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RESUMEN

La identificacion y caracterizacion de proteinas que utilizan los merozoitos de Plasmodium
para invadir a su célula hospedera, representan una estrategia importante para desarrollar un
método de control contra estos parasitos. A pesar de ello, la investigacion bésica en P. vivax esta
retrasada por su dificil propagacion in vitro, debido a la preferencia que tiene el parasito por invadir
reticulocitos, los cuales se encuentran en escaso porcentaje en sangre periférica de humanos
adultos (1-2%) y son dificiles de obtener con alta pureza, en suficiente cantidad y totalmente
viables. Como consecuencia de lo anterior, el conocimiento del nimero de moléculas que expresa

P. vivax y cudles de ellas son candidatas para componer una vacuna, es escaso.

En este estudio, se evalu6 el proteoma de una cepa de P. vivax adaptada a primates y se
caracterizaron moléculas antigénicas y con capacidad de adhesion a reticulocitos humanos. En el
analisis del proteoma de la cepa VCG-1 de P. vivax, se detectaron 734 proteinas, algunas esenciales
en los pasos clave para establecer la invasion del merozoito a su célula diana. Ademas, se
identificaron 811 componentes de eritrocitos (hospederos vitales de Plasmodium) del primate A.
nancymaae, de los cuales 51 son proteinas integrales de membrana, 7 descritas como receptores
de Plasmodium. Por otro lado, se identifico la presencia, transcripcion y expresion de los genes
codificantes de tres moléculas de P. vivax: PvARP, PvYRBSA y PvGAMA, asi como su
antigenicidad. De particular interés, se encontré6 que PYRBSA y PvGAMA se unen en mayor
proporcion a reticulocitos que expresan el receptor CD71 de forma abundante (CD71"), lo que
sugiere que estas moléculas pueden estar participando en la seleccion preferencial que tienen los

merozoitos de P. vivax por los reticulocitos humanos.

Este es el primer estudio en Colombia donde se determina la composicion proteica de una
cepa de P. vivax adaptada a primates, asi como la de eritrocitos de A. nancymaae. Como resultado
mas importante, se caracterizaron moléculas de P. vivax que son candidatos idoneos a ser

evaluados como componentes de una vacuna contra la malaria causada por esta especie parasitaria.
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ABSTRACT

Identifying and characterising proteins which use Plasmodium merozoites to invade host
cells represents an important strategy for developing a method for controlling these parasites.
However, basic P. vivax research has been delayed due to difficulties in propagating it in vitro as
the parasite prefers to invade reticulocytes; there is a low percentage of these in adult human
peripheral blood (1%-2%) and they are difficult to obtain with high purity, in a sufficient amount
and totally viable. Consequently, knowledge is scarce regarding the amount of molecules being
expressed by P. vivax and which of them represent good candidates for inclusion in an effective

vaccine.

This study has been aimed at evaluating the proteome of a primate-adapted P. vivax strain;
antigenic molecules able to bind to human reticulocytes have been characterised. Analysing the P.
vivax VCG-1 strain proteome led to detecting 734 proteins, some of them essential in key steps for
establishing merozoite invasion of target cells. Furthermore, 811 A. nancymaae primate
erythrocyte components (vital Plasmodium hosts) were identified; 51 of them were integral
membrane proteins, 7 described as Plasmodium receptors. The presence, transcription, expression
and antigenicity of genes encoding three P. vivax molecules (PvARP, PYRBSA and PvGAMA)
were identified. Particularly interesting was the finding that a higher percentage of PvRBSA and
PvGAMA bound to reticulocytes abundantly expressing the CD71 receptor (CD71M), thereby
suggesting that these molecules could be participating in P. vivax merozoite preferential selection

for human reticulocytes.

This the first study in Colombia which has determined the protein composition of a
primate-adapted P. vivax strain as well as A. nancymaae erythrocytes. More importantly, P. vivax
molecules were characterised which appear to be suitable candidates for being evaluated as

components of a vaccine against malaria caused by the parasite species.
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INTRODUCCION

La malaria: epidemiologia y agente etiologico.

La malaria es una enfermedad parasitaria que continuia siendo una de las mas importantes
en el mundo, ya que afecta la salud de miles de individuos que viven en paises localizados en
regiones tropicales y sub-tropicales (1). De acuerdo con la Organizacion Mundial de la Salud
(OMS), 104 paises son endémicos de malaria (Figura 1), de los cuales 97 de ellos presentan
transmision y siete estan en la fase de prevencion de reintroduccion desde el aiio 2013 (1). En el
afio de inicio de esta investigacion, se registraron 207 millones de infecciones por paludismo y
627.000 muertes de nifios y adultos en todo el mundo, principalmente en Africa, areas de Oriente
Medio y Asia (1). En la actualidad, aunque el estimado de muertes por la enfermedad disminuy6
a 429.000, esta cifra sigue siendo alarmante (2). A lo anterior se suma que el parasito esta
desarrollando resistencia frente a medicamentos anti-malaricos (3, 4) y ademads, hay un incremento

de la resistencia a insecticidas por los vectores transmisores (5).

Tropico Subtropico
Figura 1. Paises endémicos de malaria segiin la OMS.

La enfermedad es causada en humanos por cinco especies de protozoos pertenecientes al
género Plasmodium: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae,

Plasmodium ovale y Plasmodium knowlesi. La primera de ellas es la mas importante por su
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letalidad y predominio, principalmente en Africa (1), mientras que P. vivax causa una morbilidad
alta en Asiay América, lo cual se debe en parte, a que la presencia del antigeno Duffy (Fy), esencial
para la invasion de P. vivax, es poco comun en los africanos (6) (Figura 2), mientras que es mas

frecuente en individuos que viven en zonas tropicales de Sudamérica y el Sudeste asiatico.

-

Frecuencia de Fy(a-b-) _ -

% 0-10% = 60 - 70%

10 - 20% 70 - 80%

B 20-30% [ 20 -90%

B 30-40% N 90 - 95%
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B 50-60% [ 98- 100% «

Figura 2. Distribucion global del fenotipo Duffy negativo. Imagen modificada de Howes et al., 2011 (6).

Segun la literatura, 2,85 billones de personas se encuentran en riesgo de contraer la
infeccion por P. vivax; 91% (2,59 billones) viven en el Centro y Sureste de Asia, 5,5% (160.000
millones) en América y 3,5% (100.000 millones) en el continente africano (7). Price y su grupo
reportaron que P. vivax genera entre 132 a 391 millones de casos nuevos anualmente (8). Aunque
se piensa que P. vivax es una especie causante de enfermedad benigna, durante los Gltimos 15 afios
se han incrementado los reportes de casos de infeccion grave y muerte por el parasito,

principalmente en India, USA, Indonesia y Pakistan (9).

En Colombia, segun el informe del Instituto Nacional de Salud (INS) de Bogotd, se
notificaron 288.200 casos de malaria en total durante los ultimos 5 afos, de los cuales, el 55,1%
corresponden a P. vivax (10). Los departamentos con mayor numero de casos de paludismo
causado por dicha especie fueron Antioquia, Chocd, Cordoba, Bolivar y Narifio. Hasta la fecha se
notificaron 16 casos de malaria grave por P. vivax en los municipios Colombianos de Tumaco,
Cali y Buenaventura (11). A pesar de lo anterior, los reportes epidemiologicos, la carga global y
la gravedad de la enfermedad son subestimados, debido a la falta de notificacion de los casos
clinicos en los sistemas de informacion del pais (12).
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Prevencion y control

El comité asesor de politicas para controlar la malaria de WHO (MPAC: Malaria Policy
Advisory Committee) establecio varias estrategias para la prevencion del paludismo (1). Dentro de
ellas, se encuentra el uso de mosquiteras impregnadas con insecticidas de larga duracion (LLINSs:
Long-Lasting Insecticidal Nets), la fumigacion residual de interiores (IRS: Indoor Residual
Spraying), la creacion de sedes entomoldgicas para estudiar y controlar el vector, el tratamiento
intermitente preventivo (IPT: Intermittent Preventive Treatment), la quimioprevencion de malaria
estacional (SMC: Seasonal Malaria Chemoprevention) y el diagndstico y tratamiento oportuno
(Diagnosis and treatment of malaria) (1). El uso de dichas estrategias redujo la incidencia y
mortalidad de la enfermedad en zonas endémicas en un 21% y 29% respectivamente, en todos los
grupos de edad, y la mortalidad en nifios menores de 5 afios en un 35% (2). Pese a ello, la cantidad
de casos de paludismo contintian siendo alarmantes, mas aun si se tiene en cuenta que la poblacion

neonatal es la principalmente afectada.

Dado que las estrategias de control y prevencion de la malaria no son suficientes, distintos
grupos de investigacion concentran sus esfuerzos en desarrollar una vacuna, la cual es considerada
como una alternativa eficiente. Este enfoque mostrd ser util en el control y erradicacion de
enfermedades infecciosas como ocurri6 en el caso de la vacunacion contra la poliomielitis, la cual
redujo la incidencia global en un 99.9% entre los afios 1998-2002 (13). Por lo tanto, para poder
desarrollar una vacuna contra la malaria, es necesario conocer el ciclo de vida del parésito y

establecer los puntos de intervencion apropiados.
Ciclo de vida de Plasmodium

La infeccidon en humanos por parasitos del genero Plasmodium se inicia tras la inoculacion
de 30 a 200 formas infectivas denominada esporozoitos, a través de la picadura de un mosquito
hembra del género Anopheles (Figura 3) (14). Durante dicho estadio denominado pre-eritrocitico,
los esporozoitos se transportan en el torrente sanguineo e invaden los hepatocitos, en los cuales, el
parasito se replica en miles de merozoitos por célula, dando lugar a la formacion de esquizontes

tisulares. Una particularidad de P. vivax, es que éste puede permanecer en estado latente en las
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células hepaticas (forma conocida como hipnozoito) y puede reactivarse atin después de haber

desaparecido el parasito de la sangre (Figura 3) (15, 16).

Posteriormente, se produce la ruptura de los esquizontes hepaticos y la liberacion de los
merozoitos al torrente sanguineo, los cuales rapidamente invaden los eritrocitos (o reticulocitos en
el caso de P. vivax), dando inicio a la etapa eritrocitica. Una vez infectado el eritrocito, los
parasitos inician una division asexual para generar nuevas formas parasitarias, pasando por la etapa
de anillo, trofozoito y finalmente esquizonte, la cual dura aproximadamente 48-72 horas
dependiendo de la especie parasitaria. En esta Gltima etapa, las células hospederas se rompen y
liberan nuevos merozoitos con capacidad infectiva, los cuales repetiran el proceso de invasion,

multiplicandose de forma exponencial.

Etapa
pre-eritrocitica

= |\
Vector "7—
Anopheles sp.

Glindula

/ salival

\ - “ / i Ft"rli]{zu;iﬁn
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e
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!
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sq-_-“' e 20 /[n\i Gam@!Tz:
;

Gametocitos
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T eritrocitica Esquizonte

Figura 3. Ciclo de vida de Plasmodium. Imagen modificada de Mueller e/ al., 2016 (14).

Por otro lado, algunos merozoitos se diferencian sexualmente en gametos maduros
masculinos o femeninos (etapa sexual). En P. vivax, estos se generan antes que los individuos
infectados sean sintomaticos, lo que favorece la transmision temprana del parasito (14). Los
merozoitos diferenciados sexualmente son ingeridos por el vector cuando se alimenta, y dentro de

éste, se da el ciclo sexual que involucra la fertilizacion de los gametos y el paso del cigoto a través
16



del intestino medio. Posteriormente, el cigoto se transforma en un oocito adherente, dentro del cual
se forman esporozoitos que son liberados y migran a las glandulas salivales del mosquito, los

cuales seran posteriormente inoculados durante una nueva picadura (Figura 3).
Invasion de los merozoitos de Plasmodium a los eritrocitos

Durante esta etapa ocurre la multiplicaciéon de los merozoitos, y su liberacion esta
directamente relacionada con la sintomatologia clinica y la gravedad de la enfermedad. Este
proceso ha sido ampliamente estudiado en P. falciparum, dado que se tiene establecido un cultivo
continuo in vitro para este parasito. Segin diversos estudios, la invasion del merozoito a la célula
ocurre rapidamente (en menos de 40 segundos) y se divide en varias fases: contacto inicial y
reorientacion hacia el polo apical, formacién de una union fuerte e irreversible y, por ultimo, la
invasion a los eritrocitos (Figura 4) (17). Durante dichas fases, participan numerosas proteinas del
merozoito presentes en su superficie o secretadas por los 6rganos incluidos en el complejo apical

(roptrias y micronemas), las cuales se unen a los componentes integrales de la membrana de los

eritrocitos, para facilitar la invasion (18, 19).

b

= % b A

= K - “

et T S s IR ”1\
P

: s r""'r;-:;r"'”“
Contacto inicial y Union fuerte W

reorientacion apical e irreversible
Invasion

Figura 4. Fases de invasion de merozoitos de Plasmodium a eritrocitos humanos. Imagen modificada de Koch et al.,
2016 (18).

Contacto inicial y reorientacion apical.

La unidn inicial del merozoito a la superficie del eritrocito es un proceso reversible y de
baja afinidad, mediado por moléculas pertenecientes a la familia de proteinas de la superficie del
merozoito (MSPs: Merozoite Surface Proteins). La proteina mas abundante y mejor estudiada es

MSP-1, la cual sirve de plataforma para el ensamblaje de un complejo molecular compuesto por
17



otras proteinas de superficie como MSP-6, MSP-7, MSP-9 y MSPDBL (Duffy binding-like) (20,
21). Estas moléculas se exponen a anticuerpos cuando el merozoito se libera al torrente sanguineo
y, al ser polimorficas, ayudan al parasito a evadir la respuesta inmune del hospedero. El bloqueo
de la union del merozoito a su célula diana, utilizando anticuerpos dirigidos contra MSP-1, valida

la funcidon que desempena la molécula durante la invasion (19).
Formacion de union fuerte e irreversible.

Las proteinas que participan en esta fase son adhesinas provenientes de las roptrias y
micronemas, las cuales tienen una mayor afinidad por los receptores celulares. Algunas moléculas
vinculadas en este proceso pertenecen a la familia de las EBAs (Erythrocyte Binding Antigens),
localizadas en micronemas, y las Rhs (Reticulocyte Binding Protein Homologues), localizadas en
roptrias, que son liberadas cuando se inicia el contacto merozoito-célula diana. Estas moléculas
permiten a P. falciparum invadir las células a través de rutas alternas, lo que le confiere al parasito

un mecanismo para contrarrestar la respuesta inmune humoral del hospedero (22).

Por otro lado, se conoce un complejo multimérico esencial en la invasion, dado que
establece la interaccion fuerte e irreversible entre el merozoito y su célula diana, conformado por
el antigeno apical de membrana 1 (AMAL1: Apical Membrane Antigen 1) y algunas proteinas del
cuello de las roptrias (RON: Rhoptry Neck Proteins) (RON2, RON4 y RONS). La deplecion
genética de AMA-1 es letal para P. falciparum, siendo esta molécula critica en la invasion
parasitaria (23). RhS5 es otra molécula importante, debido a que la eliminacion del gen es letal para
el parasito (24) y ademas, se ha demostrado que anticuerpos dirigidos contra la proteina, logran

bloquear la invasion de multiples cepas de P. falciparum a eritrocitos humanos (25).
Invasion a los eritrocitos.

Una vez establecida la union fuerte, el contenido proteico del complejo apical es liberado
por un mecanismo aun desconocido, y se inicia la formacion de la vacuola parasitéfora, a medida

que el parasito se internaliza dentro de la célula diana (17).

Seglin lo descrito hasta ahora, las proteinas mas importantes para el contacto inicial e

invasion del parasito a los eritrocitos se localizan en la superficie o en los organelos apicales. En

18



este sentido, es importante conocer las proteinas que expresa P. vivax al final del ciclo
intraeritrocitico y, principalmente, aquellas que se unen a la célula hospedera, con el fin de

establecer estrategias para controlar su adhesion e invasion.
Ciencias omicas en P. vivax

En los ultimos afios, ha surgido gran interés por obtener datos genéticos y moleculares de
los microorganismos, mediante el uso de las ciencias dmicas. Estas herramientas son de utilidad
para conocer la biologia y entender la compleja maquinaria que utilizan algunos microorganismos
para invadir sus cé€lulas diana. Parte de la investigacion a nivel mundial para el desarrollo de
vacunas contra la malaria, se enfoca principalmente en P. falciparum, la cual es soportada de forma
importante por el desarrollo del cultivo in vitro del parasito, sumado a los estudios de identificacion
a gran escala de genes (26), transcritos (27) y proteinas (28, 29). Con base en la caracterizacion de
moléculas que permitieron los estudios anteriores, se pudo avanzar en la determinacion del papel
que juegan algunas de ellas en el proceso de invasion de P. falciparum a los eritrocitos y, como

consecuencia, se han evaluado como candidatas a vacuna en estudios clinicos (30).

En el caso de P. vivax, la investigacion orientada a conocer su biologia esta notablemente
retrasada, debido en gran parte a la dificil propagacion del parasito in vitro, por la preferencia que
tiene de invadir reticulocitos, los cuales son escasos en sangre periférica de humanos adultos (1-
2%) y dificiles de obtener de forma viable y en suficiente cantidad (31). Como consecuencia de lo
anterior, los estudios enfocados a determinar el genoma, transcriptoma y proteoma en P. vivax no

tienen la misma cronologia con respecto a la investigacion en P. falciparum (Tabla 1).

Tabla 1. Cronologia de la investigacion en ciencias 6micas de P. vivax vs P. falciparum.

Tipo de estudio/Especie  P. falciparum - Ao (Ref) P. vivax - Aiio (Ref)
Genoma 2002 (26) 2008 (32)

Transcriptoma 2003 (27) 2005 (33), 2008 (34)
Proteoma 2002 (28,29) 2009 (35), 2011 (36, 37)

La secuenciacion completa del genoma de P. vivax realizada por el J. Craig Venter Institute
(JCVI) permitio hacer estudios comparativos in silico entre las diferentes especies de Plasmodium

(32). Este estudio fue el punto de partida para conocer la mayoria de genes homoélogos entre las
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especies de Plasmodium, nuevas familias de genes en P. vivax, y algunos de los ligandos de union
mas relevantes, pertenecientes a la familia de genes codificantes de las RBPs (Reticulocyte binding
proteins). Estos hallazgos soportan la idea de que P. vivax puede usar rutas de invasion adicionales,

al igual que lo hacen los parasitos P. falciparum y Plasmodium yoelii (32).

En transcriptomica hay dos estudios. Cui y su grupo construyeron una libreria de ADNc
proveniente de pardsitos de P. vivax mezclados en los distintos estadios sanguineos (anillos,
trofozoitos y esquizontes), para conocer los genes codificantes de la especie y acelerar su anotacion
(33). Al comparar las secuencias expresadas (EST: Expressed Sequence Tags) con la base de datos
publica del Instituto para Investigacion en Genémica (TIGR: The Institute for Genomic Research),
encontraron que la mayoria de sus secuencias eran similares a las de P. falciparum. Mas adelante,
Bozdech y su grupo cultivaron el parésito en forma sincrénica para estudiar la expresion estadio-
especifica de los genes (34). El estudio permitié conocer los genes que se expresan de manera
abundante en las distintas etapas de desarrollo intraeritrocitico. De interés, se encontré una
expresion diferencial de las RBPs seglin el aislado analizado y, ademas, se identificaron algunas
proteinas homologas a las de otras especies de Plasmodium para las cuales habia evidencia

experimental de su funcion de adhesion celular.

En el estudio de proteoma de esquizontes de P. vivax, se utilizo la técnica de separacion de
proteinas en 2D y su posterior analisis por espectrometria de masas (MS: Mass Spectrometry). En
un primer estudio, Acharya y su grupo, identificaron 154 proteinas en parasitos de P. vivax
provenientes de aislados clinicos; algunas fueron proteinas hipotéticas, otras enzimas metabolicas,
chaperonas y moléculas involucradas en virulencia (37). En el mismo afio, Roobsoong y
colaboradores, identificaron 316 proteinas en muestras de pardsito extraidas de pacientes
sintomaticos; las funciones encontradas mas comunes fueron: union, sintesis, metabolismo y
transporte celular (36). Cabe destacar que, al momento de iniciar esta investigacion, no habia

ningun reporte del proteoma de parasitos de P. vivax adaptados a primates no humanos.

La inmunoproteémica se uso en los ultimos afios para determinar la capacidad de varias
proteinas para desencadenar una respuesta antigénica durante la infeccién natural. Usando la
tecnologia de microarreglos de proteinas obtenidas mediante el sistema WGCF (Wheat Germ Cell-

Free System), Chen y su grupo reportaron la inmunoreactividad frente a 18 proteinas (de las cuales
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11 no tenian evidencia funcional) de un total de 86 (38), mientras que el grupo de Lu mostro la
reactividad frente a 44 moléculas de 152 (39). Las moléculas inmunoreactivas se consideran
relevantes para evaluarlas como componentes de una vacuna, dado a que éstas logran desencadenar
una respuesta inmune natural, que a menudo se encuentra relacionada con la disminucion de la
parasitemia (22). Por todo lo expuesto, los anteriores estudios son de gran utilidad, debido a que
ofrecen informacion acerca de las proteinas que generan una respuesta inmune en P. vivax,

pudiendo asi ser consideradas como candidatas a vacuna.
Proteinas caracterizadas en P. vivax

Hasta el afio 2012, se habia reportado la caracterizacion de 26 moléculas de la fase
intraeritrocitica (Figura 5) (40). En general, las primeras moléculas de P. vivax caracterizadas se
seleccionaron segiin su homologia a las de otras especies de Plasmodium, cuyo papel en invasion
celular se habia determinado experimentalmente. Sin embargo, recientemente se tienen en cuenta
otros criterios como la elevada expresion al final del ciclo de vida intraeritrocitico (mayor a 35
horas), la prediccion de un péptido sefial o localizacion extracelular, la presencia de dominios de
interaccion entre proteinas y/o secuencias transmembranales o de anclaje a GPI (41). En cuanto a
la validacion por biologia molecular, se utiliza el parasito obtenido de sangre de pacientes

infectados naturalmente o de primates infectados experimentalmente.

Merozoito de Plasmodium vivax

Micronemas Roptrias
DBP* RAPI, -2*
AMAT* Pv38, -34
MSPS RONI, -2, -4,-8
TRAMP RhopH1, -2, -3
RBP1a, -1b RALP1

= Sin localizacion
Superficie ———3%
RBP1*, -2, Pv24

_\ISPI’:‘ :l P PvTRag26.3, -32.4, -33.5, -33.6,
MSP3.2,-3.3 3.5, -34,-34.9, -35.2, -35.2a, -35.7, -36, -36.6.
-3.6,-3.7,-3.8,-3.9,-3.10

3. -36.7,-37.4, -38,-38.5, -38.7, -38.8, -39.8,
MSP4, -7, -8, 9%, -10% b R -39.8a, -39.9, 40, -40.8, -42.9, -429a, -43.1, -53.7,
PyTRAg40, PvATRAgT76 -56.2.-69.4, -55, -73 4, -74, -80.6, -99.6, -157, -309

P*'i‘l;—;& -92 RAMA, MSP3.1, -3.4, -3.11, ETRAMP 11 2
ASA180

EXPI, EBP2, REPZa, RBP2b, RBF2-P2

Figura 5. Proteinas del estadio intraeritrocitico de P. vivax caracterizadas a la fecha. Los asteriscos indican las
moléculas evaluadas previamente a nivel pre-clinico. Los nombres en negrita corresponden a las moléculas con
capacidad de union a reticulocitos.
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En la actualidad, se han reportado 87 proteinas de P. vivax, excluyendo las caracterizadas
en este trabajo: algunas son miembros de las familias multigénicas como las MSPs (42-49), TRAgs
(Tryptophan Rich Antigens) (50-54), EXPs (Exported Proteins), ETRAMPs (Early Transcribed
Membrane Proteins), asi como también las RBPs (Reticulocyte Binding Proteins) (55-57) y DBPs
(Duffy Binding Proteins) (58, 59), relacionadas a las Rh y EBAs de P. falciparum,
respectivamente, y por ultimo las RONs (60-63) (Figura 5).

Proteinas de P. vivax con actividad de union a reticulocitos.

A pesar del avance logrado en la caracterizacion de moléculas de P. vivax, la funcion de
unidn a eritrocitos se ha descrito para pocas de ellas. A continuacion, se describen las distintas
técnicas que se utilizan para estudiar la interaccion entre las proteinas de P. vivax (Figura 5) y los
reticulocitos humanos. La primera aproximacion para determinar la union de moléculas de P. vivax
a las células fue mediante el ensayo de rosetas. DBP fue la primer molécula de P. vivax estudiada,
de la cual se conocia su interaccién con eritrocitos que expresan el antigeno Duffy sobre su
superficie, también conocido como DARC (Duffy Antigen Receptor for Chemokines) (64, 65).
DBP se expreso en varios fragmentos sobre la superficie de células COS-7, las cuales se incubaron
con una muestra de sangre de humanos adultos. Como resultado, se encontrd que los eritrocitos
Duffy positivo eran capaces de unirse solo a las células COS-7 que expresaban la region II de la

proteina DBP (DBP-RII) , considerandose como el dominio de unién de la molécula (66).

Afos mas tarde, se estudiaron las interacciones proteina-célula diana mediante un ensayo
de union a eritrocitos in vitro (EBA: Erythrocyte-Binding Assay). En resumen, proteinas marcadas
con metionina S, provenientes del sobrenadante de un cultivo de merozoitos de P. vivax, se
incubaron con dos tipos de muestras: una enriquecida y otra depletada de reticulocitos. El analisis
mediante SDS-PAGE y fluorografia de las proteinas eluidas con un buffer salino, permitio
identificar dos bandas de alto peso molecular (250 y 280 kDa), cuya intensidad se correlacionaba
con el porcentaje de reticulocitos de cada muestra independiente del fenotipo Duffy, y fueron
denominadas RBP-1 y RBP-2. Con este hallazgo, los autores propusieron que los merozoitos de
P. vivax contienen otras adhesinas diferentes a DBP, que interactian con los reticulocitos humanos

(55).
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Posteriormente, se us6 una estrategia altamente sensible para identificar los fragmentos de
las moléculas de P. vivax que se unen especificamente a sus células hospederas. Esta metodologia
implico la sintesis de proteinas parasitarias en péptidos de 20 aminoacidos de largo, y su posterior
incubacion con eritrocitos de un individuo sano o un individuo que sufria de una B-talasemia, y
cuyo porcentaje de reticulocitos en sangre periférica excedia el 85%. Los ensayos de competicion
en los que se usaron péptidos radiomarcados con '?’I, permitieron encontrar péptidos de alta
capacidad de unién (HABPs: High Activity Binding Peptides) especifica para reticulocitos. Asi
mismo, se identificaron los residuos criticos en la unioén de los HABPs, mediante un cribado con
analogos de glicina. De esta manera, se demostr6 que DBP, MSP-1 y RBP-1 contienen varios
péptidos que se unen fuertemente a reticulocitos y que tienen residuos criticos en la union (67-69),
lo que soporta que el parasito utiliza regiones especificas de sus moléculas, para poder interactuar
con los receptores de sus células diana. Pese a lo anterior, no se pudo continuar con este enfoque,

debido a la dificultad de obtener muestras enriquecidas en reticulocitos.

En la actualidad, se evalua la interaccion proteina-célula diana con técnicas como
inmunoprecipitacioén, inmunoflorescencia indirecta (IFI) o citometria de flujo. En el primer caso,
un fragmento de 33 kDa de la proteina PvRONS expresado en Escherichia coli y purificado
(rPvRONS5-33kDa), se incubd con una muestra de reticulocitos enriquecidos mediante un gradiente
de Percoll. Posteriormente, rPvRONS-33kpa se eluyd con cloruro de sodio, se inmunoprecipitd
utilizando anticuerpo anti-histidinas y perlas de sefarosa conjugadas con proteina G, evaluandose
por Western blot. Por otro lado, rPYRONS-33kpa se incubd con una muestra de sangre de cordon
umbilical que contiene 5-6% de reticulocitos, y la interaccion proteina-célula diana se determin6
por IFI usando los anticuerpos anti-histidinas (marcador de la proteina) y anti-CD71 (marcador de
reticulocitos). Los resultados de Western blot y microscopia, revelaron que rPvRONS5-33kpa s€ une
a eritrocitos maduros e inmaduros. Sin embargo, el analisis de la intensidad media de fluorescencia
asociada a las células, mostré mayor unién de rPvRONS5-33kpa a reticulocitos, lo que soporta que
la molécula esta involucrada en la adhesion del merozoito de P. vivax a células rojas inmaduras

(60).

En el caso de la citometria de flujo, se utilizd sangre de corddén umbilical total o

reticulocitos enriquecidos por sorting inmunomagnético con perlas CD71 o solucion de Nycodenz.

23



La interaccion proteina-célula diana se determino usando Reticount (marcador de ARN/ADN) y
el anticuerpo anti-histidinas acoplado a Alexa fluor 647. Como resultado, se ha descrito la uniéon a
reticulocitos para algunas moléculas como: TRAgs (PvTRAg (TRAg40), PvTRAg26.3,
PvTRAg33.5, PvTRAg34, PvTRAg35.2, PvTRAg36, PvTRAg36.6, PvTRAg38, PvTRAg69.4 y
PvTRAg74 (50, 51)), EBP2 (Erythrocyte Binding Protein 2) (59), RBP-1a, RBP-1b (56) y RBP-
2b (57).

Vacunas contra P. vivax

Cien afios después del inicio de la vacunologia por Edward Jenner, la “prueba de concepto”
se establecid con la investigacion de Louis Pasteur, quien demostré que la inoculacién de un
microorganismo atenuado o inactivado en humanos, conlleva al desarrollo de una respuesta
inmune (similar a la natural) que protege contra la infeccion (70). Actualmente, las vacunas se
agrupan en tres categorias de acuerdo a la metodologia empleada: de primera, segunda y tercera
generacion, siendo las de primera generacion aquellas que emplean el microorganismo completo
(70). Siguiendo la misma metodologia para P. vivax, Clyde y su grupo inmunizaron un individuo
con esporozoitos de la especie mediante la picadura de 1.000 mosquitos irradiados, los cuales
desencadenaron una respuesta protectiva de corta duracion contra la enfermedad, mostrando asi su
seguridad e inmunogenicidad (71). A pesar de lo anterior, varias dificultades técnicas se presentan
al trabajar con este tipo de vacunas de primera generacion para P. vivax: no se cuenta con una
fuente rica en gametocitos que pueda usarse como precursor de esporozoitos viables, es dificil
estimar la cantidad de esporozoitos requerida para desarrollar una respuesta inmune protectiva, la
produccion en masa y preservacion de la vacuna contintia siendo un reto, y por ultimo, el
procedimiento no es practico, dado que involucra la picadura por mas de 1.000 mosquitos en el

individuo.

Las vacunas de segunda generacion estan compuestas por moléculas purificadas que
desencadenen una fuerte respuesta inmunoldgica protectiva (70). Esta metodologia no ha tenido
éxito en Plasmodium, dada la alta variabilidad antigénica de los parésitos (40, 72). Del total de
proteinas descritas en la fase intraeritrocitica de P. vivax, tan solo 7 de ellas (DBP, AMA-1, MSP-
1, MSP-9, MSP-10, RBP-1 y RAP2 (Rhoptry-Associated Protein)) han sido evaluadas en primates
o roedores (Figura 5) (73-81), y ninguna ha sido ensayada todavia a nivel clinico.
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Se demostrd que anticuerpos dirigidos contra DBP-RII, generados en el modelo murino o
primate, son capaces de inhibir la unién del dominio de la proteina al receptor in vitro (74, 77).
Ademas, dos epitopos de DBP inducen una respuesta de tipo Th1/Th2 (con secrecion de IFN-y e
IL-6) en individuos que tienen malaria (82, 83). En cuanto a MSP-1, dos fragmentos emulsificados
en adyuvante de Freund desencadenaron una respuesta inmune protectiva que oscilo entre el 50%
y 80% en los animales inmunizados, la cual se relaciona con altos titulos de anticuerpos y elevados
niveles de producciéon de IFN-y (73, 81). AMA-1 gener6 una fuerte respuesta inmune humoral en
ratones BALB/c al ser formulada en adyuvante de Freund, hidréxido de aluminio, Quil A,

Saponina QS-21, CpG ODN 1826 o TiterMax (75).

La inmunizacion de monos Aotus con la region recombinante III de RBP-1, formulada con
adyuvante de Freund, desencadené la produccion de anticuerpos y estimulacion de linfocitos T;
pese a ello, la respuesta inmune no fue protectiva frente al reto experimental con la cepa VCG-1
de P. vivax (79). Por otro lado, la vacunacién de monos con la proteina MSP-10 fue inmunogénica
al formularse en adyuvante de Freund, Montanide ISA 720 o hidroxido de aluminio. Sin embargo,

tampoco protegid frente al reto experimental (76).

Un ensayo realizado con RAP2 recombinante, mostré proteccion parcial de los monos,
representada en la baja parasitemia encontrada en el grupo de primates inmunizados con respecto
al grupo control (80). Por otro lado, dos recombinantes de MSP-9, una que incluye la region N
terminal (PvMSP-9-Nt) y otra que contiene un bloque repetitivo (MSP-9-Repll), se inocularon en
roedores (78). Aunque ambas formulaciones fueron inmunogénicas, tan solo aquella que contenia
la region N-terminal estimul6 la produccion de INFy e IL-5 en células mononucleares de sangre

periférica (PBMC: Peripheral Blood Mononuclear Cells) de los animales inmunizados.

La tercera generacion de vacunas se basa en tecnologias como vacunologia reversa,
biologia estructural y vacunas sintéticas (70). Estas ultimas, se componen de proteinas o
fragmentos de ellas que utiliza el parésito para unirse a su célula diana y se caracterizan por ser
multivalentes, dado que incluyen mas de un antigeno. Esta metodologia ha sido el enfoque
principal de la Fundacion Instituto de Inmunologia de Colombia (FIDIC) desde hace mas de 30
afios. La investigacion permitié establecer los principios para el disefio légico y racional de

vacunas sintéticas multi-antigénicas y multi-estadio basadas en subunidades contra P. falciparum
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(72, 84). A diferencia del enfoque clasico, la metodologia seguida por la FIDIC involucra la
identificacion de HABPs, los cuales son conservados entre las distintas cepas de parasito.
Posteriormente, los residuos criticos de union a los eritrocitos son modificados para permitir un
mejor anclaje en el complejo mayor de histocompatibilidad de clase II (MHC: Major
Histocompatibility Complex) y asi volverlos altamente inmunogénicos e inducir una respuesta
protectiva en el modelo experimental (72). Mientras que en P. falciparum se han analizado mas de
58 moléculas siguiendo la metodologia previamente descrita, en P. vivax sélo se han estudiado las
proteinas DBP (69), MSP-1 (67) y RBP-1 (68), debido a la dificultad de obtener reticulocitos puros

y en suficiente cantidad para realizar los ensayos de union.
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PREGUNTAS DE INVESTIGACION

De acuerdo a lo descrito anteriormente, la investigacion realizada en P. vivax, en relacion
a la composicion proteica del pardsito, es minima en comparacion con lo reportado para P.
falciparum. Por otro lado, la mayoria de moléculas de P. vivax identificadas por bioinformatica y
caracterizadas por biologia molecular, carecen de validacion experimental en cuanto a funcién de

unidn a las células diana. Por lo tanto, nos planteamos las siguientes preguntas:

1. (Essimilar el nimero de proteinas expresadas por P. vivax durante el ciclo intraeritrocitico,

al referido para P. falciparum?

2. ¢Se ha comprobado experimentalmente que las moléculas seleccionadas por prediccion
bioinformatica, tienen caracteristicas adecuadas para considerarlas como buenas

candidatas a vacuna?

Para dar respuesta a las preguntas de investigacion, nos planteamos un objetivo general que se

desarroll6 en tres objetivos especificos.
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OBJETIVOS

Objetivo general

Estudiar la composicion proteica de la cepa VCG-1 de Plasmodium vivax y caracterizar algunas

moléculas con posible funcion en invasion a reticulocitos.

