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Abstract 
 

This thesis comprises an investigation into the derivation of learning rules in artificial neural networks 

from probabilistic criteria. 

• Beta Hebbian Learning (BHL).  

First of all, it is derived a new family of learning rules which are based on maximising the 

likelihood of the residual from a negative feedback network when such residual is deemed to 

come from the Beta Distribution, obtaining an algorithm called Beta Hebbian Learning, which 

outperforms current neural algorithms in Exploratory Projection Pursuit. 

• Beta-Scale Invariant Map (Beta-SIM).   

Secondly, Beta Hebbian Learning is applied to a well-known Topology Preserving Map 

algorithm called Scale Invariant Map (SIM) to design a new of its version called Beta-Scale 

Invariant Map (Beta-SIM). It is developed to facilitate the clustering and visualization of the 

internal structure of high dimensional complex datasets effectively and efficiently, specially 

those characterized by having internal radial distribution. The Beta-SIM behaviour is thoroughly 

analysed comparing its results, in terms performance quality measures with other well-known 

topology preserving models. 

• Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM).  

Finally, the use of ensembles such as the Weighted Voting Superposition (WeVoS) is tested over 

the previous novel Beta-SIM algorithm, in order to improve its stability and to generate accurate 

topology maps when using complex datasets. Therefore, the WeVoS-Beta-Scale Invariant Map 

(WeVoS-Beta-SIM), is presented, analysed and compared with other well-known topology 

preserving models. 

 

All algorithms have been successfully tested using different artificial datasets to corroborate their 

properties and also with high-complex real datasets. 
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Resumen 
 

Esta tesis abarca la investigación sobre la derivación de reglas de aprendizaje en redes neuronales 

artificiales a partir de criterios probabilísticos. 

• Beta Hebbian Learning (BHL).  

En primer lugar, se deriva una nueva familia de reglas de aprendizaje basadas en maximizar la 

probabilidad del residuo de una red con retroalimentación negativa cuando se considera que 

dicho residuo proviene de la Distribución Beta, obteniendo un algoritmo llamado Beta Hebbian 

Learning, que mejora a algoritmos neuronales actuales de búsqueda de proyecciones 

exploratorias. 

• Beta-Scale Invariant Map (Beta-SIM).   

En Segundo lugar, Beta Hebbian Learning se aplica a un conocido algoritmo de Mapa de 

Preservación de la Topología llamado Scale Invariant Map (SIM) para diseñar una nueva versión 

llamada Beta-Scale Invariant Map (Beta-SIM). Este nuevo algoritmo ha sido desarrollado para 

facilitar el agrupamiento y visualización de la estructura interna de conjuntos de datos complejos 

de alta dimensionalidad de manera eficaz y eficiente, especialmente aquellos caracterizados por 

tener una distribución radial interna. El comportamiento de Beta-SIM es analizado en 

profundidad comparando sus resultados, en términos de medidas de calidad de rendimiento con 

otros modelos bien conocidos de preservación de topología. 

• Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM).  

Finalmente, el uso de ensembles como el Weighted Voting Superposition (WeVoS) sobre el 

algoritmo Beta-SIM es probado, con objeto de mejorar su estabilidad y generar mapas 

topológicos precisos cuando se utilizan conjuntos de datos complejos. Por lo tanto, se presenta, 

analiza y compara el WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-SIM) con otros modelos 

bien conocidos de preservación de topología. 

 

Todos los algoritmos han sido probados con éxito sobre conjuntos de datos artificiales para corroborar 

sus propiedades, así como con conjuntos de datos reales de gran complejidad.  
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Chapter 1.  Introduction 
Data mining [1], [2] and the extraction of information from enormous datasets that are generated by 

modern experimental and observational methods is increasingly necessary in almost all industrial and 

scientific fields and business operations nowadays. This “information extraction” [3], [4] is defined as the 

nontrivial data mining of implicit, previously unknown, and potentially useful information. Among 

several fields where “information extraction” is not an easy task, Big data [5], [6] is one of the most 

recent and important topics where the use of intelligent techniques becomes crucial to be able to extract 

knowledge from the enormous amounts of information. One of the many techniques used to extract 

relevant information is data visualization [7]–[11]. 

Artificial Neural Networks (ANN) [12], [13] are typically software simulations which emulate some of 

the features of real neural networks found in animal brains. ANN are a branch of Artificial Intelligence 

(AI) which consist of connectionist systems that have different applications based on their neural 

architecture. ANN are usually used to model complex relationships between inputs and outputs, to find 

patterns in data [14], and also for extracting information from high dimensional datasets by projecting the 

datasets onto low dimensional (typically 2 dimensional) subspaces. 

Among the applications of unsupervised artificial neural networks one of them is the data projection or 

visualization, which facilitates the analysis of the internal structure of a dataset to the human expert. This 

can be achieved by data projection over more informative axes or by generating maps representing the 

inner structure of datasets. For the first kind of data visualization usually techniques such as Exploratory 

Projection Pursuit (EPP) [15]–[18] can be used by projecting the data onto a low dimensional subspace in 

which we search for structures by visual inspection. For the second one, the topology preserving maps 

[19]–[23] may be applied, being probably the best known among these algorithms the Self-Organizing 

Map (SOM) [19], [21], [24], [25]. 

This thesis compromises and investigation into the derivation of unsupervised learning rules in artificial 

neural networks from probabilistic criteria: 

• Beta Hebbian Learning (BHL): A novel EPP algorithm based on a novel family of learning 

rules derived from the PDF of the residual based on Beta distribution to extract information 

from high dimensional datasets by projecting the data onto low dimensional (typically 2 

dimensional) subspaces, improving the existing exploratory methods by providing a clear 

representation of data’s internal structure.  

• Beta-Scale Invariant Map (Beta-SIM): A novel Topology Preserving Map algorithm as a new 

version of the Scale Invariant Map (SIM), developed to facilitate the clustering and 

visualization of the internal structure of complex datasets effectively and efficiently. It is based 
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on the application of a family of learning rules derived from the Probability Density Function 

(PDF) of the residual based on the beta distribution (BHL), when applied to the Scale Invariant 

Map. 

• Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM): A novel 

ensemble topology preserving map called WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-

SIM), based on the application of the Weighted Voting Superposition (WeVoS) meta-

algorithm and Beta-Scale Invariant Map (Beta-SIM), to generate effectively and efficiently 

accurate topology maps over complex data 

All algorithms have been tested using different artificial datasets high dimensional real datasets in order 

to corroborate their theoretical properties. 

This thesis is structured as follows: in Chapter 2, the main ideas of the human learning process are 

introduced, presenting the different types of learning processes and discussing some elementary artificial 

neural networks, with special attention on the topology preserving maps. Chapter 3, 4 and 5 contain the 

rest of this thesis original work. In Chapter 3 it is derived a novel family of learning rules, called Beta 

Hebbian Learning (BHL), which are shown to have sophisticated in information processing capabilities. 

In Chapter 4, the BHL is applied to improve a topology preserving map called Scale Invariant Map, to 

provide better visualization of the internal structure of high-dimensional datasets. The novel model called 

Beta-SIM generate grid maps which adapt better their structure to datasets and at the same time, improve 

the topology of the grid maps. In Chapter 5, it is investigated the use of Weight Voting Superposition 

ensemble with the neural architecture presented in Chapter 4. Finally, in Chapter 6 we review the thesis 

and present directions for future work. Appendix includes several tables with detailed information of 

statistical results from relevant experiments performed in this thesis. 
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Chapter 2.  Modelling Human Learning: 

Artificial Neural Networks 

2.1. The Human Learning Process 

The Nervous System conducts stimuli from sensory receptors to the brain and spinal cord and that 

conducts impulses back to other parts of the body. As with other higher vertebrates, the human nervous 

system has two main parts: the central nervous system (the brain and spinal cord), depicted in Fig. 2.1 and 

the peripheral nervous system (the nerves that carry impulses to and from the central nervous system) 

[26]. 

 

Fig. 2.1 Depiction of the human brain (left) and map of nerve fibers in the human brain (right). 

Figure taken from [27]. 

In the following, it is intended to provide a background of the biological foundations of how modern 

studies in information treatment try to emulate its functioning of the brain to obtain results that are 

difficult (or impossible) to obtain with other type of computing approaches. In relation with the 

performance of the human brain, four main functions can be considered: 

• Sense. The brain has a set of sensory organs (eyes, ears, nose, taste, touch) to tell us some of 

what is going on in the outside world. It can integrate the information from these different senses 

and create an internal representation of the external world. All experience is filtered by the 

senses; and these sensory signals (e.g., sound, sight, taste, touch), in turn, initiate a cascade of 

cellular and molecular processes in the brain that alter neuronal neurochemistry, cytoarchitecture 

and, ultimately, brain structure and function. This process of creating some internal 

representation of the external world (i.e., information) depends upon the pattern, intensity and 

frequency of neuronal activity produced by sensing, processing and storing signals. 
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• Process. Once the human sensory apparatus has translated physical or chemical information 

from the outside (or inside) world into neuronal activity, this set of signals travels up into the 

brain to be processed. Sensory information from the external environment and the internal 

environment enters the central nervous system at the level of the brain stem and midbrain. As 

this primary sensory input comes into the brain stem and mid brain, it is matched against 

previously stored patterns of activation and if unknown, or if associated with previous threat, the 

brain will activate a set of responses that are designed to help promote survival. Because the 

brain cannot possibly create a unique neural imprint or pattern of change to store every element 

of every experience, the brain stores 'template' patterns based upon the first set of organizing 

experiences. All future incoming input is matched against these stored templates and, if 

sufficiently different from the original pattern, the brain will make neural changes (i.e., create a 

memory) that reflects that tiny difference. 

• Store. Inherent in the processing of information coming into the brain is the capacity to store 

elements of these incoming signals. The ability of the brain to create memories is due to the 

capacity of neurons and neural systems to change from one 'homeostatic' state to another. In 

response to a set of stimuli-induced (e.g., sensations) alterations in activity, neurons undergo 

molecular changes that reflect this activity. 

• Actions. Finally, the brain mediates and controls the actions of the human body. By regulating 

and directing the actions of the neuromuscular, autonomic, endocrine and immune systems the 

brain controls the actions of the human being. 

Now this simple (and somewhat misleading) description of the human learning process is only a crude 

approximation of the key actions of the brain. Indeed, there are hundreds if not thousands of local and 

regional feedback loops in an open and interactive dynamic system (well beyond any mathematical 

models of complex systems yet developed). 

Although there are certainly interesting advances in artificially emulating all the four described 

functions, the scope of this thesis will be centered on the second and third functions of the human 

cognitive process; which are more directly related with the process commonly known as 'learning'. 

2.1.1. The Neuron 

[28] was the first who introduced the idea of neurons as structural constituents of the brain. The neuron 

is the main functional component of the brain. It can be defined as a specialized kind of cell that 

integrates the (input) activity of other neurons that are connected to it and propagates that integrated 

(output) activity to other neurons. This process is accomplished by a complex series of biochemical 

events within the neuron. The parts of a neuron in which we are interested are the following: the 

dendrites, the cell body, the axon, the terminals and the synapse (see Fig. 2.2). 
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Fig. 2.2 Representation of a biological neuron. Figure taken from [29]. 

• The dendrites are thin protrusions from the cell body that collect chemical signals from other 

neurons and convert them into electrical activity along the thin membrane that encloses the cell.  

• The cell body contains the nucleus and cellular machinery. The membrane around the cell body 

integrates the electrical signals arriving from all the dendrites, again coded in terms of a graded 

potential, and converts it into a series of all-or-none electrical potentials that propagate along the 

axon. 

• The axon is a long, thin projection of the neuron along which action potentials are propagated to 

other neurons, often over a considerable distance. Most of the axon of most neurons is covered 

by a myelin sheath, which speeds the conduction of action potentials. The strength of the 

integrated signal that the axon transmits is encoded primarily in its firing rate, the number of 

electrical impulses it generates in a given amount of time (e.g., spikes per second). 

• The terminals are the branching ends of the axon at which the electrical activity of the axon is 

converted back into a chemical signal with which it can stimulate another neuron. This is 

accomplished by releasing a neurotransmitter into the small gap between the terminal and the 

dendrite of the next neuron. Neurotransmitters are chemical substances that are capable of 

exciting the dendrites of other neurons. The signal strength transmitted at the terminal is 

determined by the amount of neurotransmitter released. 
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• The synapse is the small gap that exists between the terminals of one neuron and the dendrites of 

another. The neurotransmitter that is released into the synapse rapidly crosses the gap and affects 

the next neuron’s dendrite by occupying specialized sites on its membrane. This is where the 

chemical signal from one neuron is converted to an electrical signal in the next one. 

2.2. Artificial Neural Networks 

Studies on artificial neural networks [12], [13], [30], [31] have been motivated from its inception by the 

recognition that the brain computes in an entirely different way from the conventional digital computer. 

The brain makes up for the relatively slow rate of operation of a neuron by having a truly staggering 

number of neurons (nerve cells) with massive interconnections between them.  Some studies have 

estimated that there are around 10 billion neurons in the human cortex, and 60 trillion synapses or 

connections. So, the brain is an enormously complex structure. 

The brain is a highly complex, non-linear, and parallel computer (information-processing system). The 

brain has the capability of organizing neurons so as to perform certain computations (e.g. pattern 

recognition, perception and motor control) much faster that than the fastest digital computer in existence 

today. A clear example of these is that the brain routinely accomplishes perceptual recognition tasks (e.g. 

recognizing a familiar face embedded in an unfamiliar scene) in something of the order of 100-200 ms 

while a conventional computer will take much longer to perform the same task. 

An artificial neural network is a system that is designed to model the way in which the brain performs a 

particular task or function of interest. The network is usually implemented using electronic components or 

simulated in software on a digital computer. To achieve good performance, neural networks use a massive 

interconnection of simple computing cells referred to as “neurons” or “processing units”. 

In a network, knowledge is obtained through a learning process and interneuron connection strengths, 

known as synaptic weights, are employed to store this knowledge. 

The procedure for modifying the synaptic weights of the network in an orderly way to reach a desired 

objective is called a learning algorithm. 

2.2.1. An Artificial Neuron 

As previously stated, a neuron can be defined as the constituent element of an ANN: the neuron is the 

smallest processing unit within the ANN [12], [13]. They were initially designed to mimic the human 

neurons as the constituent element of the neural system. A model of an artificial (or synthetic) neuron was 

initially proposed in [32] and is depicted in Fig. 2.3. 
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Fig. 2.3 Artificial neuron model. 

The network inputs (x) are passed through the synaptic weights (w) and are then summed. 

Subsequently, the activation function (f()) is applied to calculate the output of the neuron (y). 

An ANN usually consists of several neurons organized according to a certain network topology. An 

example of a network topology consisting of an input layer, two hidden layers and an output layer is 

shown in Fig. 2.4. 

 

Fig. 2.4 Sample ANN architecture. 

The following sections describe the different ways in which the layer connections (weights) of an ANN 

are modified. 
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2.2.2. Learning Algorithms in Neural Networks 

There are three main types of learning algorithms for automated weight setting in networks: 

1. Reinforcement learning. 

2. Supervised learning. 

3. Unsupervised learning. 

Reinforcement learning [33] is defined by characterizing a learning problem, rather than by 

characterizing learning methods. This type of learning is concerned with how an agent ought to take 

actions in an environment to maximize some notion of long-term reward. Reinforcement learning 

algorithms attempt to find a policy that maps states of the world to the actions the agent ought to take in 

those states. 

Supervised learning [34], [35] relies on the existence of the target output that the network should 

ideally generate. The elements required in supervised learning are:  

• Input of the network: numerical values that are introduced in the network according to the 

problem setting. 

• Internal dynamics of the network: determine the output of the network related to the input. 

• Evaluation of the target: generates the "measure" to update the weights. 

Typically, ANNs based on supervised learning use error descent to modify their weights. 

In contrast, for unsupervised learning [36], [37] only the first two elements (input and internal 

dynamics of the network) are available. No external information is used to check on the weight setting 

process. 

2.2.3. Reinforcement Learning 

Reinforcement learning [33] involves learning how to map situations to actions so as to maximize a 

numerical reward signal. The learner is not told which actions to take, as in most forms of machine 

learning, but instead must discover which actions are the most rewarding by trying them. In the most 

interesting cases, actions may affect not only the immediate reward but also the next situation and 

thereby, all subsequent rewards. These two characteristics -trial-and-error search and delayed reward- are 

the two most important distinguishing features of reinforcement learning.  

This learning mechanism is different from supervised learning in the sense that the supervised learning 

implies learning from examples provided by a knowledgeable external supervisor. This in itself is not 

enough in order to learn from interaction. In interactive problems, it is often impractical to obtain correct 

examples of desired behavior that are representative of all the situations in which the agent has to act. In 



 19 

uncharted territory -where one would expect learning to be most beneficial- an agent must be able to learn 

from its own experience. 

2.2.4. Supervised Learning 

Associative memory networks are simple one or two layer networks that store patterns for subsequent 

retrieval. They include the class of networks known as content addressable memories or memory devices 

[34], [38] that permit the retrieval of data from pattern keys that are based on attributes of the stored data. 

Two classes of associative memory can be implemented: autoassociative and heteroassociative. 

Autoassociative memories recall the same pattern y as the input x, that is x=y. In heteroassociative 

memories the recall pattern is different from the input, x¹y. Clearly in this case, the association between 

patterns is being stored. 

Autoassociative memories are very useful when a noisy or partially complete pattern is the only 

available input and the output pattern is the original, complete, non-noisy pattern.  

An essential feature of supervised learning is the existence of an external teacher. The network is 

trained on examples whose target output is known. There must be a training set for which we already 

know the answer to our question to the network.  

For autoassociative supervised networks, we present the input data to the input neurons; propagate the 

data forward through weights to the hidden neurons and then through the next layer of weights to the 

output neurons. The target pattern is equal to the input pattern.  

2.2.5. Unsupervised Learning 

Human beings appear to be able to learn without explicit supervision. One aim of unsupervised learning 

is to mimic this aspect of human learning; hence this type of learning tends to use more biologically 

plausible methods than those using error descent methods. A pertinent example is the local processing at 

each synapse in these algorithms, which involves no global information passing through the network. So, 

an unsupervised network must self-organize with respect to its internal parameters, without external 

prompting. To do so, it must react to some aspect of the input data; typically, redundancy, or clusters.  

There are, moreover, two major methods of unsupervised learning [36], [37], [39]:  

• Hebbian learning. 

• Competitive learning. 
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2.3. Hebbian Learning 

Hebbian learning is so-called after [39] who conjectured: 

“When an axon of a cell A is near enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic change takes place in one or both 
cells such that A’s efficiency as one of the cells firing B, is increased”. 

This statement is sometimes expanded [40] into a two-part rule: 

1. If two neurons on either side of a synapse (connection) are activated simultaneously (i.e. 

synchronously), then the strength of that synapse is selectively increased. 

2. If two neurons on either side of a synapse are activated asynchronously, then that synapse is 

selectively weakened or eliminated. 

If we consider a basic feed forward neural network, this would be interpreted as the weight between an 

input neuron and an output neuron is very much strengthened when the input neuron’s activation, when 

passed forward to the output neuron, causes the output neuron to fire strongly. It can be seen that the rule 

favors the strong: if the weights between inputs and outputs are already large (and so an input will have a 

strong effect on the outputs) the chance of the weights growing is large. The architecture of the feed-

forward network is shown in Fig. 2.5. 

 

yi xj 

wij 

 

Fig. 2.5 Basic architecture of a feed-forward ANN. 

In mathematical terms, if we consider the simplest feed forward neural network which has a set of input 

neurons with associated input vector, x, and a set of output neurons with associated output vector, y, we 

have the expression in Eq. (2.1). 

!" = 	 %"& ⋅ (&
&

 
(2.1) 

where %"& represents the weight vector between input j and output i. 

The Hebbian learning rule is defined by Eq. (2.2).  

∆%"& = 	* ⋅ (& ⋅ !" (2.2) 

where * is the learning rate parameter. 



 21 

That is, the weight between each input and output neuron is increased proportional to the magnitude of 

the simultaneous firing of these neurons. 

Now we can substitute into the learning rule the value of y calculated by the feeding forward of the 

activity to get Eq. (2.3). 

∆%"& = 	* ⋅ (& ⋅ %"+ ⋅ (+
+

= 	* ⋅ %"+ ⋅ (+ ⋅ 	(&
+

 (2.3) 

The statistical properties of the learning rule are emphasized in the last expression. We now see how the 

learning rule depends on the correlation between different parts of the inputs data’s vector components.  

We have a difficulty with the basic rule as it stands which is that we have a positive feedback rule 

which has an associated difficulty with lack of stability: if the ith input and jth output neurons are tending 

to fire strongly together, the weight between them will tend to grow strongly; if the weight grows 

strongly, the jth output will fire more strongly the next time the ith input neuron fires and this will cause an 

increased value in the rate of change of the weights. So it is necessary to take some preventative measures 

in order to prevent the weights from growing without bound. These preventative measures can include: 

1. Bounding the weights i.e. insisting that there is a range of values [Wmin, Wmax] in which the 

weights must remain. 

2. Normalizing the weights after each update, which ensures that the weights into each output 

neuron have length 1. 

3. Having a weight decay term within the learning rule to stop it growing too large. 

4. Create a network containing a negative feedback of activation. 

2.3.1. Hebbian Learning and Statistics: Principal Component Analysis 

In this section the well-known Principal Component Analysis (PCA) technique is outlined to later 

explain two neural implementations of this method (Oja’s Model and Negative Feedback Network). 

Principal components analysis originated in work by [41], and independently by [42] to describe the 

variation in a set of multivariate data in terms of a set of uncorrelated variables each of which is a linear 

combination of the original variables. 

Its goal is to derive new variables, in decreasing order of importance, that are linear combinations of the 

original variables and are uncorrelated with each other. 

From a geometrical point of view, PCA can be defined as a rotation of the axes of the original 

coordinate system to a new set of orthogonal axes that are ordered in terms of the amount of variation of 

the original data that they account for. A graphical representation of this characteristic can be found in 

Fig. 2.6. 
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Fig. 2.6 Graphical representation of rotation of the axes for PCA. 

Using PCA, it is possible to find a smaller group of underlying variables that describe the data. So, the 

first few components of this group could be used to explain most of the variation in the original data. 

Note that, even if we are able to characterize the data with a few variables, it does not follow that we will 

be able to assign an interpretation to these new variables. 

An important problem in analyzing data of high dimensionality is identifying patterns that exist across 

dimensional boundaries. Such patterns may become visible if a change of basis of the space is made, 

however an a priori decision as to which basis will reveal most patterns requires fore-knowledge of the 

unknown patterns. PCA is a potential way of solving this problem. PCA aims to find that orthogonal basis 

which maximizes the data’s variance for a given dimensionality of basis. The typical way is to find that 

direction which accounts for most of the data’s variance; this is the first basis vector (the first Principal 

Component direction). One then finds that direction that accounts for most of the remaining variance- this 

is the second basis vector and so on. If one then projects data onto the Principal Component directions, 

we perform a dimensionality reduction that will be accompanied by the retention of as much variance (or 

information) in the data as possible. The basis vectors of this new co-ordinate system can be shown to be 

the eigenvectors of the covariance matrix of the dataset and the variance on these co-ordinates are the 

corresponding eigenvalues. The optimal projection from N to M dimensions given by PCA is the 

subspace spanned by the M eigenvectors with the largest eigenvalues.  

