I thought “well, this is as good a starting point as any 
other in neurophysiology”. I would learn how neurons respond to different stimuli, and then I 
would study how these responses vary when the stimulus is repeated. Thus, it was exciting as 
much as it concerned, indirectly, the study of how neurons encode and transmit information 
about external events. I could not imagine, however, that adaptation would be, precisely, the 
central principle of how neurons encode, transmit and process information along sensory 
systems.  

To	adapt	or	to	die:	Phenomenology	of	neuronal	adaptation	

Adaptation can be defined as a transient change in function that takes time to develop, and 
time to dissipate (Whitmire and Stanley, 2016). This is an essential feature of all life, spanning 
over timescales from evolution down to rapid interactions, and involving a plethora of diverse 
biological mechanisms, from molecules to cell and animal behavior. But with a common result: 
the ability of organisms to change their behavior in response to changes in the environment. In 
particular, nervous systems have evolved essentially to detect and react to changes in their 
environment. Thus, for the nervous system, adaptation is not only ubiquitous, but one of its 
fundamental principles of organization and function. In principle, adaptation can refer to any 
form of change that leads to an improvement in function, but in sensory physiology the term 
“adaptation” usually refers to a decrease in neuronal response over short time periods 
(milliseconds to a few minutes), whereas the term “facilitation” is reserved for the opposite 
effect. However, rather than a single behavior, “adaptation” has ended up describing a range of 
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phenomena with distinct underlying mechanisms and diverse effects on neuronal responses and 
information encoding (Maravall, 2013). Figure 1 illustrates different forms of neuronal 
adaptation, as revealed by different stimulus configurations.  

 

	

Figure	 1.	 Different	 forms	 of	 adaptive	 behavior	 in	 neuronal	 firing.	 (a)	 Perstimulatory	 adaptation,	 or	

gradual	decrease	in	firing	rate	along	a	continuous	stimulus	presentation,	can	be	observed	in	the	auditory	

system	from	auditory	nerve	fibers	up	to	cortex	(Pérez-González	and	Malmierca,	2014;	Eggermont,	2015).	

(b)	Neuronal	habituation,	or	decline	in	average	response	to	each	one	of	a	series	of	repetitive	stimuli,	is	a	

form	 of	 neuronal	 habituation	 to	 the	 stimulus	 (Condon	 and	 Weinberger,	 1991).	 (c)	 Stimulus-specific	

adaptation,	 a	 special	 form	 of	 repetition	 suppression	 that	 leaves	 responses	 to	 other,	 different	 stimuli	

unaffected,	can	be	interpreted	as	a	form	of	change	detection	(Movshon	and	Lennie,	1979;	Ulanovsky	et	al.,	

2003).	(d)	Adaptation	to	stimulus	variance,	a	more	complex	form	of	adaptation	observed	to	changes	in	the	

statistical	distribution	of	some	parameter	of	a	random	stimulus,	such	as	the	variance	of	a	Gaussian	white	

noise	(Fairhall	et	al.,	2001).	Adapted	from	Maravall	(2013).	

Despite its many different expressions, most forms of neuronal adaptation gravitate around 
the idea of adaptation to stimulus statistics. The response properties of a neuron are changed 
according to the local distribution of inputs present in the current environment. To understand 
why adaptation is so inextricably linked to sensory coding, and how the neuron can achieve this 
adaptive behavior, we must draw attention to some more basic aspects of sensory physiology. 
The main function of sensory neurons is to represent the state of the external world into a 
common code of electrical signals that can be further processed and used in the brain to 
generate adaptive behavior. The basic principles of sensory coding, which now we take for 
granted, were established almost 100 years ago back in early 20th century (Adrian and 
Zotterman, 1926; Rieke, 1999; Maravall, 2013): 

1. Neurons transmit information through discrete, all-or-none (i.e., digital) action potential 
signals. In sensory systems, this information relates to the current state of relevant aspects of 
the environment, and its specific nature is determined by the position of each particular 
neuron in the topology of connections within the brain. 

2. There is a quantitative relationship between the magnitude of the neuronal response and 
specific stimulus parameters, such as frequency or intensity. These relationships emerge 
more clearly when the combined, simultaneous activity of many neurons is taken into 
account. 
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3. The rules that link stimulus variables and neuronal response magnitude vary over time, 
depending not only on the current stimulus parameters, but also on the context and on the 
history of stimulation. Neurons adjust their codes according to changes in the environment. 
In other words, neurons adapt. 

This latter property (adjust the coding strategy according to local context) is critical for an 
efficient neuronal function, since the optimal coding strategy for a neuron at any point in time 
depends on the locally prevailing stimulus statistics. Furthermore, this adjustment of neuronal 
coding properties reveals that sensory systems are capable of tracking changes in recent stimulus 
history over many temporal scales, from tens of milliseconds to minutes (Fairhall et al., 2001; 
Ulanovsky et al., 2004; Ayala and Malmierca, 2013; Robinson et al., 2016) 1.  

The function of a prototypical neuron is well summarized in the simple linear-nonlinear-
Poisson (LNP) model (Figure 2), which is a simplified mathematical description of the input-
output transformation performed by the neuron (Simoncelli et al., 2004; Schwartz et al., 2006). 
The LNP model of neuronal firing splits neuronal function into two complementary aspects of 
neuronal responses to different stimuli: (1) selectivity (L filter), or preference of the neuron for 
certain range of stimulus parameters—or forms of energy—, and (2) sensitivity (N function), or 
absolute firing rate of the neuron in response to increasing amounts of synaptic input—intensity 
of energy. As stated above, this input-output mapping of the neuron can be changed through 
adaptation. Depending on which step (L or N) is affected, two major types of adaptation can 
result: 

(a) Dynamic range adaptation is the rapid adjustment in sensitivity of the input-output (N) 
function according to the distribution of synaptic input values, p(s), being received by the 
neuron (Figure 3). Typically, the N function of the neuron shifts and scales so that its 
operation point (point of maximum slope) coincides with the mean of the p(s) distribution, 
and its dynamic range matches the variance of the p(s) distribution (Figure 3). This is 
generally considered a gain control mechanism (Maravall et al., 2007; Wark et al., 2007; 
Robinson and McAlpine, 2009), often referred to as adaptive gain rescaling. This form of 
adaptation has been demonstrated at multiple stages of processing across different sensory 
modalities (Fairhall et al., 2001; Dean et al., 2005; Maravall et al., 2013),  and its functional 
relevance will be explained in the next section. 

(b) Receptive field adaptation is the rapid adjustment in selectivity of the L filter according to 
the probability distribution of stimulus feature values in the current stream of stimulation. 
This is a form of rapid receptive field plasticity (Froemke et al., 2007), that can take 
different forms (Figure 4)—often with opposite effects—such as general decrease in 
selectivity around the adaptor stimulus (Dhruv and Carandini, 2014), small shifts in 
neuronal selectivity, both repulsive—away from the adaptor—(Dragoi et al., 2000; Dhruv 
and Carandini, 2014), and attractive (Kohn and Movshon, 2004), or sharpening of tuning 
around the adaptor (Kohn and Movshon, 2004). How tuning is altered depends on the 
                                                        
1 This is a fundamental property of adaptation processes, indicative of an exquisite sensitivity to 

higher-order stimulus statistics—beyond mere global probability—orchestrated by a multiplicity of 
underlying mechanisms, from ion channel dynamics to complex network dynamics (Wark et al., 2007; 
Maravall, 2013). However, I will not deal with this aspect of adaptation in this thesis, and just mention it 
here for the sake of completeness.   
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brain region and stimulation paradigm used (Kohn, 2007). Usually, the neuron becomes less 
selective to the most common stimulus feature values, and retains, or even enhances2, 
selectivity to the less common ones (Dragoi et al., 2000; Kohn, 2007; Maravall, 2013). This 
behavior amounts to a form of change or novelty detection, in which a stimulus evokes a 
larger response when it is unpredictable (Ulanovsky et al., 2003). Thus, it is not surprising 
that this form of adaptation has been linked to higher-level inference processes in the brain, 
as reflecting the ability of sensory neurons to encode not only the physical features of the 
stimulus, but also its relevance and degree of match/mismatch within the ongoing context. 
Like the previous one, this form of adaptation has been described at different stages of 
processing within all sensory systems that have been investigated (Kohn and Movshon, 
2003, 2004; Ulanovsky et al., 2003; Reches and Gutfreund, 2008; Malmierca et al., 2009; 
Antunes et al., 2010; Duque et al., 2012; Ayala et al., 2013; Dhruv and Carandini, 2014; 
Musall et al., 2015; Nieto-Diego and Malmierca, 2016). 
 

	

Figure	2.	LNP	model	of	neuronal	firing.	The	LNP	model	summarizes	the	input-output	transformation	of	a	

neuron	in	three	steps:	(1)	Linear	filter	(L),	that	determines	the	total	synaptic	input	to	the	cell	according	to	

its	 feature	selectivity,	 (2)	Nonlinear	response	function	(N),	 that	transforms	synaptic	 input	(in,	membrane	

potential)	into	probability	of	firing	a	spike	(fr	=	nl(in)),	and	(3)	Poisson	process	(P),	that	generates	random	

spikes	 according	 to	 a	 random	 Poisson	 distribution	 of	mean	 firing	 rate.	 The	 parameters	 of	 the	 first	 two	

steps	(L	and	N)	can	be	estimated	by	presenting	many	different	stimuli	and	determining	the	firing	rate	of	

the	neuron	 in	response	to	them.	This	can	be	done	 in	a	direct	way	(averaging	many	presentations	of	 the	

same	 stimulus),	 but	 it	 is	 becoming	 more	 and	 more	 common	 to	 perform	 a	 “spike-triggered	 averaging”	

process,	to	determine	the	“canonical”	stimulus	that	best	drives	the	neuron.	From	Wark	et	al.	(2007).	

In this thesis, I will focus on the second type of adaptation—receptive field adaptation—,  
since it is the one potentially mechanism underlying change detection (Ulanovsky et al., 2003; 

                                                        
2 This difference (retain or enhance selectivity) is more than a mere subtlety. It will be a central 

question of this thesis, and will be fully addressed in Study 2. 
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Maravall, 2013; Malmierca et al., 2014), and this work is centered on the neurophysiological 
mechanisms of mismatch detection in the auditory system. In particular, I will center on 
stimulus-specific adaptation (SSA), a form of receptive field adaptation as measured with the 
oddball paradigm, a simple form of stimulus probability distribution in which the stimulus takes 
one of two possible values, one with more probability than the other (Ulanovsky et al., 2003). 
Despite its apparent simplicity, this paradigm will reveal fundamental properties of sensory 
processing, and how information about the environment is represented in the brain. 

Why	to	adapt?	Functional	roles	of	adaptation	

From the previous section it should be clear that rapid sensory adaptation, in its many 
forms, is a pervasive property of all sensory systems that evolution has promoted many times 
independently in a wide range of organisms and processing stages of sensory systems. Therefore, 
it must certainly provide important advantages over “non-adapting” approaches. Many 
functional benefits of neuronal adaptation have been proposed, including, among others: 

! Efficient use of the limited dynamic range of the neuron to represent a much wider 
range of stimulus intensities  (Fairhall et al., 2001; Dean et al., 2005). 

! Efficient use of channel information transmission capacity (Maravall et al., 2007; Wark 
et al., 2007). 

! Gain control of neuronal firing rate (Robinson and McAlpine, 2009). 
! Enhanced discriminability of small changes in stimulus intensity (Dean et al., 2005; 

Wark et al., 2007) or along a specific stimulus feature (Dragoi et al., 2002; Ulanovsky et 
al., 2004; Kohn, 2007; Musall et al., 2014). 

! Redundancy reduction, through decorrelation of spikes in neuronal population activity 
(Müller et al., 1999; Benucci et al., 2013). 

! Equalization of population firing rates, or “neuronal homeostasis” (Benucci et al., 
2013). 

! Basis for regularity encoding (Yaron et al., 2012; Malmierca et al., 2014). 
! Sensory memory trace formation (Haenschel et al., 2005). 
! Change detection and novelty detection (Ulanovsky et al., 2003; Musall et al., 2014). 

However, the common principle behind the many functional benefits of adaptation was 
already identified by Horace Barlow more than 50 years ago: efficient coding (Barlow, 1961). 
Instead of following a rigid coding scheme to represent sensory events, neurons change their 
coding strategy as a function of time to exploit any non-random structure in the ongoing 
distribution of sensory inputs (i.e., regularities), to diminish redundancy in neuronal messages 
and maximize the information transmitted about the stimulus, with the minimum energy 
expenditure. But, how is this very demanding and ambitious goal achieved by the two main 
types of adaptation described in the previous section? This can be understood in the following 
way: 

(a) Figure 3 illustrates the functional benefits of dynamic range adaptation. If the distribution 
of strength of synaptic inputs (reflecting stimulus intensity such as luminance of an image of 
loudness of a sound) changes as shown in the top panels (from the blue to the green 
distribution), the most efficient strategy of the neuron is to shift its input-output function 
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(N) to match the corresponding cumulative distribution (bottom panels). In this manner, 
the most common stimulus values in the local context are represented by the full dynamic 
range of the neuron. Extrapolating this strategy to the population code, dynamic range 
adaptation allows the nervous system to represent a range of stimulus intensities that usually 
spans over many orders of magnitude (e.g. sounds from 0 to 90 dB means from 20 µP to 
20×109 µP, and a similar thing happens for luminance) with a much modest range of firing 
(typically 0-100 Hz). Moreover, the mapping between them (stimulus intensity and firing 
rate) will be optimal in that all firing rate levels will be used with similar probability (Figure 
3). 
 

	

Figure	3.	Dynamic	range	adaptation.	(a)	Given	a	stimulus	energy	distribution	(top),	the	maximally	efficient	

mapping	 from	 stimulus	 to	 response	 is	 the	 integral	 of	 the	 stimulus	 distribution	 (bottom)	 known	 as	 the	

cumulative	 distribution.	 This	mapping	 transforms	 equal	 probability	 in	 the	 stimulus	 distribution	 (shaded	

areas)	 to	equal	 response	 ranges,	making	all	 responses	equally	 likely.	 (b)	When	 the	 stimulus	distribution	

changes,	 for	 example,	 from	p1(s)	 to	 p2(s)	 (top),	 the	maximally	 efficient	mapping	 also	 changes.	 The	 new	

mapping,	r2(s),	is	the	cumulative	distribution	of	p2(s).	In	this	case,	both	the	mean	and	the	variance	of	the	

stimulus	distribution	change,	leading	to	a	shift	in	the	half-maximum	and	a	decrease	in	gain	(slope)	of	r2(s),	

respectively.	From	Wark	et	al.	(2007).	

(b)  On the other hand, the functional benefits of receptive field adaptation can be fully 
explained by basic principles of information theory (Shannon and Weaver, 1998). Sensory 
relays recode sensory messages so that their redundancy is reduced but comparatively little 
information is lost. If a stimulus becomes repetitive, or otherwise highly predictable, its 
informational content (or entropy) decays rapidly, and there is no point in wasting neuronal 
resources signaling its occurrence. To paraphrase Barlow’s own words, “News is only news if 
it conveys really new information”.  The general effect of neuronal selectivity adaptation is 
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that the activity of the neuron represents not only a particular feature of the stimulus, but 
also the amount of information associated with the occurrence of that stimulus within the 
current context. Put simply, the most common and expected a stimulus is, the less 
information we obtain by knowing that it occurred. On the other hand, infrequent or 
otherwise unexpected sensory events contain a lot of information, and therefore they must 
be signaled by strong neuronal activity. Thus, in contrast to the situation for dynamic range 
adaptation (Figure 3), now stimuli in the center of the distribution (the most common 
stimulus values) elicit the weakest responses, whereas outliers (in any direction) will elicit 
the strongest responses (Garrido et al., 2013). 
 

	

Figure	 4.	 Different	 forms	 of	 receptive	 field	 adaptation.	 (A)	 Adaptation	 has	 been	 found	 to	 alter	 V1	

neuronal	tuning	by	reducing	responses	to	stimuli	similar	to	the	adapter	most	strongly,	as	indicated	by	the	

longer	downward	arrows	for	the	adapted	value	than	for	offset	values.	Flank	adaptation	causes	a	repulsive	

shift	in	tuning.	Tuning	before	adaptation	is	shown	in	black;	after	adaptation,	in	red.	(B)	In	MT,	adaptation	

affects	 responses	 at	 the	adapted	 value	 least,	 resulting	 in	narrower	 tuning	 (center	pair	of	 tuning	 curves)	

and	 attractive	 shifts	 in	 preference	 (offset	 pair	 of	 tuning	 curves).	 C:	 tuning	 curve	 slope	 depends	 on	 the	

distribution	 of	 stimuli	 used	 to	 drive	 the	 cell.	 A	 high	 variance	 distribution	 (light	 gray	 histogram	 in	 the	

background)	 results	 in	 shallower	 tuning	 (dotted	 line);	 a	 low	 variance	 distribution	 (dark	 gray	 histogram)	

results	in	steeper	tuning	(solid	line).	Adapted	from	Kohn	(2007).	

In summary, adaptation operates on the neuronal code to optimize neuronal resources and 
maximize information transmission capacity. However, there are also some side effects of 
sensory adaptation, such as impaired detectability of a repetitive stimulus (Musall et al., 2014), 
perceptual distortions and after-effects (Clifford et al., 2000; Jin et al., 2005), or complication of 
population activity decoding schemes (Clifford et al., 2007; Seriès et al., 2009). But clearly, the 
benefits of adaptation overweight its potential disadvantages.  

How	to	adapt?	Underlying	mechanisms	and	models	

The gradual attenuation of neuronal responses after stimulus repetitions can be explained by 
many different theoretical models, including neuronal fatigue, sharpening of tuning and 
facilitative effects (Grill-Spector et al., 2006). However, only empirical studies can reveal the 
actual biological mechanisms behind each kind of neuronal adaptation. The many different 
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types of adaptation, its ubiquity in sensory processing and the ability of neuronal responses to 
adapt to stimulus statistics over many spatial and temporal scales, suggest the existence of a 
combination of different molecular, cellular and network mechanisms. These different systems 
must be operating in parallel at many levels and with different time scales (Maravall, 2013; 
Malmierca et al., 2014).  

As already pointed out, both components of the LNP model can be affected by adaptation, 
and each one would lead to different outcomes (Clifford et al., 2007; Maravall et al., 2007). 
Thus, it is reasonable to think of cellular mechanisms whose net effect is to decrease the firing 
rate of the cell, by acting on either neuronal sensitivity (N function) or selectivity (L filter), or 
both. This view provides us with the following categorization of mechanisms: 

(a) Intrinsic neuronal mechanisms. Rapid changes in cellular dynamics, particularly passive 
(ion conductance) and active (firing threshold) membrane properties can easily explain 
changes in neuronal sensibility, that would translate into non-specific decrement of 
neuronal activity (fatigue-like effects) and also most forms of dynamic range adaptation. 
Indeed, intrinsic membrane properties have been shown to contribute to adaptive changes 
of coding in the sensorymotor cortex (Schwindt et al., 1988), barrel cortex (Díaz-Quesada 
and Maravall, 2008), visual cortex (Carandini and Ferster, 1997; Sanchez-Vives et al., 2000) 
and auditory cortex (Abolafia et al., 2011), but calcium-dependent changes in gain 
participate in contrast adaptation as early as in the retina (Kim and Rieke, 2001). In general, 
sodium- and calcium-dependent potassium currents are the most likely mechanism behind 
firing rate adaptation—reviewed in Malmierca et al. (2014). Importantly, supporting its 
central role in neuronal adaptation, the intrinsic response dynamics of single neurons display 
multiple timescales (La Camera et al., 2006), a central feature of sensory adaptation as 
discussed in the first section. 

(b) Synaptic mechanisms. Intrinsic membrane mechanisms are well understood, but they 
cannot solely explain stimulus- or input-specific effects underlying receptive field adaptation 
(Nelken, 2014; Malmierca et al., 2015). A suitable mechanism would be activity-dependent 
depression of thalamocortical synapses, as shown for the auditory (Wehr and Zador, 2005) 
and somatosensory (Chung et al., 2002) cortex, that could easily underlie stimulus-specific 
adaptation in narrow frequency channels (Taaseh et al., 2011; Khouri and Nelken, 2015). 
Other synaptic mechanisms include lateral inhibition (Qin and Sato, 2004), increased 
inhibition (Zhang et al., 2003) or excitatory/inhibitory imbalance (Oswald et al., 2006). 
Interestingly, intrinsic and synaptic mechanisms may interact synergistically to provide 
computational capabilities of change and novelty detection (Puccini et al., 2007).  

(c) Network mechanisms. It is highly unlikely that one single neuron, by itself, is able to 
recognize and habituate to complex background regularities in the environment. Simple 
network mechanisms, such as disynaptic feedforward inhibition (Wehr and Zador, 2003; 
Isaacson and Scanziani, 2011), can largely underlie adaptation effects. Because the 
excitatory and inhibitory inputs interact in a complex manner, adaptation of these two 
components will have profound effects on the feature selectivity and timing of responses 
(Whitmire and Stanley, 2016), and a tight balance between excitation and inhibition may 
lie at the foundation of efficient coding (Denève and Machens, 2016). Moreover, complex 
interactions between excitatory and inhibitory circuit components can not only shape the 
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effects of adaptation on neuronal tuning, but even explain selective response enhancements 
through input-specific disinhibition (Solomon and Kohn, 2014). Finally, it has been shown 
through computational modeling that differential adaptation of populations of presynaptic 
neurons (even through intrinsic mechanisms) can lead to stimulus-specific effects in brain 
activity (Jääskeläinen et al., 2004; Grill-Spector et al., 2006; Whitmire and Stanley, 2016) 
or even to changes in neuronal tuning (Jin et al., 2005; Solomon and Kohn, 2014).  

It is important to mention here the important role that neuromodulation (Edeline, 2012) 
and top-down signals (Malmierca et al., 2015) may have in shaping neuronal activity at 
different stages of processing. However, the only chemical modulator that has been shown to 
mediate input-specific adaptation effects is the cholinergic system (Ayala and Malmierca, 2015), 
consistent with its known role in short-term receptive field plasticity (Froemke, 2015). Some 
neurotransmitter systems, such as ionotropic GABA(A) receptors, modulate the strength of 
adaptation in an unspecific gain control manner (Pérez-González et al., 2012; Duque et al., 
2014). But, other hitherto untested neuromodulators, such as dopamine or serotonin, may also 
play a role in adaptation. 

Of course, it is likely the combination of intrinsic, synaptic and network mechanisms what 
allows the complex adaptive behavior found in neuronal responses. For example, the ultimate 
network model for repetition effects is the proposed cortical microcircuit for predictive coding 
(Bastos et al., 2012). Furthermore, as will be highlighted later, adaptation might represent not 
only an effort to save energy and resources; even more important, it could be the signature of the 
inferential activity of the brain, underlying a more general principle of sensory physiology. 

THE	HIERARCHICAL	ORGANIZATION	OF	THE	AUDITORY	SYSTEM	

To hear may seem a simple task, at first glance. However, the auditory system faces one of 
the most challenging missions of all nervous system: auditory scene analysis (Bregman, 1990); 
and performs it with outstanding success, as Bregman exposed very convincingly3. Maybe for 
this reason, the mammalian auditory system shows a level of anatomical complexity that far 
exceeds that of other sensory systems such as the visual or somatosensory. Whereas there is only 
one relay between the retina and the primary visual cortex (the lateral geniculate nucleus of the 
thalamus), or two relays between the skin mechanoreceptors and the primary sensory cortex 
(cuneate nucleus and ventral posterior thalamus), in the auditory system we find five relay 
stations between the cochlea and primary auditory cortex (cochlear nuclear complex, lateral 
superior olive, nuclei of the lateral lemniscus, inferior colliculus, and medial geniculate body of 
the thalamus), with a high degree of parallel processing as well as different degrees of 
convergence and divergence. By the moment that a signal reaches the auditory cortex, it 
resembles very little the initial pressure signal that hit the eardrums in the first place. This may 
be one of the reasons why the cortical representation of sounds is so mysterious and poorly 

                                                        
3 Imagine you are on the edge of a lake and a friend challenges you to play a game. Your friend digs 

two narrow channels up from the side of the lake. Halfway up each one, your friend stretches a 
handkerchief and fastens it to the sides of the channel. You are allowed to look only at the handkerchiefs, 
and from their motions to answer a series of questions: How many boats are there on the lake, and where 
are they? Which is the biggest one? Which one is closest? Is the wind blowing? Has any large object been 
dropped suddenly into the lake? 
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understood, in comparison with vision and touch. One main aim of this study is to shed some 
light into the nature of these representations. 

Next, I will provide a brief description of the mammalian auditory system, with a specific 
focus on the rat distinctive features. For the greatest detail, see Malmierca (2003, 2015). The 
emphasis of this description will be on highlighting the hierarchical organization of the auditory 
system, especially from midbrain to cortex. A central theme in this respect will be the 
distinction between lemniscal, or first-order, and non-lemniscal, or higher-order, divisions 
within each anatomical level, including midbrain, thalamus and cortex.  

Serial	processing	of	sound	along	the	pathway	

The sound in the form of air pressure waves is transformed into mechanical waves in the 
middle ear, and in turn to liquid (endolymph) waves inside the cochlea. Up to that point, the 
oscillatory, wave-like nature of sound is still preserved with great fidelity. However, inside the 
cochlea, the basilar membrane (10-12 mm long in the rat, tightly coiled) acts as a 
hydromechanical frequency analyzer, and the inner hair cells (1000-1300 in the rat, arranged in 
a single row) act as mechanoelectrical transducers, producing a pattern of activity in the auditory 
nerve that bears little resemblance with the original sound wave. The auditory nerve is a bunch 
of up to 20.000 axons in the rat that convey information more similar to a multichannel digital 
sound system. The intensity (or energy) contained in the original wave has been separated into 
multiple frequency channels, and represented by the average firing rate of the corresponding 
bunch of fibers in the auditory nerve (Figure 5a). Thus, the activity of the auditory nerve 
contains a spectrogram of the original sound (Figure 5b), and that is the form of a sound that 
the brain is able to understand. In addition to operate as a frequency spectral analyzer, the 
cochlea is also a selective (dynamic) amplifier, thanks to the motility of its three rows of outer 
hair cells. These cells receive inputs from the brain that can control the sensitivity and selectivity 
of the cochlear filters. Therefore, the adaptive changes of selectivity and sensitivity mentioned in 
the previous section are present already at the transducer organ of the auditory system. Thus, 
the tonotopic code (different sound frequencies represented by the location of neurons along 
one spatial dimension) is generated in the cochlea—low frequencies in the apex, high 
frequencies at the base—and will remain the central principle of organization along the 
pathway, up to primary auditory cortex. This is essentially similar between all species of 
mammals, and the major difference is the range of frequencies to which the ear responds. In 
rats, the frequency range is from 0.25 to 70 kHz, but the optimal range is between 8 and 32 
kHz.  
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Figure	 5.	 Transduction	 of	 sound.	 (a).	 The	 basilar	 membrane	 performs	 a	 spectral	 analysis	 of	 	 sound	
pressure	 waves	 entering	 the	 ear,	 inducing	 a	 tonotopic	 pattern	 of	 electic	 activity	 in	 the	 fibers	 of	 the	
auditory	 nerve.	 Source:	 https://i.stack.imgur.com/TNUxK.jpg.	 (b)	 The	 pattern	 of	 activity	 that	 enters	 the	
brain	 is	 roughly	 equivalent	 to	 a	 spectrogram	 of	 the	 original	 sound	 wave.	 Source:	
https://qph.ec.quoracdn.net/main-qimg-5ea3c55f647865a852b5f5cde6688cff-p	

The auditory nerve bifurcates in a tonotopical pattern as soon as it enters the cochlear nuclear 
complex (CNC), the first relay of the central auditory system. The CNC is by itself a 
masterpiece of engineering that dwarfs the most sophisticated digital signal processor built by 
humans. Here, the transduced signal reaches many different and well-characterized neuronal 
types. Each one of them will process a separate aspect of the signal, and relay it to the next 
processing stage in the chain (Figure 6). Thus, the CNC is the origin of many processing 
parallel streams dedicated to different aspects of sound: position in space, spectral (frequency) 
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composition, loudness, spectral patterns, temporal patterns, etc. (Popper and Fay, 1992). These 
functions are carried out by the superior olivary complex and the nuclei of the lateral lemniscus 
(Figure 6), most of them using combined information from both ears, before all signals 
converge in the inferior colliculi (IC) of the midbrain. 

 

	

Figure	 6.	 Schematic	 diagram	 of	 the	 ascending	 auditory	 pathway	 up	 to	midbrain.	Main	 projecting	 cell	

types	 of	 the	 CNC	 in	 rat	 are	 shown,	 with	 their	 corresponding	 physiological	 response	 profiles.	 From	

Malmierca	(2015).	
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The IC is an obligatory relay center for most ascending auditory tracts. Each IC receives 
ascending input from both ears, but mostly from the contralateral side. The rat IC has an 
ellipsoid shape, with diameters of 3.5 and 2 mm, slightly tilted towards the caudomedial 
direction. In terms of size, the rat IC is the largest auditory structure, with around half a million 
neurons, including glutamatergic, glycinergic and GABAergic neurons. This points to a central 
role in complex sound processing, comparable to the role of V1 in the visual system (King and 
Nelken, 2009). Furthermore, the IC is the anatomical level where the distinction between 
lemniscal and non-lemniscal pathways first emerges4. The IC is organized in a central nucleus 
(CNIC), or lemniscal relay, surrounded by cortical or “shell” areas, considered non-lemniscal. 
Ascending information from the brainstem arrives massively, and tonotopically, to the CNIC, 
defined by the presence of thin fibrodendritic laminae that constitute the structural basis for its 
tonotopic organization5. Thus, a whole lamina of complex neuronal tissue is dedicated to 
process a single, frequency-band, or narrow frequency channel. Correspondingly, neurons 
within these lamninae show narrow frequency selectivity (Table 1). About 25% of CNIC 
neurons are GABAergic, and the CNIC is under strong inhibitory influence by both GABA 
and glycine. The cortical areas surround the CNIC on the sides (rostral cortex, RCIC and 
lateral cortex, LCIC) and at the top (dorsal cortex, DCIC). Their layered circuitry resembles 
that of the neocortex, pointing to advanced pattern recognition capabilities. These regions 
receive input from the CNIC (Saldaña and Merchán, 1992; Malmierca et al., 1995), but they 
are multisensory integration centers that concentrate projections from heterogeneous sources 
and also massive influence from the auditory cortex (v.i.). This integrative, higher-order nature 
is reflected in the receptive field properties of its neuronal units (see Table 1) and in the absence 
of a clear tonotopic organization.  

Information leaving the IC is funneled into the medial geniculate body (MGB), a smaller 
structure prominent in the posterodorsal surface of the rat thalamus. The MGB, like all other 
thalamic nuclei, is an obligatory relay station and the last opportunity for subcortical processing 
for every signal that enters the cortex. However, it is more than a simple relay station, or at least 
not a passive one. The thalamus is known to actively regulate the flow of information from 
periphery to cortex (Sherman, 2007), and between cortical areas (Llano and Sherman, 2008). 
Furthermore, thalamic neurons can dynamically change their firing mode, and thus modify the 
functional connectivity between distant cortical regions in real time (Guillery and Sherman, 
2002). The MGB is unique in that it receives massive inhibitory influences from the IC (Winer 
et al., 1996), in addition to the excitatory projections, reflecting the important role of inhibition 
in shaping auditory spectrotemporal receptive fields. The CNIC projects to the ventral division 
(MGV), which relays the lemniscal information to primary auditory cortex in a strict tonotopic 
manner. The frequency representation in the MGV is also laminar—following a dorso-ventral 
gradient from low to high frequencies—and the physiological responses of single units 
correspond to the lemniscal pathway (Table 1). The MGV contains large, bi-tufted relay 
neurons that respond transiently to contralateral pure tone stimulation. Paralleling the 

                                                        
4 This important organizational principle will be discussed in the next section. 
5 The representation of frequency in the CNIC is reflected in measurements of best frequencies along 

its major axis, revealing that best frequency increases with depth in a stepwise manner (Malmierca et al., 
2008). 
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organization of the CNIC, these neurons have highly oriented dendritic arbors arranged in the 
direction of the afferent fibers, and constitute the basis for the laminar organization of the 
MGV. The non-lemniscal divisions of the MGB, the dorsal (MGD) and medial (MGM) 
divisions, are anatomically and functionally distinct from the MGV, and receive a projection 
from the cortical regions of the IC. They are reciprocally connected to non-primary auditory 
cortical areas, but receive also a driving input from primary auditory cortex. Accordingly, their 
physiology is more heterogeneous than in MGV (Table 1) and they do not present a clear 
tonotopic organization. The MGD contains tufted and stellate neurons, whose cell bodies and 
dendrites are not oriented in any particular fashion. The MGM is a narrow disc of tissue, with 
large, sparsely distributed cell bodies. The MGM contains a tonotopic map in its anterior 
sector, but much less ordered than in MGV. Non-lemniscal thalamic subdivisions subserve 
advanced, higher-order functions, corresponding to their position in the auditory hierarchy, 
reciprocally connected with the non-primary areas of the auditory cortex (v.i.). 

Finally, the auditory cortex (AC) is the site of ascending projection from the MGB of the 
thalamus, localized bilaterally in the temporal lobes. The auditory cortex represents the highest 
level of processing within the auditory system. Basic spectral and temporal analysis has already 
been performed by subcortical circuits, and in fact animals do not need the auditory cortex for 
simple perceptual or audiomotor tasks such as frequency discrimination or sound localization 
(Kelly and Kavanagh, 1986; Gimenez et al., 2015). The auditory cortex deals with complex 
structure of sound: the formation and recognition of auditory objects (Nelken, 2004). In 
general, activity in auditory cortex is related to complex, or higher-order aspects of perception 
and behavior (Sutter and Shamma, 2011; Li et al., 2017), starting with the recognition of fine 
temporal modulations (Cooke et al., 2007). In addition, it is the site of highest neuronal 
plasticity for learning and memory about the objects that populate the complex structure of the 
auditory world (Weinberger, 2004). 

The auditory cortex forms part of the mammalian neocortex, a highly modular structure 
resulting from the extensive repetition of a common pattern, suggesting a shared underlying 
computational principle (Mountcastle, 1997). In the horizontal dimension, the neocortex is 
organized in six layers (this number can vary between areas, but six is the most common for 
sensory cortices). The middle layers (layer IV, and also lower layer III in auditory cortex) are 
dense in cell bodies and present a granular aspect from which they take the name “granular 
layer/s”; these cells project only to the local tissue. Thus, layers I-III are called “supragranular”, 
whereas layers V-VI are “infragranular”; both have pyramidal cells that project out of the cortex.  
In the vertical dimension, neurons are grouped in columns (about 500 microns in diameter), and 
neurons within the same column tend to show similar receptive field properties (Mountcastle, 
1997). Finally, a third common principle of cortical organization is the functional division in 
areas, specialized in processing of different types of information (such as auditory, visual, 
association, objects, locations, etc).  

 In contrast to the subcortical regions, which are largely conserved in mammals, there are 
important species differences in the number of identified auditory cortical areas (from 5 in mice 
and rats to 10-12 in primates and around 30 in humans), their tonotopic organization, response 
properties or reciprocal connectivity. However, a common feature of all species investigated is 
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the presence of one or more primary auditory fields, surrounded by, and connected to, non-
primary auditory fields, in turn connecting to higher-order multisensory association areas 
(Winer and Schreiner, 2011). In primates, these areas are called core, belt and parabelt. 
respectively. Primary or core cortex contains a dense granular layer that receives strong, direct 
input from the MGV, and contains one or more complete tonotopic representations of the 
audible frequency range of the animal. By contrast, belt areas lack a thick granular layer and 
receive their major ascending input from non-lemniscal divisions of the MGB (and from 
projection cells in supragranular layers of primary areas). Belt areas do not show a clear 
tonotopic organization, and in fact are usually more difficult to drive with pure tones (Table 1). 
The parabelt would comprise all auditory areas not directly connected to primary cortex, and its 
cellular physiology remains largely unexplored (Rauschecker and Romanski, 2011). 

The rat auditory cortex also contains a “core” region made of the primary auditory cortex 
(A1) and two other primary fields: anterior auditory field (AAF) and ventral auditory fields 
(VAF). Additionally, the rat AC comprises at least two distinct non-primary fields in the “belt” 
regions, the posterior and the suprarhinal auditory fields (PAF and SRAF, respectively) (Doron 
et al., 2002; Kimura et al., 2003; Rutkowski et al., 2003; Donishi et al., 2006; Polley et al., 
2007). These non-primary fields correspond to the dorsal and ventral secondary auditory cortex 
in the rat stereotactic atlas of Paxinos and Watson (2014). Unfortunately, there are no magic 
stains or molecular markers that cause one cortical region in the rat to stand out unambiguously 
from another. Also, the lack of gross anatomical landmarks (the rat is lissencephalic) 
complicates individual comparisons across animals. However, electrophysiological mapping 
studies have shown a robust organization of multiple response properties that follow a particular 
spatial organization (Polley et al., 2007; Higgins et al., 2010). That makes it feasible to locate 
the relative position of each field in a single animal through elecrophysiological mapping in 
vivo. The major reference to define the extension of these fields is the progression of their 
characteristic tonotopic gradients. The boundaries between them are defined by inversions or 
bifurcations of these gradients (Figure 7). They differ also in the distribution of other 
physiological characteristics, such as absolute response thresholds, spectral tuning bandwidth 
and response latency (Polley et al., 2007), but these are not as reliable cues as the frequency 
gradients. The rat A1 contains the typical six layers of granular cortex, which extend over about 
1.1 to 1.2 mm (Figure 8). Ascending thalamic inputs from MGV to A1 terminate in layers 
III/IV, between 350 and 650 µm depth, and also at the junction of layers V and VI. 
Supragranular layers (I/II and upper III) extend only 350 µm below the pia surface, wheras 
infragranular layers (V and VI) occupy the deep half of the cortex, around 600 µm (Games and 
Winer, 1988; Polley et al., 2007; Smith et al., 2012). Granular layers are abundant in small 
stellate cells with smooth dendrites. Supragranular layers are dense in small pyramidal cells, with 
regular spiking firing profiles, that project locally and to higher-order cortical areas.  
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Figure	 7.	 Physiological	 division	 of	 rat	 auditory	 cortex.	 A.	 The	 rat	 auditory	 cortex	 is	 easy	 to	 reach,	

completely	exposed	in	the	lateral	aspect	of	the	temporal	lobe,	between	3	and	7	mm	posterior	to	bregma.	

B.	The	pattern	of	vasculature	can	be	used	to	reference	relative	electrode	positions,	but	otherwise	varies	

significantly	between	subjects.	C.	A	physiological	mapping	of	the	whole	auditory	cortex	in	one	rat,	showing	

the	tonotopic	gradients	of	characteristic	frequency	that	define	the	boundaries	between	fields.	D.	The	five	

different	auditory	 cortical	 fields	 identified	 in	 the	 rat:	A1,	VAF	and	AAF	are	primary	 fields,	whereas	SRAF	

and	PAF	are	considered	higher-order,	given	their	reciprocal	connections	with	higher-order	thalamic	relays.	

From	Polley	et	al.	(2007).	

Infragranular layers contain larger pyramidal cells with intrinsically bursting firing patterns 
(especially layer V, but layer VI also contains bitufted and multipolar neurons) that project to a 
variety of subcortical targets (v.i.). The columnar organization of auditory cortex is reflected 
anatomically by a system of intrinsic fibers perpendicular to the surface, spanning 200-800 um 
in width and made up of terminal axons that extend through all cortical layers. Functionally, it 
is reflected in the fact that neurons along the direction perpendicular to the pia surface tend to 
have the same frequency preference. But the modular organization of the auditory cortex goes 
beyond small columns. Different properties such as spectral bandwidth, intensity tuning or 
binaural interactions seem to be organized in patches or complex metagradients that, unlike the 
tonotopic gradients, extend beyond the limits between cortical fields (Polley et al., 2007). Like 
other cortical regions, all areas of auditory cortex are rich in a large variety of inhibitory 
(GABAergic) interneurons with many potential roles in controlling and synchronizing neuronal 
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activity (DeFelipe et al., 2013), but in the case of the auditory cortex, inhibitory influences may 
have an even more important role for shaping spectrotemporal receptive fields and encoding of 
temporal information (Schinkel-Bielefeld et al., 2012; Bendor, 2015). Unfortunately, there are 
no detailed studies on the morphology and distribution of inhibitory interneurons in the rat 
auditory cortex, but most probably all cell types except pyramidal neurons are GABAergic in the 
rat auditory cortex, as in other mammals (Malmierca, 2015). 

 

	

Figure	8.	Cytoarchitecture	of	the	rat	primary	auditory	cortex.	(A)	Neuronal	types	and	laminar	boundaries	

in	 the	 primary	 auditory	 cortex	 (Te1,	 Au1)	 seen	 in	 Nissl	 stained	 sections.	 (B)	 HRP	 labeled	 cells	 after	

injections	 into	 the	contralateral	AC	and	 ipsilateral	 IC.	 (C)	Golgi	 impregnated	material.	Note	different	cell	

types,	 neuronal	 density	 and	 dendritic	 branching	 patterns	 in	 each	 of	 the	 six	 layers.	 (D-F)	 Insets	 showing	

from	which	panels	B,	A	and	C	were	drawn,	respectively.	From	Games	and	Winer	(1988).	
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Primary cortical fields A1, VAF and AAF are reciprocally topographic connected to 
lemniscal MGV, through strictly tonotopic ascending and descending projections. However, 
cortical fields are organized in isofrequency contours, whereas MGV follows a laminar 
tonotopy. Therefore, the topographic correspondence between primary thalamus and cortex is 
not trivial, and a whole isofrequency line of MGV neurons must converge into each cortical 
column (Imaizumi and Lee, 2014). More specifically, each isofrequency line of A1 receives 
input from the rostral half of a isofrequency lamina of MGV, whereas VAF receives from the 
caudal MGV (Storace et al., 2010). A1 projects to the secondary PAF and SRAF, and these in 
turn project to a variety of non-auditory areas and to the amygdala (see Table 1). Non-primary 
PAF is reciprocally connected with MGD and MGM, whereas SRAF is connected with the 
MGM (Kimura et al., 2003, 2005; Smith et al., 2012; Storace et al., 2012). The extensive 
corticofugal projections from auditory cortex will be discussed in a separate section. 

Primary	and	non-primary	representation	of	sound	

The mammalian neocortex is hierarchically organized. This principle makes it such a 
versatile and computationally powerful structure, and is reflected also at the anatomical level, in 
the asymmetric pattern of reciprocal connections between functional areas (Felleman and Van 
Essen, 1991). Generally speaking, lower-level areas send “feedforward” projections from 
supragranular layers, terminating mainly in layer IV of the next area in the hierarchy. On the 
other hand, each area sends a “feedback” reciprocal projection from infragranular layers, 
terminating outside of layer IV (mainly in layers I and VI) of the hierarchically lower cortical 
area (Figure 9a). This organizational principle defines a hierarchical processing chain that can 
be followed with anatomical methods (Figure 9b). The only deviation of this homogeneity, both 
at anatomical and physiological levels, is the distinction between primary and non-primary (or 
higher-order) areas. Primary sensory areas have a thick granular layer, and are reciprocally 
connected with the corresponding specific thalamic relay (LGN, MGV, VPM… according to 
sensory modality). The descending projection from layer VI of a primary area does not go to a 
lower cortical area (since there is none), but back to the first-order thalamus (Shipp, 2007). 
Correspondingly, non-primary areas are reciprocally connected with higher-order (or 
unspecific) thalamic relays (Figure 11 and Figure 12). However, thalamocortical relations are 
asymmetric, and the main driving input to higher-order cortical areas comes from lower areas 
through and indirect, transthalamic route through higher-order thalamic relays (Llano and 
Sherman, 2008; Sherman and Guillery, 2011). Thus, the cerebral cortex does not function in 
isolation, but in intimate relation with the thalamus, and the thalamocortical system constitutes 
a functional unit. Whatever happens in a cortical area is reflected in its corresponding thalamic 
relay, and reciprocally, so that the hierarchical organization of cortical areas is also reflected in 
the thalamus. Of course, information represented in thalamus and cortex show important 
differences, and the thalamocortical transformation of information is well documented in all 
sensory systems (Maravall et al., 2013; Dhruv and Carandini, 2014), including auditory (Wang 
et al., 2008; Imaizumi and Lee, 2014; Eggermont, 2015). At any rate, the distinction between 
primary and non-primary regions is also a central aspect of thalamic anatomy and function, and 
every sensory sector of the thalamus is divided into specific, or first-order, and nonspecific, or 
higher-order, relays (Sherman and Guillery, 1996).  
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Figure	 9.	 Canonical	 cortical	 circuits.	 (a)	 Every	 column	 of	 neocortex	 follows	 the	 same	 patterns	 of	

connectivity	 and	 information	 flow	within	 the	 column.	 Afferent	 signals	 enter	middle	 (granular)	 layers	 of	

cortex,	 which	 project	 locally;	 supragranular	 layers	 are	 reciprocally	 connected	 to	 hierarchically	 higher	

cortical	 areas;	 infragranular	 layers	project	 to	hierarchically	 lower	 cortical	 areas,	as	well	 as	 to	 subcortical	

targets.	 From	 (Bastos	 et	 al.,	 2012).	 (b)	 The	 cortical	 hierarchy	 is	 defined	 by	 the	 pattern	 of	 reciprocal,	

asymmetric	connections	between	areas.	Figure	shows	a	schematic	representation	of	the	visual	hierarchy,	

but	the	same	principles	hold	for	auditory,	somatosensory	and	even	motor	systems.	From	Shipp	(2007).	
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Figure	 10.	 Auditory	 corticothalamic	 and	 corticocollicular	 projections.	 Non-lemniscal	 (or	 non-primary)	

divisions	are	highlighted	as	gray	areas.	Black	lines	indicate	ascending	projections.	Red	lines	indicate	major	

cortico-thalamic	 connections	 and	 purple	 lines	 major	 cortico-collicular	 projections.	 The	 major	 cortico-

collicular	projections	emerge	from	pyramidal	neurons	in	layer	V.	Larger	pyramids	project	to	cortical	areas	

of	 the	 IC.	By	contrast,	 the	major	cortico-thalamic	projection	emerge	from	pyramidal	neurons	 in	 layer	VI,	

terminating	in	small	boutons.	A	less	dense	projection	from	layer	V	pyramidal	cells	also	terminate	in	large,	

driving-like	terminals.	From	Malmierca	et	al.	(2015).	