Objetivos especificos

Determinar el proteoma de la cepa VCG-1 de P. vivax.

Seleccionar y caracterizar moléculas con potencial papel en invasion celular.

Evaluar la antigenicidad de las proteinas caracterizadas durante la infeccion natural por P. vivax.
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INTRODUCCION A LOS CAPITULOS

Las enfermedades infecciosas son un problema de salud publica importante por las altas
tasas de mortalidad que generan, principalmente en paises en vias de desarrollo. Dentro de éstas,
la malaria es la tercera causa de muertes en el mundo (1) y aunque se han desarrollado varias
estrategias de control, los indices de morbi-mortalidad contintian siendo excesivamente altos, lo
que ha llevado a varios grupos de investigacion a enfocarse en desarrollar vacunas como una

alternativa para prevenir la enfermedad.

El primer paso clave para poder hacer una vacuna, es identificar y caracterizar las proteinas
involucradas en la union de merozoitos de Plasmodium a sus células diana y posteriormente inhibir
dicha interaccion parasito-cé€lula. Pese a lo anterior, el proceso de adhesion celular e invasion de
P. vivax a sus células diana es poco conocido. Por lo tanto, se han llevado a cabo dos enfoques con
la finalidad de conocer en profundidad la biologia de P. vivax: el andlisis mediante ciencias dmicas

y la prediccion in silico y validacion por biologia molecular de las proteinas candidatas a vacuna.

Dentro de las técnicas altamente eficientes empleadas para identificar cientos de proteinas,
se encuentra la protedmica (85); esta estrategia permite hacer analisis a gran escala de la
composicion de diversos organismos 0 microorganismos, sirviendo ademas de fuente para realizar
predicciones in silico de la funcion que estas proteinas puedan tener. A la fecha de inicio de este
trabajo, este enfoque habia permitido la identificacion de tan solo un tercio de las moléculas que
P. vivax expresa en su estadio intraeritrocitico (36, 37), comparado con lo reportado previamente

para P. falciparum (28).

En cuanto a la caracterizacion de proteinas en la especie mas estudiada, P. falciparum, se
cuenta con la descripcion de 58 moléculas que se expresan al final del ciclo intra-eritrocitico y que
estan implicadas en la invasion a los eritrocitos (84). En el caso de P. vivax, mediante los estudios
comparativos con otras especies de Plasmodium y la adaptacion de varias cepas del parasito en
primates, se habian podido describir 25 moléculas al momento de iniciar esta investigacion, de las
cuales solamente 3 tenian evidencia de participar en la adhesion celular (36, 39, 42-49, 52-55, 58,
61-63, 86-96) (Anexo 1). Esto se debe a la carencia de un cultivo in vitro que soporte el crecimiento

continuo del parasito, lo cual, no solo afecta al avance en el conocimiento de la biologia de P.
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vivax en cuanto a las proteinas relacionadas con la invasion celular, sino también al desarrollo de

una vacuna contra esta especie de Plasmodium (40).

Teniendo claro que el conocimiento de la biologia de P. vivax es importante para entender
el mecanismo de invasion del parasito a su célula hospedera, en este proyecto se propuso estudiar
la composicion proteica de la cepa VCG-1 de P. vivax y caracterizar otras moléculas (distintas a
las ya identificadas) que fuesen interesantes candidatas para evaluar su utilidad a futuro, en el
disefio de una vacuna contra el parésito. Para abordar los componentes descritos y cumplir con el
objetivo general de esta investigacion, se desarrollaron tres objetivos especificos, cuyos resultados

se describen a continuacion, en tres secciones que comprenden la introduccion a los capitulos.
Proteémica en P. vivax

Segtin la literatura, en el afio 2013 se habian identificado 457 proteinas en total en P. vivax
mediante protedmica e inmunoprotedmica, lo cual era poco mas de un tercio de las moléculas
detectadas para P. falciparum en los diferentes estadios intraeritrociticos del parasito (1.289
moléculas, de las cuales 714 son del estadio asexual, 931 de gametocitos (célula sexual germinal)
y 645 de gametos (célula sexual madura), siendo 651 moléculas comunes entre estadios) (28). Para
investigar si P. vivax expresa un nimero similar de moléculas a las reportadas para P. falciparum
y dar respuesta a la primera pregunta de investigacion, se analizé el proteoma de la cepa VCG-1
de P. vivax propagada en primates, cuyos resultados se describen en el capitulo 1 de este
documento. Este objetivo se desarrolld analizando los péptidos de las proteinas parasitarias por
LC-MS/MS. Como resultado, se detectaron 1.309 moléculas en total, 56,1% de P. vivax y 43,2%

de primates.

En comparacion con estudios previos de proteoma e inmunoproteoma (35-39), se
detectaron 504 moléculas nuevas y 230 en comun, lo que permitié incrementar el numero de
proteinas identificadas en P. vivax a 960 en total. Es de gran interés que el 27% de las proteinas
detectadas participan en procesos clave de invasion como el contacto inicial con eritrocitos,
reorientacion y formacion de la union estrecha e internalizacion del parasito dentro de su célula.
Segun el analisis in silico, se predijeron 16 proteinas que participan en una sola ruta metabolica

del pardsito y no tienen ortdlogos en humanos. La carencia de este grupo de proteinas en
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mamiferos, las hace una diana ideal para el disefio de nuevos medicamentos antimalaricos. Por
otra parte, se identificaron 31 proteinas con posible papel en la invasion celular, de las cuales 7
habian sido caracterizadas previamente por la FIDIC, mediante técnicas bioquimicas y de biologia

molecular.

Por otro lado, el conocimiento de las caracteristicas protedmicas de los eritrocitos de A.
nancymaae representa un area fascinante de estudio, ya que estas células son la principal diana de
invasion de los Plasmodium. Sin embargo, y aunque el Aotus es uno de los modelos de primates
no humanos considerados mas apropiados para la investigacion biomédica en malaria, el
conocimiento de su proteoma y en particular el de sus eritrocitos era desconocido. Teniendo en
cuenta lo anterior y tomando los resultados obtenidos en este estudio, se realizo la identificacion
comparativa de proteinas de los eritrocitos de 4. nancymaae utilizando la informacién disponible

para Homo sapiens.

Se reportd por primera vez el proteoma de eritrocitos de A. nancymaae (Anexo 2). Hubo
alta similitud de los péptidos del primate encontrados por LC-MS/MS con aquellos de H. sapiens,
lo cual soporta la estrecha relacion filogenética entre las dos especies. Se identificaron 1.138
moléculas en total, de las cuales 811 son componentes de eritrocitos maduros. De estos, 51
correspondieron a proteinas integrales de membrana. Siete de ellas son receptores para merozoitos
de Plasmodium, de acuerdo a lo observado experimentalmente en estudio previos. Este analisis
preliminar, fortalece la idea que el primate es un modelo apropiado para continuar con estudios de
investigacion biomédica basica y aplicada, orientados a desarrollar una vacuna totalmente efectiva

contra la malaria.
Seleccion y caracterizacion de proteinas de P. vivax

La caracterizacion de proteinas relacionadas con la invasion celular se considera un paso
clave para disefiar vacunas efectivas contra los agentes patogenos (Plasmodium en nuestro caso).
Sin embargo, la informacion disponible para P. vivax es escasa en relacion a las moléculas que
utiliza el pardsito para invadir sus células diana. Esto se debe principalmente a la dificil

propagacion continua del parasito in vitro. Consecuentemente, la bioinformatica se ha utilizado
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desde hace varios afios para identificar proteinas candidatas a vacuna en P. vivax mediante analisis

comparativos.

Por ejemplo, Restrepo-Montoya y su grupo identificaron 45 genes de P. vivax que codifican
para moléculas candidatas a vacuna, utilizando un perfil probabilistico de Modelos Ocultos de
Markov (HMM: Hidden Markov Models), entrenando los clasificadores con proteinas de varias
especies de Plasmodium (diferentes a P. vivax) involucradas en la invasion celular (97). Por otro
lado, Frech y su equipo, encontraron 8 genes exclusivos de P. vivax (posiblemente codificantes de
proteinas que participan en la adhesion a sus células diana) en un cluster no sinténico sobre el
cromosoma 6, mediante la comparacion de los genes del parasito con la anotacion del genoma de

otras especies de Plasmodium (98).

Teniendo en cuenta lo anterior y explorando la informacion del proteoma de P. vivax, se
realiz6 un anélisis in silico con el fin de predecir proteinas que compartan caracteristicas de un
buen candidato a vacuna como las descritas (y confirmadas experimentalmente) para P.
falciparum, tales como: la expresion del gen en la forma infectiva del parasito (merozoitos) a las
células rojas y la presencia de una secuencia sefial de secrecion, ya sea para llevar la proteina a la
superficie del parasito, o a sus organelos apicales (roptrias o micronemas). Ademas, se tuvo en
cuenta la presencia de regiones transmembranales o de anclaje GPI, la determinacion de dominios
de interaccion proteina-proteina o la funcién de adhesion en otras especies de Plasmodium. De
acuerdo a los anteriores criterios, se seleccionaron tres moléculas de P. vivax: una proteina rica en
asparagina (ARP: Asparagine Rich Protein), el antigeno de superficie de union a reticulocitos
(RBSA: Reticulocyte Binding Surface Antigen) y el antigeno de micronemas anclado a GPI
(Glycosylphosphatidylinositol) (GAMA: GPIl-Anchored Micronemal Antigen). Vale la pena
destacar que PvRBSA solo estaba presente en especies del parasito que infectan reticulocitos

humanos (como P. vivax o P. cynomolgi).

La caracterizacion de las proteinas seleccionadas se realizd siguiendo los pardmetros
clasicos del dogma central de la biologia molecular, como se describe en el capitulo 2 y en el
anexo 3. Inicialmente, se confirmd la presencia y transcripcion de los genes arp, rbsa 'y gama en
el genoma de la cepa VCG-1 de P. vivax. Ademas, se verificod el patron de localizacion de los

productos codificantes, ya sea en la superficie (en el caso de PvARP y PYRBSA) o en los organelos

32



apicales (en el caso de PvGAMA). A pesar de lo anterior, en este punto no hay suficiente evidencia
para sugerir que PvARP, PvRBSA y PvGAMA pueden ser componentes de una vacuna. Por ello,
se evaluaron otras magnitudes para fundamentar que las proteinas puedan llegar a ser buenos

candidatos a vacuna, como la antigenicidad y la capacidad de union a las células hospederas.
Antigenicidad y adhesion celular de proteinas de P. vivax
Antigenicidad

Durante la liberaciéon de los merozoitos de Plasmodium al torrente sanguineo, se
desencadena una respuesta inmune por parte del hospedero, la cual a menudo se correlaciona con
la inmunidad adquirida naturalmente (57, 99-101). De esta manera, conocer las moléculas
antigénicas de P. vivax y en particular, aquellas que utiliza el parasito para adherirse e invadir a
sus células diana, tiene implicaciones importantes para el desarrollo de vacunas sintéticas. La
evidencia experimental del papel antigénico y de adhesion de PvARP, PPRBSA y PvGAMA a las
células diana permite dar respuesta a la segunda pregunta de investigacion planteada en este

trabajo.

Se han detectado anticuerpos anti-PvARP, PPRBSA y PvGAMA en sueros de individuos
que habian sufrido malaria por P. vivax (capitulo 2), sugiriendo la antigenicidad de estas
moléculas durante la infeccion natural. Ademas, se evalu6 si las regiones repetitivas (RR) estaban
implicadas en la evasion de la respuesta inmune, como se indica en estudios previos (102, 103),
utilizando los fragmentos amino (Nt) y carboxilo (Ct) terminal de PvGAMA. Se observd una
mayor reactividad de los sueros contra PvGAMA-Ct que contiene la RR. Hay que poner de
manifiesto que la respuesta de anticuerpos anti-PvGAMA-Ct no inhibi6 la unién del fragmento a
reticulocitos humanos (ver mas adelante), lo que soporta la idea de que las RR pueden ser
distractores de la respuesta inmune. Estos datos sugieren que la respuesta inmune del hospedero
esta dirigida contra regiones no importantes en la adhesion celular (como las RR), lo cual puede
ser la explicacion de por qué PvARP y PvGAMA, las cuales tienen RR, no presentaron asociacion
entre los niveles de anticuerpos y la reduccion del riesgo de presentar enfermedad clinica, como

se habia descrito previamente (104).

33



Union a reticulocitos humanos

Como objetivo adicional a los inicialmente planteados en esta investigacion, se determind
la actividad de union de las moléculas recombinantes a reticulocitos humanos, dada la importancia
que presentan las proteinas tipo adhesinas en el disefio de una vacuna. Teniendo en cuenta que la
principal dificultad de estudiar P. vivax es no poder propagar continuamente el parasito, debido a
que el crecimiento de éste en células sanguineas se produce preferentemente en reticulocitos (105),
se realiz6 una revision de las fuentes ricas en dicho tipo de células para escoger la mas apropiada
y utilizarla en un ensayo que permitiera cuantificar la interaccion proteina-célula (Anexo 4). Segin
lo descrito en la literatura, se escogi6 la sangre de cordon umbilical (SCU) de nifios recién nacidos,

por su mayor porcentaje de reticulocitos (6-7%) y por su facilidad en la obtencion y procesamiento.

La cuantificacion de la interaccidon proteina recombinante-célula diana se realizo por la
técnica de citometria de flujo, utilizando una muestra de SCU con fenotipo Duffy positivo
(molécula esencial para la invasion de P. vivax a reticulocitos (66)) y proteina obtenida de forma
soluble utilizando el sistema de expresion en E. coli (manuscrito en preparacion). PvARP es
insoluble y aunque se extrajo a partir de cuerpos de inclusion y se dializd exhaustivamente, €ésta
no se unid a las células, posiblemente por la ausencia de una apropiada conformacion estructural.
Por otro lado, PvRBSA, expresada sin el péptido sefial ni la region transmembranal, se obtuvo de
forma soluble y se uni6 en un mayor porcentaje a reticulocitos en comparacion con los eritrocitos

maduros.

PvGAMA se utilizé en la validacion de una nueva estrategia disefiada para identificar
regiones conservadas en moléculas de P. vivax que estan sujetas a restriccion funcional. Lo anterior
se debe a que las moléculas del parasito contienen regiones de union funcionales que se conservan
entre distintas especies de Plasmodium y evolucionan de una manera mas lenta. De acuerdo al
analisis de seleccion natural, PvGAMA tiene dos regiones altamente conservadas entre especies,
las cuales se unieron en mayor porcentaje a reticulocitos que a eritrocitos maduros, validando asi
el modelo propuesto. Este resultado confirma la utilidad del método de seleccion natural para
identificar regiones conservadas de las moléculas y de esta manera evitar respuestas alelo

especificas, lo cual es contraproducente para el desarrollo de una vacuna ampliamente protectiva.
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Como se demostro, PvRBSA y los fragmentos de PvGAMA se unieron a reticulocitos en
un mayor porcentaje comparado con eritrocitos maduros, lo cual sugiere que estas moléculas
tienen preferencia de union a dicha poblacion celular. Con base en esto y teniendo en cuenta el
tropismo de los merozoitos de P. vivax por invadir la poblacion de reticulocitos que expresan el
receptor CD71 de forma abundante (CD71") (105), se determiné si PVRBSA y PvGAMA
interactian con dicha poblacion de células. Al analizar la unién de las moléculas en funcién de la
intensidad de la sefial para el marcador CD71, se encontré que PvRBSA vy tres fragmentos de
PyGAMA se unen en mayor proporcion a las células que expresan CD71", confirmando asi la

union de las proteinas al estadio mas inmaduro de los reticulocitos.

Esta union también se demostrd en otros estudios en los que se evaluaron proteinas de P.
vivax localizadas en superficie (como MSP-1 (67)), en micronemas (como DBP (69) y RBPla,
RBP1by RBP2b (56, 57)) o en roptrias (como PvRONS (60)), cuyos homologos en P. falciparum
son particularmente importantes durante el proceso de contacto inicial, reorientacion y formacion
de la union fuerte. Se ha sugerido que las RBPs estdn implicadas en la pre-seleccion de
reticulocitos por los merozoitos de P. vivax. Sin embargo, en un estudio receptor-ligando en el cual
se utilizaron péptidos de 20 aminoéacidos de largo, derivados de la proteina MSP-1, se encontrd
que varios de ellos se unen fuertemente a reticulocitos, pero no a eritrocitos maduros, lo que
destaca el papel de la proteina en la seleccion celular durante el contacto inicial con la célula.
Seglin lo anterior y teniendo en cuenta los resultados obtenidos, se sugiere que no solo DBP, las
RBPs y MSP-1 participan en la seleccion de reticulocitos, sino que PvRBSA y PvGAMA también

intervienen en este proceso.
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CAPITULO 1

“Determinacion del proteoma del estadio sanguineo de la cepa VCG-1 de Plasmodium vivax”
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1. Introduction

Malaria remains a disease causing concern for public health in
countries located in the world’s tropical and subtropical
regions. The World Health Organization (WHO) has estimated
that 207 million cases and 627,000 deaths, mostly in children
under 5 years of age, occurred in endemic countries during
2012 [1]. Most of the global burden concerning parasitic
disease is caused by Plasmodium falciparum and Plasmodium
vivax species; the latter predominates on the Asian and
American continents and is responsible for causing signifi-
cant morbidity in endemic communities [2]. Several studies
have showed that P. vivax infection can cause complicated
malaria [3,4] thereby making it a potential menace. Develop-
ing effective control strategies has therefore become a
worldwide public health priority.

Although several groups worldwide are focused on studying
P. vivax, basic research regarding this species has been delayed
by its biological complexity. For instance, it has a preference for
invading reticulocytes, a small percentage of which are found in
peripheral blood [5], making it difficult to standardise an in vitro
continuous culture for obtaining large amounts of parasite [5].
Regarding vaccine design, the molecules involved in invasion
are highly polymorphic, i.e. the Duffy binding protein (DBP) [6],
apical merozoite antigen 1 (AMA-1) [7], reticulocyte binding
proteins (RBPs) [8,9] and merozoite surface protein 1 (MSP-1)
[10]. The picture is further complicated as latent liver forms
(hypnozoites) generate new parasites which are genetically
different from those found during the primary infection [11,12].

Just 42 molecules from the P. vivax haematic phase [13-43],
3 from the liver stage [44,45] and 3 from the sexual stage have
been identified and characterised using classical molecular
biology. A few of them are currently being evaluated in
preclinical and clinical studies [45]. Identifying the proteins
expressed by P. vivax is an important step in understanding
disease pathogeny and also in studying their role as bio-
markers [46], pharmacologic targets [47] or candidates for an
antimalarial vaccine [48,49]; P. vivax complexity means that
other methods should be used to expand knowledge regarding
its protein repertoire to find new molecules which can be
characterised in further functional studies.

Bioinformatics tools have been used for identifying P. vivax
proteins by comparing their encoding genes with genomic
annotation from other Plasmodium species. Restrepo-Montoya et
al. used probabilistic profile hidden Markov models (HMMs)
trained with several Plasmodium species proteins for which the
role in invasion has been experimentally determined. The
methodology allowed identifying 45 P. vivax genes whose
encoded proteins might have a potential role in invasion [50].
Frech et al. found eight P. vivax exclusive genes in a non-syntenic
cluster on chromosome 6, suggesting that their encoded proteins
might play a role in invasion of reticulocytes [51]. Although
in silico analysis is a useful tool for selecting molecules having a
possible adhesion function, experimental validation is required.

On the other hand, earlier proteomic studies have helped to
characterise the protein composition of P. vivax. Acharya et al.
identified 154 proteins in clinically isolated P. vivax parasites
from information derived from mass spectrometry (MS); some
were hypothetical proteins, metabolic enzymes, chaperones and

molecules involved in virulence [47,52]. Roobsoong et al. identi-
fied 316 proteins in schizont-enriched parasite samples obtained
from symptomatic malaria patients. After separating the com-
plex sample on a 2D gel and digesting it, analysis revealed
proteins having different functions, such as binding, synthesis,
cell transport and metabolism [35]. Two immunoassay-based
studies for identifying P. vivax antigenic proteins have also been
developed. Chen et al. used the wheat germ cell-free system
(WGCEF) for the mass expression of 86 molecules; 18 of them were
recognised by sera from P. vivax infected patients (11 of them
having no functional evidence) [53]. Lu et al. expressed 152
proteins using the same WGCF expression system, 44 of which
were immunoreactive [43]. The proteomic and immunopro-
teomic studies described above led to identifying 457 P. vivax
proteins, this being a third of the P. falciparum molecules detected
during different parasite stages (1289 proteins, of which 714 have
been identified in asexual blood stages, 931 in gametocytes and
645 in gametes) [54].

More recently, the human serum proteome has been
evaluated for identifying the host immune response to
P. vivax malaria infection. Serum biomarkers (serum amyloid
A and haptoglobin) allowing P. vivax infection to be discrim-
inated from that produced by P. falciparum have been found
when sera from patients with non-complicated malaria were
compared to healthy volunteers’ sera by classical 2D gels and
novel 2D-DIGE technology followed by MALDI-TOF/TOF MS
analysis [55,56]. Comparison with P. falciparum or leptospiral
(febrile control) infected patients’ serum proteome revealed
that the Plasmodium parasite altered serum proteins involved
in the host’s physiological pathways.

Given that the P. vivax proteome has only been analysed
using parasite samples obtained from clinical isolates, this
research was thus aimed at a large-scale study of a primate
model-adapted P. vivax strain (VCG-1) proteome for increasing
knowledge about parasite protein composition. MS/MS analysis
of P. vivax enriched blood stages (i.e. ring, trophozoite and
schizont forms) complemented earlier work by adding a
significant number of new proteins to the available information
for the species. Proteins were categorised according to GO term
and potential drug target and vaccine candidates were predicted
in silico. Further experimental analysis of some molecules dealt
with here will provide deeper knowledge of P. vivax biology.

2. Materials and methods
2.1. Reagents

ACN, methanol, formic acid (FA) and water were obtained from
Fisher Scientific. Chloroform, DTT, ammonium bicarbonate (AB)
and tris(2-carboxyethyl)phosphine (TCEP) hydrochloride were
obtained from Sigma-Aldrich. Urea and 2-iodoacetamide (IAA)
were purchased from Merck. Lys-C was obtained from Wako and
trypsin from Promega. All reagents had high purity or were HPLC
grade.

2.2. Animal handling

Monkeys kept at Fundacién Instituto de Inmunologia de
Colombia (FIDIC)’s primate station (Leticia, Amazon) were
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handled in accordance with Colombian Law 84/1989 and
resolution 504/1996 and EU Directive 2010/63/EU for animal
experiments and followed established guidelines for the care
and use of laboratory animals (National Institute of Health,
USA). The animals were constantly supervised by a primatolo-
gist. The bleeding procedure for Aotus monkeys was approved
by the Ethics Committee of FIDIC’s Primate Experimental
Station and carried out in line with the conditions stipulated
by CorpoAmazonia (resolution 00066, September 13th 2006).
Nine Aotus monkeys were experimentally inoculated with
2.5 x 10° reticulocytes infected with the Vivax Colombia
Guaviare-1 (VCG-1) strain parasites, according to a previously
described protocol [57]. Infection progress was monitored daily
throughout the entire study (up to day 18) using acridine orange
staining which allowed red-orange brilliant fluorescence to be
observed in parasite cytoplasm with an ochre background.
Parasite density was determined using the following formula:
(no. of infected cells/total cells) x 100. The P. vivax infected
blood samples were collected for proteomic studies once
parasitaemia percentage was found to be between 2 and 5.
Monkeys were treated with paediatric doses of chloroquine
(10 mg/kg on the first day and 7.5 mg/kg/day until the fifth day)
and primaquine (0.25 mg/kg/day from the third to the fifth day)
at the end of the study to guarantee parasite clearance from
blood. Once experiments were over, CorpoAmazonia officers
supervised the primates’ return to their natural habitat in
excellent health.

2.3. Isolating P. vivax blood stages

A sample from each P. vivax stage was collected when that
stage represented more than 70% of all stages on a particular
slide. The readings were taken and recorded by an expert/
experienced microscopist using acridine orange staining. A
3 mL blood sample containing parasite-infected cells from its
different stages was thus collected in a heparin tube and sent
to FIDIC’s molecular biology laboratory, along with a record of
the percentage for each parasite form observed (Table 1).
Leukocytes and platelets were removed by filtering
through a CF11 column, as previously described by Sriprawat
et al. [58] and parasite percentage was confirmed again using
acridine staining (Table 1). Samples enriched in each stage
(ring, trophozoite and schizont) were pooled accordingly and
selected for proteomics analysis. Ring and/or trophozoite
stages could not be enriched to >90% purity since no density
gradient protocol was available for such purpose; however,
schizonts were enriched using a discontinuous Percoll gradi-
ent (GE Healthcare, Uppsala, Sweden), as previously described
[59]. Parasites were isolated from cells by incubating them for
5 min in 0.02 mM saponin buffer containing 7 mM K,HPOy,,

1 mM NaH,PO,, 11 mM NaHCO;, 58 mM KCl, 56 mM NacCl,
1mM MgCl, and 14 mM glucose, pH 7.5 and then were
washed intensively with PBS pH 7.0.

2.4. Protein extraction and precipitation

Whole proteins obtained from each P. vivax-enriched stage
were extracted following an established P. falciparum protocol
[60]. Briefly, parasites were disrupted by three cycles of
freezing/thawing and sonicated in digestion buffer (4 M urea,
0.4% Triton X-100, 50 mM Tris-HCl, 5 mM EDTA, 10 mM
MgSO,, pH 8.0) supplemented with protease inhibitor (1 mM
PMSF, 1 mM IAA, 1 mM EDTA and 1 mg/mL leupeptin).
Samples were spun at 13,000 rpm for 20 min at 4 °C and the
supernatant was recovered and stored at —70 °C until use.
Protein extracts were purified by precipitating them using the
methanol/chloroform method. The dried pellet was
homogenised in buffer containing 8 M urea and 50 mM AB.
Precipitated proteins were quantified with a micro BCA
protein assay kit (Thermo scientific) using a bovine serum
albumin (BSA) curve as reference and stored at —20 °C until
use.

2.5. Protein digestion and purification

Two micrograms of each parasite lysate obtained from
different blood development stages were reduced with 5 mM
TCEP at 37 °C for 1 hour. Cysteines were alkylated with 20 mM
IAA at room temperature (RT) for 30 min in the dark and
excess reagent was quenched with 10 mM DTT for 5 min at
RT. Samples were enzymatically digested at 37 °C for 2 hours
with Lys-C protease in a 1:50 enzyme:protein ratio (w/w)
followed by dilution to less than 1M urea and trypsin
digestion at 37 °C for 16 hours at an enzyme:substrate ratio
of 1:20 (w/w); the peptide mixture was then frozen at —20 °C
until use. Digestion product was re-dissolved in 0.5% FA and
desalted using Cqg StageTips columns [61]. Purified peptides
were eluted from the tips 50% ACN/0.5% FA (v/v). The samples
were dried until reaching 1 pL and stored at —20 °C until being
analysed by LC-MS/MS.

2.6. Mass spectrometry

Peptides were analysed by reversed-phased LC-MS/MS using a
nanoAcquity UPLC (Waters Corp., Milford, MA) coupled with
an LTQ-Orbitrap Velos (Thermo-Fisher, San Jose, CA). Separa-
tions were done in a BEH 1.7 pm, 130 A, 75 pm x 250 mm C18
column (Waters Corp., Milford, MA) at a 250 nL/min flow rate.
Injected samples were trapped on a Symmetry, 5 pm particle
size, 180 pm x 20 mm C18 column (Waters Corp., Milford, MA)

Table 1 - Average percentage parasitaemia of P. vivax-infected samples before and after passage through CF11.

Enriched blood stage Parasitaemia Blood stage

Initial blood sample CF11 treatment Rings Trophozoites Schizonts
Ring 5.0% 4.2% 87.2% 12.6% 0.2%
Trophozoite 3.8% 2.7% 29.6% 70.0% 0.4%
Schizont 4.0% 3.2% 5.0% 5.0% 90.0%
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and washed with 3% buffer (B) containing 0.1% FA in ACN at
7 uL/min flow rate for 3 min before starting the gradient.
Peptides were eluted off the column with a four-step gradient
using 3-7% B 1 min, 7-25% B 180 min, 25-35% B 30 min and
35-55% B 9 min.

The LTQ-Orbitrap Velos was operated in a data-dependent
MS/MS mode using Xcalibur 2.1.0.1140 software (Thermo-
Fisher, San Jose, CA) at 2.10 kV spray voltage, 325 °C and 60%
S-lens RF level. Survey scans were acquired in the mass range
400 to 1600 m/z with 60,000 resolution at m/z 400 with lock
mass option enabled for the 445.120025 ion [62]. The 20 most
intense peaks having >2 charge state and above 500 intensity
threshold were selected in the ion trap for fragmentation by
collision-induced dissociation with 35% normalised energy,
10 ms activation time, q = 0.25, +2 m/z precursor isolation
width and wideband activation. Maximum injection time
was 1000 ms and 50 ms for survey and MS/MS scans,
respectively. AGC was 1 x 10° for MS and 5 x 10® for MS/MS
scans. Dynamic exclusion was enabled for 90 s. All samples
were analysed in quadruplicate.

2.7. Peptide identification by database search

The Mascot algorithm [63] was used for searching the acquired
MS/MS spectra, using Thermo Scientific Proteome Discoverer
software (v. 1.4.0.288) against a custom database of P. vivax
parasite (5389 amino acid sequences) in silico reference prote-
ome, New World Monkey family (42,013 molecules) and
common contaminant sequences (e.g., human keratins, tryp-
sin, Lys-C and BSA), from the Uniprot protein database, release
April 2014. Search parameters were as follows: fully-tryptic
digestion with up to two missed cleavages, 10 ppm and 0.8 Da
mass tolerances for precursor and product ions, respectively,
carbamidomethylation of cysteines, variable oxidation of me-
thionine and N-terminal acetylation. Peptides having MASCOT
scores of less than 20 were not considered for analysis. One
percent false discovery rate using the Percolator was used for
peptide validation [64,65]. Only proteins with at least two
significant peptides were considered for analysis.

Identified proteins were compared with previously report-
ed proteome studies [35,47]. Transcription time for schizonts
was estimated according to Bozdech'’s study and the available
information in PlasmoDB database [66,67]. Proteins for which
there was no transcription evidence were searched using
more recent P. vivax lifecycle transcription analysis [68].

2.8. Protein annotation

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID 6.7) 2003-2014 from the National Institute of
Allergy and Infectious Diseases (NIAID) [69] was used for
functional annotation. The parameters selected here were as
follows: GOTERM_BP_ALL or GOTERM_MF_ALL from the Gene
Ontology section. The analysis involved a count of 2 and EASE
score threshold was set at 0.05. Results were saved in
Microsoft Excel and txt format. Enriched Map with DAVID
output was generated using Cytoscape 3.1 software [70].
Analysis parameters involved a 0.05 p value, FDR = 0.1 and
overlap coefficient = 0.6. Clusters were circled manually and
labelled to highlight the prevalent biological functions

amongst a set of related gene-sets. Parasite proteins having
orthologues in humans were searched using the Kyoto
Encyclopedia of Genes and Genomes ortholog clusters (KEGG
OC) database for drug target analysis [71].

2.9. In silico protein characterisation

SignalP 4.1 [72] secretion signal sequence prediction and cell
localisation predicted by BaCelLo [73] were considered when
selecting proteins destined for the secretory pathway. The
Interpro database [74] was scanned in the search for putative
domains in the whole protein sequence. The presence of
transmembrane and glycosylphosphatidylinositol (GPI) an-
chor sequences was determined by using Phobius [75] and
FragAnchor [76] tools, respectively. Adhesine-like proteins
were predicted using MAAP software, using >0.7 score,
according to the recommendations [77].

3. Results
3.1. P. vivax VCG-1 strain proteome

P. vivax VCG-1 strain samples, enriched during different blood
stages, were analysed by LC-ESI-MS/MS. A total of 1309
molecules were identified by MASCOT search with a high
level of confidence (all having 1% FDR, as estimated by
Percolator: Supplementary Data 1). Eighty-six proteins had
N-terminal acetylation (supported by 101 peptides). Although
43 additional molecules were identified using the semi-tryptic
digestion as a search parameter instead of the tryptic
digestion (Supplementary Data 1), these molecules were not
considered for further analysis, since we intended to use
highly stringent parameters.

When evaluating the molecules’ description, 56.1% agreed
with P. vivax asexual stage proteins and 43.2% with the
monkeys’ proteome; the latter was due to the presence of the
primate material remaining after protein extraction; on the
other hand, there was minimal contamination with human
proteins (less than 1%). Of the 734 P. vivax asexual stage
molecules confidently identified here, 504 were new and 230
proteins were common when compared to previous P. vivax
proteomics and immunoproteomics studies (Fig. 1) (Supple-
mentary Data 2) [35,43,47,53]. This analysis has led to increasing
the overall number of reported P. vivax molecules to 960,

Bl New
B Common
B Previously identified

230 226

Fig. 1 - P. vivax proteins identified to date. Venn diagram
showing the proteins identified in this study compared to
early proteomic and immunoproteomic studies.
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comprising 17.8% of the in silico predicted reference proteome
reported in the Uniprot database.

22.9% of the P. vivax VCG-1 strain proteome consisted of
hypothetical proteins according to PlasmoDB database
(Supplementary Data 3). On the other hand, 69 molecules
were found which have been previously described as partic-
ipating in biological processes which are essential for
establishing Plasmodium infection or its development within
cells, such as cellular invasion (protein processing, initial
contact, reorientation and moving junction formation and
red blood cell (RBC) internalisation) [78,79], haemoglobin
degradation [80], intracellular transport [78,79,81-84], heat
shock response [85-87], antigenic variation and immune
evasion [88], erythrocyte modification [89] and drug resis-
tance [90] (Fig. 2) (Table 2).

New members of the Pv-fam family (not found previously)
predicted in the P. vivax genome in silico analysis [91] were
detected (Supplementary Data 3). Rhoptry (RAP-1 (PVX_085930),
-2 (PVX_097590), RON2 (PVX_117880), Clag (PVX_121885)) and
surface (MSP-8 (PVX_097625), -9 (PVX_124060), Pu41 (Pfs230)
(PVX_000995) and Pvl2 (PVX_113775)) proteins which have
already been identified and considered as good candidates for
inclusion in a P. falciparum vaccine were also identified [92-94].
A recently reported pre-erythrocytic (liver stage antigen
(PVX_091675)) protein was found; although this molecule is
immunogenic, its role during blood cycle has not been studied
[44].

3.2. P. vivax VCG-1 strain proteins GO function

GO terms were initially used for categorising whole proteins
identified in the P. vivax VCG-1 strain through gene-annotation
enrichment analysis using DAVID software. A total of 314
proteins were related to biological processes; the enrichment
map revealed that most of them were functionally-involved in
four processes (statistical significance: p < 0.05): protein metab-
olism and biosynthesis, nucleotide metabolism and biosynthe-
sis, cellular transport and localisation and DNA organisation
(Fig. 3) (Supplementary Data 4). On the other hand, 310
molecules were predicted as being related to a molecular
function; the most significant related functions derived from
DAVID analysis were: structural molecule activity (67 proteins,
p = 1.26E7%9), structural constituent of ribosome (58 proteins,
p = 8.28E-%), unfolded binding protein (22 proteins, p = 2.17E-%),
hydrolytic (12 proteins, p = 3.14E"%) and translation (24

4.3% 1.4%

11.6%

proteins, p = 4.41E-%%) activity, and nucleotide binding (149
proteins, p = 7.92E"%* - 2.03E"%%) (Supplementary Data 4).
Some proteins could not be classified by DAVID, which may
have been because most were not seen to be similar to
molecules for which biological knowledge has been reported
in databases.