PCA can also be thought of as a data compression technique where there is minimum information loss 

in the data, in terms of least mean squared error. As a result, it often is used as a pre-processing method in 

order to simplify further analysis. 
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Taking an analysis by [14], it is possible to describe this as mapping vectors xd in an N-dimensional 

space (x1, …, xn) onto vectors yd in an M-dimensional space (y1, …, ym), where M£N. x may be 

represented as a linear combination of a set of N orthonormal vectors %" (Eq. (2.4)). 

( = 	 !" ∙ %"

-

"./

 (2.4) 

the vectors %" satisfy the orthonormality relation presented in Eq. (2.5). 

%"
0 ∙ %& = 	 1"& (2.5) 

where 1"& is the Kronecker delta.  

Making use of the expression Eq. (2.4), the coefficients !" may be given by Eq. (2.6). 

!".	%"
0 ∙ ( (2.6) 

which can be regarded as a simple rotation of the co-ordinate system from the original x’s to a new set 

of co-ordinates given by the y’s. If only a subset M<N of the basis vectors, %", are retained so that only M 

coefficients !" are used, then replacing the remaining coefficients by constants  2" each vector x may be 

approximated by the following (Eq. (2.7)). 

( = !" ∙ %"

3

"./

+ 2" ∙ %"

-

".35/

 (2.7) 

Consider the whole dataset of D vectors, xd where d=1, …, D. 

It is necessary to make the best choice of %" and 2" so that !" values obtained by Eq. (2.6) give the best 

approximation of Eq. (2.7) over the whole dataset. The vector xd has an error due to the dimensionality 

reduction (Eq. (2.8)). 

(6 − (6 = !"6 − 2" ∙ %"

-

".35/

 (2.8) 

The best approximation can be defined as that which minimizes the sum of the squares of the errors 

over the whole dataset (Eq. (2.9)). 

83 =
1
2 (6 − (6 ;

<

6./

=
1
2 !"6 − 2"

;
-

".35/

<

6./

 (2.9) 

If we calculate the derivative of 83 with respect to 2" and set it to zero then we get Eq. (2.10). 

2" =
1
= !"6

<

6./

= %"
>(										∀@		@A		B + 1,… , E (2.10) 



 24 

where the sample mean vector ( is defined in Eq. (2.11). 

( =
1
= (6

<

6./

 (2.11) 

Now the sum of squares error can be written as Eq. (2.12). 

83 =
1
2 %"

> (6 − ( ;
<

6./

-

".35/

=
1
2 %"

>∑%"

6

".35/

 (2.12) 

where ∑ is the sample covariance matrix of the set of vectors (6  and is given by Eq. (2.13). 

∑ =
1
= (6 − ( (6 − ( >

6

 (2.13) 

Then if we minimize 83 with respect to the choice of %" it can be shown [14] that the minimum occurs 

when the basis vectors satisfy Eq. (2.14). 

∑%" = G"%" (2.14) 

So, those %" are the eigenvectors of the covariance matrix.  The eigenvectors can be proved to be 

orthogonal as assumed if the covariance matrix is real and symmetric. If we substitute the expression of 

Eq. (2.14) into Eq. (2.12) and making use of the orthonormality relation (Eq. (2.5)) then the value of the 

error criterion at the minimum may be represented in the form of Eq. (2.15). 

83 =
1
2 G"

-

".35/

 (2.15) 

Then the minimum error is obtained by choosing the (N-M) smallest eigenvalues, and their 

corresponding eigenvectors, as the ones to discard. We usually call the y’s the principal components. 

2.3.2. Oja’s Models 

Oja contributed in a very important manner during the resurgence of research into artificial neural 

networks in the early 80’s. It is a well-known fact that Hebbian Learning is inherently unstable, due to a 

problem with positive feedback causing unconstrained growth. Oja’s models deal with this problem in a 

way that also gives them important information extraction properties. 

Oja’s One Neuron Model 

[43] developed a model of Hebbian learning with weight decay that not only stopped the weights 

growing without bound, it also caused the weights to converge to the Principal Components of the input 

data. A single output neuron sums the weighted inputs as follows (Eq. (2.16)). 
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! = %" ∙ ("

-

"./

 (2.16) 

In [43] it was introduced a modification to the Hebbian rule based on Eq. (2.17). 

∆%" = * ∙ ("! − !;%"  (2.17) 

It has been shown that the weight decay term has the effect of making the length of %" tend towards 1 

[43] and to converge to the principal eigenvector of the input covariance matrix. The weights are 

therefore normalized and so do not grow without bound. This rule will find only the first eigenvector (that 

direction corresponding to the largest eigenvalue) of the covariance matrix of the data.  

It is not sufficient to simply throw a cluster of neurons at the data since all will find the same (first) 

Principal Component (PC); in order to find other PCs, there must be some interaction between the 

neurons. 

Oja’s Subspace Algorithm 

This algorithm [44] provides a major step forward from the previous one. The network has N output 

neurons each of which learns using a Hebb type rule with weight decay. It does not guarantee to find the 

actual directions of the Principal Components; the weights do, however, converge to an orthonormal basis 

of the Principal Component Space, i.e. collectively the M outputs will capture the M filters with greatest 

variance. The space spanned by this basis is called the Principal Subspace. The learning rule is presented 

in Eq. (2.18). 

∆%" = * ∙ ("!" − !" %+&!+
+

 (2.18) 

As before, the weight growth is constrained and a major advantage of this technique is that it is 

completely homogeneous, i.e. the operations at each neuron are identical. Of course, the disadvantage is 

that it only finds the Principal Subspace spanned by the eigenvectors and not the actual eigenvectors 

themselves. 

Oja’s Weighted Subspace Algorithm 

Oja developed his previous work [44], [45] to now identify the actual principal components using the 

Weighted Subspace Algorithm. It recognized the importance of introducing asymmetry into the weight 

decay process in order to force weights to converge to the Principal Components. The model is defined by 

Eq. (2.19). 

!" = %"&(&

-

"./

 (2.19) 
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where a Hebb-type rule with decay modifies the weights according to Eq. (2.20). 

∆%" = * ∙ !" ∙ (" − H" !+%+&

3

+./

 (2.20) 

Ensuring that H/ < H; < HJ < ⋯ allows the neuron whose weight decays proportional to H/ (i.e. whose 

weight decays least quickly) to learn the principal values of the correlation in the input data. That means 

that this neuron will respond maximally to directions parallel to the first principal component. The second 

output cannot compete with the first but is in a stronger position to identify the second principal 

component and so on for all outputs in the network.  

It can be shown that the weight vectors will converge to the principal eigenvectors in the order of their 

eigenvalues.  

2.3.3. Negative Feedback Network 

Now it is introduced the Negative Feedback Network [46], which we will use in the subsequent 

experiments. Feedback is said to exist in a system whenever the output of an element in the system 

influences in part the input applied to that particular element. It is used in this case to maintain the 

equilibrium on the weight vectors.  

Consider an N-dimensional input vector, x, and a M-dimensional output vector, y, with %"& being the 

weight linking input j to output i and let * be the learning rate. 

The initial situation is that there is no activation at all in the network. The input data is feedforward via 

weights from the input neurons (the x-values) to the output neurons (the y-values) where a linear 

summation is performed to give the activation of the output neuron (see Fig. 2.7). It can express this by 

Eq. (2.21). 

!" = %"&(&

-

&./

				∀@ (2.21) 

The activation is feedback through the same weights and subtracted from the inputs.  (where the 

inhibition takes place) [46] uses the notation: 

(′" = (& − %"&!&

3

"./

				∀M (2.22) 

since he is interested in biologically plausible learning. However, it will be used e instead of x’. Then, 

Eq. (2.22) can be rewritten as: 
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N& = (& − %"&!&

3

"./

				∀M (2.23) 

After that simple Hebbian learning is performed between input and outputs, the weights update is 

obtained by means of Eq. (2.24). 

Δ%"& = * ∙ N& ∙ !" (2.24) 

The effect of the negative feedback is to stabilize the learning in the network. Because of that it is not 

necessary to normalize or clip the weights to get convergence to a stable solution. 

Note that this algorithm is clearly equivalent to Oja’s Subspace Algorithm [44] since: 

Δ%"& = * ∙ N& ∙ !" = 	* ∙ (& − %+&!+
+

∙ !" (2.25) 

This network is capable of finding the principal components of the input data [47] in a manner that is 

equivalent to Oja’s Subspace algorithm [44], and so the weights will not find the Principal Components 

but a basis of the Subspace spanned by these components. 
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Fig. 2.7 Basic architecture of a negative feedback network. 

It may be stated that the network thus uses simple Hebbian learning to enable the weights to converge 

to extract the maximum information content from the input data. 

Since the model is equivalent to Oja’s Subspace algorithm, we might legitimately ask what we gain by 

using the negative feedback in this way. 

Writing the algorithm in this way, it gives a model of the process which allows to devise different 

versions and algorithms like the Maximum Likelihood Hebbian learning rule [15], which is based on an 
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explicit view of the residual ( −%!  which is never independently calculated using e.g. Oja’s learning 

rule.  

Feedback is said to exist in a system whenever the output of an element in the system influences in part, 

the input applied to that particular element. It is used in this case to maintain the equilibrium of the weight 

vectors. 

 

2.4. Competitive Learning 

In this kind of learning [48], the output neurons of a neural network compete among themselves for 

being the one to be active (firing). This too mirrors the reality of what happens in the brain in that there 

are finite resources for learning and so one neuron’s gain means another’s loss. This is the biggest 

difference with Hebbian learning in which several output neurons may be active simultaneously; in the 

case of competitive learning only a single output neuron is active at any one time. This characteristic 

makes competitive learning a highly suitable tool to find those statistically salient features that may be 

used to classify a set of input patterns. [48] claim that there are three basic elements to a competitive 

learning rule: 

1. A set of neurons that are all the same except for some randomly distributed synaptic weights, 

and which therefore respond differently to a given set of input patterns. 

2. A limit imposed on the “strength” of each neuron. 

3. A competition mechanism that permits neurons to compete for the right to respond to a given 

subset of inputs, such that only one output neuron, or only one neuron per group, is active (i.e., 

“on”) at a time. The neuron that wins the competition is called a winner-takes-all neuron. 

By means of an adaptive process, each individual neuron of the neural network gradually becomes 

sensitive to different input categories, or sets of samples in a specific domain of the input space, thereby 

becoming a feature detector. 

2.4.1. The Self-Organizing Map 

The Self-Organizing Map (SOM) [25], [49] is the most widely of a family of a neural network models 

called Topology Preserving Maps. All these models share the same objective: to produce a low 

dimensional representation of the training samples while preserving the topological properties of the input 

space. Because of this characteristic their main use is the visualization and clustering of data. In most 

cases the data analyzed is high dimensional and any Data Mining techniques that use the data space a 

bound to be overly complicated. An accurate low dimensional representation of the data will be of great 

advantage for most Data Mining algorithms. 



 29 

The basic SOM consists of m units located on a regular low-dimensional grid, U, usually 1- or 2-

dimensional (see Fig. 2.8) 

Each unit j has an associated d-dimensional characteristic vector wj = [wj1,…, wjd]. The unit positions kj 

on the grid are fixed from the beginning. The map adjusts to the data by adapting the prototype vectors. 

Together the grid and the set of characteristics vectors form a low-dimensional map of the data manifold: 

a 2-dimensional representation where topologically closely related objects (map units or neurons) are 

close to each other. 

 

Fig. 2.8 Conceptual mapping of 3D input data onto a SOM grid with topology preservation. 

The learning process by which the neurons of the network adapt to the data is an iterative process. At 

each training step t there are several operations to perform. The first operation is to randomly select an 

entry from the dataset analyzed, consisting on a d-dimensional vector xi. This constitutes the input to the 

network. Then, the Euclidean distance between the input vector and the characteristics vector of all the 

neurons in the network is calculated. The neuron with the lowest distance to the input is deemed as the 

winning neuron (v), which will be called best matching unit (BMU). This situation is expressed 

mathematically in Eq. (2.26). 

PQ = argU@A+ (" − P+ V  (2.26) 

Next, the characteristic vectors for the BMU and its neighborhood are “moved” towards the presented 

input, to reinforce the similarity between the BMU (and its neighborhood) and the inputs. That way, a 

neuron specializes in recognizing similar input patterns to the one presented. The most characteristic part 

of the SOM learning is that a neighborhood is also used. This enables not only the BMU to update its 

vector to the input, but also neighboring neurons in direct proportion to their distance to the BMU in the 

map lattice. 

3D	input	space SOM	grid	map
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The update of the neurons in the SOM is presented graphically in Fig. 2.9. 

 

Fig. 2.9 Neurons vectors updating in a SOM. 

The update of neurons in the SOM can be represented by means of Eq. (2.27). 

P+ V + 1 = P+ V + W(V) ∙ *(Z, [, V) ∙ ( V − P+ V  (2.27) 

where x is denoting the input to the network, P+ the characteristics vector of each neuron; is the W 

learning rate of the algorithm, * Z, [, V  is the neighborhood function where v represents the position of 

the winning neuron (BMU) in the lattice and k the positions of the neurons in the neighborhood of this 

one. The most common function is a Gaussian function centered on the position of the BMU; although 

other functions, like a difference of Gaussians, are also widely used. The characteristic Gaussian function 

would be defined by Eq. (2.28). 

* Z, [, V = N
\]^+
;_`(0)  (2.28) 

where v and k are positions of the BMU and kth unit on the SOM grid and a is the neighborhood radius. 

Both the learning rate W(V) and the neighbourhood radius a(V) decrease monotonically during training; 

learning rate to zero and neighborhood radius to some suitable non-zero value, usually one. 

Additionally, an extra step can be performed. By randomly choosing the weights of the neurons as the 

input at a small percentage of updating times (e.g., 10% iterations), the learning of the neighborhood of 

the chosen neurons is reinforced; avoiding to have empty spaces in the map because the neurons that have 

not reacted to any data. 

As a result of the learning process, i.e. the presentation of all input vectors and the adaptation of the 

weight vectors, the SOM generates a mapping from the input space onto the lattice U, in which the 

topological relationships in input space are preserved in U to the highest degree as possible. By updating 

the neurons taking into account not only the BMU, but also their neighboring neurons (Eq. (2.27)); close 

x(t)

Fkx

FkvBMU
wv(t)

wk(t)
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neurons gradually specialize to represent similar inputs, and the representations become ordered on the 

map lattice. This topological ordering of data into a 2-D map is one of the main features of the SOM. 

2.4.2. The Visually Induced SOM 

In the SOM, a neighborhood learning is adopted to form topological ordering among the neurons in the 

map. Thus, the map can be used to show the relative relationships among data points. However, the SOM 

does not directly show the inter-neuron distances on the map. For visualization, the SOM requires 

assistance from some coloring scheme to imprint the inter-neuron distances and therefore the clusters and 

boundaries can be marked. 

For the map to capture the data structure naturally and directly, the distance quantity must be preserved 

on the map, along with the topology. Ideally the nodes should be uniformly and smoothly placed in the 

nonlinear manifold of the data space. The distances of any two nearest neighboring neurons are 

approximately the same and the distances between a neuron and its further neighboring neurons increase 

proportionally and regularly according to the structure of the map grid. So that the positions of the 

neurons can be served as grades for measuring the distance of any mapped points. Then, the map can be 

seen as a smooth and graded mesh embedded into the data space, onto which the data points are mapped 

and the inter-point distances are approximately preserved. 

The Visually Induced SOM (ViSOM) [50], [51] projects the high-dimensional data in an unsupervised 

manner as does the SOM, but constrains the lateral contraction force and hence regularizes the inter-

neuron distance to a parameter that defines and controls the resolution of the map. It preserves the data 

structure as well as the topology as faithfully as possible. The ViSOM uses a similar grid structure of 

neurons as does the SOM. Its training algorithm is basically the same as that of the SOM's. The difference 

between both algorithm lies in the updating the weights of its composing units. The steps of this 

algorithm can be summarized as follow:  

At time step t, an input x(t) is drawn randomly from the dataset or data space. A winning neuron can be 

found according to its distance to the input, using the same expression as the SOM (Eq. (2.26)). Then, in 

the SOM algorithm, the weights of the neurons in a neighborhood of the winner are updated by Eq. (2.27) 

(see also Fig. 2.9). The second term in this equation ( V − P+ V  which can be considered as the 

updating force, can be decomposed into two different forces (see Eq. (2.29)). 

b+c ≡ ( V − P+ V = ( V − PQ V + PQ V − P+ V ≡ bQc + b+Q (2.29) 

The first force, bQc, represents the updating force from the winner v to the input x, which is the same as 

that used by the winner in Eq. (2.27). It adapts the neurons toward the input in a direction that is 

orthogonal to the tangent plane of the winner. While the second force, b+Q, is a lateral force bringing 

neuron k to the winner v, i.e., a contraction force. It is this contraction force that brings neurons in the 
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neighborhood toward the winner and thus forms a contraction around the winner on the map at each time 

step. In the ViSOM, this lateral contraction force is constrained through regularizing the distance between 

a neighboring neuron to the winner. These forces are represented graphically in Fig. 2.10. 

 

(a) Contraction force between the BMU and 2 

neighboring neurons 

 

(b) Expansion force between the BMU and 2 

neighboring neurons 

Fig. 2.10 Contraction (Fig. 2.10a) or expansion (Fig. 2.10b) force for the updating of the ViSOM 

neurons. Figure taken form [50]. 

The scale of the force is controlled by the normalized distance between these two weights until they are 

in proportion to the distances of their weights in the data space. Therefore, the updating of neurons in the 

case of the ViSOM can be expressed by Eq. (2.30). 

P+ V + 1 = P+ V + W(V) ∙ *(Z, [, V) ∙ ( V − PQ V + PQ V − P+ V
eQ+ − ∆Q+G

∆Q+G
 (2.30) 

where eQ+ and ∆Q+ are the distances between neurons and in the data space v and k on the unit grid or 

map, respectively, and G is a positive pre-specified resolution parameter. It represents the desired inter-

neuron distance (of two neighboring nodes) reflected in the input space. 

It can be seen that if the eQ+ is larger than ∆Q+G; i.e. the P+ is farther away from PQ under the specified 

resolution, the constraint is positive (Fig. 2.10a), so a contraction force remains. Otherwise, the constraint 

becomes negative, so an opposite or expansion force applies (Fig. 2.10b). 

The ViSOM produces a smooth and regularly graded mesh through the data points and enables a 

quantitative, direct, and visually appealing measure of inter-point distances on the map. 

2.4.3. The Scale Invariant Map 

A Scale Invariant Map (SIM) [11], [52] is a regular array of nodes arranged on a lattice, similar to a 

Self-Organizing Map (SOM), but training uses a method based on the negative feedback network. A 

neighborhood function and competitive learning are used in the same way as with the SOM. The input 

data is feedforward to the outputs in the usual way. After selection of a winner, the winner, c, is deemed 
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to be firing (yc=1) and all other outputs are suppressed (!" = 0; ∀@ ≠ i). The winner's activation is then 

feedback through its weights and this is subtracted from the inputs, and simple Hebbian learning is used 

to update the weights of all nodes in the neighborhood of the winner. 

Training on a SOM relies on iteratively selecting a winner stimulated by the inputs, and updating the 

weights. With the scale invariant map, the weights of the winning node are feedback as inhibition at the 

inputs, and simple Hebbian learning is then used to update the weights of all nodes in the neighborhood of 

the winner (Eq. (2.31) and (2.32)). 

N = ( −%j!j,					 !j = 1  (2.31) 

∆%" = ℎj" ∙ * ∙ N,			∀@ ∈ Ej (2.32) 

It has the effect of updating all weight vectors in parallel to the vector ( −%j . So, Eq. (2.32) can be 

rewritten as Eq. (2.33). 

∆%" = ℎj" ∙ * ∙ ( − %j ,			∀@ ∈ Ej (2.33) 

In the negatively feedback from a neuron to the input data for which it wins, there is a large number of 

residuals which are relatively small in magnitude and a much larger number of residuals which are much 

larger in magnitude. This is more likely to be approximated by an exponential distribution than a 

Gaussian. The final effect of this type of learning is that the SIM is such that a pie-slice of data is actually 

won by each neuron. This algorithm is called a scale-invariant feature map since it ignores the magnitude 

of each input vector and responds solely to the relative proportion of the magnitudes of the elements of 

the input vectors. The way the SIM matches the data in a “pie-slice” manner is shown in Fig. 2.11. 

 

Fig. 2.11 Scale invariant map mapping, where each neuron captures a “pie slice” of the data 

according to the angular distribution of the input data. 
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It is well known that, given similar input data to that used above, a one dimensional self-organizing 

map (SOM) will self-organize to spread itself over the square to minimize the expected distance between 

the code points and the points of the square. However, if the learning rate is increased with this feature 

map, an interesting effect comes into play: the mapping winds around upon itself so that each outer 

neuron (which is currently winning competitions) is backed up by a set of support neurons. The results of 

such an experiment are shown in Fig. 2.12. 

 

 

Fig. 2.12 The SIM results when the learning rate is increased. 

2.4.4. Growing Neural Gas 

The Growing Neural Gas (GNG) [53], [54] it is based on the Neural Gas (NG) algorithm previously 

proposed by Martinetz et al. [55] for finding optimal data representations based on feature vectors, which 

is in turn a modification of the widely known SOM. The main characteristic of the NG algorithm is that 

instead of expanding through the data input space as a fixed grid of units (as done by the SOM 

algorithm), the NG algorithm allows the neighboring relationships of its units to change, expanding more 

like a gas over the data space. 

The Growing Neural Gas (GNG) method is different from the previous competitive algorithms in that it 

is an incremental algorithm, so there is no need to determine a priori the number of nodes. Network shape 

and size are determined during the training, while the SOM and NG are often trained on a fixed network 

size throughout. 

The GNG is a combination of Fritzke’s Growing Cell Structures (GCS) [56] and Martinetz’s 

Competitive Hebbian Learning (CHL) [57]. In each step of the algorithm, the error of the units in 

representing the data is calculated as the Euclidean distance of units and inputs by means of Eq. (2.34). 

Weights of the converged network 

Weights max fast 0.1  ¾ 
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∆Nmmnmo o/ = Ppq − (
;
 (2.34) 

where s1 is the closest unit to the input entry x and ws1 is the weights vector corresponding to that unit. 

The network topology of the GNG is generated incrementally by the CHL algorithm, which successively 

inserts topological connections or edges in the points where the error is higher. The main principle of the 

CHL is: for each input x connect the two closest centers (measured by Euclidean distance) by an edge. 

Then, the weights of the units are updated, for the BMU (( − Ppq) and for their neighbors (Pr) as it is 

presented in Eq. (2.35) and (2.36). 

Ppq = Ns ( − Ppq  (2.35) 

Pr = Nr ( − Pr  (2.36) 

2.4.5. Quality Measures for Topology Preserving Maps 

Usually, when dealing with supervised learning; having the collection of desired outputs for the inputs 

to the ANN, a certain deviation from the ANN's learning state and the desired output can be calculated 

quite easily. When dealing when unsupervised learning, the process depends only on the inputs and the 

dynamics of the learning rule; making much more di-cult to determine the degree of accuracy of the 

training in relation to the input dataset. Such a measure would be relevant, not only for theoretical 

analysis of the learning process, but also for practical purposes, as it could be used to determine how well 

the algorithm is adapting to the characteristics of the data. Unfortunately, there does not exist in general a 

canonical measure to determine the quality of the training of unsupervised learning algorithms. 