These general principles of primary vs non-primary modes of sensory processing are 
particularly clear in the auditory system. Experimental evidence from molecular, cellular and 
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behavioural studies supports the notion that lemniscal and non-lemniscal pathways are involved 
in distinctive auditory functions. Lemniscal projections carry tonotopically organized and 
auditory specific information, whereas the non-lemniscal pathway forms part of an integrative 
system that plays an important role in polysensory integration, temporal pattern recognition, 
and certain forms of learning (Hu, 2003). Moreover, in the case of the auditory system, the 
distinction between primary (or first-order) and non-primary (or higher-order) divisions can be 
extended also to the IC, since it is divided into lemniscal CNIC and non-lemniscal cortical 
regions, with corresponding connections to primary MGV and higher-order MGD and MGM. 

 

	

Figure	 11.	 Corticothalamic	 relations.	 Primary	 and	 higher-order	 auditory	 cortical	 areas	 are	 reciprocally	

connected	to	first-	and	higher-order	auditory	thalamic	relays,	respectively.	In	addition,	there	is	an	indirect,	

transthalamic	route	from	primary	to	higher-order	areas,	emerging	from	layer	V	in	primary	areas,	through	

higher-order	MGB,	to	layer	IV	in	higher-order	areas.	From	Llano	and	Sherman	(2008).	

At the level of the auditory cortex, primary and non-primary auditory cortical areas have 
been shown to subserve qualitatively different functions and represent different aspects of 
auditory stimuli (Carrasco and Lomber, 2010, 2011). Non-primary areas of cat auditory cortex 
are specialized for the spatial localization of acoustic stimuli or the recognition of auditory 
patterns (Lomber and Malhotra, 2008). Lesions of these areas are associated with impairment 
of the discrimination of temporal patters of sounds or of complex acoustical signals such as 
speech sounds that differ mostly in the pattern of their harmonics  (Lomber and McMillan, 
2011). In the MGB, lemniscal and non-lemniscal thalamic divisions show clear anatomic and 
physiological differences at the cellular level (Bartlett and Smith, 1999). Non-lemniscal 
thalamic divisions (MGD and MGM) are implicated in multisensory integration, processing of 
communication signals, auditory learning and emotional significance of sounds (Lee, 2015). 
The non-lemniscal nuclei of MGB send and receive feedforward and feedback projections 
among a wide constellation of midbrain, cortical, and limbic sites, which support potential 
conduits for auditory information flow to higher auditory cortical areas, mediators for 
transitioning among arousal states, and synchronizers of activity across expansive cortical 
territories (Figure 12). The differentiation between lemniscal/non-lemniscal pathways begins in 
the IC, and is reflected in the macro- and micro structural as well as physiological properties. 
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For example, the CNIC is tonotopically organized and receives mainly ascending input from 
the auditory periphery, whereas cortical regions are heterogeneous in cytoarchitecture, sources of 
inputs and physiological response characteristics (Table 1). Moreover, this correlates with the 
anatomical relations between IC and the rest of the pathway. Neurons in the CNIC are mainly 
under the influence of the lower centers, while neurons in cortical regions are mainly under the 
influence of the descending pathways. Overall, the dicotomy between lemniscal/primary/first-
order regions and non-lemniscal/non-primary/higher-order6 ones is a critical distinction along 
the auditory pathway from midbrain to cortex, and in fact, they could be considered two 
parallel, and to some degree, independent pathways within the auditory system (Lee and 
Sherman, 2011).  

 

	

Figure	 12.	 Schematic	 summary	 of	 some	 connections	 of	 the	 non-lemniscal	 auditory	 thalamus.	 The		

corticothalamocortical	 pathway	 links	 primary	 and	 higher-order	 cortical	 areas	 (in	 red).	 The	 same	 layer	 V	

projection	neurons	may	also	branch	to	 innervate	 lower	motor	centers.	This	pathway	 is	distinct	 from	the	

direct	 corticocortical	 connections	 that	 link	 many	 auditory	 areas,	 such	 as	 A1	 and	 PAF	 (in	 orange).	 A	

complementary	 system,	 putatively	 involved	 in	 affective	 processing	 of	 auditory	 information	 and	

synchronizing	activity	across	cortical	territories	(in	blue),	has	widespread	terminations	in	layer	I	of	multiple	

areas	and	the	amygdala	(Amy).	From	Lee	(2015).	

In summary, primary regions are the first to receive the ascending input from the periphery, 
and contain a representation of the physical features of sounds, at different dimensions and 

                                                        
6 These terms will be used interchangeably throughout this manuscript. 
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levels of complexity. The lemniscal pathway is tonotopically organized, and spectral processing 
is carried out more or less independently in separate, narrow frequency channels. On the other 
hand, higher-order divisions (at all levels, IC, MGB, AC) are more dedicated to processing the 
sounds in relation to their context. In particular, their responses are more related to the meaning 
or behavioral relevance of sounds, rather than to their particular physical features, something 
that has been shown in animals (Atiani et al., 2014) and humans (Kropotov et al., 2000). These 
important physiological differences are also reflected anatomically, such as in the large, extensive 
dendritic arbors of neurons in cortical regions of the IC, that span across many different 
frequency channels. Table 1 summarizes the main differences between primary and non-
primary structures in the rat auditory system, separate for IC, MGB and AC, both at the 
anatomical and physiological level. As will be discussed in the next section, and most relevant 
for our studies, a very important physiological difference between them is their relative degree of 
neuronal adaptation and their sensitivity to acoustic change (Kraus et al., 1994; Kropotov et al., 
2000; Antunes et al., 2010; Duque et al., 2012; Nieto-Diego and Malmierca, 2016). 

 

 

 

Table 1: The importance of being non-lemniscal. Comparative of anatomical and physiological 
differences between primary and non-primary divisions within each level of the auditory system 
from midbrain to cortex. 

IC 

PRIMARY NON-PRIMARY 

ANATOMY 

• CNIC 
• Main ascending input from brainstem 
• Laminar organization 
• Confined dendritic arborizations 

• RCIC, LCIC, DCIC 
• Receive inputs from heterogeneous 

sources 
• Higher influenced by corticofugal 

projections 
• Extense dendritic arborizations (especially 

LCIC) 

PHYSIOLOGY 

• Strict tonotopic organization 
• Frequency processing in narrow, 

independent channels 
• Narrow, V-shaped receptive fields 
• Predominance of sustained responses, 

selective to different physical features of 
sounds 

• Very low levels of SSA 

• No clear tonotopic organization 
• Multisensory integration 
• Broad receptive fields  
• High context-sensitivity (eg. SSA)  
• Predominance of onset responses 

signaling relevant events 
• Longer response latencies than in CNIC 
• Strong levels of SSA 
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MGB 

PRIMARY NON-PRIMARY 

ANATOMY 

• MGV 
• Main ascending input from ipsilateral 

CNIC 
• Fibrodendritic laminar structure 
• Large bi-tufted relay cells 
• Project to primary AC (layer IV) 

• MGD, MGM 
• Ascending input from DCIC (MGD) and 

LCIC (MGD and MGM) 
• MGM receives from auditory, 

somatosensory and visual structures  
• Heterogeneous mixture of cells 
• Project to non-primary AC (layer IV) 
• MGM projects diffusely to all areas (layer 

I) 
• MGM projects directly to amygdala 

PHYSIOLOGY 

• Strict tonotopic organization 
• Purely acoustic function 
• Neurons respond transiently and 

sensitively to pure tone stimulation 
• Short latencies and well-tuned to a best 

frequency 
• Narrower frequency selectivity than MGD 

and MGM 
• Low levels of SSA 

• No clear tonotopic organization 
• Weaker responses to pure tone 

stimulation 
• Broad or complex receptive fields to pure 

tones (e.g. multipeaked) 
• Preference for complex, modulated stimuli 
• Longer response latencies (although 

MGM has units with very short latencies) 
• MGD involved in acoustic attention and 

discrimination of sound patterns (Bordi 
and LeDoux, 1994) 

• MGM involved in multisensory 
integration and emotional learning (fear 
conditioning) 

• Strong adaptation to repetition and SSA 

AC 

PRIMARY NON-PRIMARY 

ANATOMY 

• A1, VAF, AAF in Te1 
• Located in “core” in Te1 region 
• Thick granular layer 
• Main ascending input from MBV 
• Project back to MGV from layer VI 
• Project up to non-primary areas from layer 

II/III 

• PAF in Te2, SRAF in Te3 
• Thinner cortical width (1000 µm) with 

less prominent granular layer 
• Main ascending input from MGD 
• Project back to MGD, MGM and 

primary areas, from layers V/VI 
• PAF projects to posterior parietal cortex 
• SRAF projects to insular cortex 
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PHYSIOLOGY 

• Well-tuned to pure tones 
• Clear tonotopic gradients 
• Confined, V-shaped or narrow receptive 

fields 
• A1 and AAF mostly monotonic, but VAF 

contains most non-monotonic, low-
threshold units 

• Respond to physical features of sounds 
• Short response latencies to pure tones and 

noise bursts 
• Low degree of context-dependence 
• Low degree of adaptation to repetition 
• Response facilitation to rapidly repeated 

sounds. Synchronize responses to up to 20 
Hz trains 

• SRAF, PAF 
• Weaker responses to pure tones 
• Broad or disorganized receptive fields for 

pure tones. 
• Preference for spectrotemporally complex, 

broad-band sounds such as modulated 
white noise 

• Longer response latencies 
• Responses more influenced by meaning or 

contextual significance of sounds  
• High degree of adaptation to repetition 

even at slow presentation rates 
• PAF initiates a dorsal stream for auditory 

spatial processing and directed attention 
to sounds (Kimura et al., 2004, 2005) 

• SRAF initiates a ventral stream for 
emotional processing of sounds (Kimura 
et al., 2005, 2007; Donishi et al., 2006) 

There	and	back	again:	feedback	loops	in	the	auditory	pathway	

As we have seen, auditory nuclei at different levels are usually reciprocally connected. 
Within auditory cortex, primary areas send ascending projections to higher-order areas, which 
in turn, send feedback projections to primary areas (Figure 9b). Analogously, the MGV sends 
an ascending, tonotopic projection to primary auditory cortex, but in turn, the auditory cortex 
sends back a “feedback” projection to MGV. Furthermore, this feedback projection is around 10 
times as dense as the forward projection, and in fact the corticothalamic projection is the 
heaviest projection of the whole brain, comparable only to the corticospinal tract (Winer and 
Schreiner, 2011). But the auditory cortex does not send projections only to MGV. The 
corticofugal projections are targeted to the whole MGB, IC, SOC, CNC, striatum, amygdala, 
central gray, pontine nuclei, and others. Judging only from their size, descending projections 
must play a fundamental role in sensory processing. However, this role has remained largely 
unknown for decades, or assumed to provide “modulation” or “gating” to ascending sensory-
evoked responses. Today, we have a rather complete picture of these projections, and the view is 
changing from that “modulatory” nature, to a more protagonist role in shaping neuronal 
receptive fields (Sillito et al., 2006) or assisting in higher sensory functions such as figure-
ground separation (Hupé et al., 1998). But descending projections are especially important for a 
recent and comprehensive theory of brain function, the so-called predictive coding framework, 
as will be explained in the next section.  

A schematic depiction of the corticothalamic and corticocollicular projections is shown in 
Figure 10. The corticothalamic projection from primary auditory areas can be split in two 
separate projections. One arises mainly from pyramidal neurons of layer VI, and reaches the 
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MGV in a highly topographic manner, terminating in small terminal boutons, putatively of 
modulatory nature. The other arises mainly from layer V, and reaches higher-order thalamic 
relays, such as the MGD, terminating in large, type-II terminals of putative driver nature 
(Bartlett et al., 2000; Llano and Sherman, 2008). This driver projection would be part of the 
transthalamic pathway connecting primary and higher-order areas indirectly, with a thalamic 
gating in between (Sherman and Guillery, 2011). Higher-order areas of auditory cortex also 
send feedback projections to thalamus. In this case, the modulatory projection from layer VI is 
sent back to the MGD or MGM, from which these non-primary areas receive their ascending 
inputs. The driver corticothalamic projection from layer V is sent mainly to MGM (Figure 10), 
from which they could reach higher-order association areas (Kimura et al., 2003, 2007). The 
auditory cortices also send an important direct projection to the IC, bypassing the MGB 
(Figure 10). The heaviest of them is the projection from large pyramids in layer V of primary 
A1. This projection is mostly ipsilateral and topographic, such that low-frequency regions of A1 
project to dorsolateral region of the IC, and the high-frequency regions of A1 project to the 
ventromedial region of the IC. Most cortico-collicular projections, from both primary and non-
primary areas, target the cortical (non-lemniscal) regions of IC, although the CNIC also 
receives a smaller, weaker projection from A1 (Saldaña et al., 1996). Corticofugal projections 
arise from pyramidal cells, and are therefore glutamatergic. However, all corticothalamic 
projections send collaterals to the auditory sector of the thalamic reticular nucleus, and therefore 
they can also exert an important inhibitory action. Similarly, the auditory cortex may have 
inhibitory effects on the IC through the activation of local inhibitory connections within the IC. 
This is confirmed by physiological studies that demonstrate the excitatory and inhibitory effects 
of the auditory cortex on MGB neurons, as well as IPSPs in IC neurons after auditory cortex 
stimulation (Malmierca et al., 2015). Not only the auditory cortex sends descending projections 
to lower auditory centers. Important descending projections arise also from the IC to the 
brainstem, and from the SOC to the cochlea (Malmierca, 2015).  

The auditory pathways are usually described sequentially, the ascending connections first, 
the descending connections last, just to present them in some systematic way. However, the 
connections of the auditory system would be best described as a series of nested loops of 
reverberating ascending and descending information, each next loop surrounding the previous 
one to add the next layer of auditory processing (Winer, 2006; Malmierca, 2015). In fact, the 
opportunities for a continuous interaction between descending projections and ascending inputs 
are numerous, and it is likely that these interaction, more than the activity of each pathway 
separately, be the physiological foundations of auditory perception. Interestingly, some authors 
consider that these descending projections carry the “feedforward” signal, representing the main 
internal activity of the brain, while the (much narrower) ascending information would be used 
only as a “feedback” to confirm that incoming signals are consistent with the current internal 
representation of the external world (Friston, 2005). This would be analogous to peeking 
outside the window just to confirm that “it is cloudy and raining outside”. Only if the ascending 
input contradicts our hypothesis about the world, a strong ascending signal will be relayed up 
the hierarchy to trigger the adjustment of the internal model. Thus, the interplay between the 
ascending and descending information may be the basis of deviance detection, as we explain 
next.  
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AUDITORY	DEVIANCE	DETECTION	AND	SSA	
As highlighted by Barlow in its seminal work (v.s.), new or unexpected sensory events are 

high in information content, and require more elaborate processing than sensory inputs that are 
repetitive or can be anticipated (Barlow, 1961). Thus, a basic network mechanism to 
automatically separate the “standard” input—that is, the background and other irrelevant, 
repetitive aspects of the auditory scene—from singular “deviant” events is warranted. Adaptation 
may provide a filter for repetitive patterns in the environment, preventing redundant 
information to reach higher processing levels. However, adaptation depends only on the number 
of times that a certain stimulus feature has been recently encountered, irrespective of the 
complex structure of the input in predictable patterns. Thus, adaptation does not allow 
separating uninformative events from more informative (unexpected) ones that occur with 
roughly the same frequency in the auditory scene. The ability to detect specific sensory events 
that do not match expectations created from the regularities encountered in recent sensory 
streams—deviance detection—is an important aspect of auditory scene analysis, which might be 
the basis of a fast and efficient formation and segregation of auditory objects (Grimm and 
Escera, 2012). Brain responses specifically elicited by deviant events are generally called 
mismatch responses (Harms et al., 2016), and represent the empirical demonstration of the 
invisible, underlying process of deviance detection. 

Hierarchical	organization	of	the	auditory	deviance	detection	system	

An increasing body of evidence from single-unit recordings in animals to scalp auditory 
evoked potentials in humans indicates the ubiquitous presence of suppression of brain responses 
to invariant aspects of the sensory input, often accompanied by an enhanced responsiveness to 
new or rare information on multiple levels of auditory processing (Bendixen et al., 2012; Escera 
et al., 2014; Shiga et al., 2015; Aghamolaei et al., 2016). In the human auditory system, the 
detection of new or deviant events has been directly associated with the mismatch negativity, or 
MMN (Näätänen et al., 2007), a particular response of the auditory event-related potentials as 
measured with electoencephalogram (EEG) or magnetoencephalogram (MEG). Traditionally, 
the MMN is measured during an auditory oddball paradigm, in which a sequentially repeated 
standard stimulus is occasionally replaced by a rare stimulus that deviates in any of its physical 
features from the standard (Figure 13). The MMN is defined as the difference wave between 
brain responses to deviant and standard tones, assuming that responses to standard tones 
represent the “obligatory” component of the response, and after removing this component to the 
response to deviant tones, what is left is the component of the response specifically due to the 
occurrence of a deviant event. The MMN is typically a slow, negative deflection of the mid-late 
ERP (circa 150 ms from deviance onset). Brain generators of MMN have been localized 
bilaterally in the auditory cortex (both primary and non-primary), responsible for the sensory 
memory mechanisms (Giard et al., 1990), with a potentially important contribution form 
prefrontal regions (with a right lobe predominance) (Giard et al., 1990; Alho, 1995; Maess et 
al., 2007; Näätänen et al., 2007) related to involuntary attention switch caused by auditory 
change (Escera et al., 1998, 2003). 
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Figure	 13.	 The	 mismatch	 negativity	 (MMN).	 (a)	 Schematic	 representation	 of	 the	 oddball	 paradigm.	 A	

series	of	standard	(blue)	tones	is	randomly	interrupted	by	a	deviant	(red)	tone	of	different	frequency	f2.	(b)	

Evoked	potentials	in	response	to	deviant	and	standard	tones	are	different	within	a	particular	time	window,	

and	 this	difference	 (MMN)	 increases	with	 increasing	separation	of	 the	deviant	 frequency.	Adapted	 from	

Näätänen	(2007).	

The detection of a stimulus that violates a previously established regularity requires the use 
of short-term sensory memory. Thus, the MMN is thought to reflect a memory formation and 
comparison process, revealing higher pre-cognitive abilities of the auditory cortex (Näätänen et 
al., 2001; Winkler, 2007). Indeed, different studies have shown that MMN elicitation requires 
the previous presentation of a minimum number of repetitions of the rule, that increase with the 
complexity of the regularity that has to be encoded (Näätänen et al., 2005; Escera et al., 2014). 
Importantly, MMN is an automatic brain response, which does not require the subject’s 
attention to the stream of sounds, and can be readily recorded from distracted, asleep, 
anesthetized, and even coma patients. This feature makes it a convenient tool for clinical and 
basic research in auditory perception, but also highlights the ability of sensory systems to 
automatically perform complex comparisons between stimuli, which persists across different 
states of awareness (Näätänen et al., 2001). 

The MMN reflects a basic perceptual process that can be detected in different sensory 
modalities, including somatosensory (Kekoni et al., 1997; Shinozaki et al., 1998; Akatsuka et 
al., 2007), olfactory (Pause and Krauel, 2000) and visual (Czigler et al., 2002; Astikainen et al., 
2013), for different types of change or regularities, at different levels of abstraction, further 
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pinpointing to its close relation to cognitive processes. The oddball design can be used to test 
sensitivity to simple changes in a physical feature of the stimulus, such as frequency, location, 
pitch, intensity, duration, modulation frequency, roughness, etc. However, more elaborated 
designs also reveal MMN for changes in complex regularities, defined by the relationships or 
precedence rules between discrete sounds, but not on a specific feature per se (Alain et al., 1994; 
Tervaniemi et al., 1994; Gomes et al., 1997). The most important reflection of this is the 
MMN generated by violations of grammar rules in mother-tongue sentences (Näätänen et al., 
1997; Pulvermüller and Shtyrov, 2003; Pulvermüller et al., 2008; Hanna et al., 2014). 

Cognitive brain research using the MMN has continued for the last four decades, there now 
being more than 2000 research articles7 using, or referring to, the MMN. The significance of 
MMN lays in its wide range of practical applications in both basic and clinical research 
(Näätänen et al., 2007, 2012): 

! Indicator of early cognitive development in newborns, toddlers and even from the fetus. 
! Indicator of the functional condition of the NMDA-receptor system. 
! Index of the different brain pathologies underlying schizophrenia and a wide range of 

different clinical conditions and diseases. 
! Tool in genetic research of pshychopathology. 
! Predictor of coma outcome. 
! Index of primitive sensory intelligence in audition. 
! Index of brain mechanisms of speech perception and understanding. 

However, the MMN is not the earliest electrophysiological response for regularity violations 
in humans (Escera et al., 2014). The whole human auditory ERP includes the auditory 
brainstem response (ABR), reflecting mainly early (1-10 ms), subcortical activity, the middle-
latency responses (MLR), reflects early activity (12-50 ms) in primary auditory cortex, and the 
long-latency reponses (LLR) which include the MMN (Picton, 2010). The MLR is 
characterized by a sequence of waveforms labeled as N0, P0, Na, Pa, Nb and Pb (Figure 14). 

The MMN is a long-latency auditory ERP, thus reflecting a higher-order stage of 
processing over already elaborated and filtered information. In fact, higher-order areas of 
auditory cortex are more sensitive to the deviance per se that primary areas, which are more 
sensitive to the physical or purely sensory aspects of sound (Kropotov et al., 2000; Opitz et al., 
2005; Maess et al., 2007). Primary auditory areas seem to be able to encode only simple rules, 
such as local deviants (AAAB), whereas higher-order cortical areas can detect violations of 
complex rules, such as global deviants (AAABAAABAAAA) (Wacongne et al., 2011; Recasens 
et al., 2014). Different neuronal populations appear to be involved in the MMN generation for 
a simple acoustic feature and for a sequential pattern (Alain et al., 1998, 1999). 

                                                        
7 PubMed search “mismatch negativity” yielded 2406 results as to April, 2017. 
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Figure	14.	Different	components	of	the	human	auditory	ERP.	(A).	Auditory	brainstem	response	(ABR).	(B)	

Middle	latency	responses	(MLR).	From	Althen	et	al.	(2011).	
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Figure	 15.	 Early	 electrophysiological	 correlates	 of	 deviance	 detection	 in	 the	 MLR	 range.	 Frequency	

changes	produce	specific	modulations	of	the	Nb	(A)	and	Pa	(B)	components	of	the	MLR.	Location	deviants	

enhance	the	Na	component	(C)	and	intensity	deviants	 induce	a	negativity	by	the	Na	to	Pa	transition	(D).	

From	Escera	et	al.	(2014).	

Simple feature deviants can be detected already at the MLR (Figure 15). Pure tone 
frequency deviants produce a specific enhancement of the Nb component of the MLR, at 
around 40 ms from change onset (Grimm et al., 2011), even within natural auditory scenes 
(Puschmann et al., 2013), which is not observed for other features such as intensity, duration or 
location (Leung et al., 2012). This Nb modulation is confined to the Heschl’s gyrus, where the 
primary auditory cortex is located (Recasens et al., 2014). Other study found signs of deviance 
detection for noise tokens even earlier than Nb, in the Pa component of the MLR (around 30 
ms) (Slabu et al., 2010). The Na component (25 ms) is enhanced by the occasional feature 
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change in the interaural time differences (Cornella et al., 2013). Intensity deviants produced a 
more negative potential at the transition from Na to Pa component (Althen et al., 2011), and 
temporal regularity violations led to enhanced Pa and Nb responses (Leung et al., 2013). 
Moreover, deviance-related responses can be observed at even earlier stages, at the level of the 
brainstem, as revealed by FFR recordings (Slabu et al., 2012) and fMRI (Cacciaglia et al., 
2015). By contrast, violations of complex regularities do not modulate early responses such as 
MLR or ABR. A series of studies  used a combined approach to dissociate simple and complex 
rule effects at different hierarchical levels of the auditory processing, directly revealing the 
hierarchical organization of the human auditory deviance detection system, starting from early 
levels of processing. One study combined simple (ITD) and complex (alternating pattern) rule 
violations within a single conjunction paradigm (Cornella et al., 2012). Both violations elicited 
an MMN, but only the simple rule produced an enhanced Na response. Other study used a 
feature conjunction paradigm in combination with an oddball paradigm, to reveal MMN for 
both rules, but deviance-related Nb enhancement only for the oddball condition (Althen et al., 
2013). Finally, in a MEG study, MMN responses were generated for both local and global rule 
violations, but deviance-related Nbm and Pbm responses were only observed in the local rule 
violation condition (Recasens et al., 2014). Taken together, these studies suggest that simple 
regularities are encoded in the early processing stages, whereas encoding complex regularity 
requires the higher levels of the auditory hierarchy. Thus, depending on the structure and 
parameters of the stimulus sequence, an MMN elicited by a certain acoustic change can reflect 
any, or even the combination, of memory traces at different levels (Ritter et al., 1995; Näätänen 
et al., 2007). 

SSA	and	the	link	to	MMN	

Given the great success of MMN as a clinical and experimental tool, animal models of 
MMN were developed including monkey (Javitt et al., 1992), cat (Csépe et al., 1987), rat 
(Ruusuvirta et al., 1998), mouse (Umbricht et al., 2005) and guinea pig (Kraus et al., 1994), as 
helpful tools to gain insight into the cellular mechanisms of MMN generation and the 
disruption thereof (Nelken and Ulanovsky, 2007; Todd et al., 2013). 

Totally independent of the MMN research, a different and apparently unrelated 
phenomenon was being described in single neurons of the visual and auditory systems: stimulus-
specific adaptation (SSA; Movshon and Lennie, 1979; Condon and Weinberger, 1991; Müller 
et al., 1999; Ulanovsky et al., 2003). SSA was a special form of neuronal adaptation, by which 
neuronal responses vanished upon repetition of a stimulus, but retaining their ability to respond 
to different, infrequent stimuli. Thus, SSA exhibited the hallmarks of behavioral habituation, 
defined as the “gradual diminution of the response to a stimulus following the repeated 
presentation of the same, or similar, stimulus”: (a) stimulus specificity, (b) rate sensitivity and (c) 
dishabituation, a recovery following the presentation of another stimulus. These properties 
precluded a simple explanation of SSA based on changes in the general responsiveness of the 
cell through, for example, intrinsic membrane mechanisms (Nelken and Ulanovsky, 2007). 

A simple yet powerful idea established the link between SSA and MMN: to use an oddball 
paradigm to study adaptation in single cortical neurons (Ulanovsky et al., 2003). As with scalp-
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recorded MMN, single neuron responses to deviant tones were stronger than to the same tones 
when presented as standards. The key point of this seminal study was to demonstrate that single 
cortical neurons showed a differential response to standard and deviant tones under oddball 
stimulation, just as MMN but at the cellular level (Figure 16) 8. Moreover, SSA mimicked most 
of the defining properties of MMN, beyond the differential responses to standard and deviant 
tones (Nelken and Ulanovsky, 2007). Critically, the magnitude of SSA/MMN increased with 
the magnitude of deviance (Figure 54), decreased with the probability of deviant occurrence, 
and decreased with the inter-stimulus interval (Table 2). All these striking parallelisms led the 
authors of that study to postulate SSA as a neuronal correlate of the MMN potential recorded 
epidurally. At the same time, they recognized important limitations or discrepancies between 
SSA and MMN (Table 2): (1) SSA was measured from spike responses of single units in 
primary auditory cortex, whereas the MMN is a large-scale voltage measure with a major 
contribution from (excitatory and inhibitory) post-synaptic potentials generated throughout the 
whole auditory cortex, with a predominant  role of non-primary areas; (2) SSA was observed 
with a latency of 20-30 ms, which is way earlier than the 100-150 ms of the MMN, making it 
impossible to establish a simple, direct link between the two. 

Since the process of deviance detection must involve more or less complex memory 
operations, it was commonly thought a task that only the cerebral cortex could perform. 
Analogously, given the sophistication of SSA and its similarities to MMN, it was assumed that 
SSA was a unique and emerging property of cortical neurons. However, a series of studies using 
single unit recordings in animal models challenged this idea, showing strong and consistent 
SSA in the midbrain (IC) (Pérez-González et al., 2005; Reches and Gutfreund, 2008; 
Malmierca et al., 2009; Duque et al., 2012; Ayala and Malmierca, 2013; Dutta et al., 2016) and 
thalamus (MGB) (Yu et al., 2009; Antunes et al., 2010; Bäuerle et al., 2011; Duque et al., 
2015), with very similar properties to the SSA described in auditory cortex (Malmierca et al., 
2014; Pérez-González and Malmierca, 2014; Duque et al., 2015).  

One of the most important and consistent discoveries concerning subcortical SSA was that 
SSA seemed to be a characteristic property of the non-lemniscal auditory pathway. This held 
true in IC (Malmierca et al., 2009; Duque et al., 2012) and MGB (Antunes et al., 2010), where 
SSA was virtually absent in their primary, or lemniscal, division, whereas it was strong and 
widespread in the non-lemniscal divisions, to the point that the level of SSA could be used as a 
hallmark of non-lemniscal neurons (Duque et al., 2015). Thus, primary auditory cortex was the 

                                                        
8 An important improvement in methodology boosted by the studies by Ulanovsky et al. was 

the systematic use of the “reverse” condition. Instead of using one single oddball sequence, and 
compare the responses to standard and deviant tones (which were physically different stimuli), 
the same physical tone was presented first as a deviant and then as a standard, and responses to 
both conditions, for the same physical tone, were compared. This control for the effect of the 
physical features of the stimulus was not essential in human scalp studies, because large-scale 
potentials to pure tones were similar in shape and amplitude irrespective of frequency of the 
tone, but it was mandatory in single unit studies, since responses of single units in primary 
auditory cortex are highly dependent on the physical parameters of the sound. 
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first primary auditory station showing consistent SSA, pinpointing A1 as a site of generation of 
SSA, that could be transmitted down through the corticofugal pathway (v.s.). However, this 
subcortical SSA did not require the intervention of auditory cortex, demonstating that SSA is a 
rather ubiquitous phenomenon that can emerge independently at different hierarchical levels 
(Antunes and Malmierca, 2011; Anderson and Malmierca, 2013; Malmierca et al., 2015). 

 

	

	

	

Figure	16.	SSA	as	a	neuronal	correlate	of	MMN.	(A)	The	oddball	paradigm,	including	a	reverse	condition,	to	

present	 the	 same	 physical	 stimulus	 in	 the	 role	 of	 deviant	 and	 standard.	 (B)	 The	 MMN	 is	 the	 difference	

between	evoked	 responses	 to	 deviants	 and	 standards.	 (C)	 In	 response	 to	 the	 same	 stimulation	paradigm,	

single	 neurons	 in	 A1	 also	 respond	 differentially	 to	 deviants	 and	 standards,	 irrespective	 of	 their	 physical	

frequency	 (D)	The	magnitude	of	 the	difference	 signal	 (DS,	 in	green)	measured	 from	spike	 responses	 in	A1	

shows	 exactly	 the	 same	 dependence	 as	 the	 MMN	 on	 the	 frequency	 separation	 between	 deviant	 and	

standard	tones.	Adapted	from	Ulanovsky	et	al.	(2003)	and	Pérez-González	and	Malmierca	(2014).	

The combination of discoveries from cortical and subcortical SSA studies produced a 
picture in which SSA seemed to be a prevalent property of the non-lemniscal auditory pathway, 
that could be a direct correlate of the earlier indicators of deviance detection seen in human 
EEG studies, but just upstream of the true MMN generation (Nelken and Ulanovsky, 2007; 
Grimm et al., 2015). The complete MMN signal, as recorded in human and animal 
preparations, seemed to be generated later with the key participation of non-primary auditory 
areas. However, the picture of SSA in the auditory system was incomplete, since no one had 
ever recorded SSA from non-primary auditory cortex, and thus the map of SSA in the auditory 
pathway was yet to be completed (Figure 17), even though the very discoverers of the SSA-
MMN link predicted that SSA in non-primary auditory cortex could be a more direct correlate 
of the real MMN (Nelken and Ulanovsky, 2007).  
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Figure	17.	Distribution	of	SSA	along	the	auditory	pathway.	At	subcortical	levels,	SSA	is	sharply	segregated	

to	 the	 non-lemniscal	 auditory	 pathway.	 However,	 as	 of	 2015,	 the	 level	 of	 SSA	 in	 non-primary	 auditory	

cortex	remains	to	be	determined.	From	Duque	et	al.	(2015).	

In summary, SSA met all the requirements to be a neuronal correlate of the MMN, but 
there were two major limitations in the SSA-MMN link: 

(a) Anatomical location: MMN is generated mainly in non-primary auditory cortex, 
whereas SSA had only been demonstrated in primary auditory cortex (A1). 

(b) The latency of SSA in A1 (and subcortical structures) was much earlier than the latency 
range of MMN, separated by a physiological abysm of 50-100 ms. 

Additionally, there was a key requirement yet to be demonstrated for SSA to be considered 
a genuine mismatch response, underlying deviance detection in auditory neurons, as exposed in 
the following section. 

 

Table 2. Similarities and differences between MMN and SSA. Most relevant for Study 1 and 
Study 2 are the important discrepancies that still prevent the acceptance of SSA as a direct 
neuronal correlate of the MMN. Adapted and extended from (Nelken and Ulanovsky, 2007). 

SIMILARITIES 

MMN SSA 

MMN appears in epidural recordings in 
monkeys, cats and rats (Javitt et al., 1992; 
Pincze et al., 2002; Harms et al., 2014). 

SSA appears in extracellular single-unit 
recordings in A1 of monkeys, cats and rats 
(Ulanovsky et al., 2003; von der Behrens et al., 
2009; Taaseh et al., 2011; Fishman and 
Steinschneider, 2012). 

MMN is generated in auditory cortex (Alho, 
1995). 

SSA can be recorded in A1 (Ulanovsky et al., 
2003; von der Behrens et al., 2009; Taaseh et 
al., 2011; Fishman and Steinschneider, 2012). 
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Magnitude of MMN increases with frequency 
separation between standard and deviant 
(Näätänen, 1992). 

Magnitude of SSA increases with frequency 
separation between standard and deviant 
(Ulanovsky et al., 2003; Malmierca et al., 
2009). 

Magnitude of MMN decreases with the 
probability of deviant sound (Näätänen, 1992). 

Magnitude of SSA decreases with the 
probability of deviant sound (Ulanovsky et al., 
2003; Malmierca et al., 2009). 

Magnitude of MMN decreases with the 
interstimulus interval (Näätänen, 1992). 

Magnitude of SSA decreases with the 
interstimulus interval (Ulanovsky et al., 2003; 
Malmierca et al., 2009).  

MMN latency is longer than the latency of 
responses to standard sounds (Näätänen, 
1992). 

SSA latency (in AC) is longer than the latency 
of responses to standard sounds (Ulanovsky et 
al., 2003). 

MMN gets more pronounced over the time 
course of the stimulation (trial nr.), following 
many timescales simultaneously. 

SSA gets more pronounced over the time 
course of the stimulation (trial nr.), following 
many timescales simultaneously. 

MMN analogs can be recorded from 
subcortical MGB (Kraus et al., 1994). 

SSA is strong and widespread in non-
lemniscal divisions of subcortical IC and 
MGB (Malmierca et al., 2009; Yu et al., 2009; 
Antunes et al., 2010; Duque et al., 2012). 

MMN shows a dependency on the sequential 
structure of the stimulation (Winkler and 
Schröger, 2015; Koelsch et al., 2016). 

SSA shows a dependency on the sequential 
structure of the stimulation (Ulanovsky et al., 
2004; Yaron et al., 2012). 

DIFFERENCES 

MMN SSA 

Neuronal generators of MMN show a major 
contribution from non-primary AC to the 
“cognitive” component and A1 to the 
“sensory” component (Kropotov et al., 2000; 
Opitz et al., 2005; Maess et al., 2007; 
Shiramatsu et al., 2013). 

SSA is widespread in A1, but it is unknown 
whether it appears in non-primary AC, and 
whether it is different from SSA recorded in 
A1 (Nelken and Ulanovsky, 2007; Nelken, 
2014). 

MMN peaks around 150-200 ms in humans, 
and around 80-100 ms in rodents (Näätänen, 
1992; Todd et al., 2013). 

SSA peaks around 20-30 ms in A1 of cats and 
rats (Ulanovsky et al., 2003; Taaseh et al., 
2011). 

A “genuine” MMN still exists when 
controlling for repetition effects with the 
many-standards or cascadic controls (Jacobsen 
and Schröger, 2001; Opitz et al., 2005; 

A larger response to deviants than to many-
standards or cascadic controls has not been 
shown unambiguously for SSA in A1 (Farley 
et al., 2010; Taaseh et al., 2011; Fishman and 
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Ruhnau et al., 2012). Steinschneider, 2012) –but see (Chen et al., 
2015). 

MMN exists for intensity deviants and for 
unexpected omissions of the standard stimulus 
(Näätänen, 1992; Yabe et al., 1997; Wacongne 
et al., 2011). 

SSA has not been shown unambiguously for 
intensity deviants, and responses to omitted 
stimuli have not been recorded in AC 
(Ulanovsky et al., 2003; von der Behrens et al., 
2009; Fishman, 2014; Duque et al., 2016). 

The	MMN	conundrum:	adaptation	vs	memory	trace	models	

The discovery of SSA moved the focus of attention from responses to deviants to responses 
to standards, and was followed by studies in humans claiming that the whole MMN 
phenomenology could be due to SSA of overlapping populations of cortical neurons 
(Jääskeläinen et al., 2004), without the need to call for higher, memory-driven mechanisms to 
produce a differential response to deviants and standards. Thus, the field of MMN research was 
divided between supporters of two theories, which were pushed far enough so as to seem 
mutually exclusive (May and Tiitinen, 2010; Fishman, 2014) (Figure 18): 

(a) Memory-trace model: the MMN is a distinct component of the ERP generated by 
comparator neurons that make use of a memory trace of recent history stimulation. Without 
the presence of a previous regularity to create this memory trace, no MMN is generated. 

(b) Adaptation (SSA) model: The MMN, as a difference signal, results from suppression of the 
response to the standard stimulus, due to repetition effects. The response to the deviant in 
the oddball paradigm is just the normal, unadapted response to that stimulus. 

The “just SSA” hypothesis of MMN was rapidly and exhaustively refuted in a convincing 
way by Näätänen and colleagues (Näätänen et al., 2005). The main argument for the memory-
trace model was the demonstration of MMN for deviants in rather complex and abstract types 
of regularities, and also for feature deviants that directly defied the adaptation model, such as 
intensity deviants and omitted stimuli (Fishman, 2014). On the other hand, the efforts of the 
adaptation community were centered on developing computational models simulating all the 
MMN-related brain responses, by modeling only adaptation processes (May and Tiitinen, 
2010). 

Even though the memory-trace supporters were convinced that higher cognitive processes 
had to be involved in MMN generation, they also acknowledged that adaptation of responses to 
the repetitive standard could be contributing to some degree to the difference wave called 
MMN. In other words, the “cognitive” component of the MMN could be “contaminated” by 
adaptation effects (Näätänen et al., 2005; Opitz et al., 2005). This was a long held debate that 
was not particularly productive, but led to the realization that there was a second uncontrolled 
factor (beyond differences in physical features of deviant and standard stimuli) that needed to be 
accounted for in MMN studies: presentation rate. Since the standard stimulus appears with 
much higher presentation rate (probability) than the deviant, it is subject to more adaptation, 
and in this way the stronger responses to deviants could result just from release from SSA. 
Based on responses to the oddball paradigm alone, there is no way to determine how much of 
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this difference is due to adaptation to the standard, and how much to the deviant nature of the 
rare tones. 

 

	

	

Figure	18.	Two	competing	hypothesis	of	MMN	generation.	Left:	In	the	memory-based	model,	a	stimulus	

is	 analyzed	 by	 an	 N1-generating	 “transient	 detector”	 system,	 and	 a	 separate,	 MMN-generating	

“comparator	 system”	 that	 first	 analyzes	 the	 stimulus	 features	 and	 generates	 a	 sensory	 memory	 trace.	

Then,	 it	 compares	 the	 features	 of	 incoming	 stimuli	 with	 representations	 of	 past	 stimuli	 in	 the	 sensory	

memory	 store,	and,	when	 the	 two	differ,	an	MMN	response	 is	generated.	The	N1	 is	 largest	 for	 the	 first	

standard.	 In	contrast,	 the	MMN	generator	 reacts	only	when	the	deviant	 follows	 (and	breaks)	an	already	

established	memory	trace	for	 the	standards.	Right:	 In	the	adaptation	model,	 the	standards	and	deviants	

activate	overlapping	neuronal	populations.	The	repetitive	standard	leads	to	cells	tuned	to	the	standard	to	

become	 adapted.	 When	 the	 deviant	 is	 presented,	 non-adapted	 cells/synapses—“fresh	 afferents”—

contribute	to	an	enhanced	response.	Note	that	now	the	MMN	generator	responds	vigorously	to	the	first	

standard	 of	 the	 sequence.	 It	 also	 produces	 attenuated	 responses	 to	 the	 subsequent	 standards.	 In	 this	

model,	the	N1	and	MMN	are	generated	by	the	same	neural	populations,	and	the	MMN	is,	essentially,	an	

enhanced	N1	response.	From	May	and	Tiitinen	(2010).	

  One of the most widely used tools to control for adaptation effects in MMN was the so-
called “many-standards control” (MAS) (Jacobsen and Schröger, 2001). The many-standards 
control sequence is just a random presentation of a number of different stimuli (4-10), such that 
each of them appeared the same number of times in an unpredictable order and with the same 
probability as the deviant in an oddball sequence. Then, instead of comparing responses to a 
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tone in the deviant and standard conditions, which could differ due to adaptation effects at 
different presentation rates, a direct comparison between deviant and control conditions (for the 
same physical stimulus) is performed, to reveal the specific effect of deviance in neuronal 
responses (Figure 19).  

 

	

Figure	19.	Control	sequences	used	to	demonstrate	deviance	detection.	Using	this	design,	or	a	variation	of	

it,	 each	 physical	 stimulus	 can	 be	 presented	 as	 a	 deviant	 (the	 rare	 tone	 in	 an	 oddball	 sequence)	 or	 in	 a	

neutral	 condition,	 such	 as	 in	 the	 many-standards	 or	 cascade	 context,	 where	 it	 appears	 in	 the	 same	

positions	but	is	not	a	perceptual	deviant.	From	Harms	et	al.	(2014).	
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The main rationale behind this design is that, in the MAS control conditions, each tone has 
the same (low) probability of occurrence as a deviant tone in the oddball sequence, so it is not 
repetitive (as the standard), and therefore is free of repetition effects (e.g. repetition 
suppression), but it does not stand out from the statistical context (as the deviant), and therefore 
it is not perceived as a deviant. The cascaded (CAS) sequence was recently designed as an 
improvement to the many-standards, that controls for additional key factors beyond 
presentation rate of the deviant tone (Ruhnau et al., 2012; Harms et al., 2014). First, the tone 
immediately preceding a deviant is the same in the oddball (a standard) and cascaded sequences. 
This improves the estimation of the overall adaptation state of the system by the time the 
deviant tone is played, and controls for the potential sensitivity of the neuron to a rise or fall in 
frequency between two successive tones. Second, the cascaded sequence mimics the regular 
structure of the oddball sequence, with the important difference that now the target tone 
conforms to the rule, instead of being a deviant. Essentially, these sequences would capture the 
baseline brain response to a neutral stimulus, in a context where it is neither repetitive, nor 
deviant. They have been successfully applied in both the auditory (Maess et al., 2007; 
Lohvansuu et al., 2013) and visual (Astikainen et al., 2008; Kimura et al., 2009) domains, to 
separate repetition effects from mismatch responses proper.  