3.3. Transcript cf protein comparison, according to P. vivax stage

There was transcript evidence for 99.2% of the P. vivax proteins
found here when compared to the P. vivax transcriptome profile
published by Bozdech et al. [66] (Supplementary Data 5). A total
of 329 proteins from ring-enriched, 238 from trophozoite-
enriched and 727 from schizont-enriched samples were identi-
fied when analysing P. vivax extracts separately; 217 proteins
were common to all three stages, whilst 2, 16 and 107 molecules
were detected in rings/trophozoites, trophozoites/schizonts and
rings/schizonts, respectively. Some molecules were only found
in one stage: 3 in rings, 2 in trophozoites and 386 in schizonts
(Supplementary Data 5).

Interestingly, 6 proteins were found for which there was no
evidence of transcripts in Bozdech’s study; one hypothetical
conserved protein (accession number PVX_086055) was identi-
fied in a later study by Westenberger et al. [68]. The remaining 5
proteins consisted of three hypothetical proteins (PVX_091652,
PVX_091992 and PVX_118162), one HAM1 domain-containing
protein (PVX_096292) and one putative arginyl-tRNA synthetase
(PVX_123597) (Supplementary Data 5).

3.4. Pharmacological target prediction

Proteins having pharmacological potential were searched by
using previously described rules and sequence-derived prop-
erties [95]; molecules participating in parasite metabolism
which have no orthologues in humans and are possibly
involved in just one metabolic pathway were the criteria for
drug target prediction.

Proteins participating in KEGG pathways were initially
predicted using the DAVID program. The enrichment method
grouped 80 P. vivax proteins into two categories: 20 proteasome
proteins (p = 8.3E™%) and 60 ribosome proteins (p = 1.5E7Y)
(Supplementary Data 6). Despite this, all molecules were
orthologous to human proteins as predicted using the KEGG
OC database.

Protein processing

Initial erythrocyte contact

Reorientation and moving junction formation
RBC internalisation

Haemoglobin degradation

Intracellular transport

Heat shock response

Antigenic variation and immune evasion
Erythrocyte modification

Drug resistance

OO EEENEN

Fig. 2 - Pie chart showing the P. vivax proteins distribution related to functional classes.
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Table 2 - Proteins related to Plasmodium parasite invasion and cell infection.

Biological process Protein name and PlasmoDB ID References
Protein processing Subtilisin-like protease (PVX_097935) [78,79]
Initial erythrocyte contact MSP-1 (PVX_099980), -7 (PVX_082675), -7H (PVX_082680), -71 (PVX_082685) % SERA

(PVX_003805), -3 (PVX_003840)?, -4 (PVX_003825) and -5 (PVX_003810)?
Reorientation and moving AMA-1 (PVX_092275) and RONS (PVX_089530)
junction formation
RBC internalisation Merozoite capping protein 1 (PVX_111355), actin (PVX_101200), myosin A (PVX_083030),
actin depolymerising factor (PVX_097745)® and myosin-like protein (PVX_113830)
Haemoglobin degradation Falcilysin (PVX_115000), vivapain 1 (PVX_240290)%, -2 (PVX_091415 and PVX_091405°), -3 [80]
(PVX_091410)® and plasmepsin IV (PVX_086040)
Intracellular transport EXP 1 (PVX_091700), EXP 2 (PVX_116915), small GTP-binding protein (PVX_089930)%, rab [78,79,81-84]
GDP dissociation inhibitor beta (PVX_101040)? small GTPase Rab1l (PVX_080550)% -1A
(PVX_080610)?, -2 (PVX_124195), -5 (PVX_002970)3, -5¢ (PVX_081430), -6 (PVX_092850), -7
(PVX_098605), -11 (PVX_122840)%, -11b (PVX_082950)?, -18 (PVX_088180)%, Sec22
(PVX_095230)?, -23A (PVX_089235)3, -24 (PVX_115015), PfSec31p (PVX_002830)?, -61a
(PVX_083205), -61p (PVX_089275)2, -62 (PVX_118580) and -63 (PVX_122755)
Heat shock response HSP (PVX_098815%, PVX_002875% PVX_118295 and PVX_122065), -hslv (PVX_124160), -40 [85-87]
Pfj2 (PVX_091110), -40 Pfj4 (PVX_084600)?, -60 (PVX_095000), -70 (PVX_092310), -86
(PVX_087950), -90 (PVX_091545), -101 (PVX_091470), -110 (PVX_083105) and -110c
(PVX_087970)
Antigen variation and vir (PVX_096975 and PVX_096980) and vir-12 (PVX_002485% and PVX_022185%) [88]
immune evasion
Erythrocyte modification etramp (PVX_003565, PVX_086915%, PVX_090230 and PVX_096070) [89]
Drug resistance mrp-1 (PVX_080100), -2 (PVX_118100) and ABC transporter (PVX_124085)? [90]

& Proteins identified for the first time in this study. MSP (merozoite surface protein), SERA (serine-repeat antigen), AMA (apical merozoite
antigen), RON (rhoptry neck protein), EXP (exported protein), HSP (heat shock protein), vir (variable surface protein), etramp (early transcribed

membrane protein), and mrp (multidrug resistance protein).

A total of 177 proteins participating in 87 metabolic
pathways were found by using a recently updated PlasmoDB
application designed for such purpose in a second analysis [67];
36 proteins did not have human orthologues and 16 of them
were participating in only one pathway (Table 3). The M1-family
aminopeptidase (PVX_122425) was common with the drug
targets identified in the P. vivax studies reported by Acharya et
al. [47]. S-adenosyl-L.-homocysteine hydrolase (PVX_080200),
malate:quinone oxidoreductase (PVX_113980) and leucine ami-
nopeptidase (PVX_118180) have previously been considered as
attractive drug targets for P. falciparum [96-98]. Other molecules
have been predicted representing major metabolic pathways
required for P. falciparum parasite replication and growth:
adenosine deaminase (PVX_111245) and phosphoethanolamine
N-methyltransferase (PVX_083045) involved in purine salvage
[99] and glycerophospholipid metabolism [100].

3.5. In silico predicted vaccine candidates

Vaccine candidate molecules were identified, taking the
following parameters into account: high expression at the
end of the blood lifecycle (>35 hours) (required), prediction of
being secreted (required), the presence (or not) of transmem-
brane regions or GPI-anchors, and the presence (or not) of
domains relevant for protein-protein interaction or adhesion
function, as determined by the MAAP algorithm. Proteins
having domains linked to intracellular functions determined
by Interpro scan were excluded.

The analysis led to identifying 31 molecules having the
characteristics described above (Table 5). The MSP-1 had

previously been studied in pre-clinical assays [101], others
had already been described as surface (Pv12 and Pv41) [26,38]
and rhoptry (PVRON2) [34] proteins, 8 were hypothetical
proteins and other rhoptry proteins not described as yet. Six
hypothetical proteins have not been studied in any Plasmodi-
um species; PVX_001780 had a domain involved in proteolysis,
PVX_092070 appeared to be restricted to the Plasmodium genus
and PVX_099710 had a domain characteristic of extracellular
proteins which are cell binding ligands (Table 5). Proteins
linked to parasite invasion and growth (subtilisin-like prote-
ase, EXP, and SERA proteins) and components of multigene
families (MSP-7, Pv-fam and etramp) were also predicted as
vaccine candidates.

4. Discussion

The P. vivax early proteomic study strategy has involved
analysing schizont stages isolated from several human
blood samples infected with the parasite. However, no
attempt has been made to date to analyse the P. vivax
protein repertoire using parasite samples from a source
having low variability or using different blood life cycle
stages. This study has evaluated a primate model-adapted
P. vivax strain proteome. An attempt was also made to
enrich the parasite during different intra-reticulocytes
stages (rings, trophozoites and schizonts) to analyse the
proteins expressed during different stages, report their
annotation and predict in silico potential drug targets and
vaccine candidate molecules.



274 JOURNAL OF PROTEOMICS 113 (2015) 268-280

GO:0009056
Catabolic process

GO:0006457]

Protein fol I

50:0009259
Ribonucleotide

Protein metabolism
and biosynthesis

biosynthetic

Nucleotide metabolism
and biosynthesis

metabolic process

GO:0006323
GO:0034621 DNA Packaging
Cellular macromolecular

complex subunit org; l‘( 50:0031497
00650 atin assembly

Cellular macf
complex

GO:0007264

DNA organisation

Cellular transport and

localisation

Fig. 3 - Enrichment map for the P. vivax proteins identified here. Map displaying P. vivax proteins grouped according to their
function. The size of the red node represents the number of proteins by term.

A total of 734 proteins were confidently identified; 504
were new molecules which led to increasing the number of
known P. vivax proteins to 960, which is now closer to the 1289
proteins reported for P. falciparum in intra-erythrocyte stages
[54]. It is worth noting that more than a third of the proteins
identified by previous P. vivax studies were not recognised
here (Supplementary Data 2), probably due to the high sample
variability once these had been isolated from infected
patients and then mixed and analysed by MS [35,47].

Proteins having N-terminal acetylation were also found.
This represents a major post-translational modification
which is prevalent in enzymes catalysing intermediate
metabolism in human cells [102]. Further analysis of these

proteins is thus needed to study their role in regulating
metabolic processes concerning P. vivax.

Twenty-five proteins identified here had been shown to be
antigenic in earlier immunoproteomic studies [43,53]; these
included AMA-1 and MSP-1 as the most studied P. vivax antigens
and other molecules such as MSP-7, -8, Pv41, Pu12, EXP, aspartic
protease PMS5, etramp and Pu-fam protein families and hypothet-
ical proteins (Supplementary Data 3, shown with an asterisk).
Taking into account that antigenicity is one of the parameters
considered when selecting vaccine candidates [48], added to the
antigenic potential previously described for the above proteins,
additional experiments aimed at analysing the potential of the
above-mentioned proteins (mainly those which have not been

Table 3 - In silico prediction of potential drug targets.

Metabolic pathway PlasmoDB Description
ID
Phenylalanine, tyrosine and tryptophan PVX_098815 ATP-dependent heat shock protein, putative
biosynthesis (ec00400)
Glyoxylate and dicarboxylate metabolism (ec00630) PVX_111055 Haloacid dehalogenase, putative
Fructose and mannose metabolism (ec00051) PVX_099200 6-Phosphofructokinase, putative
Cysteine and methionine metabolism (ec00270) PVX_080200 Adenosylhomocysteinase (S-adenosyl-L-homocystein
e hydrolase), putative®
Pyruvate metabolism (ec00620) PVX_113980 Malate:quinone oxidoreductase, putative®
Glutation metabolism (ec00480) PVX_118180 Leucine aminopeptidase, putative®
PVX_ 118545 2-Cys peroxiredoxin, putative
PVX_122425 M1-family aminopeptidase, putative*
PVX_ 123435 Thioredoxin peroxidase2, putative
Glycerophospholipid metabolism (ec00564) PVX_083045 Phosphoethanolamine N-methyltransferase, putative®
PVX_088015 PST-A protein
Aminoacyl-tRNA biosynthesis (ec00970) PVX_002940 Asparagine-tRNA ligase, putative
PVX_082520 Glutaminyl-tRNA synthetase, putative
PVX_088145 Tyrosyl-tRNA synthetase, putative
Methane metabolism (ec00680) PVX_116710 Vacuolar ATP synthase subunit g, putative
Purine metabolism (ec00230) PVX_111245 Adenosine deaminase, putative?®

& Proteins which have been suggested as being good drug targets in P. falciparum.
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studied to date) as components of an anti-malarial vaccine
against P. vivax should be undertaken. On the other hand,
although the number of proteins now identified for P. vivax has
substantially increased, further investigation is required to
discover these molecules’ importance regarding the parasite’s
biological functions, such as antigenic variability, immune
evasion, virulence, invasion process, pathogenicity and resis-
tance to drugs.

Comparing stages led to finding a difference between the
quantity of proteins detected in ring and trophozoite stages vs.
schizonts. This could be explained by there being fewer parasites
during early lifecycle phases (early/late rings and trophozoite)
and therefore low protein amount and a greater abundance of
primate molecules masking P. vivax peptide detection (49% for
ring-enriched and 66% for trophozoite-enriched samples)
(Table 4), this being consistent with one of the main difficulties
in proteome analysis [103]. On the other hand, most proteins
were found in 2 out of the 3 stages (Supplementary Data 5: see
expression time) which might have been because the MS
technique used here allows peptides to be detected but does not
measure their abundance. Thus the annotation of all proteins
identified here could only be determined, which provided an
insight into cellular processes in which some proteins partici-
pated during parasite development inside a target cell (Fig. 3),
whilst no functional preference by stage could be evaluated. A
quantitative proteomic analysis is required for determining
whether there was a correlation between proteins identified by
stage cf their encoding mRNA abundance.

Some proteins identified here had no transcript evidence
when compared to transcriptomic studies [66,68]. Previous
studies have shown a significant difference in the total mRNA
levels of 249 genes in three P. vivax clinical isolates from
Thailand [66] and in gene expression profiles when compared
to Peruvian P. vivax isolates [68]. The discrepancy between
VCG-1 and the P. vivax clinical isolates could thus be
explained by their different transcriptional profiles during
the intra-reticulocyte cycle; however, a gene transcription
profile study regarding P. vivax VCG-1 strain is thus needed to
confirm such hypothesis.

The search for therapeutic targets against malaria has
become an important line of research, given that resistant
P. vivax strains continue emerging and threatening the health
of millions of people in endemic areas [104]. Sixteen candi-
dates were predicted in this study, some of them being
orthologous to P. falciparum proteins which have been
considered potential pharmacological targets (Table 3). Al-
though several molecules have been suggested as possible

Table 4 - Proteins recognised by stage and their amount.

Stage Total  P.vivax Primate Contaminants?
proteins
Ring 661 330 (50%) 323 (49%) 8 (1%)
Trophozoite 731 238 (33%) 485 (66%) 8 (1%)
Schizont 1042 727 (70%) 310 (29%) 6 (1%)

Numbers in brackets indicate the percentage of total proteins
detected by stage.
& Main contaminants were human keratins.

P. vivax drug targets by Acharya et al. [52] not all were
identified here because such proteins did not meet the
inclusion criteria established for this study [95]. The absence
of these predicted proteins in mammals makes them ideal
targets for designing novel antimalarial drugs. However,
further assays orientated towards evaluating structural ho-
mology with other human proteins and the toxicity of the
drugs used against these targets in in vitro controlled trials are
needed to ascertain pharmacological potential.

The difficulties in studying the role of P. vivax molecules
in invasion when working with this parasite species in the
laboratory [5] have highlighted bioinformatics tools as an
interesting alternative for selecting and characterising
potential vaccine candidates [45]. It was particularly inter-
esting that several vaccine candidates predicted in silico
could induce an immune response during natural infection,
according to previous immunoproteomic studies (Table 5)
[43].

The in silico prediction led to identifying Pu-fam-a proteins
in which some members have been shown to bind erythro-
cytes [105], Pu-fam-d for which there is no functional evidence
data to date and etramps orthologues to P. falciparum proteins
whose red blood cell binding role has been shown (Table 5)
[106]. Other important proteins found were two MSP-7, two
SERA and five malarial adhesins, which have been considered
good vaccine candidates as they mediate cell binding [79,107].
One Pv-fam (PVX_112685) and one etramp (PVX_096070) pro-
teins were predicted by MAAP, as well as one hypothetical
protein (PVX_084720), the MSP-1 (PVX_099980) which has been
extensively studied in Plasmodium species, and one conserved
rhoptry protein (PVX_096245) which is important but not
essential for P. falciparum invasion, as shown in a gene
knockout study [108].

Rhoptry and surface proteins are important candidates
given that they are required for host cell attachment and
parasite invasion [109,110]; therefore, RON-2 (PVX_117880), -3
(PVX_101485), -5 (PVX_089530), the rhoptry protein above
mentioned (PVX_084720), one member of the cytoadherence
protein family (PVX_121885), and Pv12 (PVX_113775) and Pv41
(PVX_000995) could be good candidates.

Interestingly, according to the PlasmoDB information, 2
Pu-fam family proteins (PVX_112685 and PVX_121910) and one
hypothetical protein (PVX_096055) had no orthologues in
P. falciparum but were present in Plasmodium cynomolgi, a
monkey parasite which is a closely P. vivax-related species
and also infects reticulocytes (Table 5) [111]. This supports the
notion that these proteins are possibly related to P. vivax
cellular preference for invasion. Further characterisation of all
the aforementioned molecules should be considered for
testing their role in reticulocyte adhesion or invasion.

5. Conclusions

This is the first proteomic analysis involving a P. vivax strain
adapted to a non-human primate infection model for evalu-
ating its protein repertoire during blood stages. A total of 504
new P. vivax proteins not reported in earlier studies were
found here, thus providing relevant data concerning the
biology of the P. vivax VCG-1 strain related to proteins
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Table 5 - Predicted P. vivax vaccine candidates in silico.

PlasmoDB Description MET SP Bacello Interpro Scan Phobius MAAP GPI-anchor
ID
PVX_000995% Transmission-blocking target 35 X X s48/45 domain (IPR010884) - - -
antigen Pfs230, putative (P41)
PVX_001780 Hypothetical protein, conserved 35 X X Aspartic peptidase domain 1 - -
(IPRO21109)
PVX_003805% Serine-repeat antigen (SERA), 35 X X Papain domain (IPRO00668) - - -
putative
PVX 003810  Serine-repeat antigen 5 (SERA), 35 X X - - -
putative
PVX_082675 Merozoite surface protein 7 (MSP7) 40 X X Merozoite surface protein, - - -
PVX_082680% Merozoite surface protein 7 (MSP7), 35 X X C-terminal (IPR024781) - - -
putative
PVX 084720% Hypothetical protein, conserved 40 X X - - X -
PVX_086915 Early transcribed membrane 35 X X etramp family (IPR006389) 1 - -
protein (ETRAMP)
PVX_089530 Rhoptry neck protein 5, putative 35 X X — 2 — —
(RON5)
PVX_090230 Early transcribed membrane 35 X X etramp family (IPR006389) 2 - -
protein (ETRAMP)
PVX_090945 Hypothetical protein, conserved 35 X X - 1 - -
PVX_091700%  Circumsporozoite-protein 40 X X Circumsporozoite-related antigen 1 - -
related family (IPR0O09512)
antigen, putative (EXP1)
PVX_092070% Hypothetical protein, conserved 40 X X Protein of unknown function - - -
DUF3271 (IPR021689)
PVX_096055°  Hypothetical protein 43 X X - 2 - -
PVX_096070 Early transcribed membrane 43 X X etramp family (IPRO06389) 1 X -
protein (ETRAMP)
PVX_096245 Rhoptry-associated leucine 35 X X - - X -
zipper-like protein 1
PVX_096950  Tryptophan-rich antigen 43 X X Tryptophan/threonine-rich - - -
(Pv-fam-a) domain (IPR022089)
PVX_096990 Pu-fam-d protein 40 X X - 1 - -
PVX_097935 Subtilisin-like protease 40 X X $8/S53 domain (IPRO00209) - - -
precursor,
putative
PVX 099710  Hypothetical protein, conserved 40 X X Calycin-like domain (IPR011038) - - -
PVX_099980% Major blood-stage surface antigen 35 X X 1 X HP
Pu200 EGF domain (IPR010901,
IPR024730, IPR024731)
PVX_101485 Rhoptry neck protein 3, putative 35 X X - 3 - -
(RON3)
PVX 112665  Tryptophan-rich antigen (Pv-fam-a) 43 X X Tryptophan/threonine-rich - - -
PVX_112685*" Tryptophan-rich antigen (Pu-fam-a) 40 X X domain (IPR022089) - X -
PVX_ 113225 Plasmodium exported protein, 40 X X Protein of unknown function 3 - -
unknown function DUF3671 (IPR022139)
PVX_113775%  6-cysteine protein (P12) 35 X X s48/45 Domain (IPR010884) 1 - HP
PVX_117880 Rhoptry neck protein 2 (RON2) 35 X X - 3 - -
PVX_121885 Cytoadherence linked asexual 35 X X Cytoadherence-linked asexual 2 = =
protein, CLAG, putative protein family (IPRO05553)
PVX_121910*° Py-fam-d protein 40 X X = 2 = =
PVX_122910 Hypothetical protein, conserved 43 X X - 1 - -
PVX_124090 Hypothetical protein, conserved 35 X X - 1 - -

MET: maximum expression time; SP: signal peptide; GPI: glycosylphosphatidylinositol; HP: highly probable.

@ Previous evidence of antigenicity.
® Proteins with orthologues in P. cynomolgi only.

involved in parasite growth, antigenic variability, invasion
and others having a GO term linked to metabolic pathways.
The study has presented an important source of information
for molecule selection, providing the potential for establishing

suitable control strategies aimed at preventing or treating
P. vivax malaria infection. Further studies are needed to
confirm the potential use of the in silico predicted drug targets
and vaccine candidates here described.
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Abstract

Background: Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical
and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used
by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease.
This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in
natural infection.

Methods: The target gene in the study was selected according to a previous in silico analysis using profile hidden

Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene
in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PYARP were used to

immune response during infection.

confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence.
Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA.

Results: VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an
N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is
located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from

P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the

Conclusions: This study showed the characterization of PvARP and its antigenicity. Further assays orientated
towards evaluating this antigen'’s functional importance during parasite invasion are being carried out.

Keywords: Plasmodium vivax, Protein, Invasion, Antigenicity, Vaccine

Background

Malaria is a tropical disease that causes millions of deaths
per year around the world. The World Health Organiza-
tion’s (WHQO) Malaria Report 2011 indicated that there
were 216 million cases and 655,000 deaths, mainly in chil-
dren aged less than five years [1]. In spite of the incidence
of cases worldwide and mortality index having become
substantially reduced by 17% and 25% between 2000 and
2010, respectively, the figures regarding cases of malaria
continue to be alarming. This is due to two main aspects
impeding the total eradication of the disease: a gradual in-
crease of parasite strains which are resistant to anti-
malarial drugs [2] and populations of the mosquito vector
which are insecticide-resistant [3].
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Plasmodium vivax stands out as the most widespread
parasite species causing malaria in humans; it is found
throughout tropical and subtropical areas of the world
and causes the disease’s highest morbidity indices on the
Asian and American continents [4]. Even though it has
been thought that P. vivax was a benign species, recent
studies have shown that infection caused by this parasite
could cause severe clinical symptoms [5,6], similar to
those found in Plasmodium falciparum infection, thereby
making it a potential menace.

Synthetic vaccines have been considered a good choice
among control strategies when combating infectious dis-
eases. Regarding malarial blood stages, vaccine develop-
ment has been focused on the recombinant expression of
parasite antigens (MSP-1 [7-9] and AMA-1 [10,11] having
been the most studied) or on using synthetic peptides

© 2013 Moreno-Pérez et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
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[12,13]; however, no fully effective vaccine against any spe-
cies has been reported to date.

Recent work has established that the key to achieving an
effective vaccine lies in blocking the interaction of parasite
ligands which facilitate adhesion to target cell receptors
[14]; this means that molecules localized on parasite surface
and apical organelles (rhoptries and micronemes) must be
identified. Unfortunately, data regarding the P. vivax pro-
teins involved in invasion of reticulocytes that have been
functionally characterized to date lag behind that available
for their P. falciparum counterparts [15]. The foregoing has
been due to the difficulty of standardizing an in vitro cul-
ture given poor reticulocyte recovery from adult human
total blood [16]. Such experimental limitation has led to
several study alternatives having been suggested; probabilis-
tic techniques have been most useful when predicting pos-
sible vaccine candidates. A recent study involving hidden
Markov models for analyzing the transcriptome of the
P. vivax Sal-1 strain’s intra-erythrocyte life-cycle has led to
the identification of 45 proteins that play a potential role in
invasion; the role in cell adhesion for 13 of them (localized
in merozoite rhoptries or on their surface) had previously
been determined [17]. It was particularly interesting that an
asparagine-rich protein (ARP) was found, this being con-
served throughout the Plasmodium genus [17]. Only its
P. falciparum orthologue has been described to date, called
the apical asparagine-rich protein (PfAARP) [18]. The
PfAARP-encoding gene has a prominent expression pattern
towards the last intra-erythrocyte parasite development
stage (48 hours post-invasion), which has been shown by
real-time PCR and Northern blot. Antigenicity assays have
shown that the N-terminal protein’s region (PfAARP-N)
obtained as a recombinant is recognized by antibodies from
patients who have been naturally infected by P. falciparum.
Rabbit antibodies directed against PAARP-N have been
able to significantly inhibit parasite invasion of RBC
in vitro. The foregoing, together with an RBC binding assay
involving the expression of the complete protein on COS
cell surface, has highlighted this antigen’s functional role in
parasite binding to and invasion of target cells [18].

The present study was thus aimed at characterizing the
asparagine-rich protein orthologue for PAAARP in P. vivax.
Molecular biology assays and immunochemistry techniques
were used to demonstrate Pvarp gene transcription, protein
expression and localization, as well as the ability to induce
an antigenic response in patients who had suffered episodes
of P. vivax malaria.

Methods

Selecting the gene and designing the primers and
synthetic peptides

PvARP was selected, bearing in mind the in silico study
by Restrepo-Montoya et al. [17] of P. vivax proteins
playing a potential role in invasion. The PlasmoDB [19]
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database was then scanned to obtain the Pvarp gene se-
quence from the Salvador 1 (Sal-1) reference strain and to
analyze adjacent genes’ synteny in different Plasmodium
species. Specific primers were designed manually using
Gene Runner software (version 3.05). B-cell lineal epitopes
were predicted with AntheProt software [20] using the de-
duced amino-acid (aa) sequence. A tBlastn analysis of the
predicted B-cell epitopes was then carried out to select
peptide sequences exclusive for the P. vivax ARP.

Animal handling

The experimental animals used were handled in accord-
ance with Colombian Law 84/1989 and resolution 504/
1996. Aotus monkeys kept at FIDIC’s primate station
(Leticia, Amazon) were handled following established
guidelines for the care and use of laboratory animals
(National Institute of Health, USA) under the constant
supervision of a primatologist. All experimental proce-
dures involving Aotus monkeys had been previously ap-
proved by the Fundacién Instituto de Inmunologia's
ethics committee and were carried out in agreement
with the conditions stipulated by CorpoAmazonia (reso-
lution 00066, 13 September, 2006). An Aotus monkey
was experimentally infected with the Vivax Colombia
Guaviare 1 (VCG-1) strain and monitored daily to assess
infection progress throughout the entire study (up to
day 18) using Acridine Orange staining. The monkey was
treated with paediatric doses of chloroquine (10 mg/kg on
the first day and 7.5 mg/kg/day until the fifth day) and
primaquine (0.25 mg/kg/day from the third to the fifth
day) at the end of the study to guarantee parasite clear-
ance from total blood. Once experiments were over,
CorpoAmazonia officers supervised the primate’s return
to its natural habitat in excellent health.

Isolating the Plasmodium vivax parasite

VCG-1 strain parasites were maintained in vivo according
to previously described methodology [21]. A P. vivax-
infected blood sample (3 mL) was passed through a dis-
continuous Percoll gradient (GE Healthcare, Uppsala,
Sweden) according to an already established protocol [22]
for obtaining schizont-stage enriched parasite. The sample
was then used as RNA, genomic DNA (gDNA) and total
protein source.

Extracting RNA and cDNA synthesis

Total RNA was extracted from the schizont-enriched
sample using the Trizol method and treated with RQ1
(RNA-qualified) RNase-free DNase (Promega, Wisconsin,
USA) according to the manufacturer’s recommendations.
Complementary DNA (cDNA) was synthesized using a
SuperScript III enzyme (RT+) (Invitrogen, California,
USA) in the following conditions: 65°C for 5 min, 50°C for
1 hour and 70°C for 15 min. An additional reaction
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without the SuperScript III enzyme (RT-) was made for
use as control. Following 15 min’ incubation at 37°C with
RNase (Promega, USA) the product was stored at -70°C
until its later use.

Cloning, sequencing and bioinformatics analysis

The ¢cDNA RT + and RT- samples, as well as the gDNA
obtained using a DNA Wizard Genomic purification kit
(Promega), were used as template in 10 pL. PCR reactions
containing 0.5 U/pL Accuzyme DNA polymerase (Bioline),
1x AccuBuffer, 2 mM MgCl,, 0.5 mM dNTP 0.5 pM
primers and DNAse-free water for completing the reaction
volume. Specific primers were designed for amplifying a re-
gion containing the entire Pvarp gene (direct 5'- CATTT
GATCAGAGACGAC -3’ and reverse 5'- TTGGCACTTT
TGTCACGA -3°), or the encoding sequence without the
signal peptide (direct 5'- atgTGCAACACAAATGGGA
AAA -3’ and reverse 5'- CACGCCAAACAGCTTCA -3");
the protein expression start codon was included in the dir-
ect primer’s 5" end. A set of primers which had been previ-
ously designed for amplifying the Pvronl-a region (direct
5'- atgGCGAAGGAGCCCAAGTG-3" and reverse 5'- AT
CCCTAGCAATGCTTCG -3") [23] was used as control for
c¢DNA contamination with gDNA. The PCR for the Pvarp
gene began with a denaturing step at 95°C for 5 min,
followed by 35 cycles at 95°C for 30 sec, 52°C for 10 sec
and 72°C for 1 min. PvronI-a PCR began with a denaturing
step at 95°C for 5 min, followed by 35 cycles at 95°C for
30 sec, 56°C for 10 sec and 72°C for 1.5 min. A Wizard
PCR preps kit (Promega) was used for purifying Pvarp gene
amplicons obtained from independent PCRs done with the
RT + sample, once quality had been evaluated by 1% agar-
ose gel. Pure products were then ligated to the pEXP5 CT/
TOPO expression vector and transformed in TOP10
Escherichia coli cells (Invitrogen). Various clones were
grown to purify the plasmid, using an UltraClean mini plas-
mid prep purification kit (MO BIO laboratories, California,
USA); insert integrity and its correct orientation were con-
firmed by sequencing using an ABI PRISM 310 genetic
analyzer (PE Applied Biosystems, California, USA). VCG-1
strain PvARP was characterized in silico using SignalP 3.0
[24], FragAnchor [25], XSTREAM [26], tools and the
Interpro database [27] to search for secretion signal or
GPI-anchor sequences, tandem repeats and putative do-
mains, respectively. Clustal W software was used for
aligning genes and pertinent encoding sequences [28].

Recombinant protein expression and purification

The pEXP5-PvARP recombinant plasmid which encodes
the entire PvARP sequence without the signal peptide (con-
firmed by sequencing) was transformed in E. coli BL21-Al
(Invitrogen), according to the manufacturer’s recommenda-
tions. A protocol described by Sivashanmugam and his
group [29] with some modifications, was used for
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improving expression yield. Briefly, the cells were grown
overnight at 37°C in 10 mL Luria Bertani (LB) medium
containing 100 pg/mL ampicillin and 0.1% (w/v) D-
glucose. The initial inoculum was then seeded in 100 mL
LB volume with the same amount of the aforementioned
ampicillin and D-glucose and left to grow at 37°C
using ~300 rpm until reaching 0.5 ODggg; 0.2% L-arabin-
ose (w/v) was used for five hours to induce expression.
The culture was spun at 13,000 rpm for 30 min and lysed
in extraction buffer (EB) (6 M urea, 12 mM imidazole,
10 mM Tris-Cl, 100 mM NaH,PO, and 10 mg/mL lyso-
zyme) supplemented with protease inhibitors (1 mM
PMSE, 1 mM iodoacetamide, 1 mM EDTA and 1 mg/mL
leupeptin). PvARP recombinant expression (rPvARP) was
verified by Western blot and the protein was then purified
by solid-phase affinity chromatography using Ni**:-NTA
resin (Qiagen, California, USA) following the manufac-
turer’s recommendations. Briefly, total lysate was incu-
bated with the resin pre-equilibrated with EB overnight at
4°C. The rPvARP mixture coupled to the resin was placed
on a column and then washed several times with EB to
eliminate weakly bound proteins. The recombinant pro-
tein was eluted with EB containing imidazole at differing
concentrations (20, 100, 250 and 500 mM) in 3 mL frac-
tions, which were analyzed by Coomassie blue staining to
verify the presence of a single band and then dialyzed
in PBS, pH 7.0. A micro BCA protein assay kit (Thermo
Scientific) was used for quantifying every fraction so
obtained; a bovine serum albumin (BSA) curve was used
as reference.

Peptide synthesis and obtaining polyclonal antibodies

A 20 aa-long peptide (predicted to be a good B-cell
epitope), located at the N-terminus of PvARP (CG-
LDNLKAKESPSSNDDGVYAKG-GC), was synthesized
according to a previously-established methodology [30], po-
lymerized, lyophilized and characterized by RP-HPLC and
MALDI-TOF MS. Five mg of peptide (called 38582 herein)
were immobilized on a CNBr-activated Sepharose 4B col-
umn, according to the manufacturer’s recommendations. A
pool of fifteen sera taken from patients who had suffered
previous P. vivax malarial episodes (stored in FIDIC’s
serum-bank, see the ‘Sample source’ section) was incubated
with the peptide coupled to a Sepharose 4B column over-
night at 4°C with constant shaking to purify specific anti-
bodies against peptide 38582 (anti-PvARP3gs5,). The
retained antibodies were eluted with gradients of increasing
salt concentration (50 mM-0.3 M NaCl); they were then di-
alyzed in PBS, pH 7.8, and stored at —20°C until use.

SDS-PAGE and Western blot

Five ug rPvARP and 50 pg total parasite proteins were
separated on 12% SDS-PAGE and then transferred to
nitrocellulose membranes. After having been blocked with
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5% skimmed milk in PBS-0.05% Tween for one hour, each
membrane was cut into strips and individually analyzed as
follows: strips with the recombinant protein were incu-
bated for two hours at room temperature (RT) with anti-
PvARP3gs55, serum fractions (1:100 dilution) in a solution
of 5% skimmed milk in PBS-0.05% Tween to assess which
of them contained anti-PvARP specific antibodies; one
strip was incubated with an anti-histidine monoclonal
antibody coupled to peroxidase (1:4,500) as positive con-
trol for Western blot. Serum fractions recognizing the re-
combinant protein were then used to detect PvARP in
total parasite lysate in the aforementioned conditions.
Once antibody reactivity had been eliminated by incubat-
ing anti-PvARP3g55, serum with peptide 38582 for one
hour at 37°C, then this solution was used as control. Fol-
lowing three washes with PBS-0.05% Tween (5 min per
wash), the strips were incubated for one hour with
phosphatase-conjugated goat anti-human IgG as second-
ary antibody (1:5,000) at RT. The blots were revealed with
a VIP peroxidase (Vector Laboratories, Burlingame,
Canada) or BCIP/NBT colour development substrate kits
(Promega), according to the manufacturers’ indications.

Indirect immunofluorescence assay (IFA)

Plasmodium vivax-parasitized reticulocytes were washed
thrice with PBS and then diluted in this solution until
obtaining five to seven schizonts per field evaluated by
staining with Acridine orange. Twenty uL of the sample
were fed per well on eight-well multitest glass slides
(Biomedicals, Inc) and the supernatant was removed
10 min later. Once the samples were dry, they were fixed
with 4% formaldehyde for 5 min at RT. Following five
washes with PBS, the sample was incubated with 1% Tri-
ton X-100 for 5 min in the previously described condi-
tions. After 10-min blocking at RT with 1% (v/v) skimmed
milk in PBS, each sample was incubated for one hour at
RT with anti-PvARP3gs5g, antibodies (20 pL). The samples
were then incubated with FITC-conjugated anti-human
IgG antibody (Sigma) at 1:30 dilution for 45 min in the
dark. The DNA was stained with DAPI (0.5 pg/mL) for
10 min at RT and the excess was removed by washing sev-
eral times with PBS-0.05% Tween. Once the slides had
been examined under an Olympus BX51 florescence
microscope (using 100x oil immersion objective), Volocity
software (version 5.3.2) was used for superimposing
the images.