Several quality measures have been proposed in literature to study the reliability of the results displayed 

by topology preserving models in representing the dataset that have been trained with [11], [58]. There is 

not a global and unified measure, but rather a set of complementary ones, as each measure assesses a 

specific feature of the performance of the map in different visual representation areas. The three measures 

used in this thesis are briefly described in the following paragraphs. 

Classification Error (CE). Using its inherent pattern matching characteristics, the topology preserving 

maps in general terms can be used for classification tasks. Intuitively, the samples activating the same 

neuron of the network are very likely to belong to the same class. When a new sample is presented to the 

network, the sample can be classified in the same class as the majority of samples activating the same 

neuron belong to. A consistent behavior when classifying samples points to a correctly trained map. 

Although this is not the main function of this kind of networks, the measure of how many samples 

are wrongly classified has been used, to an extent, to assess the quality of the final map in numerous 

previous studies [11], [58]. 
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Mean Quantization Error (MQE). MQE is related to all forms of vector quantization and clustering 

algorithms. Thus, this measure completely disregards map topology and alignment. MQE is computed by 

determining the average distance of the dataset entries to the cluster centroids by which they are 

represented. In case of SOM, the cluster centroids are the characteristic vectors. 

Topographic Error (TE). TE is the simplest of the topology preservation measures. A dataset is also 

needed to calculate this measure. For all data samples, the respective best and second-BMUs (1st BMU 

and 2nd BMU) are determined. If these BMUs are not adjacent on the map lattice, it is considered an error. 

Finally, the total error is normalized to a range from 0 to 1, where 0 means perfect topology preservation. 

2.5. Ensembles for Topology Preserving Maps 

The main concept behind ensemble learning model is the simple intuitive idea of a committee of 

experts working together to solve a problem. It seems obvious that when dealing with a complicated 

problem, a group of experts among the same area, has a higher probability of reaching a satisfactory 

solution than a single expert. Each of them contributes with its own experience and initiative and the rest 

of the group can sum up to the new ideas or refute them in case one of them is wrong. 

In the field of Artificial Intelligence (AI), ensemble learning is the process by which multiple models, 

such as classifiers or experts, are strategically generated and combined to solve a particular computational 

intelligence problem. Ensemble learning is primarily used to improve the (classification, prediction, 

function approximation, etc.) performance of a model, or reduce the likelihood of an unfortunate selection 

of a poor one. 

The application of ensembles with ANNs is not something new. When looking at bibliography 

regarding ensemble use in supervised ANNs is easy to see that a lot of different models and applications 

have been proposed, tested and analyzed since more than 15 years now. On the other hand, the use of any 

kind of ensemble meta-algorithms with ANNs making use of unsupervised learning is a much less 

explored option.  

This situation is not strange, as the difficulties of obtaining a meaningful combination of several 

unsupervised ANNs are evident. Almost all the supervised ANNs ensembles rely on the performance of 

each of its composing units to calculate in some way the combination of results that will be the final 

output of the ensemble. Many of the most sophisticated methods rely on the networks' performance 

measures to try to improve also their training. 

The main obstacle in the case of the unsupervised ANNs, is the difficulty of determining to which 

degree the performance of the network deviates from the expected optimal one. In many of the cases, this 

is because that expected performance is not even determined. 
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Despite this, many steps have already been done in the direction of the improvement of the 

performance of unsupervised ANNs with the aid of ensembles. The use of ensembles is one of the most 

spread techniques for increasing the stability and performance of an analysis model [59]. Some of the 

most recent applications of ensembles in unsupervised learning includes new models based on topology 

preserving maps [11], [37], [51], [60], [61]. 

 

2.5.1. Previously Proposed Models for SOM Ensemble Summarization 

When using the SOM as an analysis tool, the combination of results is easy, as there is not a real need 

for human interpretation of the intermediate results, since in the majority of cases the interesting result is 

the final one. The problem of this type of combinations arises when the desired output is not a numeric 

prediction or a degree of membership to a class, but the plain 2-D representation of a multi-dimensional 

dataset for easy inspection by humans. 

Representing all the networks in a simple image can only be useful when dealing with 1-D maps but 

gets too messy when visualizing 2-D maps. In that case, the expected output would not be a value yield 

by the ANN, but the map generated by the ANN itself. A much more complex fusion algorithm is needed. 

It is necessary to devise a system that would calculate a final topography preserving map that somehow 

summarizes the best aspects of the maps composing the ensemble. 

To summarize things, the desired outcome of the ensemble combination process is a single map that 

unites the added performance improvement and stability characteristics of the use of ensembles with the 

simplicity and clarity of representing multi-dimensional data in a map for its inspection. 

There have previously been some works [61]–[63] devoted to the development of a summarization of 

maps to obtain a final map. Three of them are the following: 

• Map Fusion by Euclidean Distance: It propose is to obtain a fusion of an ensemble of maps 

by first “aligning” the neurons and then by calculating the centroid of the vectors 

corresponding to neurons aligned to the same position. These centroids are calculated as the 

simple sum of all vectors (see Eq. (2.37)). 

Pj =
1
%+

P"
\t∈uv

 (2.37) 

To determine how this alignment can be done, the authors apply the following idea: 

Let ℒ"& denote the set of feature vectors that are assigned to the neuron P"
&, which is the set of 

training inputs to which the neuron, as the BMU in the map, is reacting. Neurons that are close 
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to each other in the ℜ-y	should be similar. That is, let P/ and P; be the neurons whose 

respective sets ℒ//	and ℒJ;	contain more common features than any other neuron couple. Then, 

the reference vectors corresponding to these neurons will, in all probability, be closer to each 

other than another possible neuron combination under Euclidean distance. 

 

• Map Fusion by Voronoi Polygons Similarity: It proposed a SOM fusion model that is 

mainly aimed to learn data topologies in a more precise way than the single SOM model. The 

Fusion-SOM model is an ensemble of Self-Organizing Maps that are combined by fusing 

prototypes that are modelling similar Voronoi polygons (partitions) and the neighborhood 

relation are given by the edges that measures the similarity between the fused nodes. The aim 

of combining the SOM is to improve the quality and robustness of the results. In order to 

calculate to which degree, the partition of data that two different neurons are representing is 

overlapping - and therefore, to which degree they can be considered similar - a binary vector 

of the same size of the dataset used to train the network is associated to each neuron of a map. 

This vector contains a “1” in the position of data that was recognized by the neuron and “0” in 

the positions of data that was not recognized. This vector will serve to compute the 

dissimilarity between two neurons by using Eq. (2.38). 

eo 2z, 2{ =
|}~ 2z, 2{
}~ 2z, 2{

P"
\t∈uv

 (2.38) 

being r and q the neurons to determine their dissimilarity and 2z and 2{ the binary vectors 

relating each of the neurons with the data samples recognized by it. This vector will also serve 

to calculate the usage of each of the neurons, that will be used in the fusion algorithm. Those 

neurons with a recognition rate lower than a given threshold, are discarded for the ensemble 

fusion calculations. After eliminating the poor reacting ones; the remaining neurons of all the 

map are considered, altogether, for a clustering of neurons process; that groups neurons with 

similar Voronoi polygons in the same sets. sets become neurons in the final map, by 

calculating the centroids of its composing neurons (Eq. (2.37)). Finally, to reconstruct the map 

lattice; the connections between the neurons in the fused map must be recalculated. Neurons 

obtained from fusing clusters that are similar enough, are considered neighbors in the final 

map. 

 

• Weighted Voting Superposition: The aim is to obtain the final units of the map by a 

weighted voting among the units in the same position in the different maps, in accordance to a 
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quality measure. This measure can be any measure found in literature, as long as it can be 

calculated in a unit by unit basis. The voting process used is the one described in Eq. (2.39). 

�Ä,Å = 	
2Ä,Å
2Ä,"3

"./
	 ∙ 	

ÇÄ,Å
ÇÄ,"3

"./
 (2.39) 

where Vp,m is the weight of the vote for the unit included in map m of the ensemble, in its 

position p, M is the total number of maps in the ensemble, bp,m is the binary vector used for 

marking the dataset entries recognized by unit in position p of map m, and qp,m is the value of 

the desired quality measure for unit in position p of map m. 

b is a binary vector of the same length as data samples are in the dataset; that is used to store 

the samples recognized by a single unit. So, the first term of the equation accounts for the 

recognition rate of a unit in a map in relation with the total units recognized in the same 

position on all the maps of the ensemble. Following the same reasoning, the second term 

accounts for the quality of a unit in a map in relation with the overall quality obtained by the 

units in the same position in all maps. 

2.6. Exploratory Projection Pursuit 

Exploratory Projection Pursuit (EPP) [64] is a statistical method aimed at solving the difficult problem 

of identifying structure in high dimensional data. It is done by projecting the data onto a low dimensional 

subspace in which structure may be visually identified. As not all projections will reveal the data's 

structure equally well, it defines an index that measures the extent to which a given projection is 

"interesting", and then represents the data in terms of projections that maximize that index. 

Then, the first step for EPP is to define which indices represent interesting directions. Concerning 

projections, "interestingness" is usually defined with respect to the fact that most projections of high-

dimensional data give almost Gaussian distributions [65]. Thus, those directions which reveal data-

projections that are as far from the Gaussian as possible should be found in order to identify the most 

"interesting" features of the data. Transforming the data into a zero mean and identity covariance matrix 

enables a network to respond solely to higher order statistics, which can be used to look for interesting 

structure in the data. 

There are two simple statistical measures of deviation from a Gaussian distribution, Skewness and 

Kurtosis, which are based on the higher order moments of the distribution. The first, Skewness, is based 

on the normalized third central moment of the distribution and measures the deviation of the distribution 

from bilateral symmetry. The second, Kurtosis, is based on the normalized fourth central moment of the 

distribution and measures the heaviness of the tails of a distribution. A bimodal distribution will often 

have a negative kurtosis and therefore negative kurtosis can signal that a particular distribution contains 

clustering. 
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Because a Gaussian distribution with mean a and variance x is no more interesting than a Gaussian 

distribution with mean b and variance y —indeed this second order structure can obscure higher order and 

more interesting structure— this information needs to be removed from the data. This is known as 

“sphering” or “whitening”. That is, the raw data is translated so that its mean is zero, projected onto the 

principal component directions and multiplied by the inverse of the square root of its eigenvalue to give 

data that has a mean of zero and is of unit variance in all directions. 

Thus, if we wish to find a direction which maximizes the kurtosis of the distribution which is measured 

by s4, we will use a function f(s)≈s3 in the algorithm. If we wish to find the direction with maximum 

skewness, we use a function f(s)≈s2 in the algorithm. 

2.6.1. Nonlinear Principal Component Analysis 

Non-linear PCA is a fairly popular nonlinear method [66]–[68], which has been applied to Independent 

Component Analysis (ICA) [69] quite successfully by a number of authors [66], [70]–[72]. ICA is a 

special case in the world of independence seeking networks in which linear mixtures of independent 

signals at the inputs of a network are to be completely separated at the outputs. The dimensionality of the 

inputs generally needs to be the same as the dimensionality of the outputs. [66] introduced a nonlinear 

extension to Oja’s Subspace Algorithm [44] by means of Eq. (2.40). 

∆%"& = * ∙ (&É !" − É !" %+&É !+
+

 (2.40) 

which can be derived as an approximation to the best non-linear compression of the data as follows. 

Starting with the cost function of Eq. (2.41). 

Ñ % = 1>8 ( −%É %>( ;
 (2.41) 

the objective is to minimize the sum of the squared representation errors for the vector x. By taking the 

instantaneous gradient of this and implementing a stochastic gradient descent it may be derived a weight 

update rule (see Eq. (2.42)). 

∆% ∝ 	
−1Ñ %
1 % ∝ 	* ∙ (N>%ÉÜ (>% + NÉ (>%  (2.42) 

where e is the error vector, N = ( −%É %>( , and ÉÜ (>%  is the element-wise derivative of 

É (>%  with respect to W. [66] argue that the term (N>%ÉÜ (>%  has a negligible effect on the 

learning compared to the second term, NÉ (>% , and so can be neglected. So, the weight update rule can 

be expressed through Eq. (2.43). 

∆% = * ∙ ( − %É %>( ∙ É (>%  (2.43) 
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This rule has been used to extract higher order structure than the PCA network, for instance the 

Independent Components of data [66] [70]. 

2.6.2. The Exploratory Projection Pursuit Neural Network 

The EPP neural network [73] is essentially a nonlinear modification of Oja's subspace algorithm [44], 

which can be described by the following set of equations (Eq. (2.44), (2.45), (2.46) and (2.47)). 

o" = %"&(&
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 (2.44) 

N& = (& − %+&o+

3

+./

 (2.45) 

m" = É o"  (2.46) 

∆%"& = * ∙ m" ∙ N& (2.47) 

where (& is the sphered activation of the jth input, o" is the activation of the ith output neuron, %"& are the 

weights between the former and the latter, and m" is the value of the function É 	  on the ith output neuron. 

Initially there is no activation in the network. The input data is feedforward via the weights to the 

output neurons where a simple summation is performed. The activations of the output neurons are fed 

back via the same weights to the input neurons as inhibition and are therefore subtracted. Then a 

(nonlinear) function of the weights is calculated and used to update the weights by applying the simple 

Hebbian learning rule. 

It was shown in [66] that the use of a nonlinear function É 	  in the above equations creates an 

algorithm to find those values of W that maximize that function, subject to the constraint that W is an 

orthogonal matrix. This idea was applied in [73] to the previously described network in the context of the 

network performing EPP. Thus, the function f(s)≈s3 is applied to the algorithm if we wish to find the 

direction which maximizes the kurtosis of the distribution that is measured by s4; similarly, the function 

f(s)≈s2 is applied to find the direction with maximum skewness. 

2.6.3. Maximum Likelihood Hebbian Learning 

Maximum Likelihood Hebbian Learning [11], [15], [74], [75] is a EPP neural model of a family of 

rules based on exponential distributions, which can be derived expressing the Probability Density 

Function (PDF) of the residual after feedback as Eq. (2.48). 

á N =
1
à N(á − N Ä  (2.48) 
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where Z is a factor that normalizes the integral of p(y) to unity, e is the residual and p is a parameter 

related to the energy function. 

Then, a general cost function associated with the Maximum Likelihood Hebbian Learning network can 

be denoted as Eq. (2.49). 

Ñ = 8 −ânä á N = 8 N Ä + ã  (2.49) 

where K is a constant independent of W (weights of the MLHL network) and the expectation is taken 

over the input dataset. Therefore, the gradient descent J is presented in Eq. (2.50). 
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where E{} is the expected value operator, %0^/  are the weights at time instant t-1 and T denotes the 

transpose of a vector. The power of the norm of e is taken on an element wise basis as it is derived from a 

scalar form of the vector. 

If the conditions of stochastic approximation [76] are satisfied, the mean can be approximated with a 

difference equation. The function to be approximated is clearly sufficiently smooth and the learning rate 

can be designed to approximately *+	≥ 0, *+	+ = ¥, *+;	+ < ¥ and so we have the rule (Eq. (2.51)). 

∆%"& = * ∙ !" ∙ o@äA N& ∙ N&
Ä^/

 (2.51) 

where ∆%"& is the weights update,	N the residual, * is the learning rate and y is the output of the 

network. 

It is expected that for leptokurtic residuals (more kurtotic than a Gaussian distribution), values of p<2 

would be appropriate, while for platykurtic residuals (less kurtotic than a Gaussian), values of p>2 would 

be appropriate. Finally, the network operation can be expressed by Eq. (2.52), (2.53) and (2.54). 
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%N@äℎVo	ûáeùVN:		∆%"& = * ∙ !" ∙ o@äA N& N&
Ä
 (2.54) 

2.6.4. Cooperative Maximum Likelihood Hebbian Learning 

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) is based on the EPP neural model 

Maximum Likelihood Hebbian Learning. The main difference between these two models is that CMLHL 
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includes lateral connections [77], [78] derived from the Rectified Gaussian Distribution (RGD) [79]. The 

RGD is a modification of the standard Gaussian distribution in which the variables are constrained to be 

non-negative, enabling the use of non-convex energy functions. In a more precise way, CMLHL includes 

lateral connections based on the mode of the cooperative distribution that is closely spaced along a 

nonlinear continuous manifold. By including these lateral connections, the resulting network can find the 

independent factors of a dataset in a way that captures some type of global ordering in the dataset. 

Considering an N-dimensional input vector x, an M-dimensional output vector y and with Wòö being the 

weight (linking input jth to output ith), CMLHL can be expressed by means of Eq. (2.55), (2.56), (2.57) 

and (2.58). 
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Ä
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where * is the learning rate, ® is the "strength" of the lateral connections, 2 the bias parameter, and á a 

parameter related to the energy function.  

©	is a symmetric matrix used to modify the response to the data whose effect is based on the relation 

between the distances among the output neurons. It is based on the cooperative distribution, but to speed 

learning up, it can be simplified to Eq. (2.59). 

© @, M = 1"& − cos 2™ @ − M B  (2.59) 

where 1"& is the Kronecker delta. 

The application of CMLHL, initially in the field of artificial vision [77], [78], and subsequently to other 

interesting topics [75], [80]–[83], has proven that this model can successfully perform data visualization. 

 

2.7. Maximum Likelihood Scale Invariant Maps (MLHL-SIM) 

The Maximum Likelihood Scale Invariant Map (MLHL-SIM) [84] is an extension of the SIM based on 

the application of the Maximum Likelihood Hebbian Learning (MLHL).  
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The main difference with regards to the SIM is how the MLHL is used to update the weights of all 

nodes in the neighborhood of the winner, once the winner has been updated. This can be expressed by 

means of Eq. (2.60). 

∆P" = ℎj" ∙ * ∙ o@äA N − %j ∙ N − %j
Ä^/, ∀@ ∈ Ej, (2.60) 

By giving different values to p, the learning rule is optimal for different probability density functions of 

the residuals. hci is the neighborhood function as in the case of the SOM and Nc is the number of output 

neurons. Finally, η represents the learning rate.  

During the training of the SIM or the MLHL-SIM, the weights of the winning node are feedback as 

inhibition to the input vector, and then in the case of the MLHL-SIM, MLHL learning is used to update 

the weights of all nodes in the neighborhood of the winner as explained above. 

 

 

 

  



 45 

Chapter 3.  A novel Family of Learning Rules: 

Beta Hebbian Learning  

3.1. Introduction 

In this chapter a novel family of learning rules called Beta Hebbian Learning (BHL) is thoroughly 

investigated to extract information from high dimensional datasets by projecting the data onto low 

dimensional (typically 2 dimensional) subspaces, improving the existing exploratory methods by 

providing a clear representation of data’s internal structure. BHL applies a family of learning rules 

derived from the Probability Density Function (PDF) of the residual based on the beta distribution. This 

family of rules may be called Hebbian in that all use a simple multiplication of the output of the neural 

network with some function of the residuals after feedback. The derived learning rules can be linked to an 

adaptive form of Exploratory Projection Pursuit and with artificial distributions, the networks perform as 

the theory suggests they should: the use of different learning rules derived from different probability 

density functions allows the identification of “interesting” dimensions (as far from the Gaussian 

distribution as possible) in high dimensional datasets. This novel algorithm, BHL, has been tested over 7 

artificial datasets to study the behavior of BHL parameters, and was later applied successfully over 4 real 

datasets, comparing its results, in terms of performance, with other well-known Exploratory and 

projection models such as Maximum Likelihood Hebbian Learning, Locally-Linear Embedding, 

Curvilinear Component Analysis, Isomap and Neural Principal Component Analysis. 

3.2. Beta Distribution 

Beta distribution is a family of continuous probability distributions defined in the interval [0, 1] with 

two positive shape parameters, denoted by α and β. Beta distribution is defined by Eq. (3.1). 

É((; W, ´) =
(¨^/(1 − ()≠^/

Æ(W, ´)  (3.1) 

where f(x;α,β) is the PDF, x is the input value to the distribution, α and β are the parameters that 

determine the shape of the PDF curve, and B(α,β) is the beta function, which is a normalization constant 

to ensure that the total probability integrates to 1. The Beta function is calculated using the gamma 

function (Eq. (3.2)) and defined by Eq. (3.3). 

Γ A = A − 1 ! (3.2) 

Æ W, ´ =
Γ(W)Γ(´)
Γ(W + ´)  (3.3) 
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Beta distribution is very malleable based on the parameters α and β (see Fig. 3.1). The relation between 

parameters α and β determines the shape of the PDF, with the capability of generating distributions with 

positive (α>β) and negative (α<β) skewness, platykurtic (α=β smalls values <3), mesokurtic (α=β ≈3) and 

leptokurtic (α=β large values >3) distributions, and combinations of these. 

 

Fig. 3.1 Probability density function of the beta distribution for different values of α and β. 

3.3. Beta Hebbian Learning Algorithm 

This thesis presents a novel family of learning rules derived from the PDF of the residual based on Beta 

distribution. This novel family, called Beta Hebbian Learning (BHL), is thoroughly investigated and the 

stability of its learning rule is also analyzed for first time. 

In general, the minimization of the cost function associated with this network, may be thought to make 

the probability of the residuals more dependent on the PDF of the residuals. Thus, if the probability 

density function of the residuals is known, this knowledge could be used to determine the optimal cost 

function. So, the residual (N = ( −%!) is draw from the Beta distribution (Eq. (3.1)), with the following 

probability density function (Eq. (3.4)): 

á N = N¨^/ 1 − N ≠^/ = ( −%! ¨^/ 1 − ( +%! ≠^/ (3.4) 

Where α and β are the parameters that determines the shape of the PDF curve of the Beta distribution, x 

is the input to the network, W is the weight vector associated with network neurons and y is the output to 

the network. 
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Then, to maximize the likelihood of the data with respect to the weights, the gradient descent is 

performed using Eq. (3.5): 

åá
å% = N&¨^; 1 − N&

≠^; − W − 1 1 − N& + N& ´ − 1 = 

N&¨^; 1 − N&
≠^; 1 − W + N& W + ´ − 2  

(3.5) 

For instance, in the case in which α=β=2, Eq. (3.5) is simplified to Eq. (3.6). 

åá
å% = 	! − 1 − N + N = ! 2N − 1  (3.6) 

In the case of the BHL, by maximizing the likelihood of the residual with respect to the actual 

distribution, the learning rule is matched to the PDF of the residual. The BHL may also be linked to the 

standard statistical method of Exploratory Projection Pursuit, as the nature and quantification of the 

interestingness is in terms of how likely the residuals are under a particular model of the PDF of the 

residuals. 

Researchers from the community investigating Independent Component Analysis [85] have shown that 

it is less important to get exactly the correct distribution when searching for a specific source than it is to 

get an approximately correct distribution i.e. all supergaussian signals can be retrieved using a generic 

leptokurtic distribution and all subgaussian signals can be retrieved using a generic platykurtic 

distribution. The experiments in this thesis seem to support this to some extent but accuracy and speed of 

convergence are generally improved with the appropriate choices of α and β, in the same way as MLHL 

does in relation with p value.  

Therefore, the new neural architecture is defined as follows (Eq. (3.7), (3.8) and (3.9)): 

Feedforward:		!" = 	 %"&(&	,
-

&./

		∀@ (3.7) 

bNNe2ùi[:		N& = (& − %"&!"

3

"./

 (3.8) 

%N@äℎVo	ûáeùVN:		∆%"& = * N&¨^; 1 − N&
≠^; 1 − W + N& W + ´ − 2 !" (3.9) 

Where α and β are the parameters that determines the shape of the PDF curve of the Beta distribution, x 

is the input to the network, W is the weight vector associated with network neurons, e is the residual and y 

is the output to the network. 