These control conditions soon became the de-facto method to separate deviance detection 
from adaptation effects (Jacobsen and Schröger, 2001; Opitz et al., 2005; Grimm et al., 2011; 
Stefanics et al., 2014), to the point that the critical comparison “DEV>CTR” was considered a 
fundamental requirement to interpret any brain response as a “mismatch response” (Harms et 
al., 2016). This requirement would extend to responses of single neurons. Thus, if SSA 
recorded in single neurons with the oddball paradigm was to be considered a neuronal correlate 
of deviance detection, one of these control had to be used to prove that responses to deviant 
were enhanced in relation to the control condition. Some studies used these controls to validate 
animal models of MMN (Shiramatsu et al., 2013; Harms et al., 2014). However, initial 
attempts to find signs of deviance detection in single neurons of primary auditory cortex of 
different animal preparations, including awake rat (Farley et al., 2010), awake monkey (Fishman 
and Steinschneider, 2012) and anesthetized rat (Taaseh et al., 2011) yielded inconclusive results. 
Only a recent study in mouse A1 (Chen et al., 2015) and another in rat barrel cortex (Musall et 
al., 2015) showed deviance detection in late responses of single units, using the MAS control 
sequence. 

As a result of this controversial debate, the memory trace community was almost obsessed 
about eliminating the “contamination” of adaptation effects from their results, to obtain the 
“purified” electrophysiolical signals of brain activity directly involved in memory comparison 
processes (Horváth et al., 2008). Thus, the suppression of responses to standard stimuli due to 
repetition were regarded not only as irrelevant, but even discarded as detrimental to the research 
(Stefanics et al., 2014). However, soon the phenomenon of repetition suppression (RS) was 
regarded as interesting per se, and proposed as an electrophysiological indicator of the very 
formation of the memory trace required for the detection of a sensory mismatch (Haenschel et 
al., 2005; Garrido et al., 2009a; Costa-Faidella et al., 2011a). Thus, the MMN community 
started to understand that adaptation and deviance detection were just two complementary 
aspects of the same phenomenon, or two sides of the same coin (Schröger et al., 2014; Stefanics 
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et al., 2016), that contributed to the segregation of uninformative and highly informative 
sensory event in separate processing streams, as postulated by Barlow many decades ago. In fact, 
to make a relevant event pop out from the context, it is equivalent to (a) enhance neuronal 
responses to the relevant sensory events or (b) attenuate neuronal responses to irrelevant sensory 
events; but a combination of the two seems the most effective strategy. And, an important 
feature of the MAS and CAS control sequences is that they allow for the decomposition of 
neuronal responses to oddball stimulation into adaptation and deviance detection components, 
thus facilitating their separate study and experimental manipulation. 

One of the main critiques to the memory trace model was that the underlying neuronal 
mechanisms were not detailed in any way, specific enough such as, for example, developing a 
computational model (May and Tiitinen, 2010). But, an elegant theory about cortical responses 
to diverse sensory inputs, as measured with non-invasive methods (fMRI, MEG/EEG...), was 
being completed, and will be extremely helpful to reconcile the MMN controversy.  

The	predictive	coding	account	of	MMN	

The aforementioned hierarchy of electrophysiological markers of mismatch detection based 
on regularity encoding—in addition to MMN—operating from early stages of auditory 
processing, provides empirical support to the hierarchical predictive coding framework (Friston, 
2005), seamlessly fitting it as the sum of thousands of neuronal prediction error signals 
(Bendixen et al., 2012; Phillips et al., 2016). Predictive coding is a unifying account of general 
brain function (Rao and Ballard, 1999; Friston, 2009), which gives a detailed specification of 
old general ideas dating back to Helmholtz in the 19th century (Swanson, 2016), formulated in 
rigorous mathematical models. According to this theory, the thalamocortical system—and by 
extension the whole brain—works like a hierarchical Bayesian inference system (Mumford, 
1992; Friston, 2005). Sensory-evoked neuronal responses represent prediction error, which is 
relayed up the hierarchy. At the same time, higher stations are constantly trying to anticipate 
the future, and send descending signals to actively suppress the evoked, ascending neuronal 
activity, and thus minimize prediction error (Figure 20). Predictive coding principles seem to 
govern sensory systems from very early stages of signal transduction and representation, 
conditioning the more basic principles of sensory physiology, such as center-surround receptive 
fields in the retina (Srinivasan 1982). 

As discussed earlier, a puzzling, common feature of all sensory systems is the existence of 
massive descending, efferent, or “backwards”, projections (both cortico-cortical, from higher to 
lower areas, and corticofugal). For decades neuroscientists have wondered… What are they for? 
Undoubtedly, massive descending projections must have a central role in brain function, or 
evolution would not have favored them. Both afferent and efferent signals, and the interaction 
between them, are important in this theory. Higher sensory areas store a model of the current 
state of the surrounding world, and use sensory inputs to complete and update this model 
according to empirical evidence coming from the senses. Signals coming out of the brain 
towards the senses (for example, from a higher to a lower cortical sensory area) contain an 
abstract description, or code, of the expected state of things at that lower level. In practical 
terms, at the primary sensory areas this efferent code is a prediction of what the next sensory 
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input is going to be. And physiologically, the effect of these “prediction” signals is to cancel out 
the afferent, sensory signal, whenever it is correctly predicted. This is because afferent signals 
represent prediction error: when the sensory signal has not been anticipated at one particular 
level of the hierarchy, and thus canceled by efferent predictions, the afferent error signal will 
progress up the hierarchy. 

 

	

Figure	20.	Hierarchical	message	passing	in	the	brain.	The	schematic	depicts	hierarchical	structures	in	the	

brain	and	the	distinction	between	forward,	backward	and	lateral	connections.	Each	hierarchical	level	sends	

predictions	downwards	and	prediction	errors	upwards.	From	Friston	(2005).	
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Moreover, predictive coding not only describes its hypothesis in theoretical, abstract terms, 
but also gives a detailed description of how these operations of generation of predictions and 
prediction errors are implemented in the circuits of the mammalian neocortex (Mumford, 1992; 
Friston, 2005; Bastos et al., 2012). Supragranular layers of any sensory cortical area would 
contain mainly “error units”, which project to higher hierarchical areas, sending upwards the 
prediction error signals computed at that level. These prediction errors arrive to granular layers 
of higher areas, just as the normal, ascending input from thalamus to primary areas (Figure 21). 
On the other hand, infragranular projection neurons would act as “predictive units”, sending 
their predictions down to lower hierarchical areas. These predictions are spread in a diffuse way 
through layer I of the lower area, so that they can be used to cancel out the ascending input 
(Figure 21). Importantly, the generation of predictions and prediction errors operate in a 
hierarchical manner (Friston, 2005; Garrido et al., 2008; Bastos et al., 2012), so that all areas 
generate predictions and prediction errors, but higher-level areas generate predictions about 
more abstract aspects of the external world, encompassing wider spatial and temporal 
extensions, that are used by lower areas to generate more specific predictions about sensory 
inputs based on the local context.   

 

	

Figure	21.	Neuronal	architecture	for	predictive	coding.	Within	each	area	in	the	processing	hierarchy,	the	

sources	 of	 forward	 and	 backward	 connections	 are	 superficial	 and	 deep	 pyramidal	 cells,	 respectively.	

Forward	driving	 connections	 convey	prediction	error	 from	a	 lower	 area	 to	 a	higher	 area,	 and	backward	

connections	 construct	 predictions.	 The	 equations	 represent	 a	 gradient	 descent	 on	 free-energy	 under	

specific	 hierarchical	 dynamic	 models.	 State	 units	 are	 represented	 in	 black,	 and	 error	 units	 in	 red.	 SG:	

supragranular	layers;	IG:	infragranular	layers.	From	Friston	(2009).	
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Importantly for MMN research, predictive coding worked as a kind of unification theory, 
providing a model capable of reconcile the processes of adaptation and mismatch detection, 
making them complementary instead of mutually exclusive (Garrido et al., 2009b; Stefanics et 
al., 2016). Predictive coding research provided the memory trace community with a 
neurobiologically informed account of the MMN, which postulated memory effects in the form 
of predictions, and also mismatch detection signals in the form of prediction errors. Adaptation, 
or more generally repetition suppression, would reflect the process of model validation as more 
sensory evidence is observed in favor of the next prediction. Mismatch responses, on the other 
hand, would reflect prediction error signals relayed up the hierarchy to trigger a model 
adjustment process to better explain the observed inputs (Winkler et al., 1996; Summerfield et 
al., 2008; Garrido et al., 2009a). This dialogue between higher and lower areas continues until a 
consensus between predictions and the actual inputs is established (Friston, 2005). 

Thus, according to the predictive coding hypothesis, two complementary processes are 
involved in MMN generation (Figure 22a). The first occurs when the standard tones are played, 
a memory trace of the recent history of stimulation is formed and used to generate predictions 
about upcoming inputs, which are propagated in a top-down fashion and compared against 
actual sensory signals. As long as they coincide, a “memory match” leads to adaptation, or 
attenuation of brain responses to repeated stimuli (Näätänen and Picton, 1987; Haenschel et al., 
2005; Baldeweg, 2006; Grill-Spector et al., 2006; Summerfield et al., 2008; Summerfield and de 
Lange, 2014). The second occurs when a deviant stimulus is played, a prediction error signal is 
relayed bottom-up, and this “memory mismatch” leads to deviance detection or amplification of 
responses to unpredicted stimuli (Winkler, 2007; Garrido et al., 2009b; Winkler and Czigler, 
2012; Lieder et al., 2013; Stefanics et al., 2014). Therefore, MMN generation is a dual 
phenomenon, and both processes (adaptation and deviance detection) are of equally importance 
and necessary (Schröger et al., 2014).  

Moreover, this theory also explains why responses to deviants are stronger than responses to 
equally rare tones that are not deviants, e.g. in the context of the MAS control (Figure 22). 
Descending projections from one higher to a lower area come in two different types: driving and 
modulatory (Bastos et al., 2012). Driving projections convey the predictions as such, if there are 
any. Their effect on the lower area will be mainly inhibitory (through its action on GABAergic 
interneurons), in order to cancel out prediction error in the lower area. Modulatory projections, 
on the other hand, would represent the precision of these predictions, that is, the degree of 
confidence on them (Moran et al., 2013; Auksztulewicz and Friston, 2016a). If the accumulated 
sensory evidence strongly supports the predictions made, these modulatory projections will 
sensitize error units in the lower area, so that any small discrepancy with the predictions is 
amplified. On the other hand, if the predictions are weak, not solid, or based on scarce sensory 
evidence, these modulatory projections will not be very active, so that prediction errors are not 
amplified. And this can explain the quintessence of MMN: its dependence on the previous 
formation of a rule through the repetition of a pattern. When the standard is repeated over and 
over, the confidence that it will be repeated again increases, that is, a prediction is generated 
with increasing precision. Thus, when a deviant tone is received, error units are highly sensitized 
and the prediction error generated is amplified, producing a strong MMN (Figure 22a). 
However, in the context of the control condition, many different predictions are generated, but 
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none of them with great precision, since they are based on weak sensory evidence (Figure 22b). 
That is the reason why the target tone in the MAS sequence generates a prediction error 
(because it was unpredicted), but not very strong (because it does not break a strong prediction). 

 

	

Figure	 22.	 Predictive	 coding	 account	 of	 MMN	 generation.	 Each	 schematic	 represents	 two	 reciprocally	

connected	 areas	 of	 auditory	 cortex,	 a	 lower	 and	 a	 higher	 one.	 Granular	 layers	 receive	 ascending	 inputs,	

supragranular	 layers	 forward	 prediction	 errors,	 and	 infragranular	 layers	 send	 backward	 predictions	 (black	

connections)	 and	 the	 precision	 thereof	 (light	 blue	 connections).	 (a)	 As	 the	 standard	 tones	 are	 played,	 a	

prediction	 is	 generated	 with	 increasing	 precision.	 The	 prediction	 itself	 has	 an	 inhibiting	 effect,	 producing	

repetition	 suppression.	 The	precision	 is	 a	modulatory	 signal	 that	will	 take	effect	only	when	a	deviant	 tone	 is	

played,	amplifying	 the	prediction	error	generated,	and	 thus	 leading	 to	a	 strong	MMN.	 (b)	When	 the	 random	

tones	of	the	many-standards	control	are	played,	predictions	are	weak	(with	low	precision),	and	the	prediction	

error	generated	by	each	tone	is	not	as	big	as	the	MMN	generated	by	the	deviant.	
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In summary, the predictive coding framework unifies SSA and memory-trace models of 
MMN generation, making both complementary and equally important aspects. However, it 
implies the existence of active mechanisms of repetition suppression, with strong top-down 
influences, as opposed to mere, passive synaptic adaptation due to repeated use of the same 
afferents: 

(a) Repetition suppression is a neuronal correlate of the memory trace formation, but at 
least part of it requires the formation of predictions in higher levels that are used to 
attenuate responses to expected inputs in lower levels. 

(b) A specific enhancement of responses (error signals) occurs when the current stimulus 
does not match the expected input, and this requires memory and comparison 
processes. 

(c) The subpopulation of neurons responsible for the “true” MMN or deviance detection 
component is the family of “error units”, putatively pyramidal cells in supragranular 
layers. Therefore, the MMN can be considered a distinct component of the auditory 
ERPs. 
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HYPOTHESES	AND	OBJECTIVES	
The link between the MMN and SSA was proposed fourteen years ago (Ulanovsky et al., 

2003). Moreover, SSA could be a neuronal correlate of the more general theory of predictive 
coding (Friston, 2005; Garrido et al., 2009b). However, several issues remain, preventing the 
acceptance of SSA as a genuine neuronal correlate of the MMN and/or earlier mismatch brain 
responses (Fishman, 2014). 

The first issue is a discrepancy in their anatomical location. While MMN is generated 
mainly within non-primary auditory cortex, SSA has only been recorded in primary auditory 
cortex. At the same time, in subcortical structures, it is already well established that SSA is 
much stronger in non-lemniscal, or non-primary subdivisions (Malmierca et al., 2009; Antunes 
et al., 2010; Duque et al., 2012). However, detailed studies on SSA within the different cortical 
fields beyond A1 were lacking. Since SSA is stronger in the non-lemnical regions of the IC and 
MGB, it is reasonable to hypothesize that SSA in the non-primary regions of auditory cortex 
would also be stronger than in A1. Indeed, previous studies on the general response properties 
of the auditory cortex reported that non-primary neurons in the cat (Irvine and Huebner, 1979; 
Schreiner and Cynader, 1984) and rat (Doron et al., 2002; Polley et al., 2007; Pandya et al., 
2008) auditory cortex adapt more strongly than in A1. Even studies in human subjects have 
shown differential adaptation between primary and non-primary cortical areas (Kropotov et al., 
2000; Jääskeläinen et al., 2004; Opitz et al., 2005). Moreover, two recent studies that mapped 
auditory event-related potentials in the rat showed robust MMN-like responses in non-primary 
auditory cortical fields (Jung et al., 2013; Shiramatsu et al., 2013). 

The second issue, and even a more limiting one, is a problem of temporal development. 
While MMN is a mid-late response, peaking at 80-120 ms in rats, SSA in animal models has 
been observed only within the first 20-30 ms of neuronal responses. These discrepancies in 
location and latency led the discoverers of SSA to postulate that it would be a direct correlate of 
earlier indices of deviance detection (MLR generated in A1), only indirectly leading to the 
MMN within higher-order auditory areas (Nelken and Ulanovsky, 2007).  

The third issue, and probably the most critical one, is of higher conceptual nature. To be 
considered a bona fide mismatch response, any brain signal must meet an important criterion: 
the critical comparison with an appropriate control in which the tone is presented with the same 
probability, but in a context in which it is not a deviant from any rule (Harms et al., 2016). 
Responses of single neurons to deviant tones in the oddball paradigm need to pass that critical 
test to be considered as genuine mismatch responses, reflecting deviance detection at the 
neuronal level. However, at the cellular level, mismatch responses could also arise from a 
simpler neurophysiological mechanism (May and Tiitinen, 2010; Fishman, 2014), namely, 
stimulus-specific adaptation (SSA) (Ulanovsky et al., 2003), or response decrement with 
stimulus repetition (Whitmire and Stanley, 2016) that leaves neuronal responses to different 
stimuli—e.g. the deviant—almost unaffected. 

Finally, neuronal responses to oddball stimulation could perform deviance detection under 
the principles of predictive coding. If that is true, prediction errors should increase from lower 
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to higher hierarchical levels. Yet, whereas it is now clear that large-scale mismatch responses to 
oddball stimulation indeed reflect the predictive activity of the auditory and other sensory 
systems (Stefanics et al., 2014; Phillips et al., 2016), even at early processing stages (Bendixen et 
al., 2012) including subcortical midbrain and thalamus (Escera and Malmierca, 2014), and also 
in animal models (Shiramatsu et al., 2013; Todd et al., 2013; Harms et al., 2015), this 
predictive activity remains to be demonstrated at the neuronal level. 

Therefore, as the main driver of this research, I hypothesize that: 

1. SSA, defined as a differential response to deviants and standards under oddball stimulation, 
will be found in non-primary auditory cortical areas, and indeed, it will be stronger there 
than in primary auditory cortex.  

2. Neuronal responses within non-primary areas will have longer latencies and durations, so 
that SSA will be present in these non-primary areas at longer response latencies, matching 
better the time range of the actual MMN. 

3. Responses of single neurons to deviant tones in the oddball paradigm reflect deviance 
detection, in addition to just SSA, and thus can be considered genuine mismatch responses.  

4. Enhanced responses to deviant tones represent neuronal prediction error, which will increase 
from lower to higher hierarchical levels of the auditory pathway as postulated by the 
hierarchical predictive coding framework. 

Thus, the main objective of this thesis is to validate SSA (or more rigorously speaking, 
neuronal responses to the oddball paradigm) as a neuronal correlate of the MMN, underlying 
deviance detection at the cellular level. More specifically, to test the previous hypotheses, I will 
set the following objectives: 

1. Create a physiological map of SSA throughout the auditory cortex of the rat, to detect 
any principle of organization of SSA in gradients or metagradients (Polley et al., 2007). 
Critically, the mapping must include all primary as well as non-primary fields of the rat 
auditory cortex, which are already well described and easy to delineate physiologically 
(Rutkowski et al., 2003; Polley et al., 2007; Profant et al., 2013). This will complete the 
picture of SSA in the auditory pathway (Figure 17).  

2. Investigate the level of SSA throughout the different time ranges of neuronal responses, 
especially within non-primary fields, where evoked responses to sound are expected to 
be of longer latency and duration (Schreiner and Cynader, 1984; Polley et al., 2007). 
Analyze any significant variation of SSA level throughout the neuronal responses from 
onset to offset. 

3. Probe neuronal responses to the oddball paradigm for genuine deviance detection, using 
the many-standards and cascadic controls for repetition effects (Ruhnau et al., 2012). 
Use responses to the control condition to decompose neuronal responses into 
“Repetition Suppression” and “Prediction Error”.  

4. Perform these recordings within all the main stations of the auditory pathway where 
SSA has been investigated previously, both at cortical and subcortical levels, and study 
any systematic progression of prediction error along the auditory hierarchy. 
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Objectives 1 and 2 will be addressed in study I, through the creation of physiological maps 
of SSA throughout the auditory cortex. This will require the use of a simple oddball paradigm 
and multi-unit recordings. Objectives 3 and 4 are more ambitious, and will be the focus of study 
II, requiring the use of the many-standards and cascadic controls, in addition to the oddball 
paradigm, and careful recordings of well-isolated single units from different nuclei of the 
auditory pathway. This is a colossal work that will likely require the collaboration of other 
members of the lab for the collection of large amounts of data. 
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MATERIALS	AND	METHODS	

Experimental	Design	

In Study 1, Multiunit activity (MUA) was recorded with self-manufactured glass-coated 
tungsten electrodes (1–5 MΩ impedance at 1 kHz) (Merrill and Ainsworth, 1972; Bullock et 
al., 1988; Ayala et al., 2016). A single electrode was positioned orthogonal to the pial surface 
(forming a 30º angle with the horizontal plane) and advanced 350–550 µm into the 
thalamorecipient layers IIIb–IV using a piezoelectric micromanipulator (Sensapex) until we 
observed a strong spiking activity synchronized with the train of searching stimuli. Once a 
suitable recording site was reached, the frequency response area (FRA) was determined using 75 
ms pure tones at varying frequencies and intensities (Figure 24A; 0.5–44 kHz logarithmically 
spaced at 0.25 octave steps, 0–70 dB SPL at 10 dB steps, 375 ms onset-to-onset interval, 1 to 3 
randomized repetitions of each stimulus). The FRA was displayed on a computer screen using 
custom software, and the frequency-tuning curve was automatically outlined as the minimum 
sound intensity that elicited a firing rate over 20–40% of the maximum firing for each 
frequency. Thus, the minimum response threshold and characteristic frequency (CF) were 
computed for each site (excluding isolated “islands” of spontaneous activity), and a two 
frequencies (f1, f2) were selected to use in the oddball paradigm (Ulanovsky et al., 2003) at 20–
30 dB above threshold. The two stimuli were selected so as to evoke strong responses of similar 
magnitude at that recording site. In some cases, one or more extra pairs of stimuli were selected 
to ensure at least one recording met this requirement. Two oddball sequences with fixed 
parameters (250 trials each, 75 ms stimulus duration, 0.5 octaves frequency separation, 10% 
deviant probability, 300 ms onset-to-onset interval, minimum of 3 standard tones before a 
deviant) were presented for every pair of stimuli thus selected. In one of the sequences the low 
frequency (f1) was the “standard” and the high frequency (f2) was the “deviant”, and in the other 
sequence their roles were swapped. The order of presentation of these two sequences was 
randomized across sites. 

The goal of Study 2 was to test responses of single neurons of the central auditory system of 
the rat for signs of predictive activity under oddball stimulation. We recorded extracellular 
single neuron activity in response to sinusoidal tones in different auditory centers of the rat 
brain (Figure 32A,B). Rats were deeply anesthetized prior to surgery preparation and during the 
whole recording session. One single neuron (or small cluster of neurons in Study 1) was 
recorded at a time, using one tungsten electrode inserted into the brain, and local field potential 
(LFP) activity was simultaneously recorded from the same electrode. Surgical, 
electrophysiological and histological procedures are detailed below. 

All stimuli presented were sinusoidal pure tones of 75 ms duration, including 5 ms raise/fall 
ramps. For each recorded neuron, the frequency-response area (FRA) was first computed, as the 
map of response magnitude for each frequency/intensity combination (Figure 33). To obtain 
this FRA, a randomized sequence of tones was presented at a 4 Hz rate, randomly varying 
frequency and intensity of the presented tones (3-5 repetitions of all tones). Then, we selected 
10 evenly-spaced tones (0.5 octave separation) at a fixed sound intensity (usually 20-30 dB 
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above minimal response threshold), so that at least two of them fell within the FRA or close to 
its limits (see Figure 32C and Figure 33). These 10 frequencies were used to create the control 
sequences shown in Figure 32C. Additionally, adjacent pairs of them were used to present 
different oddball sequences. All sequences were 400 tones in length, at the same, constant 
presentation rate of 3 Hz (for AC) or 4 Hz (for IC and MGB). A faster presentation rate was 
used for subcortical recordings, to compensate for the relative slowing down of preferred 
repetition rates from brainstem to cortex (Eggermont, 2014).  

To test the specific contribution of deviance to the neuronal responses, we used oddball 
sequences (Ulanovsky et al., 2003; Dehaene et al., 2015) (Figure 32C). An oddball sequence 
consisted of a repetitive tone (the standard), occasionally replaced by a different tone (the 
deviant), with a p=0.1 probability, in a pseudorandom fashion. The first 10 tones of the 
sequence were always the standard tone, and a minimum of 3 standard tones always preceded 
each deviant. Oddball sequences were either ascending or descending, depending on whether 
the deviant was of a higher or lower frequency than the standard, respectively (Figure 32C). To 
control for the overall presentation rate of the target tone, as it reduces neuronal responses at 
high rates, we used two different control sequences, namely, the many-standards and cascaded 
sequences (Taaseh et al., 2011; Ruhnau et al., 2012) (Figure 32C). The many-standards control 
sequence was a random presentation of the 10 selected tones, such that each of them appeared 
the same number of times in an unpredictable order, with the only constraint that a single tone 
was never repeated in a row. Two cascaded control sequences, ascending and descending, were 
built as a repetitive series of groups of the 10 tones, arranged by ascending/descending 
frequency, respectively (Figure 32C). Since all sequences were 400 stimuli long, at the same 
presentation rate, a tone appeared with the same overall presentation rate in the DEV, MAS 
and CAS conditions, a total of 40 times along the 400-stimuli sequence. The cascaded sequence 
was recently designed as an improvement to the many-standards, that controls for additional 
key factors beyond presentation rate of the deviant tone (Ruhnau et al., 2012; Harms et al., 
2014). First, the tone immediately preceding a deviant is the same in the oddball (a standard) 
and cascaded sequences. This improves the estimation of the overall adaptation state of the 
system by the time the deviant tone is played, and controls for the potential sensitivity of the 
neuron to a rise or fall in frequency between two successive tones. Second, the cascaded 
sequence mimics the regular structure of the oddball sequence, with the important difference 
that now the target tone conforms to the rule, instead of being a deviant. 

Thus, using this design, every tone presented as a deviant was also presented as a standard 
(in a different oddball sequence) and in the context of the many-standards and cascaded control 
sequences. These four conditions, and by extension also response measures to them, will be 
denoted DEV, STD, MAS and CAS, respectively. Note that there were two variants of the 
DEV condition (ascending/descending), which were compared with the corresponding 
ascending/descending CAS condition. The STD condition was averaged, for each frequency, 
across ascending/descending versions of the oddball sequence (as indicated in Figure 32C). The 
order of presentation of these sequences was randomized across neurons, with a silent pause of 
~30 seconds between sequences. If the neuron could be held for long enough, the same protocol 
was repeated at different sound intensities. 
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Surgical	procedures	

Experiments were performed on 48 adult, female Long-Evans rats (12 in Study 1 and 36 in 
Study 2) with body weights between 200–250 g. The experimental protocols were approved by, 
and used methods conforming to the standards of, the University of Salamanca Animal Care 
Committee and the European Union (Directive 2010/63/EU) for the use of animals in 
neuroscience research. Each individual animal was used to record from only one auditory 
station, either IC, MGB or AC. The initial surgical procedures were identical in each case, and 
the electrophysiological procedures differed only in the location of the craniotomy, and 
placement/orientation of the recording electrode, for each different station.  

Surgical anesthesia was induced and maintained with urethane (1.5 g/kg, i.p.), with 
supplementary doses (0.5 g/kg, i.p.) given as needed. Dexamethasone (0.25 mg/kg) and 
atropine sulfate (0.1 mg/kg) were administered at the beginning of the surgery and every 10 h 
thereafter to reduce brain edema and the viscosity of bronchial secretions, respectively. After the 
animal reached a surgical plane of anesthesia, the trachea was cannulated for artificial ventilation 
and a cisternal drain was introduced to prevent brain hernia. The animal was then placed in a 
stereotaxic frame in which the ear bars were replaced by hollow specula that accommodated a 
sound delivery system. Corneal and hind-paw withdrawal reflexes were monitored to ensure 
that a moderately deep anesthetic plane was maintained as uniformly as possible throughout the 
recording procedure. Isotonic glucosaline solution was administered periodically (5–10 ml every 
6–8 hours, s.c.) throughout the experiment to prevent dehydration. Body temperature was 
monitored with a rectal probe and maintained between 37–38°C with a homoeothermic blanket 
system (Cibertec).  

For IC and MGB recordings, a craniotomy was performed in the left parietal bone to 
expose the cerebral cortex overlying the left IC/MGB. The dura was removed, and the electrode 
was advanced with an angle of 20º for the IC, and in a vertical direction for the MGB. For AC 
recordings, the skin and temporal muscles over the left side of the skull were reflected and a 6×5 
mm craniotomy was made in the left temporal bone to expose the entire auditory cortex (see 
Figure 1 in ref. (Nieto-Diego and Malmierca, 2016)). The dura was removed and the exposed 
cortex and surrounding area were covered with a transparent layer of agar to prevent desiccation 
and to stabilize the recordings. The electrode was positioned orthogonal to the pial surface, 
forming a 30º angle with the horizontal plane, to penetrate through all the cortical layers of one 
same cortical column.  

Electrophysiological	recording	procedures	

Experiments were performed inside a sound-insulated and electrically-shielded chamber. 
All sounds were generated using an RX6 Multifunction Processor (TDT) and delivered 
monaurally (to the right ear) in a closed system through a Beyer DT-770 earphone (0.1–45 
kHz) fitted with a custom-made cone and coupled to a small tube (12 gauge hypodermic) sealed 
in the ear. The sound system response was flattened with a finite impulse response (FIR) filter, 
and the output of the system was calibrated in situ using a ¼-inch condenser microphone 
(model 4136, Brüel & Kjær), a conditioning amplifier (Nexus, Brüel & Kjær) and a dynamic 
signal analyzer (Photon+, Brüel & Kjær). The output of the system had a flat spectrum at 76 dB 
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SPL (±3 dB) between 500 Hz and 45 kHz, and the second and third harmonic components in 
the signal were ≤ 40 dB below the level of the fundamental at the highest output level (90 dB 
SPL). Prior to surgery and recording sessions, we recorded auditory brainstem responses (ABR) 
with subcutaneous electrodes to ensure the animal had normal hearing. ABRs were collected 
using TDT software (BioSig) and hardware (RX6 Multifunction Processor) following standard 
procedures (0.1 ms clicks presented at a 21/s rate, delivered in 10 dB ascending steps from 10 to 
90 dB SPL). 

Action potentials and local field potentials (LFP) were recorded with hand-manufactured, 
glass-coated tungsten electrodes (Bullock et al., 1988) (1–4 MΩ impedance at 1 kHz). One 
individual electrode was used to record one single neuron at a time. The electrode was advanced 
using a piezoelectric micromanipulator (Sensapex) until we observed a strong spiking activity 
synchronized with the train of searching stimuli. The signal was amplified (1000×) and band-
pass filtered (1 Hz to 3 kHz) with an alternate current differential amplifier (DAM-80, WPI). 
This analog signal was digitized at a 12K sampling rate and further band-pass filtered (with a 
second TDT-RX6 module)  separately for action potentials (between 500 Hz and 3 kHz) and 
LFP (between 3 and 50 Hz). Stimulus generation and neuronal response processing and 
visualization were controlled online with custom software created with the OpenEx suite 
(TDT) and Matlab (Mathworks). A unilateral threshold for automatic action potential 
detection was manually set at about 2–3 standard deviations of the background noise. Spike 
waveforms were displayed on the screen, and overlapped on each other in a pile-plot to facilitate 
isolation of single units. Only when all snippet waveforms were identical and clearly separable 
form other smaller units and the background noise, the recorded action potentials were 
considered to belong to a single unit.  

Sounds used for stimulation were white noise bursts or pure tones with 5 ms rise-fall ramps. 
Sounds used for searching for neuronal activity were trains of noise bursts or pure tones (1–8 
stimulus per second). We used short stimulus duration for searching (30 ms) to prevent strong 
adaptation. In addition, type (white noise, narrowband noise, pure tone) and parameters 
(frequency, intensity, presentation rate) of the search stimuli were varied manually when 
necessary to facilitate release from adaptation, and thus prevent overlooking responses with high 
SSA. Once a single neuron was isolated and confirmed to be stable, the whole stimulation 
protocol was applied, as described in the first section “Experimental Design”.  

Histological	procedures	and	anatomical	localization	of	recording	sites	

AC experiments. At the end of the surgery, a magnified picture (25×) of the exposed cortex 
was taken (Nieto-Diego and Malmierca, 2016) with a digital SLR camera (D5100, Nikon) 
coupled to the surgical microscope (Zeiss) through a lens adapter (TTI Medical). The picture 
included a pair of reference points previously marked on the dorsal ridge of the temporal bone, 
indicating the absolute scale and position of the image with respect to bregma. This picture was 
displayed on a computer screen and a micrometric grid was overlapped to guide and mark the 
placement of the electrode for every recording made. Recording sites (250–500 µm spacing) 
were evenly distributed across the cortical region of interest while avoiding blood vessels. The 
vascular pattern was used as a local reference to mark the position of every recording site in the 



Doctoral Thesis – Ph.D. Program in Neuroscience  Javier Nieto Diego 
 

57 
 

picture, but otherwise differed largely between animals. To confirm the actual depth and 
cortical layer of the recorded neurons, at the end of the experiment we made electrolytic lesions 
at one to four of the recording sites, at the same depth that recordings were made. Five auditory 
cortical fields were identified according to tone frequency response topographies (Nieto-Diego 
and Malmierca, 2016). The limits and relative position of the auditory fields were determined 
for each animal at the end of the experiment, using the characteristic frequency (CF; the tone 
frequency that elicits a significant neuronal response at the lowest intensity) gradient as the 
main reference landmark (Polley et al., 2007; Nieto-Diego and Malmierca, 2016). We 
consistently observed distinct tonotopic gradients within the different fields, with a high-
frequency reversal between VAF and AAF (rostrally), a low-frequency reversal between A1 and 
PAF (dorsocaudally) and a high-frequency reversal between VAF and SRAF (ventrally). We 
identified the boundary between A1 and VAF as a 90° shift in the CF gradient in the ventral 
low-frequency border of A1, and the boundary between A1 and AAF as an absence of tone-
evoked responses in the ventral, high-frequency border of A1 (Nieto-Diego and Malmierca, 
2016). We used these boundaries to assign each recording to a given field. The CF of each 
recording track was computed as the average CF of all neurons recorded in that track, including 
a fast multi-unit activity FRA recording made between 400-550 µm depth, corresponding to 
layers IIIb-IV of the auditory cortex. 

IC and MGB experiments. Each recording track was marked with electrolytic lesions for 
subsequent histological localization of the neurons recorded. At the end of the experiment, the 
animal was given a lethal dose of sodium pentobarbital and perfused transcardially with 
phosphate buffered saline (0.5% NaNO3 in PBS) followed by fixative (a mixture of 1% 
paraformaldehyde and 1% glutaraldehyde in rat Ringer’s solution). After fixation and dissection, 
the brain tissue was cryoprotected in 30% sucrose and sectioned on a freezing microtome in the 
transverse or sagittal planes into 40 mm-thick sections. Sections were Nissl stained with 0.1% 
cresyl violet to facilitate identification of cytoarchitectural boundaries. Recording sites were 
marked on standard sections from a rat brain atlas (Paxinos and Watson, 6th Edition) and 
neurons were assigned to one of the main divisions of the IC (central nucleus, dorsal, lateral or 
rostral cortex) or the MGB (ventral, dorsal and medial division), respectively. The stained 
sections with the lesions were used to localize each track mediolaterally, dorsoventrally and 
rostrocaudally in the Paxinos atlas. To determine the main IC or MGB subdivisions, 
cytoarchitectonic criteria, i.e., cell shape and size, Nissl staining patterns and cell packing 
density, were used. This information was complemented and confirmed by the stereotaxic 
coordinates used during the experiment to localize the IC/MGB. After assigning a section to 
each track/lesion, the electrophysiological coordinates from each experiment and recording unit, 
i.e., beginning and end of the IC/MGB, as well as the depth of the neuron, were used as 
complementary references to localize each neuron within a track.  

Statistical	Analysis	

All data analyses were performed with the MatlabTM software, using the built-in functions, 
the Statistics and Machine Learning toolbox, or custom scripts and functions developed in our 
laboratory. Peri-stimulus time histograms (PSTH) were generated for every stimulus/condition 
tested. Only the last standard tones preceding each deviant were used for the analyses, except for 



Stimulus-Specific Adaptation and Deviance Detection in the Auditory Cortex  
 

58 
 

the time course analysis, where all standard trials were analyzed.  Every PSTH was analyzed to 
test for significant auditory responses and to extract several different metrics of response 
strength and latency. For these analyses, the original PSTH was smoothed with a 6 ms gaussian 
kernel (“ksdensity” function in Matlab) in 1 ms steps to estimate the spike-density function 
(SDF) over time, and the baseline spontaneous firing rate (SFR) was determined as the average 
firing rate during the 75 ms preceding stimulus onset. For any given time window, the 
excitatory response was measured as the area below the SDF and above the baseline SFR. This 
measure will be referred to as “baseline-corrected spike count” (BCSC). To test for statistical 
significance of the BCSC we used a Monte Carlo approach. First, 1000 simulated PSTHs were 
generated using a Poisson model with a constant firing rate equal to the SFR. Then, a “null 
distribution” of BCSC was generated from this collection of PSTHs, following these same 
steps. Finally, the p-value of the original BCSC was empirically computed as p = (g + 1) / (N + 
1), where g is the count of “null” measures greater than or equal to BCSC and N = 1000 is the 
size of the “null” sample. Note that using this approach, the minimum p-value that can be 
obtained is 1/1001 ≈ 0.001. 

When a significant evoked activity was detected, onset and offset latencies of the whole 
excitatory response were computed as follows. First, a “noise” threshold was computed, as the 
firing rate below which the pure-spontaneous simulated SDFs remained 97.5% of the time. 
Every SDF, including the simulated ones, was scanned for stretches of “signal” above this 
threshold, and the amount of “signal” for each stretch was measured as the area below the SDF 
and above the SFR during that particular interval. Using the distribution of all the signal 
stretches thus found within the 1000 pure-spontaneous SDFs, a Monte Carlo test was used to 
compute empirical p-values for every stretch of signal found in the target SDF under study. For 
each significant signal stretch (p < 0.05), the start/end times (Ton, Toff) were determined as the 
time points when the SDF trace cuts the noise threshold, and onset/offset latencies of the whole 
excitatory response (ONSET, OFFSET) were defined as the Ton/Toff of the first/last significant 
excitatory component of the response, respectively. Peak firing rate amplitude was defined as 
the maximum firing rate reached by the SDF within the analysis window, minus the SFR 
baseline, and peak latency as the time point respect stimulus onset that this peak takes place. 
Finally, the duration of the whole significant response interval was defined as OFFSET – 
ONSET, and the duration of the strong peak of the response, or “half-peak response duration”, 
was measured as the total length of time that the SDF remains above 50% of the peak 
amplitude. 

Study 1. In order to quantify and compare SSA levels between the five fields, we computed 
the frequency-specific SSA index for each stimulus, SI(f1) and SI(f2), and the common SSA 
index (CSI) for every recording site, in the usual way (Ulanovsky et al., 2003): 

𝑆𝐼 𝑓! =
𝐷𝐸𝑉 𝑓! − 𝑆𝑇𝐷(𝑓!)
𝐷𝐸𝑉 𝑓! + 𝑆𝑇𝐷(𝑓!)

 ;         𝑖 = 1,2 

𝐶𝑆𝐼 =
𝐷𝐸𝑉 𝑓! − 𝑆𝑇𝐷 𝑓!
𝐷𝐸𝑉 𝑓! + 𝑆𝑇𝐷 𝑓!

 ;     𝑖 = 1,2      
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where DEV(fi), STD(fi) are baseline-corrected spike counts in response to frequency fi when it 
was a deviant and standard, respectively. The CSI was calculated only for recordings with 
significant auditory responses to at least one frequency in the oddball paradigm (either as 
deviant or as standard). In cases where more than one stimulus pair was tested at the same 
recording site, we selected only one to compute SSA for that site, according to the following 
criteria: (1) Recordings with significant responses to both frequencies (either as deviant or as 
standard) were always preferred to recordings with significant response to only one of them. (2) 
We selected the recording with most similar responses to f1 and f2 (as deviants); the similarity 
between responses was measured as their ratio, f1/f2 or f2/f1, whichever was less than 1. (3) If 
there were two or more recordings with similar deviant-to-deviant ratios (difference of ratios < 
0.1), we selected the one with the lowest sound level (SPL) used for stimulation.  

For the analysis of the LFP signal, we aligned the recorded wave to the onset of the stimulus for 
every trial, and computed the mean LFP for every recording site and stimulus condition 
(deviant, standard), as well as the difference wave (DW = deviant – standard). Then, grand-
averages were computed for deviant, standard and DW across the whole auditory cortex and for 
every field separately. The p-value of the grand-averaged DW was determined for every time 
point with a two-tailed t-test, Bonferroni-corrected for 204 comparisons (overall significance 
level of 0.05), and the time intervals where a significant DW was observed were computed. For 
each individual (mean) LFP wave, the peak amplitude and latency were computed within two 
time windows: [10–40 ms] and [50–90 ms], corresponding to the first negative deflection (Nd) 
and second positive deflection (Pd) seen in the grand-averages within all fields. When 
comparing response features between fields, such as onset latency or CSI, we used non-
parametric Kruskall-Wallis or Friedman tests, given the non-normal nature of these measures. 
Each of these tests was followed by a post-hoc multiple comparison test, using the Dunn-Sidak 
method at a 5% significance level, to detect specific differences between fields. For the sake of 
readability, p-values for all tests are reported using an upper bound equal to the minimum 
power of ten or half a power of ten that is greater than the actual p-value (e.g., p < 5·10–6). 

For the time course analysis, we first computed the average standard and deviant response at 
each absolute position within the sequence, for all neurons tested, within each cortical field 
separately. A single-trial spike count for any given PSTH was computed as the number of 
spikes between the previously determined ONSET and OFFSET times, minus the baseline 
SFR. Then, we fitted these time series to different models (linear, exponential, double 
exponential, polynomial inverse and power law with two or three coefficients) using the “fit” 
function in Matlab, that also computes the coefficient of determination (adjusted-r2) of the 
whole fit and confidence intervals for the fitted parameters. 

To quantify the topographical organization of a feature map and test for statistical 
significance thereof, we used the “MapTools” library in Matlab, applying the topographic 
product statistic (Yarrow et al., 2014). This metric was used instead of other alternatives 
(Pearson and Spearman linear correlation, Zrehen measure, etc) due to the highly non-normal 
nature of the data under study (i.e., CSI) and assuming a local, linear nature of the topography 
of the CSI. To generate averaged maps for CF, CSI and other response features, we followed a 
spotlight-average approach: starting with the set of sample points where actual recordings were 
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made, and the associated values of the feature, we computed the averaged feature value for any 
other point in the map from its nearest neighbors. Specifically, we placed a bivariate Gaussian 
kernel of 100 µm radius: 

ker 𝑥, 𝑦 =
1
2𝜋𝑟

∙ exp
𝑥! + 𝑦!

2𝑟!
 

centered on every sample point and multiplied it by its associated feature value. Then we 
summed all these functions over the entire map and divided the result by the sum of all kernels 
at every point, to compute a weighted average throughout the whole surface. Thus, the feature 
value V at every point of the map was calculated as: 

V x, y =
v! ∙ ker x − x!, y − y!!

!!!
ker x − x!, y − y!!

!!!
 

where x, y are the coordinates of a generic point in the map, and xi, yi (i = 1, …, n) are the 
sample points used to generate the map. To impose a limit on the influence span for every 
point, this weighted average was computed only for points where the sum of all kernels 
(denominator in the last formula) was greater than 0.05. Further, to avoid single-point averages, 
we computed V(x,y) only when at least 2 neighboring sample points had been used for 
averaging. 

To combine data from different animals, we followed an iterative process to improve the 
quality of the alignment in successive stages. We first generated the CF map for the case with 
the greatest number of recordings (shown in Figure 23). Then, we applied a manual shift to 
each of the remaining maps in turn so as to put them into register with the former. We used the 
CF gradient, the “unresponsive spot” at the wedge between A1, AAF and VAF and the low-
frequency centers in A1, AAF and SRAF, as main references to determine, for each animal, the 
absolute position of the map with respect to bregma (Polley et al., 2007). Finally, we computed 
the topographic product statistic for the whole set of aligned recordings. This alignment was 
refined and the test statistic was recalculated until no improvement was detected in the 
correlation. We repeated this process for every animal until the alignment was completed. 