Enzyme-linked immunosorbent assay (ELISA)

PyvARP antigenicity was evaluated in triplicate using
serum from patients who had been living in malaria-
endemic areas in Colombia and had presented episodes
of such infection. Sera taken from healthy individuals who
had never suffered the disease were used as negative con-
trols. Briefly, 96-well polysorb plates were covered with
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1 pg/mL rPvARP overnight at 4°C and then incubated
at 37°C for one hour. The dishes were blocked with 200 pL
5% skimmed milk - PBS-0.05% Tween for one hour at
37°C. Antibody reactivity against the recombinant protein
was evaluated by incubating the plates with a 1:100 dilution
of each human serum in 5% skimmed milk -PBS-0.05%
Tween for one hour at 37°C. Following incubation of the
dishes with peroxidase-coupled anti-human IgG secondary
antibody (1:10,000) diluted in 5% skimmed milk - PBS-
0.05% Tween for one hour at 37°C, a peroxidase substrate
solution (KPL Laboratories, WA, USA) was added to re-
veal the reaction, according to the manufacturer’s recom-
mendations. Optical density (OD) was detected at 620 nm
with an MJ ELISA multiskan reader and then calculated by
subtracting the OD value obtained from the control well
(no antigen). A 0.11 cut-off value for evaluating the positiv-
ity threshold was determined by taking the average of the
OD plus twice the standard deviation (2 + SD) of healthy
individuals’ sera reactivity.

Statistical analysis

Differences in average OD for rPvARP recognition by
P. vivax-infected patients’ sera and in the control group
were evaluated using the Kruskal-Wallis rank-sum test. A
0.05 significance level was used for testing a stated
hypothesis.

Sample source

Sera were obtained from 38 patients who were living in
malaria-endemic areas of Colombia and who had suffered
previous episodes of P. vivax malaria (but not P. falcip-
arum), as well as from 15 healthy individuals who had
never been affected by the disease. All individuals signed
an informed consent form after receiving detailed infor-
mation regarding the study’s goals.

Accession number

The nucleotide and aa sequences used here have been
reported in the GenBank database, under accession
number KC514070.

Results and discussion

Analyzing the arp gene in Plasmodium species

The P. vivax proteins identified as playing a potential role
in invasion by profile hidden Markov models [17] led to
PvARP being selected. According to the information pro-
vided by the PlasmoDB database, the Pvarp gene (access
number: PVX_090210) was found to be located between
base pairs 1,230,371 and 1,231,228 in chromosome 5 of
the Sal-1 strain. Similar genes were also found in the gen-
ome of other Plasmodium species known to be causing
malaria in humans (P. falciparum and Plasmodium
knowlesi), apes (Plasmodium cynomolgi) and rodents
(Plasmodium berghei, Plasmodium yoelii and Plasmodium
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Figure 1 Pvarp gene transcription during blood stage. Lane 1
indicates the molecular weight marker. Lanes 2-4 show Pvarp gene
amplification using cDNA RT+, RT- and gDNA, respectively. Lanes
6-8 show the amplification of the Pvroni-a region using cDNA RT+,
RT- and gDNA as template, respectively. Lane 5 shows the negative
control for amplifying the Pvarp gene.

chabaudi). When analyzing alignment, the Pvarp gene co-
dified product was 61.19%, identical to its orthologue in
P. knowlesi (PKH_052690), 53.15% to its orthologue
in P. cynomolgi (PCYB_053680) and 33.68% to its
orthologue in P. falciparum (PF3D7_0423400), while iden-
tity ranged from 23.61% to 22.22% regarding orthologues
in P. chabaudi (PCHAS_052400), P. yoelii (PY06454) and
P. berghei (PBANKA_052380). Such genes were located in
a syntenic region, as corroborated by their open reading
frame orientation and exon-intron structure. The forego-
ing supported the idea that the Pvarp gene has been de-
rived from a common ancestor; however, experimental
evidence concerning the functional role that the encoded
protein might have in different parasite species remains to
be determined.

The Pvarp gene is transcribed in schizonts

The presence of Pvarp gene transcripts in the P. vivax
VCG-1 strain was confirmed by PCR using the cDNA from
a parasite sample as template. Figure 1 shows the Pvarp
gene amplification products (excluding the signal peptide-
encoding region) (lanes 2—4) and the Pvronl gene’s a
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region (lanes 5-8) from cDNA and gDNA. A ~810 bp band
(Figure 1; lane 2) obtained from ¢cDNA amplification (RT+)
showed that the Pvarp gene was transcribed in the
schizont-enriched sample, similar to that reported in the
transcriptional profile for the Sal-1 strain showing a max-
imum transcription level after 35 hours of intra-erythrocyte
life cycle [31]. It was also confirmed that the Pvarp gene
was encoded by a single exon once the sequences obtained
from ¢cDNA and gDNA products (Figure 1; lanes 2 and 4)
had been aligned. The presence of a single ~1,053 bp band
in Pvronl-a PCR (Figure 1; lane 6) indicated that the cDNA
had not been contaminated by gDNA given that the
expected product for the latter would have been ~1,559 bp
(Figure 1; lane 8). No amplification was observed in the
negative controls for each PCR (Figure 1; lanes 3 and 7
(RT-), and 5 (DNA-free water)).

Comparing Aotus monkey-adapted VCG-1 strain Pvarp
gene sequences to those from the Sal-1 reference strain led
to identifying four synonymous mutations, two non-
synonymous ones producing aa changes (i e, methionine
(M) for asparagine (N) and glycine (G) for N in aa position
217 and 219, respectively) and a 12-base pair deletion
related to an asparagine-methionine-asparagine-glycine
(NMNG) repeat block (Table 1). It has been found that
parasite proteins have both highly polymorphic and con-
served regions; the former are the target for an immune re-
sponse while conserved sequences implicated in interaction
with cell receptors are usually not antigenic [32]. Consider-
ing that the latter regions might be suitable targets for
blocking parasite entry to host cells, further studies aimed
at evaluating Pvarp gene polymorphism in different isolates
are required to determine which sequences could be used
as components of a vaccine against malaria caused by
P. vivax.

Characterizing PvARP in silico
The VCG-1 strain Pvarp gene encoded a 281 aa long pro-
tein having ~30 kDa molecular mass, this being 64 residues

Table 1 Mutations found in VCG-1 strain PvARP nucleotide and amino acid sequences regarding the reference strain

(Sal-1)
Base pairs*  Amino acids* Mutations/ Changes in Pvarp nucleotide sequences Changes in the PvARP amino acid sequences
Deletions in P. vivax strains in P. vivax strains
Sal-l VCG-1 Sal-I VCG-1
456 152 Synonymous CAT CAC H -
600-611 200-204 Deletion CATGAACGGAAA - NMNG -
650 216 Synonymous TAT TAA N -
651 217 Non-synonymous GAA CAA M N
655-656 218 Synonymous CGG CAA N -
657 219 Non-synonymous AAA CAA G N
663 221 Synonymous AAC AAT N -

*Nucleotide and amino acid positions are numbered according to PvARP in the Sal-l reference strain.
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Figure 2 In silico characterization of PvARP, showing signal peptide localization, tandem repeats (TR), asparagine (ARR) and proline
(PRR) amino acid repeat regions and the peptide selected for the antibody purification assay (shown in the box).

longer when compared to its homologue PAARP (217 aa)
[18]. PvARP consists of 20% asparagine residues and has a
signal peptide with a cleavage site between aa TNG-KS
(Figure 2). A post-translational modification false positive
consisting of a C-terminal glycosylphosphatidylinositol
(GPI) anchor sequence has been predicted [17], differing to
its P. falciparum homologue which has a true positive one.
Asparagine- and proline-rich regions were found towards
the C-terminal extreme of the protein sequence; the first of
these covered residues 212 to 235, while the another one
was found downstream between aa 242 and 259 (Figure 2).
Additionally, a tandem repeat region (TR), a feature shared
with other vaccine candidates described to date, was also
found using XSTREAM software [26] (Figure 2); this region
consisted of 11 repeat blocks from the (D/N/S)(V/IM)NG
consensus sequence found in aa 168 to 211. The sequence
was seen to be exclusive for P. vivax and had mutations
(two substitutions and four deletions), thereby suggesting
that it was under pressure from the immune system. TR
have been common in several P. vivax antigens described
to date, which are mainly located on the surface or in apical
organelles; these would include the circumsporozoite pro-
tein (CSP) [33], merozoite surface protein 9 (MSP-9) [34],
Pv34 [35] and rhoptry neck proteins 1 and 2 [23,36]. Even

though several studies have shown that the tandem repeats
of PvCSP trigger an immune response when inoculated in
primates and humans [33,37,38], the response so produced
did not completely inhibit infection caused by the parasite.
It has been shown in other Plasmodium species that TR
could act as a smokescreen against the immune system,
thereby diverting strong reactions towards functionally-
relevant regions [39]; however, their exact role in P. vivax
antigens remains unknown.

PvARP expression in schizonts and subcellular localization
Specific human antibodies against an N-terminal PvARP
synthetic peptide (Figure 2) were used for checking pro-
tein expression and localization in the schizont-enriched
sample. PvARP was recombinantly expressed excluding
the signal peptide and then purified (Figure 3A). Once hu-
man anti-PvARPsgs5, antibody ability to detect the recom-
binant protein in Western blot assays had been checked
(Figure 3B), they were then used for detecting the protein
on a blot containing parasite total lysate (Figure 3C). Both
the parasite and recombinant PvARP proteins were
detected above the expected weight (~40 and ~49 kDa, re-
spectively), probably due to the presence of acidic aa
(aspartic acid and glutamic acid) thereby causing

A B C
MW kDa MW kDa MW kDa
—= 100 - 80
204 :‘ o0 o3 50 - ;;fg A‘E}f 464 . ~40iDa
35, al 354 30
4 ) 23

1 2345

in kDa.

1 23 4

Figure 3 Detecting recombinant and parasite protein by human antibodies. (A) Recombinant protein expression and purification. Lanes 2-3
show non-induced and induced cell lysate, respectively (Coomassie staining). Lanes 4-5 show purified rPvARP stained with Coomassie or
analyzed by Western blot using anti-polyhistidine antibodies, respectively. (B and C) Antibody ability to recognize recombinant and parasite
PvARP by Western blot, respectively. Lane 2 shows the absence of human serum reactivity after being pre-incubated with peptide 38582. Lane 3
indicates PvARP recognition. Lane 4 shows detection of recombinant protein (positive control). MW kDa indicates molecular weight marker

1 2 3
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small boxes.

A
B

Figure 4 PvARP sub-cellular localization in mature schizonts. (A) Shows the detection of the protein on free merozoite surface. (B) PvARP
labelling on mature schizonts. The nuclei are labelled with DAPI (blue). An amplified image of a merozoite (indicated by an arrow) is shown in

anomalous migration on SDS-PAGE gel. The antibodies
had specific reactivity to a ~40 kDa band; such reactivity
was eliminated by using serum which had been pre-
incubated with peptide 38582 (Figure 3C; lane 2).

A strong fluorescence signal, having an apparent con-
centration towards the apical pole, was found on free mer-
ozoites’ surface and in mature schizonts when using the
serum as primary antibody in the parasitized reticulocyte
sample (Figure 4). The results led to the suggestion that
PvARP could be expressed in apical organelles and then
become relocated to the surface. However, other confocal
or electron microscope assays are needed to determine
the protein’s exact localization pattern.

Antigenicity in humans

PvARP antigenic ability was evaluated by ELISA, using the
sera from 38 patients who had suffered P. vivax malaria
and 15 serum samples from people who had never suffered
from the disease. The statistical test revealed a statistically
significant difference between the medians (m1) of the
groups (Wilcoxon rank-sum test. Z = 5.1, p = 0.000); it gave
m=0.5 for the group of infected patients and m =0.1 for
the control group (Figure 5), thereby corroborating the fact
that the protein was able to trigger an antibody response in
the host during natural P. vivax malaria infection, most sera
being able to recognize native and recombinant protein, as
demonstrated by IFA and Western blot, respectively. The
results supported the idea of analyzing this protein’s poten-
tial as a candidate for an anti-P. vivax vaccine.

Conclusions
This study has described how the P. vivax asparagine-
rich protein was characterized. As demonstrated, PvARP

was conserved among different species belonging to the
Plasmodium genus and shared some features of well-
characterized surface and/or apical proteins being studied
as candidates for a vaccine, such as prominent transcrip-
tion and expression towards the end of the intra-
erythrocyte life cycle and broad recognition by sera from
patients infected with P. vivax malaria. The results sup-
ported the notion that this antigen could be a promising
candidate for inclusion when developing an anti-malarial
vaccine. Further immunogenicity assays and studies of the
ability to induce protection in the experimental Aotus
model are required.
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Figure 5 rPvARP antigenicity. The box diagram shows OD
distribution (Y axis) for detecting rPvARP by sera from non-infected and
infected individuals (X axis). *: Infected individuals (n = 38; X+S=0.5 +
0.2; 95%Cl =0.16-1.1) and control (n=15; X5=0.1 + 0.07; 95%IC =
0.03-0.24). p value = 0.000.
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Characterising PvRBSA: an exclusive protein ® e

from Plasmodium species infecting
reticulocytes
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Abstract

Background: Plasmodium vivax uses multiple ligand-receptor interactions for preferential invasion of human
reticulocytes. Several of these ligands have been identified by in silico approaches based on the role displayed by
their orthologs in other Plasmodium species during initial adhesion or invasion. However, the cell adhesion role of
proteins that are exclusive to species that specifically invade reticulocytes (as P. vivax and P. cynomolgi) has not
been evaluated to date. This study aimed to characterise an antigen shared between Plasmodium species that
preferentially infect reticulocytes with a focus on assessing its binding activity to target cells.

Results: An in silico analysis was performed using P. vivax proteome data to identify and characterise one antigen
shared between P. vivax and P. cynomolgi. This led to identification of the pvrbsa gene present in the P. vivax VCG-I
strain genome. This gene is transcribed in mature schizonts and encodes a protein located on the parasite surface.

parasite binding to target cells.

rPVRBSA was antigenic and capable of binding to a population of reticulocytes with a different Duffy phenotype.
Interestingly, the molecule showed a higher percentage of binding to immature human reticulocytes (CD71™).

Conclusions: This study describes for the first time, a molecule involved in host cell binding that is exclusive in
reticulocyte-infecting Plasmodium species. This suggest that PvRBSA is an antigenic adhesin that plays a role in

Keywords: Plasmodium vivax, Antigenic protein, Adhesin, Reticulocyte

Background

Basic research in P. vivax has been delayed, mainly due
to difficulties associated with its in vitro propagation,
resulting from the predilection of this species for
invading immature erythrocyte cells (reticulocytes) [1, 2].
Consequently, bioinformatics approaches represent a good
solution for identifying in silico vaccine candidates in P.
vivax by comparative analysis, bearing in mind that many
invasion-associated proteins from other Plasmodium spe-
cies have already been described. Information derived
from omics studies of P. vivax (genome [3], transcriptome
[4] and proteome [5-8]) has been useful for large-scale

* Correspondence: mapatarr fidic@gmail.com

'Molecular Biology and Immunology Department, Fundacién Instituto de
Inmunologia de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotd, D.C,
Colombia

3Basic Sciences Department, School of Medicine and Health Sciences,
Universidad del Rosario, Carrera 24 No. 63C-69, Bogotd, D.C, Colombia
Full list of author information is available at the end of the article

( ) BiolVled Central

analysis of gene composition, transcripts and parasite pro-
teins and, importantly, facilitate in silico predictions on
the function of many P. vivax proteins.

Furthermore, in silico tools have been instrumental in
characterising some P. vivax molecules interacting with
reticulocytes, such as the Duffy binding protein (DBP)
[9], reticulocyte binding proteins (RBP) [10-12], merozo-
ite surface protein-1 (MSP-1) [13], rhoptry neck protein-5
(RONS5) [14] and, recently, the P. vivax GPIl-anchored
micronemal antigen (GAMA) protein (manuscript in
press). However, the number of P. vivax target cell binding
proteins identified to date is low compared to available in-
formation on P. falciparum, suggesting that further stud-
ies are required to supplement the current set of P. vivax
adhesin data, to improve our understanding of the mo-
lecular basis of parasite invasion.

Identifying P. vivax molecules with a role in host cell
invasion by their similarity with proteins in P. falciparum
has been a very promising approach. However, this has
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limitations when identifying those molecules involved in
parasite recognition and invasion of reticulocytes. This
study aimed to characterise a specific molecule from spe-
cies infecting reticulocytes (e.g. P. vivax and P. cynomolgi)
by determining its target cell binding profile.

Methods

Bioinformatics analysis, primer design and peptide
synthesis

The currently available information published in P. vivax
proteome studies [5—8] was used as the source for analys-
ing in silico proteins which might be vaccine candidates.
The criteria for selecting proteins included: a prominent
expression of the codifying genes>35 h post-invasion
(required) according to transcriptome study of the P.
vivax intra-erythrocyte life-cycle [4]; a positive prediction
by SignalP 4.1 [15] and BaCelLo [16] of a secretion signal
sequence and extracellular localisation, respectively; the
presence (or not) of a GPI anchor sequence using
FragAnchor software [17], as well as the presence of
repeats having 90% similarity in amino acid (aa) sequences
using T-REKS algorithm [18]. The Phobius [19],
HMMTOP [20] and TMHMM [21] servers were used to
predict transmembrane regions. The selected genes were
analysed to identify orthologs in other Plasmodium
species according to the PlasmoDB [22] and the Kyoto
Encyclopedia of Genes and Genomes ortholog clusters
(KEGG OC) [23] databases. The sequence of any gene
selected for being characterised was scanned in the
PlasmoDB database and used for manually designing spe-
cific primers (using Generunner software, version 3.05),
the same as for B-cell linear epitopes all along their encod-
ing sequence, predicting the highest average values for
hydrophilicity, solvent accessibility and Parker’s antigenic-
ity using ANTHEPROT software [24].

Propagating VCG-I strain parasites and isolating schizonts
Vivax Colombia Guaviare-I (VCG-I) strain parasites
were propagated six years ago and used as the source of
biologic material, as previously described in detail [25].
The blood sample containing parasite-infected cells was
collected in heparin tubes and passed through a dis-
continuous Percoll gradient (GE Healthcare, Uppsala,
Sweden), according to an already-established protocol
[26]. The schizont-stage enriched parasites were isolated
from cells by incubating them for 5 min in 0.02 mM
saponin buffer containing 7 mM K,HPO, 1 mM
NaH,PO,, 11 mM NaHCOs3;, 58 mM KCl, 56 mM NaCl,
1 mM MgCl, and 14 mM glucose, pH 7.5 and then
washed extensively with PBS, pH 7.0.

Extracting biological material
Isolated parasites were used as RNA, genomic DNA
(gDNA) and total protein source. Total RNA was
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extracted from the sample using the Trizol method and
treated with RQI (RNA-qualified) RNase-free DNase
(Promega, Madison, USA) according to the manufac-
turer’s recommendations. SuperScript III enzyme (RT+)
(Invitrogen, Carlsbad, USA) was used for synthesising
complementary DNA (cDNA) in the following condi-
tions: 65 °C for 5 min, 50 °C for 1 h and 70 °C for
15 min. An additional reaction without the SuperScript
III enzyme (RT-) was used as negative control, following
15 min incubation at 37 °C with RNase (Promega). A
Wizard Genomic purification kit (Promega) was used
for obtaining the gDNA. Regarding protein extraction,
the parasites were homogenised in lysis buffer con-
taining 5% SDS, 10 mM PMSF, 10 mM iodoaceta-
mide, 1 mM EDTA and then spun at 16,000x g for
5 min. The proteins were recovered from the super-
natant and quantified using a BCA protein assay kit
(Thermo Scientific, Rockford, USA). RNA, cDNA,
gDNA and total protein were stored at -70 °C until
later use.

Gene cloning and sequencing
The gDNA and ¢DNA (RT+ and RT-) samples were
used as template in 25 pl PCR reactions containing 1x
KAPA HiFi HotStart ReadyMix (KAPA Biosystems,
Woburn, MA, USA), 0.3 uM primers and DNAse-free
water for completing the reaction volume. Specific
primers were designed for amplifying the entire P. vivax
reticulocyte binding surface antigen (pvrbsa) gene (For-
ward 5-ATG AAA GGA ATA ATG AAT GG TT-3' and
Reverse 5'-ATA ACC ATC CAA ATC GTC AAA-3) or
for producing the recombinant protein excluding the
signal peptide and the transmembrane region (Forward
5-ATG ATA TTG TAC AGC GAC GAC TC-3' and
Reverse 5'-GCT ATC TTT CTT CAC ATT ATA C-3)).
The PCR began with a denaturing step at 98 °C for
3 min, followed by 35 cycles at 98 °C for 20 s, 56 °C for
15 s and 72 °C for 30 s. A Wizard PCR preps kit
(Promega) was used for purifying gene amplicons ob-
tained from three independent PCRs done with the RT+
and gDNA samples, once quality had been evaluated on
agarose gel. Purified products were ligated to the pEXP5
CT/TOPO expression vector or in a new in house de-
signed vector (pELMO) [27] for the gene obtained from
gDNA and transformed in E. coli TOP10 chemically
competent cells (Invitrogen). Several clones were grown
for purifying the plasmid using an UltraClean mini
plasmid prep purification kit (MO BIO Laboratories,
California, USA). The insert integrity and correct
orientation were then confirmed by sequencing, using
an ABI-3730 XL sequencer (MACROGEN, Seoul, South
Korea). ClustalW (NPS) software [28] was used for
comparing manually the gene sequences from the Sal-I
reference strain [3] and the primate-adapted VCG-I strain.
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Recombinant protein expression and extraction

E. coli BL21-DE3 (Invitrogen) cells which had been previ-
ously transformed with the recombinant plasmids were
grown in Luria-Bertani (LB) medium containing 100 pg/ml
ampicillin, overnight at 37 °C using a Lab-line Incubator
Shaker. The initial inoculum was seeded in 1 1 LB and
handled in the aforementioned conditions until reaching
0.5 ODgqp. After the culture was incubated on ice for
30 min, IPTG 1 mM was then used to induce expression
for 16 h at room temperature (RT) at ~200 rpm. The cells
were harvested by spinning at 2,400x g for 20 min and
used for native extraction procedures. A new protocol for
extracting proteins in a soluble form was used. Briefly,
cellular pellet obtained from E. coli expressing PVRBSA
was freeze/thawed for 3 cycles and then homogenised in
native extraction buffer (NEB) (50 mM Tris-Cl, 300 mM
NaCl, 25 mM imidazole, 0,1 mM EGTA and 0.25%
Tween-20, pH 8.0). The mixture was then incubated for
1 hat4 °C at 10 rpm using a tube rotator (Fisher Scientific,
Waltham, USA) and the supernatant was collected by
spinning at 16,000x g for 1 h.

Protein purification

Solid-phase affinity chromatography was used for pro-
tein purification. The Ni*>-N'TA resin (Qiagen, Valencia,
CA, USA) was pre-equilibrated with NEB buffer, incu-
bated with E. coli lysate overnight at 4 °C and the
protein-resin mixture was then placed on a column. The
unbound proteins were eluted by washing with 20 ml
NEB buffer containing 0.1% Triton X-114 followed by
50 ml of the same buffer without detergent. Bound pro-
teins were eluted with PBS containing imidazole at
increasing concentrations (50 mM to 500 mM) in 3 ml
fractions. The purification was confirmed by Coomassie
blue staining and the fractions pooled and dialysed ex-
tensively in PBS, pH 7.2. The protein was quantified
using a micro BCA protein assay kit (Thermo Scientific)
and bovine serum albumin (BSA) as reference curve.

Obtaining polyclonal antibodies

The VCG-I strain PvRBSA sequence was used for design-
ing two 20 aa-long peptides (CG-KRNSSVSSLDSDMGS
YKNKS-GC (peptide 39478) and CG-VFGKGRKKPMK
VKKGGGKIS-GC (peptide 39480)) which were then
synthesised, according to a previously-established method-
ology [29], polymerised, lyophilised and characterised by
RP-HPLC and MALDI-TOF MS. New Zealand rabbits
were immunised with a 500 pg dose of each synthetic
peptide emulsified in Freund’s complete adjuvant (FCA)
(Sigma, Missouri, USA) on day 0, whilst the same emulsi-
fied mixture in Freund’s incomplete adjuvant (FIA) was
inoculated on days 21 and 42. The pre-immune sera were
collected before the first immunisation and hyper-
immune sera were collected 20 days after the last dose.
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Specific antibodies were purified by affinity chromatog-
raphy using CNBr-activated Sepharose 4B (Amersham,
Uppsala, Sweden). Briefly, 5 pmol of peptide were diluted
in coupling buffer (0.1 M NaHCO3, 0.5 M NaCl pH 8.3)
and then incubated for 16 h at 4 °C with Sepharose resin.
After washing ligand excess with 5 volumes of coupling
buffer, the resin-free groups were blocked with 0.1 M
buffer Tris—HCI for 2 h at quiescence at RT, followed by
washing the resin 3 times with alternate pH solutions
(0.1 M acetate buffer with 0.5 M NaCl, pH 4.0 and 0.1 M
Tris-HCl with 0.5 M NaCl, pH 8.0). Five ml of each rabbit
hyper-immune serum (diluted at 1:1 ratio with buffer
coupling) were passed through the resin after being
homogenised with PBS. Unbound antibodies were washed
with 10 ml buffer coupling while strongly bound antibodies
were eluted with 1 ml elution buffer (0.1 M glycine pH 7,
6, 5, 3.9 and 2.9) at descendant pH and neutralised with
1 M Tris pH 8.0 in a 1:9 ratio (elution buffer:neutralisation
buffer). The antibodies were incubated with 45% ammo-
nium sulphate for 1 h on ice with constant stirring and
then for 16 h at 4 °C without shaking. After spinning at
16,000x g for 15 min, the pellet was homogenised in
100 ul PBS and the sample was extensively dialysed and
stored at -20 °C until use.

Protein localisation by indirect immunofluorescence (IFl)
Slides containing Aotus monkey infected reticulocytes
were previously prepared, as described in previous work
[30]. The samples were fixed and permeabilised by incu-
bating them for 5 min at RT with PBS containing 4%
paraformaldehyde (v/v) and then with PBS with 0.1%
Triton X-100 (v/v). After blocking with 1% BSA-PBS
solution (v/v) for 1 h at RT, each sample was incubated
with anti-PvRBSA rabbit antibodies (1:30) or anti-
PYvRON2 mouse antibodies (1:20) in the same condi-
tions. FITC-conjugated anti-rabbit IgG antibody (Sigma)
at 1:30 dilution and Rhodamine-conjugated anti-mouse
IgG antibody (1:200) monoclonal secondary antibodies
were used for 1 h in darkness at RT. DAPI (0.5 pg/ml)
was used for staining parasite nuclei for 10 min at RT
and then was washed several times with PBS to remove
excess reagent. The slides were examined under a
florescence microscope (Olympus BX51) using 100x oil
immersion objective.

Western blot analysis of recombinant and parasite
proteins

Total parasite and recombinant proteins were separated
on 12% SDS-PAGE and transferred to nitrocellulose
membranes which were blocked with 5% skimmed milk
in TBS-0.05% Tween for 1 h. The membrane was cut
into strips to be incubated for 1 h at RT with rabbit
anti-PvRBSA purified antibodies (1:100 dilution) and
then with the phosphatase-coupled goat anti-rabbit IgG
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monoclonal secondary antibody (1:5,000) (Catalogue
9503 F, ICN) in the same conditions. The positive con-
trol for rPvRBSA Western blotting was a strip incubated
with peroxidase-coupled mouse anti-histidine monoclo-
nal antibody (1:4,500) (Catalogue A7058, Sigma). The
blots were revealed with a BCIP/NBT colour develop-
ment substrate kit (Promega) or VIP peroxidase sub-
strate kit (Vector Laboratories, Burlingame, Canada)
according to the manufacturers” indications. Each band’s
expected weight was determined by linear regression
using XL-OptiProtein (Applied Biological Materials Inc,
Richmond, BC, Canada) weight marker as reference.

Enzyme-linked immunosorbent assay (ELISA)

The recombinant protein was used for evaluating the
presence of anti-rPvRBSA antibodies in samples taken
from P. vivax-exposed individuals (who had suffered at
least one episode of infection) in the municipality of
Tierra Alta, Cérdoba. The negative controls used here
came from sera from healthy individuals who had never
been affected by the disease. The ELISA was performed
as described previously [30].

Cell binding assay

Cord blood samples were typified for determining the
Duffy phenotype (Fya™/Fyb™; Fya™/Fyb*; Fya'/Fyb*) by
standard blood banking methods using anti-Fya and Fyb
sera. Five pL of cells were then incubated with 25 pg
rPvRBSA for 16 h at 4 °C at 4 rpm. DBP region II and
III/IV were used as positive and negative controls, re-
spectively [9]. After washing with 1% BSA-PBS solution
(v/v), the sample was incubated with mouse anti-His-PE
monoclonal antibody (1:40 dilution) (MACSmolecular-
Miltenyi Biotec, San Diego, CA, USA) for 30 min in
darkness. Reticulocytes and white cells were stained by
incubating with anti-CD71 APC-H7 Clone M-A712
(1:80 dilution) (Becton Dickinson, Franklin Lakes, NJ,
USA) and anti-CD45 APC clone 2D1 (1:80 dilution)
(Becton Dickinson) monoclonal antibodies for 20 min at
RT. A FACSCanto II cytometer (BD, San Diego, CA,
USA) was then used for quantifying erythrocyte binding
and FlowjoV10 software for analysing 1 million events. PE
signal intensity was evaluated as a function of CD71 signal
to determine CD71 low (CD71'"°) and high (CD71M) cells.

Statistical analysis

Statistical significance was assessed by comparing
means, using a 0.05 significance level. Mann-Whitney
U-test analysis was used for comparing the mean of the
experimental group with the control in ELISA. Differ-
ences between means were compared by Tukey’s range
test when comparing multiple groups or t-test for
comparing two groups for binding assays. GradhPad
Software (San Diego, CA) was used for all statistical
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analysis. Mean values and standard deviations (SD) were
calculated from the measurements of three independent
experiments.

Results

Predicting P. vivax invasion-related proteins

The criteria established in the methodology led to
identifying several genes encoding P. vivax molecules
which play a role in cell binding (as previously reported),
such as the RBPs [31], some RONs [14] and GAMA.
Interestingly, one gene encoding a 48 kDa protein
(PlasmoDB database ID: PVX 096055) was identified
which, apart from P. vivax, was also present in Plasmodium
cynomolgi (one species infecting reticulocytes). This
gene was named the P. vivax reticulocyte binding surface
antigen (PvRBSA) according to the results showed in
this study.

Regarding the pvrbsa gene, it presence and transcrip-
tion in the P. vivax VCG-I strain was confirmed by PCR
using specific primers (designed using the Sal-I strain
gene sequence) and schizont gDNA and cDNA as
template. Fig. 1la shows a 1.4 to 1.6 kbp amplification
product using gDNA (Lane 2) corresponding to the
complete gene whilst a 1.2 to 1.4 kbp product was ob-
tained using cDNA as template (Lane 4). No product
was amplified in the control sample, thereby indicating
that the synthesised ¢cDNA had not become contami-
nated with gDNA (Fig.1a, Lane 3). Aligning the gene
sequences from the Aotus monkey- adapted VCG-I
strain with those from the Sal-I reference strain led to
one synonymous, 9 non-synonymous mutations and one
deletion being identified (Table 1). Comparing the se-
quences obtained from c¢cDNA (1,269 bp) (deposited in
the NCBI under GenBank access KY349105) and gDNA
(1,485 bp) led to observing that the pvrbsa gene was
encoded by two exons, the first covering the signal pep-
tide according to in silico prediction (D-cutoff = 0.450)
(Fig. 1b). The pvrbsa gene encoded a 423 aa long protein
having a molecular weight of around ~47.09 kDa includ-
ing a signal peptide and being 7 residues shorter than
that for the Sal-I strain. PvRBSA had 2 transmembrane
regions located between residues 332 to 377 according
to prediction by TMHMM, Phobius and HMMTOP
servers and one repeat region (RR) located in aa 103 to
137, consisting of residues LT(G/E)S(N/R)ES as pre-
dicted by T-REKS (Fig. 1b); these have been numbered
according to the VCG-I strain PYRBSA amino acid se-
quence. Amplifying pvrbsa from the synthesised cDNA
sample confirmed that the gene was transcribed in
schizonts, coinciding with transcriptional analysis of 3 P.
vivax clinical isolates where pvrbsa had a prominent
expression profile during TP7-TP9 times corresponding
to parasite development during the mature stage (early
and late schizonts) of the intra-reticulocyte life-cycle [4].
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Table 1 PVRBSA mutations found by comparing the nucleotide
and amino acid sequences of P. vivax VCG-l and Sal-1 strains

Changes in PYRBSA
aa sequences in

Changes in PYRBSA
nucleotide sequence

Mutation

in Sal-I and VCG-| Sal-l and VCG-|

P. vivax strains® P. vivax strains®

c29A>G p.Tyr10Cys Non-synonymous
€391_411delCTAACAGGAAGTAATGAATCC  p.lLeul31_Ser137del® Deletion
c533T>G p.Phe178Cys Non-synonymous
c.796A > G p.Lys266Gly Non-synonymous
c797A>G p.Lys266Gly Non-synonymous
c801 T>A p.Ser267Arg Non-synonymous
Cc.803A>C p.Tyr268Ser Non-synonymous
c808C>G p.His270Asp Non-synonymous
c845C>T p.Pro282Leu Non-synonymous
1029 T>C p.Lys343Lys Synonymous
c1091G>C p.Trp364Ser Non-synonymous

“Nucleotide and amino acid positions are numbered according to the Sal-l
reference strain sequence alignment with the VCG-I strain

PRelative location for a region having 4 identical tandem repeats from amino
acid position 103 to 130 in the VCG-I strain

PvRBSA characterisation by molecular biology tools
Antibodies directed against 39478 and 39480 synthetic
peptides were purified and used for evaluating the pro-
tein’s presence and location in mature parasite forms
(schizonts). Specific anti-PvRBSA antibodies detected
one band in P. vivax VCG-I strain lysate treated in
reduced conditions above the expected size by in silico
analysis (43.8 kDa without the signal peptide) (Fig. 1c).
Such discrepancy can be explained by anomalous migra-
tion caused by several acidic residues in the protein se-
quence (aspartic and glutamic acids). The antibodies
also led to a surface fluorescence signal being visualised
in mature schizonts like a “bunch of grapes”, this being
characteristic of proteins expressed on merozoite surface
(Fig. 1d). There was no signal overlap for one apical
marker (PvRON2). These findings led to suggesting that
the pvrbsa transcript gave a protein product in P. vivax
VCG-I strain schizonts, as shown in an earlier study by
mass spectrometry analysis [6].

According to the classic approach, antigenic proteins
should be considered for vaccine development given that
a response against them could inhibit interaction with
cells. Hence rPvRBSA was expressed, purified and
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successfully obtained in soluble form (Additional file 1:
Figure S1) to evaluate its antigenicity using sera from pa-
tients suffering P. vivax malaria and sera from people
who had never suffered the disease. The screening gave
61% seropositivity in the patients group. The statistical
test gave a significant difference between the means for
recognition by the sera from the infected patients group
(X £ SD=0.38 + 0.24) and the control group (X + SD =
0.12+0.05) (Mann-Whitney U-test: U=52, Z=-3.66,
P=0.0001) (Fig. 2), thereby highlighting that the protein
was able to induce an immune response during natural
infection.

PvRBSA interaction with human reticulocytes

Flow cytometry was used for quantifying rPvRBSA ability
to bind cord blood reticulocytes using a gating strategy to
exclude cell debris and select the CD71 + CD45- cell
population (Fig. 3). The recombinant protein had a curve
shift when PE signals from rPvRBSA binding assay and
control (using CD71 + CD45- cells) were compared in a
histogram. rPvRBSA bound to mature erythrocytes to a
much lesser extent compared with reticulocytes (t-test:
Yy = 13.74, P=0.0001) (Fig. 4a, Table 2). The protein had
similar binding activity to cells having a different Duffy
phenotype (X + SD=9.17+1.4) and to positive con-
trol (X + SD =23.8 + 9.8) (ANOVA-Tukey: F(s5) = 2.43, P
=0.181), whilst there was a statistically significant
difference in rPvRBSA binding activity compared to
negative control (X + SD = 2.0 +0.34) (Fig. 4b) (ANOVA-
Tukey: F35 =49.53, P=0.0001). Interestingly, rPvRBSA
had higher interaction with CD71™ than CD71'" cells
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Fig. 2 Antigenicity assay. The dot plot shows OD distribution (Y-axis)
for detecting the PvRBSA in infected and non-infected patients’ sera
(X-axis). A statistically significant difference between groups was
observed (Mann-Whitney U-test: U= 52, Z=-3.66, P=0.0001)
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(Fig. 4c) (t-test: fg)=16.44, P=0.0001), suggesting that
this molecule binds better to the more immature
reticulocyte stages.