Following, in algorithm 1 it is presented the pseudocode of BHL. 
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3.4. Stability of the Beta Hebbian Learning 

The stability of the learning rule was also analyzed in this study, and based on such analysis it can be 

concluded that the BHL algorithm is stable when the residuals have positive values lower than 1 (see Fig. 

3.2). When values of the residuals are beyond this limit, the value of the weights update tends towards 

infinity. To avoid the possibility of the residuals having values higher than 1, the datasets should be 

normalized in order to satisfy this limitation and preserve the internal topology between dataset 

dimensions. 

 

Fig. 3.2 Stability of the BHL learning rule (it becomes unstable for values of |e|>1). 

Algorithm 1 BHL algorithm
1: function BHL(data,↵,�,⌘,iters)
2: nData := normalize(data)
3: hi, ji := getSize(nData)
4: W := rand(i, j) . Get a random weight matrix
5: ⌘Step := ⌘/iters

6: for each iter 2 iters do
7: x := selectRandomData(nData, 1) . Get a random sample data
8: y := W ⇥ x . Feedforward
9: e := x� (WT ⇥ y) . Feedback
10: for each ej 2 e do . Apply the learning rule
11: lRulej := e

↵�2
j (1� ej)

��2(1� ↵+ ej(↵+ � � 2))
12: end for
13: �W := ⌘(y ⇥ lRule

T ) . Weights update
14: W := W +�W

15: ⌘ := ⌘ � ⌘Step

16: end for
17: pData := data⇥W

T
. Data projected onto new subspace

18: graphData(pData)
19: return hW, pDatai
20: end function
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3.5. Experiments for BHL 

In this section, BHL is initially tested over 7 artificial datasets to study the behavior of its parameters, α 

and β. Later, it is successfully applied over 4 real datasets to evaluate its capabilities and to compare it 

with other projection and EPP methods. 

3.5.1. Artificial Datasets for BHL 

From a statistical point of view, the most interesting directions are those which are as non-Gaussian as 

possible, [65] points out that a typical random projection of a dataset is Gaussian. To identify the 

interesting features in data, we should investigate the interesting directions. Therefore, to illustrate our 

novel method (BHL), we follow the work of [15] in creating 7 artificial datasets, each containing 9 

dimensions. For instance, a dataset containing 8 independent Gaussian dimensions and one leptokurtic 

dimension, is a typical dataset in which one might search for interestingness: most directions through the 

9 dimensional dataset will be approximately Gaussian while there will be a single direction which is 

positively kurtotic (as shown in dataset 3). 

In dataset 1 we have 8 independent leptokurtic dimensions and one Gaussian dimension; this is almost 

the opposite of the standard EPP datasets described in [15] and is rather far from being a typical dataset in 

that most projections onto its natural basis are interesting.  

As this thesis wishes to thoroughly investigate the possibilities of the new BHL algorithm, it is a good 

test to investigate as many combinations as possible of different dimensions (Gaussian, leptokurtic and 

platykurtic). Results of the experiments are represented using Hinton Maps (or Hinton diagrams) [86] of 

the elements of W, where the area occupied by a square is proportional to each element of W, and the 

color indicates its sign (positive/negative – black/white). 

• In dataset 1, we have 8 leptokurtic dimensions and one Gaussian.  

• In dataset 2, we have 8 platykurtic dimensions and one Gaussian. 

• In dataset 3, we have 8 Gaussian dimensions and one leptokurtic. 

• In dataset 4, we have 8 Gaussian dimensions and one platykurtic. 

• In dataset 5, we have 8 leptokurtic dimensions and one beta distribution with a=b=2. 

• In dataset 6, we have 8 platykurtic dimensions and one beta distribution with a=b=10. 

• In dataset 7, we have 7 Gaussian dimensions and one distribution with positive skewness. 

In [87], only datasets like 1 to 4 were created but we considered that there is interest in identifying the 

structure in the other datasets too.  

In all experiments, once selected the right combination a and b parameter, all results reported are based 

on a set of 10 simulations each with different initial conditions, in order to avoid “lucky runs”. Finally, in 

the design of experiments and in the selection of the parameters, it was important to take into account that 



 50 

when a=b, the fourth central moment (kurtosis) is restricted to values from -2 (a=b=0) to 0 (a=b=¥), 

expressed by the general Eq. (3.10), and when a=b, through the Eq. (3.11). 

ãûmVno@o =
6[ W − ´ ; W + ´ + 1 − W´(W + ´ + 2)]

W´(W + ´ + 2)(W + ´ + 3) − 3 (3.10) 

ãûmVno@o	 W = ´ = −
6

3 + 2W (3.11) 

 

3.5.1.1. Dataset 1: 8 leptokurtic dimensions and one Gaussian 

In this dataset, we have 8 leptokurtic dimensions and one Gaussian dimension; this is almost the 

opposite of the standard EPP datasets described in [15] and is far from being a typical dataset in that most 

of the directions in terms of its natural basis are interesting. However, since the aim of this research is to 

investigate the new family of learning rules (BHL), it was deemed appropriate since we can easily see the 

results of our method. In this experiment, the objective is to identify the single Gaussian dimension and 

ignore the leptokurtic dimensions. The leptokurtic dimensions are characterized as having long tails; if a 

residual can be created by removing the Gaussian direction from the dataset, the residual will 

automatically be leptokurtic. Thus, the strategy is to maximizing the likelihood of the residual using the 

updating rule associated with the BHL (see Eq. (3.9)). 

After experimentation with different values of a=b (as the skewness is 0), the final simulations were 

performed with a=b=2. Typical results are shown in Fig. 3.3. 

 

Fig. 3.3 The Gaussian direction was the second among 8 leptokurtic dimensions. It has clearly 

been identified in this Hinton map of the weights when a=b=2. 

By using appropriate values of a and b parameters (a=b=2), the obtained model maximizes the 

likelihood of platykurtic residuals, in this case the Gaussian dimension. This is shown in the results of the 

Hinton map (see Fig. 3.3), where it can be seen that the highest values of the weights are assigned to the 

Gaussian dimension (dimension with lowest kurtosis) and the leptokurtic dimensions are associated with 

smaller weights. 

 

3.5.1.2. Dataset 2: 8 platykurtic dimensions and one Gaussian 

This dataset contains 8 platykurtic dimensions and one Gaussian dimension. As above the objective is 

to identify the Gaussian dimension and an appropriate combination of values of a and b must use for the 

learning rule. Since if the Gaussian dimension is removed, it will result in a platykurtic residual, the 
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strategy is to maximize the likelihood of a platykurtic residual under the model. As in the previous case, 

different values of a=b were tested, reporting the results of a=b=4 to study the behavior of the BHL 

model. If we select a=b=4, typical results are shown in Fig. 3.4, where it can be seen that the Gaussian 

dimension is clearly identified. 

 

Fig. 3.4 The Gaussian direction was the eighth among 8 platykurtic dimensions. It has clearly 

been identified in this Hinton map of the weights when a=b=4. 

 

3.5.1.3. Dataset 3: 8 Gaussian dimensions and one leptokurtic 

This dataset contains 8 Gaussian dimensions and one leptokurtic dimension. This dataset is more 

typical in datasets in which one might search for interestingness: most directions through the 9 

dimensional data will be approximately Gaussian while there will be a single direction with maximum 

positive kurtosis. Following the successful strategy used on datasets 1 and 2, we might suggest that 

maximizing the likelihood of the residuals under a leptokurtic model would be optimal. The empirical 

finding is in line with this criterion, allowing us to identify the leptokurtic dimension. In this case, the 

objective is to identify the single leptokurtic dimension and ignore the Gaussian dimensions. 

After experimenting with a number of values of a=b, final simulations were made with a=b=10. The 

best result is shown in Fig. 3.5; the leptokurtic direction is clearly identified. 

 

Fig. 3.5 The leptokurtic direction was the seventh among 8 Gaussian dimensions. It has clearly 

been identified in this Hinton map of the weights when a=b=10. 

 

3.5.1.4. Dataset 4: 8 Gaussian dimensions and one platykurtic 

This dataset contains 8 Gaussian dimensions and one platykurtic dimension. A platykurtic model was 

used on this dataset thereby attempting to maximize the likelihood of the data under a negative kurtotic 

model (a=b=1.8). The learning rules can therefore attempt to remove the platykurtic dimension, leaving 

as much kurtosis in the residuals as possible. The best results are shown in Fig. 3.6. 

 

Fig. 3.6 The platykurtic direction was the fourth among 8 Gaussian dimensions. It has clearly 

been identified in this Hinton map of the weights when a=b=1.8. 
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3.5.1.5. Dataset 5: 8 leptokurtic dimensions and one Beta distribution with a=b=2 

In dataset 5, there are 8 leptokurtic dimensions and one Beta distribution with a=b=2, which has a 

kurtosis of -0.86, so it can be considered as a platykurtic distribution. Again, a platykurtic model is used 

to identify the Beta dimension. The best result is shown in Fig. 3.7 for which a=b=2 is used. 

 

Fig. 3.7 The platykurtic direction was the third among 8 leptokurtic dimensions. It has clearly 

been identified in this Hinton map of the weights when a=b=2. 

3.5.1.6. Dataset 6: 8 platykurtic dimensions and one Beta distribution with a=b=10 

In dataset 6, we have 8 platykurtic dimensions (kurtosis=-1.9) and one Beta distribution with a=b=10 

with kurtosis of -0.26, so it can be considered as a Gaussian distribution. A Gaussian model is now used 

to attempt to identify the Beta dimension. The best result is shown in Fig. 3.8 for which a=b=10 is used. 

 

Fig. 3.8 The beta direction was the fifth among 8 platykurtic dimensions. It has clearly been 

identified in this Hinton map of the weights when a=b=10. 

 

3.5.1.7. Dataset 7: 8 Gaussian dimensions and one distribution with positive skewness 

In this dataset, the aim is to investigate the effect of skewness when we apply the BHL algorithm, so 8 

Gaussian dimensions (kurtosis=3 and skewness=0), and one distribution with positive skewness 

(kurtosis=3 and skewness=1) are used. Initially, values of a=b were used, with no good results. Then, 

combinations of a>b were tested, in order to see the effect of the distribution with positive skewness on 

the BHL. The best results were obtained using a=4 and b=10 (see Fig. 3.9), where the dimensions with 

positive skewness are identified, but with some noise. 

 

 

Fig. 3.9 The directions with positive skewness was the second (skewness=1) among 8 Gaussian 

dimensions with skewness=0. The direction with positive skewness has been identified in these 

Hinton maps of the weights when a=4 and b=10. 
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3.5.2. Real Datasets for BHL 

To show the power of the BHL family of learning rules, it was applied to different real datasets, with a 

diverse number of samples, features and classes belonging to different sectors of application. The results 

were compared with those obtained by other methods such as Neural Principal Component Analysis 

(Neural PCA) [44], Maximum Likelihood Hebbian Learning (MLHL) [15], [74], Locally-Linear 

Embedding (LLE) [88], Curvilinear component analysis (CCA) [89] and Isomap [90]. Table 3.1 shows a 

summary of the real datasets used in the experiments. 

Table 3.1 Four real datasets characterized by different number of samples, features and classes 

belonging to different fields of application for BHL. 

Dataset Name Number of sample Number of features Number of classes 

1 Algae 118 18 10 

2 Astronomical 65 115 13 

3 Bank 800 11 Unknown 

4 Dental milling 190 11 Unknown 

 

The analysis of the results presented in the experiments is done following the EPP definition, where the 

identification of the internal structure of high dimensional datasets is based on the projection of the data 

onto lower dimensional subspaces, where its internal structure is search by visual inspection (by eye) 

[64]. 

 

3.5.2.1. Algae dataset 

This real dataset comes from a research study of various forms of algae, some of which have been 

manually labeled. The dataset is formed by 118 samples and each sample is recorded as an 18 

dimensional vector representing the magnitudes of various pigments [15]. Some algae have been 

identified as belonging to specific classes which are numbered from 1 to 9. Others remain unclassified 

and these are labelled as 0. 
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Fig. 3.10 Projection of the algae dataset onto the first two principal components using Neural 

PCA. 

 

 

 

Fig. 3.11 Projection of the algae dataset onto the first two filters found using MLHL with p = 1. 
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Fig. 3.12 2D projection of the algae dataset using LLE algorithm with k=60. 

 

 

 

Fig. 3.13 2D projection of the algae dataset using CCA algorithm with 1,000 epochs. 
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Fig. 3.14 2D projection of the algae dataset using Isomap algorithm with k=12. 

 

 

 

Fig. 3.15 Projection of the algae dataset onto the first two filters found using BHL with a=4 and 

b=20. 
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Fig. 3.10 shows a projection of this dataset onto the first two Principal Components, and Fig. 3.11 to 

Fig. 3.15 show the MLHL, LLE, CCA, Isomap and BHL results respectively. We can see by visual 

inspection that some separation of the classes has been achieved in all cases. 

In the case of Neural PCA (Fig. 3.10), it is able to clearly identify three classes: C4, C6 and C8, but 

other classes seem to be mixed: C1 & C5, C2 & C3 and C7 & C9. 

MLHL algorithm (Fig. 3.11) shows a clear identification of four classes: C1, C5, C7 and C9, while 

classes C2, C3 and C6 are mixed as well as classes C4 and C8. 

LLE algorithm (Fig. 3.12) is able to separate five classes: C2, C3, C4, C6, and C8, but classes C1 & C5, 

and C7 & C9 are mixed. 

CCA algorithm (Fig. 3.13) identifies all classes except C1 and C5 that are mixed. However, class C8 

appears divided in two very separate clusters. 

Isomap algorithm (Fig. 3.14) obtains similar results to LLE where classes C1 & C5 and C7 & C9 

appear mixed. 

Finally, Fig. 3.15 shows a projection of the same dataset onto the filters found using BHL with a=4 and 

b=20; where the best separation (by visual inspection) of the individual classes has been achieved, been 

able to identify 9 out of 9 of classes. 

By comparing the results obtained by all methods (Fig. 3.10 to Fig. 3.15), it can be noted that the BHL 

is the only method out of the six that has clearly separated all 9 classes of algae. 

 

3.5.2.2. Astronomical dataset 

The second real dataset consists of 65 color spectra of 115 asteroids of 13 classes (T, D, B, C, X, K, S, 

L, A, R, Q, V and O) used by [91]. The performance of a variety of artificial neural networks has been 

previously compared on this dataset [15]. 

The dataset is composed of a mixture of the 52-colour asteroid survey by [92] together with the 8-

colour survey conducted by [93] providing a set of asteroid spectra spanning 0.3–2.5µm. When this 

extended dataset was compared by [91] to the results in [93] it was found that the additional refinement to 

the spectra lead to more classes in the taxonomy produced by [93]. 
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Fig. 3.16 Projection of the astronomical dataset onto the first two principal components using 

Neural PCA. 

 

 

Fig. 3.17 Projection of the astronomical dataset onto the first two filters found using MLHL with 

p = 0.5. 
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Fig. 3.18 2D projection of the astronomical dataset using LLE algorithm with k=15. 

 

 

Fig. 3.19 2D projection of the astronomical dataset using CCA algorithm with 5,000 epochs. 
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Fig. 3.20 2D projection of the astronomical dataset using Isomap algorithm with k=12. 

 

Fig. 3.21 Projection of the astronomical dataset onto the first two filters found using BHL with 

a=3.1 and b=10. 

The visual inspection of the results for this dataset shows that Neural PCA separates out the classes A 

and (some of) B but leaves most of the others in a single group (Fig. 3.16). 

The MLHL algorithm with p<2, is able to identify again classes A and some of B, showing a better 

separation of the central cluster (Fig. 3.17 was from a simulation with p=0.5), where, for instance, most 

of samples of class “S” appear together.  

-8 -6 -4 -2 0 2 4 6
-4

-2

0

2

4

6

8

G BS
V

SSS C
S

S GS G
S

M
M

S SS CSSSS SS PSS ESS
MS

S
S

M
S
S G

S SS S
S G

S
E

M
PS

C
PT

S S E
K

T CP

D
T

S R
S

D

S BS S B

A

P C FCFF
C

D

M

A

SU
M

S S
S

DU

SS S
EM

A

P

S
S CPCS

S
S

S
C

KS
A

S
S CCP

S

T

A

SS
S

B

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

G
B

S

V

SS

S

C

S

S

G

S G

S M

M

S
SS CSS

S

S

SS

PS

S

ES

S

MS

S

S

M

S
S

G

S
S

S

S

S

G

S

E

M

P

S

C

P
T

S

S
E

K

T

CP

D
T

S

R

S

D

S

B

S

S

B

A

P

C FC

F

F

C

D

M
A

SU

M

S

S

S

DU

SS

S

EM

A

P

S

S

CP
C

S

S

S

S

C

K

S

A

SS

C

CPS

T

A
S

S S

B



 61 

LLE (Fig. 3.18) and Isomap (Fig. 3.20) algorithms present very similar results to Neural PCA, where 

only classes A and B are separated from the rest of the dataset. 

In the case of the CCA algorithm (Fig. 3.19), data samples of the central cluster are more spread out, 

however there is not a clear separation into different clusters. 

However, BHL (with a=3.1 and b=10) obtains a better projection of the central cluster with a more 

spread out visualization of the data (Fig. 3.21) where most of the samples of class “S” are together and 

clearly separated from the other classes. 

Therefore, comparing the three methods, it can be seen that all identify classes A and (some of) B 

easily, but only the BHL is able to spread the data out somewhat better than the other methods. 

 

3.5.2.3. Bank dataset 

In this experiment, the Neural PCA, MLHL, LLE, CCA, Isomap and BHL methods are applied on a 

small database of bank customers consisting of 800 records each having 11 fields [15]. Information held 

includes a unique identifier, age, sex, salary, type of area in which they live, whether they are married or 

not, number of children, if they have car or not, and then several fields of financial information such as 

type of bank account, whether they own a Personal Equity Plan (PEP) etc. 

 

Fig. 3.22 Projection of the bank dataset onto the first two principal components using Neural 

PCA. 
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Fig. 3.23 Projection of the bank dataset onto the first two filters found using MLHL with p = 1. 

 

 

Fig. 3.24 2D projection of the bank dataset using LLE algorithm with k=40. 
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Fig. 3.25 2D projection of the bank dataset using CCA algorithm with 1,000 epochs. 

 

 

Fig. 3.26 2D projection of the bank dataset using Isomap algorithm with k=40. 
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Fig. 3.27 Projection of the bank dataset onto the first two filters found using BHL with a=b=2. 
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variable AREA inside each cluster. We can see that the BHL method has identified many more well 

defined clusters in its projections. Therefore, BHL is able to identify more clusters, generating a more 

refined analysis of the dataset. 

 

3.5.2.4. Dental milling dataset 

Our final dataset was obtained from a dynamic high-precision dental milling machine with five axes. 

This real industrial use case contains 190 samples obtained by the dental scanner in the manufacturing of 

dental pieces with different tool types (plane, toric, spherical and drill) and includes eleven input variables 

(number of pieces, type of dental piece, tool, radius, revolutions, feed rate X, Y and Z, thickness, initial 

temperature, and initial diameter of the tool), previously used by [82], [94]. 

 

 

Fig. 3.28 Projection of the dental milling dataset onto the first two principal components using 

Neural PCA. 
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Fig. 3.29 Projection of the dental milling dataset onto the first two filters found using MLHL with 

p = 1. 

 

 

 

Fig. 3.30 2D projection of the dental milling dataset using LLE algorithm with k=30.  
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Fig. 3.31 2D projection of the dental milling dataset using CCA algorithm with 1,000 epochs. 

 

 

 

Fig. 3.32 2D projection of the dental milling dataset using Isomap algorithm with k=30. 
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Fig. 3.33 Projection of the dental milling dataset onto the first two filters found using BHL with 

a=b=2. 

 

Fig. 3.28 shows the two principal components of Neural PCA where we can see that the model is able 

to clearly identify at least 5 clusters. Visual investigation of the clusters reveals that they are based on 
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Finally, BHL is able to identify 7 main clusters with relevant internal sub-clusters in the main diagonal 

(see Fig. 3.33). The main clusters are defined by variables: “TYPE OF DENTAL PIECE” and 

“NUMBER OF PIECES” on the first diagonal axis, and: “RADIUS”, “TOOL” and “RPM” on the second 

diagonal axis. The sub-clusters are internally ordered by variables “THICKNESS”, “INITIAL” and 

“TEMPERATURE”. 

Again, BHL has achieved better results than the other algorithms, as it is able to identify far more 

structure in the projection than that identified by Neural PCA, MLHL, LLE, CCA and Isomap, being able 

to identify more clusters, generating a more structured analysis of the dataset. 

 

3.6. Conclusions for Beta Hebbian Learning 

In this chapter, it has been investigated a novel way of extracting information from high dimensional 

datasets by projecting the datasets onto low dimensional (2 dimensional) subspace. We have initially 

derived and analyzed a novel family of learning rules, based on Beta distribution, showing that is it very 

malleable, and outperforms the results obtained by other projection methods such as Neural PCA, LLE, 

CCA and Isomap or Exploratory Projection Pursuit methods such as MLHL.  

The main limitation of previous methods from the family of exponential distributions, such as MLHL 

or Neural PCA, is that they can generate PDF with different values of kurtosis but always with zero 

skewness, so the learning rule is not matched to the PDF of the residual as well as it would be desired in 

case of datasets associated to asymmetric distributions. Then, the use of Beta distribution allows to 

generate PDF with different values of skewness and kurtosis based on the right combination of α and β 

parameters. Therefore, it will allow to derive the most appropriate learning rule to the actual PDF of the 

residual, providing a better visualization of the internal structure of a dataset. 

The power of this novel unsupervised method comes from the choice of an appropriate function 

depending on α and β parameters, to maximize the likelihood of the residuals (e) under particular models 

of PDFs. A complete analysis of BHL behavior, in terms of α and β parameters, has been performed in 

Section “3.5.1 Artificial Datasets for BHL”, where different artificial datasets have been analyzed. The 

analyses show that for instance in the case of typical datasets in which one might search for 

interestingness (in which most of the dimensions are approximately Gaussian and the remaining are more 

positively kurtotic), the most appropriate combination of values are high values of α and β (i.e. dataset 3 

α=β=10). The opposite is true for dataset 1 (8 leptokurtic dimensions and one Gaussian dimension), 

which is rather far from being a typical dataset in that most of the directions could be considered 

interesting, so to identify the Gaussian dimension, the most appropriate combination of values are small 

values of α and β (i.e. dataset 1 α=β=2). 
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In this chapter, it has also been analyzed the stability of the BHL with the general finding that BHL 

algorithm is only stable when the residuals have positive values lower than 1, as when values of the 

residuals are beyond this limit, the value of the weights update tends towards infinity. 

The BHL maximizes the likelihood of the residual with respect to the actual distribution, thereby 

matching the learning rule to the PDF of the residual. This is done by identifying adequate values of α and 

β for the use case. Therefore, BHL is a powerful new tool for the data mining community and should take 

its place along with existing exploratory methods. 
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Chapter 4.  Beta Scale Invariant Map 

4.1. Introduction 

In this chapter, we present a novel version of the Scale Invariant Map (SIM) called Beta-SIM, 

developed to facilitate the clustering and visualization of the internal structure of complex datasets 

effectively and efficiently. It is based on the application of the BHL to the Scale Invariant Map. The Beta-

SIM behavior is thoroughly analyzed and successfully demonstrated over 2 artificial and 16 real datasets, 

comparing its results, in terms of three performance quality measures with other well-known topology 

preserving models such as Self Organizing Maps (SOM), Scale Invariant Map (SIM), Maximum 

Likelihood Hebbian Learning-SIM (MLHL-SIM), Visualization Induced SOM (ViSOM), and Growing 

Neural Gas (GNG). Promising results were found for Beta-SIM, particularly when dealing with highly 

complex datasets. 