Study 2. Peri-stimulus time histograms (PSTH) were generated for each stimulus/condition 
tested, and analyzed as explained above. Only the last STD tones preceding each DEV tone 
were used for the analyses. We used two types of sequences to control for repetition effects (v.s. 
Experimental Design), namely the many-standards and cascaded sequences (Figure 32D). 
However, only one of them is required to decompose neuronal mismatch into repetition 
suppression and prediction error (Figure 32D). In the following, we describe the analysis 
performed using the CAS condition as control, since the analysis using the MAS sequence is 
completely analogous. Baseline-corrected spike count responses of a neuron to the same tone in 
the three conditions (DEV, STD, CAS) were normalized using the formulas:  

DEVN = DEV/N;  

STDN = STD/N;  
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CASN = CAS/N;  

Where 

N = DEV! + STD! + CAS! 

is the Euclidean norm of the vector (DEV, STD, CAS) defined by the three responses. This 
normalization procedure always results in a value ranging 0 to 1, and has a straightforward 
geometrical interpretation (Figure 34B,H): Normalized values are the coordinates of a 3D unit 
vector (DEVN, STDN, CASN) with the same direction of the original vector (DEV, STD, 
CAS), and thus the same proportions between the three response measures. From these 
normalized responses, indices of neuronal mismatch (iMM), repetition suppression (iRS), and 
prediction error (iPE) were computed as: 

iMM = DEVN − STDN,  

iRS = CASN − STDN,  

iPE = DEVN − CASN, 

These indices, consequently, always range between -1 and 1, and provide the following 
quantitative decomposition of neuronal mismatch (Figure 32D) into repetition suppression and 
prediction error: 

iMM = iRS + iPE  

As shown in Figure 37, the iMM is largely equivalent to the typical SI, or “SSA index” 
(v.s.), commonly used in most previous studies of SSA in single units (Ulanovsky et al., 2003; 
Taaseh et al., 2011). 

For the analysis of the LFP signal, we aligned the recorded wave to the onset of the 
stimulus for every trial, and computed the mean LFP for every recording site and stimulus 
condition (DEV, STD, CAS), as well as the “prediction error potential” (PEP = LFPDEV – 
LFPCAS). Then, grand-averages were computed for all conditions, for each auditory station 
separately. The p-value of the grand-averaged PEP was determined for every time point with a 
two-tailed t-test (Bonferroni-corrected for 200 comparisons, with family-wise error rate 
FWER<0.05), and we computed the time intervals where PEP was significantly different from 
zero (Figure 36).  

All statistical tests used were distribution-free tests (or “nonparametric”, namely the 
Wilcoxon signed-rank test and Friedman test), given the non-normal nature of our dataset 
(baseline-corrected spike counts, normalized responses, indices of neuronal mismatch, repetition 
suppression and prediction error). Only the difference wave for the LFPs (PEP in Figure 36) 
was tested using a t-test, since each LFP trace is itself an average of 40 waves, and thus 
approximately normal (according to the Central Limit Theorem). Linear models used to test 
significant average iPE within each auditory station (Figure 35B,D) and significant effects of 
nucleus, hierarchy, SPL, direction, and interactions between them, were fitted using the ‘fitlm’ 
function in Matlab, with robust options. 
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Figure	37:	Quantitative	comparison	between	iMM	and	the	“classical”	SI.	The	SI	trace	is	plotted	as	a	function	of	

the	 DEV/STD	 ratio,	 since	 it	 does	 not	 take	 into	 account	 the	 control	 condition.	 Different	 iMM	 traces	 are	 plotted	

(dashed	 lines),	as	a	 function	of	 the	 relative	magnitude	of	 the	 response	 to	control	condition	with	 respect	 to	DEV	

response	 (CTR/DEV),	 from	 low	 (CTR=0.2*DEV)	 to	high	 (CTR=1.2*DEV)	hypothetical	 responses	 to	 the	control.	The	

two	indices	(the	SI	and	the	iMM	for	different	CTR	response	magnitudes)	take	values	very	close	to	each	other	under	

most	conditions,	except	 for	very	extreme	and	rare	cases	 in	which	the	response	to	the	control	condition	 is	much	

larger	than	DEV	of	much	smaller	than	STD.		
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RESULTS	

STUDY	1:	TOPOGRAPHIC	DISTRIBUTION	OF	SSA	IN	THE	AUDITORY	CORTEX	
The main goal of Study 1 was to generate a complete and fine-grained map of SSA across 

all known cortical fields in the rat. Despite interspecies differences, the rat auditory cortex 
shares many common anatomical and physiological features with other species (Takahashi et al., 
2005; Polley et al., 2007; Smith et al., 2012), including primary and non-primary regions. 
Detailed electrophysiological mapping studies (Polley et al., 2007; Pandya et al., 2008; Profant 
et al., 2013) have identified at least five tonotopically organized fields in the rat auditory cortex. 
The primary auditory cortex (A1), the anterior auditory field (AAF) and the ventral auditory 
field (VAF) are all considered primary fields (Polley et al., 2007; Storace et al., 2012). 
Additionally, two distinct non-primary regions have been identified, the posterior auditory field 
(PAF), located in the dorso-caudal border of A1, and the suprarhinal auditory field (SRAF), in 
the ventral margin of the auditory cortex (Kimura et al., 2004, 2007; Polley et al., 2007; Smith 
et al., 2012). My results demonstrate that, although SSA is indeed present in A1 and the other 
two primary fields, it is markedly stronger in the non-primary fields PAF and SRAF, consistent 
with the SSA observed in non-lemniscal parts of the IC and MGB. Another important finding 
in these data is that SSA observed in auditory cortex is robust up to 200 ms after stimulus onset, 
well within the latency range of the MMN-like potentials in the rat (Harms et al., 2015). These 
data suggest the existence of a hierarchically organized system for SSA processing (Grimm and 
Escera, 2012), and reinforce the notion that non-primary SSA is a more direct neural correlate 
of the MMN than the SSA observed in A1. 

To study the topographic distribution of SSA across the auditory cortex I recorded a total of 
816 multiunit activity (MUA) clusters from layers IIIb/IV within all cortical fields from the left 
auditory cortex in 12 animals (total number of recordings by field: A1, 167; AAF, 121; VAF, 
164; SRAF, 169; PAF, 119). Local field potentials (LFP) were simultaneously recorded from 
the same electrode in 4 of the animals. In each animal I made a microelectrode mapping (15–25 
tracks/mm2) covering at least three fields (Figure 23A shows an example with 132 recording 
sites from all fields). Most recordings (89%) were made between 300 and 600 µm depth, 
corresponding to cortical layers IIIb/IV (Smith et al., 2012). Five auditory cortical fields were 
identified according to tone frequency response topographies. The limits and relative position of 
the auditory fields were determined for each animal at the end of the experiment, using the 
characteristic frequency (CF) gradient as the main reference landmark (Figure 23B). I 
consistently observed distinct tonotopic gradients within the different fields (Polley et al., 2007; 
Higgins et al., 2010; Profant et al., 2013), with a high-frequency reversal between VAF and 
AAF (rostrally), a low-frequency reversal between A1 and PAF (dorsocaudally) and a high-
frequency reversal between VAF and SRAF (ventrally). Thus, I identified the boundary 
between A1 and VAF as a 90° shift in the CF gradient in the ventral low-frequency border of 
A1, and the boundary between A1 and AAF as an absence of tone-evoked responses in the 
ventral, high-frequency border of A1 (Figure 23B). I used these boundaries to assign each 
recording to a given field.  
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Figure	23.	Experimental	setup.	A.	Sample	case	with	132	MUA	recording	sites	from	layers	IIIb/IV	throughout	the	

cortical	fields	in	one	representative	animal.	At	every	site,	the	CF	was	determined	(if	possible)	and	I	presented	

an	oddball	paradigm.	Sites	are	classified	according	 to	pure-tone	selectivity	 (Selective:	 tone-responsive	with	a	

clear	 CF;	 Unselective:	 tone-responsive,	 but	 with	 an	 unstructured	 FRA	 or	 otherwise	 lack	 of	 a	 clear	 CF;	

Unresponsive:	no	significant	responses	to	pure	tones).	B.	Outline	of	the	different	cortical	fields	in	this	particular	

case,	as	derived	from	the	tonotopic	gradients.	Each	field	shows	a	characteristic	CF	gradient	(Polley	et	al.,	2007),	

A1	being	the	most	easily	identifiable.	

At every recording site, I presented an oddball paradigm (two sequences of 250 trials, 10% 
deviants, 300 ms onset-to-onset interval, 0.5 octaves frequency separation) using a pair of pure 
tones at 20–30 dB above CF threshold, which elicited clear responses of similar magnitude. 
Figure 24 shows representative MUA recordings from each auditory cortex field. Figure 24A 
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shows their FRAs and the pair of stimuli f1 and  f2 selected for the oddball paradigm, and Figure 
24B shows comparative responses to each frequency when presented as either standard (blue) or 
deviant (red) in the oddball paradigm.  

 

	

Figure	 24.	 Stimulation	 paradigm.	 A.	 Representative	 FRAs	 from	 each	 auditory	 cortex	 field.	 Firing	 rate	 (red	

shading,	 normalized	 to	max	 response)	 is	 represented	 as	 a	 function	 of	 frequency	 and	 intensity	 of	 the	 tones	

presented,	and	the	frequency-tuning	curve	has	been	outlined	(minimum	sound	intensity	that	elicits	a	firing	rate	

over	20–40%	of	the	maximum	firing	for	each	frequency,	excluding	isolated	“islands”	of	spontaneous	activity).	I	

selected	a	pair	of	frequencies,	separated	by	0.5	octaves,	which	elicited	responses	of	similar	magnitude	at	20–30	

dB	 above	 threshold.	 These	 frequencies	 were	 then	 presented	 within	 an	 oddball	 paradigm	 (250	 tones,	 10%	

deviants,	 300	ms	 onset-to-onset	 interval,	 75	ms	 tone	 duration).	B.	 Corresponding	 responses	 to	 the	 oddball	
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paradigm.	Each	plot	 compares	 spike-density	 functions	 (see	Materials	 and	Methods)	 in	 response	 to	 the	 same	

frequency,	computed	from	the	25	deviant	trials	(red)	and	the	25	standard	trials	just	preceding	a	deviant	(blue).	

Responses	 to	 standard	 tones	 were	 significantly	 reduced	 in	 all	 fields,	 as	 compared	 to	 deviants,	 but	 this	

adaptation	is	much	stronger	in	the	non-primary	fields	(SRAF	and	VAF).	Black	horizontal	bar:	stimulus	duration.	

SSA	is	stronger	in	non-primary	fields	

The main aim of this study was to quantify and compare SSA levels between the five 
cortical fields. Thus, I computed the frequency-specific SSA index for each stimulus, SI(f1) and 
SI(f2), and the common SSA index (CSI) for every recording site, using baseline-corrected spike 
counts during stimulus presentation (5 to 80 ms from stimulus onset; see Materials and 
Methods). Figure 25A shows a series of scatterplots illustrating the joint distribution of SI(f1) 
and SI(f2), for the whole population and for each field separately, and Figure 25B illustrates 
corresponding histograms of CSI distributions (total number of recording sites included in this 
analysis, as detailed in Materials and Methods, are also indicated). In all cases, points are 
symmetrically clustered around the main diagonal, with no significant differences between the 
median SI(f1) and SI(f2) for any field (paired Wilcoxon signed rank test, p > 0.1 in all fields), 
indicating that adaptation was equal on average for f1 and f2. The drift of the population 
medians towards the upper-right corner (Figure 25A) reveals a gradual shift of the cloud of 
points, from A1 to PAF fields, towards higher levels of SSA. The global population shows a 
CSI distribution that is slightly skewed to the right (Figure 25B, top panel). The origin of this 
skewness emerges once we split these distributions into the five cortical fields: the CSI 
distributions for the primary fields, especially A1 and AAF, are more symmetrical, centered on 
medium CSI values and spanning the full range of possible values (Figure 25B). The same 
distributions for the non-primary fields, SRAF and PAF, on the other hand, are clearly 
asymmetric, sharply skewed to the right towards the extreme positive CSI values, with a virtual 
absence of low CSI values. Moreover, the center of the distribution progressively moves to the 
right (i.e., towards higher CSI values) from A1 to PAF, (CSI, [Q1, median, Q3]: A1, [0.22, 
0.38, 0.61]; AAF, [0.32, 0.50, 0.68]; VAF, [0.39, 0.56, 0.72]; SRAF, [0.57, 0.76, 0.90]; PAF, 
[0.56, 0.76, 0.89]), with the median CSI in every primary field being significantly smaller than 
in every non-primary field (Kruskall-Wallis test, �2(4) = 121.43, p < 5×10–24).  

Correcting for baseline activity was required to measure the actual evoked response, given 
the high spontaneous rates seen in many recordings, particularly from the non-primary fields 
(spontaneous firing rate, mean ± SEM: A1, 8.2 ± 0.7 spk/s; AAF, 7.3 ± 0.6 spk/s; VAF, 10.7 ± 
0.7 spk/s; SRAF, 9.2 ± 0.6 spk/s; PAF, 13.0 ± 1.0 spk/s). This correction may have a major 
impact when using a contrast index such as the CSI (Klein et al., 2014), so that higher CSI 
values in non-primary fields could result in part from this procedure. Therefore, we repeated the 
CSI calculation using the absolute spike counts for the same time window. As expected, all CSI 
values were overall reduced, but the same trend was observed between fields, since median CSI 
in all fields were lower than in SRAF; only CSI levels in PAF were differentially affected, so 
that they were no longer higher than in primary fields (CSI without baseline correction, [Q1, 
median, Q3]: A1, [0.14, 0.24, 0.40]; AAF, [0.18, 0.30, 0.45]; VAF, [0.21, 0.32, 0.42]; SRAF, 
[0.26, 0.39, 0.52]; PAF, [0.17, 0.25, 0.42]). However, given the higher spontaneous rate 
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relative to evoked activity seen in PAF, uncorrected CSI does not faithfully represent the strong 
SSA (i.e., contrast) clearly observed in responses from this field (Figure 24B, Figure 27A). 
Therefore, I kept using these corrected measures for the rest of the analyses. 

 

	

Figure	25.	Distribution	of	SSA	indexes	within	each	field.	A.	Distribution	of	frequency-specific	SSA	indexes	for	

the	whole	 population	 and	 for	 each	 field	 separately.	 Red	 lines	 represent	median	 and	 inter-quartile	 range	 for	

SI(f1)	 and	 SI(f2),	 showing	 a	 progressive	 increase	 in	 SSA	 from	primary	 to	 non-primary	 fields.	B.	 Corresponding	

distributions	of	the	CSI.	In	the	primary	fields,	distributions	are	symmetrical	and	centered	in	medium-CSI	values,	
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but	 in	 the	 non-primary	 fields	 CSI	 distributions	 are	 sharply	 skewed	 to	 extreme	 levels	 of	 SSA.	 Red	 lines	 show	

distribution	medians,	which	were	statistically	different	between	every	primary	and	non-primary	field	(see	text).	

Consistent with previous studies (Polley et al., 2007), non-primary fields showed longer 
response onset latencies than primary fields for both deviant (mean ± SEM: A1, 11.6 ± 1.2 ms; 
AAF 11.1 ± 1.1 ms; VAF, 17.3 ± 1.5 ms; SRAF, 27.0 ± 2.0 ms; PAF, 23.9 ± 2.2 ms; Kruskal-
Wallis test, �2(4) = 152.78, p < 10–31) and standard tones (A1, 16.7 ± 1.7 ms; AAF, 22.5 ± 3.3 
ms; VAF, 29.8 ± 3.5 ms; SRAF, 45.8 ± 4.7 ms; PAF, 50.0 ± 8.0 ms; �2(4) = 77.59, p < 10–15). 
From these figures, it is apparent that onset latency was significantly delayed for standards as 
compared to deviants in all five fields (onset latency difference, standard – deviant, mean ± 
SEM: A1, 7.6 ± 1.5 ms; AAF, 13.6 ± 3.1 ms; VAF, 18.0 ± 3.1 ms; SRAF, 23.2 ± 3.8 ms; PAF, 
31.8 ± 7.2 ms; all significantly greater than zero, Wilcoxon signed rank test, p < 0.01 in all 
cases). Thus, in addition to an overall reduction in spike counts, SSA also produced a delay in 
onset latency to the standard tones. Furthermore, this delay was significantly longer in non-
primary fields than in primary fields A1 and AAF (Kruskal-Wallis test, χ2(4) = 34.13, p < 10–6).  

SSA	is	topographically	organized	in	the	auditory	cortex	

The sharp differences in SSA levels observed between primary and non-primary fields 
derive from a distinct topographic organization of adaptation throughout the whole auditory 
cortex (Figure 26). The absolute position of the map with respect to bregma differed between 
animals by up to 0.6 mm, but the relative position and orientation of the five cortical fields were 
highly conserved from one animal to the next. Thus, I constructed a synthetic map of CSI from 
all available data. Using the CF gradient as the main reference landmark, an appropriate shift 
was applied to each map to maximize the degree of CF coincidence between them (Figure 26A; 
cf. Figure 1 in (Polley et al., 2007) and Figure 1 in (Higgins et al., 2010)).  I quantified the 
quality of the alignment as the local coincidence of CF values. The resulting correlation of CF 
between neighboring sites was next to maximal (Topological product, PT = 0.9686, permutation 
test, p < 0.001) (Yarrow et al., 2014). Figure 26B shows the CSI map, while Figure 26C and 
Figure 26D show the corresponding maps of the response to deviant and standard stimuli 
(within the stimulus-fitted window), from which the CSI was computed. The CSI follows a 
statistically significant topographic distribution (Topological product, PT = 0.2342, permutation 
test, p < 0.001), meaning that neighboring sites are likely to have more similar CSI values than 
more distant ones. To better determine the nature of this topography, I traced a boundary 
following the median iso-CSI contour (Figure 26B; median population CSI = 0.60), whenever 
this line enclosed a region of area greater than 0.5 mm2. This procedure revealed an emergent 
organization of SSA, showing a large region of low-to-medium CSI values that covers the 
central and rostral portions of the auditory cortex, and two separate and distinct high-CSI 
regions confined to the posterodorsal and ventral margins of the map, respectively (Figure 26B). 
Remarkably, the CSI-based boundary that defines the posterodorsal high-CSI region matches 
almost perfectly the boundary between A1 and PAF previously traced from the CF gradient 
reversal (Figure 26A). Similarly, the iso-CSI contour that separates the ventral high-CSI region 
matches very well the caudal SRAF/VAF and rostral SRAF/AAF boundaries. 
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Finally, these high SSA regions revealed in Figure 26B can be seen also as regions of 
extremely low spike count to the standard stimuli in Figure 26D. Indeed, the “CSI” and 
“Standard” maps are almost complementary, such that regions of extreme CSI values 
correspond to those with virtually no response to standard stimuli, while regions of low-medium 
CSI match those with significant response to standards. This observation reveals a strong CSI 
dependence on the standard response being low, rather than on the deviant response being high. 
In fact, CSI was negatively correlated with both deviant (DEV) and standard (STD) response 
strength, yet much more strongly to the standard (Spearman correlation coefficient, 
ρ(CSI,DEV) = –0.19, p < 10–6; ρ(CSI,STD) = –0.81, p < 10–152). This also indicates that CSI 
values tend to be higher for neurons with an overall lower firing rate, as confirmed by a 
subsequent analysis (v.i.). 

 

	

Figure	 26.	 Topographic	 distribution	 of	 SSA	 throughout	 the	 auditory	 cortex.	 A.	 Synthetic	map	 of	 the	 auditory	

cortex	showing	the	location	of	the	five	cortical	fields.	The	CF	was	used	as	the	main	reference	to	put	into	register	

the	 individual	maps	 from	 the	12	 animals.	 The	high	 topographical	 correlation	of	 the	CF	 (see	 text)	 confirmed	 the	

robustness	 of	 the	 alignment.	 B.	 Topographic	 distribution	 of	 SSA	 in	 the	 auditory	 cortex.	 The	 CSI	 follows	 a	

statistically	significant	topography	within	the	auditory	cortex	(see	text),	with	the	highest	values	being	confined	to	
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the	non-primary	fields.	C,D.	Topographic	distribution	of	the	responses	to	deviant	and	standard	tones,	respectively,	

from	which	the	CSI	was	computed.	Responses	to	standard	tones	were	almost	zero	in	the	non-primary	fields.		

SSA	occurs	at	the	late	component	of	the	response		

SSA was suggested as a potential neural correlate for the MMN, but previous studies 
neglected an analysis of the responses to deviant and standard tones at different temporal 
courses during stimulus presentation and beyond. Since I observed responses of long durations 
to deviant tones in many recordings (deviant response offset, mean ± SEM: A1, 162.6 ± 5.7 ms; 
AAF, 149.8 ± 6.9 ms; VAF, 194.2 ± 4.6 ms; SRAF, 196.4 ± 4.4 ms; PAF, 167.9 ± 7.4 ms), I 
wanted to further investigate the variation of the CSI across different components of the neural 
response. Hence, I computed baseline-corrected spike counts for different time intervals after 
stimulus onset (Figure 27A): onset (5–30 ms), sustained (30–80 ms), offset (80–105 ms) and late 
(105–200 ms). Corresponding CSI distributions and their topography for these different time 
windows are shown in Figure 27B and Figure 27C, respectively. 

First, I compared median CSI between fields for every time window separately. For the 
onset, sustained and offset components, I found the same trend already observed for the stimulus-
fitted response window: the median CSI in every primary field was significantly lower than in 
every non-primary field, and lowest of all in A1 (Figure 27B; Kruskall-Wallis test, onset: χ2(4) = 
73.95, p < 10–14, sustained: χ2(4) = 109.81, p < 10–22; offset: χ2(4) = 60.95, p < 10–11). The CSI for 
the late component of the response, however, behaved differently. At this time window, there 
were no significant differences in SSA between fields (Figure 27B; Kruskall-Wallis test, χ2(4) = 
7.78, p > 0.1). 

Then, I compared CSI levels within each field for the four time windows, to analyze the 
trend of SSA throughout the different response components. Within non-primary fields, I 
found no significant differences between median CSI measured at the four different time 
windows (Figure 27B; Friedman test, SRAF: χ2(3) = 5.03, p > 0.1; PAF: χ2(3) = 4.72, p > 0.1). 
By contrast, a highly significant window effect was found for the three primary fields (Friedman 
test,  A1: χ2(3) = 109.58, p < 10–22; AAF: χ2(3) = 18.18, p < 0.001; VAF: χ2(3) = 55.3, p < 10–11). 
Post-hoc comparisons revealed that this effect was due to a specific increase of CSI at the late 
component (Figure 27B), with no significant differences between median CSI measured at the 
onset, sustained or offset components of the response, except for a slightly significant increase 
from the sustained to the offset component in A1, consistent with the overall trend. Therefore, 
SSA in the non-primary fields is maintained high throughout the entire response (Figure 
27B,C). By contrast, SSA in the primary fields is moderate during stimulus presentation, 
followed by a specific enhancement in late components (Figure 27B,C), where SSA reaches the 
same levels found in non-primary fields.  
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Figure	27.	Variation	of	the	CSI	throughout	the	neural	response.	A.	Grand-average	responses	(baseline-corrected	

firing	 rate,	mean	±	 SEM)	 to	 standard	 (blue)	 and	deviant	 (red)	 tones	within	 each	 field.	Many	 recordings	 showed	

significant	 responses	 beyond	100	ms	 from	 stimulus	 onset.	B.	 Distribution	of	 CSI	 values	 (thick	 bar:	median,	 box:	

inter-quartile	range,	whiskers:	 full	 range	excluding	outliers)	computed	at	different	time	windows	with	respect	to	

stimulus	 presentation.	 In	 the	 non-primary	 fields,	 SSA	 was	 high	 through	 the	 entire	 response.	 In	 primary	 fields,	

median	CSI	was	lower	than	in	non-primary	fields	from	onset	to	offset	components	but	not	for	the	late	component,	

which	 showed	 CSI	 levels	 as	 high	 as	 in	 the	 non-primary	 fields.	 C.	 Topographic	 distribution	 of	 SSA	 for	 the	 four	

different	time	windows.	Note	that	only	the	late-component	CSI	is	high	throughout	the	entire	auditory	cortex.		

SSA	depends	on	neuronal	firing	rate	and	frequency	of	stimulation	

Upon visual inspection, regions with lowest SSA in the CSI landscape seemed to coincide 
with low-CF regions of the auditory cortex, particularly within A1 (Figure 26A,B). Since a 
strong dependence of SSA on frequency and intensity of pure-tone stimulation has been shown 
in the IC (Duque et al., 2012), I wanted to test whether a similar dependence was present in the 
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auditory cortex. Figure 28A shows a spotlight-average map of the SI across all 
frequency/intensity combinations tested in the whole set of recordings. High SSA is sharply 
skewed towards the high frequencies and low intensities of stimulation. When I analyzed 
primary and non-primary fields separately (Figure 28B,C) I observed that this dependence of 
the SI on frequency and intensity was more evident within primary (Figure 28B) than non-
primary fields (Figure 28C). Additionally, average firing rate had a topographical distribution in 
the dataset, and was different between cortical areas (Figure 26C,D). Since firing rate may also 
have a strong impact on the amount of adaptation (Antunes et al., 2010), the topography of 
SSA could result in part from a topography of firing rates. Finally, the observed effect of 
stimulus intensity on the SI (Figure 28) might be an indirect consequence of the effect of firing 
rate, with higher intensities of stimulation producing higher firing rates and therefore lower 
SSA. 

 

	

Figure	28.	Dependence	of	SSA	on	the	frequency	and	intensity	of	stimulation.	A.	Averaged	SI	for	different	values	

of	frequency	and	intensity	used	in	the	oddball	paradigm,	for	the	whole	set	of	recordings	throughout	the	auditory	

cortex.	 SSA	 is	 significantly	 higher	 for	 high	 frequencies	 and	 low	 intensities	 of	 stimulation.	B.	 The	 same	 effect	 of	

frequency	and	intensity	on	SSA	is	apparent	when	using	all	data	from	primary	fields	alone,	with	a	virtual	absence	of	

SSA	 for	 low	 frequencies	 and	 high	 intensities	 of	 stimulation.	 C.	 In	 the	 non-primary	 fields,	 this	 frequency	 and	

intensity	dependence	is	weaker	than	in	the	primary	fields.		
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To address these observations quantitatively, I fit a multivariate linear regression model for 
the SI, following a stepwise strategy (‘fitlm’ function in Matlab, with robust fitting options). 
First, I used average spike count (SPK, as the sum of average response to deviant and standard 
stimuli) and frequency of stimulation (OCT, in octaves with respect to 1 kHz) as predictors. 
The resulting model was:  

SI = 0.51 – 0.046·SPK + 0.057·OCT  (F2,1215 = 166, p < 5×10–64).  

This model accounted for 21.3% of the variability of the SI, but more importantly it provided a 
specific quantification of each effect: on average, SI decreases 0.046 points per spike of the 
response, while it increases 0.057 points per octave of the stimulus. Then, I added intensity of 
stimulation (SPL, in dB SPL) as a factor to the model, obtaining:  

SI = 0.72 – 0.051·SPK + 0.050·OCT – 0.003·SPL (F3,1214 = 122, p < 5×10–69).  

Thus, SI is also negatively correlated to intensity of stimulation. This model, however, 
explained 23% of the variability of the SI, only 1.7% more than the previous one. Therefore, 
most of the dependence of the SI on SPL is already explained by its dependence on SPK, 
confirming the fact that higher intensities produce lower SSA because of a higher firing rate. 
Therefore, we removed SPL from the model, and replaced it with FIELD as a categorical 
factor. Now, the explanatory power of the model increased to 30.6%, mainly due to overall 
higher SI in the non-primary fields:  

SI = 0.41 + 0.12·VAF + 0.24·SRAF + 0.20·PAF – 0.04·SPK + 0.05·OCT (F6,1211 = 90.6, p < 
10–94).  

According to this model, mean SI is 0.41 in A1 and AAF (not significantly different from each 
other), 0.53 (0.41+0.12) in VAF (p < 5×10–9), 0.65 in SRAF (p < 5×10–28) and 0.61 in PAF (p < 
5×10–16), and this difference cannot be explained by differences in firing rate within fields, since 
the FIELD factor explains an extra 9.3% of the SI variability. Note also that these are mean 
values, and therefore lower than the median values shown in Figure 25, given the rightwards 
skewness of the distributions.  

As a final step, I tested this model for interactions between FIELD and the other three 
predictors separately, and I found significant interactions only between FIELD and OCT:  

SI = 0.19 – 0.24·VAF + 0.36·SRAF + 0.36·PAF + 0.078 ·OCT – 0.042·VAF·OCT – 
0.031·SRAF·OCT – 0.034·PAF·OCT  (F9,1208 = 43.8, p < 5×10–68), 

 indicating that the effect of frequency was weaker in VAF (p < 0.005), SRAF (p < 0.05) and 
PAF (p < 0.05) than in A1 and AAF. Therefore, the dependence of SSA on firing rate (and, 
indirectly, on intensity of stimulation) is comparable among the five fields, but the observed 
dependence of SSA on frequency of stimulation is mainly due to the fact that A1 and AAF 
show lower SSA for low frequencies of stimulation, as illustrated in Figure 26A,B and Figure 
28B. Incidentally, A1 and AAF are the cortical fields that show the most clear tonotopic 
gradient, one the mirror reversal of each other (Figure 26A) (Polley et al., 2007).  

Since frequency and intensity of oddball stimulation were selected according to the frequency 
tuning and threshold of each recording site, and there is a tendency for tuning bandwidth in 
auditory cortex to decrease as a function of CF (Phillips and Irvine, 1981; Recanzone et al., 
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1999), differences in SSA between fields could simply reflect differences in tuning bandwidth or 
CF threshold in the auditory cortex. To check this possibility, I analyzed the correlation 
between CSI and frequency tuning characteristics in our sample. Distributions of tuning 
bandwidth and threshold in our sample were consistent with previous mapping work in the rat 
(Polley et al., 2007). Particularly, PAF and AAF featured the broadest tuning bandwidth and 
highest response thresholds (Bandwidth 30 dB above threshold, in octaves, mean ± SEM: A1, 
1.89 ± 0.06; AAF, 2.30 ± 0.1; VAF, 1.75 ± 0.06; SRAF, 1.98 ± 0.08; PAF, 2.95 ± 0.16; CF 
threshold in dB SPL, mean ± SEM: A1, 23.7 ± 0.9; AAF, 29.3 ± 1.3; VAF, 14.8 ± 0.9; SRAF, 
22.5 ± 1.1; PAF, 28.3 ± 1.3). Both bandwidth and threshold in AAF and PAF were different 
from the other fields, but not to each other (Kruskal-Wallis test, bandwidth: χ2(4) = 55.60, p < 
5×10–11; threshold: χ2(4) = 96.03, p < 10–20). By contrast, CSI was 50% higher in PAF than in 
AAF, as already shown (Figure 25B). Similarly, CF threshold in VAF was significantly lower 
than in A1 or AAF, but the median CSI was not different between these primary fields (Figure 
25B). Indeed, correlation between CSI and either tuning bandwidth or threshold was extremely 
weak in our sample (Spearman correlation coefficient: rho(CSI,BW30) = 0.083, p = 0.04; 
ρ(CSI,THR) = −0.09, p = 0.02). These considerations demonstrate that the distinct topography 
of SSA found in this study is genuine and not an artifactual effect of differences in other 
response properties between cortical fields. 

Different	time	course	of	adaptation	in	primary	and	non-primary	fields	

In order to study the dynamics of adaptation to the repetitive stimuli over time, I averaged 
responses to standard and deviant stimuli across recordings for every trial number within the 
sequence, and plotted them in relation to the time elapsed since the beginning of the sequence, 
separately for each field (Figure 29A). Then, I fitted these responses to different simple models. 
None of the models tested could explain any amount of the variance of the deviant responses, 
indicating that deviant responses did not show dependence on trial number within any field. In 
sharp contrast, a power law model of three parameters, y(t) = a ⋅ tb + c, yielded very good quality 
fits for the responses to standards in all fields, explaining about 80% of their variability 
(adjusted-r2: A1, 0.80; AAF, 0.74; VAF, 0.84; SRAF, 0.83; PAF, 0.69) indicating that SSA in 
all fields matches stimulus statistics at many timescales (Drew and Abbott, 2006). 

The most obvious difference between fields was that non-primary fields reached a much 
lower plateau at their final steady-state responses (gray dashed line in Figure 29B; c parameter 
(spk/trial): A1, 0.84; AAF, 0.50; VAF, 0.60; SRAF, 0.22; PAF, 0.17; all significantly different 
from each other as derived from the 95% confidence intervals reported by the “fit” function in 
Matlab). Also, according to this model, adaptation was fastest in PAF, slowest in VAF and not 
significantly different between the other three fields (b parameter: A1, –0.78; AAF, –0.93; 
VAF, –0.68; SRAF, –0.73; PAF, –1.32). This result indicates a distinct high sensitivity of PAF 
to repetitive stimuli, needing only a few presentations to reach its fully adapted state. This 
phenomenon can be readily appreciated when analyzing the responses to the first 10 standard 
trials of the sequence (Figure 29B). Responses to standards in the non-primary fields adapt 
below half their initial strength with three (PAF) or four (SRAF) presentations of a stimulus 
(black arrows in Figure 29B), whereas in the primary fields it takes up to six (A1) presentations 
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to produce this same relative reduction. Therefore, adaptation occurs faster and is stronger in 
non-primary than in primary fields. 

 

	

Figure	29.	Time	course	of	adaptation	within	each	field.	A.	Average	responses	within	each	auditory	cortex	field	in	

relation	 to	 the	 order	 of	 tone	 presentation,	 plotted	 for	 standard	 (blue)	 and	 deviant	 (red)	 tones	 separately.	 The	

course	 of	 standard	 responses	 over	 time	 followed	 a	 power	 law	 (thick	 blue	 lines),	 indicating	 that	 SSA	 matches	

stimulus	statistics	at	many	timescales.	B.	Detail	of	the	average	(mean	±	SEM)	standard	responses	for	the	first	10	
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presentations	 within	 the	 sequence.	 The	 arrows	 indicate	 the	 trial	 number	 where	 the	 response	 has	 fallen	

significantly	below	half	of	the	response	to	the	first	tone	presentation.	Gray	dashed	lines	indicate	the	steady-state	

plateau	 reached	 by	 standard	 responses	 at	 the	 end	 of	 the	 sequence	 (constant	 parameter	 of	 the	 power-law	 fit).	

Adaptation	occurred	 faster	 in	PAF	 than	 in	any	other	 field	 (see	 text),	 and	 reached	a	much	 lower	plateau	 in	non-

primary	than	in	primary	fields.		

SSA	 in	 the	 auditory	 cortex	 correlates	 with	 the	 difference	 wave	 of	 the	 local	 field	
potentials	

Whereas SSA in spike responses is a local measure at the neuron level, the MMN is a large-
scale brain potential. One reasonable way to bridge this gap is to probe the correlation between 
adaptation of neural responses and local field potentials (LFP), which represent average synaptic 
activity in local cortical circuits (Buzsáki et al., 2012). Thus, I recorded LFP simultaneously 
with MUA in 4 out of the 12 animals, with a total yield of 268 recording sites (A1, 49; AAF, 
48; VAF, 55; SRAF, 54; PAF, 42; Unlocalized, 20). I averaged the recorded LFP waveforms 
evoked by standard and deviant tones for each field separately, and computed the difference 
wave (DW) at every time point after stimulus onset (Figure 30A). In all the five cortical fields, 
these potentials showed the typical morphology in response to pure tones (von der Behrens et 
al., 2009; Fishman and Steinschneider, 2012), with a fast negative deflection (Nd) followed by a 
slower positive deflection (Pd). These two components were present in responses to both 
standard and deviant tones, but their amplitudes were in all cases smaller for the standards, 
giving rise to a DW of similar shape but varying amplitudes (Figure 30A). For each recording, 
the peak amplitude and peak latency of the DW was measured for the Nd and Pd components, 
within a time window where the DW reached statistical significance at the whole population 
level (16 to 37.6 ms for Nd and 41.5 to 86.7 ms for Pd, respectively, paired t-test, Bonferroni 
correction for 268 comparisons, p < 0.05).  

Peak amplitude of the DW at the Nd component showed a clear trend to be larger in 
primary than in non-primary fields, being significantly smaller in PAF than in the three primary 
fields, and smaller in SRAF than in AAF (Figure 30B; one-way ANOVA, F4,243 = 8.24, p < 
5×10–6). This trend was still present, albeit much less clear, for the Pd component of the DW, 
being significantly smaller in PAF than in A1 and AAF, but not different between the other 
fields (Figure 30B; one-way ANOVA,  F4,243 = 3.74, p < 0.01). Thus, the fast Nd component of 
the DW showed a topographical distribution within the auditory cortex, whereas the slower Pd 
component of the DW showed a more homogenous distribution across cortical fields. A similar 
pattern was apparent for the peak latencies of each of these components (Figure 30B). The Nd 
component of the DW peaked earlier in the primary than in the non-primary fields, 
significantly so between A1 or AAF and SRAF or PAF (mean ± SEM: A1: 24.6 ± 0.9 ms , 
AAF: 24.8 ± 0.8 ms , VAF: 28.3 ± 0.6 ms , SRAF: 31.1 ± 0.8 ms, PAF: 32.0 ± 1.7 ms; one-way 
ANOVA, F4,243 = 11.78, p < 5×10–8). Peak latencies for the Pd component, on the other hand, 
were not statistically different between fields (mean ± SEM: A1: 61.7 ± 2.0 ms , AAF: 57.4 ± 
2.2 ms , VAF: 59.5 ± 2.0 ms , SRAF: 59.8 ± 1.7 ms, PAF: 61.4 ± 2.1 ms; one-way ANOVA, 
F4,243 = 0.70, p = 0.59). The steady progression of the Nd peak latency is consistent with a 
bottom-up propagation of the signal from primary to non-primary fields, whereas the 
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homogeneity of the Pd peak latency suggests a stronger contribution of intracortical processing 
and reciprocal interaction between fields. 

 

	

Figure	 30.	Adaptation	 in	 the	 LFP.	A.	Grand-average	LFP	 traces	 in	 response	 to	deviant	 (red)	and	standard	 (blue)	

tones,	and	the	resulting	difference	wave	(black),	averaged	for	each	cortical	 field	separately.	Two	components	of	

the	difference	wave	(DW)	were	analyzed:	the	fast	negative	deflection	(Nd)	and	the	slower	positive	deflection	(Pd).	

Note	also	a	small	but	significant	deflection	of	 the	LFP	at	 longer	 latencies	 (>100	ms)	 in	anteroventral	 fields	 (AAF,	

VAF	and	SRAF).	White	line:	p-value	of	the	DW.	Black	thick	bars:	time	intervals	showing	a	significant	DW.	Red	dotted	

horizontal	line:	Bonferroni-corrected	critical	p-value	(bilateral	t-test).		B.	Peak	amplitude	and	latency	(mean	±	SEM)	

of	the	Nd	and	Pd	components	of	the	DW	within	each	cortical	field.	Note	that	the	mean	of	the	amplitudes/latencies	

of	 the	 individual	 DW	 components	 are	 not	 equal	 to	 the	 peak	 amplitude/latency	 of	 the	 same	 component	 in	 the	

grand-averaged	DW.		
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To facilitate a more direct comparison between SSA for the MUA and for the LFP 
components, I also computed CSI values for the Nd and Pd peaks of the LFP (data not shown). 
Overall, SSA at both components of the LFP was appreciably lower than for the MUA (paired 
signed rank test for the whole set of recordings with LFP; CSI-Nd vs. CSI-onset, z-score = 
6.98, p < 5×10–12; CSI-Pd vs. CSI-sustained, z-score = 10.12, p < 5×10–24), but it followed the 
same trend to be lower in the primary than in non-primary fields (Median CSI-Nd: A1, 0.32; 
AAF, 0.31; VAF, 0.45; SRAF, 0.50; PAF, 0.47; Kruskall-Wallis test, χ2(4) = 21.12, p < 5×10–4. 
Median CSI-Pd: A1, 0.25; AAF, 0.24; VAF, 0.33; SRAF, 0.37; PAF, 0.40; Kruskall-Wallis 
test, χ2(4) = 13.09, p < 0.05). Furthermore, CSI-Nd and CSI-Pd were strongly correlated with 
their corresponding CSI values at comparable time windows (Spearman correlation coefficient: 
ρ(CSI-Nd, CSI-onset) = 0.66, p < 10–40; ρ(CSI-Pd, CSI-sustained) = 0.43, p < 5×10–12; ρ(CSI-
Pd, CSI-offset) = 0.21, p < 0.005). 

STUDY	2:	HIERARCHICAL	PREDICTION	ERROR	IN	THE	AUDITORY	SYSTEM	

In this study, with the collaboration of two determined laboratory mates, I recorded 
individual responses of subcortical and cortical neurons along the rat auditory pathway, using 
recently developed control sequences to separate repetition suppression from prediction error 
under oddball stimulation (Jacobsen and Schröger, 2001; Taaseh et al., 2011; Ruhnau et al., 
2012; Harms et al., 2014). Our data show that differential responses to deviant and standard 
tones in oddball sequences indeed reflect active predictive activity, instead of a mere SSA in 
single neurons, and that this predictive activity emerges hierarchically from subcortical 
structures. These results unify three coexisting views of perceptual deviance detection at 
different levels of description: neuronal physiology, cognitive neuroscience and the theoretical 
predictive coding framework. 

Evidence	of	prediction	error	in	single	auditory	neurons	

The predictive coding framework assumes that the same operations (generation of 
predictions and prediction errors) would take place at every hierarchical level of sensory systems 
(Friston, 2005), and this could in principle include subcortical processing stations 
(Auksztulewicz and Friston, 2016b). Unfortunately, there is a severe dearth of evidence for this, 
since research on predictive brain activity has until recently focused on cortical responses of 
varying source and latency (Bendixen et al., 2012; Phillips et al., 2016), and the role of 
subcortical structures in cognition, albeit increasingly acknowledged (Parvizi, 2009; Güntürkün 
and Bugnyar, 2016), remains largely unexplored. In order to collect a representative sample 
from different processing stations along the auditory pathway, we recorded a total of 207 
neurons from the auditory midbrain (IC), thalamus (MGB) and cortex (AC) of anesthetized 
rats (Table 3), while stimulating the animal with sequences of pure tones (Figure 32A).  
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Figure	 32.	 Experimental	 design	 for	 study	 2.	 (A)	 Sketch	of	 experimental	 setup.	 Isolated	neurons	were	 recorded	

from	 different	 auditory	 nuclei	 of	 anesthetized	 rats,	 while	 stimulating	 with	 pure	 tones.	 (B)	 Schematic	

representation	 of	 the	 rat	 auditory	 pathway	 form	 midbrain	 to	 cortex	 3,30,	 divided	 into	 first-	 and	 higher-order	

regions.	(C)	Stimulation	sequences.	Using	this	design,	each	tone	fi	was	presented	in	two	experimental	conditions	

(DEV	 and	 STD,	 in	 oddball	 sequences),	 and	 two	 control	 conditions	 (CAS/MAS)	 for	 adaptation	 effects.	 Note	 that	

ascending/descending	 DEV	 tones	 will	 be	 compared	 to	 the	 corresponding	 version	 of	 the	 CAS	 condition	 (see	



Stimulus-Specific Adaptation and Deviance Detection in the Auditory Cortex  
 

80 
 

Methods).		(D)	Decomposition	of	neuronal	mismatch	responses	(nMM)	to	the	oddball	sequence	using	either	one	of	

the	 control	 conditions.	 (E)	 Predicted	 scenarios	under	 two	 competing	mechanisms	explaining	nMM.	 If	 SSA	 is	 the	

main	 mechanism	 underlying	 nMM,	 responses	 to	 STD	 tones	 will	 be	 more	 suppressed	 the	 more	 synapses	

information	traverses	along	the	auditory	hierarchy,	and	responses	to	control	(CAS/MAS)	tones	would	be	equal	to,	

or	 stronger	 than,	 to	 DEV	 tones,	 since	 the	 average	 intertonal	 distance	 is	 larger	 in	 the	 controls	 than	 in	 oddball	

sequences	 29.	 By	 contrast,	 if	 nMM	 reflects	 Bayesian	 inference,	 responses	 to	DEV	 tones	would	 be	 progressively	

larger	than	to	the	controls	as	the	information	propagates	up	the	auditory	hierarchy.	

Recorded neurons were further grouped into “first-order” (fo) or “higher-order” (ho), 
depending on their particular location within each nuclei (Escera and Malmierca, 2014; Nieto-
Diego and Malmierca, 2016), thus leading to 6 different processing stations (fo-IC, ho-IC, fo-
MGB, ho-MGB, fo-AC, ho-AC; Figure 32B; see Methods). This distinction was made because 
higher-order (or non-primary) auditory regions represent a higher hierarchical level of 
processing (Atiani et al., 2014) and are known to be more sensitive to acoustic change and 
contextual influences than first-order (or primary) ones (Kraus et al., 1994; Escera and 
Malmierca, 2014; Nieto-Diego and Malmierca, 2016).  