Discussion

Plasmodium vivax has several proteins with essential
functions in target cell binding and invasion. An import-
ant amount of such proteins has recently been identified
in P. vivax by proteomics analysis which, combined with
in silico analysis, has led to partly understanding the
complex protein machinery used by the parasite and
predicting the functions which some parasite proteins
may have [5-8]. Exploiting the information available in
proteome studies of P. vivax, a large-scale analysis was
made for predicting protein vaccine candidates, taking
into account the parameters described in the method-
ology. The screening identified PvRBSA, a molecule
whose unique homologue is in P. cynomolgi, a species
which invades reticulocytes and which is taxonomically
very close to P. vivax [32].

The in silico analysis showed that PvRBSA has the
characteristics of a good vaccine candidate, as reported
for other parasite proteins. Two transmembrane regions
were predicted. Transmembrane helices are usually 20
amino acids long, suggesting that the two helices identi-
fied for PvRBSA require a very tight loop to both fit into
the membrane. Given these findings (predicted by
several programmes), it was considered that the region
spanning amino acids 332 to 377 is a transmembrane
zone, though future investigation is necessary to ascer-
tain their architecture.

In spite of the difficulty involved in basic research re-
garding P. vivax, given the intrinsic characteristics of its
biology [1], the PYRBSA was characterised due to adapt-
ing the P. vivax VCG-I strain in primates [25], which led
to sufficient biological material being obtained for devel-
oping the experimental assays. The methods used here
showed that the pvrbsa gene was transcribed and trans-
lated for a surface protein in P. vivax VCG-I strain
mature schizonts (Fig. la, d), thereby coinciding with
the finding of PYRBSA peptides being detected in the
first proteomic study in Colombia of a primate model-
adapted P. vivax strain [6]. It has been found that para-
site transcripts are strictly controlled during the develop-
ment of the intra-erythrocyte life-cycle [4, 33] and that
their codifying products correlate with having a specia-
lised function. For example, more than 50 different P.
falciparum transcripts having maximum expression
during mature stages (>35 h post-invasion) encode
proteins that play an important role during cell invasion
[34]. The previous statement, added to the results
concerning pvrbsa presence and expression in P. vivax
schizonts, suggested that the molecule could have a
function during reticulocyte adhesion.
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Another important characteristic regarding proteins to  infection (Fig. 2), as described for other surface antigens
be included in a vaccine is that they should be antigenic  in the P. vivax VCG-I strain, such as PvMSP-10 [37], Pv12
since it has been seen that an immune response induced [38] and PvARP [30]. Once PvRBSA localisation pattern
during infection is related to naturally-acquired immunity  and ability to trigger an immune response had been deter-
[35, 36]. It was found that PvRBSA could trigger an  mined, it was ascertained whether the protein could bind
immune response during natural P. vivax malaria to the most immature human reticulocytes using anti-

a b B Cc P=10.0001
40 P=00001 W Fya'Fyb  go —— M Fya/Fyb
H CD71-CD45- P=10.181 B Fya/Fyb" B Fya/Fyb®
[l CD71+CD45- 8 FyaFyb B FyaFyb
ap 15 sp 607
£ P=0.0001 =
= - =
£ 10 1 g 401
=] =]
R =
51 ST 204
0 - 0- =
Cell Type PyRBSA RII RIIIIV Low High
rPvDBP CD71
Red Blood Cells Reticulocytes Fya'Fyb' cells rPvDPB-RIII/IV §
0K cp71cpss| 2K CD71+CD45- 20K cp71+cp4s| 2K D71+CD43]
200K PE+ 200K: PE+ 200K: PE+ 200K PE+ 20
0.48% 8.87% 7.95% 2.25% ~-
150K 150K 150K 150K: g 15
100K 100K 100K 100K 8 10
S0K- i 50K T S0K- S0K:- 5
< - i < e b
2 OK.w’ 010° 10° 10° 0K_10’ 0 10° 10° 10° g' 0K.10’ 0 10° 10" 10° 0K.10’ 010° 10" 10° ‘I W w
Xnﬁ-l—lls PE Xnﬁ—His PE CD71-APC-Cy7
Fig. 4 rPvRBSA binding activity to target cells. a rPvRBSA binding percentage to erythrocytes (CD71-CD45-) and reticulocytes (CD71 + CD45-).
b Percentage rPVRBSA binding to reticulocytes with a different Duffy phenotype and ¢ regarding CD71-APCH? signal. A representative dot plot or
histogram used for building the bar chart is shown in the bottom part of each figure. Binding percentage in three analyses were expressed as
mean + SD of three independent experiments
J




Moreno-Pérez et al. Parasites & Vectors (2017) 10:243

Table 2 rPvRBSA binding percentage to mature and immature
erythrocytes. The mean and standard deviation of three
independent experiments is shown for each assay

Molecule Phenotype % Binding to mature % Binding to
erythrocytes reticulocytes
rPVRBSA Fya*/Fyb~ 047 +001 10.7+1.29
Fya /Fyb* 048+0.22 887 +0.65
Fya'/Fyb* 079+023 7.95+194

CD71 monoclonal antibody (a specific marker for the cells
[39]). rPvRBSA was able to interact with the youngest
reticulocyte population (CD71™) having different Duffy
phenotypes in similar percentages (Fig. 4b). This binding
pattern to cells with different Duffy phenotypes has also
been reported for DBP [40].

On the other hand, although rPvRBSA was able to
bind to mature erythrocytes, its interaction was much
greater with reticulocytes (Fig. 4a, Table 2). Such prefer-
ential binding to this type of cells has also been observed
in other P. vivax proteins such as DBP [9], MSP-1 [13],
the erythrocyte binding protein (EBP) [12] and some
RBPs [11, 41]. In the case of MSP-1, it was initially
thought that target cell selection occurred at a later
stage when RBPs were secreted. However, further
receptor-ligand studies using PvMSP-1-derived 20-mer
long peptides have shown that several peptides bind
more strongly to reticulocytes than to erythrocytes, sug-
gesting that this protein participates in the pre-selection
of P. vivax target cells [13]. Furthermore, it has been
shown that Aotus monkeys vaccinated with MSP-1 re-
combinant fragments containing reticulocyte-binding
peptides have developed protective immunity against P.
vivax challenge [42].

A recent study assessing five RBPs’ target cell prefer-
ence has shown the preferential binding to reticulocytes
of just one of them (RBP2b). Interestingly, antibodies
against RBP2b, acquired during natural P. vivax infec-
tion, have shown a strong protective effect [41]. These
studies highlight the significant role for this type of mol-
ecule in interaction with P. vivax target cells. According
to the results shown here, PVRBSA was localised on
parasite surface and displayed a preferential binding pro-
file for the more immature reticulocyte stages. It can
thus be suggested that RBPs are not only participating in
P. vivax preferential binding to reticulocytes (as was
initially thought) but that other ligands are also pre-
selecting this cell population, such as PvMSP-1, EBP,
DBP and now, rPvRBSA.

Conclusions

This study has described for the first time, an exclusive
reticulocyte-infecting Plasmodium species molecule’s
characterisation and role in binding. The findings
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highlight that PvRBSA is present in the P. vivax VCG-I
strain genome, produces a transcript and encodes a
protein having a surface location pattern. PvRBSA is
antigenic and is an adhesin protein able to bind prefer-
entially to human reticulocytes. Future studies should be
undertaken aimed at assessing the protective efficacy
induced when immunising with PvRBSA in the Aotus
monkey experimental model.

Additional file

Additional file 1: Recombinant PvRBSA purification. Lane 1: the
proteins’ molecular marker; Lanes 2-6: eluted protein using buffer with
increasing concentration of imidazole (50 mM, 100 mM, 200 mM,

300 mM and 500 mM) stained with Coomassie blue; Lane 7: recognition of
rPVRBSA by Western blot using anti-polyhistidine antibodies. (TIF 1539 kb)
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Abstract

Background: Adhesin proteins are used by Plasmodium parasites to bind and invade target cells. Hence, characterising
molecules that participate in reticulocyte interaction is key to understanding the molecular basis of Plasmodium vivax
invasion. This study focused on predicting functionally restricted regions of the P. vivax GPl-anchored micronemal
antigen (PvGAMA) and characterising their reticulocyte binding activity.

Results: The pvgama gene was initially found in P. vivax VCG-l strain schizonts. According to the genetic diversity analysis,
PVGAMA displayed a size polymorphism very common for antigenic P. vivax proteins. Two regions along the antigen
sequence were highly conserved among species, having a negative natural selection signal. Interestingly, these regions
revealed a functional role regarding preferential target cell adhesion.

Conclusions: To our knowledge, this study describes PvGAMA reticulocyte binding properties for the first time. Conserved
functional regions were predicted according to natural selection analysis and their binding ability was confirmed. These
findings support the notion that P\GAMA may have an important role in P. vivax merozoite adhesion to its target cells.

Keywords: Adhesin protein, Plasmodium vivax, Genetic diversity, Conserved functional region, Reticulocyte binding activity

Background

Plasmodium vivax is a human malaria-causing parasite
whose eradication is a priority on the international health
agenda [1]. As a strategy for eradicating this species,
several research groups have focused their efforts on
developing a vaccine, as vaccination has been successful at
controlling and eradicating other infectious diseases [2].

It has been suggested that vaccines should consist of
key proteins or their fragments used by infectious agents
to bind to the target cells [3, 4]. Hence, knowledge of
proteins expressed by the parasite at the end of its intra-
erythrocyte life-cycle, especially those interacting with
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red blood cells (RBC), should prove most suitable as
candidate vaccine components.

Current efforts to develop an anti-malarial vaccine
have mainly focused on P. falciparum, given the avail-
ability of robust in vitro culturing techniques for this
parasite (currently unavailable for P. vivax) which has
led to a large-scale identification of genes [5], transcripts
[6] and proteins [7]. This information has led to an
improved understanding of the molecules involved in
P. falciparum merozoite invasion of erythrocytes. For
example, several adhesin molecules have been described
in the apical organelles (rhoptries and micronemes), that
facilitate interaction with cell receptors and promote
parasite internalisation within the target cell [8]. Several
of these proteins are immunogenic and are being
evaluated as vaccine candidates in clinical studies [9]. The
GPI-anchored micronemal antigen (GAMA) represents
one apical protein that has an adhesive role in Plasmo-
dium and Toxoplasma. Plasmodium falciparum GAMA
(Pf/GAMA) binds to human erythrocytes, an interaction

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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mediated by its binding region which is located in the
amino terminal sequence, and is involved in the sialic
acid-independent invasion pathway [10]. On the other
hand, GAMA knockouts of T. gondii (TgGAMA) show a
reduction in the ability of tachyzoites to attach to the host
cell during invasion as well as a delay in the time to death
in an in vivo model, suggesting a function during parasite
adhesion and invasion [11].

Unfortunately, basic P. vivax research has been de-
layed mainly due to the parasite’s preference for invad-
ing reticulocytes which are difficult to obtain in the
high percentages needed for propagating P. vivax in vitro
[12, 13]. However, it has been possible to characterise sev-
eral molecules forming part of the parasite’s selective
human reticulocyte invasion route, such as reticulocyte
binding proteins (RBPs) [14, 15], merozoite surface pro-
tein 1 (MSP-1) [16], some proteins from the tryptophan-
rich antigen (TRAg) family [17] and the recently described
rhoptry neck protein 5 (RON5) [18]. Some of these con-
tain specific binding regions that have been identified
using several strategies, such as mapping using peptides
labelled with radioactive iodine, ELISA, flow cytometry
or rosetting assays. However, these methodologies are
laborious when large molecules must be analysed.
Furthermore, sometimes it is not known whether these
regions are polymorphic between isolates, which would
be counterproductive for the development of a broadly
protective vaccine.

A new strategy has recently been proposed for identi-
fying selection signals and that enables the determin-
ation of conserved antigens or those having potential
functional regions [19]. Cornejo et al. [20] and Garz6n-
Ospina et al. [19] identified natural selection signals in
P. vivax genes when analysing the sequences of five
genomes from different locations [21]. These results
were supported by earlier studies, increasing the number
of sequences analysed [22-24]. This type of analysis
could therefore provide a viable approach for selecting
conserved antigens that are subject to functional restrictions.
However, no experimental evidence has been produced to
support such approach.

Given the importance of conserved functional region pre-
diction and the role of adhesin proteins during host-parasite
interaction, and considering the interesting features dis-
played by GAMA in other apicomplexa, the present study
aimed at characterising P. vivax VCG-I strain GAMA func-
tional regions by selection signal prediction and then deter-
mine the role of such regions in binding to reticulocytes.

Methods

An approach to GAMA genetic diversity and evolutionary
forces

Evolutionary methods compare the non-synonymous
mutations rate (dy, mutations altering protein sequences)
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to the synonymous mutations rate (ds, those encoding the
same amino acid) in the search for natural selection signals.
Deleterious mutations are usually removed from popula-
tions by negative natural selection (dy<ds or w<1).
Regions displaying this kind of selection might have func-
tional/structural importance, maintaining high sequence
conservation between species [25]. On the other hand,
mutations having an adaptive advantage (or a beneficial
role) are fixed in a population by positive natural selection
(AN >dS or ®>1). Taking the above into account, func-
tional regions could be predicted by evolutionary ap-
proaches [19]. pvgama gene DNA sequences from 6 P.
vivax strains (VCG-I, Sal-I, Brazil-I, India-VII, Mauritania-I
and North Korea [21]) and 5 phylogenetically-related
species (P. cynomolgi, P. inui, P. fragile, P. knowlesi and P.
coatneyi) [26] were obtained by tblastn (except for VCG-I)
from the whole-genome shotgun contigs (wgs) NCBI
database for assessing genetic diversity and evolutionary
forces regarding GAMA. The MUSCLE algorithm [27]
was used to align the sequences and the alignment was
manually corrected. Nucleotide diversity per site (1) was
estimated from the P. vivax sequences and the modified
Nei-Gojobori method [28] was used to assess natural
selection signals by calculating the difference between syn-
onymous and non-synonymous substitution rates (dy-ds).
Natural selection was also assessed by estimating the differ-
ence between synonymous and non-synonymous diver-
gence rates (Ky-Ks) using sequences from P. vivax and
related species through the modified Nei-Gojobori method
and Jukes-Cantor correction [29]. Specific codons under
natural selection amongst species were identified using
codon-based Bayesian or maximum likelihood approaches
(SLAC, FEL, REL [30], MEME [31] and FUBAR ([32]),
following recombination by the GARD method [33].
Codon-based methods estimate the evolutionary rate (w) at
each codon using a statistical test to determine whether ®
is significantly different to 1 (neutral evolution). The
Branch-site REL algorithm [34] was used to identify
lineages under episodic positive selection (selection
occasionally having transient periods of adaptive evo-
lution masked by negative selection or neutral evolution).
The Datamonkey web server was used to perform these
analyses [35].

Primer design, cloning and sequencing

The Plasmodium vivax gama (pvgama) gene sequence
was taken from the PlasmoDB database [36] and
scanned for PCR priming sites (Table 1) using Generunner
software (version 3.05). Primers were designed to amplify
either the entire pvgama gene or several smaller-sized
fragments according to the natural selection analysis
(Fig. 1). The gDNA (extracted using a Wizard Genomic
purification kit; Promega, Madison, USA) and ¢cDNA
(synthesised with SuperScript III enzyme (RT+) (Invitrogen,
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Table 1 Primer designed for pvgama gene amplification
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Target Primer sequence (5" - 3')° MT (°C) Product size (bp) aa position

pvgama Fwd: ATGAAGTGCAACGCCTCC 58 2313 11to 771
Rev: AAAAATGAATAGGAGCAACG

pvgama -Nt Fwd: ATACGGAATGGAAACAACC 1284 22 to 449
Rev: AGTCGGTTCGTTATTCTCG

pvgama -Ct Fwd: CTGCTCAAGAACACGAAC 948 434 to 749
Rev: GCTTCCACTCTGCAATTC

pvgama -CR1 Fwd: GACGATCATCTGTGTTCAAAAA 60 666 87 to 308
Rev: GACCTCA GGACTTCTC

pvgama -VR1 Fwd: GGCGCCTTCCTGCAGTC 438 330 to 475
Rev: CATTAACATGGTGTTGTCGCT

pvgama -CR2 Fwd: CAGGCGGCCATCTTACTAA 321 482 to 588
Rev: GCTCCCGTTGACGCCCTT

pvgama -VR2 Fwd: GCCGCAAACGCAGACGCC 384 626 to 753

Rev: GTTTGCCGAGAAGCTTCCAC

Abbreviations: Nt and Ct amino and carboxyl terminal; CR conserved region, VR variable region; Fwd forward, Rev reverse, MT melting temperature, bp base pair, aa

amino acid
®Protein’s expression start codon was included in forward primer’s 5" end

Carlsbad, USA) samples from P vivax VCG-I strain
schizont-stage enriched parasites (propagated and obtained
as previously described [37, 38]) were used as template in
25 pl PCR reactions containing 1x KAPA HiFi HotStart
ReadyMix (KAPA Biosystems, Woburn, MA, USA),
0.3 uM primers and DNAse-free water. Temperature
cycling for PCR involved a denaturing step of 95 °C for
5 min, followed by 35 cycles of 98 °C for 20 s, Tm °C
(Table 1) for 15 s and 72 °C for 30 s or 1 min and 30 s
depending on product size. A Wizard PCR preps kit
(Promega) was used for purifying amplicons obtained
from PCR with the RT+ and gDNA samples, once qual-
ity had been evaluated on agarose gel. Purified products
were ligated to the pEXP5 CT/TOPO expression vector or
PGEM (Promega) (for the gene obtained from gDNA) and
transformed in TOP10 E. coli cells (Invitrogen). Several clones

obtained from independent PCR reactions were grown for
purifying the plasmid using an UltraClean mini plasmid prep
purification kit (MO BIO Laboratories, California, USA).
Insert integrity and correct orientation were then confirmed
by sequencing, using an ABI-3730 XL sequencer (MACRO-
GEN, Seoul, South Korea). Clustal W (NPS@) software was
used for comparing gene sequences from Sal-I reference
strain and the primate-adapted VCG-I strain [39]. The
pvgama gene sequence from P. vivax VCG-I strain was
deposited in NCBI under accession number KT248546.

Recombinant protein expression

The pEXP-pvgama recombinant plasmids were trans-
formed in E. coli BL21-DE3 (Invitrogen), according to
the manufacturer’s recommendations. Cells were grown

e dn/ds
8 Kn/Ks P. vivax vs primate malaria parasites
I Negatively selected sites
I Positively selected sites
W sizoat pepide or GPI

M Repeat

400
Codons

Fig. 1 Evolutionary rate (w) sliding window. Intra-species w values (dy/ds) are represented in blue whilst inter-species w values (Ky/Ks between

P. vivax and malarial parasites infecting primates) are shown in purple. A w value equal 1 means neutral evolution, w < 1 negative selection whilst
w> 1 means positive selection. A diagram of the gene can be observed below the sliding window. Negatively selected inter-species codons are
shown in green whilst positively selected sites are shown in red. Numbering is based on the alignment in Additional file 1: Figure S1
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overnight at 37 °C in 50 ml Luria Bertani (LB) medium
containing 100 pg/ml ampicillin using a Lab-line Incu-
bator Shaker. The initial inoculum was then seeded in
11 of LB with ampicillin (100 pg/ml) and left to grow at
37 °C with shaking at ~300x rpm until reaching 0.5
ODggo. The culture was incubated on ice for 30 min and
then IPTG 1 mM was used to induce expression by
incubation for 16 h at room temperature (RT) with
shaking at ~200x rpm. The culture was then spun at
2400x g for 20 min and the pellet was collected for
extraction of the recombinant protein.

Denaturing extraction

The cell pellet obtained from E. coli expressing
PvGAMA-Nt and PvGAMA-Ct fragments was homoge-
nised in denaturing extraction buffer (DEB) (6 M urea,
10 mM Tris, 100 mM NaH,PO, and 20 mM imidazole)
containing the SIGMAFAST protease inhibitor cocktail
(Sigma-Aldrich, St. Louis, USA) and then lysed by
incubating with 0.1 mg/ml lysozyme overnight at 4 °C at
10x rpm using a tube rotator (Fisher Scientific, Waltham,
USA). The supernatant was collected by spinning at
16,000x g for 1 h.

Native extraction

PvGAMA-CR1, PvGAMA-VR1, PvGAMA-CR2 and
PvGAMA-VR2 were extracted using a method for
obtaining the molecules in native conditions with the
respective positive and negative controls (region II and
HI/IV from the Duffy binding protein, DBP) (unpublished
data). Briefly, the pellet was frozen/thawed for 3 cycles and
then homogenised in native extraction buffer (NEB)
(50 mM Tris, 300 mM NaCl, 25 mM imidazole, 0.1 mM
EGTA and 0.25% Tween-20, pH 8.0). The mixture was
incubated for 1 h at 4 °C at 10x rpm and the supernatant
was collected by spinning at 16,000x g for 1 h.

Protein purification

Total lysate supernatant was incubated with Ni*2-NTA
resin (Qiagen, Valencia, CA, USA) for purifying the
proteins by solid-phase affinity chromatography, once
protein expression had been verified by western blot.
Briefly, the resin was pre-equilibrated with the respective
buffer used for extracting proteins and then incubated
with the E. coli lysate overnight at 4 °C. The protein-
resin mixture was placed on a column and then weakly
bound proteins were eluted by washing with 20 ml
buffer containing 0.1% Triton X-114 followed by 50 ml
of the same buffer without detergent. The proteins
extracted in denaturing conditions were dialysed on the
column by passing 20 ml DEB with urea in descending
concentrations (6 M, 3 M, 1.5 M, 0.75 M and PBS).
Bound proteins were then eluted with PBS containing
imidazole at increasing concentrations (50 mM to
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500 mM) in 3 ml fractions; those having a single band
(confirmed on 12% SDS-PAGE by Coomassie blue
staining and by western blot using anti-polyhistidine
antibodies) were pooled and dialysed extensively in
PBS, pH 7.2. A micro BCA protein assay kit (Thermo
Scientific, Rockford, USA) was used for quantifying
each protein, using the bovine serum albumin (BSA)
curve as reference.

Peptide synthesis

One 6 histidine peptide was synthesised according to a
previously-established methodology [40], polymerised,
lyophilised and characterised by RP-HPLC and MALDI-
TOF MS. The peptide was homogenised in PBS and
then stored at -20 °C until use.

Blood sample collection and processing

Individuals with a clinical history of P. vivax (37 subjects)
or P. falciparum (30 subjects) malaria, aged 18 to 50 year-
old and living in malaria-endemic areas of Colombia
(Chocé, Narino, Cérdoba, Vichada and Guaviare) were
selected for this study. Sera from healthy individuals (16
adult subjects) who had never been affected by the disease
and who were living in non-endemic areas were used as
negative controls. The blood samples were collected in BD
Vacutainer tubes without anticoagulant by personnel from
the Fundacion Instituto de Inmunologia de Colombia
(FIDIC) from October 2006 to March 2011 (for P. vivax)
and June to October 1993 (for P. falciparum) and stored
at 4 °C until transport. Samples were then transported to
Bogotd for processing. Total blood was spun at 5000x g
for 5 min and the serum was then recovered and stored at
-80 °C in FIDIC serum bank (to date).

Enzyme-linked immunosorbent assay (ELISA)

PvGAMA antigenicity was evaluated in triplicate using
serum from patients who had suffered episodes of P.
vivax or P. falciparum infection. Briefly, 96-well poly-
sorb plates were covered with 1 pg rPvGAMA-Nt, or
rPvGAMA-Ct, overnight at 4 °C and then incubated at
37 °C for 1 h. The dishes were blocked with 200 pl 5%
skimmed milk - PBS-0.05% Tween for 1 h at 37 °C.
Antibody reactivity against the recombinant protein
was evaluated by incubating the plates with 1:100 dilu-
tion of each human serum in 5% skimmed milk - PBS-
0.05% Tween for 1 h at 37 °C. The dishes were incu-
bated with peroxidase-coupled goat anti-human IgG
monoclonal secondary antibody (1:10,000) (Catalogue
1222H, ICN) diluted in 5% skimmed milk - PBS-0.05%
Tween for 1 h at 37 °C and then a peroxidase substrate
solution (KPL Laboratories, Gaithersburg, MD, USA)
was added to reveal the reaction, according to the
manufacturer’s recommendations. Optical density (OD)
at 620 nm (detected by MJ ELISA Multiskan Reader) was
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calculated by subtracting the OD value obtained from the
control well value (no antigen). The cut-off value for
evaluating the positivity threshold was determined by
taking the average of the OD plus twice the standard
deviation (+ 2SD) of healthy individuals’ sera reactivity.

Cord blood sample processing

The newborn umbilical cord blood samples used in this
research were collected by personnel from the Hemo-
centro Distrital (Bogotd) and then processed by SEPAX
Cell Processing System (Biosafe, Eysins, Switzerland) to
reduce nucleated cells, according to the manufacturer’s
recommendations. The samples were stored at 4 °C and
Dufty antigen receptor for chemokines (DARC) presence
was determined by agglutination assay using antibodies
directed against the molecule’s Fya or Fyb fraction. The
percentage of nucleated cells was scored in 20 fields at
100x magnification using Wright’s stain before carrying
out the binding assay.

Cell binding assay

Reticulocyte binding was tested in triplicate by flow cytom-
etry and using the total cells from cord blood sample (Fya
Fyb* phenotype). Briefly, 5 pl samples were incubated with
25 pg of each recombinant protein (PvGAMA-CRI,
PvGAMA-VR1, PvGAMA-CR2 and PvGAMA-VR2) for
16 h at 4 °C at 4x rpm. Twenty-five ug of DBP region II
and III/IV were used as positive and negative controls, re-
spectively. The 6 histidine peptide was also used as control
once the recombinant proteins contained a 6-histidine tag.
A binding inhibition assay was also performed by incubat-
ing PvGAMA conserved recombinant proteins (CR1 and
CR2) with a mixture of human sera (1:10 dilution) for 1 h
at 4 °C before putting them in contact with cells. The sam-
ples were then incubated with mouse anti-His-PE mono-
clonal antibody (1:40 dilution) (MACSmolecular-Miltenyi
Biotec, San Diego, CA, USA) for 30 min in the dark after
washing with 1% BSA-PBS solution (v/v). White cells and
reticulocytes were stained by incubating with anti-CD45
APC clone 2D1 (1:80 dilution) (Becton Dickinson, Franklin
Lakes, NJ, USA) and anti-CD71 APC-H7 clone M-A712
(1:80 dilution) (Becton Dickinson) monoclonal antibodies
for 20 min at RT. Subsequently, reticulocyte (CD71 +
CD45-PE+) and mature erythrocyte (CD71-CD45-PE+)
binding was quantified by analysing 1 million events using
a FACSCanto II cytometer (BD, San Diego, CA, USA) and
Flowjo V10 software. PE signal intensity in the reticulocyte
population was evaluated regarding CD71 signal to
determine CD71 low (CD71"°) and high (CD71M) cells.

Statistical analysis

Mean values and standard deviations (SD) were calcu-
lated from the measurements of three independent
experiments. Statistical significance was assessed by
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comparing means using a 0.05 significance level for
testing a stated hypothesis. Student’s z-test and analysis
of variance (ANOVA) were used for comparing the
means of each experimental group to those for control.
Tukey’s multiple comparison test was used for multiple
comparison of experimental group means to those for
control. GradhPad Software (San Diego, CA) was used
for all statistical analysis.

Results

PvGAMA genetic diversity and selection signals

Pvgama sequences were obtained from genomes of 5
different strains from different geographical regions
(North Korea, Brazil, Mauritania and India). These
were aligned with the VCG-I strain sequence and
orthologous sequences from 5 phylogenetically-related
species. The alignment revealed a size polymorphism in
pvgama due to the [C/T]C[G/C]C[A/T]AA[C/T][C/G][A/
G/C][G/A]AC[G/C/A] repeat which was not present in P.
cynomolgi, P. inui, P. fragile, P. knowlesi or P. coatneyi
(Additional file 1: Figure S1). Regarding P. vivax, 5 segre-
gating sites and 1t = 0.0008 were observed.

No significant values were found when evaluating
synonymous and non-synonymous substitution rates
(dn-ds =-0.001 (0.001), P>0.1). However, synonymous
divergence was greater than non-synonymous diver-
gence (P <0.0001) when comparing pvgama sequences to
each related species: Ky-Ks P. vivax/P. cynomolgi = -0.041
(0.006); Kn-Ks P. vivax/P. inui=-0.062 (0.008); Ky-Kg P.
vivax/P. fragile = -0.030 (0.006); Kn-Ks P. vivax/P. know-
lesi = -0.072 (0.009); Kn-Ks P. vivax/P. coatneyi = -0.049
(0.007). The evolutionary rate w (dN/dS and KN/KS)
sliding window showed that two highly conserved regions
amongst species (codons 80-320 and 514-624) might be
under negative selection (w<0.5). Furthermore, 308
negatively-selected codons were observed amongst species
(Fig. 1); a lot of them were in the conserved regions. The
Branch-site REL algorithm identified episodic positive
selection signals in the lineages giving rise to P. knowlesi
and P. coatneyi as well as the lineage formed by P.
cynomolgi and P. fragile (Additional file 2: Figure S2). 22
sites showed evidence of positive selection amongst
species (Fig. 1).

Antigenic response was directed against the GAMA
carboxyl fragment

Based on the polymorphism analysis results, it was
hypothesised that the carboxyl region was more anti-
genic than the amino one by the presence of the repeti-
tive region. Hence, rPvGAMA-Nt and rPvGAMA-Ct
antigenicity (obtained recombinantly; Additional file 3:
Figure S3a, b) was evaluated using sera from 37 patients
suffering of P. vivax malaria and sera from people who
had never suffered the disease. rPvGAMA-Nt reacted
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positively with 64.8% of the sera in screening (0.26 cut-off
point) whilst 67.5% of them recognised rPvGAMA-Ct
(0.47 cut-off point). These data agreed with a study of the
profile of the humoral immune response for P. vivax in
which rPvGAMA was recognised by 54.5% of the sera
used in the array [41]. The statistical test for the assay with
rPvGAMA-Nt gave a significant difference between the
means (m) of the groups (ANOVA: F(j4,,=4.73, P=
0.035; m = 0.38 for the group of infected patients and m =
0.12 for the control group). Likewise, there was a signifi-
cant difference between the means of the groups
(ANOVA: F(.41)=14.75, P=0.0001; m=0.67 for the
group of infected patients and m =0.14 for the control
group) when rPvGAMA-Ct was detected by human sera
(Fig. 2a). There was also a statistically significant differ-
ence when analysing the means of recognition for
rPvGAMA-Nt and rPvGAMA-Ct (ANOVA: F =
16.01, P =0.0002). Taking into account that the response
was higher against PvGAMA-Ct, it was decided to
confirm whether the antibodies generated during P. falcip-
arum natural infection were able to detect this fragment.
No significant difference (ANOVA: F(;35)=0.036, P =
0.850) was seen for Pv*GAMA-Ct recognition by these sera
(Fig. 2b). The significant reactivity against the recombi-
nants by P. vivax-infected individuals’ sera indicated that
the protein could trigger an antigenic response during
natural infection, this being higher and species-specific
against the PvGAMA carboxyl region.

PvGAMA bound to human reticulocytes

Red blood cell samples having the FyaFyb™ phenotype
(Duffy +) taken from umbilical cord blood were incu-
bated with conserved (CR1 and CR2) and variable
(VR1 and VR2) regions extracted and purified in their
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soluble form (Additional file 3: Figure S3c), predicted
by natural selection analysis and then evaluated by
flow cytometry to quantify the protein-cell interaction.
The percentage of each recombinant binding to eryth-
rocytes was calculated using the gating strategy de-
scribed in Additional file 4: Figure S4, which enabled
selecting the mature (CD71-CD45-) or immature
(CD71 + CD45-) cell population to which a target pro-
tein was bound (labelled with anti-His PE antibody).
All recombinant proteins had a curve shift when the
PE signal was compared to control (cells not incu-
bated with recombinant proteins) in the histogram
(Fig. 3). Interestingly, the GAMA fragments bound to
reticulocytes to a much higher percentage compared
to mature erythrocytes (CRI1: t-test: tg4) =249, P=
0.0001; VRI: t-test: ty4 =9.02, P=0.001; CR2: t-test:
tay=124, P=0.0001; VR2: t-test: f4 =248, P=
0.0001) (Fig. 4a). The conserved regions showed high-
est interaction with the reticulocytes compared to
negative binding controls (ANOVA-Tukey: F, 12) =
72.64, P <0.0001). CR2 recombinant protein bound to
10.11% (SD=1.33) of target cells, which was very
similar to the positive control (m+SD=11.8+1.15)
(P>0.189), whilst CR1 were able to bind to 6.36%
(SD =0.30) of the cells (Fig. 4a). Regarding PvGAMA
variable regions, VR1 was able to bind to 3.08% (SD =
0.54) of the reticulocytes whilst VR2 bound 5.64% (SD =
0.37). CR1, CR2 and VR2 fragments had the highest inter-
action with CD71™ reticulocytes when binding percent-
ages were analysed as a function of CD71 APC-H7 signal
(CR1: t-test: tqy=7.32, P=0.002; CR2: t-test: {4 =16.04,
P=0.0001; VR2: t-test: f4y=3.71, P=0.021), unlike VR1
and DBP-RII (VR1: t-test: t4)=1.52, P=0.202; DBP-RIL
t-test: t4)=0.19, P=0.853) (as previously found [42])
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Fig. 2 PvGAMA antigenicity during natural malaria infection. The dot plot shows OD distribution (Y-axis) for detecting rPvGAMA-Nt or rPvGAMA-Ct
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Fig. 3 Flow cytometry analysis. Histograms of conserved (a and ¢) and variable (b and d) GAMA fragments compared to control (cells
not incubated with the protein). Each figure is representative from three independent experiments
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and CR2) interaction with reticulocytes. Figure 4c shows
that conserved recombinant proteins pre-incubated with
human reticulocytes. human sera were able to bind to target cells (CR1: m +

SD =6.21 + 0.27; CR2: m £+ SD = 9.83 + 0.09), giving a simi-
lar percentage to that for controls (CR1: m+SD =65 +
0.08; CR2: m + SD =10.01 £ 0.95) (CR1: t-test: £ =0.55,
P=0.617; CR2: t-test: tu)=0.37, P=0.730), suggesting
that the immune response was directed against regions
which are not implicated in cell binding.

(Fig. 4b). These findings suggested that GAMA in P. vivax
has a functional role in preferential interaction with

Natural antibodies did not affect PvGAMA binding activity
A cytometry adhesion inhibition assay was performed with
sera from individuals suffering P. vivax malaria to deter-
mine whether the antibodies produced during natural
infection could inhibit functional conserved regions (CR1
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Fig. 4 PvGAMA human reticulocyte binding activity. Flow cytometry analysis showing the recombinant binding percentage to CD71-CD45-
and CD71 + CD45- cells (a) and regarding CD71-APCH?7 signal (only for CD71 + CD45- cells) (b). Positive (DBP-RIl) and negative (DBP-RIlI/IV and
H (6 histidine peptide)) binding controls are also shown. ¢ CR1 and CR2 reticulocyte binding inhibition assay using human sera (a-P. vivax sera). Binding

percentage in both analyses were expressed as mean + SD of three independent experiments
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Discussion

Merozoite invasion of erythrocytes involves the participa-
tion of several parasite molecules expressed at the end of
the intra-erythrocyte lifecycle, mainly those contained in
the apical organelles, such as the rhoptries and micro-
nemes [8]. Only a few of these molecules possessing a re-
ticulocyte binding role in P. vivax have been identified
and their binding domains mapped, suggesting an urgent
need for performing further studies to supplement current
knowledge on P. vivax adhesins. This will improve our
understanding of the molecular basis of parasite invasion
of reticulocytes. This study aimed at using natural selec-
tion analysis for identifying GAMA functional regions
playing a potential role in reticulocyte binding.