4.2. Beta SIM Learning Rule 

In this section, we present and analyze, for the first time, a novel version of the SIM called Beta-Scale 

Invariant Map (Beta-SIM), based on the application of a family of learning rules derived from the PDF of 

the residuals of a Beta distribution when they are applied to the SIM.  

The main difference with the SIM is that Beta Hebbian Learning is used to update the weights of all 

nodes in the neighborhood of the winner, once the winner has been updated. The Beta-SIM model is 

defined by Eq. (4.1) and (4.2). 

Feedforward:		!" = 	 %"&(&	,
-

&./

		∀@ (4.1) 

bNNe2ùi[:		N& = (& − %"&!"

3

"./

 (4.2) 

Then, if we apply the BHL method [95] to the SIM to update the weights, we get the following rule for 

the Beta-SIM (Eq. (4.3)): 

%N@äℎVo	ûáeùVN:		 

∆%" = * ∙ ℎj" ∙ o@äA ( −%j ∙ ( − %j
¨^;	 1 − ( −%j

≠^;	 1 − W + ( −%j W + ´ − 2  
(4.3) 

Therefore, by maximizing the likelihood of the residual with respect to the actual distribution, we are 

matching the learning rule to the pdf of the residual (e). 

Based on the analysis about the stability of the BHL learning rule (see “3.4 Stability of the Beta 

Hebbian Learning”) it can be concluded that the Beta-SIM algorithm is only stable when the absolute 

value of the residuals is lower than 1. 
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4.3. Influence of the Choice of α and β Parameters on the Beta-SIM Learning Rule 

In the following, we thoroughly study how the choice of α and β parameters influences the weights 

update (Eq. (4.3)) for the different cases: Case 1: α=β, Case 2: α>β and Case 3: α<β. 

4.3.1. Case 1: α=β 

When α=β, the PDF of the beta distribution behavior tends to correspond to a family of exponential 

distributions (see Fig. 4.1).  Therefore it is expected [15] that for leptokurtic residuals, the choice of high 

values of α and β (i.e. α=β=10) would be more appropriate, while for platykurtic residuals, low values of 

α and β (i.e. α=β=2) would be more appropriate.  

Fig. 4.2 presents the weights updates versus the residual providing relevant information about the 

behavior of the learning rule based on the choice of α and β. We have analyzed the 3 different possible 

scenarios related to Case 1: α=β. 

• Case 1.a): α=β= high values (i.e. α=β=10) 

• Case 1.b): α=β= medium values (i.e. α=β=5) 

• Case 1.c):  α=β = low values (i.e. α=β=2) 

In the three cases, it can be seen how the behavior of the weights update (DW) versus the value of the 

residual (e=x-Wc) is associated to two zones: zone a where 0<e<0.5 and zone b where 0.5<e<1. Such 

behavior in both areas is symmetric (see Fig. 4.2).  

 

In Case 1.a when α=β= high values (i.e. α=β=10), in zone a, as the value of the residual increases, the 

DW value (solid blue line in Fig. 4.2) increases until the peak of the function is reached and then it 

reduces to zero very fast.  

This is in line with what it is expected in theory; if a winning neuron is near to the input data (i.e. the 

error is low) the DW is also low. As the error increases, the DW increases up to the peak of zone a. 

Finally, when the error approaches 0.5, the DW tends to zero and the neuron is not attracted at all to the 

input. 

As highlighted before, the behavior of DW versus e in zone b is symmetric to zone a (see Fig. 4.2). 

In both zones the highest values for DW are related to the peaks of the function, which are based on the 

choice of α and β. 
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In Case 1.b) when α=β=medium values (i.e. α=β=5), (Fig. 4.2, green dotted line) the behavior 

resembles the “bell curve" shape. The width of the function is greater and the height is lower than the case 

of high values of α=β (case 1.a- solid blue line).  

 

In Case 1.c) α=β=low values (i.e. α=β=2), (Fig. 4.2, red dashed line) it can be deduced that in zone a, 

low values of e create larger changes in the weights update. As the residual increases, the value DW 

decreases (see Fig. 4.2, red dashed line) along zone a. Zone b has, as in the previous two cases, a 

symmetric behavior than zone a. 

 

 

Fig. 4.1 Beta distribution of residuals for values of α=β:2,2; 5,5; 10,10. 
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Fig. 4.2 Beta-SIM learning rule of the residuals for values of α=β. 
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case is related to zone b of the learning rule (see Fig. 4.4). Therefore, the winner node, and its neighbors, 

are updated attracting the network grid strongly to the sparse cluster. Then, at the end of the training 

process, at least some nodes of the network grid will be close to the sparse clusters. 

 

Fig. 4.3 Beta distribution for values of α>β (6,5; 8,4; 10,3). 

 

 

Fig. 4.4 Beta-SIM learning rule for values of α>β. 
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As a conclusion, the Beta-SIM network (specifically when α>β (Case 2)) can be seen as a new tool in 

the data mining community, in the sense that sparse clusters, that are part of high dimensional datasets, 

can be taken into account and emphasized during clustering tasks instead of being neglected as in many 

other topology preserving maps. 

 

4.3.3. Case 3: α<β 

If α<β the effect on the beta distribution (Fig. 4.5) and Beta-SIM learning rule (Fig. 4.6) is the opposite 

to Case 2: α>β. This means that the higher values of the error (zone b) have now low impact on the 

weights update, and if a winning output vector is far from the input vector (high e=x-Wc), this neuron will 

be less “attracted” to the input than if it was nearer to the input. This is also a useful research finding as it 

can be seen as a tool to force the learning process to take into account data associated to low residuals, 

meaning outliers and sparse datasets would have less influence on the weights. 

 

 

Fig. 4.5 Beta distribution for values of α<β (5,6; 4,8; 3,10). 
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Fig. 4.6 Beta-SIM learning rule for values of α<β. 

Therefore, the Beta-SIM model can help to model sparse data in highly complex datasets, or limit the 

influence of outliers and noise by selecting appropriate α and β parameters to create the optimal learning 

rule. 

 

4.4. Experiments for Beta-SIM 

In order to test the novel method presented in this thesis, 2 artificial and 16 real datasets were used. 

The 2 artificial datasets are used to compare the behavior of the Beta-SIM algorithm with the 

theoretical analysis described in the previous section “4.3 Influence of the Choice of α and β Parameters 

on the Beta-SIM Learning Rule” and the 16 real datasets, composed of clusters of different sparsity, are 

used to test the Beta-SIM algorithm on clustering tasks. 

Following, 2 real datasets are used to analyze the behavior of the Beta-SIM algorithm to contrast the 

conclusions obtained in the experiments over the artificial dataset. Once this analysis is performed, the 

Beta-SIM algorithm is tested over 14 real benchmark datasets by means of a statistical test using three 

quality measures to compare the novel algorithm results against 5 other well-known topology preserving 

algorithms (SOM, SIM, MLHL-SIM, ViSOM and GNG). 

The objective of the experiments is to show that the novel Beta-SIM network, based on the appropriate 

choice of α and β parameters, outperforms other topology preserving models, when they are applied to 

different datasets composed of clusters with different levels of sparsity (imbalanced datasets). 

|e| 

DW  



 78 

 

In all experiments, parameters are chosen in an experimental process of trial and error. As parameter 

selection is a task that is very dependent on the dataset to be used, several initial experiments are 

conducted with a range of combinations of these parameters. 

 

4.4.1. Artificial Datasets for Beta-SIM 

Two artificial datasets were created to measure the adaptation of the network grid to datasets with 

different sparsity zones. 

The objective of these experiments is to analyze the behavior of the Beta-SIM algorithm to contrast the 

theoretical analysis developed in the previous section “4.3 Influence of the Choice of α and β Parameters 

on the Beta-SIM Learning Rule”. 

 

4.4.1.1. Artificial Dataset 1 

In this experiment, a 2-D dataset with radial layout is generated. The dataset consists of a uniform 

distribution in the shape of an ellipse, where some of the samples were removed to get areas with 

different levels of sparsity over the X axis (see Fig. 4.7). 

To generate this sparsity over the X axis, a small ellipse is created inside the dataset with an offset in 

respect to the center of the dataset, with all samples inside this ellipse removed from the main dataset (see 

Fig. 4.7-red dots). 

The objective of this experiment is to measure the adaptation of the different topology preserving 

networks (SOM, SIM, MLHL-SIM, Beta-SIM) to the dataset, as it presents areas with different levels of 

sparsity. 

As previously mentioned (“2.4.5 Quality Measures for Topology Preserving Maps”), the following 

quality measures are applied to measure the adaptation of the network grids to the dataset: MQE and TE. 

In these experiments the network grid consisted of 20 neurons.  
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Fig. 4.7 SOM (a), SIM (b), MLHL-SIM (c) and Beta-SIM (d) final network grid (with 20 neurons) 

for artificial dataset 1. 

 

Table 4.1 shows the parameters used for the four networks (SOM, SIM, MLHL-SIM and Beta-SIM) 

trained over this 2-D dataset, including the values calculated for their QME and TE. 

Table 4.1 SOM, SIM, MLHL-SIM and Beta-SIM parameters and its MQE and TE for the 

artificial dataset 1. 

 SOM SIM MLHL-SIM Beta-SIM 

Size [1,20] [1,20] [1,20] [1,20] 

Iterations 10,000 10,000 10,000 10,000 

Learning rate 0.1 0.1 0.02 0.1 

Neighborhood 10 20 20 15 

p - - 0.8 - 

α;β - - - α=3;β=8 

MQE 0.1250 0.0995 0.1102 0.0972 

TE 0.0123 0.0649 0.0526 0.0355 

 

b) 

c) 

a) 

d) 
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Fig. 4.7 shows the converged weights on the artificial dataset, for each network. The Beta-SIM (Fig. 

4.7d), after choosing adequate values for the α and β parameters, obtained weights that enclosed the data 

properly, performing better than the SOM (Fig. 4.7a) in terms of preserving the topology on the areas 

with more data (left side of the dataset), and was able to adapt the weights in the sparser area to be more 

representative of its properties than the SIM (Fig. 4.7b right side of the data). This research finding is also 

confirmed by results presented in Table 4.1, where Beta-SIM achieves the lowest MQE in comparison 

with the other three topology preserving models, and also the second lowest value for the TE. The SOM 

performed better on the TE measure as the number of winning neurons on the left side of the ellipse (with 

high-density) is greater than in the Beta-SIM. However, in the case of the SOM, the convergence of the 

weights fails for areas with sparse data (right side of the Fig. 4.7a). 

 

4.4.1.2. Artificial Dataset 2 

This artificial 2-dimensional dataset is created to test the Beta-SIM algorithm, in order to confirm the 

assertions outlined in section “4.3 Influence of the Choice of α and β Parameters on the Beta-SIM 

Learning Rule”. The dataset is generated using uniform distributions, which are centered at four different 

points in the 2-D space. Clusters are created with different densities in the range [-1,1]: 

• Cluster 1: 10,000 samples; center [-0.8, 0], radius 0.2. 

• Cluster 2: 50 samples; center [0, 0], radius 0.2. 

• Cluster 3: 10 samples; center [0.4, 0.7], radius 0.1. 

• Cluster 4: 5 samples; center [0.8, -0.5], radius 0.1. 

Different combinations of values of α and β are tested in order to analyze the effect on the training, and 

the results are compared with the SOM, SIM and MLHL-SIM algorithms in order to validate them. 

Experiments performed with this dataset are organized into 3 cases: where α=β, where α>β and where 

α<β. 

Case 1: α=β 

With low values of α;β (i.e. α=β=4, see Fig. 4.8), which theoretically are more appropriate for 

platykurtic residuals than for leptokurtic residuals, the behavior of the network outperformed the models 

where higher values of α=β were used. Fig. 4.8h shows the best result of the network for values of α=β, 

which is also compared with the best results of SOM (Fig. 4.8a), SIM (Fig. 4.8b) and MLHL-SIM (Fig. 

4.8c,d,e,f,g). 

In all cases, the final adaption of the network grid to the dataset is very similar, focusing on the clusters 

with higher density of samples (non-sparse clusters: cluster 1 (C1) and 2 (C2)), failing to cover and adapt 

to the other sparse clusters (C3 and C4). 
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Fig. 4.8 Beta-SIM (h) results for values α=β, and its comparison with SOM (a), SIM (b) and 

MLHL-SIM (c,d,e,f,g) algorithms; 20 neurons; 50,000 iterations; h=0.02; neighborhood 

function=Gaussian; MLHL-SIM: p=10, 5, 2, 1, 0.8; Beta-SIM α=β=4. 
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4.4.1.3. Case 2: α>β 

In this case, residuals with high values should theoretically have more influence on the weights 

updating (see Fig. 4.4), therefore the adaptation of the network grid should cover all the clusters, even the 

sparse ones (C3 and C4). In other words, the final positions of some units (neurons of the network grid) 

will be in closer proximity with the samples of the sparse clusters. 

Generally, the learning process is highly conditioned upon samples from clusters of high density (C1 

and C2). In general, the final network grid adapts to these high density clusters. By using values of α>β, 

the Beta-SIM algorithm reinforces the learning for the residuals of a sparse cluster sample, as in this 

dataset where clusters with few samples (low density) are far from clusters with high density of samples. 

In this case, the final network grid should adapt better over these sparse clusters (C3 and C4). 

Fig. 4.9 shows that when α>β, the Beta-SIM algorithm is able to assign a small number of units to 

cover these sparse clusters (C3 and C4), ensuring an effective clustering task even when “imbalanced” 

datasets, like this dataset, are involved. 

 

Fig. 4.9 Beta-SIM results for values α>β; α=5, β=2; h=0.5; iterations=50,000; neighborhood 

function=Gaussian; neurons grid=[20,1]. 

 

 

 

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Beta−SIM, alpha:5 beta:2

C2

C3

C4

C1



 83 

4.4.1.4. Case 3: α<β 

In this case, by selecting appropriate values of the parameters α<β it is possible to make that neurons of 

the network only react to clusters with higher density of samples (C1, see Fig. 4.10).  

When α<β, (see Fig. 4.6), low residuals create larger weight updates, making the network grid adapt 

only to high density clusters (C1, see Fig. 13). Therefore, by selecting values where α<β, it is possible to 

minimize or eliminate the effect of sparse datasets and/or data outliers on the learning process. 

 

Fig. 4.10 Beta-SIM results for values α<β: α=2, β=8; h=0.01; iterations=50,000; neighborhood 

function= Gaussian; neurons grid=[20,1]. 

Based on the achieved results, it can be concluded that the combination of parameters α and β allows 

the selection of how the network grid fits over the dataset. These results seem to confirm that the network 

takes into account the sparser clusters when α>β, and on the contrary, is capable of neglecting, for 

instance, the existence of outliers (high values of e) associated to noise in the data, by using values of 

α<β. 

4.4.2. Real Datasets for Beta-SIM 

In this subsection (“4.4.2 Real Datasets for Beta-SIM”), 2 real datasets are used to analyze the behavior 

of the Beta-SIM algorithm to contrast the conclusions obtained in the experiments over the artificial 

datasets. Later, in subsection “4.4.3 Validation over 14 Real Benchmark Datasets for Beta-SIM”, the 

Beta-SIM algorithm is compared to other algorithms using statistical tests over 14 real benchmark 

datasets. This makes a total of 16 real datasets used to test the behavior of Beta-SIM algorithm. 
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4.4.2.1. E. Coli dataset 

The first real dataset used in these experiments is the well-known E. Coli dataset from UCI repository 

[96]. The objective of this dataset is to predict the localization site of proteins by utilizing measurements 

of the cells’ characteristics (cytoplasm, inner membrane, periplasm, outer membrane, outer membrane 

lipoprotein, inner membrane lipoprotein inner membrane, cleavable signal sequence).  

SOM, SIM, MLHL-SIM and Beta-SIM algorithms are applied over this dataset. The application of 

Topology-preserving models to these kind of tasks has previously proved interesting [11].  

The dataset consists of 336 instances with 7 attributes, divided in 8 classes with sizes: 143(C1), 77(C2), 

2(C3), 2(C4), 35(C5), 20(C6), 5(C7), 52(C8), which create an imbalanced dataset. 

In all experiments a normalization of the dataset [-1,1] is performed and a 10-fold-cross validation is 

used. 

Table 4.2 shows the parameters used for the algorithms throughout all the experiments. Parameters are 

chosen in an experimental process of trial and error. The best performing set of parameters is selected to 

later conduct all the experiments detailed in the comparison. 

Table 4.2 SOM, SIM, MLHL-SIM and Beta-SIM parameters and their associated measures: CE, 

MQE and TE for E. Coli dataset. 

 SOM SIM MLHL-SIM Beta-SIM 

Size [10,10] [10,10] [10,10] [10,10] 

Iterations 5,000 10,000 5,000 5,000 

Learning rate 0.1 0.01 0.1 0.1 

Neighborhood 10 5 10 15 

p - - 0.9 - 

α;β - - - α=3;β=2 

CE 11,9% 11,3% 11% 9,82% 

MQE 0,32 0,26 0,21 0,20 

TE 0,11 0,33 0,63 0,54 

 

Table 4.2 also shows the results for the CE, TE, and MQE obtained for this dataset. It can be seen that 

Beta-SIM obtains the best CE and MQE. However, the best TE is obtained by SOM as expected. 

In Fig. 4.11, the final adaptation of the network grids to the dataset is shown for the 4 algorithms 

(SOM, SIM, MLHL-SIM, Beta-SIM). The Beta-SIM network generates a clear network grid over the 

dataset, as it is more spread out over the dataset, especially the group at the top of the image (Fig. 4.11d), 

which seems to be a sparse cluster. 
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In the case of Beta-SIM, SIM, and MLHL-SIM the topology of the network grid is affected by groups 

placed at the top of the figure (Fig. 4.11b and Fig. 4.11c) and several neurons are dragged by this group. 

This effect is clearly reflected in the larger TE compared to the SOM network. For the SOM (Fig. 4.11a), 

the model does not spread the network grid over the group placed at the top, and hence the effect on the 

topology of the network is lower than in the case of the other algorithms, leading to a lower TE. 

a) SOM network grid 

 
b) SIM network grid 
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c) MLHL-SIM network grid 

 
 

d) Beta-SIM network grid 

 

Fig. 4.11 SOM, SIM, MLHL-SIM and Beta-SIM final network grids adaptation over the E. Coli 

dataset. 

If we now modify the values of α and β, Beta-SIM is able to neglect the sparse clusters (top groups of 

Fig. 4.12), as they have high residual values (e) and the network considers them as outliers (see final 

network grid adaptation over the dataset in Fig. 4.12). 
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Fig. 4.12 Beta-SIM final network grid adaptation over the E. Coli dataset, with α=2 and β=4. 

 

Fig. 4.13 shows the final map for SOM, SIM, MLHL-SIM, and Beta-SIM algorithms, where only the 

BMUs are displayed. Each BMU is labelled based on the training inputs to which it is reacting. This 

means that if neuron 10 is activated by 20 training inputs, and 19 of them belongs to class 1, this neuron 

will be labelled as class 1 (blue circle in Fig. 4.13). 
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c) MLHL-SIM network grid 

 

d) Beta-SIM network grid 

 
Fig. 4.13 SOM, SIM, MLHL-SIM and Beta-SIM final maps for E. Coli dataset. 

Based on the maps from Fig. 4.13, only the Beta-SIM network (Fig. 4.13d) is able to assign at least one 

neuron to each class. Also, in the Beta-SIM map, the number of neurons assigned to each class is 

proportional to the size of the classes, so classes C1 and C2 have the highest number of BMUs, followed 

by classes C8, C5, and C6 respectively, and the lower number of BMUs are associated to sparse classes 

(C3, C4 and C7). 

However, the SOM network (Fig. 4.13a) has the best organization, where neurons are not disordered 

and the classes are not mixed. In the case of Beta-SIM, several neurons appear disordered, for instance C8 

(blue left-pointing triangle in Fig. 4.13d) appears at the top-center and also at the bottom-right side. 

Finally, if we present the final Beta-SIM map when α=2 and β=4 (see Fig. 4.14), we get as expected 

the opposite results to Beta-SIM when α=3 and β=2. So now the organization of the map is much clearer, 

but it is not able to assign BMUs to all classes. 

 
 

 

 
Fig. 4.14 Beta-SIM final map when α=2 and β=4 for E. Coli dataset. 
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4.4.2.2. High Precision Machine Dataset 

Our second real dataset was obtained from a dynamic high-precision machinery used for the 

manufacturing of metal dental pieces [80], [82]. This real industrial use case is described by an initial 

dataset of 190 samples obtained by a dental scanner in the manufacturing of dental pieces with different 

tool types (flat, toric, spherical and drill) and is characterized by eleven input variables (number of pieces, 

type of dental piece, tool, radius, revolutions, feed rate X, Y and Z, thickness, initial temperature, and 

initial diameter of the tool). 

The objective was to test the adaptation of the networks to this real dataset and compare the quality of 

the Beta-SIM against other algorithms. The MQE and TE were used to measure the quality of the final 

network grid in 4 algorithms: SOM, SIM, MLHL-SIM and Beta-SIM. 

Table 4.3 shows the parameters used for the algorithms throughout all the experiments and the final 

MQE and TE for each algorithm. Parameters were chosen in an experimental process of trial and error. 

The best performing set of parameters was selected to later conduct all the experiments detailed in the 

comparison. 

Table 4.3 SOM, SIM, MLHL-SIM and Beta-SIM parameters and their MQE and TE for the high 

precision machine dataset. 

 SOM SIM MLHL-SIM Beta-SIM 

Size [15,15] [15,15] [15,15] [15,15] 

Iterations 50,000 100,000 50,000 50,000 

Learning rate 0.01 0.01 0.1 0.1 

Neighborhood 10 5 10 5 

p - - 0.5 - 

α;β - - - α=2;β=3 

MQE 0,55 0,57 0,49 0,38 

TE 0,10 0,36 0,26 0,24 

 

As expected, based on the results of previous experiments over different datasets, the SOM is the one 

which obtains the best TE, and the Beta-SIM obtains the best MQE. By modifying the parameters α and β 

it is possible to reduce the TE to values similar to SOM, but the MQE becomes worse. 

In Fig. 4.15, the final adaptation of the network grids to this real dataset is shown for SOM and Beta-

SIM. The Beta-SIM network generates a clearer network grid over the dataset, as it is more spread out 

over the dataspace. 
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a) SOM network grid 

 

 

b) Beta-SIM network grid 

 

Fig. 4.15 SOM and Beta-SIM final network grids adaptation over the high precision machine 

dataset. 
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4.4.3. Validation over 14 Real Benchmark Datasets for Beta-SIM 

In this subsection, the Beta-SIM algorithm is validated over 14 diverse real benchmark datasets with 

diverse number of samples and features by means of a statistical test (ANOVA + post-hoc analysis). The 

Beta-SIM algorithm is also compared with other well-known topology preserving algorithms such as: 

SOM, ViSOM, SIM, MLHL-SIM, and GNG in order to validate its capabilities, comparing the methods 

in terms of CE, MQE and TE. 