For each recorded neuron, we presented a set of oddball sequences, using tones selected 
from the neuron’s frequency-response area (FRA), and a “neuronal mismatch response” (nMM) 
was computed as the difference between responses to deviant (DEV) and standard (STD) 
conditions for each tone (Figure 32D). To determine whether this difference (usually DEV > 
STD) reflected predictive activity, instead of (or in addition to) just SSA, we also presented two 
cascaded (CAS) sequences (ascending and descending) and one many-standards (MAS) 
sequence as controls (Ruhnau et al., 2012; Harms et al., 2014) (Figure 32C), containing all 
tones used in oddball sequences (see Methods). The main rationale behind this design is that, in 
the CAS/MAS control conditions, each tone has the same (low, 10%) probability of occurrence 
as a DEV tone in the oddball sequence, so it is not repetitive (as the STD), and therefore is free 
of repetition effects (e.g. repetition suppression), but it does not stand out from the statistical 
context (as the DEV), and therefore it is not perceived as a deviant (Ruhnau et al., 2012; Harms 
et al., 2014). Thus, responses to CAS/MAS control conditions are used as the reference 
yardstick with respect to which repetition suppression and prediction error effects can be 
discriminated (Figure 32D). If the neuronal mismatch response (nMM = DEV – STD) is 
caused entirely by SSA to the STD tone, responses to DEV and CAS/MAS control conditions 
should remain comparable through all hierarchical levels, or if anything, the response to DEV 
tones should undergo a slightly stronger suppression than to the controls, due to cross-
frequency adaptation (Taaseh et al., 2011) (Figure 32E). By contrast, under the predictive 
coding framework, deviance detection is based on Bayesian inference (Friston, 2009), such that 
stronger prediction errors will be produced as more sensory evidence accumulates to increase the 
confidence and precision of current predictions (Garrido et al., 2009b; Stefanics et al., 2014; 
Auksztulewicz and Friston, 2016b). Therefore, stronger prediction errors should be elicited by 
DEV than by CAS/MAS tones, due to the lack of sequential stimulus repetitions in the 
controls (Ruhnau et al., 2012; Stefanics et al., 2014), and this effect should increase up the 
hierarchy (Figure 32E), since higher-order processing stations are able to code for more 
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complex regularities (Opitz et al., 2005; Bendixen et al., 2012; Wacongne et al., 2012; Escera 
and Malmierca, 2014). 

 

	



Stimulus-Specific Adaptation and Deviance Detection in the Auditory Cortex  
 

82 
 

Figure	33.	Prediction	error	in	sample	neuronal	responses.	Each	panel	shows	responses	of	representative	neurons	

within	 each	 station	 of	 the	 auditory	 pathway:	 (1)	 The	 FRA	 (representation	 of	 neuronal	 sensitivity	 to	 different	

frequency/intensity	combinations)	and	 the	10	 tones	 selected	 to	create	 the	control	 sequences	 for	 that	particular	

neuron	 (see	 Methods).	 (2)	 Measured	 responses	 of	 the	 neuron	 to	 each	 tone	 (baseline-corrected	 spike	 counts,	

averaged	within	0−180	ms	after	tone	onset),	for	all	conditions	tested.	(3)	Sample	PSTH	for	each	condition,	for	the	

tone	with	 the	 highest	 response	 (either	 ascending	 or	 descending;	 indicated	with	 an	 arrow).	 Stimulus	 duration	 is	

represented	by	 the	 thick,	horizontal	 line,	and	 the	 isolated	spike	 (mean	±	SEM)	 is	 shown	 in	 the	small	 inset.	Both	

repetition	suppression	(STD	<	CTR)	and	prediction	error	(DEV	>	CTR)	can	be	observed	in	responses	to	some	tones,	

and	this	is	particularly	consistent	for	higher-order	neurons	(panels	D-F).	

Individual responses of representative neurons are shown in Figure 33. Responses of first-
order neurons are mostly dependent on tone frequency, with little sensitivity to the different 
conditions, particularly at subcortical levels (Figure 33A,B). However, in fo-AC (Figure 33C), 
and most clearly in higher-order neurons (Figure 33E-F), strong response suppression to STD 
condition is apparent, but also, a higher firing rate in response to DEV tones, as compared to 
both MAS and CAS control conditions, was consistent across tested frequencies. This is, as just 
explained, the signature of prediction error at the single neuron level (Taaseh et al., 2011; 
Harms et al., 2015). 

In the following, I will present only the results using the cascaded sequence as control, since 
it was designed as an improvement to the many-standards sequence that controls for additional 
factors beyond presentation rate of the deviant tone (Ruhnau et al., 2012; Harms et al., 2014) 
(see Materials and Methods, Experimental Design). However, the results using either 
CAS/MAS condition as a control were commensurable (Table 3), with no remarkable 
differences between them (Wilcoxon signed-rank test, z = −0.125, p = 0.9).  

The	contribution	of	prediction	error	to	nMM	increases	along	the	auditory	hierarchy	

Single neuron responses to the three conditions (DEV, STD, CAS) for all tones tested in 
all neurons are represented in Figure 34A-F, separately for each processing station. Each pair of 
conditions, within each station, was tested for a difference in medians (Table 3). As expected, 
responses to DEV condition were stronger than to STD condition within all stations (Figure 
34A-F; Table 3). This is a well described neuronal behavior across the auditory pathway (Escera 
and Malmierca, 2014), which has been referred to as SSA in previous studies (Ulanovsky et al., 
2003), even though it was postulated to be the neuronal mechanism underlying deviance 
detection (Taaseh et al., 2011). Indeed, this nMM results mostly from suppression of the 
response to the repetitive STD condition (repetition suppression), since responses to STD were 
significantly weaker than to CAS condition within all stations (Table 3). Critically, responses to 
DEV tones were significantly higher than to CAS already within the ho-IC (Figure 34D; Table 
3), and this difference increased progressively in the ho-MGB, and ho-AC (Figure 34E,F), 
where it was most apparent. Therefore, neuronal responses showed clear signs of prediction 
error at the population level, within all higher-order stations, but also within fo-AC (Figure 
34C; Table 3), consistent with the observed effects in individual cases (Figure 33C-F). 
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Figure	34.	Prediction	error	at	the	population	level.	A-F.	Responses	to	the	three	conditions	(DEV,	STD,	CAS)	for	all	

points	tested	in	all	neurons,	were	represented	on	a	3D	scatter,	separately	for	each	station.	These	points	were	then	

orthogonally	 projected	 onto	 the	 three	 “walls”,	 to	 compare	 two	 responses	 at	 a	 time,	 and	 then	 the	 “box”	 was	

unfolded	(after	“cutting”	along	the	CAS	axes)	to	create	the	main,	flat	diagrams.	Thus,	each	2D	point	represents	the	

response	 (baseline-corrected	 spike	 count)	 of	 a	 single	 neuron	 to	 one	 given	 tone	 for	 a	 pair	 of	 conditions.	 G-L.	

Distribution	of	 normalized	 responses	 and	 indices	 of	 neuronal	mismatch	 (iMM),	 repetition	 suppression	 (iRS)	 and	

prediction	error	(iPE).	Each	point	 in	the	3D	scatters	from	panels	A-F	represents	a	vector	 in	response	space	(DEV,	

STD,	CAS).	The	normalization	is	just	the	radial	projection	of	this	point	onto	the	unit	sphere	centered	on	the	origin	

(small	insets),	so	the	resulting	vector	(DEVN,	STDN,	CASN,)	is	a	scaled	version	of	the	former.	The	flat	diagram	is	a	

zenith	view	of	the	3D	sphere.	Each	diagonal	(dotted	black	lines)	represents	the	line	where	the	corresponding	index	

is	 zero,	 and	 the	 index	 will	 increase	 or	 decrease	 as	 a	 projected	 point	 moves	 away	 from	 this	 line.	 Histograms	

represent	 index	distributions,	with	their	means	 indicated	by	colored	lines.	Note	the	overall	shift	of	the	mean	iPE	

towards	positive	values,	from	IC	through	MGB	to	AC,	and	from	first-	to	higher-order	divisions.	

To quantify the relative contribution of repetition suppression and prediction error to nMM 
in neuronal responses, and to facilitate comparisons between different neurons/stations, I 
normalized the neural responses to the three conditions (DEV, STD, CAS) for each 
neuron/tone combination. I applied Euclidean vector normalization (Figure 34G), such that all 
normalized responses (DEVN, STDN, CASN) ranged between 0 and 1. Then, I computed three 
indices as the difference between normalized responses to pairs of conditions, ranging between 
−1 and +1 (Figure 34G). The “index of neuronal mismatch”, iMM = DEVN − STDN, is the 
relative difference in responses to STD and DEV tones in the oddball paradigm. The iMM is 
quantitatively equivalent to the typical “SSA index” (Ulanovsky et al., 2003), used in previous 
studies (Figure 37). The “index of neuronal repetition suppression”, iRS = CASN − STDN, is the 
relative reduction of the response to a standard tone, as compared to the control. Thus, the iRS 
quantifies repetition effects (Baldeweg, 2006). Finally, and most importantly for this study, the 
“index of neuronal prediction error”, iPE = DEVN − CASN, is the relative increase in the 
response to a deviant tone, compared to the control. A positive iPE reflects predictive activity, 
as opposed to SSA (Ruhnau et al., 2012), and quantifies the proportion of prediction error 
accounting for nMM (Taaseh et al., 2011). Therefore, the relation iMM = iRS + iPE provides a 
functional, quantitative decomposition of nMM (Figure 32D). The distribution of these indices 
across stations reveals that both iMM and iPE increase along the auditory pathway, from fo-IC 
to ho-AC (Figure 34G-L).  

Summary statistics for these normalized responses and indices are shown in Figure 35A and 
4b, respectively. The iPE shows a distinct increase in two ways: (1) from first- to higher-order 
stations, and (2) from IC to MGB to AC (Figure 35B). To validate these observations 
statistically, I fitted a linear model for the iPE using nucleus (IC, MGB, AC) and hierarchy (fo, 
ho) as categorical factors. The resulting model was: 

iPE = 0.012 + 0.020*ho – 0.136*MGB + 0.092*AC + 0.185*ho*MGB + 0.158*ho*AC, 

with a significant effect of hierarchy (F=37.16, p=1.40·10−9) and nucleus (F=46.35, p=3.15·10−20), 
and a significant hierarchy*nucleus interaction (F=3.48, p=0.031). Therefore, both trends are 
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significant and robust from midbrain to cortex. In particular, the significant hierarchy effect 
means that the small average iPE seen in ho-IC (iPE = 0.012 + 0.020 = 0.032) is nevertheless 
statistically significant (Figure 35B), consistent with a significant difference in absolute spike 
counts (DEV−CAS in Table 3; Figure 34J). Overall, this analysis demonstrates a gradual 
emergence of a prediction error component in responses of single neurons as information 
progresses through the auditory pathway, both in bottom-up and in first- to higher-order 
directions, with a mutual potentiation of these two effects.  

 

	

Figure	35:	Emergence	of	iPE	along	the	auditory	hierarchy.	A.	Average	normalized	responses	(mean	±	SEM)	to	the	

three	 conditions	 (DEVN,	 STDN,	 CASN)	within	 each	 station.	B.	 These	 same	 normalized	 responses	 are	 representd	

with	respect	to	the	CAS	control	condition,	so	that	the	indices	are	represented	by	their	differences	(iPE	is	upwards-

positive,	iRS	is	downwards-positive).	Asterisks	denote	statistical	significance	of	iPE	against	zero	median	(Table	3)	C.	

Linear	model	 fitted	 for	 the	 iPE,	using	SPL	and	Direction	 (ascending/descending)	as	predictors.	Error	bars	denote	

mean	and	SEM	for	each	SPL	and	Direction.	D.	The	same	as	in	(B),	but	using	only	recordings	for	ascending	deviant	

tones	at	intensities	≤	40	dB	SPL.	

According to previous modeling work, change-sensitivity in single neurons is expected to be 
maximal for stimulus ranges where the firing rate of the neuron is below saturation (Abbott et 
al., 1997). Consistent with this hypothesis, a common observation in the pool of recorded 
neurons was that using low stimulation intensities it was easier to produce deviance-specific 
responses, particularly for ascending deviants (e.g. Figure 33D). To test these observations at 
the population level, I fitted a different model for the iPE, using SPL (in Bels = dB SPL/10) 
and direction (ascending, ASC, or descending, DSC) of deviant tones (see Figure 32C) as 
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predictors. The model showed a significant effect of SPL (F=4.59, p=0.03) and a SPL*direction 
interaction (F=6.66, p=0.01): 

iPE = 0.064 + 0.194*ASC + 0.003*SPL − 0.037*ASC*SPL, 

which indicates that the iPE is expected to be much higher for ascending deviants at intensities 
below 40 dB SPL (Figure 35C). Indeed, I observed a distinct increase in the iPE within all 
stations, under these stimulation conditions (Figure 35D), particularly in ho-AC, where 
prediction error accounted for around two thirds of the iMM. This effect could facilitate 
perception under challenging sensory conditions, by increasing the gain of prediction error 
responses at early processing stages (Auksztulewicz and Friston, 2016b). These findings run 
parallel to previous observations in single neurons of the primary visual cortex, where cortical 
feedback improves figure-background discrimination of low-salience stimuli (Hupé et al., 
1998). 

Prediction	 error	 in	 single	neurons	 correlates	with	a	 large-scale	mismatch	 response	 in	
the	auditory	cortex	

I also recorded local field potentials (LFP), simultaneously to single neuron spikes, from the 
same electrode, to explore the direct correlation between prediction error in spike responses and 
large-scale mismatch responses (such as the MMN). I averaged LFP responses for each 
condition and station, as well as the difference between DEV and CAS conditions, which I 
called the “prediction error potential” (Shiramatsu et al., 2013; Harms et al., 2014): PEP = 
LFPDEV – LFPCAS (Figure 36). A significant early PEP was already detectable within ho-IC and 
ho-MGB (Figure 36D,E). In the auditory cortex, the PEP was strong and significant in both fo-
AC and ho-AC, showing three major deflections (Figure 36C,F): a fast negative deflection (N1; 
35−50 ms after change onset), a slower positive deflection (P2; 70−120 ms), and a third, late, 
negative deflection (N2; beyond 150 ms). Importantly, epidural MMN peaks between 60 and 
120 ms in rats (Harms et al., 2015), the same range of the P2 recorded here for the PEP, and 
can be positive when recorded from inside the brain (Fishman and Steinschneider, 2012). Then, 
the iPE was re-computed for 12 different time windows (20 ms width, from –50 to 190 ms 
respect to stimulus onset), for each neuron/tone combination separately, and averaged within 
each station (Figure 36). The iPE showed a clear modulation over time in both fo-AC and ho-
AC stations (Friedman test, not corrected for 6 independent tests). Each individual iPE value 
was also tested against zero, and this analysis revealed a significant iPE within fo-AC between 
60−100 ms after change onset, and in ho-AC between 40−200 ms, and seemingly beyond 
(Figure 36C,F).  
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Figure	 36:	 Correlation	 of	 iPE	 and	 the	 local-field	 prediction	 error	 signal	 (PEP).	 Population	 grand-averages	 for	

different	 response	measures,	computed	 for	each	processing	station	separately:	 (1)	Average	 local	 field	potentials	

(LFP)	across	tested	tones	and	recording	sites	for	the	different	conditions.	(2)	Average	firing	rate	profiles,	as	spike-
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density	functions	(SDF,	normalized	to	better	match	the	iPE	traces	shown	below).	(3)	Average	“local-field	prediction	

error	signal”	(PEP	=	LFPDEV	−	LFPCAS;	white	trace:	 instantaneous	p-value	for	the	PEP,	paired	t-test	against	equal	

means;	 red	 horizontal	 line:	 critical	 threshold	with	 Bonferroni	 correction	 for	 200	 comparisons,	 FWER<0.05;	 thick	

black	bars:	time	intervals	for	which	average	PEP	is	significant).	(4)	Along	with	the	PEP	trace,	the	time	course	of	the	

average	 iPE	 is	 plotted	 in	 orange	 (mean	 ±	 SEM,	 asterisks	 indicate	 a	 significant	 iPE	 for	 the	 corresponding	 time	

window;	Wilcoxon	signed	rank	test	with	Bonferroni	correction	for	12	comparisons,	FWER<0.05).	Highest	iPE	values	

are	concurrent	in	time	and	location	(auditory	cortex;	panels	C-F)	with	the	strongest	PEP.		

 
 

Table 3: Summary of principal dataset for Study 2. For each auditory station: Number of 
recorded neurons and tested neuron/tone combinations (points). Median values for baseline-
corrected spike counts (spk) to the different conditions. Median differences between the former 
measures and associated p-values against zero (Friedman test with post-hoc multiple 
comparison, Fisher’s Least Significant Difference method, uncorrected for 6 independent tests). 
Median indices of neuronal mismatch (iMM), repetition suppression (iRS) and prediction error 
(iPE), computed from each of the two control sequences (CAS or MAS), and their 
corresponding p-values (note that p-values are the same for absolute differences and normalized 
indices, since these indices are median differences between normalized responses, and the non-
parametric comparison is independent of scaling). 
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 fo-IC ho-IC fo-MGB ho-MGB fo-AC ho-AC 

       
# Neurons 22 56 24 35 35 36 

# Points 114 523 77 225 250 306 
       

DEV (spk) 2.55 0.99 0.64 0.68 0.95 0.98 
STD (spk) 1.93 0.22 0.20 0.14 0.24 0.21 
CAS (spk) 2.37 0.97 0.71 0.55 0.77 0.59 
MAS (spk) 2.51 0.95 0.90 0.65 0.85 0.52 

       
DEV−STD (spk) 0.62 0.77 0.44 0.54 0.71 0.77 

p-val 0.000 0.000 0.000 0.000 0.000 0.000 

CAS−STD (spk) 0.44 0.76 0.51 0.40 0.53 0.38 
p-val 0.000 0.000 0.000 0.000 0.000 0.000 

DEV−CAS (spk) 0.18 0.019 −0.07 0.13 0.18 0.39 
p-val 0.779 0.020 0.019 0.023 0.019 0.000 

MAS−STD (spk) 0.57 0.73 0.70 0.50 0.60 0.31 
p-val 0.003 0.000 0.000 0.000 0.000 0.000 

DEV−MAS (spk) 0.04 0.04 −0.26 0.03 0.11 0.46 
p-val 0.190 0.155 0.003 0.671 0.049 0.000 

       
iMMCAS 0.127 0.493 0.324 0.496 0.505 0.609 

p-val 0.000 0.000 0.000 0.000 0.000 0.000 

iRSCAS 0.013 0.461 0.447 0.446 0.398 0.334 
p-val 0.000 0.000 0.000 0.000 0.000 0.000 

iPECAS −0.002 0.032 −0.122 0.050 0.107 0.275 
p-val 0.779 0.020 0.019 0.023 0.019 0.000 

       
iMMMAS 0.147 0.485 0.303 0.505 0.508 0.611 

p-val 0.000 0.000 0.000 0.000 0.000 0.000 

iRSMAS 0.091 0.463 0.445 0.494 0.439 0.343 
p-val 0.003 0.000 0.000 0.000 0.000 0.000 

iPEMAS 0.055 0.023 −0.143 0.010 0.069 0.267 
p-val 0.190 0.155 0.003 0.671 0.049 0.000 
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DISCUSSION	
In Study 1, I compared the level of SSA in primary and higher-order auditory cortex to 

validate SSA as a candidate neural correlate of the MMN. To study the topographic 
organization of SSA I mapped the whole rat auditory cortex with MUA recordings from middle 
layers III/IV, using an oddball paradigm. I demonstrate that SSA occurs beyond A1, and its 
properties differ between primary and non-primary fields. Major findings in Study 1 are: (1) 
Highest SSA is sharply segregated to non-primary fields, creating a distinct topographic 
gradient of SSA within the auditory cortex. (2) High SSA is present in non-primary fields up to 
200 ms after stimulus onset, and it remains stronger than in primary fields during the first 100 
ms of the neuronal responses. (3) In all cortical fields, SSA is correlated in time and strength 
with the difference wave seen in both the fast (Nd) and slower (Pd) deflections of the LFP. As 
additional novel findings, I show that: (4) SSA produces a delay in the responses to standard 
tones, as compared to deviants, and this delay is longer in non-primary fields. (5) SSA is 
significantly higher for high frequencies of stimulation, and this dependence is more 
pronounced in primary fields. (6) SSA occurs faster and reaches a much lower plateau in the 
non-primary fields.  

My data sharply contrast with previous studies showing that SSA level in A1 neurons is 
independent of their CF and in which less than 4% neurons showed a latency effect (Ulanovsky 
et al., 2004). But the presence of strong SSA in spiking responses at 50-100 ms and beyond 
represents the major difference with previous SSA studies. Only very recently, two studies in 
mouse auditory cortex (Chen et al., 2015; Natan et al., 2015) and one in rat somatosensory 
cortex (Musall et al., 2015) found SSA in either subthreshold Vm fluctuations of layer II/III 
pyramidal neurons (Chen et al., 2015) or spiking responses of inhibitory interneurons (Chen et 
al., 2015; Natan et al., 2015) and layer IV pyramidal neurons (Musall et al., 2015) occurring 
>50-100 ms after stimulus onset. Importantly, we recorded mainly form layer IIIb/IV neurons, 
receiving direct thalamocortical inputs, which are more likely to show long-latency spiking 
responses (Metherate and Cruikshank, 1999). Finally, previous studies reported SSA for LFP in 
A1, but they failed to show any correlation between MMN-like components of the LFP and 
SSA. Some did not find significant spiking activity for latencies beyond 50 ms (von der Behrens 
et al., 2009; Fishman and Steinschneider, 2012), or observed SSA only for the fast Nd (Farley 
et al., 2010); others did not measure MUA (Szymanski et al., 2009) or their analysis was 
restricted to the fast Nd only (Taaseh et al., 2011). Such a correlation has only been described in 
the somatosensory cortex (Musall et al., 2015). 

Additionally, in Study 2, I could confirm that single neuron responses to deviant tones in 
the oddball paradigm reflect genuine deviance detection, as opposed to just adaptation to 
repetition, thus showing that these responses meet the critical condition to be considered as 
genuine mismatch responses. Moreover, the highest iPE values, reflecting prediction error in 
single neuron responses, also correlate in time and location (ho-AC) with a large-scale mismatch 
wave (the PEP), putatilvely corresponding to the MMN in the rat (Shiramatsu et al., 2013; 
Harms et al., 2015).  
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Thus, in these two studies, I provide unequivocal evidence to support the notion that single 
neuron responses to oddball stimulation along the auditory pathway constitute the neuronal 
correlate of large-scale indices of deviance detection recorded epidurally. In particular, I 
demonstrate that the responses of single neurons in higher-order auditory cortex directly 
underlie the generation of the MMN. 

Completing	the	picture	of	SSA	in	the	auditory	pathway	

One key aspect of my data in Study 1 is the high coincidence in the relative position of the 
fields across animals and in comparison with previous mapping studies (Polley et al., 2007; 
Pandya et al., 2008; Higgins et al., 2010; Profant et al., 2013). My analysis revealed a systematic 
meta-organization of SSA in the auditory cortex of the rat (Polley et al., 2007; Higgins et al., 
2010), such that the CSI gradient shows a steep increase at the boundaries between primary and 
non-primary fields (Figure 26B). In particular, the sharp CSI enhancement between A1 and 
PAF (Figure 26D) bears striking resemblance with the same border found previously for 
bandwidth and latency (Pandya et al., 2008). These results conform with previous studies that 
showed SSA in A1 (Ulanovsky et al., 2003; von der Behrens et al., 2009; Farley et al., 2010; 
Taaseh et al., 2011; Fishman and Steinschneider, 2012; Hershenhoren et al., 2014; Chen et al., 
2015; Natan et al., 2015; Nir et al., 2015) and extend their findings, as I present new SSA 
properties hitherto unknown. Importantly, the distribution of SSA indices in my A1 sample is 
largely equivalent to those shown in previous studies of SSA in the rat or mouse A1 that used 
similar paradigm parameters (Taaseh et al., 2011; Natan et al., 2015; Nir et al., 2015) making 
further comparisons more reliable. To the best of my knowledge, there were no previous studies 
of SSA outside A1, although higher SSA levels were expected to be found in non-primary 
fields, since neurons in non-primary cortical areas are known to show fast adaptation (Irvine and 
Huebner, 1979; Schreiner and Cynader, 1984). In particular, many studies independently 
reported that PAF neurons in the rat adapt strongly even to slow repetition rates (Doron et al., 
2002; Polley et al., 2007; Pandya et al., 2008), and novel sounds produced greater cellular 
activity than familiar sounds in auditory association cortex in area Te3 (Wan et al., 2001), where 
the SRAF is located (Kimura et al., 2007). There is also strong evidence of enhanced adaptation 
in in non-primary areas of the auditory cortex from large-scale brain responses (ERP, MEG, 
fMRI) in both animals (King et al., 1995; Pincze et al., 2001; Jung et al., 2013; Shiramatsu et 
al., 2013) and humans (Kropotov et al., 2000; Jääskeläinen et al., 2004; Opitz et al., 2005; 
Maess et al., 2007). My findings also parallel the topography of subcortical SSA (Figure 31). 
Previous studies consistently found stronger SSA in the non-primary (or non-lemniscal) 
subdivisions of the IC (Malmierca et al., 2009; Duque et al., 2012; Ayala and Malmierca, 2013) 
and MGB (Kraus et al., 1994; Antunes et al., 2010). Importantly, an identical dependence of 
SSA on frequency of stimulation as well as a delay in onset latency of responses to standards 
have already been shown in the IC (Duque et al., 2012).  

Before proceeding any further, I should draw attention to three major caveats of Study 1. 
First, anesthesia reduces neuronal responsiveness to auditory stimuli, as well as spontaneous 
firing, and may change some receptive field properties (Zurita et al., 1994; Gaese and Ostwald, 
2001; Noda and Takahashi, 2015), and thus, an increased sensitivity to anesthetics in higher-
order fields may lead to an overestimation of the SSA seen in those areas. However, I observed 
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high spontaneous rates, as well as strong, sustained responses to deviants in non-primary fields 
(Figure 27A; baseline-corrected spike counts within 0-200 ms, mean ± SEM: A1, 3.2 ± 0.1; 
AAF, 2.8 ± 0.1; VAF, 4.7 ± 0.2; SRAF, 3.9 ± 0.2; PAF, 2.6 ± 0.2). I used urethane as 
anesthetic because it preserves balanced neural activity better than other agents (Hara and 
Harris, 2002), it retains the higher-order processing capabilities of the auditory cortex (Capsius 
and Leppelsack, 1996) and shows no significant effects on SSA levels, at least in the IC (Duque 
and Malmierca, 2015). Most importantly, MMN-like responses have been successfully recorded 
from anesthetized (Ruusuvirta et al., 1998; Tikhonravov et al., 2010; Astikainen et al., 2011; 
Shiramatsu et al., 2013) and awake (Nakamura et al., 2011; Jung et al., 2013; Harms et al., 
2014) animals alike (for review, see (Todd et al., 2013)). Second, the MMN is a negative-going 
component, in contrast to the positive late potential (Pd) examined here. Depending on the 
location of recording and anesthetic state, epidural MMN recordings in rats can be positive in 
polarity (Nakamura et al., 2011; Harms et al., 2014), an effect commonly observed in urethane-
anesthetized preparations (Ruusuvirta et al., 1998; Astikainen et al., 2011). Moreover, an 
inversion of the LFP has been extensively described using laminar probes in A1 (Szymanski et 
al., 2009; Fishman and Steinschneider, 2012), such that positivities in layers IIIb/IV may appear 
as negativities in superficial layers. Third, there are some discrepancies between the SSA seen in 
MUA and in LFP data. Namely, whereas the MUA shows prominent activity between 
100−200 ms (i.e., beyond the rat-MMN range; Figure 27B) the LFP is relatively flat within this 
time window (Figure 30A). Similar late-spiking activity has been observed in parvalbumin-
positive inhibitory interneurons (Chen et al., 2015) and interpreted as delayed reverberating 
network activity specifically triggered by deviant stimuli, but we cannot rule out that MUA 
includes activity from thalamocortical afferents in layers IIIb/IV, which would not produce a 
prominent LFP component. Alternatively, the late enhancement of SSA (100−200 ms) seen in 
the primary fields (Figure 27B,C) might result from processing in the non-primary fields, 
subsequently transmitted downwards through the massive feedback corticocortical connections 
(Figure 31) (Kimura et al., 2004, 2007; Carrasco and Lomber, 2010; Musall et al., 2015). A 
more relevant discrepancy is that the difference-wave amplitude for the later Pd component of 
the LFP is comparable between primary and non-primary auditory cortex, and even significantly 
smaller in PAF than in A1 or AAF (Figure 30B), not supporting the notion of enhanced SSA 
in non-primary fields. However, previous ERP studies (Jung et al., 2013; Shiramatsu et al., 
2013) failed to find differences in the MMN amplitude between primary and non-primary 
fields. One simple reason for this could be that ERPs and LFPs are large-scale potentials, 
reflecting overall synaptic activity within a wide volume of tissue (Buzsáki et al., 2012), most 
probably spanning the boundaries between fields. Therefore, local measures at the cellular level 
such as MUA are much better indicators of specific differences between fields. Furthermore, it 
is consistent to find higher SSA at the MUA than at the LFP level (i.e., output vs. input, 
respectively) within any particular area, as also shown at the single-neuron level (Hershenhoren 
et al., 2014). Also, the amplitude of the difference wave is an absolute measure, whereas SSA is 
commonly expressed as a contrast such as the CSI. When computed this way, SSA for the Pd 
amplitude is already higher in non-primary than in primary fields, yet this difference is much 
sharper for the MUA, reflecting the operations carried out by non-primary fields to their 
already-adapted inputs. 
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Figure	31.	Emergence	of	SSA	in	the	non-lemniscal	auditory	pathway.	Simplified	wiring	diagram	showing	SSA	levels	

and	ascending	connections	of	the	auditory	brain	where	SSA	occurs.	SSA	is	virtually	absent	from	lemniscal	parts	of	

the	 IC	 (CNIC,	central	nucleus	of	 the	 IC)	and	MGB	(MGV,	ventral	division	of	 the	MGB),	but	 it	 is	high	 in	 their	non-

lemniscal	 subdivisions	 (RCIC,	DCIC	and	 LCIC,	 rostral,	 dorsal	 and	 lateral	 cortices	of	 the	 IC,	 respectively;	MGD	and	

MGM,	dorsal	and	medial	divisions	of	the	MGB,	respectively),	showing	levels	comparable	to	those	seen	in	primary	

cortical	fields.	Extreme	levels	of	SSA	are	found	only	in	non-primary	fields	of	the	auditory	cortex	and	in	the	MGM.	

Thus,	SSA	undergoes	a	significant	enhancement	at	both	lemniscal	and	non-lemniscal	thalamocortical	projections.	A	

potential	influence	of	non-primary	fields	on	high	late-SSA	seen	in	primary	fields	is	represented	by	the	red	arrows.	

Median	 CSI	 values	 in	 the	 IC	 and	 MGB	 are	 from	 Antunes	 et	 al.	 (2010)	 and	 Duque	 et	 al.	 (2012),	 using	 similar	

paradigm	parameters.	
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SSA	as	a	neuronal	correlate	of	MMN	

 The mechanisms and location of the neural generators of SSA and their relation to 
MMN are still a subject of debate (Grimm and Escera, 2012; Escera and Malmierca, 2014; 
Malmierca et al., 2014; Nelken, 2014). In the lemniscal pathway (Figure 31), SSA undergoes a 
first enhancement at the thalamocortical synapses from the ventral division of the MGB to A1 
(Ulanovsky et al., 2003; Antunes et al., 2010). In Study 1 I show a further enhancement of SSA 
in non-primary cortical fields, which integrate the thalamocortical projection from non-
lemniscal MGB (Smith et al., 2012) and the corticocortical projection from primary fields 
(Carrasco et al., 2015) and redirect their output to prefrontal and limbic brain regions involved 
in spatial attention and emotional memory (Kimura et al., 2004, 2007). Thus, Study 1 confirms 
that SSA is a prevalent property of the non-lemniscal auditory pathway, even at the cortical 
level (Figure 31). This organization may underlie its functional significance, as a higher-order 
stage of sensory processing beyond the faithful representation of the auditory stimuli that 
predominates in the lemniscal pathway (Atiani et al., 2014). Cumulating evidence indicates the 
existence of a hierarchy of processing stages for regularity encoding in the auditory brain, with 
later response components showing sensitivity for changes in more complex aspects of the 
acoustic scene (Costa-Faidella et al., 2011a; Grimm and Escera, 2012; Malmierca et al., 2014). 
Repetition positivity (RP) has been proposed as the electrophysiological correlate of the 
memory trace formation required for subsequent change detection and, in turn, rapid SSA in 
auditory cortex is likely to contribute to its generation (Haenschel et al., 2005; Garrido et al., 
2009a). Here we show very strong SSA in non-primary auditory cortex, supposed to contain the 
main generators of the MMN in humans (Alho, 1995; Alho et al., 1998; Kropotov et al., 2000; 
Opitz et al., 2005; Maess et al., 2007), cats (Pincze et al., 2001) and rats (Shiramatsu et al., 
2013), that resembles MMN in several ways. First, SSA results in stronger responses to deviants 
than to standards in the oddball paradigm, to the extent that responses to standards can get 
totally suppressed in some recordings from non-primary fields. Critically, I show strong SSA in 
these areas between 50-100 ms, correlated with a consistent difference wave at the slow Pd 
component of the LFP (Figure 30A). The latency of this Pd deflection (60-80 ms) is 
considerably shorter than the human MMN (150-200 ms), but matches perfectly the range of 
MMN-like potentials in the rat (Ruusuvirta et al., 1998; Tikhonravov et al., 2010; Astikainen et 
al., 2011; Nakamura et al., 2011; Jung et al., 2013; Shiramatsu et al., 2013; Harms et al., 2014), 
which tend to occur on average 50-100 ms after stimulus onset, probably due to the smaller size 
of the rat brain (Harms et al., 2015). Interestingly, this SSA resembles RP in the first standard 
presentations (Figure 29B) and matches stimulus statistics at multiple time scales (Ulanovsky et 
al., 2004; Costa-Faidella et al., 2011b). I also show stronger SSA for high- than for low-
frequency tones, paralleling a commonly observed effect of frequency in both animal 
(Astikainen et al., 2011; Nakamura et al., 2011; Harms et al., 2014) and human (Pratt et al., 
2009; Peter et al., 2010) MMN recordings.  

At this juncture, it is important to note that the slower Pd component of the difference 
wave peaked with the same latency throughout the entire auditory cortex (Figure 30B), and so 
did its epidural counterpart in the rat (Shiramatsu et al., 2013). By contrast, the fast Nd 
deflection of the LFP occurs earlier in primary than in non-primary fields (Figure 30B), 
suggesting a lemniscal origin and bottom-up propagation. Therefore, a higher degree of 
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reciprocal interaction between fields is likely involved in the generation of the Pd, consistent 
with the idea that intracortical processing contributes to SSA at longer latencies (Javitt et al., 
1994; Ulanovsky et al., 2003; Szymanski et al., 2009; Musall et al., 2015; Natan et al., 2015). 
Thus, MMN-like potentials may be readily recorded from both primary and non-primary 
auditory cortex, but non-primary fields seem to contribute critically to their generation at the 
microcircuit level (Molholm et al., 2005; Opitz et al., 2005). 

In conclusion, in Study 1, I demonstrate that strong SSA occurs in non-primary auditory 
cortex at the latency range of the MMN in the rat. This finding overcomes the two major 
discrepancies hitherto alleged against the suggestion that SSA in the auditory cortex may 
underlie the generation of the MMN (Nelken and Ulanovsky, 2007; Fishman, 2014), namely, 
its anatomical location and its temporal development. I provide empirical evidence of the 
missing link between SSA in single neurons and scalp-recorded potentials, thus bridging the 
gap between animal physiology studies and the human MMN. Given the wide use of the 
MMN as a tool in clinical and cognitive neuroscience (Näätänen, 1995; Näätänen et al., 2007, 
2012; Todd et al., 2013), such a connection is potentially of high relevance for future research in 
these fields. 

SSA	as	a	neuronal	correlate	of	predictive	coding	

Study 2 provides evidence, hitherto very scarce, that the hierarchical predictive activity of 
perceptual systems is detectable at the cellular level, even subcortically. Specifically, oddball 
responses of individual neurons, from midbrain to cortex, reflect predictive processing and 
underlie large-scale electrophysiological indicators of deviance detection. After quantitatively 
decomposing neuronal mismatch responses (nMM; Figure 32D) into repetition suppression 
(iRS) and prediction error (iPE), the data show a systematic increase in the proportion of 
prediction error accounting for nMM as the sensory signal propagates up the auditory hierarchy 
(Figure 35B,D). The highest iPE values are reached within the higher-order auditory cortex, 
where they correlate with a simultaneously recorded, large-scale prediction error potential (PEP; 
Figure 36F), and extend into late evoked potentials, suggesting an influence from higher-
association or prefrontal cortices (Maess et al., 2007). These results are consistent with the 
predictive coding account of mismatch responses, while at the same time highlight the role of 
subcortical structures in perception (Güntürkün and Bugnyar, 2016), providing a novel 
extension of the mostly corticocentric predictive coding literature (Friston, 2009; Parvizi, 2009; 
Bastos et al., 2012).  

Previous attempts to show predictive activity in auditory neurons were inconclusive (Farley 
et al., 2010; Taaseh et al., 2011; Fishman and Steinschneider, 2012), and were limited to multi-
unit activity recordings in primary auditory cortex (but see (Meyer and Olson, 2011; Zmarz and 
Keller, 2016) for compelling evidence in single visual neurons). However, a recent study in 
mouse A1 (Chen et al., 2015) and another in rat barrel cortex (Musall et al., 2015) showed 
deviance detection in late responses of single units, using the MAS control sequence. Although 
the CAS sequence is arguably a better control for repetition effects than the MAS sequence 
(Ruhnau et al., 2012), only one animal study has previously applied it, using epidural recordings, 
and yielding also inconclusive results (Harms et al., 2014). My results, using single-unit 
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recordings, were comparable or even more robust for the CAS than for the MAS control (Table 
3), in agreement with human studies (Ruhnau et al., 2012). The finding that the contribution of 
prediction error to nMM supersedes that of repetition suppression within the higher-order 
auditory cortex (Figure 35B,D), is consistent with studies of brain sources of MMN in animals 
(Kraus et al., 1994; Shiramatsu et al., 2013) and humans (Opitz et al., 2005; Maess et al., 2007) 
using similar controls for repetition effects. This hierarchical transformation of nMM, 
dominated by repetition suppression at lower hierarchical levels of the auditory system, with a 
gradual emergence of prediction error at higher levels (Figure 35,B,D), confirms that lower 
levels are mostly sensitive to global stimulus probability, while higher-order levels are more 
sensitive to local relationships between sounds (transitional probabilities), exactly as observed in 
human MMN studies (Winkler and Schröger, 2015; Koelsch et al., 2016). Thus, my data are 
consistent with passive SSA (Figure 32E) underlying oddball responses in first-order midbrain 
and thalamus (Taaseh et al., 2011) (Figure 35B). By contrast, they support a generative 
mechanism of Bayesian inference being at play in auditory cortex and higher-order subcortical 
stations of perceptual processing (Stefanics et al., 2014). The contrast between first- and higher-
order nMM is particularly clear within the auditory thalamus (compare Figure 32E and Figure 
35B). Thus, higher-order midbrain and thalamus behave like the auditory cortex with regard to 
prediction error, which is the novel extension of the predictive coding scholarship. Finally, 
asymmetries in the direction of frequency-change detection (ascending vs. descending) have also 
been found in both animal (Harms et al., 2014) and human (Peter et al., 2010) MMN studies. 

Concluding	remarks	

At the functional level, adaptation and deviance detection confabulate to segregate 
incoming sensory events into two separate streams of information processing: (a) A lemniscal 
stream of primary processing that represents even the less informative details of the scene, and 
(b) a non-lemniscal stream of higher-order processing that only represents changing aspects of 
the auditory scene, which pop out from the background. Thus, as anticipated by Barlow, the 
segregation of sensory events based on their informational content is indeed one of the 
neurophysiological substrates of auditory scene analysis and stream segregation. 

These results set an important milestone in the evolution of the research carried out in our 
laboratory (Auditory Neuroscience Unit, INCYL), marking the end of a first, physiologically-
oriented stage—which might be called “the SSA stage”—and the entry into a new, more 
cognitive-oriented stage—the “mismatch detection stage”. On the one hand, with Study 1, I 
have completed the picture of SSA in the auditory system, by setting the last stone on it, 
namely, the description of SSA in non-lemniscal fields of the auditory cortex. On the other 
hand, with Study 2, I have confirmed that responses to deviant tones are indeed special, beyond 
the fact that they pop-out over the background of attenuated standards. They show indices of 
prediction error, which is a qualitative difference with respect to the classical SSA notion. The 
discovery that single neuron responses to simple oddball stimulation represent actual prediction 
error opens up a whole new family of research lines that could be followed by subsequent 
research projects. Among them, we can indicate the most important ones: 
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! Demonstrate mismatch detection for more complex types of rules, such as arbitrary 
relationships between successive stimuli. 

! Demonstrate mismatch detection for complex sounds beyond pure tones, such as for 
spectrotemporally modulated or natural sounds. 

! Perform manipulations such as reversible deactivation of frontal cortex or higher-order 
areas, optogenetic deactivation of specific cell populations, pharmacologic 
manipulations at the single cell level (microiontophoresis), etc. to dissociate the cellular 
mechanisms of repetition suppression and prediction error effects. 

! Investigate specific alterations of the “adaptation” (repetition suppression) or “deviance 
detection” (prediction error) components of neuronal responses within clinical targets 
such as animal models of aging, autism, schizophrenia or attention disorders.  
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CONCLUSIONS	
I present strong evidence linking animal SSA to the human MMN, a result thus far missing in 
animal research. Furthermore, my results demonstrate that prediction error is an intrinsic 
component of responses of single auditory neurons, emerging even from subcortical levels, and 
strengthen the case for the predictive coding theory of perceptual processing. In addition, I 
show that neuronal predictive activity underlies the generation of large-scale mismatch 
responses in animal models, and parallels important properties of human MMN. These are 
promising results for translational research into the cellular mechanisms that are disrupted in 
schizophrenia and other brain disorders characterized by reductions in large-scale mismatch 
responses, such as MMN. The conclusions of this thesis and their relevance for scientific 
advancement are the following: 

1. Neurons in higher-order cortical regions show extreme SSA levels, almost twice as high 
as in primary cortical regions.  

2. SSA as a prevalent property of the non-lemniscal auditory pathway, from midbrain to 
cortex. 

3. The anatomical location and temporal development of SSA in auditory cortex matches 
well those of simultaneously recorded MMN in the rat.  

4. Responses of single neurons to deviant tones in the oddball paradigm reflect a 
significant degree of deviance detection in addition to SSA.  

5. Single neuron activity in response to oddball stimulation underlies the generation of 
MMN and earlier indices of deviance detection. 

6. Responses of single neurons under oddball stimulation reflect the predictive activity of 
the brain, and in particular, responses to deviant tones represent prediction error at the 
single cell level.  

7. The representation of prediction error along the auditory pathway follows a hierarchical 
pattern which is highly consistent with the postulates of the Hierarchical Predictive 
Coding Framework.  

8. These results provide empirical support for the predictive coding account of MMN, 
which is increasing but still scarce. 
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APPENDIX	I:	SUMMARY	IN	SPANISH	

INTRODUCCIÓN	
Las neuronas de la corteza auditiva (AC) muestran una propiedad denominada adaptación a 

estímulos específicos (stimulus-specific adaptation, SSA), que ayuda al sistema auditivo a 
responder de inmediato a cambios inesperados en el ambiente auditivo. Estas respuestas 
neuronales adaptadas están estrechamente ligadas al denominado “potencial de disparidad” 
(MMN, del inglés “mismatch negativity”), un componente de los potenciales evocados auditivos 
registrados en humanos bajo determinados paradigmas de estimulación. El objetivo 
fundamental de este trabajo es localizar y estudiar detalladamente las neuronas que se consideran 
responsables de la generación de estos componentes de disparidad en la corteza auditiva y otros 
núcleos subcorticales de la vía auditiva en animales. Es importante señalar que la rata es buen 
modelo experimentar para estudiar el MMN y otros fenómenos relacionados, ya que se ha 
demostrado que en este animal (así como en otros roedores) se pueden registrar unos potenciales 
evocados auditivos análogos a los observados en humanos, y que comparten con ellos algunas de 
sus propiedades más características. No obstante, existen también algunas diferencias en los 
detalles de la morfología de estos potenciales entre animales y humanos. En particular, dado el 
menor tamaño del cerebro en la rata, los picos de estos potenciales ocurren mucho antes en el 
tiempo con respecto al estímulo (50-100 ms) que en humanos (150-300 ms). 