According to the phylogenetic analysis, a repeat
region (RR) localised between amino acids 591 and 695
consisting of residues [A/L]JAN[A/G][N/D] was pre-
dicted. This RR was common in different P. vivax
strains but not in phylogenetically-related species
(Additional file 1: Figure S1). This characteristic has
been found in several P. vivax antigens described in the
P. vivax VCG-I strain located on the parasite surface
(Pv12 [12], ARP [43]) or in the apical pole (Pv34 [44],
RON1 [45], RON2 [46] and RON4 [47, 48]). DNA
sequences from different P. vivax strains and
phylogenetically-related species were thus compared to
ascertain whether gama gene diversity has been
modulated by immune pressure. Evidence of episodic
positive selection was found in some parasite lineages
(Additional file 2: Figure S2). As shown for other
antigens [49-51], the episodic selection found in GAMA
could be the outcome of adaptation to different hosts
during malaria-primate evolution [50, 51]. Therefore, the
insertions found in P. vivax could be an adaptation of the
species to humans since the RR in malaria are associated
with evasion of the host's immune response, making such
response become directed against functionally unimport-
ant regions [52, 53]. This hypothesis was supported
by the fact that rPvGAMA-Ct (where the RR is lo-
cated) can trigger a species-specific immune response
(Fig. 2) which did not inhibit CR2 binding activity to
reticulocytes (Fig. 4c).

Polymorphic regions induce high levels of strain-
specific antibodies (allele specific) whilst conserved
regions (directly implicated in interaction with cell
receptors) are usually non-antigenic [54]. Therefore,
the immune response must be directed against con-
served regions to avoid different parasite strains
evading immunity, thereby reducing vaccine efficacy.
According to the selection signal identification strategy,
low genetic diversity was found in the GAMA-encoding
gene, comparable to that observed in msp4 [55, 56],
msp7A/7 K/7 F/7 L [57, 58], msp8 [59], msp10 [57, 59],
pv12, pv38 [22, 24], pv4l1 [23, 24], rap1/2 [60] and ron4
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[48] which seem involved in host cell invasion. Despite
the lack of statistically significant values for dy-dg differ-
ence, Kg divergence amongst species was greater than Ky,
suggesting negative selection. Many codons were found to
be experiencing negative selection which probably plays
an important role in GAMA evolution. Two regions along
the antigen were highly conserved amongst species, giving
a< 0.5 evolutionary rate (o) (Fig. 1).

Given the polymorphism and selection analysis, it
was decided to determine PvGAMA conserved and
variable region interaction with reticulocytes to validate
the in silico prediction of functional regions (Figs. 3
and 4) and elucidate the protein’s function. A reticulo-
cyte sample having a Duffy positive phenotype was
used, given that Pv*GAMA reportedly has a binding role
regardless of such antigen’s expression [61]. Unlike
Cheng and his group, the anti-CD71 monoclonal anti-
body was included for identifying GAMA regions’ prefer-
ence for immature reticulocyte binding as P. vivax
merozoites have tropism for this cell type (characterised
by the expression of the CD71 receptor [62]). Given that
the CD71 marker is also present in activated lymphocytes,
a nucleated cell depleted umbilical cord blood sample was
used. The anti-CD45 was also included to totally exclude
the lymphocytes from the analysis once the Wright stain-
ing revealed 0.4% of such cells (also confirmed by cytome-
try analysis) (Additional file 4: Figure S4). It was also
confirmed that there was no difference in reticulocyte per-
centage by incubating the samples for 4 and 16 h at 4 °C
(4 h: m+SD=124+0.27; 16 h: m+SD=1.31+0.07) (¢
test: £o) = 0.32, P>0.777). However, it was decided to use
a prolonged incubation time to enable complete protein-
cell interaction.

It was found that all PvGAMA fragments bound to
mature erythrocytes (CD71-CD45-) though to a lesser
extent compared to reticulocytes (CD71+ CD45-)
(Fig. 4a), thereby supporting the fact that the protein
preferentially interacts with the latter cell type. The
conserved fragment located in the carboxyl region
(CR2) had higher reticulocyte binding than the amino
one (CR1) (Fig. 4a) coinciding with that shown recently
for PvGAMA where this fragment [F2 (aa 345 to 589)
or F7 (408 to 589) regions in that study] showed higher
rosetting activity, unlike the F1 region (aa 22 to 344)
(amino fragment) [61]. Interestingly, CR1 and CR2 had
higher CD71"™ reticulocyte binding percentages than to
CD71% (Fig. 4b), suggesting that GAMA mainly binds
to such cell type’s most immature stage. It has been
reported that some reticulocytes’ integral membrane
components decrease as cells mature [63]. Therefore,
the findings found here suggest that PvGAMA receptor
is less abundant in CD71'" cells unlike CD71™, as a
consequence of cell maturation. The fact that more
than 69% of the CD71 + CD45- cells were CD71'° (1 +
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SD=69.3+3.3) can be the explanation of why
PvGAMA fragment binding to 100% of the CD71+
reticulocytes was not found (Fig. 4a). It has been
observed that several P. vivax proteins, such as DBP
[64], MSP-1 [16], RBP1 [14], the erythrocyte binding
protein (EBP) [42], RBP1a, RBP1b [65] and RBP2 [15],
have preferential reticulocyte binding activity, being the
RBPs particularly important in parasite cell selection.
Taking the results obtained here into account, it can be
suggested that P. vivax target cell selection is not only
governed by the RBPs but other ligands are also taking
place in this process, such as DBP, MSP-1, EBP and
now PvGAMA.

Immunoreactive proteins are considered potential
candidates for developing a vaccine as it has been seen
that an immune response induced during infection is
related to naturally-acquired immunity [66]. Antigenic-
ity is thus one of the classical parameters for selecting
molecules when developing a vaccine. Although there
was an immune response against Pv"GAMA (Fig. 2), this
was not sufficient to inhibit the conserved regions
binding to reticulocytes (Fig. 4c). It has been observed
that P. falciparum proteins’ conserved regions (impli-
cated in target cell binding) cannot trigger an immune
response when used as vaccine candidates in the Aotus
model whilst non-conserved ones trigger protective
responses upon parasite challenge but those are strain-
specific [54]. Accordingly, the PvGAMA antibodies
produced/induced during natural P. vivax infection
were directed against immunodominant epitopes which
are unimportant in binding activity. Bearing in mind
that functional regions usually evolve more slowly and
that natural negative selection tends to keep these re-
gions conserved amongst species [25], our experimental
findings suggested that CR1 and CR2 located between
residues 80-320 (40% of negatively selected sites) and
514-624 (64.5% of negatively selected sites) are func-
tionally/structurally restricted and that vaccine design
should thus be focused on them.

Conclusions

To our knowledge, this study described PvGAMA
reticulocyte binding properties for the first time. The
PvGAMA antigenic response was principally directed
against its carboxyl fragment which comprises by a
repetitive region. On the other hand, it was shown
that PvGAMA consists of two conserved binding
fragments that bind preferentially to most immature
human reticulocytes, which is consistent with the P.
vivax invasion phenotype and highlights the fact that
functional regions can be predicted by analysing nat-
ural selection. Further studies aimed at discerning the
function of conserved regions as vaccine components
are required.
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Additional files

Additional file 1: Figure S1. GAMA antigen alignment. pvgama
sequences from 6 P. vivax strains were aligned with orthologous sequences
from P. cynomolgi, P. inui, P. fragile, P. coatneyi and P. knowlesi. a DNA
sequence alignment. b Deduced amino acid alignment. The sequences
were obtained from GenBank: access numbers being India-VII
AFBK01000586-AFBK01000587, North Korean AFNJ01000531, Brazil-I
AFMKO01000508-AFMK01000509, Mauritania-I AFNI01000333-
AFNIO1000334, P. inui NW_0084818881, P. fragile NW_012192586,

P. cynomolgi BAEJ01000249, P. coatneyi CM0028561 and P. knowlesi
NC_0119061. (PDF 373 kb)

Additional file 2: Figure S2. Lineage-specific positive selection. Branches
under positive episodic selection were identified by using the REL-site
branch method. Episodic selection acts very quickly and involves a switch
from negative to positive natural selection and back to negative and might
enable adaptation to a new host. Phylogeny was inferred in MEGA v6 by
the maximum likelihood method using the GTR + G evolutionary model.
w" model: w rate values. Pr [w = w +]: percentage of sites evolving under
positive selection. P-value corrected for multiple tests using the Holm-Bonferroni
method. (TIF 470 kb)

Additional file 3: Figure S3. Obtaining recombinant proteins. a, b
Recombinant GAMA protein expression and purification. Lanes 2-3 show
non-induced and induced cell lysate, respectively. Lanes 4-5 show purified
rPvGAMA-Nt and -Ct stained with Coomassie blue or analysed by western
blot using anti-polyhistidine antibodies, respectively. ¢ Purifying conserved
(CR1 and CR2) and variable (VR1 and VR2) PvGAMA regions. Lanes 2, 4, 6 and
8 show purified recombinant proteins and lanes 3, 5, 7 and 9 show western
blot detection. The proteins’ molecular markers are indicated in Lane 1 on all
figures. (TIF 5327 kb)

Additional file 4: Figure S4. Selection strategy for immature and mature
erythrocyte populations. The doublets were excluded by plotting FSC-H
against FSC-A. Cells were then selected by their granularity, using an
SSC-A vs FSC-A cytogram. The CD45 vs CD71 signal was plotted for
selecting reticulocyte (CD71 + CD45-) and mature erythrocyte (CD71-CD45-)
populations and omitting activated lymphocytes (CD71 + CD45+). The
percentage of cells having bound protein was calculated using the PE signal
(CD71 + CD45-PE+). A representative histogram from three independent
experiments analysing the PE signal for the CR2 binding assay compared to
control is also shown. (TIF 10448 kb)
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CONCLUSIONES, RECOMENDACIONES Y PERSPECTIVAS
GENERALES

Conclusiones

En esta investigacion, se analizo el proteoma de P. vivax y se describieron algunas de las
proteinas expresadas en los estadios del ciclo de vida intraeritrocitico (anillo, trofozoito y
esquizonte). Se identificaron 514 nuevas proteinas no reportadas en estudios anteriores, lo que
permite aumentar el conocimiento de la composicion proteica de P. vivax. Ademads, se encontraron
moléculas involucradas en el metabolismo parasitario, en la variabilidad antigénica y en la
capacidad de invadir los eritrocitos. El estudio del proteoma de la cepa VCG-1 de P. vivax presenta
una importante fuente de informacion para la seleccion y el estudio de moléculas que pueden ser

utiles en la prevencion o el tratamiento de la infeccion causada por P. vivax.

Por otro lado, se realizd una primera aproximacion para identificar el proteoma de
eritrocitos del primate 4. nancymaae. Los andlisis comparativos realizados permiten conocer el
perfil protedmico de los eritrocitos del primate y realizar andlisis e interpretacion de sus
caracteristicas moleculares; las proteinas identificadas seran utiles en la investigacion biomédica
futura. Ademas, los resultados validan el uso de primates de la especie A. nancymaae como modelo
experimental para estudiar la malaria. Indudablemente, la prediccion de componentes integrales
de membrana proporciona una gran informacion para entender detalladamente el mecanismo de
interaccion entre los eritrocitos y los parésitos del género Plasmodium, en un modelo experimental
con gran similitud al humano. Vale la pena destacar, que son los primeros estudios de protedmica
realizados en Colombia donde se estudia, tanto el proteoma de una cepa de P. vivax adaptada a

primates, como el de eritrocitos de A. nancymaae.

Adicionalmente, se propuso una estrategia racional para la seleccion de las moléculas
potencialmente involucradas en el proceso de invasion celular. Con este enfoque, se identificaron
PvARP, PvRBSA y PvGAMA, las cuales se caracterizaron en la cepa VCG-1 de P. vivax a nivel
molecular. Ademads, se estandarizé por primera vez una técnica para obtener las moléculas de
forma soluble, utilizando el sistema de expresion E. coli. Se validaron dos criterios clave para
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considerar las proteinas como potenciales vacunas: la antigenicidad y capacidad de union a las
células hospederas. Asi, PvARP, PPRBSA y PvGAMA son capaces de desencadenar una respuesta
inmune durante la infeccion natural. De éstas, PPRBSA y PvGAMA presentaron actividad de
union a reticulocitos, al igual que se demostrd en previos estudios para otras moléculas como
PvDBP, PvMSP-1, PvRBPs y PYRONS. Los hallazgos destacan que PvRBSA y PvGAMA se
componen de regiones que estdn implicadas en la interaccion especifica con las células diana,
destacando su importancia para futuros estudios orientados a desarrollar estrategias de control

contra la enfermedad.

Este estudio contribuye a aumentar el conocimiento basico sobre la biologia de P. vivax,
sobre todo en la caracterizacion de moléculas con actividad de unidn celular. Se puede deducir de
este estudio que la prediccion in silico es una herramienta til, de bajo costo y eficiente para
identificar moléculas involucradas en la interacciéon de los merozoitos de P. vivax con los
reticulocitos humanos. Ademads, estas herramientas también son utiles para predecir regiones
funcionales de las moléculas mediante el analisis de seleccion natural, lo cual permitira evitar

respuestas inmunes alelo especificas, que reducen la eficiencia de las vacunas.

Recomendaciones

Se debe realizar estudios de validacion funcional orientados a confirmar la funcion de las
moléculas que participan en procesos bioldgicos y metabdlicos vitales de cada célula (parasitos de
P. vivax y eritrocitos de A. nancymaae). En cuanto al proteoma de eritrocitos de Aotus, se sugiere
relacionar los datos reportados con el estudio de las caracteristicas genotipicas y transcriptdmicas
de A. nancymaae realizado por el Human Genome Sequencing Center of Baylor College of

Medicine (BCM-HGSC).

Con el objetivo de correlacionar la parasitemia con los niveles de anticuerpos generados
durante la infeccidén natural, se recomienda hacer ensayos de antigenicidad utilizando sueros de
pacientes con infeccion activa por P. vivax. Respecto a los ensayos de union, se requiere el uso de
eritrocitos con fenotipo Duffy negativo, para validar si PPRBSA utiliza la ruta alterna de invasion
de los merozoitos a dichas células. Esto se basa en los recientes estudios de infeccion por P. vivax

en individuos Duffy negativo.

81



Por otro lado, se recomienda realizar los estudios de prediccion de regiones funcionales
(mediante analisis de seleccion natural) con mas moléculas de P. vivax, con el fin de poder incluir
este paso dentro de la metodologia para la busqueda de regiones minimas de unidon conservadas y
con restriccion funcional. Adicionalmente, se requiere confirmar si la interaccion de PvRBSA y
PvGAMA es especifica mediante ensayos de competicion, lo cual permitiria tener resultados mas
consistentes. Se sugiere analizar las moléculas siguiendo la metodologia propuesta por la FIDIC,
con el fin de identificar las regiones minimas de unién, como se reporta para otras proteinas

descritas hasta la fecha, como DBP, MSP-1 y RBP-1.

Perspectivas Generales

El estudio protedmico realizado por nuestro grupo ha tenido como objetivo principal la
generacion de bases de datos tutiles para estudiar en el futuro las moléculas implicadas en la
interaccion parasito-hospedero. Por ende, seria importante estudiar las interacciones que pueden
estar ocurriendo entre moléculas de P. vivax con las de eritrocitos de A. nancymaae usando la

tecnologia de NAPPA.

Un aspecto interesante derivado de este estudio, es identificar por docking molecular los
compuestos mas afines a las dianas farmacologicas predichas en el estudio del proteoma de la cepa
VCG-1 de P. vivax. Asi mismo, seria interesante evaluar el efecto de algunos compuestos durante
el desarrollo intraeritrocitico de P. vivax en ensayos in vitro controlados. Ademas, futuros ensayos
iran orientados a evaluar los nuevos compuestos en el modelo experimental Aofus como una

alternativa al tratamiento actual contra la malaria.

Por ultimo, es imprescindible continuar el trabajo de seleccion de regiones funcionales para
las 17 moléculas de P. vivax caracterizadas en el laboratorio de biologia molecular de la FIDIC.
Ademas, es importante utilizar otras metodologias ligando-receptor orientadas a estudiar las
regiones minimas de unién que puedan tener un papel importante en la actividad de invasion de

los merozoitos de P. vivax a reticulocitos, siguiendo el enfoque empleado para P. falciparum.
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species. This review summarizes the most representative work done during the last few years
and discusses the approaches adopted in making progress towards an anti-Plasmodium vivax

vaccine.
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In spite of the progress made by government ini-
tiatives and the World Fund for the Control and
Prevention of Malaria, this disease continues to
be a public health problem all around the world.
Approximately 216 million cases and an esti-
mated 665,000 deaths occurred in 2011, mainly
in children <5 years old, according to the latest
data released by the WHO [1].

Human malaria can be caused by five par-
asite species from the Plasmodium genera
(Plasmodium falciparum, Plasmodium vivax,
Plasmodium malariae, Plasmodium ovale and
Plasmodium knowlesi). P. vivax is predomi-
nantly distributed on the Asian and American
continents and is responsible for 25-40% of
the global malaria burden, causing between
132- and 391-million cases annually [2]. The
search for an effective vaccine against P. vivax
has become a great challenge given this spe-
cies’ biological complexity, its preference for
invading reticulocytes, genetic variability
mechanisms and the generation of latent forms
(hypnozoites).

Although few P. vivax antigens have been
identified and functionally characterized using
traditional molecular biology, immunology
and biochemistry approaches, most of the vac-
cine candidates being tested were found using
the aforementioned methodologies. The cur-
rently available transcriptome [3], proteome
(4] and comparative genomic analysis data [s]

for P. vivax could be extremely useful in the
future to find new stage-specific proteins, simi-
lar to those described for other parasite spe-
cies, which could be essential in developing
a vaccine.

The progress of an anti-P. vivax vaccine
Given that malaria represents one of the main
public health problems around the world, sev-
eral research groups have made great efforts to
develop an effective vaccine against this para-
sitosis. Advances made to date with regard to
the knowledge gained concerning the biology of
P. vivax have not yet reached the same level as
those regarding P. falciparum. However, research
into the Plasmodium life-cycle and its mecha-
nisms for invading red blood cells (RBCs) have
led to the establishment of the most appropriate
points of intervention for blocking the parasite’s
development, such as pre-erythrocyte, blood and
sexual stages (Ficure 1).

Immunization with irradiated sporozoites,
recombinant expression of parasite proteins
and production of antigens by peptide synthesis
are among the methodologies used by research
groups orientated towards developing an
antimalarial vaccine. P. vivax studies to date
have dealt with the limited number of candidates
that have been identified, characterized (Ficure 2)
and evaluated in preclinical and clinical studies,
compared with P. falciparum.
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Figure 1. Plasmodium vivax life-cycle and intervention points for developing
vaccines against several development stages. (A) Infection: sporozoite inoculation
via female Anopheles mosquito bite. (B) Pre-erythrocyte stage: invasion of hepatic cells
and generation of (1) hypnozoites or (2) hepatic schizonts. (C) Blood stage: beginning of
the parasite’s asexual development in reticulocytes. (D) Sexual stage: differentiation to

gametocytes that are ingested by the mosquito.

Vaccine candidates for which the greatest advances
have been made to date

Pre-erythrocyte vaccine candidates

The main objective for vaccines directed against this stage is to
prevent sporozoite invasion of hepatocytes, or impede the parasite’s
development within hepatic cells so as to avoid its proliferation in
the blood stream. Early studies by Ronald Ross (1899) showed
that infected mosquitoes transmitted avian malaria. Later, Sergent
et al., in 1910 described that canaries immunized with irradiated
Plasmodium relictum sporozoites developed partial immunity
against exposure to the native parasite. In 1967, Nussenzweig
et al. showed that immunizing rodents with 5,000-75,000 radi-
ation-attenuated sporozoites induced total protection against
challenge in studies orientated towards evaluating the immuno-
logical response to infection in preclinical assays, thereby leading
to the concept of sterile protection [6]. Many years later, clinical
trials reported by Clyde ez al. in 1975 revealed vaccine safety
and immunogenicity using P. vivax attenuated sporozoites in
humans [7]. Individuals immunized with more than ~1,000 bites

from irradiated mosquitoes in such studies
achieved short-term protection against the
disease. Aotus monkeys have been intra-
venously inoculated with 2, 5 and 10 doses
of 100,000 radiation-attenuated sporozo-
ites in recent work; despite the low immune
response, the primates became partially
protected, as shown by the reduction in
parasitemia [8].

Although this pre-erythrocyte vaccine
system continues to be considered the gold-
standard, no new clinical studies have eval-
uated safety, reproducibility and protective
efficacy in humans. This has been mainly
due to technical difficulties presented
when advancing P. vivax studies, such as
not having an infective gametocyte-rich
source that could be used as totally viable
sporozoite precursors. In addition, it is dif-
ficult to estimate the required amount of
irradiated sporozoites for creating a protec-
tive response in humans and the procedure
involving using mosquito bites for immu-
nizing humans is impractical (>1,000 mos-
quito bites). Using this methodology might
be ineffective in individuals having a back-
ground of malaria given that even though
invasion has been blocked in this first line
of defence they could develop the infection
as the result of relapses caused by hypno-
zoites (discussed later). This highlights the
need for a multistage vaccine against this
parasitosis.

Bearing the afforementioned in mind,
efforts were initially centred on developing
a subunit-based vaccine. The main candi-
dates have been proteins present on parasite surface or in apical
organelles (Ficure 2), namely the circumsporozoite protein (CSP)
and the thrombospondin-related anonymous protein (TRAP).

CSP has been one of the most studied candidates in various
human malaria species. Current preclinical trials with CSP have
involved using chimerical recombinant proteins [9], multiple
antigen constructs [10] or multiple antigen peptides [11]. These
methods have led to the discovery that including CSP protein B-
and T-cell epitopes in a vaccine induces high immunogenicity in
rodents and primates. Yadava ¢t a/., have immunized mice with
the VMPOO! chimeric antigen developed in 2007 [9] emulsified
with Montanide ISA 720 [12]; this recombinant includes the chi-
meric repeat region representing the two major CSP alleles in P.
vivax (VK210 and VK247), flanked by the N- and C-terminal
regions. The VMPO0O1 vaccine induced a cross-species immune
response against P. falciparum and Plasmodium berghei and gener-
ated partial protection in the murine model as evidenced by the
lower parasitemia developed in vaccinated mice compared with
the control group, as well as the lower parasite burden in the liver
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Figure 2. Actual state of proteins identified in merozoite and sporozoite stages in Plasmodium vivax and Plasmodium
falciparum, respectively. Shows the proteins described to date with their respective localization in the parasite (surface, rhoptries,

micronemes and dense granules).
P. falciparum: Plasmodium falciparum; P. vivax: Plasmodium vivax.
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as evaluated by reverse transcription-PCR. Experiments in Aotus
monkeys using N- and C-terminal region-derived long synthetic
peptides (LSPs) and another based on CSP repeats combined
with a tetanus toxin T-cell epitope, both emulsified in Montanide
ISA 720 or Freund’s complete adjuvant, have shown strong anti-
body responses that recognize the native protein [13]. Based on
this, a Phase I clinical trial was carried out; this described that
a vaccine based on individual LSPs or a mixture of these with
Montanide ISA 720 was safe, tolerable and immunogenic [14].
A total of 40 individuals immunized with LSP formulated in
Montanide ISA 720 or Montanide ISA 51 have recently shown
seroconversion; however, LSPs formulated in Montanide ISA 51
produced greater antibody titers and IFN-y than those emulsi-
fied in Montanide ISA 720 [15). The results suggested that a par-
ticular adjuvant could boost a vaccine’s effect and this should be
considered in future clinical trials.

A study showing the safety and reproducibility of infection
caused by 3-9 bites by infected Anopheles albimanus mosquitoes in
18 malaria-naive humans [16], in addition to the aforementioned
study, evaluating patients’ immune response to LSPs [15], have
been carried out to promote Phase II trials. However, no reports
describing Phase II trial results have been published to date.

Recent studies have focused on searching for a potent adjuvant
able to trigger strong, long-lasting humoral immune responses
when combined with the P. vivax CSP molecule. In particular,
mice vaccinated with VMPO0O1 emulsified with synthetic TLR4
(glucopyranosyl lipid adjuvant) in a stable emulsion [17] or con-
jugated to the lipid-enveloped polymeric PLGA nanoparticles
(VMPO0O1-NPs) with monophosphoryl lipid A [18] have shown
significantly higher antibody titers than control groups, thus
providing support for the use of these formulations in further
clinical trials.

Parasite invasion is complex, involving many adhesion molecules
(19]. Even though CSP is the major antigen, it is not the only one
responsible for target cell invasion. A P. vivax study has led to the
identification and characterization of a microneme protein called
TRAP. Once it was demonstrated that TRAP induced high anti-
body levels in the Balb/c experimental model, its efficacy in the
Aotus experimental model was evaluated; inoculating an LSP local-
ized in TRAP’s N-terminal region (containing the liver cell-binding
domain, known as region 2) induced a good immune response.
Nevertheless, protection results were not statistically significant
when compared with the control group using this scheme [20].

Intra-erythrocyte stage candidates

Considering that the clinical manifestations and severity of
malaria infection coincide with the parasite’s development within
erythrocytes, antigens expressed during this stage represent a set
of important vaccine candidates for blocking invasion. Even
though studies have mainly been centred on the Duffy-binding
protein (DBP) [21], merozoite surface protein-1 (MSP-1) [22] and
apical merozoite antigen-1 (AMA-1) 23], other molecules such
as reticulocyte-binding protein-1 (RBP-1) [24], rhoptry-associ-
ated protein-2 [25], MSP-9 26] and -10 [27] have been identified,
characterized and evaluated as vaccine candidates.

DBP is a microneme molecule participating in reticulocyte—
merozoite tight junction formation. It has been established that
this protein forms part of the obligatory reticulocyte invasion
route involving interaction with the Duffy antigen receptor for
chemokines (DARC), thus leading to wide-ranging research
aimed at evaluating this antigen’s function and potential as
vaccine candidate.

Studies carried out by the Fundacién Instituto de Inmunologfa
de Colombia (FIDIC) have shown that DBP has 10 reticulo-
cyte high-activity binding peptides (HABDPs), which are mainly
located in the protein’s region 2 (RII) (Ficure 3) [28]. Two HABDPs
able to bind to different HLA-DR molecules (called 1635 and
1638) have been found recently (Ficure 3). These peptides induced a
Th1/Th2 recall response (mainly IFN-yand IL-6) in 35 individu-
als who had suffered prior episodes of P. vivax malaria as shown
by peripheral blood mononuclear cell (PBMC) lymphoprolifera-
tion assays, thus highlighting their potential use in a synthetic,
subunit-based vaccine [29.30]. Future studies aimed at establishing
these sequences’ protection-inducing ability have been planned
in the Aotus experimental model.

Preclinical trials with rodents and Macaca monkeys using
recombinant PvDBP region 2 (PvDBP-RII) formulated with three
adjuvants approved for human use (anhydrogel, Montanide ISA
720 and ASO2A) have shown a correlation between the level
of antibodies produced and the potential for inhibiting domain
binding to the DARC in vitro [2131]; however, preclinical trials in
the experimental Aotus model using the same region formulated
in Montanide ISA 720 adjuvant have shown no protection [32].
Despite this, this antigen continues to be studied as it has been
considered an important component in the obligatory route for
invasion of reticulocytes, it has specific binding sequences, anti-
bodies directed against PvDBP-RII are able to inhibit adhesion
to target cells, it is highly antigenic and it has universal epitopes.

MSP-1 has been the most widely studied MSP identified to
date. It has been suggested that PvMSP-1 probably undergoes a
proteolytic processing similar to that of its P. falciparum ortholog,
thus generating 83, 30, 38 and 42 kDa fragments, the latter being
hydrolyzed again in 33 and 19 kDa products.

Several formulations have been evaluated in P. vivax. A study
by the CDC (Atlanta, GA, USA) used a yeast-expressed recom-
binant consisting of the MSP-1 19kDa C-terminal fragment
(MSP-1 ) and two tetanus toxoid T-helper epitopes for immu-
nizing Saimiri boliviensis monkeys with aluminium hydroxide and
block copolymer P1005 [33). The group of monkeys immunized
with MSP-1 | emulsified in block copolymer P1005 had partial
protection against challenge (three out of five monkeys) with a
P. vivax Sal-1 homologous strain and generated a greater antibody
response than the group immunized with MSP-1 ; only or in
aluminium hydroxide. Immunization experiments were carried
out on New World monkeys (Callithrix jacchus) vaccinated with
MSP-1,, plus a promiscuous T-cell epitope present in the 33kDa
region and a synthetic universal Pan allelic DR epitope emulsi-
fied in different adjuvants (Freund’s, Quil A, CpG oligodeoxy-
nucleotide (ODN) 2006 or MPL/trehalose dicorynomycolate).
The results showed a better response when the recombinant was
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administered with Freund’s complete adjuvant and Quil A [34],
suggesting that immunogenicity depended on the adjuvant used.
Other studies in the Aotus experimental model have been car-
ried out by FIDIC; these included immunizing with two recom-
binant fragments (MSP-1 , and MSP-1, ) encompassing most of
the MSP-1_, proteolytic cleavage product. These recombinants are
localized in a region presenting low variability and displayed high
reticulocyte-binding ability (35], probably mediated by the HABPs
comprised in them (Ficure 3). A total of 50% [36] to 80% [22] of the
primates immunized with the mixture of MSP-1,, and MSP-1,
recombinant proteins emulsified in Freund’s adjuvant were par-
tially protected, showing a relationship between antibody titers,
IEN-y production levels and protection-inducing immunity.

Additional studies have tested recombinant fusion proteins
such as PvDBP-RII and MSP-1 ; obtaining greater immuno-
genicity in mice when using Montanide ISA 720 adjuvant as an
immunobooster [31].

AMA-1 has also been considered to be one of the most impor-
tant candidates given its participation in merozoites apical reori-
entation and subsequent tight junction formation. It has also been
found that the protein has an effect on dendritic cell matura-
tion by upregulating CDla and HLA-DR molecules (37]. The
efficiency of Balb/c mice’s humoral response has been recently
proved regarding immunization with the AMA-1 recombinant
protein (amino acids 43-487) formulated in Freund’s complete
adjuvant, aluminium hydroxide, Quil A, QS-21 saponin, CpG
ODN 1826 or TiterMax® (CytRx, CA, USA). A strong immune
response with any one of the adjuvants used was produced and
thus it is planned to continue assays in nonhuman primates [23].

RBP-1 is a member of a cell-binding protein family identi-
fied in P. vivax; in the Sal-I strain, this family has 10 r6p genes
including three partial genes (one rbp-1 [PVX_125738] and two
rbp-2 [PVX_090330; PVX_101590]), two pseudogenes (rbp-2d
[PVX_101585] and rbp-3 [PVX_101495]) and five full-length
genes (rbp-Ia [PVX_098585], rbp-16 [PVX_098582], rbp-2a
[PVX_121920], rbp-26 [PVX_094255] and rbp-2¢ [PVX_090325])
s]. Mapping the whole of P. vivax Belem strain rbp-1 (encoded by
the rbp-1a gene) has led to the definition of four reticulocyte-binding
regions (RI-RIV) housing several highly conserved high-binding
peptides (Ficure 3) [38]. A further study has shown that RBP-1 region
I, recombinantly expressed in Spodoptera frugiperda (S£9) insect cell
line, intervenes in merozoites’ specific binding to reticulocytes (39].

The only formulation that has been evaluated included the
protein’s region III (containing peptides with a greater bind-
ing ability) (Fieure 3) recombinantly expressed in Escherichia coli
and emulsified with Freund’s adjuvant; although a significant
increase in antibody production and T-lymphocyte stimulation
have been observed, no protection was achieved when Aorus
monkeys previously immunized with the recombinant were chal-
lenged with the P. vivax VCG-1 strain [24]. Therefore, plans have
been made to carry out preclinical assays with protein regions
I, IT and IV for evaluating the formulation’s immunogenic and
protection-inducing ability.

Several thoptry proteins play an important role during invasion
of RBC, some of them being classified within the high molecular

RBP-1
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Figure 3. High-activity binding peptides to reticulocytes
identified in Plasmodium vivax MSP-1, RBP-1 and DBP
proteins. HABPs are shown in yellow. Green bars represent the
universal peptides found in DBP protein region Il (HABPs #1635
and 1638). Orange bars indicate regions where RBP-1 binds to
reticulocytes (RI-RIV), which encompass those peptides showing
greater binding ability.

HABP: High-activity binding peptide.

weight or the low molecular weight complexes. The latter consists
of three rhoptry-associated proteins: RAP-1, -2 and -3, of which
the first two have been described in P. vivax [40.41). A study using
the P. vivax RAP-2 recombinant protein formulated in Freund’s
adjuvant has shown partial protection in Aotus monkeys, given
that significantly lower parasitemias in the immunized group were
observed with respect to the control group [25].

Regarding MSP-9, two recombinants have been evaluated
in rodents, one covering the N-terminal region (PvMSP-9-N)
and another covering a block of tandem repeats in the pro-
tein (MSP-9-Repll). Both formulations were seen to be highly
immunogenic and the N-terminal region stimulated IFN-y
and IL-5 production in the PBMCs of immunized mice [26].
Regarding MSP-10, this protein was initially identified and
characterized in 2005 by Pérez-Leal et al. (42], and has recently
been shown to be antigenic during natural P. vivax malaria
infection in humans. Its immunogenicity has also been proved
in the experimental Aotus model using three types of adjuvants:
Freund’s, Montanide ISA720 or aluminium hydroxide. Two out
of the three formulations triggered a strong antibody response,
recognizing the protein on parasite surface (demonstrated by
immunofluorescence assay); nevertheless, immunized monkeys
did not become protected against challenge with the P. vivax
VCG-1 strain [27].
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Transmission-blocking vaccine candidates

The antigens used by the parasite during fertilization and devel-
opment within the mosquito vector have been used as a strategy
for controlling malarial transmission. Pvs25 and Pvs28 are the
main surface proteins presenting high expression levels during
the ookinete stage; their characterization has led to antigenic and
immunological evaluation in experimental models. Rodents immu-
nized with recombinants produced in yeast and absorbed with alu-
minium hydroxide have been shown to generate a potent immune
response capable of inhibiting oocyte development in mosquitoes
(43]. In spite of this, more attention has been paid to Pvs25, since a
greater yield is obtained when expressed in yeast, its polymorphism
is limited and the immune response exerted does not seem to be
genetically restricted in the experimental model used. Two clini-
cal trials have been carried out by the Algerian Research Institute
and the US National Institute of Allergy and Infectious Diseases
(MD, USA). Individuals vaccinated with the Pvs25H recombinant
protein formulated in alhydrogel tolerated the formulation and
produced antibodies that were functionally active as significant
transmission blocking was observed (44]. The other trial was made
with the same recombinant but emulsified in Montanide ISA 51;
this proved reactogenic in two patients who developed a severe local
reaction and the study was thus stopped [45].

A new protein localized on the gamete surface has been identi-
fied (Pvs230). Immunizing mice with recombinant Pvs230 region
I-IV emulsified in Vaxfectin® (Vical, CA, USA) led to the devel-
opment of antibodies, and significantly reduced the number of
oocysts formed within the mosquito’s intestine and the vector
infection rate, thereby suggesting that this candidate could be a
good target for evaluation in preclinical assays [46].

Promising candidates

While advances made in identifying P. vivax antigens have been
limited, studying the transcriptome [3], the proteome’s partial
characterization (4] and immunoproteomic profile (47], as well as
studies focused on comparing transcription profiles between dif-
ferent parasite species [5.48], have been of great benefit in obtaining
information about proteins that may be important for vaccine
development. Different vaccine candidates localized on the sur-
face or apical organelles (thoptries and micronemes) (Ficure 4) have
been identified by molecular biology methodologies.