4.4.3.1. Benchmark datasets description 

A total of 14 diverse interesting high dimensional benchmark datasets related to industry, economy and 

science cases of study were used to validate the performance of the Beta-SIM algorithm. Datasets were 

taken from the UCI Machine Repository [97] presenting different characteristics, such as number of 

samples, features and classes. In Table 4.4, a summary of these datasets is presented in terms of samples, 

features, and number of classes. 

Table 4.4 Benchmark datasets for Beta-SIM experiments. 

 Name of the dataset Samples Features Classes Source 

Dataset 1 (D1) Liver Disorders 345 6 2 UCI repository 

Dataset 2 (D2) Fertility 100 10 2 UCI repository 

Dataset 3 (D3) Bank Marketing 45211 16 2 UCI repository 

Dataset 4 (D4) Iris 150 4 3 UCI repository 

Dataset 5 (D5) Wine 178 13 3 UCI repository 

Dataset 6 (D6) Contraceptive 1473 9 3 UCI repository 

Dataset 7 (D7) Car 1728 6 4 UCI repository 

Dataset 8 (D8) Dermatology 358 33 6 UCI repository 

Dataset 9 (D9) Image Segmentation 2310 19 7 UCI repository 

Dataset 10 (D10) Landsat Satellite 6435 36 7 UCI repository 

Dataset 11 (D11) Yeast 1484 8 10 UCI repository 

Dataset 12 (D12) Pen-Based Handwritten Digits 10992 16 10 UCI repository 

Dataset 13 (D13) Optical Recog. of Hand. Digits 5620 64 10 UCI repository 

Dataset 14 (D14) Letter Recognition 20000 16 29 UCI repository 

 

4.4.3.2. Results and statistical analysis 

In all experiments over all datasets, a normalization of the dataset is performed, and a 10-fold-cross 

validation is used.  Parameters are chosen in an experimental process of trial and error. 

Table 8.1 (Chapter 8. Annex) shows the average CE, MQE and TE ± their standard deviation (STD) for 

each algorithm with each dataset.  
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Table 8.2 (Chapter 8. Annex) presents the parameters selected for each algorithm over the different 

experiments (for each dataset). In all cases, the number of neurons were the same for all algorithms in 

each experiment. 

Table 4.5, Table 4.6 and Table 4.7 presents the p-values obtained after applying an ANOVA + post 

HOC statistical analysis for CE, MQE and TE, respectively (Beta-SIM against each algorithm). 

Table 4.5 p-values for CE (Beta-SIM against all algorithms). 

Dataset SOM ViSOM SIM MLHL-SIM GNG 

1 0.6580 1.0000 1.0000 0.9999 0.989 

2 1.0000 0.9837 0.9837 1.0000 1.0000 

3 1.0000 1.0000 0.9989 1.0000 0.9982 

4 0.9999 0.9999 0.9999 0.9973 0.9999 

5 1.0000 1.0000 1.0000 0.6053 0.9996 

6 1.0000 0.2786 0.9676 0.8666 1.0000 

7 0.4614 0.0481* 0.5622 0.4231 0.9602 

8 0.9612 0.7831 0.9971 0.2273 0.0139* 

9 0.0007* 0.0000* 0.0000* 0.0002* 0.0000* 

10 0.0033* 0.0059* 0.0118* 0.1622 0.0048* 

11 0.1867 0.4699 0.9950 0.9683 0.7909 

12 0.0013* 0.0002* 0.0489* 0.1306 0.3019 

13 0.0000* 0.0000* 0.0003* 0.0004* 0.0044* 

14 0.0000* 0.0000* 0.0000* 0.0000* 1.0000 

* Beta-SIM is significantly better (significance level of 0.05) than the other model 

◊ Beta-SIM is significantly worse (significance level of 0.05) than the other model 

 

Table 4.6 p-values for MQE (Beta-SIM against all algorithms). 

Dataset SOM ViSOM SIM MLHL-SIM GNG 

1 0.0031* 0.0003* 0.9847 1.0000 0.9925 

2 0.3168 0.5267 0.5422 0.7727 0.0068◊ 

3 0.0231* 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 

4 0.0087* 0.6621 1.0000 0.9987 0.2649 

5 0.9627 0.7475 0.5616 0.3808 0.0673 

6 0.0000* 0.0565* 0.2433 0.8285 0.1819 

7 0.0000* 0.0059◊ 0.9994 0.0004◊ 0.0000◊ 

8 0.0001* 0.0000* 0.0051* 0.0007* 0.0000* 

9 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

10 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
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11 0.0000* 0.1097 0.8189 0.9515 0.3771 

12 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

13 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

14 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

* Beta-SIM is significantly better (significance level of 0.05) than the other model 
◊ Beta-SIM is significantly worse (significance level of 0.05) than the other model 

 

Table 4.7 p-values for TE (Beta-SIM against all algorithms). 

Dataset SOM ViSOM SIM MLHL-SIM GNG 

1 0.0000◊ 0.0000◊ 0.9999 0.6811 0.0000* 

2 0.7557 1.0000 1.0000 0.7557 0.0000* 

3 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0000* 

4 0.6460 0.0001◊ 0.9989 0.9721 0.0000* 

5 0.0000◊ 0.0000◊ 0.0000◊ 0.0008◊ 0.0000* 

6 0.0000◊ 0.0000◊ 0.7769 0.1592 0.0000* 

7 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0000* 

8 0.0010◊ 0.0001◊ 0.7565 1.0000 0.0050◊ 

9 0.0000◊ 0.0000◊ 0.9999 1.0000 0.0000* 

10 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.9796 

11 0.0000◊ 0.0000◊ 0.4494 1.0000 0.0000* 

12 0.0000◊ 0.0000◊ 0.1581 0.0517 0.0000* 

13 0.0000◊ 0.0000◊ 0.0009◊ 0.0001◊ 0.0000* 

14 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0000* 

* Beta-SIM is significantly better (significance level of 0.05) than the other model 

◊ Beta-SIM is significantly worse (significance level of 0.05) than the other model 

 

After the statistical analysis presented in Table 4.5, Table 4.6 and Table 4.7, it can be concluded that in 

general terms, the novel Beta-SIM algorithm obtains better results when the number of classes of the 

datasets increases, that is to say, for complex high dimensional datasets. When the number of classes is 

larger than 7, in general, Beta-SIM obtains a significant improvement in relation to the CE and MQE 

measures, with the improvement being of greater magnitude in the MQE measures. However, as can be 

expected, the TE measure is worse than the other algorithms (except GNG). This is due to the better 

adaptation to the datasets forcing a deformation of the final neural grid. Nevertheless, when the number of 

classes is lower than 7, Beta-SIM results are statistically similar to the ones obtained by the other state-of-

the-art algorithms. 
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The results of the experiments performed over these benchmark datasets help to draw broader 

conclusions about the behavior of the novel proposed method, showing how it improves the other models 

based on such three well-known quality measures (CE, MQE and TE). 

Table 8.3 (Chapter 8. Annex) summarizes the results of Table 4.5, Table 4.6 and Table 4.7 in terms of 

percentage (%) of improvement: 

§ Positive values are the “%” of improvement of Beta-SIM in comparison with a specific 

algorithm, in relation to the three well-known quality measures. 

§ Negative values are the “%” of deterioration of Beta-SIM in comparison with a specific 

algorithm, in relation to the three well-known quality measures. 

Finally, based on the parameters selection for the Beta-SIM algorithm (Table 8.2 in Chapter 8. Annex), 

it can be observed that when the number of classes is large (more than 7 classes) the best combination of 

α and β parameters is obtained for α>β, and otherwise when the number of classes is small (less than 7 

classes), the best combination is obtained when α=β, or even α<β when the number of classes are very 

small (i.e. 2 or 3 classes). Therefore, it is worthy to apply Beta-SIM when analyzing complex high 

dimensional datasets. 

 

4.5. Conclusions for Beta Scale Invariant Map 

In this chapter, a novel algorithm called Beta-SIM has been presented and thoroughly analyzed. Beta-

SIM aims to obtain the best topology preserving map possible, in order to be used as a reliable tool in data 

visualization. Due to the inherent capabilities of the SIM, their combination with the BHL algorithm 

improves adaptation and visualization of datasets with a radial structure, as has been successfully shown 

in the tests. The main improvement of the algorithm is the capacity to adapt to sparse clusters or to 

neglect outliers depending on the combination of values of α and β and the task to be carried out. 

Beta-SIM is therefore a powerful new tool for the data mining and big data communities and should 

take its place along with existing topology preserving maps. 
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Chapter 5.  Weighted Voting Superposition 

Beta Scale Invariant Map 

5.1. Introduction 

In this section, it is presented a novel topology preserving map called WeVoS-Beta-Scale Invariant 

Map (WeVoS-Beta-SIM), based on the application of the Weighted Voting Supervision (WeVoS) meta-

algorithm to a novel family of learning rules called Beta-Scale Invariant Map (Beta-SIM). The aim of 

applying WeVoS to Beta-SIM is to improve the visual representation of high dimensional datasets and to 

increase the stability of the original model (Beta-SIM). This is done by WeVoS-Beta-SIM generating 

accurate topology maps in an effectively and efficiently way. WeVoS is based on the training of an 

ensemble of networks and the combination of them to obtain a single one that includes the best features of 

each one of the networks in the ensemble. WeVoS-Beta-SIM is thoroughly analyzed and successfully 

demonstrated over the same 14 real datasets used in section “4.4.3 Validation over 14 Real Benchmark 

Datasets for Beta-SIM”, using the three same quality measures. In order to present a complete study of its 

capabilities, results are compared with other topology preserving models such as Self Organizing Maps 

(SOM), Scale Invariant Map (SIM), Maximum Likelihood Hebbian Learning-SIM (MLHL-SIM), 

Visualization Induced SOM (ViSOM), Growing Neural Gas (GNG) and Beta-SIM. The results obtained 

confirm that the WeVoS-Beta-SIM algorithm presented in this thesis outperforms the classical topology 

preserving maps and other WeVoS versions in terms of organization and visualization of the presented 

information. 

 

5.2. WeVoS-Beta-SIM 

The capability of Beta-SIM algorithm to adapt to sparse clusters or to neglect them, based on 

combinations of parameters α and β [98], provides to the units of Beta-SIM network more freedom than 

other topology preserving maps to adapt to datasets, however, it also potentially adds instability to the 

training. So, the use of ensembles and specifically WeVoS fusion algorithm [61], seems to be the most 

appropriated method to correct this effect. 

WeVoS [99] has been previously applied to other well-known topology preserving maps [11], [51], 

[99]. Beta-SIM has proved overcome such topology preserving algorithms [98] in the main aspects aimed 

for topology preserving maps. Then, this thesis chapter it is analyzed the combination of Beta-SIM and 

WeVoS and compare it with other well-known topology preserving maps and some of the previous 

WeVoS versions, such as WeVoS-SOM, to study its impact on aspects such as the stability and topology 

preservation conditions. 
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WeVoS-Beta-SIM obtains a final map as combination of different Beta-SIM maps by fusion of the 

neurons in the same position based on a weighted voting. Eq. (5.1) is applied for this voting process: 

�Ä,Å = 	
2Ä,Å
2Ä,"3

"./
	 ∙ 	

ÇÄ,Å
ÇÄ,"3

"./
 (5.1) 

where Vp,m is the weight of the vote for the unit included in map m of the ensemble, in its position p, M 

is the total number of Beta-SIM maps, bp,m is the binary vector used for marking the dataset entries 

recognized by unit in position p of map m, and qp,m is the value of the desired quality measure for unit in 

position p of map m. 

b is a binary vector of the same length as data samples are in the dataset. It is used to store the samples 

recognized by a single unit.  

Fusion of neurons of the different Beta-SIM maps for WeVoS-Beta-SIM, during the training process, is 

done based on a quality measure [11] calculated for each Beta-SIM map. This quality measure is 

considered during the fusion process where the weights of each neuron is proportional to the value of 

such quality measure, as to modify the position of the neuron in the fused map, the weights of each of the 

neurons in that position are fed to the final map (see Fig. 5.1). 

 

Fig. 5.1 Schematic diagram of the weight voting in WeVoS in a 2-D map. 

 

Briefly, WeVoS-Beta-SIM meta-algorithm works in the following way:  

• First of all, an ensemble of Beta-SIM maps is trained.  
• Then, the chosen quality/error measure is calculated for each neuron in all Beta-SIM maps. 
• The fused map is initialized by calculating the centroids of the neurons in the same position of 

all the maps, by calculating the superposition of the ensemble.  



 97 

• For each of the neurons in the fused map, the average neuron quality and the number of total 
samples recognized in that position for the Beta-SIM maps, are calculated.  

• The weight of the vote for each neuron can be calculated with this information by using Eq. 
(5.1). 

• To modify the position of the neuron in the fused map, the weights of each of the neurons in that 
position are fed to the final map.  

• Finally, the learning rate in each case will be the weight of the vote for that neuron. 
 

5.3. Experiments and results for WeVoS-Beta-SIM 

Several experiments have been designed and performed to investigate the capabilities of WeVoS-Beta-

SIM and also to compare it with other well-known topology preserving maps such as of SIM, Beta-SIM, 

SOM, WeVoS-SOM, ViSOM, MLHL-SIM and GNG. 

The first type of experiments was designed to present visually some of the main characteristics of the 

used algorithms such as topology of the grid maps and spread of the grid maps over the data. In the 

second type, a thoroughly analysis, in terms of the three quality measures used in this thesis (CE, MQE 

and TE), was performed to validate the visual results obtained previously. 

All the tests were run using a classic tenfold cross-validation to use the complete dataset for training 

and testing. The ensembles were trained using one of the simplest meta-algorithms for ensemble training: 

the bagging meta-algorithm [100]. 

In the case of WeVoS-Beta-SIM and WeVoS-SOM, the datasets have been reduced to 1/5 of its 

original size, and a single model and an ensemble of 5 maps are calculated for each one, comparing the 

performance of the models over datasets with the same inner structure. 

5.3.1. Benchmark datasets description for WeVos-Beta-SIM 

The same 14 benchmark datasets used to validate the Beta-SIM algorithm (see Table 4.4) are applied 

here to validate the WeVoS-Beta-SIM algorithm. The WeVoS-Beta-SIM algorithm is also compared with 

other well-known topology preserving algorithms such as: SOM, ViSOM, WeVoS-SOM, SIM, MLHL-

SIM, Beta-SIM and GNG in order to validate its capabilities, comparing the methods in terms of CE, 

MQE and TE. Experiments are running using the same parameters selected previously over the 14 

benchmark datasets (Table 8.2, Chapter 8. Annex). WeVoS-Beta-SIM and WeVoS-SOM use the same 

parameters as their respective single models, Beta-SIM and SOM. 
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5.3.2. Visualization results 

In this subsection are presented the visualization results obtained for 2 of the benchmark datasets used 

in this thesis (“Iris” dataset and “Landsat Satellite” dataset). The aim is to present visually some of the 

main characteristics of the used algorithms such as topology of the grid maps and spread of the grid maps 

over the data. Then, a complete analysis of the results, in terms of three quality measures (see Section 4), 

is performed over all benchmark datasets. 

The 2 datasets used in this subsection were selected due to their different levels of complexity. The first 

dataset is the well-known “Iris” dataset (with low complexity; only 3 classes) and the second is the 

“Landsat Satellite” dataset (with high complexity; 7 classes). The graphs presented in Fig. 5.2, Fig. 5.3, 

Fig. 5.4 and Fig. 5.5 illustrate the performance of each model for each dataset, presenting the analytical 

results in the next subsection (“5.3.3 Analytical results”). 

Fig. 5.2 and Fig. 5.4 represent the adaptation of each map to its structure in representation of the dataset 

under analysis (“Iris” and “Landsat Satellite” datasets). It depicts the lattices composing the maps 

embedded in a 2D input space. All figures, from Fig. 5.2 to Fig. 5.4, present the datasets projected onto 

their first three principal components and the final grid maps of the models are also embedded in the 

space of the three principal components. 

Fig. 5.3 and Fig. 5.5 show the final unit map for each algorithm where only BMUs are displayed. Each 

BMU of each map is labelled based on the training inputs to which they are reacting. This means that if 

one neuron (BMU) is activated by 20 inputs samples and 19 of them belongs to class 1, this neuron is 

labelled as class 1 (red circles in Fig. 5.4 and Fig. 5.5). GNG is not suitable for this 2D map 

representation, as some units are disregarded from the final model and therefore the topology preservation 

is lost. 

 

5.3.2.1. Visualization Results for Iris Dataset 

It is easily observed in Fig. 5.2 that Beta-SIM and WeVoS-Beta-SIM grid maps are more widely spread 

throughout the Iris dataset (represented as magenta dots), covering the input space better than the other 

algorithms. This better coverage over the dataset corresponds to a better MQE result (see Table 8.8 

Annex). 

However, SOM, WeVoS-SOM and ViSOM conserve the topology of the map very well as their grid 

maps contains just few twists and folds (Fig. 5.2d, Fig. 5.2e and Fig. 5.2g). Therefore, they have the 

lowest TE values among all algorithms (see Table 8.9Annex). 

Comparing Beta-SIM and WeVoS-Beta-SIM, Fig. 5.2b and Fig. 5.2c show how WeVoS-Beta-SIM 

obtains a better topology of the grid map versus Beta-SIM (which means better TE results), due to the fact 
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that WeVoS-Beta-SIM grid map contains less twists and folds than Beta-SIM. At the same time, the 

WeVoS-Beta-SIM grid map adapts slightly better their structure to the dataset, covering the Iris dataset 

more adequately (which means a lower MQE value). 

a) SIM 

 

b) Beta-SIM 

 

c) WeVoS-Beta-SIM 

 

d) SOM 

 

e) WeVoS-SOM 

 

f) MLHL-SIM 
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g) ViSOM 

 

h) GNG 

 

Fig. 5.2 Algorithms’ final network grids adaptation over the Iris dataset. 

 

Fig. 5.3 shows that, in general, the WeVoS-Beta-SIM algorithm (Fig. 5.3c) provides the map with more 

compact and clearly separated groups. However, differences with the other algorithms are minor. All 

algorithms obtain maps where class 1 (red circles Fig. 5.3) is clearly separated from the other 2 classes 

(class 2 –blue squares– and class 3 –green triangles–). Differences between maps are only appreciable 

when they are compared in terms of separation of classes 2 and 3, where WeVoS-Beta-SIM algorithm 

presents these 2 classes in more compact and clearly defined groups (Fig. 5.3c). 

 

a) SIM 

 

b) Beta-SIM 

 

1.2
1

0.8
0.6-0.5

0.4-1.5
0.2-1

0-0.5
-0.20

-0.40.5
-0.61

-0.81.5

0

0.5

1.5

1

0.5
-0.5

0-1.5
-1

-0.5 -0.50

0

0.5
1 -11.5

0.5

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10



 101 

c) WeVoS-Beta-SIM 

 

d) SOM 

 

e) WeVoS-SOM 

 

f) MLHL-SIM 

 
g) ViSOM 

 
 

Fig. 5.3 Algorithms’ final unit maps for Iris dataset. 
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5.3.2.2. Visualization Results for Landsat Satellite Dataset 

Fig. 5.4 shows how Beta-SIM (Fig. 5.4b), GNG (Fig. 5.4h) and WeVoS-Beta-SIM (Fig. 5.4c) 

algorithms outperform the other algorithms by distributing the units of their grid maps over the Landsat 

Satellite dataset (represented as red dots) in the best possible way. Units of the grid maps are close to the 

input samples over the whole dataset, which leads to lower MQE values than the other algorithms. 

A similar situation occurs with SIM and MLHL-SIM algorithms (Fig. 5.4a and Fig. 5.4f) as they 

obtained grid maps which adapt well their structure to the dataset but not as well as the previously 

mentioned algorithms. 

Again, SOM, WeVoS-SOM and ViSOM algorithms are the ones which better preserve the topology of 

the grid maps (Fig. 5.4, Fig. 5.4e and Fig. 5.4g) as their maps have less twist and folds than the other 

algorithms. Therefore, they obtain the lowest TE values (see Table 8.9Annex). 

WeVos-Beta-SIM (Fig. 5.4c) and Beta-SIM (Fig. 5.4b) algorithms obtain similar final grid maps, but 

WeVoS-Beta-SIM preserves the topology of the grid map better than the Beta-SIM algorithm. Comparing 

both figures (Fig. 5.4b and Fig. 5.4c), the WeVoS-Beta-SIM grid map presents less twists and folds than 

the Beta-SIM grid map, having then lower TE values. 

a) SIM 

 

b) Beta-SIM 

 

c) WeVoS-Beta-SIM 

 

d) SOM 
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e) WeVoS-SOM 

 

f) MLHL-SIM 

 

g) ViSOM 

 

h) GNG 

 

Fig. 5.4 Algorithms’ final network grid adaptations over the Landsat Satellite dataset. 

 

It can be seen in Fig. 5.5 that WeVoS-Beta-SIM (Fig. 5.5c) provides the best visual representation 
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and unmixed groups (there is no mixing of BMUs from different classes). Beta-SIM also obtains compact 
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SIM. 
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maps (Fig. 5.5d and Fig. 5.5e), class 2 (blue squares) is divided into two groups separated by a group of 
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a) SIM 

 

b) Beta-SIM 

 

c) WeVoS-Beta-SIM 

 

d) SOM 

 

e) WeVoS-SOM 

 

f) MLHL-SIM 
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g) ViSOM 

 

Fig. 5.5 Algorithms final network grid adaptations over the Landsat Satellite dataset. 

 

5.3.2.3. Conclusions of the Visualization Results 

The results suggest that WeVoS-Beta-SIM provides a better visual representation of the datasets than 

the other algorithms, as it is able to widely spread its grid map covering the input space better than the 

other tested models. At the same time, WeVoS-Beta-SIM obtains grid maps with less twists and folds 

than the Beta-SIM algorithm, which signifies a better topology of the map. 

The improvement on visual representation, achieved by WeVoS-Beta-SIM, is notably higher when the 

complexity of the datasets increases. Using the previous examples, differences between maps were minor 

for the Iris dataset (low complexity), whereas differences were higher for the Landsat Satellite dataset 

(high complexity). 

 

 

5.3.3. Analytical results 

In order to validate the results obtained, statistical tests for the three quality measures were performed 

consisting of an ANOVA + post-hoc analyses. The statistical results for CE, MQE and TE are presented 
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These series of experiments analyze 2 different aspects of the novel WeVoS-Beta-SIM and the other 

tested algorithms: 

• The performance of WeVoS-Beta-SIM in comparison with the other 7 topology preserving 

models, in terms of CE, MQE and TE quality measures. 

• The effect of modifying the number of data samples used during the training process for all 

algorithms under study. This was done in order to emulate the addition of noise or instability in 

the datasets [51]. 

 

5.3.3.1. Analysis of results in terms of CE 

Results presented in Fig. 5.6 show that GNG, Beta-SIM and WeVoS-Beta-SIM often obtain better 

results than the other algorithms (SOM, ViSOM, WeVoS-SOM, SIM, MLHL-SIM), in terms of CE 

values. It should be noted that these differences in CE can only be seen when the complexity of the 

datasets is high. For low complexity datasets (in this research those having less than 5 classes; datasets 

from D1 to D8), CE results obtained by the different algorithms were not statistically significant (see 

results of Table 8.4 Annex). 