La detección automática de estímulos inesperados es una función importante de los sistemas 
sensoriales (Ranganath and Rainer, 2003; Whitmire and Stanley, 2016). El cerebro responde 
automáticamente a estos eventos discrepantes con el contexto actual, y esta actividad de 
respuesta a la discrepancia se puede detectar fácilmente usando métodos de registro no invasivos, 
como el electroencefalograma. El MMN es una de estas respuestas a la disparidad (Näätänen et 
al., 2007), generada en la corteza cerebral auditiva primaria y secundaria (Opitz et al., 2005; 
Maess et al., 2007) cuando un estímulo raro interrumpe una secuencia de tonos regular. Durante 
los últimos 40 años, el MMN se ha utilizado como una importante herramienta en investigación 
básica y en diagnóstico clínico (Näätänen et al., 2012), ya que está alterada en pacientes con 
esquizofrenia y otros desórdenes cerebrales (Michie et al., 2016). 

Pero más allá de sus aplicaciones prácticas, estas respuestas a la discrepancia proporcionan la 
única evidencia disponible hasta ahora de la denominada “teoría general de la codificación 
predictiva” (predictive coding framework), que trata de explicar en términos computacionales el 
funcionamiento en general de los sistemas sensoriales y sentar las bases teóricas de la percepción 
(Friston, 2005, 2009; Bastos et al., 2012). Según esta teoría, los sistemas sensoriales están 
continuamente tratando de anticiparse a las entradas sensoriales, y envían predicciones hacia 
estaciones de procesamiento inferiores para cancelar las respuestas neuronales evocadas por los 
estímulos que se consiguen predecir correctamente. Así, las respuestas a la discrepancia se 
interpretarían dentro de esta teoría como la suma de miles de respuestas neuronales que 
señalarían un error de predicción (Bendixen et al., 2012; Schröger et al., 2014; Stefanics et al., 
2014; Phillips et al., 2016). 
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Sin embargo, a nivel celular, se ha sugerido que las respuestas a la discrepancia podrían 
explicarse por un mecanismo neuronal más simple (May and Tiitinen, 2010; Fishman, 2014)—
que no involucra la generación de “predicciones” ni de “errores de predicción”—a saber, 
adaptación a estímulos específicos, es decir, SSA (Ulanovsky et al., 2003; Malmierca et al., 
2009; Escera and Malmierca, 2014), basada en la depresión sináptica dependiente de actividad 
(Grill-Spector et al., 2006; Mill et al., 2011). Las neuronas que muestran esta propiedad se 
encuentran en regiones específicas del cerebro auditivo, especialmente en regiones de orden 
superior dentro de la jerarquía auditiva (Escera and Malmierca, 2014; Nieto-Diego and 
Malmierca, 2016), y tienen la capacidad de atenuar sus respuestas a estímulos repetitivos, pero 
responden fuertemente a otros estímulos diferentes. Sin embargo, no está claro si esta actividad 
neuronal refleja simplemente SSA, o además también cierto grado de actividad predictiva. 

Afortunadamente, existe una manera de distinguir entre estas dos explicaciones, usando un 
diseño experimental que incluye, además de secuencias tipo oddball (Figura 32C), otras 
secuencias de control que permiten separar la atenuación a la repetición de los errores de 
predicción (Figura 32D,E) (Ruhnau et al., 2012; Harms et al., 2015). Nosotros hemos usado 
estas secuencias tonales, que normalmente se aplican solo en estudios de percepción auditiva en 
humanos (Escera and Malmierca, 2014; Schröger et al., 2014), para revelar que las respuestas 
neuronales en el cerebro auditivo de la rata efectivamente reflejan esta actividad predictiva a 
nivel celular. Se trata por tanto de un descubrimiento muy importante para comprender la 
fisiología de la percepción auditiva, y de la percepción en general, porque unifica tres 
descripciones coexistentes de la percepción de la discrepancia, a distintos niveles de análisis: 
neurofisiológico, cognitivo y teórico. 

HIPÓTESIS	Y	OBJETIVOS	
Dados los antecedentes arriba presentados, este trabajo de investigación se vertebra en torno 

a una serie de hipótesis, principalmente: 

1. El fenómeno de la SSA, definida como una respuesta diferencial a estímulos “standard” 
y “deviant” dentro del paradigma oddball, tiene lugar en las áreas de orden superior de la 
corteza auditiva, además de en las áreas primarias. 

2. Esta SSA en áreas corticales de orden superior ocurre dentro de un rango de latencias 
más cercano al MMN en la rata, dado que las respuestas neuronales en áreas no 
primarias tienden a presentar latencias de respuesta más largas (Schreiner and Cynader, 
1984; Polley et al., 2007). 

3. Las respuestas de unidades neuronales aisladas a los tonos discrepantes (deviant) en el 
paradigma oddball son un correlato neuronal de la detección de la disparidad (deviance 
detection), además de SSA. 

4. Las respuestas aumentadas a los estímulos discrepantes a lo largo de la vía auditiva son 
la representación neuronal de una señal de error de predicción, que irá creciendo a 
medida que se asciende en la jerarquía de procesamiento del sistema auditivo, tal y como 
postula la teoría de la codificación predictiva (Predictive Coding Framework). 
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Por tanto, el principal objetivo de esta investigación es validar la SSA como un correlato 
neuronal del MMN, que subyace a la detección de la discrepancia al nivel celular. Más 
específicamente, para contratar las hipótesis anteriores, se fijan los siguientes objetivos: 

1. Crear un mapa fisiológico de SSA que recubra toda la corteza auditiva de la rata, 
incluyendo áreas primarias y no primarias (o de orden superior), para detectar cualquier 
principio de organización de la SSA en gradientes o metagradientes (Polley et al., 
2007).  

2. Investigar el nivel de SSA a lo largo de distintos rangos temporales en las respuestas 
neuronales, especialmente dentro de las áreas no primarias. Analizar cualquier variación 
significativa del nivel de SSA a lo largo del transcurso de la respuesta, desde el inicio o 
respuesta temprana (onset) hasta la extinción de la respuesta (offset). 

3. Utilizar los controles de adaptación “many-standards” y “en cascada” para investigar si 
las respuestas neuronales al paradigma oddball reflejan detección de la disparidad, 
además de SSA. 

4. Realizar estos registros en varias estaciones a lo largo de la jerarquía de procesamiento 
del sistema auditivo, al menos aquellas donde la SSA ha sido investigada anteriormente: 
colículo inferior, tálamo auditivo y corteza auditiva, para estudiar cualquier progresión 
sistemática del error de predicción a lo largo de la vía. 

Los Objetivos 1 y 2 serán abordados en el Estudio 1, mediante la creación de mapas 
topográficos de SSA. Para ello se utilizará un paradigma oddball y registros multiunidad en la 
capa IV de las distintas áreas corticales auditivas. Los Objetivos 3 y 4, más ambiciosos, se 
intentarán responder en el Estudio 2, y requerirán el uso de las secuencias de control, además del 
paradigma oddball, y registros cuidadosos de unidades bien aisladas en todas las estaciones de la 
vía. 

MATERIALES	Y	MÉTODOS	

Se han realizado experimentos utilizando ratas hembra de la variedad Long-Evans, 
anestesiadas con uretano, un anestésico que produce un nivel de analgesia y anestesia profundos, 
pero no altera significativamente las propiedades de respuesta neurofisiológica básicas de las 
neuronas de la vía auditiva. También se aplican otros fármacos como corticoides (cortexona) 
para evitar la inflamación y el edema cerebral durante la cirugía, bloquentes de la secreción 
bronquial (atropina) y anestésicos locales (lidocaína). Después de anestesiar al animal se le 
realiza una prueba de umbrales de audición (ABR) para descartar algún déficit auditivo. 

Durante la cirugía se expone el hueso temporal izquierdo y se practica una craneotomía de 
unos 3x4 mm para dejar expuesta la mayor parte la corteza auditiva. Además se practica una 
punción de la cisterna magna para liberar la presión del líquido cefalorraquídeo e impedir la 
evaginación del cerebro durante los registros. Finalmente se cubre con gel de agarosa templado 
toda la superficie cerebral y ósea expuesta, para evitar la desecación y la protrusión de la 
superficie cerebral y reducir los movimientos de pulsión del tejido nervioso que repercuten 
negativamente sobre la estabilidad de los registros. 
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Para localizar los registros dentro de una de las cinco subdivisiones de la corteza auditiva de 
la rata se utilizó como referencia el mapa de Polley et al. 2007. Las coordenadas de cada 
penetración del electrodo se anotan cuidadosamente a partir de una macrofotografía del área de 
registro sobre la que se superpone una cuadrícula micrométrica. Además, en algunos lugares de 
registro seleccionados se realiza una lesión electrolítica para su posterior localización precisa 
durante el procesamiento histológico del tejido. 

Para buscar la respuesta neuronal al sonido se utilizaron ráfagas de ruido blanco de 40 ms a 
intensidad moderada (20-60 dB SPL). En cada lugar de registro se obtuvo lo que se denomina 
“área de respuesta en frecuencia” (frequency response área, FRA) de la neurona, aplicando una 
secuencia pseudoaleatoria de tonos puros a diferente frecuencia e intensidad. Para calcular el 
índice de SSA (common SSA index, CSI) se utiliza un paradigma oddball seleccionando dos 
estímulos de distinta frecuencia en torno a la frecuencia preferida de la neurona (BF). Para este 
primer experimento se utiliza un contraste de frecuencias lo más amplio posible (∆f>0.2).  

RESULTADOS	
En el Estudio 1, he comparado los niveles de SSA en las cortezas auditivas primaria y de 

orden superior, para validar la SSA como un correlato neuronal del MMN. Para estudiar la 
organización topográfica de la SSA realicé un mapeado completo de la corteza auditiva de la 
rata con registros multiunidad en las capas III/IV, usando un paradigma oddball. En este estudio 
he podido demostrar que la SSA ocurre más allá de A1, y que sus propiedades difieren entre las 
cortezas primarias y de orden superior. Los principales hallazgos del Estudio 1 son: (1) Los 
niveles más altos de SSA están altamente segregados hacia las áreas corticales de orden superior 
(no primarias), creando un gradiente de SSA característico y bien definido dentro de la corteza 
auditiva (Figura 25 y Figura 26). (2) Los niveles de SSA en las cortezas no primarias se 
mantienen muy altos durante toda la respuesta neuronal, hasta 200 ms después del estímulo, y se 
mantienen significativamente más altos que en las áreas primarias durante los primeros 100 ms 
de la respuesta (Figura 27). (3) En todas las áreas corticales la SSA se correlaciona en el tiempo 
y en intensidad con la señal diferencia registrada en los componentes rápido (Nd) y lento (Pd) 
de los potenciales de campo local (LFP; Figura 30). (4) La SSA produce un retraso en las 
respuestas a estímulos repetitivos (standard), y este retraso es mayor en las áreas no primarias. 
(5) La SSA es significativamente más alta para frecuencias de estimulación agudas, y esta 
dependencia es más pronunciada en las áreas primarias (Figura 28). (6) La SSA ocurre más 
rápidamente, y alcanza un estado estacionario mucho más bajo, en las áreas corticales de orden 
superior (Figura 29). 

Por tanto, en el Estudio 1 he demostrado que la SSA ocurre no solo en las áreas primarias 
de la Corteza Auditiva (A1, VAF y SRAF), como ya se sabía, sino que también puede 
observarse en áreas secundarias (SRAF y PAF). Es más, la SSA es mucho más intensa en estas 
áreas secundarias. La SSA observada en las respuestas neuronales individuales está 
correlacionada en el espacio y en el tiempo con los potenciales de campo local (LFP), que son el 
correlato electrofisiológico del MMN cuando se registra desde el interior del tejido. La SSA es 
una propiedad fundamental de las estaciones de orden superior del sistema auditivo, y uno de los 
mecanismos celulares íntimamente relacionados con la generación del MMN. 
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En el Estudio 2, he registrado las respuestas de neuronas en distintas estaciones de 
procesamiento de la vía auditiva (Figura 31 y 32), ordenadas jerárquicamente desde las más 
inferiores (como el núcleo central de colículo inferior) hasta las más superiores (como la corteza 
auditiva secundaria, ver Figura 32B). En un primer análisis, comoparé las respuestas de toda 
nuestra muestra entre tres diferentes condiciones de presentación de los tonos: standard o 
repetitivo (STD), deviant o discrepante, (DEV), y control en cascada o estímulo neutro (CAS) 
(Figura 32C), observando que las respuestas DEV son en general significativamente mayores 
que al CAS, sobre todo en estaciones de procesamiento superior (Figura 34D-F). Después, he 
normalizado todas las respuestas neuronales entre 0 y 1 (Figura 34G-L), para descomponer la 
diferencia entre las respuestas a los estímulos repetitivos (STD) y discrepantes (DEV) en dos 
factores distintos (ver Figura 32D): atenuación a la repetición (iRS) y error de predicción (iPE). 
Y lo más importante es que pude observar una emergencia progresiva del componente iPE, es 
decir, del error de predicción, a medida que se asciende hacia estaciones de procesamiento 
superior (Figura 35). Este resultado ha sido validado estadísticamente, ajustando un modelo 
lineal robusto a los datos de iPE en las distintas estaciones, y he encontrado dos factores que 
influyen significativamente en aumentar este error de predicción: el nivel anatómico (colículo 
inferior, tálamo y corteza) y el nivel jerárquico (primer orden y orden superior). Esto encaja 
perfectamente con la teoría de la codificación predictiva, que postula que la generación de 
predicciones y errores de predicción es un proceso universal que ocurre a todos los niveles de 
procesamiento sensorial; pero además nuestros datos extienden esta teoría a estaciones 
subcorticales, lo cual es un descubrimiento muy novedoso y una demostración de que el 
procesamiento subcortical es fundamental para la percepción.  

Finalmente, he podido demostrar que esta actividad en neuronas individuales está 
acompañada de un potencial cerebral registrado a mayor escala, comparable con el MMN en 
humanos, y que se sabe que refleja la actividad predictiva del cerebro (Figura 36). Por tanto, la 
actividad neuronal que hemos identificado, se puede considerar la responsable de estos 
potenciales de disparidad que están alterados en la esquizofrenia o el autismo, y esto abre una 
puerta de valor incalculable para estudios traslacionales en modelos animales (Todd et al., 2013; 
Harms et al., 2015; Michie et al., 2016). 

DISCUSIÓN	
Los datos del Estudio 1 contrastan con estudios previos de SSA, que indicaban que los 

niveles de SSA en A1 eran independientes de su frecuencia característica (CF), y en los que 
menos de un 4% de las neuronas mostraron un efecto en la latencia de respuesta (Ulanovsky et 
al., 2004). Pero la presencia de SSA alta en las respuestas neuronales entre 50 y 100 ms e incluso 
más tarde, representa la principal diferencia con respecto a estudios previos de SSA. Solo muy 
recientemente, dos estudios en la corteza auditiva del ratón (Chen et al., 2015; Natan et al., 
2015) y uno en la corteza somatosensorial de la rata (Musall et al., 2015) encontraron SSA en 
respuestas subumbrales en neuronas piramidales de la capa II/III, o en respuestas neuronales 
extracelulares en interneuronas inhibitorias (Chen et al., 2015; Natan et al., 2015) y en neuronas 
piramidales de la capa IV(Musall et al., 2015), que ocurrían más allá de los 50-100 ms después 
del estímulo.  
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Además, en el Estudio 2, he podido confirmar que las respuestas de unidades neuronales 
aisladas a estímulos discrepantes (deviant) son el resultado de un proceso genuino de detección 
de la disparidad (deviance detection), y no solamente de la adaptación a la repetición. Así, he 
podido demostrar que estas respuestas cumplen el requisito fundamental para ser consideradas 
como respuestas a la disparidad genuinas. Es más, los altos índices de error de predicción (iPE), 
que reflejan señales de error en las respuestas de neuronas individuales, también se correlacionan 
en el tiempo y en la localización anatómica (ho-AC) con un potencial de error de predicción 
(PEP) registrado a gran escala, que se corresponde con el MMN en la rata (Shiramatsu et al., 
2013; Harms et al., 2015). 

Algunos estudios previos intentaron demostrar detección de la disparidad en unidades 
neuronales de la corteza auditiva primaria, pero estos estudios no pudieron alcanzar ningún 
resultado concluyente (Farley et al., 2010; Taaseh et al., 2011; Fishman and Steinschneider, 
2012), quizá porque se limitaron a registrar actividad multiunidad en la corteza auditiva 
primaria. No obstante, un estudio reciente en la corteza auditiva primaria del ratón (Chen et al., 
2015) y otro en la corteza somatosensorial de la rata (Musall et al., 2015) encontraron signos de 
detección de la discrepancia en respuestas neuronales tardías, utilizando en control “many-
standards”. A pesar de que el control “en cascada” está considerado un mejor control de 
adaptación que el “many-standards” (Ruhnau et al., 2012), solo un estudio en animales lo ha 
utilizado, en registros epidurales, y sin alcanzar tampoco resultados concluyentes (Harms et al., 
2014).  

Así pues, en estos dos estudios, proporciono pruebas concluyentes que apoyan la teoría de 
que las respuestas de unidades neuronales aisladas a estimulación con el paradigma oddball, a 
distintos niveles de la vía auditiva, constituyen el correlato neuronal de los indicadores 
electrofisiológicos de detección de la discrepancia (deviance detection) registrados 
epiduralmente mediante EEG. En particular, he demostrado que las respuestas de unidades 
neuronales en las cortezas auditivas de orden superior subyacen directamente a la generación del 
MMN. 

CONCLUSIONES	

En conjunto, los resultados de los dos estudios incluidos en esta tesis permiten extraer las 
siguientes conclusiones: 

1. Las neuronas de regiones corticales auditivas de orden superior muestran niveles muy 
altos de SSA, significativamente mayores que en las áreas primarias de la corteza 
auditiva. 

2. La SSA es una propiedad predominante de la vía auditiva no lemniscal, desde el 
mesencéfalo hasta la corteza auditiva. 

3. La localización anatómica y el curso temporal de la SSA en la corteza auditiva se 
corresponden con los del MMN registrado simultáneamente en la rata. 

4. Las respuestas de unidades neuronales aisladas a tonos discrepantes en un paradigma 
oddball son resultado de un proceso de detección de la discrepancia, además de SSA. 
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5. La actividad de unidades neuronales aisladas en respuesta al paradigma oddball es la base 
de la generación del MMN y otros indicadores tempranos de detección de la 
discrepancia. 

6. Las respuestas neuronales a la estimulación con el paradigma oddball demuestran la 
actividad predictiva del cerebro auditivo, in en particular, las respuestas a tonos 
discrepantes representan error de predicción a nivel celular.  

7. La representación del error de predicción a lo largo de la vía auditiva sigue un patrón 
jerárquico consistente con los postulados de la Teoría de la Codificación Predictiva 
Jerárquica. 

8. Estos resultados proporcionan pruebas empíricas de la generación del MMN basada en 
codificación predictiva, para lo cual hay aún escasez de evidencia experimental. 
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Abstract
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested

to be a potential neural correlate of the mismatch negativity (MMN), a widely studied compo-

nent of the auditory event-related potentials (ERP) that is elicited by changes in the auditory

environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA

occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lack-

ing. To study the topographic organization of SSA, we mapped the whole rat auditory cortex

with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA

occurs outside A1 and differs between primary and nonprimary cortical fields. In particular,

SSA is much stronger and develops faster in the nonprimary than in the primary fields, par-

alleling the organization of subcortical SSA. Importantly, strong SSA is present in the non-

primary auditory cortex within the latency range of the MMN in the rat and correlates with an

MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We

present new and strong evidence linking SSA at the cellular level to the MMN, a central tool

in cognitive and clinical neuroscience.

Author Summary

Sensory systems automatically detect salient events in a monotonous ambient background.
In humans, this change detection process is indexed by the mismatch negativity (MMN), a
mid-late component of the auditory-evoked potentials that has become a central tool in
cognitive and clinical neuroscience over the last 40 years. However, the neuronal correlate
of MMN remains controversial. Stimulus-specific adaptation (SSA) is a special type of
adaptation recorded at the neuronal level in the auditory pathway. Attenuating the
response only to repetitive, background stimuli is a very efficient mechanism to enhance
the saliency of any upcoming deviant or novel stimulus. Thus, SSA was originally pro-
posed as a neural correlate of the MMN, but previous studies in the auditory cortex
reported SSA only at very early latencies (circa 20–30 ms) and only within the primary
auditory cortex (A1), whereas MMN analogs in the rat occur later, between 50 and 100 ms
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after change onset, and are generated mainly within nonprimary fields. Here, we report
very strong SSA in nonprimary fields within the latency range of the MMN in the rat, pro-
viding empirical evidence of the missing link between single neuron response studies in
animal models and the human MMN.

Introduction
A critical function of the brain is to identify uncommon and potentially important stimuli
while ignoring irrelevant ambient backgrounds [1–3]. In humans, this ability is reflected by an
electrophysiological brain response called mismatch negativity (MMN), a mid-late (150–200
ms) deflection of the auditory event-related potentials (ERP) that is elicited by uncommon, but
not by repetitive, sounds [4–7] and serves to automatically redirect attention toward potentially
relevant stimuli [8]. Importantly, the MMN signal is altered in patients with schizophrenia and
other psychiatric disorders and can be used as an index of cognitive decline in normal and
pathological neurodegenerative processes [9,10]. The MMN has been extensively studied using
the “oddball” paradigm, in which infrequently occurring sounds, i.e., “deviant” tones, are ran-
domly interspersed among frequent monotonous sounds, i.e., “standard” tones. MMN studies
have advanced our knowledge on many aspects of change and novelty detection, but scalp
recordings limit our ability to pinpoint its regions of generation.

Recent studies over the past decade have taken advantage of the oddball paradigm to study
adaptation in single auditory neurons. Stimulus-specific adaptation (SSA) may be a counter-
part phenomenon to MMN that is studied in single neurons using this paradigm [11]. As in
MMN, neurons showing SSA adapt to frequently occurring stimuli (standards) yet respond
strongly to rare stimuli (deviants). Within the auditory system, SSA was originally reported in
the primary auditory cortex (A1) [12] as a higher level of adaptation to a specific stimulus, dif-
ferent from firing rate adaptation resulting from changes in the intrinsic properties of the neu-
ron. SSA shares many properties with the MMN, and it is important because it may be a neural
correlate of the MMN, or at least one of its early generators [11,13]. The basic properties of
SSA have been studied in great detail not only in A1 but also in the subcortical inferior collicu-
lus (IC) [14–16] and medial geniculate body (MGB) [17,18]. One important difference between
SSA in the auditory cortex and subcortical stations is their anatomical location. SSA is strong
and widespread only in the nonlemniscal regions of the IC and MGB [16], while SSA has been
described as strong and widespread in lemniscal A1 [12,19]. However, detailed studies on SSA
within the different cortical fields beyond A1 are lacking. Since SSA is stronger in the nonlem-
niscal regions of the IC and MGB, it is reasonable to hypothesize that SSA in the nonprimary
regions of the auditory cortex would also be stronger than in A1. Indeed, previous studies on
the general response properties of the auditory cortex reported that nonprimary neurons in the
cat [20,21] and rat [22–24] auditory cortex adapt more strongly than in A1. Even studies in
human subjects have shown differential adaptation between primary and nonprimary cortical
areas [25–27]. Moreover, two recent studies that mapped auditory ERPs in the rat showed
robust MMN-like responses in nonprimary auditory cortical fields [28,29].

The main goal of the present study was to generate a complete and fine-grained map of SSA
across all known cortical fields in the rat. Despite interspecies differences, the rat auditory cor-
tex shares many common anatomical and physiological features with other species [23,30,31],
including primary and nonprimary regions. Primary regions of the auditory cortex are charac-
terized by a thick, dense, granular layer and receive major layer IIIb/IV thalamocortical projec-
tion from the first-order (or lemniscal) auditory thalamus. The nonprimary auditory cortex is
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formed by surrounding regions that subsequently process input from primary regions and
receive major layer IIIb/IV projection from the higher-order (or nonlemniscal) auditory thala-
mus [31]. Detailed electrophysiological mapping studies [23,24,32] have identified at least five
tonotopically organized fields in the rat auditory cortex. The A1, the anterior auditory field
(AAF), and the ventral auditory field (VAF) are all considered primary fields [23,33]. Addition-
ally, two distinct nonprimary regions have been identified: the posterior auditory field (PAF),
located in the dorsocaudal border of A1; and the suprarhinal auditory field (SRAF), in the ven-
tral margin of the auditory cortex [23,31,34,35]. Unfortunately, there are no specific stains or
molecular markers that cause one cortical region in the rat to stand out unambiguously from
another, but they show a robust organization of multiple response properties that follow a par-
ticular spatial organization [23,36]. Our results demonstrate that, although SSA is indeed pres-
ent in A1 and the other two primary fields, it is markedly stronger in the nonprimary fields
PAF and SRAF, consistent with the SSA observed in nonlemniscal parts of the IC and MGB.
Another important finding in our data is that SSA observed in auditory cortex is robust up to
200 ms after stimulus onset, well within the latency range of the MMN-like potentials in the rat
[37]. These data suggest the existence of a hierarchically organized system for SSA processing
[13] and reinforce the notion that nonprimary SSA is a more direct neural correlate of the
MMN than the SSA observed in A1.

Results
To study the topographic distribution of SSA across the auditory cortex, we recorded a total of
816 multiunit activity (MUA) clusters from layers IIIb/IV within all cortical fields from the left
auditory cortex in 12 animals (total number of recordings by field: A1, 167; AAF, 121; VAF, 164;
SRAF, 169; PAF, 119). Local field potentials (LFPs) were simultaneously recorded from the same
electrode in four of the animals. In each animal, we made a microelectrode mapping (15–25
tracks/mm2) covering at least three fields (Fig 1A shows an example with 132 recording sites
from all fields). Most recordings (89%) were made between 300 and 600 μm in depth, corre-
sponding to cortical layers IIIb/IV [31]. Five auditory cortical fields were identified according to
tone frequency response topographies. The limits and relative position of the auditory fields were
determined for each animal at the end of the experiment, using the characteristic frequency (CF)
gradient as the main reference landmark (Fig 1B). We consistently observed distinct tonotopic
gradients within the different fields [23,32,36], with a high-frequency reversal between VAF and
AAF (rostrally), a low-frequency reversal between A1 and PAF (dorsocaudally), and a high-fre-
quency reversal between VAF and SRAF (ventrally). We identified the boundary between A1
and VAF as a 90°-shift in the CF gradient in the ventral low-frequency border of A1, and the
boundary between A1 and AAF as an absence of tone-evoked responses in the ventral, high-fre-
quency border of A1 (Fig 1B). We used these boundaries to assign each recording to a given field.

At every recording site, the frequency response area (FRA) was computed, and we presented
an oddball paradigm (two sequences of 250 trials, 10% deviants, 300 ms onset-to-onset interval,
0.5 octaves frequency separation) using a pair of pure tones from the FRA, at 20–30 dB above CF
threshold, which elicited clear responses of similar magnitude. Fig 2 shows representative MUA
recordings from each auditory cortex field. Fig 2A shows their FRAs and the pair of stimuli f1
and f2 selected for the oddball paradigm, and Fig 2B shows comparative responses to each fre-
quency when presented as either standard (blue) or deviant (red) in the oddball paradigm.

SSA Is Stronger in Nonprimary Fields
The main aim of this study was to quantify and compare SSA levels between the five cortical
fields. Thus, we computed the stimulus-specific adaptation index (SI) for each stimulus, SI(f1)
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and SI(f2), and the common SSA index (CSI) for every recording site, using baseline-corrected
spike counts during stimulus presentation (5 to 80 ms from stimulus onset; see Materials and
Methods). Fig 3A shows a series of scatterplots illustrating the joint distribution of SI(f1) and SI
(f2), for the whole population and for each field separately, and Fig 3B illustrates corresponding
histograms of CSI distributions (total number of recording sites included in this analysis, as
detailed in Materials and Methods, are also indicated). In all cases, points are symmetrically

Fig 1. Experimental setup. A. Sample case with 132 MUA recording sites from layers IIIb/IV throughout the
cortical fields in one representative animal. At every site, the CF was determined (if possible), and we
presented an oddball paradigm (c.f., Fig 2). Sites are classified according to pure-tone selectivity (Selective:
tone-responsive with a clear CF; Unselective: tone-responsive, but with a lack of a clear CF; Unresponsive:
no significant responses to pure tones).B.Outline of the different cortical fields in this particular case, as
derived from the tonotopic gradients. Each field shows a characteristic CF gradient [23], with A1 being the
most easily identifiable.

doi:10.1371/journal.pbio.1002397.g001
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Fig 2. Stimulation paradigm. A. Representative FRAs from each auditory cortex field. Firing rate (red shading, normalized to max response) is represented
as a function of frequency and intensity of the tones presented, and the frequency-tuning curve has been outlined (minimum sound intensity that elicits a
firing rate over 20%–40% of the maximum firing for each frequency, excluding isolated “islands” of spontaneous activity). We selected a pair of frequencies,
separated by 0.5 octaves, that elicited responses of similar magnitude at 20–30 dB above threshold. These frequencies were then presented within an
oddball paradigm (250 tones, 10% deviants, 300 ms onset-to-onset interval, 75 ms tone duration).B. Corresponding responses to the oddball paradigm.
Each plot compares spike-density functions (see Materials and Methods) in response to the same frequency, computed from the 25 deviant trials (red) and
the 25 standard trials just preceding a deviant (blue). Responses to standard tones were significantly reduced in all fields as compared to deviants, but this
adaptation is much stronger in the nonprimary fields (SRAF and PAF). Black horizontal bar: stimulus duration.

doi:10.1371/journal.pbio.1002397.g002
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Fig 3. Distribution of SSA indexes within each field. A. Distribution of frequency-specific SSA indexes for the whole population and for each field
separately. Red lines represent median and inter-quartile range for SI(f1) and SI(f2), showing a progressive increase in SSA from primary to nonprimary
fields.B. Corresponding distributions of the CSI. In the primary fields, distributions are symmetrical and centered in medium-CSI values, but in the
nonprimary fields, CSI distributions are sharply skewed to extreme levels of SSA. Red lines show distribution medians, which were statistically different
between every primary and nonprimary field (see text). Underlying data for this figure can be found in S2 Data.

doi:10.1371/journal.pbio.1002397.g003
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clustered around the main diagonal, with no significant differences between the median SI(f1)
and SI(f2) for any field (paired Wilcoxon signed rank test, p> 0.1 in all fields), indicating that
adaptation was equal on average for f1 and f2. The drift of the population medians toward the
upper-right corner (Fig 3A) reveals a gradual shift of the cloud of points, from A1 to PAF fields,
toward higher levels of SSA. The global population shows a CSI distribution that is slightly
skewed to the right (Fig 3B, top panel). The origin of this skewness emerges once we split these
distributions into the five cortical fields: the CSI distributions for the primary fields, especially
A1 and AAF, are more symmetrical, centered on medium CSI values, and span the full range
of possible values (Fig 3B). The same distributions for the nonprimary fields, SRAF and PAF,
on the other hand, are clearly asymmetric, sharply skewed to the right toward the extreme posi-
tive CSI values, with a virtual absence of low CSI values. Moreover, the center of the distribu-
tion progressively moves to the right (i.e., toward higher CSI values) from A1 to PAF, (CSI,
[Q1, median, Q3]: A1, [0.22, 0.38, 0.61]; AAF, [0.32, 0.50, 0.68]; VAF, [0.39, 0.56, 0.72]; SRAF,
[0.57, 0.76, 0.90]; PAF, [0.56, 0.76, 0.89]), with the median CSI in every primary field being sig-
nificantly smaller than in every nonprimary field (Kruskall-Wallis test, χ2(4) = 121.43,
p< 5×10−24).

Correcting for baseline activity was required to measure the actual evoked response, given
the high spontaneous rates seen in many recordings, particularly from the nonprimary fields
(spontaneous firing rate, mean ± SEM: A1, 8.2 ± 0.7 spk/s; AAF, 7.3 ± 0.6 spk/s; VAF,
10.7 ± 0.7 spk/s; SRAF, 9.2 ± 0.6 spk/s; PAF, 13.0 ± 1.0 spk/s). This correction may have a
major impact when using a contrast index such as the CSI [38], so that higher CSI values in
nonprimary fields could result in part from this procedure. Therefore, we repeated the CSI cal-
culation using the absolute spike counts for the same time window. As expected, all CSI values
were overall reduced, but the same trend was observed between fields, since median CSI in all
fields were lower than in SRAF; only CSI levels in PAF were differentially affected, so that they
were no longer higher than in primary fields (CSI without baseline correction, [Q1, median,
Q3]: A1, [0.14, 0.24, 0.40]; AAF, [0.18, 0.30, 0.45]; VAF, [0.21, 0.32, 0.42]; SRAF, [0.26, 0.39,
0.52]; PAF, [0.17, 0.25, 0.42]). However, given the higher spontaneous rate relative to evoked
activity seen in PAF, uncorrected CSI does not faithfully represent the strong SSA (i.e., con-
trast) clearly observed in responses from this field (Fig 2B). Therefore, we kept using these cor-
rected measures for the rest of the analyses.

Consistent with previous studies [23], nonprimary fields showed longer response onset
latencies than primary fields for both deviant (mean ± SEM: A1, 11.6 ± 1.2 ms; AAF, 11.1 ± 1.1
ms; VAF, 17.3 ± 1.5 ms; SRAF, 27.0 ± 2.0 ms; PAF, 23.9 ± 2.2 ms; Kruskal-Wallis test, χ2(4) =
152.78, p< 10−31) and standard tones (A1, 16.7 ± 1.7 ms; AAF, 22.5 ± 3.3 ms; VAF, 29.8 ± 3.5
ms; SRAF, 45.8 ± 4.7 ms; PAF, 50.0 ± 8.0 ms; χ2(4) = 77.59, p< 10−15). From these figures, it is
apparent that onset latency was significantly delayed for standards as compared to deviants in
all five fields (onset latency difference, standard–deviant, mean ± SEM: A1, 7.6 ± 1.5 ms; AAF,
13.6 ± 3.1 ms; VAF, 18.0 ± 3.1 ms; SRAF, 23.2 ± 3.8 ms; PAF, 31.8 ± 7.2 ms; all significantly
greater than zero, Wilcoxon signed rank test, p< 0.01 in all cases). Thus, in addition to an
overall reduction in spike counts, SSA also produced a delay in onset latency to the standard
tones. Furthermore, this delay was significantly longer in nonprimary fields than in primary
fields A1 and AAF (Kruskal-Wallis test, χ2(4) = 34.13, p< 10−6).

SSA Is Topographically Organized in the Auditory Cortex
The sharp differences in SSA levels observed between primary and nonprimary fields derive
from a distinct topographic organization of adaptation throughout the whole auditory cortex
(Fig 4). The absolute position of the map with respect to bregma differed between animals by
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up to 0.6 mm, but the relative position and orientation of the five cortical fields were highly
conserved from one animal to the next. Thus, we constructed a synthetic map of CSI from all
available data. Using the CF gradient as the main reference landmark, an appropriate shift was
applied to each map to maximize the degree of CF coincidence between them (Fig 4A; cf. Fig 1
in [23] and Fig 1 in [36]). We quantified the quality of the alignment as the local coincidence of
CF values. The resulting correlation of CF between neighboring sites was next to maximal
(Topological product, PT = 0.9686, permutation test, p< 0.001) [39]. Fig 4B shows the CSI
map, while Fig 4C and 4D show the corresponding maps of the response to deviant and stan-
dard stimuli (within the stimulus-fitted window), from which the CSI was computed. The CSI
follows a statistically significant topographic distribution (Topological product, PT = 0.2342,

Fig 4. Topographic distribution of SSA throughout the auditory cortex. A. Synthetic map of the auditory cortex showing the location of the five cortical
fields. The CF was used as the main reference to put into register the individual maps from the 12 animals. The high topographical correlation of the CF (see
text) confirmed the robustness of the alignment.B. Topographic distribution of SSA in the auditory cortex. The CSI follows a statistically significant
topography within the auditory cortex (see text), with the highest values being confined to the nonprimary fields.C,D. Topographic distribution of the
responses to deviant and standard tones, respectively, from which the CSI was computed. Responses to standard tones were almost zero in the nonprimary
fields. Data underlying these maps can be found in S3 Data.

doi:10.1371/journal.pbio.1002397.g004
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permutation test, p< 0.001), meaning that neighboring sites are likely to have more similar
CSI values than more distant ones. To better determine the nature of this topography, we
traced a boundary following the median iso-CSI contour (Fig 4B; median population
CSI = 0.60) whenever this line enclosed a region of area greater than 0.5 mm2. This procedure
revealed an emergent organization of SSA, showing a large region of low-to-medium CSI val-
ues that covers the central and rostral portions of the auditory cortex and two separate and dis-
tinct high-CSI regions confined to the posterodorsal and ventral margins of the map,
respectively (Fig 4B). Remarkably, the CSI-based boundary that defines the posterodorsal
high-CSI region matches almost perfectly the boundary between A1 and PAF previously traced
from the CF gradient reversal (Fig 4A). Similarly, the iso-CSI contour that separates the ventral
high-CSI region matches very well the caudal SRAF/VAF and rostral SRAF/AAF boundaries.

Finally, these high-SSA regions revealed in Fig 4B can be seen also as regions of extremely
low spike count to the standard stimuli in Fig 4D. Indeed, the “CSI” and “Standard”maps are
almost complementary, such that regions of extreme CSI values correspond to those with virtu-
ally no response to standard stimuli, while regions of low-medium CSI match those with signif-
icant response to standards. This observation reveals a strong CSI dependence on the standard
response being low, rather than on the deviant response being high. In fact, CSI was negatively
correlated with both deviant (DEV) and standard (STD) response strength, yet much more
strongly to the standard (Spearman correlation coefficient, ρ[CSI,DEV] = −0.19, p< 10−6; ρ
[CSI,STD] = −0.81, p< 10−152). This also indicates that CSI values tend to be higher for neu-
rons with an overall lower firing rate, as confirmed by a subsequent analysis (v.i.).

SSA Occurs at the Late Component of the Response
SSA was suggested as a potential neural correlate for the MMN, but previous studies neglected
an analysis of the responses to deviant and standard tones at different temporal courses during
stimulus presentation and beyond. Since we observed responses of long durations to deviant
tones in many recordings (deviant response offset, mean ± SEM: A1, 162.6 ± 5.7 ms; AAF,
149.8 ± 6.9 ms; VAF, 194.2 ± 4.6 ms; SRAF, 196.4 ± 4.4 ms; PAF, 167.9 ± 7.4 ms), we wanted to
further investigate the variation of the CSI across different components of the neural response.
Hence, we computed baseline-corrected spike counts for different time intervals after stimulus
onset (Fig 5A): onset (5–30 ms), sustained (30–80 ms), offset (80–105 ms), and late (105–200
ms). Corresponding CSI distributions and their topography for these different time windows
are shown in Fig 5B and 5C, respectively.

First, we compared median CSI between fields for every time window separately. For the
onset, sustained, and offset components, we found the same trend already observed for the
stimulus-fitted response window: the median CSI in every primary field was significantly lower
than in every nonprimary field, and lowest of all in A1 (Fig 5B; Kruskall-Wallis test, onset:
χ2(4) = 73.95, p< 10−14, sustained: χ2(4) = 109.81, p< 10−22; offset: χ2(4) = 60.95, p< 10−11).
The CSI for the late component of the response, however, behaved differently. At this time win-
dow, there were no significant differences in SSA between fields (Fig 5B; Kruskall-Wallis test,
χ2(4) = 7.78, p> 0.1).

Then, we compared CSI levels within each field for the four time windows to analyze the
trend of SSA throughout the different response components. Within nonprimary fields, we
found no significant differences between median CSIs measured at the four different time win-
dows (Fig 5B; Friedman test, SRAF: χ2(3) = 5.03, p> 0.1; PAF: χ2(3) = 4.72, p> 0.1). By con-
trast, a highly significant window effect was found for the three primary fields (Friedman test,
A1: χ2(3) = 109.58, p< 10−22; AAF: χ2(3) = 18.18, p< 0.001; VAF: χ2(3) = 55.3, p< 10−11).
Post-hoc comparisons revealed that this effect was due to a specific increase of CSI at the late
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component (Fig 5B), with no significant differences between median CSI measured at the
onset, sustained, or offset components of the response, except for a slightly significant increase
from the sustained to the offset component in A1, consistent with the overall trend. Therefore,
SSA in the nonprimary fields is maintained high throughout the entire response (Fig 5B and
5C). By contrast, SSA in the primary fields is moderate during stimulus presentation, followed

Fig 5. Variation of the CSI throughout the neural response. A.Grand-average responses (baseline-corrected firing rate, mean ± SEM) to standard (blue)
and deviant (red) tones within each field. Many recordings showed significant responses beyond 100 ms from stimulus onset.B. Distribution of CSI values
(thick bar: median, box: interquartile range, whiskers: full range excluding outliers) computed at different time windows with respect to stimulus presentation.
In the nonprimary fields, SSA was high through the entire response. In primary fields, median CSI was lower than in nonprimary fields from onset to offset
components but not for the late component, which showed CSI levels as high as in the nonprimary fields.C. Topographic distribution of SSA for the four
different time windows. Note that only the late-component CSI is high throughout the entire auditory cortex. Underlying data for this figure can be found in S4
Data.

doi:10.1371/journal.pbio.1002397.g005
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by a specific enhancement in late components (Fig 5B and 5C), in which SSA reaches the same
levels found in nonprimary fields.

SSA Depends on Neuronal Firing Rate and Frequency of Stimulation
Upon visual inspection, regions with lowest SSA in the CSI landscape seemed to coincide with
low-CF regions of the auditory cortex, particularly within A1 (Fig 4A and 4B). Since a strong
dependence of SSA on frequency and intensity of pure-tone stimulation has been shown in the
IC [15], we wanted to test whether a similar dependence was present in the auditory cortex. Fig
6A shows a spotlight-average map of the SI across all frequency/intensity combinations tested
in the whole set of recordings. High SSA is sharply skewed toward the high frequencies and
low intensities of stimulation. When we analyzed primary and nonprimary fields separately
(Fig 6B and 6C), we observed that this dependence of the SI on frequency and intensity was
more evident within primary (Fig 6B) than nonprimary fields (Fig 6C). Additionally, average
firing rate had a topographical distribution in the dataset and was different between cortical
areas (Fig 4C and 4D). Since firing rate may also have a strong impact on the amount of adap-
tation [17], the topography of SSA could result in part from a topography of firing rates.
Finally, the observed effect of stimulus intensity on the SI (Fig 6) might be an indirect conse-
quence of the effect of firing rate, with higher intensities of stimulation producing higher firing
rates and, therefore, lower SSA.

To address these observations quantitatively, we fit a multivariate linear regression model
for the SI, following a stepwise strategy (“fitlm” function in Matlab, with robust fitting options;
sample data used to fit this model can be found in S5 Data). First, we used average spike count
(SPK, as the sum of average response to deviant and standard stimuli) and frequency of stimu-
lation (OCT, in octaves with respect to 1 kHz) as predictors. The resulting model was:

SI ¼ 0:51� 0:046 � SPK þ 0:057 � OCT ðF2;1215 ¼ 166; p < 5� 10�64Þ:

This model accounted for 21.3% of the variability of the SI, but, more importantly, it pro-
vided a specific quantification of each effect: on average, SI decreases 0.046 points per spike of
the response, while it increases 0.057 points per octave of the stimulus. Then, we added inten-
sity of stimulation (SPL, in dB SPL) to the model, obtaining:

SI ¼ 0:72� 0:051 � SPK þ 0:050 � OCT � 0:003 � SPL ðF3;1214 ¼ 122; p < 5� 10�69Þ:

Thus, SI is also negatively correlated to intensity of stimulation. This model, however,
explained 23% of the variability of the SI, only 1.7% more than the previous one. Therefore,
most of the dependence of the SI on SPL is already explained by its dependence on SPK, con-
firming the fact that higher intensities produce lower SSA because of a higher firing rate.
Therefore, we removed SPL from the model and replaced it with FIELD as a categorical factor.
Now, the explanatory power of the model increased to 30.6%, mainly due to overall higher SI
in the nonprimary fields:

SI ¼ 0:41þ 0:12 � VAF þ 0:24 � SRAF þ 0:20 � PAF � 0:04

� SPK þ 0:05 � OCT ðF6;1211 ¼ 90:6; p < 10�94Þ:

According to this model, mean SI is 0.41 in A1 and AAF (not significantly different from
each other), 0.53 (0.41 + 0.12) in VAF (p< 5×10−9), 0.65 in SRAF (p< 5×10−28), and 0.61 in
PAF (p< 5×10−16), and this difference cannot be explained by differences in firing rate within
fields, since the FIELD factor explains an extra 9.3% of the SI variability. Note also that these
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are mean values and, therefore, lower than the median values shown in Fig 3, given the right-
ward skewness of the distributions.