It has been found that some Plasmodium proteins are associ-
ated with detergent-resistant membranes through glycosylphos-
phatidylinositol (GPI) anchors; six of them have been identified
in P. vivax by means of bioinformatics tools and evaluated by
molecular biology assays: PvMSP-8 [49], -10 [42], Pv12 [s0], Pv34
51, Pv38 [52] and apical sushi protein (PvASP) [s3]. The first three
antigens are localized on merozoite surface while Pv34, Pv38 and
PvASP are located in the rhoptries. All of them have character-
istics relevant to proteins considered good vaccine candidates,
such as having a signal peptide, being anchored to the membrane
through transmembrane helices or GPI anchors, having bind-
ing domains and being able to generate an immune response in
natural and/or experimental infections. It has been particularly
interesting that Pv34 induced a proliferative response of PBMCs

isolated from individuals having a background of P. vivax infec-
tion, thereby highlighting the importance of carrying out pre-
clinical studies in experimental models. Other surface/rhoptry
molecules have been described, such as PvMSP-7 [s4], Pv41 [s5],
PvIRAMP [s6], PvClag7 (571, PVRON2 (s8] and PvRhopH3 [s9].
Some of them have been shown to be immune response targets
during a natural P. vivax infection (PVTRAMP, PvClag7) thereby
supporting the idea of continuing with studies to evaluate their
immunogenic activity in the Aotus experimental model.

Two new alanine- and tryptophan-rich proteins have been char-
acterized (PvTARAg55 [60] and PvATRAg74 [61]); a proliferative
response is induced by these antigens in PBMCs from infected
individuals as well as a predominant Th2 response with high
levels of IL-4 and IL-10. Another study characterizing and map-
ping antibody response to MSP-30 has shown at least 15 antigenic
determinants within this protein and antibody titers observed
correlate with the time of exposure to infections [62].

Protein array or mass spectrometry techniques have been used
for identifying new candidates; the first technique has led to 18
highly immunoreactive molecules being recognized by sera from
P. vivax-infected patients [47] while the second allowed identifca-
tion of four additional ones strongly recognized by immune sera
[4]. Some of these match previously described antigens, suggesting
that the approach used represents a good option for identifying
new candidates.

Problems & limitations regarding P. vivax research

Several obstacles inherent in the parasite’s biology related to its cell
tropism towards reticulocytes, high genetic variability, developing
latent hepatic forms and its adaptation in a suitable experimental
model have impeded advances being made in the search for a
strategy for controlling the disease, such as vaccine development.

In vitro culture & functional assays

Tremendous efforts have been made during the last 30 years for
standardizing a methodology allowing a P. vivax in vitro con-
tinuous culture to be maintained. However, the preference of
P. vivax for invading reticulocytes (representing approximately
0.5-1.5% of the total of RBCs circulating in adults) and the dif-
ficulty involved in obtaining a significant percentage of them are
the main limitations regarding progress in this research area [63].

The first in vitro trials with P. vivax were reported during
the 1980s; several groups managed to establish a preliminary
in vitro culture from blood infected with early trophozoites and
ring forms, using reticulocyte-rich samples obtained from cord
blood. These assays led to DBP’s functional characterization,
demonstrated by inhibiting invasion by an antibody directed
against the erythrocyte Duffy antigen binding region.

Several studies during the last few years have led to a significant
advance in the area. The first of them used reticulocytes obtained
by differentiating stem cells with specific factors [64]; nevertheless,
it has still not been widely used given its complexity and high
costs. The second assay managed to standardize a P. vivax ex vivo
invasion assay protocol, which uses trypsin-treated enriched
reticulocytes and a sample with P. vivax schizonts from different
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clinical isolates; this methodology has been
shown to be practical, reliable and repro-
ducible (65 and is currently being evaluated
for propagaton of the VCG-1 strain.

Based on the strength of FIDIC’s stud-
ies involving the molecular characterization
of 50 proteins implicated in P. falciparum
invasion, advances have been made in
screening three P. vivax molecules. These
antigens’ regions for specific binding to
target cells have been determined by using
enriched reticulocytes from samples from
a patient suffering from B-thalassemia and
synthetic peptides; DBP [28], RBP-1 [38] and
MSP-1 [66] have thus been fully mapped
(Ficure 3). Such advances have provided
valuable knowledge for developing novel
strategies and methodologies providing
in-depth knowledge about the importance
of candidates and their inclusion in an
epitope-based vaccine. However, techni-
cal difficulties associated with obtaining
enough reticulocytes for binding studies
are reflected in the number of candidates
mapped for P. vivax compared with those
from P. falciparum (three vs 50).

The parasite’s genetic variability

The expression of P. vivax proteins with
a high degree of polymorphism and the
strain-specific immune responses induced
by them represent formidable obstacles for
developing an antimalarial vaccine. Several
studies have shown great genetic variability
in proteins such as DBP (67, MSP-1 s3],
MSP-30. [69], MSP-5 [70] and AMA-1 [71],
which has mainly been attributed to selective pressure exercised
by the host’s immune system, thereby leading to the fixation of
allele variants in the parasite population [71].

It has recently been shown that strong immune responses are
directed against variable sequences that do not bind to target
cells, whereas highly conserved sequences implicated in interac-
tion with RBC molecules are not immunogenic [19.72]. PvDBP-
RII contains both conserved as well as highly polymorphic
residues; antibodies generated against the polymorphic ones
are short-lived and strain-specific. Mutagenesis assays directed
towards variable regions have shown that these are not func-
tionally active for binding to erythrocytes [73]. A recent study
involving the modification of a PvDBP-RII peptide (DEK™!)
in polar polymorphic residues (replaced by small hydrophobic
residues), has shown that high immunogenicity is generated
and induces the production of antibodies inhibiting binding
to erythrocytes [74], thereby highlighting the fact that modify-
ing polymorphic residues could lead to the production of more
specific antibodies.

Rhoptry proteins (RhopH3)

Surface proteins (MSP-10)

Microneme proteins (AMA-1)

Figure 4. Localization patterns for Plasmodium vivax rhoptry (RhopH3), surface
(MSP-10) and microneme (AMA-1) proteins. The merozoite nucleus is shown in blue
(left panels); RhopH3, AMA-1 and MSP-10 localization is shown in red (central panels),
the dotted pattern is characteristic of microneme and rhoptry proteins, whereas the
‘bunch of grapes’ pattern is characteristic of MSPs; right panels show the overlapping of
the aforementioned images.

It is particularly interesting that the naturally infected P. vivax
individuals have high specific antibody titers against DBP and
MSP-1 variants, generating a selective effect in immune response
regarding different strains [75.76]. These studies suggested that
using conserved regions or the most frequently occurring alleles
in a population must be born in mind when designing a vaccine.

P. vivax pathology

The parasite is characterized by its ability to generate a latent stage
within a host’s liver, called the hypnozoite (Ficure 1), which is being
characteristic of some species that infect primates (P. simiovale,
P. fieldi, P. cynomolgi and P. schwetzi) and humans (P. ovale and
P. vivax). This stage is generated after sporozoite invasion of liver
cells. It has been shown that activating such latent forms propiti-
ates a new wave of blood parasites that can occur in 3—5 months
(short intervals) or 5-10 months (long intervals) [77.78]. Such pat-
terns vary according to a vector’s geographical area of origin since
individuals from tropical areas have a pattern of frequent relapses
within short intervals, whereas those from temperate areas tend to
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have relapses in long intervals [77]. This parasite behavior hinders
the undertaking of proper therapeutic measures, in particular
when people suffer relapses when no longer living in malaria-
endemic areas, which leads to delayed diagnosis and treatment.

Furthermore, studies by Chen et al. [79] and Imwong ez al.
2012 [80] have shown that parasite strains found in patients suf-
fering P. vivax relapses are genetically different from those found
during the primary infection, thus suggesting that an effective
pre-erythrocyte vaccine should include the different genotypes
to completely block parasite development within the liver and
prevent the generation of blood-stage parasites.

Many questions remain regarding hypnozoite activation mecha-
nisms; further molecular studies dealing with the immune recog-
nition of this particular stage should be undertaken considering
that robust host—parasite model systems such as P. cynomolgi- and
P. simiovale-infected Rhesus monkeys are now available [81].

Another feature of P. vivax is that this species can generate
a rapid disease transmission, even before individuals become
symptomatic. Different to P. falciparum behavior, P. vivax rapidly
develops gametocytes, which can then be ingested by a mosquito
vector thereby leading to perpetuation of the parasite’s life-cycle
even before the infected person is aware of having the disease [s2].

Experimental model

Several studies have focused on the search for an ideal animal
model for malaria that could mimic the immune response induced
in infected humans. The WHO recommended using Aotus spp.
monkeys in 1988 as an appropriate experimental model for
studying human malarial infections [83].

These primates have been widely used in research as their
immune system molecules share a high degree of identity with
their human counterparts (MHC, immunoglobulins, T-cell
receptors and cytokines) [84]. Even though Aozus spp. monkeys
do not naturally become infected by Plasmodium species causing
malaria in humans, they have been shown to be highly susceptible
to experimental infection. Research was thus advanced leading
to adapting P. vivax strains (mainly Sal-1 (5], VCG-1 [86] and
Chesson (87]) in New World primates such as Aotus, Saimiri and
Callithrix, allowing the effectiveness of vaccine candidate antigens
to be evaluated in preclinical studies.

The FIDIC Malaria Molecular Biology group adapted the 2.
vivax VCG-1 strain in Aotus spp. monkeys; this proved to be highly
infective after 22 successive passes, reaching 7.88% parasitemia,
as determined by Giemsa, acridine orange staining and real-time
PCR [8¢]. This strain has been used in experimental infection
studies involving Aotus spp. monkeys previously immunized with
some of the previously described proteins (MSP-1 [35], RBP-1 24],
RAP-2 [25) and MSP-10 [27]) in which the immunogenicity, safety
and protective efficacy of each of them has been evaluated. It has
been found that unvaccinated nonsplenectomized monkeys were
not reliably infected, suggesting that the strain cannot generate
reproducible courses of the infection in animals with their spleen
intact. These results agreed with previous studies using the Sal-1
(88] and Chesson strains [87]. In light of this, the search for new
strains able to cause infection in the experimental model without

the need for surgical intervention is necessary for continuing to
progress in such assays.

Expert commentary & five-year view

Although few preclinical and clinical studies have been carried
out during the last few years, there is no denying that a repre-
sentative progress has been made in characterizing new antigens
that are relevant for developing a vaccine against P. vivax. The
aforementioned inherent difficulties when working with P. vivax,
as well as the limited number of monkeys that can be used for
experimentation (considering that they require to be splenecto-
mized), have highlighted a bioinformatics approach as an inter-
esting alternative for candidate screening. Comparative analysis
of the transcriptional profile for malaria-causing parasite species
has led to the identification of P. vivax genes having a counter-
part in other Plasmodium species; in the P. vivax transcriptome
analysis, Bozdech ez 4l., identified 3,566 P. vivax open reading
frames showing shifts in mRNA abundance across the intra-
erythrocyte stage, of which 2,923 have orthologs in P. falcipa-
rum [3). Plasmodium parasite species share some invasion routes
involving genes that are transcriptionally regulated and expressed.
Recently, an #n silico analysis using probabilistic profile hidden
Markov models trained with proteins from other Plasmodium spe-
cies for which the role in invasion and other biological parameters
had been experimentally determined, allowing the identification
of 45 P. vivax open reading frames with a potential role in inva-
sion; 13 of them had already been described as vaccine candidates,
thus validating the approach [89]. In a complementary study, Frech
et al. analyzed the chromosome-internal regions of six published
Plasmodium genomes including P. vivax (48]. In this study, 173
genes were identified as P. vivax species-specific with an unan-
notated function; interestingly, a nonsynthetic cluster of eight
genes was found on chromosome 6 that might have a similar
function in target cell invasion to that of the P. falciparum cluster
48]. These results suggest that studying P. vivax species-specific
genes could lead to a better understanding of this species’ unique
biological mechanisms, in particular the preference for invad-
ing reticulocytes and the development of latent hepatic forms.
It is thus expected in the near future that studies leading to the
functional characterization as well as determining the antigenic
properties of the protein products encoded by the aforementioned
genes are undertaken.

The classical approach that has been followed by most groups
working in malaria for selecting candidates for a subunit vaccine
involves screening for those proteins that had been shown to be
more antigenic. Unfortunately, the most antigenic regions usually
tend to be the most polymorphic ones, thus making it difficule
to avoid strain-specific immune responses. A different approach,
reviewed in a recently published paper, has been followed by
our group for establishing a logical and rational methodology
for designing a vaccine against P. falciparum [90]. Rather than
targetting the antigenic regions, this approach focused first on
identifying conserved HABPs to the respective target cells (in this
case RBCs). Taking into account that these conserved HABPs
displayed low antigenicity and immunogenicity, they were then
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modified to allow a better fit into MHC Class I, thus inducing
strong immunogenicity and protection-inducing ability in the
Aotus experimental model.

Given the urgent need to move forward in the search fora P. vivax
vaccine, following a similar approach to that undertaken for 2. falci-
parum could be a promising strategy to control the malaria burden
caused by this parasite species. Some novel advances might allow
us to overcome the barriers that exist when working with P. vivax;
the identification and selection of molecules functionally relevant in
target cell binding could be partially solved by comparative genom-
ics studies. Also, reticulocyte purification from different sources
enriched in this type of cells will facilitate identifying new HABPs
to target cells and their role in invasion inhibition. HABPs need
to be modified to allow a better fit into the MHC Class II bind-
ing groove, which requires us to carry out 3D-structural analyses
for both native and modified peptides by nuclear magnetic reso-
nance. Although strain-specific immune responses can be avoided
by selecting HABPs conserved between the different parasite iso-
lates only, the MHC Class II allelic diversity displayed by the host
cannot be ruled out; different modified HABPs with a preferen-
tial binding to the various HLA-DR families are thus required to
provide proper protective coverage to the vaccinated population.

So far, several binding regions have been identified in three
P. vivax merozoite proteins: DBP, MSP-1 and RBP. HABPs found
in such molecules have been synthesized in native and modified
forms following the aforementioned methodology and 7% vitro
MHC Class II binding assays, as well as immunization experi-
ments in the Aotus monkey model are underway. These and novel
molecules will continue to be analyzed with the goal of design-
ing a potentially effective multiantigen and multiepitope vaccine
against P. vivax.
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Key issues

e Plasmodium vivax malaria is a prevalent public health problem in tropical and subtropical regions that requires immediate attention.

e The search for a vaccine against P. vivax has become an ongoing challenge given the species’ biological complexity regarding its cellular
tropism, its high genetic variability and the formation of latent forms.

e Immunization with irradiated P. vivax sporozoites was the first representative advance providing evidence of blocking the parasite’s

infection of host hepatocytes.

e Advances made during the last few years evaluating the transcriptome, proteome and in silico comparative analysis of different parasite
species have been essential to identify antigens that could be included in a vaccine.

e Immune response mechanisms associated with protection have been determined in preclinical studies carried out when immunizing

with the attenuated parasite or recombinant proteins.

e |dentifying specific reticulocyte-binding sequences opens up a new research field for developing a chemically made, multiepitope and

multiantigen vaccine.

e The development of chemically synthesized vaccines represents one of the most promising rationale and logical strategies to be
followed for producing a first-generation vaccine against the second most prevalent malarial parasite species around the world:

P. vivax.
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ganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in
primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte pro-
tein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax
proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to
Non-human primate 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a cor-
Experimental model relation between categories having the greatest amount of proteins and vital cell function. Integral membrane
Aotus molecules were also identified which could be possible receptors facilitating interaction with Plasmodium spe-
Erythrocyte cies. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more
Proteome in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories in-
terested in carrying out basic and applied biomedical investigation studies which involve using this primate.
Significance: An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fasci-
nating area for research regarding the study of the pathogenesis of malaria since these are the main target for
Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered
most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains un-
known. According to the above and bearing in mind the lack of information about the A. nancymaae species ge-
nome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra
with the available information for Homo sapiens. The great similarity found between the primate's molecules
and those for humans supported the use of the monkeys or their cells for continuing assays involved in studying
malaria. Integral membrane receptors used by Plasmodium for invading cells were also found; this required time-
ly characterisation for evaluating their therapeutic role. The list of erythrocyte protein composition reported here
represents a useful source of basic knowledge for advancing biomedical investigation in this field.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction and Plasmodium yoelii) are different to those infecting humans (Plasmo-

dium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium

Animal research has been essential for understanding and studying
some human diseases, particularly those having the greatest impact
around the world, such as malaria. For example, using rodents (BALB/
¢, C57BL/6, NOD/SCID or humanised strains) has led to obtaining valu-
able information about this parasite pathogenesis [1,2]. Rodent parasite
species (Plasmodium chabaudi, Plasmodium vinckei, Plasmodium berghei
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ovale and Plasmodium knowlesi), therefore having differences regarding
their biology and immune response [3]; this means that extrapolating
such studies in humans is not always reliable.

Non-human primates represent another model; they have been
shown to be the most suitable for studying pathogenesis, immunology
and anti-malarial vaccine development, given that they are genetically
and immunologically more similar to humans [1]. It is worth noting
that some of these primates (mainly Saimiri sp. [4,5] and Aotus sp. [6,
7]) have been widely used in basic and applied biomedical research.

Aotus spp. has been used since its susceptibility to experimental in-
fection by parasites from the genus Plasmodium was shown in the
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1960s [8]; several parasite strains have been adapted since then in this
model for studying malaria and developing possible pharmacological
treatments or vaccines [9)]. Within the genus, the Aotus nancymaae spe-
cies has been infected with different Plasmodium strains (P. falciparum:
Santa Lucia, Indochina I/CDC and Uganda Palo Alto strains; P. vivax:
Chesson, ONG, Vietnam Palo Alto, Salvador I and Honduran I/CDC; P.
malariae: Uganda I/CDC), as reported by Collins and his group several
years ago [10].

The Aotus species has led to an enormous advance regarding pre-
clinical studies highlighting the immunological and protective role of
various molecules or parts of them from the P. falciparum FVO strain;
taking into account that the complex machinery involved in erythrocyte
invasion used by this parasite for infecting cells is partly known today,
the Aotus model has been essential for describing the fundamental
basis when identifying vaccine components against this parasite species
[11,12]. On the other hand, these primates develop very reproducible
infection following experimental infection with the P. vivax VCG-1
(Vivax Colombia Guaviare-1) strain, having high levels of parasitaemia
(>5%) after 22 passages [13]; this has been of great importance for ad-
vancing molecular (MSP-7, Pv38, RAP-1 and RBP-1 between others)
[14-17] and immunological (MSP-1,, and MSP-14 from MSP-155 frag-
ment) [18,19] characterisation studies of some molecules from the P.
vivax species and evaluating their usefulness in developing an effective
vaccine. These findings highlight the fact that using A. nancymaae in
combination with the P. falciparum FVO or P. vivax VCG-1 strains is valu-
able for screening suitable vaccine candidates for later testing in
humans.

In spite of A. nancymaae species having led to a promising advance in
developing an anti-malarial vaccine, the biology of its erythrocytes still
remains unknown (these being vital hosts for Plasmodium). Most stud-
ies have focused on establishing the similarity between primate and
human genes encoding proteins related to the immune response [20-
22]. The revolution in omic sciences represented by Baylor College of
Medicine's Human Genome Sequencing Centre (BCM-HGSC) has led
to the genome and transcriptome of species being studied through the
Owl Monkey Genome Project. However, no study describing primate
protein composition has been carried out to date. Taking the importance
of studying A. nancymaae erythrocytes into account, our group was thus
interested in obtaining the greatest amount of information possible
about the proteome of these cells using data obtained from a previous
study by our research group [23] and evaluating it in terms of protein
composition and function.

2. Material and methods
2.1. Reanalysing proteome data

Tandem mass spectrometry (MS/MS) data came from a sample
consisting of a mixture of mature erythrocytes and reticulocytes (P.
vivax infected and non-infected ones); two samples had a 50:1 ratio
(mature erythrocytes:reticulocytes) whilst the other had a 1.11:1 ratio
as it had previously been subjected to a Percoll gradient to enrich infect-
ed reticulocytes (preferential invasion target for P. vivax) [23]. Data
were used for searching for similar peptides, using the human proteome
reported in the UniProt database [24]. Mascot [25] and SEQUEST algo-
rithms [26] and Thermo Scientific Proteome Discoverer software were
used with astringent search parameters. In brief, the most recent
UniProt H. sapiens (AUP000005640), P. vivax (AUP0O00008333) and P.
falciparum (AUP000001450) proteomes were used for compiling a
FASTA file containing common non-human contaminants (trypsin,
Lys-C and BSA). Thermo's Proteome Discoverer (version 1.4.0.288)
was then used for analysing each file in batch and in MudPit [27] for rep-
licates from the same sample; the latter led to identifying low quantity
proteins. Results having a <0.01 (high confidence) g-value were filtered
using a Mascot Score threshold above 20 and 1.5, 2.0, 2.25, 2.5, 2.75, 3,
3.2, 3.4 for SEQUEST HT (XCorr) for charge states from 1 to 7 and from

3.4 for values >7. An Excel file was generated for each filter showing
protein identification details (accession code, description and cover-
age), including all scores and identified peptides. Redundant UniProt ac-
cess codes were manually eliminated so that the total list of molecules
identified here could be reported.

2.2. Searching orthologous genes in New World monkeys

The search strategy for H. sapiens orthologous molecules with New
World primates involved using the biological DataBase network
(bioDBnet) [28], an online web resource enabling the search for
orthologue identifiers in different species. UniProt accession codes
from A. nancymaae-H. sapiens analysis were used for searching for
orthologous molecules in Callithrix jacchus, the only species from the
primate family phylogenetically related to Aotus for which proteome
data is available to date. Molecules identified as non-orthologous were
analysed again using the OrthoDB database [29].

2.3. Identifying erythrocyte proteins

The proteins identified here were compared to the most extensive
profiling of human erythrocyte RNAs published to date [30]. UniProt ac-
cession codes were converted into Ensembl gene ID codes with
bioDBnet [28] and then compared to 8092 genes expressed as a >0.5
threshold according to an erythrocyte transcriptome study [30].

2.4. Protein annotation according to gene ontology terms

Gene ontology (GO) annotations available in the UniProt database
were analysed using the Software Tool for Rapid Annotation of Proteins
(STRAP, version 1.5) [31], developed by Boston University School of
Medicine's Cardiovascular Proteomics Centre (Boston, MA). The Nation-
al Institute of Allergy and Infectious Diseases (NIAID) Database for An-
notation, Visualization, and Integrated Discovery (DAVID) [32,33] was
also used for categorising molecules according to GO terms; stringent
parameters were used to ensure statistical significance (thresholds:
EASE value = 0.001 and Count = 2).

2.5. Predicting cell membrane molecules

The Red Blood Cell Collection (RBCC) database was used for
predicting Surface molecules; RBCC integrates the proteome of human
RBC proteins identified to date [34]. The search parameters involved
being a highly confident match in both hRBCD and BSc_CH, a blood
group or CD marker, experimentally tested in the Sarkadi-lab. The
UniProt accession codes for each protein so identified were then manu-
ally downloaded for compiling the supplementary table.

3. Results
3.1. Aotus protein prediction

The flow chart in Fig. 1 shows how A. nancymaae proteins were iden-
tified and analysed. A. nancymaae mass spectra were initially imported
in Proteome Discoverer software and compared to the information
available for the H. sapiens proteome by data Mascot and SEQUEST
search algorithms; 1084 fully-tryptic and 1052 semi-tryptic molecules
were identified using digestion search parameters; 901 were recognised
by both parameters, whilst 183 fully-tryptic and 151 semi-tryptic ones
were only recognised by one parameter (Supplementary data 1). Pri-
mate peptides had great similarity with those from humans,
representing 1189 molecules (SD 2). The bioDBnet and OrthoDB tools
were used for confirming A. nancymaae proteins by comparing the
orthology of molecules found in this study with the available informa-
tion regarding New World monkey proteomes in the UniProt database
(Fig. 1). It was found that 95.7% (1138 proteins) of the proteins
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Fig. 1. A flow chart showing the analysis for identifying and confirming A. nancymaae erythrocyte proteins.

identified had orthologues in New World primates whilst 4.3% (51 mol-
ecules) of them did not (SD3); they were therefore excluded from fur-
ther analysis.

3.2. Specific erythrocyte proteins

Aotus RBC proteins were discriminated by comparing the tran-
scriptome data reported for human erythrocytes (Fig. 1) [30]. According
to such analysis, 811 A. nancymaae proteins were typical of erythrocytes,
given the evidence of transcription found (SD4). There was no evidence
of transcription for 327 proteins which might have been due to most
encoding genes (222) not complying with transcription inclusion
criteria used in this study (RPKM >0.5). Furthermore, some proteins
may have had reduced transcription, this being typical during erythro-
cyte maturation. Other proteins were associated with cell receptors
(i.e. immune components (C3b (P01024)/C4b (P04003)) or proteins
from serum (serum albumin (AOAO87WWT3)) (SD4, no transcription
evidence sheet) which are non-typical for RBC and hence do not contain
an encoding gene. Transcriptome analysis of A. nancymaae erythrocytes
is required to validate such hypothesis.

As expected, key proteins in gas exchange were identified (SD4),
such as carbonic anhydrase 1 (E5RII2) and 2 (P00918), aquaporin-1
(P29972) and p-globin (P68871) as well as other subunits from the
major cytoplasmic components (haemoglobin alpha (P69905), gamma
(E9PBW4), delta (P02042), zeta (P02008), theta (P09105) and mu
(Q6BOK9) chains). Proteins comprising the ankyrin (ankyrin
(P16157), band3 (P02730), Rh (P18577) and 4.2 (P16452) proteins)
or 4.1R (band 4.1R (P11171), glycophorin C (P04921), the Kx protein
(P51811), dematin (Q08495), adducin (alpha (P35611) beta (P35612)
and gamma (Q9UEY8) chains), tropomodulin-1 (P28289) and several
tropomyosin proteins) complexes, together with other molecules
which are essential for maintaining erythrocyte structure and function
(such as spectrin alpha (P02549) and beta (P11277) chains) were also
detected (SD4, marked by asterisks).

3.3. Analysis of functional distribution

STRAP was used for scanning the subcellular localisation and molec-
ular and biological functions for the 811 proteins for which there was
evidence of transcription (Fig. 1) [31]. Exploring the known functions
reported in UniProt revealed that the proteins identified in this study
participated in the following biological processes: cellular, developmen-
tal, immune system, interaction with cells and organisms, localisation,
metabolic, regulation and response to biological stimuli (Table 1). Re-
garding molecular function terms, most were implicated in binding
function (439 molecules) or were associated with catalytic activity

(326 molecules) whilst fewer were known for having a role in antioxi-
dant activity (10 molecules), molecular transduction (9 molecules)
and molecular structure (36 molecules) (Fig. 2A). Regarding cell
localisation, some were extracellular, cytoplasm, nucleus and/or mem-
brane components (Fig. 2B).

DAVID software was used for analysing GO term enrichment [32,33]
in the search for the most relevant groups having statistical significance
(Fig. 1). Regarding the 477 molecules identified by the software, the
functional annotation chart showed that the commonest biological pro-
cess (BP) terms determined were as follows: establishing localisation
(175 molecules, p = 1.8E~2%), transport (173 molecules, p =
4.9E~2%), localisation (180 molecules, p = 1.1E~2'), generating precur-
sor metabolites and energy (48 molecules, p = 1E~'°) and ATP meta-
bolic processes (27 molecules, p = 7.9E~'7) (SD5). Regarding
molecular function (MF), 77 were related to nucleoside-triphosphatase,
pyrophosphatase or hydrolase activity (p = 1.3E722 to 1.8E"2!), 38 to
GTPase activity (p = 1.1E7 '), 325 to protein binding (p = 2.1E~'°)
and 237 to catalytic activity (p = 2, 9E7'®) (SD5). Most proteins in
the cell component (CC) category were intracellular, the most common
ones being cytoplasm, mitochondria or organelle envelop (SD5). In spite
of similarity between some terms stated by STRAP and DAVID software
(e.g. BP: localisation, transport and metabolic processes; MF: binding
and catalytic activity; CC: cytoplasm and mitochondria), there was dis-
crepancy regarding the number of molecules comprising them, proba-
bly due to the different training sets and statistical analysis used by
each tool. Hence, and because of the databases' dynamic nature, the
analysis reported here cannot be considered as absolute.

3.4. Predicting integral membrane or surface-associated proteins

The RBCC database was used for predicting cell surface protein
localisation, aimed at determining cellular receptors which could

Table 1
Proteins involved in biological processes.

Biological function Number of proteins

Cellular 429
Developmental 104
Immune system 51
Interaction with cells and organisms 91
Localisation 190
Metabolic 77
Regulation 354
Response to stimulus 110
Other function 234
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determine infection by Plasmodium species (Fig. 1) [34]; 155 molecules
were identified, 51 of which were annotated as integral membrane pro-
teins and 54 as being membrane-associated (SD6). Receptors having a
known P. falciparum and P. vivax binding pattern were found, such as
glycophorin C (PfEBA140 receptor [35]), band 3 (PMSP-1 [36], PAMSP-

Red Blood Cell
Receptors
Glycophorin C

Kx

“ CR1

Basigin

9 [37] and PvTRAg38 receptor [38]) and Kx (PfAMAT1 receptor [39]),
and one having an unknown binding pattern (as its absence reduced
parasite invasion of cells) such as that for [CAM-4 [40] (Fig. 3). Other re-
ceptors used by Plasmodia, such as the CR1 (PfRh4 receptor [41]),
basigin (PfRh5 receptor [36]) and CD44 [42], were found manually, as
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Fig. 3. A schematic representation showing integral membrane proteins identified here which have been experimentally validated (in humans) as erythrocyte receptors (glycophorin C,
band3, Kx, CR1, basigin, ICAM-4 and CD44) and their respective ligands in Plasmodium (PfEBA140, PAMSP-1, PAMISP-9, PvTRAg38, PfAMA1-II, Pf/RH4 and -5).
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their prediction by the RBCC database was not accurate due to the codes
used by such databases (e.g. CR1 was P17927, basigin was P35613, CD44
was P16070).

4. Discussion

Given A. nancymaae species' experimental importance, this study
was focused on an analysis based on the similarity of MS/MS spectra
with those for H. sapiens; the aim was a comparative identification of
new proteins, taking advantage of the additional data available, collect-
ed during a previous study [23]. Such comparison revealed similarity
between both species for various peptides; this was reasonable due to
phylogenetic closeness between primates and humans (SD1 and SD2).
Such finding supported the fact that the primates' proteome being ac-
quired from the search in human databases is an acceptable search
strategy, as shown recently [43]. On the other hand, the relatively low
amount of identified Aotus proteins (1189 molecules) could have result-
ed from using P. vivax infected samples as a source for the analysis. We
must highlight that our original goal was to characterise the P. vivax pro-
teome [23] and for such purpose, samples were processed to remove
most biological “contaminants” from RBC; this resulted in a greater
abundance of parasite proteins masking Aotus peptide detection.

The search for orthologues in New World primates using bioDBnet
and OrthoDB databases led to confirming 1138 proteins (95%) (SD3);
this approach was used as A. nancymaae genome or transcriptome
data had not been released. Some of them were just identified by one
database, possibly due to differences between their mapping algo-
rithms. Unlike bioDBnet, which allowed comparison with C. jacchus
(the only species from the family having its proteome available at the
time), OrthoDB has recently been shown to have the advantage of mak-
ing predictions using some A. nancymaae data. However, it is not practi-
cal to analyse a whole data set one-by-one because this requires a
tremendous amount of time for processing it.

A filter based on transcriptome analysis was applied for determining
the Aotus erythrocyte proteome, once the sample used for the initial MS/
MS analysis consisted of erythrocytes and reticulocytes [23]. It was
found that 811 molecules were mature erythrocyte components, as de-
termined by transcript evidence for each of them (SD4). The attempt to
identify genuine reticulocyte components proved unsuccessful as this
cell, just like mature RBC, transcribed all genes encoding the proteins
identified here (data not shown). The forgoing has been supported by
a recent study showing that mature erythrocytes and reticulocytes con-
sist of the same molecules but differ in abundance [44]. Considering the
811 molecules as erythrocyte components, these were compared to a
list of the 4135 H. sapiens RBC molecules identified to date by MS/MS
[44-56]; evidence was found regarding 403 of them (SD4, accession
codes shown in bold).

Various molecules were identified here (SD4) which are abundantly
expressed in reticulocytes and then become reduced (integrin 31
(P05556), some ribosome subunits, sodium/potassium-dependent
ATPase and tubulin subunits) or completely lost as cells matured
(such as transferrin receptor 1 (P02786)). This was to be expected
given that the sample was heterogeneous and such cell types were
not eliminated for initial analysis [23]. Likewise, even though the eryth-
rocytes were devoid of organelles, some of their components were
found, possibly because they are cell remains which should have be-
come removed as they matured [57]. Complement receptor 1 (CR1)
was found, possibly playing the same role in immune-adherence clear-
ance as described in a previous study [58]. The forgoing was justified,
since MS/MS spectra for immune components such as C3b and C4b
were also found in the initial list of molecules (SD2).

Interestingly, several cytoplasm and cytoskeleton molecules which
are very important for maintaining cell integrity [59] were also found
(SD4, marked by asterisks). Given that Plasmodium infection affects
cell morphology during invasion and growth [60,61] and several of
such molecules could be affected during parasite infection and host

cell remodelling, it would be interesting to compare primate proteomes
of uninfected versus infected red blood cells in future studies.

Analysis of GO term enrichment revealed a correlation between bio-
logical processes formed by most proteins and vital cell functions (SD5).
For example, molecule localisation and transport are essential for cor-
rect cell structure organisation; various proteins participate in this as
they are implicated in macromolecular complex formation, such as an-
kyrin and 4.1R, others forming the cytoskeleton and some responsible
for phospholipid transport (such as flippases and scramblases) whose
function is to maintain membrane stability and integrity [59]. Important
proteins were also found regarding precursor metabolite and energy
generation which is very essential for maintaining a number of vital
cell functions, such as metabolism [62]. Likewise, there was clear corre-
lation between molecular function and cell viability; proteins implicat-
ed in nucleoside-triphosphatase, hydrolase and GTPase activity could
be participating in ubiquitin-dependent cell degradation which is es-
sential for a cell's correct maturation, as already established [46]. The
amount of molecules grouped in terms of cell localisation was quite sig-
nificant, coinciding with proteins grouped in terms of major significance
in biological processes and molecular function.

It is well-known that RBC membrane proteins have functional het-
erogeneity since they act as transport molecules and also as cell adhe-
sion and interaction proteins [59]. Such proteins are of interest in the
biomedical field, given that some pathogens such as those from the
genus Plasmodium use them as binding receptors to interact with cells
[63,64]. For example, proteins having sialic acid (SA), such as
glycophorin A, B or C, are receptors for proteins from the P. falciparum
erythrocyte binding ligand (EBL) family whilst those lacking SA, such
as the CR1, basigin, semaphorin, band 3 and Kx, facilitate the adhesion
of proteins from the reticulocyte-binding-like protein homologue
(RH) family. This gives rise to the observation that P. falciparum can
bind to RBC using SA-dependent or -independent pathways [65,66]. Re-
garding P. vivax infection, it has been described that the parasite only in-
vades reticulocytes and one of the few receptors described so far is the
Duffy antigen receptor for chemokines (DARC) [67].

Concerning the 51 integral membrane proteins identified by the
RBCC database, 5 receptors previously reported for P. falciparum were
found [63]: one receptor from the SA-dependent pathway (GPC) and
four from the SA-independent route (CR1, basigin, band3 and Kx).
Band3 has recently been identified as a receptor for a P. vivax molecule
belonging to the tryptophan-rich protein family [38]. DARC was not
identified in this study, possibly due to it being a protein whose peptides
generated by digestion with trypsin are long and are thus not detected
by MS [68]. The fact that these integral membrane components are Plas-
modium receptors (as experimentally validated on humans) suggested
that the remaining 46 identified here might also be essential for or be
implicated in parasite entry to cells. Further research should thus in-
volve assays aimed at confirming which of them are determinants re-
garding the pathogenesis of malaria. Identifying other receptors and a
complete understanding of erythrocyte-parasite interactions represents
a key area for research and, in the future, developing a rational thera-
peutic method allowing malarial infection to be controlled.