Results for this experiment confirm the conclusions obtained by the visual representation test (figures 

from Fig. 5.2 to Fig. 5.5). For example, in the case of the Iris dataset (a dataset with low complexity), all 

algorithms presented very similar final maps (Fig. 5.3), so similar CE values for all algorithms were 

expected. In the case of the Landsat Satellite dataset (high complexity), the WeVoS-Beta-SIM algorithm 

obtained a map (Fig. 5.5c) with more compact groups and less mixed classes, therefore obtaining a better 

CE value than the other algorithms. 

It can also be seen in Fig. 5.6 that when the complexity of the datasets increases, the WeVoS-Beta-SIM 

obtains better CE results than the Beta-SIM algorithm. However, when a statistical test of the results is 

performed (Table 8.4 Annex) differences between CE values were not statistically significant. 

Finally, the change in CE values when the number of samples is increased was analyzed (Fig. 5.6). The 

effect of adding such instability in this case is not particularly evident, as the change in CE values did not 

follow a clear tendency. 
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a) Dataset 1 

 

b) Dataset 2 

 

c) Dataset 3 

 

d) Dataset 4 

 

e) Dataset 5 

 

f) Dataset 6 
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g) Dataset 7 

 

h) Dataset 8 

 

i) Dataset 9 

 

j) Dataset 10 

 

k) Dataset 11 

 

l) Dataset 12 
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m) Dataset 13 

 

n) Dataset 14 

 

Fig. 5.6 CE measures vs number of samples of each algorithm for each of the 14 datasets. 

 

 

5.3.3.2. Analysis of results in terms of MQE 
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a) Dataset 1 
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g) Dataset 7 

 

h) Dataset 8 

 

i) Dataset 9 

 

j) Dataset 10 
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m) Dataset 13 

 

n) Dataset 14 

 

Fig. 5.7 MQE measures vs number of samples of each algorithm for each of the 14 datasets. 
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high, WeVoS-Beta-SIM presents very similar TE values as the number of samples is increases. However, 

Beta-SIM algorithm (Fig. 5.8) obtain unstable TE values (increasing and decreasing without a clear 

tendency). Therefore, it can be concluded that WeVoS-Beta-SIM, in terms of TE, is less sensitive to noise 

than the Beta-SIM algorithm. Therefore, WeVoS-Beta-SIM obtains maps with less distortion which in 

turn provides a better visual representation of the internal dataset structure. 
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e) Dataset 5 

 

f) Dataset 6 
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k) Dataset 11 

 

l) Dataset 12 

 

m) Dataset 13 

 

n) Dataset 14 

 

Fig. 5.8 TE measures vs number of samples of each algorithm for each of the 14 datasets. 
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concluded that the WeVoS-Beta-SIM is able to provide the best visual representation of the internal 

structure of datasets when their complexity is high (i.e. in this research means more than 5 classes). 

Finally, in terms of stability, WeVoS-Beta-SIM is less sensitive to noise in terms of TE than the simple 

model Beta-SIM, which lead to obtain maps with less distortion effect which in turn provides a better 

visual representation of the internal dataset structure. However, CE and MQE results do not show a clear 

tendency when instability is added. 

 

5.4. Conclusions for WeVoS-Beta-SIM 

In this chapter, a novel topology-preserving model known as WeVoS-Beta-SIM has been presented, 

analyzed and compared with other well-known topology preserving models. This algorithm aims to 

obtain the best topology preserving summary as possible in order to improve the visual representation of 

high dimensional datasets and to increase the stability of the original model (Beta-SIM). 

Therefore, the use of ensemble WeVoS when applying to the Beta-SIM algorithm improves the visual 

representation of the internal structure of high complex datasets (more than 5 classes), generating grid 

maps widely spread and that covers the input space better than the other models (better MQE values). At 

the same time, WeVoS-Beta-SIM obtains maps with less twists and folds than the simple model Beta-

SIM algorithm (better TE values), which signifies a better topology of the map.  

As can be seen in the results, the improvement on visual representation, created by WeVoS-Beta-SIM, 

is notably higher when complexity of the datasets increases. With very simple datasets, it only makes 

slight improvements or can even obtain worse results. That said, its usefulness has been proven in the 

case of more complex datasets (more than 5 classes), where the extra complexity of the calculation of the 

ensemble leads to the considerable increase of performance, obtaining a better organization and 

visualization of the presented information. 

Results also show that WeVoS-Beta-SIM is less sensitive to noise in terms of TE than the simple model 

Beta-SIM. It leads to maps with less distortion which in turn provides a better visual representation of the 

internal dataset structure. 
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Chapter 6.  Conclusions & Future Work 
In this thesis, a novel family of learning rules called Beta Hebbian Learning (BHL) has been explored. 

It has been the base for the development of 3 novel algorithms of unsupervised learning. The main 

objectives were to facilitate the information extraction, clustering and visualization of the internal 

structure of high complex datasets. 

A complete study of the algorithms in combination with several well-known algorithms such as PCA, 

MLHL, LLE, CCA, Isomap, SOM, ViSOM, SIM, MLHL-SIM, GNG and WeVoS-SOM, was presented. 

In this study the behavior of the novel algorithms was thoroughly analyzed and successfully demonstrated 

over artificial and real datasets, comparing their results, in terms of three performance quality measures 

such as CE, MQE and TE, with other well-known algorithms. The main conclusions extracted from the 

tests are: 

• BHL: A new family of learning rules have been derived which are based on maximising the 

likelihood of the residual from a negative feedback network when such residual is deemed to 

come from the Beta Distribution The power of BHL comes from the choice of an appropriate 

function depending on α and β parameters, to maximize the likelihood of the residuals (e) under 

particular models of PDFs. Therefore, it will allow to derive the most appropriate learning rule to 

the actual PDF of the residual, providing a better visualization of the internal structure of a 

dataset. 

 

• BETA-SIM: Beta-SIM is capable to obtain better topology preserving map than other well-

known algorithms, in order to be used as a reliable tool in data visualization. Due to the inherent 

capabilities of the SIM, their combination with the BHL algorithm improves adaptation and 

visualization of datasets with a radial structure, as has been successfully shown in the tests. The 

main improvement of the algorithm is the capacity to adapt to sparse clusters or to neglect 

outliers depending on the combination of values of α and β and the task to be carried out. 

 

• WeVoS-Beta-SIM: This novel algorithm improves the visual representation of the internal 

structure of high complex datasets, generating grid maps widely spread and that covers the input 

space better than the other models. At the same time, WeVoS-Beta-SIM obtains maps with less 

twists and folds than the simple model Beta-SIM algorithm, which signifies a better topology of 

the map and improving its stability when using complex datasets. 
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Future work includes the application of BHL rule to other topology preserving models, such as Self 

Organizing Maps (SOM) and Visualization Inducted SOM (ViSOM) [51], to generate new algorithms for 

boosting performance. Also BHL, Beta-SIM and WeVoS-Beta-SIM should be applied to analyze 

challenging real datasets to solve Data Mining and Big Data problems in the field of the Electric Vehicle, 

Energy Efficiency, Cybersecurity, etc.  



 119 

Conclusiones y trabajo futuro 
En esta tesis se ha investigado una nueva familia de reglas de aprendizaje llamada Beta Hebbian 

Learning (BHL) que ha sido la base para el desarrollo de 3 nuevos algoritmos de aprendizaje no 

supervisado. Los principales objetivos eran facilitar la extracción de información, la agrupación y la 

visualización de la estructura interna de conjuntos de datos complejos. 

Se ha presentado un estudio completo de los 3 nuevos algoritmos desarrollados en comparación con 

varios algoritmos ampliamente conocidos como PCA, MLHL, LLE, CCA, Isomap, SOM, ViSOM, SIM, 

MLHL-SIM, GNG y WeVoS-SOM. En este estudio, el comportamiento de los nuevos algoritmos ha sido 

analizado en profundidad y demostrado con éxito sobre conjuntos de datos artificiales y reales. Los 

resultados fueron comparados en términos de tres medidas de calidad de rendimiento, como son el CE, el 

MQE y el TE con otros algoritmos ampliamente conocidos. Las principales conclusiones extraídas de los 

experimentos son: 

 

• BHL: Se ha derivado una nueva familia de reglas de aprendizaje que se basan en maximizar la 

probabilidad del residuo de una red de retroalimentación negativa cuando se considera que dicho 

residuo procede de la Distribución Beta. El potencial de BHL viene de la elección de una 

función apropiada en base a los parámetros α y β, para maximizar la probabilidad de los residuos 

(e) en modelos particulares de PDFs. Por lo tanto, permite derivar la regla de aprendizaje más 

apropiada al PDF real del residuo, proporcionando una mejor visualización de la estructura 

interna de un conjunto de datos. 

 

• BETA-SIM: Beta-SIM es capaz de obtener mejores mapas de preservación de topología que 

otros algoritmos ampliamente usados, pudiendo ser utilizado como una herramienta fiable en la 

visualización de datos. Debido a las capacidades inherentes del SIM, su combinación con el 

algoritmo BHL mejora la adaptación y visualización de conjuntos de datos con una estructura 

radial, como se ha demostrado con éxito en los experimentos realizados. La principal mejora del 

algoritmo es la capacidad de adaptación a grupos dispersos o de no tener en consideración los 

“outliers” dependiendo de la combinación de valores de α y β y la tarea a realizar. 

 

• WeVoS-Beta-SIM: Este nuevo algoritmo mejora la representación visual de la estructura interna 

de conjuntos de datos complejos, generando mapas con estructuras ampliamente extendidas y 

que cubre el espacio de entrada mejor que los otros modelos. Al mismo tiempo, WeVoS-Beta-

SIM obtiene mapas con menos giros y pliegues que el algoritmo de su modelo simple, el Beta-



 120 

SIM, lo que significa una mejor topología del mapa, mejorando su estabilidad cuando se utilizan 

conjuntos de datos complejos. 

El trabajo futuro incluye la aplicación de la regla de BHL a otros modelos de preservación de topología, 

tales como Mapas Auto organizados (SOM) y “Visual Inducted SOM” (ViSOM) [51], para generar 

nuevos algoritmos que mejoren los resultados. También se aplicará BHL, Beta-SIM y WeVoS-Beta-SIM 

al análisis de conjuntos de datos reales para resolver problemas de Data Mining y Big Data en el campo 

del Vehículo Eléctrico, Eficiencia Energética, Ciberseguridad, etc. 
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Chapter 8.  Annex 
Table 8.1 Average testing CE/MQE/TE ± STD over the 14 benchmark datasets for Beta-SIM 

experiments. 

Dataset Quality 
Measure SOM ViSOM SIM MLHL-SIM GNG Beta-SIM 

1 
CE 0.412 ± 0.0866 0.472 ± 0.1004 0.474 ± 0.0904 0.461 ± 0.0858 0.446 ± 0.0690 0.469 ± 0.0725 

MQE 0.314 ± 0.0352 0.326 ± 0.0320 0.272 ± 0.0282 0.265 ± 0.0225 0.256 ± 0.0223 0.263 ± 0.0308 
TE 0.090 ± 0.0456 0.064 ± 0.0467 0.313 ± 0.0735 0.348 ± 0.0646 0.713 ± 0.0724 0.308 ± 0.0595 

2 
CE 0.210 ± 0.1595 0.180 ± 0.1033 0.180 ± 0.1229 0.210 ± 0.1287 0.220 ± 0.1476 0.210 ± 0.1229 

MQE 1.226 ± 0.0824 1.035 ± 0.1118 1.037 ± 0.1110 1.055 ± 0.1264 0.937 ± 0.0968 1.121 ± 0.1381 
TE 0.030 ± 0.0483 0.090 ± 0.1287 0.090 ± 0.0568 0.030 ± 0.0675 0.440 ± 0.1430 0.090 ± 0.1101 

3 
CE 0.117 ± 0.0039 0.117 ± 0.0046 0.116 ± 0.0046 0.117 ± 0.0040 0.116 ± 0.0047 0.117 ± 0.0048 

MQE 1.223 ± 0.0103 1.005 ± 0.0094 1.057 ± 0.0170 1.037 ± 0.016 0.993 ± 0.0131 1.178 ± 0.0701 
TE 0.023 ± 0.0123 0.026 ± 0.0065 0.053 ± 0.0148 0.055 ± 0.0297 0.309 ± 0.0425 0.136 ± 0.0466 

4 
CE 0.047 ± 0.0632 0.047 ± 0.0549 0.060 ± 0.0734 0.067 ± 0.0544 0.047 ± 0.0549 0.046 ± 0.0820 

MQE 0.222 ± 0.0388 0.157 ± 0.0209 0.177 ± 0.0310 0.181 ± 0.0331 0.149 ± 0.0143 0.166 ± 0.0250  
TE 0.200 ± 0.0770 0.120 ± 0.0322 0.260 ± 0.1313 0.320 ± 0.1209 0.587 ± 0.1565 0.280 ± 0.1363 

5 
CE 0.045 ± 0.0353 0.045 ± 0.0365 0.045 ± 0.0450 0.079 ± 0.0614 0.051 ± 0.0513 0.044 ± 0.0511 

MQE 0.795 ± 0.0836 0.720 ± 0.0743 0.710 ± 0.0822 0.700 ± 0.0807 0.669 ± 0.0422 0.767 ± 0.0909 
TE 0.090 ± 0.0390 0.062 ± 0.0720 0.190 ± 0.0865 0.225 ± 0.0950 0.668 ± 0.1129 0.400 ± 0.1124 

6 
CE 0.538 ± 0.0448 0.541 ± 0.0571 0.546 ± 0.0416 0.538 ± 0.0536 0.560 ± 0.0432 0.550 ± 0.0417 

MQE 0.870 ± 0.0342 0.699 ± 0.0338 0.742 ± 0.0378 0.717 ± 0.0342 0.493 ± 0.0242 0.654 ± 0.0360 
TE 0.040 ± 0.0255 0.028 ± 0.0088 0.081 ± 0.0286 0.073 ± 0.0505 0.529 ± 0.0469 0.125 ± 0.0364 

7 
CE 0.210 ± 0.0499 0.231 ± 0.0413 0.207 ± 0.0287 0.211 ± 0.0413 0.192 ± 0.0491 0.177 ± 0.0268 

MQE 1.206 ± 0.0243 1.045 ± 0.0305 1.083 ± 0.0257 1.036 ± 0.0252 0.851 ± 0.0097 1.086 ± 0.0286 
TE 0.046 ± 0.0142 0.063 ± 0.0177 0.136 ± 0.0266 0.120 ± 0.0243 0.667 ± 0.0217 0.443 ± 0.0393 

8 
CE 0.031 ± 0.0406 0.081 ± 0.0403 0.061 ± 0.0677 0.104 ± 0.0722 0.131 ± 0.0514 0.050 ± 0.0318 

MQE 1.818 ± 0.0638 1.834 ± 0.0683 1.783 ± 0.0585 1.800 ± 0.0677 2.261 ± 0.0606 1.679 ± 0.0452 
TE 0.053 ± 0.0243 0.031 ± 0.0337  0.132 ± 0.0708 0.162 ± 0.0721 0.070 ± 0.0509 0.167 ± 0.0818 

9 
CE 0.143 ± 0.0262 0.195 ± 0.0237 0.165 ± 0.0249 0.147 ± 0.0246 0.151 ± 0.0187 0.098 ± 0.0162 

MQE 0.553 ± 0.0197 0.532 ± 0.0298 0.487 ± 0.0227 0.464 ± 0.0265 0.511 ± 0.0183 0.381 ± 0.0206 
TE 0.071 ± 0.0195 0.040 ± 0.0246 0.162 ± 0.0350 0.161 ± 0.0364 0.345 ± 0.0362 0.158 ± 0.0404 

10 
CE 0.158 ± 0.0106 0.157 ± 0.0100 0.155 ± 0.0216 0.148 ± 0.0204 0.157 ± 0.0081 0.132 ± 0.0125 

MQE 0.644 ± 0.0084 0.655 ± 0.0103 0.597 ± 0.0197 0.592 ± 0.0083 0.681 ± 0.0114 0.489 ± 0.0075 
TE 0.120 ± 0.0184 0.063 ± 0.0132 0.197 ± 0.0460 0.243 ± 0.0606 0.380 ± 0.0252 0.392 ± 0.0600 

11 
CE 0.500 ± 0.0359 0.489 ± 0.0472 0.462 ± 0.0538 0.468 ± 0.0394 0.478 ± 0.0427 0.451 ± 0.0530 

MQE 0.321 ± 0.0274 0.292 ± 0.0170 0.279 ± 0.0207 0.276 ± 0.0190 0.286 ± 0.0203 0.267 ± 0.0217 
TE 0.059 ± 0.0174 0.051 ± 0.0193 0.297 ± 0.0383 0.333 ± 0.0598 0.520 ± 0.0527 0.330 ± 0.0340 

12 
CE 0.106 ± 0.0123 0.109 ± 0.0147 0.098 ± 0.0150 0.096 ± 0.0101 0.093 ± 0.0135 0.081 ± 0.0114 

MQE 0.883 ± 0.0102 0.897 ± 0.0115 0.753 ± 0.0129 0.741 ± 0.0138 0.901 ± 0.0123 0.668 ± 0.0152 
TE 0.055 ± 0.0090 0.042 ± 0.0037 0.088 ± 0.0136 0.082 ± 0.0135 0.290 ± 0.0268 0.105 ± 0.0176 

13 
CE 0.105 ± 0.0098 0.120 ± 0.0146 0.092 ± 0.0103 0.091 ± 0.0115 0.087 ± 0.0178 0.064 ± 0.0128 

MQE 2.703 ± 0.0228 2.811 ± 0.0173 2.450 ± 0.0203 2.454 ± 0.0213 2.701 ± 0.0229 2.247 ± 0.0289 
TE 0.038 ± 0.0092 0.037 ± 0.0082 0.063 ± 0.0123 0.058 ± 0.0121 0.293 ± 0.0273 0.091 ± 0.0095 

14 
CE 0.545 ± 0.0169 0.516 ± 0.0141 0.503 ± 0.0101 0.497 ± 0.0139 0.363 ± 0.0175 0.362 ± 0.0122 

MQE 0.605 ± 0.0044 0.568 ± 0.0045 0.527 ± 0.0028 0.521 ± 0.0044 0.448 ± 0.0031 0.432 ± 0.0043 
TE 0.074 ± 0.0109 0.075 ± 0.0109 0.193 ± 0.0129 0.204 ± 0.0196 0.483 ± 0.0154 0.247 ± 0.0191 
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Table 8.2 Algorithms parameters for each benchmark dataset for Beta-SIM and WeVoS-Beta-

SIM experiments. 

Dataset Parameters SOM ViSOM SIM MLHL-SIM GNG Beta-SIM 

1 

Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
Iterations 3,000 3,000 3,000 3,000 3,000 3,000 

Learning rate 0.1 0.05 0.05 0.05 - 0.05 
Neighborhood 12 10 10 10 - 6 

p - - - 0.5 - - 
α;β - - - - - α=3;β=4 

lViSOM - 0,25 - - - - 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 200; 0.5; 0.9; 
5; 0.01; 0.001 - 

2 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
Iterations 5,000 5,000 5,000 5,000 10,000 5,000 

Learning rate 0.1 0.05 0.1 0.1 - 0.1 
Neighborhood 12 10 10 10 - 6 

p - - - 0.9 - - 
α;β - - - - - α=3;β=3.5 

lViSOM - 0,25 - - - - 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 200; 0.5; 0.9; 
5; 0.01; 0.001 - 

3 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
 Iterations 30,000 30,000 30,000 30,000 30,000 50,000 
 Learning rate 0.05 0.05 0.05 0.05 - 0.05 
 Neighborhood 12 10 10 10 - 6 
 p - - - 0.5 - - 
 α;β - - - - - α=3;β=3.5 
 lViSOM - 0,25 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5; 0.01; 0.001 - 

4 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
 Iterations 5,000 5,000 5,000 5,000 5,000 5,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 10  5 10 - 12 
 p - - - 0.9 - - 
 α;β - - - - - α=3;β=3 
 lViSOM - 0,1 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5; 0.1; 0.001 - 

5 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
 Iterations 5,000 5,000 5,000 5,000 5,000 5,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 12 10 12 10 - 12 
 p - - - 0.9 - - 
 α;β - - - - - α=4;β=4 
 lViSOM - 0.1 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 50; 0.5; 0.9; 5; 
0.1; 0.0001 - 

6 Size [15,10] [15,10] [15,10] [15,10] - [15,15] 
 Iterations 10,000 10,000 10,000 10,000 10,000 50,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 12 10 12 10 - 5 
 p - - - 1.2 - - 
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 α;β - - - - - α=4;β=4 
 lViSOM - 0.2 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 50; 0.5; 0.9; 5; 
0.1; 0.0001 - 

7 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
 Iterations 10,000 5,000 10,000 10,000 10,000 10,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 10 10 12 10 - 6 
 p -  - 0.9 - - 
 α;β -  - - - α=5;β=3 
 lViSOM - 0.2 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5;0.01; 0.0001 - 

8 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
 Iterations 5,000 5,000 5,000 5,000 5,000 5,000 
 Learning rate 0.1 0.1 0.05 0.05 - 0.1 
 Neighborhood 10 10 10 10 - 6 
 p - - - 0.9 - - 
 α;β - - - - - α=4;β=3 
 lViSOM - 0.3 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 50; 0.5; 0.9; 
5;0.01; 0.0001 - 

9 Size [20,15] [20,15] [20,15] [20,15] - [20,15] 
 Iterations 10,000 5,000 10,000 10,000 10,000 10,000 
 Learning rate 0.1 0.1 0.05 0.1 - 0.1 
 Neighborhood 10 10 10 10 - 6 
 p -  - 0.9 - - 
 α;β -  - - - α=4;β=3 
 lViSOM - 0.25 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5;0.01; 0.0001 - 

10 Size [20,15] [20,15] [20,15] [20,15] - [20,15] 
 Iterations 30,000 30,000 30,000 30,000 30,000 30,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 10 10 10 10 - 6 
 p - - - 1.1 - - 
 α;β - - - - - α=4;β=3 
 lViSOM - 0.25 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5;0.01; 0.0001 - 

11 Size [15,10] [15,10] [15,10] [15,10] - [15,10] 
 Iterations 10,000 10,000 10,000 10,000 10,000 10,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 12 10 10 10 - 6 
 p - - - 0.5 - - 
 α;β - - - - - α=4;β=3 
 lViSOM - 0.1 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 50; 0.5; 0.9; 
5;0.01;0.0001 - 

12 Size [20,15] [20,15] [20,15] [20,15] - [20,15] 
 Iterations 50,000 50,000 50,000 50,000 50,000 50,000 
 Learning rate 0. 1 0.1 0.1 0.1 - 0.1 
 Neighborhood 12 10 8 8 - 6 
 p - - - 0.9 - - 
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 α;β - - - - - α=4;β=3 
 lViSOM - 0.1 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5;0.001;0.0001 - 

13 Size [20,10] [20,10] [20,10] [20,10] - [20,10] 
 Iterations 40,000 40,000 40,000 40,000 40,000 40,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 12 10 12 12 - 6 
 p - - - 0.9 - - 
 α;β - - - - - α=4;β=3 
 

lViSOM - - - - 100; 0.5; 0.9; 
5;0.001;0.0001 - 

 lGNG; αGNG;βGNG; amax; Wl; Wn       
14 Size [25,20] [25,20] [25,20] [25,20] - [25,20] 

 Iterations 80,000 80,000 80,000 80,000 80,000 80,000 
 Learning rate 0.1 0.1 0.1 0.1 - 0.1 
 Neighborhood 12 10 12 12 - 6 
 p - - - 0.5 - - 
 α;β - - - - - α=4;β=3 
 lViSOM - 0.1 - - - - 
 

lGNG; αGNG;βGNG; amax; Wl; Wn - - - - 100; 0.5; 0.9; 
5;0.005;0.0001 - 

 

Table 8.3 Summary of the results in terms of the three well-known quality measures for each 

benchmark dataset for Beta-SIM experiments. 