As a final step, we tested this model for interactions between FIELD and the other three pre-
dictors separately, and we found significant interactions only between FIELD and OCT:

SI ¼ 0:19� 0:24 � VAF þ 0:36 � SRAF þ 0:36 � PAF þ 0:078 � OCT � 0:042 � VAF
� OCT � 0:031 � SRAF � OCT � 0:034 � PAF � OCT ðF9;1208 ¼ 43:8; p < 5� 10�68Þ;

indicating that the effect of frequency was weaker in VAF (p< 0.005), SRAF (p< 0.05), and
PAF (p< 0.05) than in A1 and AAF. Therefore, the dependence of SSA on firing rate (and,
indirectly, on intensity of stimulation) is comparable among the five fields, but the observed
dependence of SSA on frequency of stimulation is mainly due to the fact that A1 and AAF
show lower SSA for low frequencies of stimulation, as illustrated in Figs 4A, 4B and 6B.

Fig 6. Dependence of SSA on the frequency and intensity of stimulation. A. Averaged SI for different
values of frequency and intensity used in the oddball paradigm, for the whole set of recordings throughout the
auditory cortex. SSA is significantly higher for high frequencies and low intensities of stimulation.B. The
same effect of frequency and intensity on SSA is apparent when using all data from primary fields alone, with
a virtual absence of SSA for low frequencies and high intensities of stimulation. C. In the nonprimary fields,
this frequency and intensity dependence is weaker than in the primary fields. Underlying data for this figure
can be found in S5 Data.

doi:10.1371/journal.pbio.1002397.g006
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Incidentally, A1 and AAF are the cortical fields that show the most clear tonotopic gradient,
each the mirror reversal of the other (Fig 4A) [23].

Since frequency and intensity of oddball stimulation were selected according to the fre-
quency tuning and threshold of each recording site, and since there is a tendency for tuning
bandwidth in auditory cortex to decrease as a function of CF [40,41], differences in SSA
between fields could simply reflect differences in tuning bandwidth or CF threshold in the
auditory cortex. To check this possibility, we analyzed the correlation between CSI and fre-
quency tuning characteristics in our sample. Distributions of tuning bandwidth and threshold
in our sample were consistent with previous mapping work in the rat [23]. Particularly, PAF
and AAF featured the broadest tuning bandwidth and highest response thresholds (bandwidth
30 dB above threshold, in octaves, mean ± SEM: A1, 1.89 ± 0.06; AAF, 2.30 ± 0.1; VAF,
1.75 ± 0.06; SRAF, 1.98 ± 0.08; PAF, 2.95 ± 0.16; CF threshold in dB SPL, mean ± SEM: A1,
23.7 ± 0.9; AAF, 29.3 ± 1.3; VAF, 14.8 ± 0.9; SRAF, 22.5 ± 1.1; PAF, 28.3 ± 1.3). Both band-
width and threshold in AAF and PAF were different from the other fields, but not from each
other (Kruskal-Wallis test, bandwidth: χ2(4) = 55.60, p< 5×10−11; threshold: χ2(4) = 96.03,
p< 10−20). By contrast, CSI was 50% higher in PAF than in AAF, as already shown (Fig 3B).
Similarly, CF threshold in VAF was significantly lower than in A1 or AAF, but the median CSI
was not different between these primary fields (Fig 3B). Indeed, correlation between CSI and
either tuning bandwidth or threshold was extremely weak in our sample (Spearman correlation
coefficient: ρ[CSI,BW30] = 0.083, p = 0.04; ρ[CSI,THR] = −0.09, p = 0.02). These consider-
ations demonstrate that the distinct topography of SSA that we have found is genuine and not
an artifactual effect of differences in other response properties between cortical fields.

Different Time Course of Adaptation in Primary and Nonprimary Fields
In order to study the dynamics of adaptation to the repetitive stimuli over time, we averaged
responses to standard and deviant stimuli across recordings for every trial number within the
sequence and plotted them in relation to the time elapsed since the beginning of the sequence,
separately for each field (Fig 7A). Then, we fitted these responses to different simple models.
None of the models tested could explain any amount of the variance of the deviant responses,
indicating that deviant responses did not show dependence on trial number within any field. In
sharp contrast, a power law model of three parameters, y(t) = a � tb + c, yielded very good qual-
ity fits for the responses to standards in all fields, explaining about 80% of their variability
(adjusted r2: A1, 0.80; AAF, 0.74; VAF, 0.84; SRAF, 0.83; PAF, 0.69) and indicating that SSA in
all fields matches stimulus statistics at many timescales [42].

The most obvious difference between fields was that nonprimary fields reached a much
lower plateau at their final steady-state responses (gray dashed line in Fig 7B; c parameter (spk/
trial): A1, 0.84; AAF, 0.50; VAF, 0.60; SRAF, 0.22; PAF, 0.17; all significantly different from
each other as derived from the 95% confidence intervals reported by the “fit” function in
Matlab). Also, according to this model, adaptation was fastest in PAF, slowest in VAF, and not
significantly different between the other three fields (b parameter: A1, –0.78; AAF, –0.93; VAF,
–0.68; SRAF, –0.73; PAF, –1.32). This result indicates a distinct high sensitivity of PAF to
repetitive stimuli, needing only a few presentations to reach its fully adapted state. This phe-
nomenon can be readily appreciated when analyzing the responses to the first 10 standard trials
of the sequence (Fig 7B). Responses to standards in the nonprimary fields adapt below half
their initial strength with three (PAF) or four (SRAF) presentations of a stimulus (black arrows
in Fig 7B), whereas in the primary fields it takes up to six (A1) presentations to produce this
same relative reduction. Therefore, adaptation occurs faster and is stronger in nonprimary
than in primary fields.
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Fig 7. Time course of adaptation within each field. A. Average responses within each auditory cortex field in relation to the order of tone presentation,
plotted for standard (blue) and deviant (red) tones separately. The course of standard responses over time followed a power law (thick blue lines), indicating
that SSAmatches stimulus statistics at many timescales. B. Detail of the average (mean ± SEM) standard responses for the first 10 presentations within the
sequence. The arrows indicate the trial number in which the response has fallen significantly below half of the response to the first tone presentation. Gray
dashed lines indicate the steady-state plateau reached by standard responses at the end of the sequence (constant parameter of the power-law fit).
Adaptation occurred faster in PAF than in any other field (see text), and reached a much lower plateau in nonprimary than in primary fields. Underlying data
for this figure can be found in S6 Data.

doi:10.1371/journal.pbio.1002397.g007
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SSA in the Auditory Cortex Correlates with the DifferenceWave of the
Local Field Potentials
Whereas SSA in spike responses is a local measure at the neuron level, the MMN is a large-
scale brain potential. One reasonable way to bridge this gap is to probe the correlation between
adaptation of neural responses and LFP, which represent average synaptic activity in local cor-
tical circuits [43]. Thus, we recorded LFP simultaneously with MUA in four out of the 12 ani-
mals, with a total yield of 268 recording sites (A1, 49; AAF, 48; VAF, 55; SRAF, 54; PAF, 42;
Unlocalized, 20). We averaged the recorded LFP waveforms evoked by standard and deviant
tones for each field separately and computed the difference wave (DW) at every time point
after stimulus onset (Fig 8A). In all five cortical fields, these potentials showed the typical mor-
phology in response to pure tones [44,45], with a fast negative deflection (Nd) followed by a
slower positive deflection (Pd). These two components were present in responses to both stan-
dard and deviant tones, but their amplitudes were, in all cases, smaller for the standards, giving
rise to a DW of similar shape but varying amplitudes (Fig 8A). For each recording, the peak
amplitude and peak latency of the DW was measured for the Nd and Pd components, within a
time window in which the DW reached statistical significance at the whole population level
(16–37.6 ms for Nd and 41.5–86.7 ms for Pd, respectively, paired t test, Bonferroni correction
for 268 comparisons, p< 0.05).

Peak amplitude of the DW at the Nd component showed a clear trend to be larger in primary
than in nonprimary fields, being significantly smaller in PAF than in the three primary fields
and smaller in SRAF than in AAF (Fig 8B; one-way ANOVA, F4,243 = 8.24, p< 5×10−6). This
trend was still present, albeit much less clear, for the Pd component of the DW, being signifi-
cantly smaller in PAF than in A1 and AAF but not different between the other fields (Fig 8B;
one-way ANOVA, F4,243 = 3.74, p< 0.01). Thus, the fast Nd component of the DW showed a
topographical distribution within the auditory cortex, whereas the slower Pd component of the
DW showed a more homogenous distribution across cortical fields. A similar pattern was
apparent for the peak latencies of each of these components (Fig 8B). The Nd component of the
DW peaked earlier in the primary than in the nonprimary fields, significantly so between A1 or
AAF and SRAF or PAF (mean ± SEM: A1: 24.6 ± 0.9 ms; AAF: 24.8 ± 0.8 ms; VAF: 28.3 ± 0.6
ms; SRAF: 31.1 ± 0.8 ms; PAF: 32.0 ± 1.7 ms; one-way ANOVA, F4,243 = 11.78, p< 5×10−8).
Peak latencies for the Pd component, on the other hand, were not statistically different between
fields (mean ± SEM: A1: 61.7 ± 2.0 ms; AAF: 57.4 ± 2.2 ms;, VAF: 59.5 ± 2.0 ms;, SRAF:
59.8 ± 1.7 ms; PAF: 61.4 ± 2.1 ms; one-way ANOVA, F4,243 = 0.70, p = 0.59). The steady pro-
gression of the Nd peak latency is consistent with a bottom-up propagation of the signal from
primary to nonprimary fields, whereas the homogeneity of the Pd peak latency suggests a stron-
ger contribution of intracortical processing and reciprocal interaction between fields.

To facilitate a more direct comparison between SSA for the MUA and for the LFP compo-
nents, we also computed CSI values for the Nd and Pd peaks of the LFP (S8 Data). Overall, SSA
at both components of the LFP was appreciably lower than for the MUA (paired signed rank
test for the whole set of recordings with LFP; CSI-Nd versus CSI-onset, z-score = 6.98,
p< 5×10−12; CSI-Pd versus CSI-sustained, z-score = 10.12, p< 5×10−24), but it followed the
same trend to be lower in the primary than in nonprimary fields (Median CSI-Nd: A1, 0.32;
AAF, 0.31; VAF, 0.45; SRAF, 0.50; PAF, 0.47; Kruskall-Wallis test, χ2(4) = 21.12, p< 5×10−4.
Median CSI-Pd: A1, 0.25; AAF, 0.24; VAF, 0.33; SRAF, 0.37; PAF, 0.40; Kruskall-Wallis test,
χ2(4) = 13.09, p< 0.05). Furthermore, CSI-Nd and CSI-Pd were strongly correlated with their
corresponding CSI values at comparable time windows (Spearman correlation coefficient: ρ
[CSI-Nd, CSI-onset] = 0.66, p< 10−40; ρ[CSI-Pd, CSI-sustained] = 0.43, p< 5×10−12; ρ
[CSI-Pd, CSI-offset] = 0.21, p< 0.005).
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Discussion
In this account, we compared the level of SSA in primary and higher-order auditory cortex to
validate SSA as a candidate neural correlate of the MMN. To study the topographic organiza-
tion of SSA, we mapped the whole rat auditory cortex with MUA recordings from middle

Fig 8. Adaptation in the LFP. A.Grand-average LFP traces in response to deviant (red) and standard (blue) tones, and the resulting difference wave
(black), averaged for each cortical field separately. Two components of the difference wave (DW) were analyzed: the fast negative deflection (Nd) and the
slower positive deflection (Pd). Note also a small but significant deflection of the LFP at longer latencies (>100 ms) in anteroventral fields (AAF, VAF, and
SRAF). White line: p-value of the DW. Black thick bars: time intervals showing a significant DW. Red dotted horizontal line: Bonferroni-corrected critical p-
value (bilateral t test). B. Peak amplitude and latency (mean ± SEM) of the Nd and Pd components of the DWwithin each cortical field. Note that the mean of
the amplitudes/latencies of the individual DW components are not equal to the peak amplitude/latency of the same component in the grand-averaged DW.
Underlying data for the charts in panel B can be found in S7 Data.

doi:10.1371/journal.pbio.1002397.g008
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layers IIIb/IV using an oddball paradigm. We demonstrate that SSA occurs beyond A1, and its
properties differ between primary and nonprimary fields. Our major findings are: (1) Highest
SSA is sharply segregated to nonprimary fields, creating a distinct topographic gradient of SSA
within the auditory cortex. (2) High SSA is present in nonprimary fields up to 200 ms after
stimulus onset, and it remains stronger than in primary fields during the first 100 ms of the
neuronal responses. (3) In all cortical fields, SSA is correlated in time and strength with the dif-
ference wave seen in both the fast (Nd) and slower (Pd) deflections of the LFP. As additional
novel findings, we show that (4) SSA produces a delay in the responses to standard tones, as
compared to deviants, and this delay is longer in nonprimary fields. (5) SSA is significantly
higher for high frequencies of stimulation, and this dependence is more pronounced in pri-
mary fields. (6) SSA occurs faster and reaches a much lower plateau in the nonprimary fields.

One key aspect of our data is the high coincidence in the relative position of the fields across
animals and in comparison with previous mapping studies [23,24,32,36]. Our analysis revealed a
systematic meta-organization of SSA in the auditory cortex of the rat [23,36], such that the CSI
gradient shows a steep increase at the boundaries between primary and nonprimary fields (Fig
4B). In particular, the sharp CSI enhancement between A1 and PAF (Fig 4D) bears striking
resemblance with the same border found previously for bandwidth and latency [24]. Our results
conform with previous studies that showed SSA in A1 [12,19,44–50] and extend their findings, as
we present new SSA properties hitherto unknown. Importantly, the distribution of SSA indices in
our A1 sample is largely equivalent to those shown in previous studies of SSA in the rat or mouse
A1 that used similar paradigm parameters [19,47,50], making further comparisons more reliable.
To the best of our knowledge, there were no previous studies of SSA outside A1, although higher
SSA levels were expected to be found in nonprimary fields, since neurons in nonprimary cortical
areas are known to show fast adaptation [20,21]. In particular, many studies independently
reported that PAF neurons in the rat adapt strongly even to slow repetition rates [22–24], and
novel sounds produced greater cellular activity than familiar sounds in auditory association cortex
in area Te3 [51], where the SRAF is located [35]. There is also strong evidence of enhanced adap-
tation in nonprimary areas of the auditory cortex from large-scale brain responses (ERP, magne-
toencephalography [MEG], fMRI) in both animals [28,29,52,53] and humans [25–27,54]. Our
findings also parallel the topography of subcortical SSA (Fig 9). Previous studies consistently
found stronger SSA in the nonprimary (or nonlemniscal) subdivisions of the IC [14–16] and
MGB [17,55]. Importantly, an identical dependence of SSA on frequency of stimulation as well as
a delay in onset latency of responses to standards have already been shown in the IC [15].

Our data sharply contrast with previous studies showing that the SSA level in A1 neurons is
independent of their CF and in which less than 4% of neurons showed a latency effect [56].
However, the presence of strong SSA in spiking responses at 50–100 ms and beyond represents
the major difference with previous SSA studies. Only very recently, two studies in mouse audi-
tory cortex [49,50] and one in rat somatosensory cortex [57] found SSA in either subthreshold
Vm fluctuations of layer II/III pyramidal neurons [49] or spiking responses of inhibitory inter-
neurons [49,50] and layer IV pyramidal neurons [57] occurring more than 50–100 ms after
stimulus onset. Importantly, we recorded mainly form layer IIIb/IV neurons, receiving direct
thalamocortical inputs, which are more likely to show long-latency spiking responses [58].
Finally, previous studies reported SSA for LFP in A1, but they failed to show any correlation
between MMN-like components of the LFP and SSA. Some did not find significant spiking
activity for latencies beyond 50 ms [44,45] or observed SSA only for the fast Nd [46]; others
did not measure MUA [59], or their analysis was restricted to the fast Nd only [19]. Such a cor-
relation has only been described in the somatosensory cortex [57].

The mechanisms and location of the neural generators of SSA and their relation to MMN
are still subjects of debate [11,13,60,61]. In the lemniscal pathway (Fig 9), SSA undergoes a first
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Fig 9. Emergence of SSA in the nonlemniscal auditory pathway. Simplified wiring diagram showing SSA
levels and ascending connections of the auditory brain in which SSA occurs. SSA is virtually absent from
lemniscal parts of the IC (central nucleus of the IC [CNIC]) and MGB (ventral division of the MGB [MGV]), but
it is high in their nonlemniscal subdivisions (rostral, dorsal, and lateral cortices of the IC [RCIC, DCIC, and
LCIC, respectively]; dorsal and medial divisions of the MGB [MGD and MGM, respectively]), showing levels
comparable to those seen in primary cortical fields. Extreme levels of SSA are found only in nonprimary fields
of the auditory cortex and in the MGM. Thus, SSA undergoes a significant enhancement at both lemniscal
and nonlemniscal thalamocortical projections. A potential influence of nonprimary fields on high late-SSA
seen in primary fields is represented by the red arrows. Median CSI values in the IC and MGB are from [17]
and [15], using similar paradigm parameters.

doi:10.1371/journal.pbio.1002397.g009
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enhancement at the thalamocortical synapses from the ventral division of the MGB to A1
[12,17]. Here, we show a further enhancement of SSA in nonprimary cortical fields, which inte-
grate the thalamocortical projection from nonlemniscal MGB [31] and the corticocortical pro-
jection from primary fields [62] and redirect their output to prefrontal and limbic brain
regions involved in spatial attention and emotional memory [34,35]. Thus, our study confirms
that SSA is a prevalent property of the nonlemniscal auditory pathway, even at the cortical
level (Fig 9). This organization may underlie its functional significance as a higher-order stage
of sensory processing beyond the faithful representation of the auditory stimuli that predomi-
nates in the lemniscal pathway [63]. Cumulating evidence indicates the existence of a hierarchy
of processing stages for regularity encoding in the auditory brain, with later response compo-
nents showing sensitivity for changes in more complex aspects of the acoustic scene [13,60,64].
Repetition positivity (RP) has been proposed as the electrophysiological correlate of the mem-
ory trace formation required for subsequent change detection and, in turn, rapid SSA in audi-
tory cortex is likely to contribute to its generation [65,66]. Here, we show very strong SSA in
nonprimary auditory cortex, supposed to contain the main generators of the MMN in humans
[25,27,54,67,68], cats [53], and rats [29], that resembles MMN in several ways. First, SSA
results in stronger responses to deviants than to standards in the oddball paradigm, to the
extent that responses to standards can get totally suppressed in some recordings from non-
primary fields. Critically, we show strong SSA in these areas between 50 and 100 ms, correlated
with a consistent difference wave at the slow Pd component of the LFP (Fig 8A). The latency of
this Pd deflection (60–80 ms) is considerably shorter than the human MMN (150–200 ms) but
matches perfectly the range of MMN-like potentials in the rat [28,29,69–73], which tend to
occur, on average, 50–100 ms after stimulus onset, probably due to the smaller size of the rat
brain [37]. Interestingly, this SSA resembles RP in the first standard presentations (Fig 7B) and
matches stimulus statistics at multiple time scales [56,74]. We also show stronger SSA for high-
than for low-frequency tones, paralleling a commonly observed effect of frequency in both ani-
mal [71–73] and human [75,76] MMN recordings. Therefore, we present strong evidence link-
ing animal SSA to the human MMN, a result thus far missing in animal research. Importantly,
we show that an MMN-like difference signal can readily result from SSA to standard tones that
leaves responses to deviants unaffected (Fig 7A). Additionally, our LFP recordings show that
the same components were present in responses to both standard and deviant tones (Fig 8A),
consistent with the view that the MMN is a differentially adapted obligatory component of the
ERPs. If so, our results would suggest a purely SSA explanation for the MMN [6,7,26].

Before we conclude, we should draw attention to three major caveats of our study. First,
anesthesia reduces neuronal responsiveness to auditory stimuli as well as spontaneous firing,
and may change some receptive field properties [77–79]; thus, an increased sensitivity to anes-
thetics in higher-order fields may lead to an overestimation of the SSA seen in those areas.
However, we observed high spontaneous rates as well as strong, sustained responses to deviants
in nonprimary fields (Fig 5A; baseline-corrected spike counts within 0 and 200 ms,
mean ± SEM: A1, 3.2 ± 0.1; AAF, 2.8 ± 0.1; VAF, 4.7 ± 0.2; SRAF, 3.9 ± 0.2; PAF, 2.6 ± 0.2). We
used urethane as anesthetic because it preserves balanced neural activity better than other
agents [80], retains the higher-order processing capabilities of the auditory cortex [81], and
shows no significant effects on SSA levels, at least in the IC [82]. Most importantly, MMN-like
responses have been successfully recorded from anesthetized [29,69–71] and awake [28,72,73]
animals alike (for review, see [10]). Second, the MMN is a negative-going component, in con-
trast to the positive late potential (Pd) examined here. Depending on the location of recording
and anesthetic state, epidural MMN recordings in rats can be positive in polarity [72,73], an
effect commonly observed in urethane-anesthetized preparations [69,71]. Moreover, an inver-
sion of the LFP has been extensively described using laminar probes in A1 [45,59], such that
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positivities in layers IIIb/IV may appear as negativities in superficial layers. Third, there are
some discrepancies between the SSA seen in MUA and in LFP data. Namely, whereas the
MUA shows prominent activity between 100 and 200 ms (i.e., beyond the rat-MMN range),
the LFP is relatively flat within this time window. Similar late-spiking activity has been
observed in parvalbumin-positive inhibitory interneurons [49] and interpreted as delayed
reverberating network activity specifically triggered by deviant stimuli, but we cannot rule out
that MUA includes activity from thalamocortical afferents in layers IIIb/IV, which would not
produce a prominent LFP component. Alternatively, the late enhancement of SSA (100–200
ms) seen in the primary fields (Fig 5B and 5C) might result from processing in the nonprimary
fields, subsequently transmitted downwards through the massive feedback corticocortical con-
nections (Fig 9) [34,35,57,83]. A more relevant discrepancy is that the difference-wave ampli-
tude for the later Pd component of the LFP is comparable between primary and nonprimary
auditory cortex and even significantly smaller in PAF than in A1 or AAF (Fig 8B), not support-
ing the notion of enhanced SSA in nonprimary fields. However, previous ERP studies [28,29]
failed to find differences in the MMN amplitude between primary and nonprimary fields. One
simple reason for this could be that ERPs and LFPs are large-scale potentials, reflecting overall
synaptic activity within a wide volume of tissue [43], most probably spanning the boundaries
between fields. Therefore, local measures at the cellular level, such as MUA, are much better
indicators of specific differences between fields. Furthermore, it is consistent to find higher
SSA at the MUA than at the LFP level (i.e., output versus input, respectively) within any partic-
ular area, as also shown at the single-neuron level [48]. Additionally, the amplitude of the dif-
ference wave is an absolute measure, whereas SSA is commonly expressed as a contrast, such as
the CSI. When computed this way, SSA for the Pd amplitude is already higher in nonprimary
than in primary fields, yet this difference is much sharper for the MUA, reflecting the opera-
tions carried out by nonprimary fields to their already-adapted inputs.

At this juncture, it is important to note that the slower Pd component of the difference wave
peaked with the same latency throughout the entire auditory cortex (Fig 8B), and so did its epi-
dural counterpart in the rat [29]. By contrast, the fast Nd deflection of the LFP occurs earlier in
primary than in nonprimary fields (Fig 8B), suggesting a lemniscal origin and bottom-up prop-
agation. Therefore, the higher degree of reciprocal interaction between fields is likely involved
in the generation of the Pd, consistent with the idea that intracortical processing contributes to
SSA at longer latencies [12,50,57,59,84]. Thus, MMN-like potentials may be readily recorded
from both primary and nonprimary auditory cortex, but nonprimary fields seem to contribute
critically to their generation at the microcircuit level [27,85].

In conclusion, we demonstrate that strong SSA occurs in nonprimary auditory cortex at the
latency range of the MMN in the rat. This finding overcomes the two main discrepancies hith-
erto alleged against the suggestion that SSA in the auditory cortex may underlie the generation
of the MMN [7,86], namely, its anatomical location and its temporal development. We provide
empirical evidence of the missing link between SSA in single neurons and scalp-recorded
potentials, thus bridging the gap between animal physiology studies and the human MMN.
Given the wide use of the MMN as a tool in clinical and cognitive neuroscience [9,10,87,88],
such a connection is potentially of high relevance for future research in these fields.

Materials and Methods

Surgical Procedures
The experimental protocols were approved by, and used methods conforming to the standards
of, the University of Salamanca Animal Care Committee and the European Union (Directive
2010/63/EU) for the use of animals in neuroscience research. Experiments were performed on
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12 adult female Long-Evans rats with body weights within 200 and 250 g. Surgical anesthesia
was induced and maintained with urethane (1.5 g/kg, i.p.), with supplementary doses (0.5 g/kg,
i.p.) given as needed. Dexamethasone (0.25 mg/kg) and atropine sulfate (0.1 mg/kg) were
administered at the beginning of the surgery and every 10 h thereafter to reduce brain edema
and the viscosity of bronchial secretions, respectively. Prior to surgery and recording sessions,
we recorded auditory brainstem responses (ABR) with subcutaneous electrodes to ensure the
animal had normal hearing. ABRs were collected using Tucker-Davis Technologies (TDT)
software (BioSig) and hardware (RX6 Multifunction Processor) following standard procedures
(0.1 ms clicks presented at a 21/s rate, delivered in 10 dB ascending steps from 10 to 90 dB
SPL). The animal was then placed in a stereotaxic frame in which the ear bars were replaced by
hollow specula that accommodated a sound delivery system.

After the animal reached a surgical plane of anesthesia, the trachea was cannulated for artifi-
cial ventilation and a cisternal drain was introduced to prevent brain hernia. Corneal and hind-
paw withdrawal reflexes were monitored to ensure that a moderately deep anesthetic plane was
maintained as uniformly as possible throughout the recording procedure. Isotonic glucosaline
solution was administered periodically (5–10 ml every 6–8 h, s.c.) throughout the experiment
to prevent dehydration. Body temperature was monitored with a rectal probe and maintained
between 37 and 38°C with a homoeothermic blanket system (Cibertec). The skin and temporal
muscles over the left side of the skull were reflected, and a 6 × 5 mm craniotomy was made in
the left temporal bone to expose the entire auditory cortex. The dura was removed and the
exposed cortex and surrounding area were covered with a thin, transparent layer of agar to pre-
vent desiccation and to stabilize the recordings.

At the end of the surgery, a magnified picture (25×) of the exposed cortex was taken with a
digital SLR camera (D5100, Nikon) coupled to the surgical microscope (Zeiss) through a lens
adapter (TTI Medical). The picture included a pair of reference points previously marked on
the dorsal ridge of the temporal bone, indicating the absolute scale and position of the image
with respect to the bregma. This picture was displayed on a computer screen, and a micro-
metric grid was overlapped to guide and mark the placement of the electrode for every record-
ing made. Recording sites (150–250 μm spacing; Fig 1A) were evenly distributed across the
cortical region of interest while avoiding blood vessels. The vascular pattern was used as a local
reference to mark the position of every recording site in the picture, but otherwise differed
largely between animals. To confirm the actual depth and cortical layer of the recorded neu-
rons, at the end of the experiment we made electrolytic lesions at one to four of the recording
sites at the same depth that recordings were made.

Electrophysiological Recording Procedures
Experiments were performed inside a sound-insulated and electrically shielded chamber.
Sounds were generated using an RX6Multifunction Processor (TDT) and delivered monaurally
(to the right ear) in a closed system through a Beyer DT-770 earphone (0.1–45 kHz) fitted with
a custom-made cone and coupled to a small tube (12-gauge hypodermic) sealed in the ear. The
sound system response was flattened with a finite impulse response (FIR) filter, and the output
of the system was calibrated in situ using a ¼-in condenser microphone (model 4136, Brüel &
Kjær), a conditioning amplifier (Nexus, Brüel & Kjær), and a dynamic signal analyzer (Photon
+, Brüel & Kjær). The output of the system had a flat spectrum at 76 dB SPL (±3 dB) between
500 Hz and 45 kHz, and the second and third harmonic components in the signal were� 40 dB
below the level of the fundamental at the highest output level (90 dB SPL) [14].

MUA was recorded with self-manufactured glass-coated tungsten electrodes (1–5 MΩ

impedance at 1 kHz) [89,90]. A single electrode was positioned orthogonal to the pial surface

Enhanced SSA in Higher-Order Auditory Cortex

PLOS Biology | DOI:10.1371/journal.pbio.1002397 March 7, 2016 21 / 30



(forming a 30° angle with the horizontal plane) and advanced 350–550 μm into the thalamore-
cipient layers IIIb–IV using a piezoelectric micromanipulator (Sensapex) until we observed a
strong spiking activity synchronized with the train of searching stimuli. The signal was ampli-
fied (1000×) and band-pass filtered (1 Hz to 3 kHz) with a differential amplifier (DAM-80,
WPI). This analog signal was digitized at a 12K sampling rate and further amplified and band-
pass filtered for action potentials (between 500 Hz and 3 kHz). Spike waveforms and relative
times in respect to the start of the recording were displayed and stored in a PC running Win-
dows XP (Microsoft). A bilateral threshold for automatic action potential detection was set at
about two to three standard deviations of the background noise. In a subset of the experiments,
the digital signal was further filtered for LFP (between 3 and 50 Hz), decimated to a 508 Hz
sampling rate and stored in continuous form for posterior analysis. Stimulus generation and
neuronal response visualization were controlled online with custom software created with the
OpenEx suite (TDT) and Matlab (Mathworks).

Sounds used for stimulation were white noise bursts or pure tones with 5 ms rise-fall ramps.
Sounds used for searching for neuronal activity were trains of noise bursts or pure tones (1–8
stimulus per second). We used short stimulus duration for searching (30 ms) to prevent strong
adaptation. In addition, type (noise, pure tone) and parameters (frequency, intensity, presenta-
tion rate) of the search stimuli were varied manually when necessary to facilitate release from
adaptation and, thus, prevent overlooking responses with high SSA. Once a suitable recording
site was reached, the FRA was determined using 75 ms pure tones at varying frequencies and
intensities (Fig 2A; 0.5–44 kHz logarithmically spaced at 0.25 octave steps, 0–70 dB SPL at 10
dB steps, 375 ms onset-to-onset interval, one to three randomized repetitions of each stimulus).
The FRA was displayed on a computer screen using custom software, and the frequency-tuning
curve was automatically outlined as the minimum sound intensity that elicited a firing rate
over 20%–40% of the maximum firing for each frequency. Thus, the minimum response
threshold and CF were computed for each site (excluding isolated “islands” of spontaneous
activity), and two frequencies (f1, f2) were selected to use in the oddball paradigm [12] at 20–30
dB above threshold. The two stimuli were selected so as to evoke strong responses of similar
magnitude at that recording site. In some cases, one or more extra pairs of stimuli were selected
to ensure at least one recording met this requirement. Two oddball sequences with fixed
parameters (250 trials each, 75 ms stimulus duration, 0.5 octaves frequency separation, 10%
deviant probability, 300 ms onset-to-onset interval, minimum of three standard tones before a
deviant) were presented for every pair of stimuli thus selected. In one of the sequences, the low
frequency (f1) was the “standard” and the high frequency (f2) was the “deviant,” and in the
other sequence their roles were swapped. The order of presentation of these two sequences was
randomized across sites.

Data Analysis
Peristimulus time histograms (PSTH) were generated for every stimulus and condition tested.
Only the last standard tones preceding each deviant were used for the analyses, except for the
time course analysis, where all standard trials were analyzed. Every PSTH was analyzed to test
for significant auditory responses and to extract several different metrics of response strength
and latency. For these analyses, the original PSTH was smoothed with a 6 ms gaussian kernel
(“ksdensity” function in Matlab) in 1 ms steps to estimate the spike-density function (SDF) over
time, and the baseline spontaneous firing rate (SFR) was determined as the average firing rate
during the 75 ms preceding stimulus onset. For any given time window, the excitatory response
was measured as the area below the SDF and above the baseline SFR. This measure will be
referred to as “baseline-corrected spike count” (BCSC). To test for statistical significance of the
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BCSC we used a Monte Carlo approach. First, 1000 simulated PSTHs were generated using a
Poisson model with a constant firing rate equal to the SFR. Then, a “null distribution” of BCSC
was generated from this collection of PSTHs, following these same steps. Finally, the p-value of
the original BCSC was empirically computed as p = (g + 1) / (N + 1), where g is the count of
“null”measures greater than or equal to BCSC andN = 1000 is the size of the “null” sample.
Note that using this approach, the minimum p-value that can be obtained is 1/1001� 0.001.

When a significant evoked activity was detected, onset and offset latencies of the whole excit-
atory response were computed as follows. First, a “noise” threshold was computed, as the firing
rate below which the pure-spontaneous simulated SDFs remained 97.5% of the time. Every
SDF, including the simulated ones, was scanned for stretches of “signal” above this threshold,
and the amount of “signal” for each stretch was measured as the area below the SDF and above
the SFR during that particular interval. Using the distribution of all the signal stretches thus
found within the 1,000 pure-spontaneous SDFs, a Monte Carlo test was used to compute empir-
ical p-values for every stretch of signal found in the target SDF under study. For each significant
signal stretch (p< 0.05), the start/end times (Ton, Toff) were determined as the time points when
the SDF trace cuts the noise threshold, and onset/offset latencies of the whole excitatory
response (ONSET, OFFSET) were defined as the Ton/Toff of the first/last significant excitatory
component of the response, respectively. Peak firing rate amplitude was defined as the maxi-
mum firing rate reached by the SDF within the analysis window, minus the SFR baseline, and
peak latency as the time point respect stimulus onset that this peak takes place. Finally, the dura-
tion of the whole significant response interval was defined asOFFSET–ONSET, and the duration
of the strong peak of the response, or “half-peak response duration,” was measured as the total
length of time that the SDF remains above 50% of the peak amplitude.

In order to quantify and compare SSA levels between the five fields, we computed the fre-
quency-specific SSA index for each stimulus, SI(f1) and SI(f2), and the common SSA index
(CSI) for every recording site in the usual way [12]:

SIðfiÞ ¼
DEVðfiÞ � STDðfiÞ
DEVðfiÞ þ STDðfiÞ

; i ¼ 1; 2

CSI ¼
P

DEVðfiÞ �
P

STDðfiÞP
DEVðfiÞ þ

P
STDðfiÞ

; i ¼ 1; 2

Where DEV(fi), STD(fi) are baseline-corrected spike counts in response to frequency fi when it
was a deviant and standard, respectively. The CSI was calculated only for recordings with sig-
nificant auditory responses to at least one frequency in the oddball paradigm (either as deviant
or as standard). In cases in which more than one stimulus pair was tested at the same recording
site, we selected only one to compute SSA for that site, according to the following criteria: (1)
Recordings with significant responses to both frequencies (either as deviant or as standard)
were always preferred to recordings with significant response to only one of them. (2) We
selected the recording with most similar responses to f1 and f2 (as deviants); the similarity
between responses was measured as their ratio, f1/f2 or f2/f1, whichever was less than 1. (3) If
there were two or more recordings with similar deviant-to-deviant ratios (difference of
ratios< 0.1), we selected the one with the lowest sound level (SPL) used for stimulation.

For the analysis of the LFP signal, we aligned the recorded wave to the onset of the stimulus
for every trial and computed the mean LFP for every recording site and stimulus condition
(deviant, standard) as well as the difference wave (DW = deviant−standard). Then, grand-aver-
ages were computed for deviant, standard, and DW across the whole auditory cortex and for
every field separately. The p-value of the grand-averaged DWwas determined for every time
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point with a two-tailed t test, Bonferroni-corrected for 204 comparisons (overall significance
level of 0.05), and the time intervals in which a significant DW was observed were computed.
For each individual (mean) LFP wave, the peak amplitude and latency were computed within
two time windows: [10–40 ms] and [50–90 ms], corresponding to the first Nd and second Pd
seen in the grand-averages within all fields. When comparing response features between fields,
such as onset latency or CSI, we used nonparametric Kruskall-Wallis or Friedman tests, given
the non-normal nature of these measures. Each of these tests was followed by a post-hoc multi-
ple comparison test, using the Dunn-Sidak method at a 5% significance level, to detect specific
differences between fields. For the sake of readability, p-values for all tests are reported using
an upper bound equal to the minimum power of ten or half a power of ten that is greater than
the actual p-value (e.g., p< 5�10−6).

For the time course analysis, we first computed the average standard and deviant response
at each absolute position within the sequence for all neurons tested within each cortical field
separately. A single-trial spike count for any given PSTH was computed as the number of
spikes between the previously determined ONSET and OFFSET times, minus the baseline SFR.
Then, we fitted these time series to different models (linear, exponential, double exponential,
polynomial inverse, and power law with two or three coefficients) using the “fit” function in
Matlab, which also computes the coefficient of determination (adjusted-r2) of the whole fit and
confidence intervals for the fitted parameters.

To quantify the topographical organization of a feature map and test for statistical signifi-
cance thereof, we used the “MapTools” library in Matlab, applying the topographic product sta-
tistic [39]. This metric was used instead of other alternatives (Pearson and Spearman linear
correlation, Zrehen measure, etc.) due to the highly non-normal nature of the data under study
(i.e., CSI) and assuming a local, linear nature of the topography of the CSI. To generate averaged
maps for CF, CSI, and other response features, we followed a spotlight-average approach: start-
ing with the set of sample points in which actual recordings were made and the associated values
of the feature, we computed the averaged feature value for any other point in the map from its
nearest neighbors. Specifically, we placed a bivariate Gaussian kernel of 100-μm radius,

kerðx; yÞ ¼ 1

2pr
� exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
2r2

( )
;

centered on every sample point and multiplied it by its associated feature value. Then we
summed all these functions over the entire map and divided the result by the sum of all kernels
at every point, to compute a weighted average throughout the whole surface. Thus, the feature
value V at every point of the map was calculated as:

Vðx; yÞ ¼ Sn
i¼0 vi � kerðx � xi; y � yiÞ
Sn

i¼0 kerðx � xi; y � yiÞ
;

where x, y are the coordinates of a generic point in the map, and xi, yi (i = 1, . . ., n) are the sam-
ple points used to generate the map. To impose a limit on the influence span for every point,
this weighted average was computed only for points where the sum of all kernels (denominator
in the last formula) was greater than 0.05. Further, to avoid single-point averages, we computed
V(x,y) only when at least two neighboring sample points had been used for averaging.

To combine data from different animals, we followed an iterative process to improve the
quality of the alignment in successive stages. We first generated the CF map for the case with
the greatest number of recordings (shown in Fig 1). Then, we applied a manual shift to each of
the remaining maps in turn so as to put them into register with the former. We used the CF
gradient, the “unresponsive spot” at the wedge between A1, AAF, and VAF, and the low-
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frequency centers in A1, AAF, and SRAF as main references to determine, for each animal, the
absolute position of the map with respect to the bregma [23]. Finally, we computed the topo-
graphic product statistic for the whole set of aligned recordings. This alignment was refined
and the test statistic was recalculated until no improvement was detected in the correlation.
We repeated this process for every animal until the alignment was completed.
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S1 Data. Full dataset used in reported results and figures. Organized into four spreadsheets:
“Recording site,” list of all MUA recordings made, including those that didn’t show good
responses to pure tones or otherwise could not be tested with the oddball paradigm; “Oddball
(MUA),” list of all MUA recordings that could be tested with the oddball paradigm (one
selected recording per multiunit), contains main stimulation parameters, response measures,
and SSA indexes; “Time Course,” contains trial-by-trial spike counts used to fit the time course
of SSA and generate Fig 7; “Oddball (LFP),” list of all recording sites with LFP recordings
made, contains main responses and adaptation measures reported for the Nd and Pd deflec-
tions of the LFP.
(XLSX)

S2 Data. Selected dataset (full SSA index sample) underlying Fig 3.
(XLSX)

S3 Data. Selected dataset used to generate the maps in Fig 4. Contains separate spreadsheets
for Fig 4A (map of CF, all recordings with a well-defined CF) and Fig 4B–4D (maps of adapta-
tion, all recordings tested with the oddball paradigm).
(XLSX)

S4 Data. Selected dataset (CSI measures at different time windows) underlying boxplots
and maps in Fig 5B and 5C.
(XLSX)

S5 Data. Selected dataset (tone frequency, intensity, firing rate, and SI for each tone [f1 and
f2, separately]) used to fit the linear model for the SI described in Results and to generate
SI maps in Fig 6.
(XLSX)

S6 Data. Average trial-by-trial spike counts used to fit the time course of SSA within each
field and generate Fig 7.
(XLSX)

S7 Data. Selected dataset (amplitude and latency of the Nd and Pd difference) underlying
barplots in Fig 8B.
(XLSX)

S8 Data. Selected dataset (SSA for the Nd and Pd components) reported in Results but not
shown in any figure.
(XLSX)
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Abstract 20 

Current theories of brain function depict perception as a reciprocal interchange of predictions 21 

and prediction error signals between hierarchically organized processing stations. A growing 22 

family of large-scale brain responses to perceptual mismatches supports this postulate. 23 

However, the predictive activity of the brain and its hierarchical organization remains to be 24 

demonstrated at the neuronal level. We recorded single-neuron activity during oddball 25 

stimulation, and used novel control sequences to separate prediction error from adaptation 26 

effects. Our results reveal a hierarchical organization of prediction error along the central 27 

auditory system, present already at subcortical levels and gradually increasing towards the 28 

higher-order auditory cortex. We demonstrate that the predictive activity of sensory systems 29 

is detectable at the neuronal level and highlight the role of subcortical structures in 30 

perception. 31 

Main Text 32 

Unexpected events are likely to convey relevant information, and their prompt detection is 33 

fundamental for survival 1,2. Brain responses to the perceptual mismatch between expected 34 

and actual sensory inputs have been extensively recorded in all sensory systems including 35 

auditory 3, visual 4, somatosensory 5 and olfactory 6 modalities, and are thought to underlie 36 

the brain’s ability to resolve auditory objects 7, proving themselves a key to understanding 37 

perceptual processing 4,8,9. Auditory mismatch responses are typically obtained with non-38 

invasive brain recordings using oddball sequences 9, in which a repetitive (standard) tone is 39 

randomly replaced by a different (deviant) tone with a low probability. Over the past 40 40 

years, a particular mismatch response recorded from the human scalp with 41 

electroencephalography, the so-called mismatch negativity (MMN) 10, has become a valuable 42 
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tool in cognitive and clinical neuroscience 11, especially as a reliable biomarker of 43 

schizophrenia and other brain disorders 12.  44 

At the theoretical level, large-scale mismatch responses provide empirical support to 45 

the hierarchical predictive coding framework—a neurobiologically informed and unifying 46 

account of general brain function 13–15—, seamlessly fitting it as the sum of thousands of 47 

neuronal prediction error signals 4,16–18. According to this theory, the classical notion that 48 

brain activity evoked by a sensory event is a neuronal representation of the occurrence of that 49 

particular event, is only half of the story. This may be true for the first/lower processing 50 

stations of sensory systems. However, at the same time, higher stations are constantly trying 51 

to anticipate the future, and send descending signals to actively suppress this evoked, 52 

ascending neuronal activity. Therefore, as the sensory signal propagates up the hierarchy of 53 

sensory systems, neuronal responses progressively switch from representing the stimulus 54 

itself to represent sensory prediction error to that stimulus. This is why neuronal responses to 55 

standard tones show repetition suppression, or response attenuation with stimulus repetition 56 

19,20, that propagates back from higher to lower stations 21, whereas deviant tones produce a 57 

large prediction error signal, which is relayed bottom-up, facilitating the task of automatic 58 

deviance detection 22,23.  59 

However, at the cellular level, mismatch responses could also arise from a simpler 60 

neurophysiological mechanism 24,25, namely, stimulus-specific adaptation (SSA) 26, or 61 

response decrement with stimulus repetition 2 that leaves neuronal responses to different 62 

stimuli—e.g. the deviant—almost unaffected. SSA is a widespread property of auditory 63 

neurons, increasing from midbrain 27 through the thalamus 28 to primary 29,30 and higher-order 64 

30 auditory cortex, and assumed to be due to synaptic depression 3,29,31. Therefore, single 65 

neuron responses along the auditory pathway show a differential response to standard and 66 

deviant tones under oddball stimulation, just as MMN but at the cellular level 3,26. Yet, 67 
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whereas it is now clear that large-scale mismatch responses indeed reflect the predictive 68 

activity of the auditory and other sensory systems 4,17, even at early processing stages 18 69 

including subcortical midbrain and thalamus 3, and also in animal models 32–34, this predictive 70 

activity remains to be demonstrated at the neuronal level.  71 

In this study, we recorded individual responses of subcortical and cortical neurons 72 

along the rat auditory pathway, using recently developed control sequences to separate 73 

repetition suppression from prediction error under oddball stimulation 29,35–37. Our data show 74 

that differential responses to deviant and standard tones in oddball sequences indeed reflect 75 

active predictive activity, instead of a mere SSA in single neurons, and that this predictive 76 

activity emerges hierarchically from subcortical structures. These results unify three 77 

coexisting views of perceptual deviance detection at different levels of description: neuronal 78 

physiology, cognitive neuroscience and the theoretical predictive coding framework. 79 