4.1. Concluding remarks and perspectives

The present study has reported the characterisation of the A.
nancymaae erythrocyte proteome for the first time. The in silico ap-
proaches to the large datasets led to ascertaining this primate's erythro-
cyte proteomic profile and to interpreting its biological and molecular
characteristics. Combining the data gathered here with the early release
of A. nancymaae genomics and transcriptomics data provided by the
Baylor College of Medicine's Human Genome Sequencing Centre
(BCM-HGSC) will be enormously useful for strengthening bioinformat-
ics analyses.

Integral membrane proteins were amongst the most important re-
ceptors described here, some of which have been shown to be involved
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in P. falciparum merozoite invasion of human erythrocytes (e.g.
glycophorin C, Kx, CR1, basigin, Band3, ICAM-4 and CD44). The P.
vivax invasion pathway depends on Duffy antigen interaction with the
DBP ligand [67]. Earlier studies have described the presence of this path-
way in the A. nancymaae primate [69], suggesting that some integral
membrane proteins identified here may also be involved in such host-
parasite interactions; further receptor-ligand interaction studies are
thus needed to validate and fully describe the complex invasion process
led by P. vivax parasites in invading monkey erythrocytes. These find-
ings will further highlight Aotus primates as an appropriate model for
basic and applied biomedical investigation.

Supplementary data to this article can be found online at doi:10.
1016/j.jprot.2016.10.018.
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Caracterizacion de PvGAMA en la Cepa VCG-1 de P. vivax

Identificacion del gen pvgama y caracterizacion in silico

Una de las aproximaciones que se utiliza para identificar cientos de proteinas en P. vivax
es la protedmica, la cual, en combinacion con el andlisis in silico, permite conocer la compleja
maquinaria proteica que utiliza el parasito y predecir la funcion de algunas de sus proteinas (35-
37). Por ende, se hizo un andlisis a gran escala de los datos del proteoma de P. vivax reportados
hasta el afio 2014, para encontrar moléculas con caracteristicas idoneas que un candidato a vacuna
debe tener, como ser codificadas por genes con un perfil de transcripcion mayor a 35 horas del
ciclo intraeritrocitico y tener sefiales de secrecion. El tamizaje permitio identificar GAMA cuyo

homologo en P. falciparum es descrito como un potencial candidato a vacuna (106, 107).

El gen pvgama codifica para una proteina de 771 aa de longitud con un peso molecular de
~82,7 kDa, siendo 33 residuos mas larga que su homologo en la especie P. falciparum (PfGAMA:
738 aa) (106). Posee una secuencia sefial de secrecion con un sitio probable de hidrolisis entre los
aa 20 y 21, y una secuencia de anclaje GPI localizada entre los residuos 750-771, segun la
prediccion obtenida con los programas SignalP 4.0 y FragAnchor, respectivamente (Figura 1A)
(108, 109). El andlisis de la secuencia en la base de datos Interpro reveld la presencia de una
secuencia repetida compuesta de 21 copias del pentapéptido (A/L)AN(A/G)(N/D), localizada entre
los residuos 591 y 695.

B
Peptido seial Anclaje- GPI
aa 1-20 aa 750-771 2.5 Kpb 4 <« 2313pb
1.5 Kpb -
Region repetitiva P
aa 591-695 1 Kpb 4

Figura I: Identificacion de GAMA en la cepa VCG-1 de P. vivax. (A) Caracterizacion in silico de PvGAMA. El
diagrama muestra la localizacion del péptido sefial, la region repetitiva, la secuencia de anclaje GPI y los péptidos
seleccionados para el ensayo de inmunizacion en conejos (lineas de color). (B) Transcripcion del gen pvgama en
esquizontes. Carril 1 indica el patron de peso molecular. Carriles 2 y 4 corresponden a la amplificacion del gen usando
ADNCc sintetizado con retrotranscriptasa (RT+) y ADNg, respectivamente. El control de una sintesis de ADNc sin
retrotranscriptasa (RT-) se muestra en el carril 3.
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A pesar de la dificultad para realizar investigacion bdsica en P. vivax, dadas las
caracteristicas intrinsecas de su biologia (31), se caracterizd la proteina GAMA gracias a la
adaptacion de la cepa VCG-1 de P. vivax en primates (110). Segtn los resultados obtenidos, el gen
gama esta presente en el genoma de la cepa VCG-1 de P. vivax y se transcribe en el estadio
esquizonte (Figura 1B), lo que coincide con el analisis transcripcional de 3 aislados clinicos de P.
vivax, donde aumenta su transcripcion de manera importante durante los tiempos TP7-TP9, lo que
corresponde a estadios maduros del desarrollo intra-reticulocito (esquizontes tempranos y tardios)
(34). Al comparar las secuencias obtenidas a partir de ANDc (depositada en el NCBI con el nimero
de acceso KT248546) y ADNg, se observo que el gen es codificado por un solo exon. El
alineamiento de las secuencias de genes de la cepa VCG-1 adaptada a monos Aotus con la cepa de
referencia Sal-1, permitio identificar 3 mutaciones: ¢.258 T>C (p.Thr86Thr), ¢.1926 T>A
(p.Ala642Ala) y ¢.1929 T>C (p.Asn643Asn).

Expresion de PvGAMA en esquizontes

Para determinar la presencia y localizacion de la proteina en las formas maduras de
parasitos (esquizontes), se utilizaron anticuerpos de conejo dirigidos contra varios péptidos
sintéticos disefiados sobre la secuencia de PvGAMA (Figura 2A). El suero pos-III detectd varias
bandas de distinto peso molecular sobre el lisado de parasito tratado en condiciones reductoras
(Figura 2A carril 3); éstas corresponden a dos bandas intensas (de 44 y 30 kDa) y otra de 56kDa
de menor intensidad, la cual también se detect6 utilizando el suero pre inmune (Figura 2A carril
2). Dicho procesamiento difiere del encontrado para GAMA de P. falciparum, la cual sufre dos
procesamientos: el primario que corresponde a la formacion de un dimero de 37 y 49 kDa a partir
de la proteina completa (80 kDa), y el secundario, un fragmento de 42 kDa a partir del producto
de 49 kDa (107).

No fue posible obtener anticuerpos dirigidos contra el fragmento teérico de 37 kDa del
extremo amino-terminal de PvGAMA, lo que impidi6 verificar los productos de procesamiento
proteolitico generados hacia dicho extremo. Lo anterior se debid a la dificultad para seleccionar
péptidos de células B idoéneos que pudieran ser utilizados en ensayos de inmunizacidn, por sus
bajos valores de antigenicidad de Parker e hidrofilicidad. La identificacion de la proteina GAMA

en el lisado de esquizontes de la cepa VCG-1 de P. vivax, coincide con el estudio del proteoma de
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aislados de P. vivax provenientes de 10 pacientes sintomdticos de Tailandia, donde se identific
un péptido de GAMA (con un 99% de confianza) en la muestra de esquizontes por espectrometria

de masas (36).

MP kDa B

634
48

351

| — 56 DAPI PvGAMA GRi
| — 44

171

1 2 3

Figura 2. Deteccion de PvGAMA nativa en esquizontes. (A) Reconocimiento de PvGAMA usando anticuerpos
generados en conejo. Carril 1 indica el marcador de peso molecular en kilodaltons (MP kDa). Carriles 2 y 3 muestran
el reconocimiento de PvGAMA usando suero pre-inmune y pos-I11, respectivamente. (B) Localizacion sub-celular de
PvGAMA en esquizontes maduros. Las imdgenes muestran el reconocimiento de la proteina (verde), el ntcleo (azul)
y los globulos rojos infectados (GRi) (luz blanca).

Al usar los anticuerpos anti-PvGAMA para localizar la proteina, se observo una sefial de
fluorescencia punteada en los merozoitos contenidos en esquizontes maduros (Figura 2B), la cual
es caracteristica de proteinas localizadas en organelos apicales (roptrias o micronemas) y coincide
con el patron de expresion apical de su homoélogo en P. falciparum (106). Lo anterior, sumado a
los resultados de transcripcion y expresion de GAMA en estadios maduros de P. vivax
(primordialmente esquizontes), sugiere que posiblemente la molécula pueda tener una funcion
durante el proceso de invasion a reticulocitos. Asi, se evalud la capacidad de union de PvGAMA

a reticulocitos, cuyos resultados han sido descritos en el capitulo 2 de esta Tesis Doctoral.
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Reticulocytes represent the main invasion target for Plasmodium vivax, the second most prevalent parasite species
around the world causing malaria in humans. In spite of these cells’ importance in research into malaria, biological
knowledge related to the nature of the host has been limited, given the technical difficulties present in working
with them in the laboratory. Poor reticulocyte recovery from total blood, by different techniques, has hampered
continuous in vitro P. vivax cultures being developed, thereby delaying basic investigation in this parasite species.
Intense research during the last few years has led to advances being made in developing methodologies orien-
tated towards obtaining enriched reticulocytes from differing sources, thereby providing invaluable information for
developing new strategies aimed at preventing infection caused by malaria. This review describes the most recent
studies related to obtaining reticulocytes and discusses approaches which could contribute towards knowledge
regarding molecular interactions between target cell proteins and their main infective agent, P. vivax.

Introduction
Reticulocytes are erythroid cells which have not
reached maturity, being characterised by presenting
a reticular network formed by residual RNA (Orten,
1934). These cells represent around 1-2% of circu-
lating human red blood cells (RBCs) and have a short
life span (24 h). It has been demonstrated that vary-
ing the percentage of reticulocytes as well as defects
in their messenger RNA are associated with some
diseases having variable clinical relevance (Benz and
Forget, 1971; Bessman, 1990; Suzuki et al., 1993).
Some parasite species belonging to the Plasmod-
ium genera causing malaria in humans (Plasmodium
vivax) and rodents (Plasmodium berghei) have shown a
certain preference for invading reticulocytes (Butcher
et al., 1973; Mons, 1990; Cromer et al., 20006). P. vi-
vax is one such species which is characterised by being
the most widely distributed throughout tropical and
sub-tropical zones, causing the highest morbidity in-
dexes on the Asiatic and American continents (Guerra
etal., 2010). Obtaining a sufficient amount and con-
centration of reticulocytes is essential for establish-
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Key words: /n vitro continuous culture, Molecular interaction, P, vivax,
Prevention strategy, Reticulocyte.

Abbreviations used: DARC, Duffy antigen receptor for chemokines; HSC,
haematopoietic stem cell; MSP, merozoite surface protein; RBCs, red blood
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ing iz vitro P. vivax cultures, meaning that studying
them has become one of the essential research topics
for groups working on malaria caused by this parasite
species.

Knowledge of reticulocyte biology regarding the
type of cell receptors required for invasion by the
parasite is limited. Studies of the human reticulocyte
transcription profile (Goh et al., 2007) and analysing
murine reticulocytes’ partial proteome (Prenni et al.,
2012), added to using methodologies for evaluating
protein—protein molecular interactions, could be of
great use for carrying out future research focussed on
an elucidating interaction mechanisms between this
target cell and its pathogen.

Literature search

Literature included in this review was found querying
the PubMed database from 1900 to date, using the
following search terms: ‘reticulocytes’, ‘reticulocyte
purification’, ‘reticulocyte cryo-preservation’, ‘retic-
ulocyte proteome’, ‘Plasmodium vivax in vitro culture’,
‘Plasmodium vivax vaccine’ and ‘Plasmodium vivax and
reticulocytes’. The literature was initially analysed
according to titles and abstracts and then relevant
studies were fully reviewed. The inclusion criteria
were: (i) studies describing reticulocytes’ biology fo-
cussing on receptor characterisation and proteomics,
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or (ii) their use in P. vzvax research and (iii) the re-
sults were restricted to studies written in English
language.

Reticulocytes and malaria

The first microscopic descriptions of reticulocytes
were made by Wilhelm Erb in 1865; he demon-
strated the presence of granular material in human
RBC and different animal species. Twenty years later,
Paul Ehrlich reported that some erythrocytes from pa-
tients suffering from anaemia, stained with methy-
lene blue, had fine, dense, elegant blue networks;
which is why they are called ‘reticulated erythrocytes’
(Orten, 1934). Gloria Gronowicz and her group de-
fined the complex process of these cells maturing into
erythrocytes from 1984 onwards (Gronowicz et al.,
1984), thereby leading to their main characteristics
being determined: from residual RNA content left
behind after nuclear loss (formerly known as reticular
network), the presence of ribosome, mitochondrial,
lysosome and endocyte vesicular granules and so on.
At clinical level, such cells’ count is used for distin-
guishing the effectiveness of RBC production in bone
marrow (Piva et al., 2010), or, on the contrary,
for evaluating the type of cell disorder being
presented: aplastic anaemia, haemolytic anaemia,
haemoglobinopathy, B-thalassaemia or reticulocy-
topenia (Benz and Forget, 1971; Bessman, 1990;
Suzuki et al., 1993).

Interest in studying reticulocytes among groups
working on malaria has emerged as a result of research
orientated towards standardising an in vitro P. vivax
culture, due mainly to this parasite species’ preference
for invading immature RBC (Bass and Johns, 1912;
Mons, 1990). It is well known that 7% vitro cultures
require the constant addition of reticulocytes (given
these cells’ maturation rate, ze. 24h at 37°C) for
perpetuating parasite growth; however, given these
cells’ reduced percentage in adult humans’ blood,
managing to enrich or finding a source having a high
percentage of them has been one of the main research
challenges. As a result of this issue, studies reporting
P. vivax proteins’ functionality and their potential as
vaccine candidates are limited, compared with those
described for Plasmodium falciparum (Patarroyo et al.,
2012). As developing a vaccine against pathogenous
agents involves ascertaining a particular microorgan-
ism’s biology and its respective target cells (Patarroyo

D. A. Moreno-Pérez, J. A. Ruiz, and M. A. Patarroyo

et al., 2011), in the case of P. vivax, it is recommend-
able that a methodology be standardised for obtain-
ing a good amount of reticulocytes from different
biological sources, and also evaluating techniques for
characterising receptor—ligand molecular interactions
between such cells.

Reticulocyte sources

Different blood sources have been used in the at-
tempt to enrich reticulocytes, including animals (pri-
mates and mice), healthy people and people suffer-
ing from blood disorders such as haemochromatosis
(Golenda et al., 1997) and B-thalassaemia (Ocampo
et al., 2002) and cord blood from newborns (Table 1).
Different protocols have also been used for obtain-
ing viable reticulocytes supporting parasite infection
aimed at improving basic knowledge about their bi-
ology. A discontinuous 77 vitro P. vivax culture has
recently been partially standardised using enriched
cord blood reticulocytes (Russell et al., 2011), repre-
senting an advantage for continuing studies in this
area.

Isolation from animal blood

Primates from the genera Aotus nancymai and BALB/c
mice are frequently used as animal models for study-
ing the pathogenesis of malaria. In attempts to stan-
dardise a culture for P. vivax and Plasmodium yoelii,
these animals have been anemised by haemolytic
drugs and consequently the percentage of reticu-
locytes in blood has increased considerably. The
classical CF11 column fileration method (Sriprawat
et al., 2009) has been used for eliminating leuco-
cytes from primates’ blood samples and obtaining
completely pure reticulocytes (Mons et al., 1988).
Even though the objective of obtaining enriched
reticulocytes has been successful, these cells have
shown certain fragility, given that infection could not
be maintained. Mice anemised by Swardson-Olver’s
group had 58-72% reticulocytes which were recov-
ered by cardiac puncture, biotinylated and enzymat-
ically treated with trypsin and chymotrypsin. It was
observed that cells pre-treated with trypsin were in-
fected threefold more by P. yoe/ii 17X strain parasites
than those pre-treated with chymotrypsin when in-
jected in BALB/c mice, thereby suggesting that the
recovered reticulocytes were viable hosts (Swardson-
Olver et al., 2002). The methodology for enriching
reticulocytes by inducing anaemia in animals has
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Table 1|General panorama of sources and methods for enriching reticulocytes evaluated to date

Review

Reticulocyte Viability in
source and Yield in vitro Expenses/suitability
sample collection  Enrichment method (%) culture based on source References
Blood obtained Splenectomised monkeys were treated ND No Less expensive but Mons et al. (1988)
from animals by with phenylhydrazine (100 mg/kg body viability reticulocyte source
venipuncture or weight). Leucocytes were removed by very difficult to
by cardiac using a CF-11 column or leucocyte filters obtain. Useful for
puncture research in P. vivax
Mice were treated with phenylhydrazine >30 Not tested  Less expensive anda  Gronowicz et al.
(10-15mg/kg body weight) good reticulocyte (1984)
source to study mice
malarias
Mice were treated with 1.5 mg of 58-72 Swardson-Olver
phenylhydrazine et al. (2002)
Mice were treated with an >95 Koury et al. (2005)
anaemia-inducing strain of Friend
leukaemia virus (FVA). Reticulocytes were
separated by using 1-2% deionised
bovine albumin gradient
Mice were injected intraperitoneally with 35-50 Liu et al. (2010)
2 ml of normal saline and then 700 ul of
blood were removed by retro-orbital
puncture. A two-step isotonic Percoll
gradient with density of 1.058 and
1.096 mg/ml was used for reticulocyte
recovery
Mice were treated with 1.5 mg of ND Wooden et al.
phenylhydrazine (2011)
50 Prenni et al. (2012)
Peripheral blood Blood extracted 62% Percoll ND Yes Not expensive but it Barnwell et al.
of people from healthy people  gradient is a poor reticulocyte (1989)
obtained by was treated to Magnetic beads 15-42 Not tested  source. Useful for
venipuncture enrich reticulocytes loaded with research in P. vivax Brun et al. (1990)
and/or remove anti-human
leucocytes transferrin
receptor
antibodies
Percoll/ 8-15 No Lanners (1992)
renografin-60 and viability
gradient rarely 25
CF-11 column or ND Not tested Sriprawat et al.
Plasmodipur filter (2009)
Blood extracted Differential 15-20 Yes Not expensive but Golenda et al.
from people having centrifugation and patients suffering (1997)
haemochromatosis leucocyte from such diseases
or B-thalassaemia, separation filter are scarce in some
respectively, was CF-11 column >85 Not tested  latitudes of the world
treated to enrich Ocampo et al.
reticulocytes and/or (2002); Rodriguez
remove leucocytes et al. (2002);
Urquiza et al. (2002)
Cord blood of Cord blood was RCXL2 ND Not tested  Not expensive and Goh et al. (2007)
newborns used to enrich high-efficiency recommended
collected in reticulocytes and/or  leucocyte source

heparin tubes

remove leucocytes

reduction filters

(Continued)
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Table 1!Continued
Reticulocyte Viability in
source and Yield in vitro Expenses/suitability
sample collection  Enrichment method (%) culture based on source References
CF-11 column 6.9-7.9 Yes Udomsangpetch et al.
(2007)
70% isotonic 57.8 Yes Russell et al. (2011)
Percoll gradient
and a CF-11
column
Hypotonic sodium 1-28 Yes Grimberg et al. (2012)
chloride solution
and a CF-11
column
Reticulocytes obtained by maturing ND Yes Panichakul et al. (2007)
erythroid cells isolated from cord blood
by using 30-60% Percoll discontinuous
gradients
Reticulocytes were obtained from cord >40 Yes Borlon et al. (2012)
blood by using 70% isotonic Percoll
gradient. Leucocytes were removed
using a CF-11 column. Sample was
cryopreserved in liquid nitrogen with
Glycerolyte 57
Reticulocytes were obtained by maturing ND Yes Expensive but Noulin et al. (2012)
HSCs. Glycerolyte, Glycerol + liquid recommended
Sorbitol or IMDM/10% DMSO/40% FCS source

were used for cryopreservation

ND: Not determined.

been used in other studies orientated towards evaluat-
ing reticulocyte maturation (Koury et al., 2005; Liu
etal., 2010), as well as studying the partial proteome
(Prenni et al., 2012).

Isolation from adult human blood

Even though the percentage of reticulocytes is low
in adults, several enrichment techniques have been
explored. Barnwell et al. (1989) obtained reticulo-
cytes from human blood using a 62% Percoll gra-
dient. The results showed that these cells supported
in vitro parasite invasion and development (Barnwell
et al., 1989). Norbert Lanners used the discontinu-
ous Percoll/renografin-60 gradient technique in 1992
for separating reticulocytes from fresh human blood.
Even though the amount of cells obtained was consid-
erable (8—15%), they were fragile and did not support
parasite development (Lanners, 1992). Once such
disadvantage had been described, several research
groups focussed their efforts on finding other sources
and improving techniques for obtaining immature
erythrocytes.

Reticulocytes, just like all cells, display a series of
cell surface markers. It has been shown that transfer-
rin receptors disappear during maturation, thereby
suggesting that they are specific for immature red
cells (Frazier et al., 1982). Bearing such difference in
mind, a purification protocol using anti-transferrin
antibodies coupled to magnetic beads was developed
(Brunetal., 1990); the results revealed 15—42% retic-
ulocyte enrichment. However, the difficulty of elut-
ing cells coupled to beads has been the main factor
limiting this method.

Blood from patients suffering haemochromatosis
has a high percentage of reticulocytes (3—5%). Tak-
ing advantage of such proportion of cells, Golenda
etal. (1997) used a differential centrifugation separa-
tion protocol. Leucocytes were removed by a leucocyte
separation filter later on, achieving around 10—12 ml
final volume having 15-20% reticulocytes per pe-
ripheral blood unit. These cells were able to support
a short-term P, vivax culture.

Our group reported using blood from a patient suf-
fering from B-thalassaemia in 2002, demonstrating
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that such blood contained greater than 85% reticu-
locytes (Ocampo et al., 2002; Rodriguez et al., 2002;
Urquiza et al., 2002). Samples obtained by venipunc-
ture were washed and passed through a CF11 cellu-
lose column to remove leucocytes and then used for
identifying peptide sequences from P. vivax proteins
binding with high affinity to target cells. Comparing
reticulocyte and mature erythrocyte binding revealed
that the former had specific receptors for the proteins
being evaluated.

Isolation from cord blood

The animal and/or adult human blood reticulocyte
isolation studies had limited application, given the
intensive labour involved in the procedure and a lack
of available patients in some parts of the world suf-
fering from such diseases; this led to exploring other
areas. Udomsangpetch et al. (2007) were the first to
report that umbilical cord blood, containing a high
percentage of reticulocytes (3—8%), supported an in
vitro P. vivax culture which was maintained for a short
period (not more than 30 days). Russel et al. (2011)
then used a procedure for enriching cord blood reticu-
locytes using a 70% isotonic Percoll gradient. Leuco-
cytes and platelets were removed from twenty-eight
20 ml volume samples using two rounds of filter-
ing with a CF11 column. After being separated by a
density gradient, an average of 57.8% reticulocytes
contained in 191 ul blood was obtained; these were
kept stable for 4 wk. This represented an advantage
for culturing, as having a greater amount of reticulo-
cytes in a small volume favours P. vivax invasion and
growth.

Grimberg et al. (2012) developed a simple, rapid
and easily used methodology for enriching reticu-
locytes from cord blood. The authors used selective
enrichment on 10 cord samples using a hypotonic
sodium chloride solution, taking advantage of the dif-
ference in reticulocytes’ osmotic pressure compared
with that of other types of cell. Reticulocytes in-
creased by 1-28% after eliminating cells lysed by
several washings and removing leucocytes by CF11.
The cells maintained their integrity and were viable,
demonstrated by analysing haemoglobin stability and
in vitro P. falciparum culture assay. Even though this
methodology is not suitable for use with normal adult
blood, or for cryopreserving cells, it is clear that it
represents an optimum procedure for obtaining cells
for immediate use.

Review

Maturation of haematopoietic cells

Extensive research focussed on studying the umbilical
cord has led to determining that this is an important
source of mesenchymal, somatic and haematopoietic
stem cells (HSCs), this being of great importance in
the field of biomedical and clinical research (Pelosi
et al., 2012). HSCs can be differentiated in any type
of cell present in the blood by the activity of specific
differentiation factors; such cells can also be found in
bone marrow or other tissues. Thinking about this
line as a potential source of erythrocytes, Panichakul
etal. (2007) introduced a method for obtaining a large
amount of reticulocytes from HSC maturation into
erythroid cells. Their results revealed a large amount
of reticulocytes on day 14 determined by brilliant
Cresyl blue staining; given their morphology, cell sur-
face markers and susceptibility to P. vivax infection,
the authors considered them to be completely viable.
Although this method has led to fresh erythroid cells
being obtained in different stages of maturation, it
is very complex to use and is costly, meaning that
it may have limited application in research groups
working on malaria.

Reticulocyte cryopreservation

Although most reticulocytes are successfully recov-
ered by using some of the methods mentioned in the
‘Reticulocyte sources’ section, their rapid maturation
turns out to be a restrictive factor when using this
type of cells in lengthy assays. Several studies focussed
on reticulocyte preservation have been developed to
overcome this problem. Borlon et al. (2012) ana-
lysed the possibility of cryopreserving reticulocytes
obtained from cord blood; these cells were enriched
according to the previously mentioned methodology
(Russell et al., 2011), homogenised in 20% glyc-
erol and then stored in liquid nitrogen. Once the
cells had been unfrozen using the sodium chloride
method, their ability to host infection was evalu-
ated in vitro. The results showed that passing cells
through liquid nitrogen did not affect their stabil-
ity as they matured normally; cells were also viable
and supported parasite invasion. A complementary
study by Noulin et al. (2012) showed that erythro-
cytes obtained from HSC maturation could be cryo-
preserved for 1 year without damage to the recep-
tors located on plasma membrane. Cryopreservation
was successful using two media containing differ-
ent preservative agents; the first consisted of 28%
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glycerol, 3% sorbitol and 0.9% sodium chloride,
whereas the other contained 10% DMSO/40% FCS
(Noulin et al., 2012). The use of these methods rep-
resents an advantage concerning reticulocyte use in
malaria research and in studies using analytical tools
focussed on omic sciences, such as microarrays and/or
proteomics.

Cell receptors characterised for P. vivax
Even though it is clear that some reticulocyte
molecules are essential for the progress of P. vivax
infection, their description, characterisation and the
exact nature of molecular interactions with target
cell proteins still remains unknown. Characterising
cell surface receptors will provide valuable informa-
tion for developing prevention strategies, mainly vac-
cines. In spite of the foregoing, advances in know-
ledge regarding reticulocyte receptors for P. vivax
have notably lagged behind the body of knowledge
concerning erythrocyte receptors for P. falciparum
(Sim et al., 1994; Rayner et al., 2001; Goel et al.,
2003; Maier et al., 2003; Li et al., 2004; Mayer et al.,
2004; Kato et al., 2005; Mayer et al., 2009; Tham et
al., 2010; Crosnier et al., 2011; Gunalan et al., 2011;
Sahar et al., 2011; Triglia et al., 2011; Tham et al.,
2012) (Figure 1) (Table 2).

The Duffy antigen receptor for chemokines
(DARQC) is the only reticulocyte receptor used by
P. vivax during invasion which has been described
and functionally evaluated to date (Figure 1). This
molecule is a transmembrane glycoprotein which is
expressed on the surface of various cells, including
human erythrocytes and reticulocytes (Peiper et al.,
1995; de Brevern et al., 2005). The DARC has 337
amino acids, having an estimated ~35 kDa molecular
weight and crosses the RBC membrane seven times.
Its identity as a P, vivax receptor became known in a
study involving the genotyping of individuals prov-
ing resistant to the disease which determined that
their RBC lacked DARC expression (Miller et al.,
1976). It has also been shown that this receptor is re-
quired for infection caused by P. knowlesi (Haynes
et al., 1988; Adams et al., 1990) and P. yoelii
(Swardson-Olver et al., 2002). The advent of 3D
prediction and mutational studies has facilitated
understanding the interaction between the DARC
and its ligand, the P. vivax Duffy binding protein
(VanBuskirk et al., 2004; Singh et al., 2006). Russel

D. A. Moreno-Pérez, J. A. Ruiz, and M. A. Patarroyo

Figure 1| Red blood cell and reticulocyte receptors
described to date with their respective P. falciparum and
P. vivax binding ligands

Parasite ligands are shown in black and RBC receptors are
shown in white letters, respectively. GPA, GPB and GPC, gly-
cophorin A, B and C; CR1, complement receptor 1; DARC,
Duffy antigen receptor for chemokines; EBA, erythrocyte bind-
ing antigen; EBL-1, erythrocyte binding like 1; RON-1, -2, -5,
Rhoptry Neck Proteins -1, -2 and -5 which participate in form-
ing the tight junction complex with AMA-1, apical merozoite
antigen 1; MSP-1, merozoite surface protein 1; DBP, Duffy
binding protein; RBP-1, -2, reticulocyte binding proteins -1
and -2. Y, Z, W and ? represent receptors not yet identified.

P falciparum

MSP-1,-9 AMA-1
[= ]

Crl
=y Basigin

b RBandd?

etal. (2011) have shown this receptor’s functional im-
portance iz vitro. Consistent with assays by Barnwell
et al. (1989) years ago, DARC interaction between
the parasite ligand became inhibited on incubating
reticulocytes with murine Fy6 antibodies directed
against the receptor’s N-terminal region, leading to
the suggestion that DARC is an obligatory route for
P. vivax invasion of reticulocytes.

The strong inclination of P. vivax for invading
reticulocytes and its inability to infect mature RBC
(which also express the Duffy antigen) suggest that
this cell type’s specificity could be attributed to an
interaction with other membrane receptors. Several
reports referring to identifying infection in Duffy-
negative individuals (Ryan et al., 2006; Cavasini
et al., 2007a; 2007b; Mendes et al., 2011) have sup-
ported the hypothesis that DARC is not the only com-
ponent required for invasion by P. vivax, as initially
proposed. Moreover, parasite proteins participating
in target cell recognition and having a preference for
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Table 2|Red blood cell receptors required for P. falciparum and P. vivax invasion

Cell type Receptor Ligand Ligand localisation Reference
RBC GPA EBA-175 Micronemes Sim et al. (1994)

GPB EBL-1 Micronemes Mayer et al. (2009)

GPC EBA-140 (BAEBL) Micronemes Maier et al. (2003)

W EBA-181 Micronemes Revised in Tham et al. (2012)

Kx AMA-1 Micronemes Kato et al. (2005)

Y Rh1 Rhoptries Rayner et al. (2001)

Z Rh2a/b Rhoptries Gunalan et al. (2011); Sahar et al. (2011);

Triglia et al. (2011)

CR1 Rh4 Rhoptries Tham et al. (2010)

Basigin (CD147) Rh5/Ripr Rhoptries Crosnier et al. (2011)

Band 3 MSP-1, -9 Surface Goel et al. (2003); Li et al. (2004)
Reticulocyte DARC DBP Micronemes Peiper et al. (1995)

Band3? MSP-1 Surface Rodriguez et al. (2002)

? RBP-1, -2 Rhoptries Galinski et al. (1992); Cantor et al. (2001)

GPA, GPB and GPC, glycophorin A, B and C; CR1, complement receptor 1; EBA, erythrocyte binding antigen; EBL-1, erythrocyte binding
like 1; AMA-1, apical merozoite antigen 1; MSP-1, merozoite surface protein 1. Y, Z, W and ? represent receptors not yet identified.

reticulocyte binding have been identified, including
reticulocyte-binding proteins 1 and 2 (RBP-1, -2)
(Galinski et al., 1992; Cantor et al., 2001) and mero-
zoite surface protein 1 (MSP-1) (Rodriguez et al.,
2002) (Figure 1). Previous studies have found that
RBP-1 and MSP-1 contain peptides which bind to
reticulocytes with high affinity; RBP-1 binds to 26
and 41 kDa receptors, whereas MSP-1 binds to 18
and 20kDa molecular mass receptors (Rodriguez
et al., 2002). These latter ones seem to be
reticulocyte-specific because their molecular weight
differs from that determined for Band 3, which has
been considered as the MSP-1 receptor, according to
experiments carried out with its P. falciparum homo-
logue (Goel et al., 2003). Despite these studies, the
receptors for MSP-1 in P, vivax as well as those for
RBPs have not been experimentally characterised so
far. The foregoing highlights the need for using dif-
ferent tools for characterising reticulocytes’ surface
molecules for understanding the molecular basis of
their function as malaria parasite receptors. This will
lead to proving the existence of an alternative P, vivax
invasion route (Mons, 1990) and developing strate-
gies for preventing the infection.

Perspectives

Improving methods to obtain large reticulocyte
amounts is required to solve one of the main chal-
lenges in P. vivax malaria research: the characteri-
sation of antigens with potential role in invasion.
Various methods have been tested for cell separa-

tion in suspension, such as the use of immunomag-
netic beads or selective separation by flow cytometry
(Davies, 2012); these methods could be used for retic-
ulocyte purification to prevent the damage caused to
these cells when passing them through an isotonic
Percoll gradient, a CF-11 column or when they are
enriched using a hypotonic solution. This will facili-
tate obtaining a greater number of viable cells to use
in P. vivax in vitro culture assays or studies focussed
on understanding P. vivax infection dynamics.

Additional techniques orientated towards eval-
uating the identity of the molecules involved in
protein—protein interactions between P. vivax and
reticulocytes are thus needed. Among existing
methodologies, using affinity etiquettes for puri-
fying complexes, co-immunoprecipitation, chemical
crosslinking, the two-hybrid system and confocal mi-
croscopy (Phizicky and Fields, 1995; Berggard et al.,
2007; Wu et al., 2007) have proved of great use when
molecularly analysing target cell—parasite protein in-
teractions. Some of the approaches here mentioned,
together with mass spectrometry and structural ana-
lysis, open the way forward for ascertaining the
molecular basis for invasion and also for resolving the
deficiencies which have arisen when studying anti-
gens for inclusion in a potentially effective vaccine
against malaria caused by P. vivax.

The ‘omic’ sciences are an interesting alter-
native when evaluating cell receptors facilitating
parasite adhesion. Oligonucleotide microarrays and
mass spectrometry assays have been used for studying
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reticulocyte genes and proteins which are being ex-
pressed. Goh et al. (2007) used the microarray tech-
nique; they identify 107 genes, 103 of which were dif-
ferentially expressed in umbilical cord reticulocytes.
This profile provides an interesting source of infor-
mation for carrying out probabilistic studies aimed
at identifying surface receptors for the P. vivax pro-
teins described to date (Patarroyo et al., 2012). Two
mass spectrometry studies of immature murine ery-
throcyte membrane fractions have been carried out;
the first reported 45 proteins having increased ex-
pression in a reticulocyte-enriched sample (Wooden
et al., 2011), whereas the second identified 587
(Prenni et al., 2012), some of them being charac-
terised as plasmatic membrane proteins. Such results
provide invaluable information about the possible re-
ceptors which could be involved in their selectivity
as host cells.

Furthermore, an open research line is the study
of exosomes. These are internal vesicles located in
multi-vesicular bodies which are involved in selec-
tive removal of several proteins during reticulocyte
maturation and differentiation process to erythro-
cytes. A recent study has revealed that exosomes de-
rived from reticulocytes infected with the non-lethal
P. yoelii 17X strain contained antigens which were
able to modulate the immune response, suggest-
ing that these vesicles can play roles beyond those
initially described, intercellular communication and
antigen presentation among them (Martin-Jaular
et al., 2011). Further studies to evaluate exosomes’
importance in malaria research are in need, such as
their detailed proteomic characterisation, seeking for
reticulocyte receptors that make the P. vivax parasite
infection so selective.

Conclusion

Although the study developed by Russell et al. (2011)
has been the most promising for reticulocyte recovery
since it has shown to be suitable for culturing P. vivax
invitro, further optimisation of target cell enrichment
methods is needed to address several fundamental
questions regarding both reticulocyte and parasite
biology. Enrichment methods could be improved by
avoiding the use of Percoll, CF-11 column or hypo-
tonic solutions, and developing new approaches for
recovering cells in suspension.

D. A. Moreno-Pérez, J. A. Ruiz, and M. A. Patarroyo

Advances in studying reticulocytes’ biological as-
pects have provided valuable information for ascer-
taining these cells’ genetic determinants regarding
their susceptibility to different diseases, including
infection caused by parasites. Further studies are re-
quired for understanding the precise role played by
receptor—ligand interactions between cells and their
main infectious agent, thereby also being useful for
finding therapeutic targets and establishing other
methods for preventing infection, including the de-
velopment of chemically made vaccines.
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