Results 80 

Evidence of prediction error in single auditory neurons 81 

The predictive coding framework assumes that the same operations (generation of 82 

predictions and prediction errors) would take place at every hierarchical level of sensory 83 

systems 13, and this could in principle include subcortical processing stations 19. 84 

Unfortunately, there is a severe dearth of evidence for this, since research on predictive brain 85 

activity has until recently focused on cortical responses of varying source and latency 17,18, 86 

and the role of subcortical structures in cognition, albeit increasingly acknowledged 38,39, 87 

remains largely unexplored. In order to collect a representative sample from different 88 

processing stations along the auditory pathway, we recorded a total of 207 neurons (Table 1) 89 

from the auditory midbrain (IC), thalamus (MGB) and cortex (AC) of anesthetized rats, while 90 

stimulating the animal with sequences of pure tones (Fig. 1). Recorded neurons were further 91 
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grouped into “first-order” (fo) or “higher-order” (ho), depending on their particular location 92 

within each nuclei 3,30, thus leading to 6 different processing stations (fo-IC, ho-IC, fo-MGB, 93 

ho-MGB, fo-AC, ho-AC; Fig. 1B; see Methods). This distinction was made because higher-94 

order (or non-primary) auditory regions represent a higher hierarchical level of processing 40 95 

and are known to be more sensitive to acoustic change and contextual influences than first-96 

order (or primary) ones 3,30,41.  97 

For each recorded neuron, we presented a set of oddball sequences, using tones 98 

selected from the neuron’s frequency-response area (FRA), and a “neuronal mismatch 99 

response” (nMM) was computed as the difference between responses to deviant (DEV) and 100 

standard (STD) conditions for each tone (Fig. 1D). To determine whether this difference 101 

(usually DEV > STD) reflected predictive activity, instead of (or in addition to) just SSA, we 102 

also presented two cascaded (CAS) sequences (ascending and descending) and one many-103 

standards (MAS) sequence as controls 36,37 (Fig. 1C), containing all tones used in oddball 104 

sequences (see Methods). The main rationale behind this design is that, in the CAS/MAS 105 

control conditions, each tone has the same (low, 10%) probability of occurrence as a DEV 106 

tone in the oddball sequence, so it is not repetitive (as the STD), and therefore is free of 107 

repetition effects (e.g. repetition suppression), but it does not stand out from the statistical 108 

context (as the DEV), and therefore it is not perceived as a deviant 36,37. Thus, responses to 109 

CAS/MAS control conditions are used as the reference yardstick with respect to which 110 

repetition suppression and prediction error effects can be discriminated (Fig. 1D). If the 111 

neuronal mismatch response (nMM = DEV – STD) is caused entirely by SSA to the STD 112 

tone, responses to DEV and CAS/MAS control conditions should remain comparable through 113 

all hierarchical levels, or if anything, the response to DEV tones should undergo a slightly 114 

stronger suppression than to the controls, due to cross-frequency adaptation 29 (Fig. 1E). By 115 

contrast, under the predictive coding framework, deviance detection is based on Bayesian 116 



6 

inference 15, such that stronger prediction errors will be produced as more sensory evidence 117 

accumulates to increase the confidence and precision of current predictions 4,19,22. Therefore, 118 

stronger prediction errors should be elicited by DEV than by CAS/MAS tones, due to the 119 

lack of sequential stimulus repetitions in the controls 4,36, and this effect should increase up 120 

the hierarchy (Fig. 1E), since higher-order processing stations are able to code for more 121 

complex regularities 3,18,23,42. 122 

Individual responses of representative neurons are shown in Fig. 2. Responses of first-123 

order neurons are mostly dependent on tone frequency, with little sensitivity to the different 124 

conditions, particularly at subcortical levels (Fig. 2A,B). However, in fo-AC (Fig. 2C), and 125 

most clearly in higher-order neurons (Fig. 2E-F), strong response suppression to STD 126 

condition is apparent, but also, a higher firing rate in response to DEV tones, as compared to 127 

both MAS and CAS control conditions, was consistent across tested frequencies. This is, as 128 

just explained, the signature of prediction error at the single neuron level 29,32. 129 

In the following, we will present only the results using the cascaded sequence as 130 

control, since it was designed as an improvement to the many-standards sequence that 131 

controls for additional factors beyond presentation rate of the deviant tone 36,37 (see Materials 132 

and Methods, Experimental Design). However, the results using either CAS/MAS condition 133 

as a control were commensurable (Table 1), with no remarkable differences between them 134 

(Wilcoxon signed-rank test, z = −0.125, p = 0.9).  135 

The contribution of prediction error to nMM increases along the auditory hierarchy 136 

Single neuron responses to the three conditions (DEV, STD, CAS) for all tones tested 137 

in all neurons are represented in Fig. 3A-F, separately for each processing station. Each pair 138 

of conditions, within each station, was tested for a difference in medians (Table 1). As 139 

expected, responses to DEV condition were stronger than to STD condition within all stations 140 
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(Fig. 3A-F; Table 1). This is a well described neuronal behavior across the auditory pathway 141 

3, which has been referred to as SSA in previous studies 26, even though it was postulated to 142 

be the neuronal mechanism underlying deviance detection 29. Indeed, this nMM results 143 

mostly from suppression of the response to the repetitive STD condition (repetition 144 

suppression), since responses to STD were significantly weaker than to CAS condition within 145 

all stations (Table 1). Critically, responses to DEV tones were significantly higher than to 146 

CAS already within the ho-IC (Fig. 3D; Table 1), and this difference increased progressively 147 

in the ho-MGB, and ho-AC (Fig. 3E,F), where it was most apparent. Therefore, neuronal 148 

responses showed clear signs of prediction error at the population level, within all higher-149 

order stations, but also within fo-AC (Fig. 3C; Table 1), consistent with the observed effects 150 

in individual cases (Fig. 2C-F). 151 

To quantify the relative contribution of repetition suppression and prediction error to 152 

nMM in neuronal responses, and to facilitate comparisons between different neurons/stations, 153 

we normalized the neural responses to the three conditions (DEV, STD, CAS) for each 154 

neuron/tone combination. We applied Euclidean vector normalization (Fig. 3G), such that all 155 

normalized responses (DEVN, STDN, CASN) ranged between 0 and 1. Then, we computed 156 

three indices as the difference between normalized responses to pairs of conditions, ranging 157 

between −1 and +1 (Fig. 3G). The “index of neuronal mismatch”, iMM = DEVN − STDN, is 158 

the relative difference in responses to STD and DEV tones in the oddball paradigm. The 159 

iMM is quantitatively equivalent to the typical “SSA index” 26, used in previous studies (Fig. 160 

S1). The “index of neuronal repetition suppression”, iRS = CASN − STDN, is the relative 161 

reduction of the response to a standard tone, as compared to the control. Thus, the iRS 162 

quantifies repetition effects 20. Finally, and most importantly for this study, the “index of 163 

neuronal prediction error”, iPE = DEVN − CASN, is the relative increase in the response to a 164 

deviant tone, compared to the control. A positive iPE reflects predictive activity, as opposed 165 
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to SSA 36, and quantifies the proportion of prediction error accounting for nMM 29. 166 

Therefore, the relation iMM = iRS + iPE provides a functional, quantitative decomposition 167 

of nMM (Fig. 1D). The distribution of these indices across stations reveals that both iMM 168 

and iPE increase along the auditory pathway, from fo-IC to ho-AC (Fig. 3G-L).  169 

Summary statistics for these normalized responses and indices are shown in Fig. 4A 170 

and 4B, respectively. The iPE shows a distinct increase in two ways: (1) from first- to higher-171 

order stations, and (2) from IC to MGB to AC (Fig. 4B). To validate these observations 172 

statistically, we fitted a linear model for the iPE using nucleus (IC, MGB, AC) and hierarchy 173 

(fo, ho) as categorical factors. The resulting model was: 174 

iPE = 0.012 + 0.020*ho – 0.136*MGB + 0.092*AC + 0.185*ho*MGB + 175 

0.158*ho*AC, 176 

with a significant effect of hierarchy (F=37.16, p=1.40·10−9) and nucleus (F=46.35, 177 

p=3.15·10−20), and a significant hierarchy*nucleus interaction (F=3.48, p=0.031). Therefore, 178 

both trends are significant and robust from midbrain to cortex. In particular, the significant 179 

hierarchy effect means that the small average iPE seen in ho-IC (iPE = 0.012 + 0.020 = 180 

0.032) is nevertheless statistically significant (Fig. 4B), consistent with a significant 181 

difference in absolute spike counts (DEV−CAS in Table 1; Fig. 3J). Overall, this analysis 182 

demonstrates a gradual emergence of a prediction error component in responses of single 183 

neurons as information progresses through the auditory pathway, both in bottom-up and in 184 

first- to higher-order directions, with a mutual potentiation of these two effects.  185 

According to previous modeling work, change-sensitivity in single neurons is 186 

expected to be maximal for stimulus ranges where the firing rate of the neuron is below 187 

saturation 43. Consistent with this hypothesis, a common observation in the pool of recorded 188 

neurons was that using low stimulation intensities it was easier to produce deviance-specific 189 
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responses, particularly for ascending deviants (e.g. Fig. 2D). To test these observations at the 190 

population level, we fitted a different model for the iPE, using SPL (in Bels = dB SPL/10) 191 

and direction (ascending, ASC, or descending, DSC) of deviant tones (see Fig. 1C) as 192 

predictors. The model showed a significant effect of SPL (F=4.59, p=0.03) and a 193 

SPL*direction interaction (F=6.66, p=0.01): 194 

iPE = 0.064 + 0.194*ASC + 0.003*SPL − 0.037*ASC*SPL, 195 

which indicates that the iPE is expected to be much higher for ascending deviants at 196 

intensities below 40 dB SPL (Fig. 4C). Indeed, we observed a distinct increase in the iPE 197 

within all stations, under these stimulation conditions (Fig. 4D), particularly in ho-AC, where 198 

prediction error accounted for around two thirds of the iMM. This effect could facilitate 199 

perception under challenging sensory conditions, by increasing the gain of prediction error 200 

responses at early processing stages 19. These findings run parallel to previous observations in 201 

single neurons of the primary visual cortex, where cortical feedback improves figure-202 

background discrimination of low-salience stimuli 44. 203 

Prediction error in single neurons correlates with a large-scale mismatch response in the 204 

auditory cortex 205 

We also recorded local field potentials (LFP), simultaneously to single neuron spikes, 206 

from the same electrode, to explore the direct correlation between prediction error in spike 207 

responses and large-scale mismatch responses (such as the MMN). We averaged LFP 208 

responses for each condition and station, as well as the difference between DEV and CAS 209 

conditions, which we called the “prediction error potential” 33,37: PEP = LFPDEV – LFPCAS 210 

(Fig. 5). A significant early PEP was already detectable within ho-IC and ho-MGB (Fig. 211 

5D,E). In the auditory cortex, the PEP was strong and significant in both fo-AC and ho-AC, 212 

showing three major deflections (Fig. 5C,F): a fast negative deflection (N1; 35−50 ms after 213 
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change onset), a slower positive deflection (P2; 70−120 ms), and a third, late, negative 214 

deflection (N2; beyond 150 ms). Importantly, epidural MMN peaks between 60 and 120 ms 215 

in rats 32, the same range of the P2 recorded here for the PEP, and can be positive when 216 

recorded from inside the brain 45. Then, the iPE was re-computed for 12 different time 217 

windows (20 ms width, from –50 to 190 ms respect to stimulus onset), for each neuron/tone 218 

combination separately, and averaged within each station (Fig. 5). The iPE showed a clear 219 

modulation over time in both fo-AC and ho-AC stations (Friedman test, not corrected for 6 220 

independent tests). Each individual iPE value was also tested against zero, and this analysis 221 

revealed a significant iPE within fo-AC between 60−100 ms after change onset, and in ho-AC 222 

between 40−200 ms, and seemingly beyond (Fig. 5C,F). In summary, the highest iPE values, 223 

reflecting prediction error in single neuron responses, correlate in time and location (ho-AC) 224 

with a large-scale mismatch wave (the PEP), putatilvely corresponding to the MMN in the rat 225 

32,33. 226 

Discussion 227 

This study provides evidence, hitherto unavailable, that the hierarchical predictive 228 

activity of perceptual systems is detectable at the cellular level, even subcortically. 229 

Specifically, oddball responses of individual neurons, from midbrain to cortex, reflect 230 

predictive processing and underlie large-scale electrophysiological indicators of deviance 231 

detection. After quantitatively decomposing neuronal mismatch responses (nMM; Fig. 1D) 232 

into repetition suppression (iRS) and prediction error (iPE), the data show a systematic 233 

increase in the proportion of prediction error accounting for nMM as the sensory signal 234 

propagates up the auditory hierarchy (Fig. 4B,D). The highest iPE values are reached within 235 

the higher-order auditory cortex, where they correlate with a simultaneously recorded, large-236 

scale prediction error potential (Fig. 5F), and extend into late evoked potentials, suggesting 237 
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an influence from higher-association or prefrontal cortices 46. These results are in total 238 

agreement with the predictive coding account of mismatch responses, while at the same time 239 

highlight the role of subcortical structures in perception 39, providing a novel extension of the 240 

mostly corticocentric predictive coding literature 14,15,38.  241 

Previous attempts to show predictive activity in auditory neurons were inconclusive 242 

29,45,47, and were limited to multi-unit activity recordings in primary auditory cortex (but see 243 

48,49 for compelling evidence in single visual neurons). However, a recent study in mouse A1 244 

50 and another in rat barrel cortex 51 showed deviance detection in late responses of single 245 

units, using the MAS control sequence. Although the CAS sequence is arguably a better 246 

control for repetition effects than the MAS sequence 36, only one animal study has previously 247 

applied it, using epidural recordings, and yielding also inconclusive results 37. Our results, 248 

using single-unit recordings, were comparable or even more robust for the CAS than for the 249 

MAS control (Table 1), in agreement with human studies 36. Our finding that the contribution 250 

of prediction error to nMM supersedes that of repetition suppression within the higher-order 251 

auditory cortex (Fig. 4B,D), is consistent with studies of brain sources of MMN in animals 252 

33,41 and humans 42,46 using similar controls for repetition effects. This hierarchical 253 

transformation of nMM, dominated by repetition suppression at lower hierarchical levels of 254 

the auditory system, with a gradual emergence of prediction error at higher levels (Fig. 255 

4B,D), confirms that lower levels are mostly sensitive to global stimulus probability, while 256 

higher-order levels are more sensitive to local relationships between sounds (transitional 257 

probabilities), exactly as observed in human MMN studies 52,53. Thus, our data are consistent 258 

with passive SSA (Fig. 1e) underlying oddball responses in first-order midbrain and thalamus 259 

29 (Fig. 4B). By contrast, they support a generative mechanism of Bayesian inference being at 260 

play in auditory cortex and higher-order subcortical stations of perceptual processing 4. The 261 

contrast between first- and higher-order nMM is particularly clear within the auditory 262 
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thalamus (compare Fig. 1E and 4B). Thus, higher-order midbrain and thalamus behave like 263 

the auditory cortex with regard to prediction error, which is the novel extension of the 264 

predictive coding scholarship. Finally, asymmetries in the direction of frequency-change 265 

detection (ascending vs. descending) have also been found in both animal 37 and human 54 266 

MMN studies. 267 

In conclusion, our results demonstrate that prediction error is an intrinsic component 268 

of responses of single auditory neurons, emerging even from subcortical levels, and 269 

strengthen the case for the predictive coding theory of perceptual processing. In addition, we 270 

show that neuronal predictive activity underlies the generation of large-scale mismatch 271 

responses in animal models, and parallels important properties of human MMN. These are 272 

promising results for translational research into the cellular mechanisms that are disrupted in 273 

schizophrenia and other brain disorders characterized by reductions in large-scale mismatch 274 

responses, such as MMN. 275 

Methods 276 

Experimental Design 277 

The goal of the present experiments was to test responses of single neurons of the cen-278 

tral auditory system of the rat for signs of predictive activity under oddball stimulation. We 279 

recorded extracellular single neuron activity in response to sinusoidal tones in different audi-280 

tory centers of the rat brain (Fig. 1a,b). Rats were deeply anesthetized prior to surgery prepa-281 

ration and during the whole recording session. One single neuron was recorded at a time, 282 

using one tungsten electrode inserted into the brain, and local field potential (LFP) activity 283 

was simultaneously recorded from the same electrode. Surgical, electrophysiological and 284 

histological procedures are detailed below. 285 
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An important part of our experimental design was to record a substantial sample of neu-286 

rons from the major anatomical regions representing the hierarchical organization of the cen-287 

tral auditory system, both at cortical and subcortical levels. The inferior colliculus (IC) of the 288 

midbrain is the main convergence hub of the subcortical auditory system 3,55. The medial ge-289 

niculate body (MGB) is the auditory section of the thalamus, and relies all ascending inputs 290 

to the auditory cortex (AC), considered the highest hierarchical level of the auditory system. 291 

All these auditory processing stations contain first- and higher-order divisions 56. First-order 292 

divisions receive their main ascending input from the brainstem (central nucleus of the IC), or 293 

from first-order division of the preceding nucleus (ventral division of the MGB and cortical 294 

fields A1, VAF and AAF), and comprise the so-called “lemniscal” auditory pathway, where 295 

the auditory information is initially processed. Higher-order divisions are integration centers 296 

for more elaborate processing of abstract properties of the stimulation, and receive their main 297 

inputs from heterogeneous sources. The cortical regions of the IC are considered higher-298 

order, as well as the dorsal and medial divisions of the MGB. Finally, the cortical fields 299 

SRAF and PAF receive their main ascending input from the higher-order MGB, and thus 300 

represent the highest level of the auditory hierarchy in the rat 30,57. 301 

All stimuli presented were sinusoidal pure tones of 75 ms duration, including 5 ms 302 

raise/fall ramps. For each recorded neuron, the frequency-response area (FRA) was first 303 

computed, as the map of response magnitude for each frequency/intensity combination (Fig. 304 

2). To obtain this FRA, a randomized sequence of tones was presented at a 4 Hz rate, ran-305 

domly varying frequency and intensity of the presented tones (3-5 repetitions of all tones). 306 

Then, we selected 10 evenly-spaced tones (0.5 octave separation) at a fixed sound intensity 307 

(usually 20-30 dB above minimal response threshold), so that at least two of them fell within 308 

the FRA or close to its limits (see Fig. 1c and Fig. 2). These 10 frequencies were used to cre-309 

ate the control sequences shown in Fig. 1c. Additionally, adjacent pairs of them were used to 310 
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present different oddball sequences. All sequences were 400 tones in length, at the same, 311 

constant presentation rate of 3 Hz (for AC) or 4 Hz (for IC and MGB). A faster presentation 312 

rate was used for subcortical recordings, to compensate for the relative slowing down of pre-313 

ferred repetition rates from brainstem to cortex 58.  314 

To test the specific contribution of deviance to the neuronal responses, we used oddball 315 

sequences 9,26 (Fig. 1c). An oddball sequence consisted of a repetitive tone (the standard), 316 

occasionally replaced by a different tone (the deviant), with a p=0.1 probability, in a pseu-317 

dorandom fashion. The first 10 tones of the sequence were always the standard tone, and a 318 

minimum of 3 standard tones always preceded each deviant. Oddball sequences were either 319 

ascending or descending, depending on whether the deviant was of a higher or lower fre-320 

quency than the standard, respectively (Fig. 1c). To control for the overall presentation rate of 321 

the target tone, as it reduces neuronal responses at high rates, we used two different control 322 

sequences, namely, the many-standards and cascaded sequences 29,36 (Fig. 1c). The many-323 

standards control sequence was a random presentation of the 10 selected tones, such that each 324 

of them appeared the same number of times in an unpredictable order, with the only con-325 

straint that a single tone was never repeated in a row. Two cascaded control sequences, as-326 

cending and descending, were built as a repetitive series of groups of the 10 tones, arranged 327 

by ascending/descending frequency, respectively (Fig. 1c). Since all sequences were 400 328 

stimuli long, at the same presentation rate, a tone appeared with the same overall presentation 329 

rate in the DEV, MAS and CAS conditions, a total of 40 times along the 400-stimuli se-330 

quence. The cascaded sequence was recently designed as an improvement to the many-331 

standards, that controls for additional key factors beyond presentation rate of the deviant tone 332 

36,37. First, the tone immediately preceding a deviant is the same in the oddball (a standard) 333 

and cascaded sequences. This improves the estimation of the overall adaptation state of the 334 

system by the time the deviant tone is played, and controls for the potential sensitivity of the 335 
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neuron to a rise or fall in frequency between two successive tones. Second, the cascaded se-336 

quence mimics the regular structure of the oddball sequence, with the important difference 337 

that now the target tone conforms to the rule, instead of being a deviant. 338 

Thus, using this design, every tone presented as a deviant was also presented as a stand-339 

ard (in a different oddball sequence) and in the context of the many-standards and cascaded 340 

control sequences. These four conditions, and by extension also response measures to them, 341 

will be denoted DEV, STD, MAS and CAS, respectively. Note that there were two variants 342 

of the DEV condition (ascending/descending), which were compared with the corresponding 343 

ascending/descending CAS condition. The STD condition was averaged, for each frequency, 344 

across ascending/descending versions of the oddball sequence (as indicated in Fig. 1c). The 345 

order of presentation of these sequences was randomized across neurons, with a silent pause 346 

of ~30 seconds between sequences. If the neuron could be held for long enough, the same 347 

protocol was repeated at different sound intensities. 348 

Surgical procedures 349 

Experiments were performed on 36 adult, female Long-Evans rats with body weights 350 

between 200–250 g. The experimental protocols were approved by, and used methods con-351 

forming to the standards of, the University of Salamanca Animal Care Committee and the 352 

European Union (Directive 2010/63/EU) for the use of animals in neuroscience research. 353 

Each individual animal was used to record from only one auditory station, either IC, MGB or 354 

AC. The initial surgical procedures were identical in each case, and the electrophysiological 355 

procedures differed only in the location of the craniotomy, and placement/orientation of the 356 

recording electrode, for each different station.  357 

Surgical anesthesia was induced and maintained with urethane (1.5 g/kg, i.p.), with sup-358 

plementary doses (0.5 g/kg, i.p.) given as needed. Dexamethasone (0.25 mg/kg) and atropine 359 
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sulfate (0.1 mg/kg) were administered at the beginning of the surgery and every 10 h thereaf-360 

ter to reduce brain edema and the viscosity of bronchial secretions, respectively. After the 361 

animal reached a surgical plane of anesthesia, the trachea was cannulated for artificial venti-362 

lation and a cisternal drain was introduced to prevent brain hernia. The animal was then 363 

placed in a stereotaxic frame in which the ear bars were replaced by hollow specula that ac-364 

commodated a sound delivery system. Corneal and hind-paw withdrawal reflexes were moni-365 

tored to ensure that a moderately deep anesthetic plane was maintained as uniformly as pos-366 

sible throughout the recording procedure. Isotonic glucosaline solution was administered pe-367 

riodically (5–10 ml every 6–8 hours, s.c.) throughout the experiment to prevent dehydration. 368 

Body temperature was monitored with a rectal probe and maintained between 37–38°C with a 369 

homoeothermic blanket system (Cibertec).  370 

For IC and MGB recordings, a craniotomy was performed in the left parietal bone to ex-371 

pose the cerebral cortex overlying the left IC/MGB. The dura was removed, and the electrode 372 

was advanced with an angle of 20º for the IC, and in a vertical direction for the MGB. For 373 

AC recordings, the skin and temporal muscles over the left side of the skull were reflected 374 

and a 6×5 mm craniotomy was made in the left temporal bone to expose the entire auditory 375 

cortex (see Figure 1 in ref. 30). The dura was removed and the exposed cortex and surround-376 

ing area were covered with a transparent layer of agar to prevent desiccation and to stabilize 377 

the recordings. The electrode was positioned orthogonal to the pial surface, forming a 30º 378 

angle with the horizontal plane, to penetrate through all the cortical layers of one same corti-379 

cal column.  380 

Electrophysiological recording procedures 381 

Experiments were performed inside a sound-insulated and electrically-shielded chamber. 382 

All sounds were generated using an RX6 Multifunction Processor (TDT) and delivered mon-383 
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aurally (to the right ear) in a closed system through a Beyer DT-770 earphone (0.1–45 kHz) 384 

fitted with a custom-made cone and coupled to a small tube (12 gauge hypodermic) sealed in 385 

the ear. The sound system response was flattened with a finite impulse response (FIR) filter, 386 

and the output of the system was calibrated in situ using a ¼-inch condenser microphone 387 

(model 4136, Brüel & Kjær), a conditioning amplifier (Nexus, Brüel & Kjær) and a dynamic 388 

signal analyzer (Photon+, Brüel & Kjær). The output of the system had a flat spectrum at 76 389 

dB SPL (±3 dB) between 500 Hz and 45 kHz, and the second and third harmonic components 390 

in the signal were ≤ 40 dB below the level of the fundamental at the highest output level (90 391 

dB SPL). Prior to surgery and recording sessions, we recorded auditory brainstem responses 392 

(ABR) with subcutaneous electrodes to ensure the animal had normal hearing. ABRs were 393 

collected using TDT software (BioSig) and hardware (RX6 Multifunction Processor) follow-394 

ing standard procedures (0.1 ms clicks presented at a 21/s rate, delivered in 10 dB ascending 395 

steps from 10 to 90 dB SPL). 396 

Action potentials and local field potentials (LFP) were recorded with hand-397 

manufactured, glass-coated tungsten electrodes 59 (1–4 MΩ impedance at 1 kHz). One indi-398 

vidual electrode was used to record one single neuron at a time. The electrode was advanced 399 

using a piezoelectric micromanipulator (Sensapex) until we observed a strong spiking activity 400 

synchronized with the train of searching stimuli. The signal was amplified (1000×) and band-401 

pass filtered (1 Hz to 3 kHz) with an alternate current differential amplifier (DAM-80, WPI). 402 

This analog signal was digitized at a 12K sampling rate and further band-pass filtered (with a 403 

second TDT-RX6 module)  separately for action potentials (between 500 Hz and 3 kHz) and 404 

LFP (between 3 and 50 Hz). Stimulus generation and neuronal response processing and visu-405 

alization were controlled online with custom software created with the OpenEx suite (TDT) 406 

and Matlab (Mathworks). A unilateral threshold for automatic action potential detection was 407 

manually set at about 2–3 standard deviations of the background noise. Spike waveforms 408 
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were displayed on the screen, and overlapped on each other in a pile-plot to facilitate isola-409 

tion of single units. Only when all snippet waveforms were identical and clearly separable 410 

form other smaller units and the background noise, the recorded action potentials were con-411 

sidered to belong to a single unit.  412 

Sounds used for stimulation were white noise bursts or pure tones with 5 ms rise-fall 413 

ramps. Sounds used for searching for neuronal activity were trains of noise bursts or pure 414 

tones (1–8 stimulus per second). We used short stimulus duration for searching (30 ms) to 415 

prevent strong adaptation. In addition, type (white noise, narrowband noise, pure tone) and 416 

parameters (frequency, intensity, presentation rate) of the search stimuli were varied manual-417 

ly when necessary to facilitate release from adaptation, and thus prevent overlooking re-418 

sponses with high SSA. Once a single neuron was isolated and confirmed to be stable, the 419 

whole stimulation protocol was applied, as described in the first section “Experimental De-420 

sign”.  421 

Histological procedures and anatomical localization of recording sites 422 

AC experiments. At the end of the surgery, a magnified picture (25×) of the exposed 423 

cortex was taken 30 with a digital SLR camera (D5100, Nikon) coupled to the surgical micro-424 

scope (Zeiss) through a lens adapter (TTI Medical). The picture included a pair of reference 425 

points previously marked on the dorsal ridge of the temporal bone, indicating the absolute 426 

scale and position of the image with respect to bregma. This picture was displayed on a com-427 

puter screen and a micrometric grid was overlapped to guide and mark the placement of the 428 

electrode for every recording made. Recording sites (250–500 µm spacing) were evenly dis-429 

tributed across the cortical region of interest while avoiding blood vessels. The vascular pat-430 

tern was used as a local reference to mark the position of every recording site in the picture, 431 

but otherwise differed largely between animals. To confirm the actual depth and cortical lay-432 
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er of the recorded neurons, at the end of the experiment we made electrolytic lesions at one to 433 

four of the recording sites, at the same depth that recordings were made. Five auditory corti-434 

cal fields were identified according to tone frequency response topographies 30. The limits 435 

and relative position of the auditory fields were determined for each animal at the end of the 436 

experiment, using the characteristic frequency (CF; the tone frequency that elicits a signifi-437 

cant neuronal response at the lowest intensity) gradient as the main reference landmark 30,57. 438 

We consistently observed distinct tonotopic gradients within the different fields, with a high-439 

frequency reversal between VAF and AAF (rostrally), a low-frequency reversal between A1 440 

and PAF (dorsocaudally) and a high-frequency reversal between VAF and SRAF (ventrally). 441 

We identified the boundary between A1 and VAF as a 90° shift in the CF gradient in the ven-442 

tral low-frequency border of A1, and the boundary between A1 and AAF as an absence of 443 

tone-evoked responses in the ventral, high-frequency border of A1 30. We used these bounda-444 

ries to assign each recording to a given field. The CF of each recording track was computed 445 

as the average CF of all neurons recorded in that track, including a fast multi-unit activity 446 

FRA recording made between 400-550 µm depth, corresponding to layers IIIb-IV of the audi-447 

tory cortex. 448 

IC and MGB experiments. Each recording track was marked with electrolytic lesions for 449 

subsequent histological localization of the neurons recorded. At the end of the experiment, 450 

the animal was given a lethal dose of sodium pentobarbital and perfused transcardially with 451 

phosphate buffered saline (0.5% NaNO3 in PBS) followed by fixative (a mixture of 1% para-452 

formaldehyde and 1% glutaraldehyde in rat Ringer’s solution). After fixation and dissection, 453 

the brain tissue was cryoprotected in 30% sucrose and sectioned on a freezing microtome in 454 

the transverse or sagittal planes into 40 mm-thick sections. Sections were Nissl stained with 455 

0.1% cresyl violet to facilitate identification of cytoarchitectural boundaries. Recording sites 456 

were marked on standard sections from a rat brain atlas (Paxinos and Watson, 6th Edition) 457 
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and neurons were assigned to one of the main divisions of the IC (central nucleus, dorsal, 458 

lateral or rostral cortex) or the MGB (ventral, dorsal and medial division), respectively. The 459 

stained sections with the lesions were used to localize each track mediolaterally, dorsoven-460 

trally and rostrocaudally in the Paxinos atlas. To determine the main IC or MGB subdivi-461 

sions, cytoarchitectonic criteria, i.e., cell shape and size, Nissl staining patterns and cell pack-462 

ing density, were used. This information was complemented and confirmed by the stereotaxic 463 

coordinates used during the experiment to localize the IC/MGB. After assigning a section to 464 

each track/lesion, the electrophysiological coordinates from each experiment and recording 465 

unit, i.e., beginning and end of the IC/MGB, as well as the depth of the neuron, were used as 466 

complementary references to localize each neuron within a track.  467 

Statistical Analysis 468 

All data analyses were performed with the MatlabTM software, using the built-in func-469 

tions, the Statistics and Machine Learning toolbox, or custom scripts and functions developed 470 

in our laboratory. Peri-stimulus time histograms (PSTH) were generated for each stimu-471 

lus/condition tested. Only the last STD tones preceding each DEV tone were used for the 472 

analyses. A PSTH was a histogram of action potential density over time (in action potentials 473 

per second, or Hz) from −75 to 250 ms around stimulus onset, using the 40 trials available for 474 

each tone and condition. Every PSTH was smoothed with a 6 ms gaussian kernel (“ksdensi-475 

ty” function in Matlab) in 1 ms steps to estimate the spike-density function (SDF) over time, 476 

and the baseline spontaneous firing rate (SFR) was determined as the average firing rate (in 477 

Hz) during the 75 ms preceding stimulus onset. For any given time window, the excitatory 478 

response was measured as the area below the SDF and above the baseline SFR (positive area 479 

patches only, to avoid negative response values). This measure will be referred to as “base-480 

line-corrected spike count”.  481 
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We used two types of sequences to control for repetition effects (v.s. Experimental De-482 

sign), namely the many-standards and cascaded sequences (Fig. 1d). However, only one of 483 

them is required to decompose neuronal mismatch into repetition suppression and prediction 484 

error (Fig. 1d). In the following, we describe the analysis performed using the CAS condition 485 

as control, since the analysis using the MAS sequence is completely analogous. Baseline-486 

corrected spike count responses of a neuron to the same tone in the three conditions (DEV, 487 

STD, CAS) were normalized using the formulas:  488 

DEVN = DEV/N;  489 

STDN = STD/N;  490 

CASN = CAS/N;  491 

Where 492 

N = √DEVଶ + STDଶ + CASଶ 493 

is the Euclidean norm of the vector (DEV, STD, CAS) defined by the three responses. This 494 

normalization procedure always results in a value ranging 0 to 1, and has a straightforward 495 

geometrical interpretation (Fig. 3b,h): Normalized values are the coordinates of a 3D unit 496 

vector (DEVN, STDN, CASN) with the same direction of the original vector (DEV, STD, 497 

CAS), and thus the same proportions between the three response measures. From these nor-498 

malized responses, indices of neuronal mismatch (iMM), repetition suppression (iRS), and 499 

prediction error (iPE) were computed as: 500 

iMM = DEVN − STDN,  501 

iRS = CASN − STDN,  502 

iPE = DEVN − CASN, 503 
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These indices, consequently, always range between -1 and 1, and provide the following 504 

quantitative decomposition of neuronal mismatch (Fig. 1d) into repetition suppression and 505 

prediction error: 506 

iMM = iRS + iPE  507 

As shown if Fig. S1, the iMM is largely equivalent to the typical SI, or “SSA index”, 508 

commonly used in most previous studies of SSA in single units 26,29: 509 

SI = (DEV-STD)/(DEV+STD) 510 

For the analysis of the LFP signal, we aligned the recorded wave to the onset of the 511 

stimulus for every trial, and computed the mean LFP for every recording site and stimulus 512 

condition (DEV, STD, CAS), as well as the “prediction error potential” (PEP = LFPDEV – 513 

LFPCAS). Then, grand-averages were computed for all conditions, for each auditory station 514 

separately. The p-value of the grand-averaged PEP was determined for every time point with 515 

a two-tailed t-test (Bonferroni-corrected for 200 comparisons, with family-wise error rate 516 

FWER<0.05), and we computed the time intervals where PEP was significantly different 517 

from zero (Fig. 5).  518 

All statistical tests used were distribution-free tests (or “nonparametric”, namely the 519 

Wilcoxon signed-rank test and Friedman test), given the non-normal nature of our dataset 520 

(baseline-corrected spike counts, normalized responses, indices of neuronal mismatch, repeti-521 

tion suppression and prediction error). Only the difference wave for the LFPs (PEP in Fig. 5) 522 

was tested using a t-test, since each LFP trace is itself an average of 40 waves, and thus ap-523 

proximately normal (according to the Central Limit Theorem). Linear models used to test 524 

significant average iPE within each auditory station (Fig. 4b,d) and significant effects of nu-525 

cleus, hierarchy, SPL, direction, and interactions between them, were fitted using the ‘fitlm’ 526 

function in Matlab, with robust options. 527 
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Figures 682 

 683 

Figure 1: Experimental design. a. Sketch of experimental setup. Isolated neurons were 684 

recorded from different auditory nuclei of anesthetized rats, while stimulating with pure 685 

tones. b. Schematic representation of the major nuclei in the rat auditory pathway form 686 

midbrain to cortex 3,30, divided into first- and higher-order regions. c. Stimulation sequences. 687 

For each recorded neuron, 10 tones of evenly-spaced frequencies were selected to construct 688 

these stimulation sequences. Using this design, each tone fi (i=1...10) lying inside the 689 
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neuron’s receptive field could be presented in two experimental conditions (DEV and STD, 690 

in separate oddball sequences), and two control conditions (CAS/MAS) for adaptation 691 

effects. Note that ascending/descending DEV tones will be compared to the corresponding 692 

version of the CAS condition (see Methods).  d. Decomposition of neuronal mismatch 693 

responses (nMM=DEV−STD) to the oddball sequence using either one of the control 694 

conditions. e. Predicted scenarios under two competing mechanisms explaining nMM. If SSA 695 

is the main mechanism underlying nMM, responses to STD tones will be more suppressed 696 

the more synapses information traverses along the auditory hierarchy, and responses to 697 

control (CAS/MAS) tones would be equal to, or stronger than, to DEV tones, since the 698 

average intertonal distance is larger in the controls than in oddball sequences 29. By contrast, 699 

if nMM reflects Bayesian inference, responses to DEV tones would be progressively larger 700 

than to the controls as the information propagates up the auditory hierarchy 4. 701 
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 702 

Figure 2: Prediction error in sample neuronal responses. a-f. Each panel shows responses 703 

of representative neurons within each station of the auditory pathway: (1) The FRA 704 



33 

(representation of neuronal sensitivity to different frequency/intensity combinations) and the 705 

10 tones selected to create the control sequences for that particular neuron (see Methods). (2) 706 

Measured responses of the neuron to each tone (baseline-corrected spike counts, averaged 707 

within 0−180 ms after tone onset), for all conditions tested. (3) Sample PSTH for each 708 

condition, for the tone with the highest response (either ascending or descending; indicated 709 

with an arrow). Stimulus duration is represented by the thick, horizontal line, and the isolated 710 

spike (mean ± SEM) is shown in the small inset. Note that both repetition suppression (STD 711 

< CTR) and prediction error (DEV > CTR) can be observed in responses to some tones, and 712 

this is particularly consistent for higher-order neurons (panels D-F). 713 
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 714 

Figure 3. Prediction error at the population level. a-f. Responses to the three conditions 715 

(DEV, STD, CAS; for all tones tested in all neurons) were represented on a 3D scatter, 716 

separately for each station. These points were then orthogonally projected onto the three 717 

“walls”, to compare two responses at a time, and then the “box” was unfolded (after “cutting” 718 
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along the CAS axes) to create the main, flat diagrams. Thus, each 2D point represents the 719 

response (baseline-corrected spike count) of a single neuron to one given tone for a pair of 720 

conditions. The clouds of magenta and blue points concentrate below the diagonal in all 721 

stations, indicating neuronal mismatch and repetition suppression, respectively, at the 722 

population level. The cloud of yellow points remains unbiased in lower stations (a,b), but is 723 

displaced above the diagonal in higher stations, especially in AC (c,f). This indicates an 724 

important contribution of prediction error to neuronal responses in these stations. g-l. 725 

Distribution of normalized responses and indices of neuronal mismatch (iMM), repetition 726 

suppression (iRS) and prediction error (iPE). Each point in the 3D scatters from panels a-f 727 

represents a vector in response space (DEV, STD, CAS). The normalization is just the radial 728 

projection of this point onto the unit sphere centered on the origin (small insets), so the 729 

resulting vector (DEVN, STDN, CASN,) is a scaled version of the former. The flat diagram is 730 

a zenith view of the 3D sphere. Each diagonal (dotted black lines) represents the line where 731 

the corresponding index is zero, and the index will increase or decrease as a projected point 732 

moves away from this line. Histograms represent index distributions, with their means 733 

indicated by colored lines. Note the overall shift of the mean iPE towards positive values, 734 

from IC through MGB to AC, and from first- to higher-order divisions. 735 



36 

 736 

Figure 4: Emergence of iPE along the auditory hierarchy. a. Average normalized 737 

responses (mean ± SEM) to the three conditions (DEVN, STDN, CASN) within each station. 738 

b. These same normalized responses are representd with respect to the CAS control 739 

condition, so that the indices are represented by their differences (iPE is upwards-positive, 740 

iRS is downwards-positive). Asterisks denote statistical significance of iPE against zero 741 

median (Table 1) c. Linear model fitted for the iPE, using SPL and Direction 742 

(ascending/descending) as predictors. Error bars denote mean and SEM for each SPL and 743 

Direction. d. The same as in (b), but using only recordings for ascending deviant tones at 744 

intensities ≤ 40 dB SPL. 745 
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 746 

Figure 5: Correlation of iPE and the local-field prediction error signal (PEP). Population 747 

grand-averages for different response measures, computed for each processing station 748 
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separately: (1) Average local field potentials (LFP) across tested tones and recording sites for 749 

the different conditions. (2) Average firing rate profiles, as spike-density functions (SDF, 750 

normalized to better match the iPE traces shown below). (3) Average “local-field prediction 751 

error signal” (PEP = LFPDEV − LFPCAS; white trace: instantaneous p-value for the PEP, 752 

paired t-test against equal means; red horizontal line: critical threshold with Bonferroni 753 

correction for 200 comparisons, FWER<0.05; thick black bars: time intervals for which 754 

average PEP is significant). (4) Along with the PEP trace, the time course of the average iPE 755 

is plotted in orange (mean ± SEM, asterisks indicate a significant iPE for the corresponding 756 

time window; Wilcoxon signed rank test with Bonferroni correction for 12 comparisons, 757 

FWER<0.05). Highest iPE values are concurrent in time and location (auditory cortex; panels 758 

C-F) with the strongest PEP.  759 

Tables 760 

Table 1: Summary of principal dataset. For each auditory station: Number of recorded 761 

neurons and tested neuron/tone combinations (points). Median values for baseline-corrected 762 

spike counts (spk) to the different conditions. Median differences between the former 763 

measures, and associated p-values against zero (Friedman test with post-hoc multiple 764 

comparison, Fisher’s Least Significant Difference method, uncorrected for 6 independent 765 

tests). Median indices of neuronal mismatch (iMM), repetition suppression (iRS) and 766 

prediction error (iPE), computed from each of the two control sequences (CAS or MAS), and 767 

their corresponding p-values (note that p-values are the same for absolute differences and 768 

normalized indices, since these indices are median differences between normalized responses, 769 

and the non-parametric test is independent of scaling). Values related to predictive neuronal 770 

activity are highlighted in bold case, since they represent the most significant result of this 771 

research. 772 
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 773 

 fo-IC ho-IC fo-MGB ho-MGB fo-AC ho-AC 
       

# Neurons 22 56 24 35 35 36 

# Points 114 523 77 225 250 306 
       

DEV (spk) 2.55 0.99 0.64 0.68 0.95 0.98 

STD (spk) 1.93 0.22 0.20 0.14 0.24 0.21 

CAS (spk) 2.37 0.97 0.71 0.55 0.77 0.59 

MAS (spk) 2.51 0.95 0.90 0.65 0.85 0.52 
       

DEV−STD (spk) 0.62 0.77 0.44 0.54 0.71 0.77 
p-val 0.000 0.000 0.000 0.000 0.000 0.000 

CAS−STD (spk) 0.44 0.76 0.51 0.40 0.53 0.38 
p-val 0.000 0.000 0.000 0.000 0.000 0.000 

DEV−CAS (spk) 0.18 0.019 −0.07 0.13 0.18 0.39 
p-val 0.779 0.020 0.019 0.023 0.019 0.000 

MAS−STD (spk) 0.57 0.73 0.70 0.50 0.60 0.31 
p-val 0.003 0.000 0.000 0.000 0.000 0.000 

DEV−MAS (spk) 0.04 0.04 −0.26 0.03 0.11 0.46 
p-val 0.190 0.155 0.003 0.671 0.049 0.000 

       
iMMCAS 0.127 0.493 0.324 0.496 0.505 0.609 

p-val 0.000 0.000 0.000 0.000 0.000 0.000 

iRSCAS 0.013 0.461 0.447 0.446 0.398 0.334 
p-val 0.000 0.000 0.000 0.000 0.000 0.000 

iPECAS −0.002 0.032 −0.122 0.050 0.107 0.275 
p-val 0.779 0.020 0.019 0.023 0.019 0.000 

       
iMMMAS 0.147 0.485 0.303 0.505 0.508 0.611 

p-val 0.000 0.000 0.000 0.000 0.000 0.000 

iRSMAS 0.091 0.463 0.445 0.494 0.439 0.343 
p-val 0.003 0.000 0.000 0.000 0.000 0.000 

iPEMAS 0.055 0.023 −0.143 0.010 0.069 0.267 
p-val 0.190 0.155 0.003 0.671 0.049 0.000 

 774 

  775 
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Supplementary Materials 776 

Figure S1: Quantitative comparison between iMM and the “classical” SI. The SI trace is 777 

plotted as a function of the DEV/STD ratio, since it does not take into account the control 778 

condition. Different iMM traces are plotted (dashed lines), as a function of the relative mag-779 

nitude of the response to control condition with respect to DEV response (CTR/DEV), from 780 

low (CTR=0.2*DEV) to high (CTR=1.2*DEV) hypothetical responses to the control. The 781 

two indices (the SI and the iMM for different CTR response magnitudes) take values very 782 

close to each other under most conditions, except for very extreme and rare cases in which 783 

the response to the control condition is much larger than DEV of much smaller than STD.  784 
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