Dataset Quality Measure SOM ViSOM SIM MLHL-SIM GNG 

1 
CE -6% 0% 1% -1% -2% 

MQE 16% 19% 3% 1% -3% 
TE -22% -24% 1% 4% 41% 

2 
CE 0% -3% -3% 0% 1% 

MQE 9% -8% -8% -6% -20% 
TE -6% 0% 0% -6% 35% 

3 
CE 0% 0% 0% 0% 0% 

MQE 4% -17% -11% -14% -19% 
TE -11% -11% -8% -8% 17% 

4 
CE 0% 0% 1% 2% 0% 

MQE 25% -6% 6% 8% -11% 
TE -8% -16% -2% 4% 31% 

5 
CE 0% 0% 0% 4% 1% 

MQE 4% -7% -8% -10% -15% 
TE -31% -34% -21% -18% 27% 

6 
CE -1% -1% 0% -1% 1% 

MQE 25% 6% 12% 9% -33% 
TE -9% -10% -4% -5% 40% 

7 
CE 3% 5% 3% 3% 2% 

MQE 10% -4% 0% -5% -28% 
TE -40% -38% -31% -32% 22% 

8 
CE -2% 3% 1% 5% 8% 

MQE 8% 8% 6% 7% 26% 
TE -11% -14% -4% -1% -10% 

9 
CE 5% 10% 7% 5% 5% 

MQE 31% 28% 22% 18% 25% 
TE -9% -12% 0% 0% 19% 

10 CE 3% 3% 2% 2% 3% 
MQE 24% 25% 18% 17% 28% 
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TE -27% -33% -20% -15% -1% 

11 
CE 5% 4% 1% 2% 3% 

MQE 17% 9% 4% 3% 7% 
TE -27% -28% -3% 0% 19% 

12 
CE 3% 3% 2% 2% 1% 

MQE 24% 26% 11% 10% 26% 
TE -5% -6% -2% -2% 19% 

13 
CE 4% 6% 3% 3% 2% 

MQE 17% 20% 8% 8% 17% 
TE -5% -5% -3% -3% 20% 

14 
CE 18% 15% 14% 14% 0% 

MQE 29% 24% 18% 17% 4% 
TE -17% -17% -5% -4% 24% 

Red color: Beta-SIM is significantly better (significance level of 0.05) than the other model 
Blue color: Beta-SIM is significantly worse (significance level of 0.05) than the other model 
 



Table 8.4 p-values for CE (WeVoS-Beta-SIM against all algorithms) 

Dataset Nº samples SIM Beta-SIM SOM WeVoS-SOM MLHL-SIM ViSOM GNG 

1 

69 0.8958 0.9516 0.3850 0.9991 0.5790 0.7094 0.9999 
138 0.9999 0.9983 0.8807 1.0000 1.0000 0.9962 1.0000 
207 0.9986 0.9968 0.9999 0.9996 0.9999 1.0000 0.9996 
276 0.9983 0.9746 0.9976 0.9991 0.9980 0.9998 0.9998 
345 0.9989 0.9979 0.9873 0.8236 0.9861 0.9998 1.0000 

2 

20 1.0000 0.9999 0.9938 0.7762 1.0000 0.9938 1.0000 
40 1.0000 0.9990 0.9711 0.9998 1.0000 1.0000 0.9997 
60 0.9992 0.9754 0.7170 0.8110 0.9961 0.9933 0.9992 
80 0.4724 0.9974 1.0000 0.9959 0.9790 0.9970 0.8462 

100 0.9996 0.9998 0.9705 1.0000 0.9889 0.9970 1.0000 

3 

9043 0.0446◊ 0.4195 0.5673 0.5171 0.7138 0.6666 0.0960 
18086 0.9885 0.9993 0.9828 0.8168 0.9530 0.5913 0.9752 
27129 0.9951 0.9998 0.9559 0.9670 0.9559 1.0000 0.9263 
36172 0.9964 0.9557 0.9987 0.9972 0.9999 0.9495 0.9954 
45211 1.0000 0.9907 0.9993 0.9827 0.9624 0.9954 0.9290 

4 

30 0.9952 0.9162 1.0000 0.9996 0.9162 0.9996 1.0000 
60 0.9974 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 
90 1.0000 1.0000 0.9991 0.9871 1.0000 1.0000 0.9991 

120 0.9999 0.9934 0.9505 0.9999 0.9998 0.9960 0.9438 
150 1.0000 1.0000 0.9942 1.0000 1.0000 0.9942 1.0000 

5 

36 1.0000 1.0000 1.0000 0.9905 1.0000 1.0000 0.9991 
72 0.9897 0.9992 1.0000 0.9869 0.9992 0.9869 1.0000 

108 0.9994 0.9962 1.0000 0.4038 0.9996 0.9120 1.0000 
144 1.0000 1.0000 0.9937 0.9996 1.0000 1.0000 0.9997 
178 0.8318 0.9895 0.9895 0.9895 1.0000 0.4805 0.9895 

6 

295 1.0000 1.0000 0.5788 0.8551 1.0000 0.9915 0.9453 
590 0.9998 1.0000 1.0000 0.9999 0.9997 1.0000 0.9997 
885 0.9995 0.9976 1.0000 0.9990 0.9701 0.9999 0.9977 

1180 0.9430 0.9993 0.9999 1.0000 0.9855 1.0000 0.9997 
1473 0.9897 0.9838 0.8343 1.0000 0.7163 0.9998 1.0000 

7 

346 0.9946 0.9999 1.0000 1.0000 0.9546 0.9997 0.4479 
692 1.0000 1.0000 0.9988 0.9995 0.9828 1.0000 0.4248 

1038 0.7513 1.0000 0.9896 0.9993 1.0000 1.0000 0.8534 
1384 0.9932 1.0000 0.9154 0.9999 0.8827 0.9997 0.6597 
1728 0.9879 0.9997 1.0000 1.0000 0.9973 0.7986 0.0737 

8 72 0.5625 0.5625 0.5625 0.3524 0.1571 0.5625 0.3524 
144 1.0000 0.9997 0.9928 1.0000 0.9892 1.0000 1.0000 
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216 0.9345 0.9954 0.9854 0.7354 0.9995 0.9999 0.6554 
288 0.9923 0.8485 0.9999 0.8346 1.0000 0.9730 0.9989 
358 0.1169 1.0000 1.0000 0.9646 0.6784 0.9994 1.0000 

9 

462 0.0000* 0.9978 0.1091 0.0012* 0.0056* 0.2371 0.0662 
924 0.0000* 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

1386 0.0000* 0.9957 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
1848 0.0000* 0.9613 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
2310 0.0000* 0.9228 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

10 

1287 0.9713 0.9860 0.9864 0.8818 0.9265 0.8279 0.0000* 
2574 0.4136 0.8679 0.0014* 0.0927 0.4720 0.1590 0.0000* 
3861 0.8162 1.0000 0.4380 0.2670 0.9873 0.8016 0.0000* 
5148 0.0188* 1.0000 0.0003* 0.0015* 0.0348* 0.1331 0.0000* 
6435 0.0000* 0.9967 0.0000* 0.0000* 0.0005* 0.0001* 0.0000* 

11 

297 0.7997 0.9865 0.5333 0.4788 0.9089 0.8765 0.8101 
594 0.9817 0.9976 0.9663 0.6593 0.9159 1.0000 1.0000 
891 0.4254 0.7712 0.5029 0.0757 0.4165 0.9821 0.8832 

1188 0.9159 0.9991 0.4903 0.0364* 0.9675 0.9953 1.0000 
1484 0.9475 0.9993 0.1509 0.1201 0.9947 0.8352 0.9996 

12 

2199 0.9973 0.9997 0.2056 0.0144* 0.9881 0.2753 0.7632 
4398 0.9982 0.9883 0.1169 0.0000* 0.9691 0.1542 0.8215 
6597 0.2249 1.0000 0.0010* 0.0000* 0.7232 0.0692 0.3049 
8796 0.2290 0.7177 0.0001* 0.0000* 0.7059 0.0001* 0.2002 

10992 0.7618 0.9983 0.0001* 0.0000* 0.4568 0.0000* 0.0926 

13 

1124 0.7862 0.9929 0.0434* 0.0000* 0.9645 0.1407 1.0000 
2248 0.0487* 1.0000 0.0010* 0.0000* 0.6557 0.0000* 0.9196 
3372 0.2678 1.0000 0.0052* 0.0000* 0.6724 0.0003* 0.8906 
4496 0.4075 1.0000 0.0001* 0.0000* 0.4241 0.0000* 0.5245 
5620 0.0379* 1.0000 0.0000* 0.0000* 0.6031 0.0000* 0.2933 

14 

4000 0.0000* 0.8880 0.0000* 0.0000* 0.0000* 0.0000* 1.0000 
8000 0.0000* 0.4548 0.0000* 0.0000* 0.0000* 0.0000* 0.9745 

12000 0.0000* 0.7614 0.0000* 0.0000* 0.0000* 0.0000* 0.8839 
16000 0.0000* 0.2165 0.0000* 0.0000* 0.0000* 0.0000* 0.8033 
20000 0.0000* 0.4712 0.0000* 0.0000* 0.0000* 0.0000* 0.9900 

 

* WeVoS-Beta-SIM is significantly better (significance level of 0.05) 

◊ WeVoS-Beta-SIM is significantly worse (significance level of 0.05) 
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Table 8.5 p-values for MQE (WeVoS-Beta-SIM against all algorithms) 

Dataset Nº samples SIM Beta-SIM SOM WeVoS-SOM MLHL-SIM ViSOM GNG 

1 

69 0.9999 0.9995 0.9493 0.1308 1.0000 0.8491 0.9978 
138 1.0000 1.0000 0.7775 0.0061* 1.0000 0.3215 1.0000 
207 1.0000 1.0000 0.0935 0.0000* 0.9871 0.0108* 1.0000 
276 0.9384 1.0000 0.0043* 0.0000* 0.9646 0.0004* 1.0000 
345 0.9972 1.0000 0.2095 0.0004* 0.9997 0.0409* 1.0000 

2 

20 1.0000 1.0000 0.9206 0.8572 1.0000 1.0000 1.0000 
40 1.0000 1.0000 0.0018* 0.0000* 1.0000 1.0000 0.9872 
60 0.9768 0.7329 0.0000* 0.0000* 0.9911 0.9880 1.0000 
80 0.9992 0.9962 0.0000* 0.0000* 0.9954 1.0000 0.6938 

100 1.0000 1.0000 0.0000* 0.0000* 0.9984 0.9978 0.6521 

3 

9043 0.4056 0.6412 0.0000* 0.0000* 0.0639 0.0000◊ 0.0000◊ 
18086 1.0000 0.0325* 0.0000* 0.0000* 0.8685 0.0058◊ 0.0030◊ 
27129 0.1249 0.7730 0.0000* 0.0000* 0.0421◊ 0.0000◊ 0.0000◊ 
36172 1.0000 0.0363* 0.0000* 0.0000* 0.9498 0.0162◊ 0.0065◊ 
45211 0.0027◊ 0.9836 0.0000* 0.0000* 0.0000◊ 0.0000◊ 0.0000◊ 

4 

30 0.9994 1.0000 0.4264 0.0054* 1.0000 0.9837 1.0000 
60 0.9821 1.0000 0.3470 0.0019* 0.9989 1.0000 1.0000 
90 1.0000 0.9985 0.0114* 0.0000* 0.9999 0.9988 1.0000 

120 0.9118 1.0000 0.0000* 0.0000* 0.4734 0.9940 1.0000 
150 0.9995 0.9993 0.0234* 0.0000* 0.9962 0.9975 0.9993 

5 

36 1.0000 1.0000 0.9999 0.9471 1.0000 1.0000 1.0000 
72 1.0000 1.0000 0.9914 0.4144 0.9999 1.0000 0.9999 

108 0.9997 0.9995 0.9713 0.0387* 0.9025 0.9626 0.6379 
144 0.1953 0.9969 0.0727 0.0000* 0.6331 0.6876 0.0012◊ 
178 0.9605 1.0000 0.4684 0.0023* 0.9836 0.9973 0.1763 

6 

295 0.0018* 1.0000 0.0000* 0.0000* 0.1054 0.7699 0.0000◊ 
590 0.0000* 0.8916 0.0000* 0.0000* 0.0026* 0.0285* 0.0000◊ 
885 0.0010* 0.9922 0.0000* 0.0000* 0.0504 0.2314 0.0000◊ 

1180 0.0000* 0.9721 0.0000* 0.0000* 0.0000* 0.0069* 0.0000◊ 
1473 0.0197* 0.0475* 0.0000* 0.0000* 0.1789 0.3657 0.0000◊ 

7 

346 0.0066* 0.9989 0.0000* 0.0000* 0.7893 0.1484 0.0000◊ 
692 0.0000* 0.0074* 0.0000* 0.0000* 0.0141* 0.0030* 0.0000◊ 

1038 0.0000* 0.1972 0.0000* 0.0000* 0.3101 0.1014 0.0000◊ 
1384 0.0000* 0.0219* 0.0000* 0.0000* 0.0713 0.0224* 0.0000◊ 
1728 0.0000* 0.0005* 0.0000* 0.0000* 0.0002* 0.0000* 0.0000◊ 



 137 

8 

72 0.3207 0.4928 0.2220 0.0052* 0.3928 0.3437 0.7936 
144 0.0007* 0.2966 0.0001* 0.0000* 0.0012* 0.0008* 0.4246 
216 0.0000* 0.9768 0.0000* 0.0000* 0.0000* 0.0001* 0.8949 
288 0.0000* 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.9927 
358 0.0000* 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.9865 

9 

462 0.0000* 0.9997 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
924 0.0000* 0.9759 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

1386 0.0000* 0.9898 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
1848 0.0000* 0.9420 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
2310 0.0000* 0.9067 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

10 

1287 0.0000* 0.9907 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
2574 0.0000* 0.9386 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
3861 0.0000* 0.8347 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
5148 0.0000* 0.0458* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
6435 0.0000* 0.0030* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

11 

297 0.6356 1.0000 0.0006* 0.0000* 0.6983 0.2171 0.4205 
594 0.0305* 1.0000 0.0000* 0.0000* 0.2113 0.0009* 0.0092* 
891 0.0111* 0.9991 0.0000* 0.0000* 0.0107* 0.0000* 0.0005* 

1188 0.0060* 0.9982 0.0000* 0.0000* 0.0404* 0.0000* 0.0008* 
1484 0.0000* 0.9394 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

12 

2199 0.2761 0.9992 0.0000* 0.0000* 0.7677 0.0000* 0.0000* 
4398 0.2332 0.9844 0.0000* 0.0000* 0.6176 0.0000* 0.0000* 
6597 0.4586 0.9998 0.0000* 0.0000* 0.7756 0.0000* 0.0000* 
8796 0.3557 0.9939 0.0000* 0.0000* 0.7204 0.0000* 0.0000* 

10992 0.3036 0.9989 0.0000* 0.0000* 0.5867 0.0000* 0.0000* 

13 

1124 0.3653 0.9999 0.0000* 0.0000* 0.6107 0.0000* 0.0000* 
2248 0.0000* 0.4692 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
3372 0.0000* 0.4019 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
4496 0.0000* 0.9553 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
5620 0.0000* 0.5695 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 

14 

4000 0.0000* 0.2528 0.0000* 0.0000* 0.0000* 0.0000* 0.0011* 
8000 0.0000* 0.5156 0.0000* 0.0000* 0.0000* 0.0000* 0.0114* 

12000 0.0000* 0.0120* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
16000 0.0000* 0.0443* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 
20000 0.0000* 0.4932 0.0000* 0.0000* 0.0000* 0.0000* 0.0005* 

* WeVoS-Beta-SIM is significantly better (significance level of 0.05) 

◊ WeVoS-Beta-SIM is significantly worse (significance level of 0.05) 
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Table 8.6 p-values for TE (WeVoS-Beta-SIM against all algorithms) 

Dataset Nº samples SIM Beta-SIM SOM WeVoS-SOM MLHL-SIM ViSOM GNG 

1 

69 0.1601 0.0993 0.0013◊ 0.0040◊ 0.2797 0.0000◊ 0.0000* 
138 0.9981 0.7576 0.0000◊ 0.0016◊ 0.9999 0.0000◊ 0.0000* 
207 0.6231 0.9940 0.0000◊ 0.0143◊ 0.9553 0.0000◊ 0.0000* 
276 0.9989 0.9926 0.0000◊ 0.0001◊ 0.9990 0.0000◊ 0.0000* 
345 0.3572 1.0000 0.0000◊ 0.0000◊ 0.7626 0.0000◊ 0.0000* 

2 

20 0.9998 1.0000 0.8518 0.8518 1.0000 0.5728 0.0017* 
40 0.9617 0.9985 0.6080 0.8920 0.1990 0.7492 0.0000* 
60 0.9985 1.0000 0.2883 1.0000 0.8267 0.9989 0.0000* 
80 0.5303 1.0000 0.0392◊ 0.6881 0.9999 0.2693 0.0080* 

100 0.6678 0.7758 0.0168◊ 0.0168◊ 0.1298 0.4541 0.0000* 

3 

9043 0.0022◊ 0.9957 0.0000◊ 0.1702 0.0047◊ 0.0000◊ 0.0000* 
18086 0.0373◊ 0.9351 0.0001◊ 0.9390 0.4378 0.0005◊ 0.0000* 
27129 0.0006◊ 0.9370 0.0000◊ 0.9267 0.0039◊ 0.0000◊ 0.0000* 
36172 0.3571 0.7424 0.0121◊ 0.0074* 0.4952 0.0229◊ 0.0000* 
45211 0.0116◊ 1.0000 0.0000◊ 1.0000 0.0024◊ 0.0000◊ 0.0000* 

4 

30 0.9603 0.9866 1.0000 0.5595 0.8594 0.9969 0.0539 
60 0.9879 0.0284* 0.7728 0.9999 0.5427 0.2593 0.0000* 
90 0.7122 0.1744 0.9989 0.9689 0.9955 0.5864 0.0000* 

120 0.9986 0.9999 0.3425 0.7344 0.9993 0.1675 0.0000* 
150 0.9931 0.9978 0.0879 0.5923 0.1198 0.0007◊ 0.0000* 

5 

36 0.9876 0.1204 0.9329 1.0000 0.8742 1.0000 0.0000* 
72 0.3931 0.9694 0.0111◊ 0.0655 0.8914 0.0004◊ 0.0000* 

108 0.9978 0.0038* 0.2146 0.4834 0.9999 0.0062◊ 0.0000* 
144 0.9992 0.8896 0.0049◊ 0.4388 0.9630 0.0001◊ 0.0000* 
178 0.3531 0.0028* 0.0796 0.7623 0.8855 0.0282◊ 0.0000* 

6 

295 0.1927 0.3963 0.0005◊ 0.9257 0.2522 0.0005◊ 0.0000* 
590 0.1917 0.7446 0.0177◊ 0.4426 0.1582 0.0006◊ 0.0000* 
885 1.0000 0.7656 0.0446◊ 0.0563 1.0000 0.0445◊ 0.0000* 

1180 0.8835 0.9722 0.0078◊ 0.9782 1.0000 0.0267◊ 0.0000* 
1473 1.0000 0.0056* 0.3620 0.0001* 1.0000 0.2847 0.0000* 

7 

346 0.0804 0.1081 0.0000◊ 0.0080* 0.0288◊ 0.0002◊ 0.0000* 
692 0.0771 0.0000* 0.0000◊ 0.9967 0.1065 0.0000◊ 0.0000* 

1038 0.0236◊ 0.0000* 0.0000◊ 0.8051 0.0471◊ 0.0000◊ 0.0000* 
1384 0.9576 0.0000* 0.0000◊ 0.6972 0.0562 0.0000◊ 0.0000* 
1728 0.0311◊ 0.0000* 0.0000◊ 0.7735 0.0043◊ 0.0000◊ 0.0000* 
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8 

72 0.9396 0.9883 0.9761 0.9826 0.9954 0.9963 0.0000* 
144 0.4076 1.0000 0.0248◊ 0.2021 0.3858 0.0006◊ 0.0000* 
216 0.1169 0.7906 0.6833 0.9988 0.9975 0.2318 0.0000* 
288 0.8899 0.9554 0.0000◊ 1.0000 0.9739 0.0000◊ 0.0000* 
358 0.9985 0.9998 0.0025◊ 0.1206 0.9817 0.0001◊ 0.0000* 

9 

462 0.0579 0.7664 0.0001◊ 0.0029◊ 0.0842 0.0000◊ 0.5963 
924 0.0000◊ 0.9797 0.0000◊ 0.0000◊ 0.0091◊ 0.0000◊ 0.2574 

1386 0.0000◊ 1.0000 0.0000◊ 0.0000◊ 0.0028◊ 0.0000◊ 0.9982 
1848 0.0000◊ 0.8863 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0151* 
2310 0.0000◊ 0.6161 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0122* 

10 

1287 1,0000 0,0459* 0,0000◊ 0,0000◊ 1,0000 0,0000◊ 0,0000* 
2574 0,6093 0,2119 0,0000◊ 0,0000◊ 0,7702 0,0000◊ 0,0000* 
3861 0,0426◊ 0,0461* 0,0000◊ 0,0000◊ 0,0555 0,0000◊ 0,0000* 
5148 1,0000 0,0198* 0,0000◊ 0,0000◊ 0,1377 0,0000◊ 0,0000* 
6435 1,0000 0,0276* 0,0000◊ 0,0000◊ 0,5172 0,0000◊ 0,0000* 

11 

297 0,9867 0,1683 0,0000◊ 0,4861 1,0000 0,0000◊ 0,0000* 
594 0,8594 0,0126* 0,0000◊ 0,5720 0,2472 0,0000◊ 0,0000* 
891 0,0860 0,0204* 0,0000◊ 0,0162◊ 0,6542 0,0000◊ 0,0000* 

1188 0,6577 0,0003* 0,0000◊ 0,0121◊ 0,0007* 0,0000◊ 0,0000* 
1484 0,0000* 0,0013* 0,0000◊ 0,0000◊ 0,0002* 0,0000◊ 0,0000* 

12 

2199 0,9997 0,1034 0,0489◊ 0,1372 1,0000 0,0146◊ 0,0000* 
4398 0,9987 0,0002* 0,0084◊ 0,9946 0,9994 0,0004◊ 0,0000* 
6597 0,9898 0,0439* 0,7897 0,0272* 0,5190 0,5132 0,0000* 
8796 0,9971 0,2112 0,1674 0,4805 1,0000 0,0506 0,0000* 

10992 0,9967 0,0011* 0,2249 0,0148* 0,4110 0,0494◊ 0,0000* 

13 

1124 0,9922 0,1021 0,7303 0,0000* 0,9997 0,1430 0,0000* 
2248 0,9996 0,0470* 0,1349 0,0000* 0,9522 0,1879 0,0000* 
3372 1,0000 0,0355* 0,5704 0,0000* 1,0000 0,0682 0,0000* 
4496 1,0000 0,0000* 0,5283 0,0000* 0,9963 0,0114◊ 0,0000* 
5620 1,0000 0,0018* 0,4892 0,0000* 1,0000 0,1211 0,0000* 

14 

4000 0,0630 0,7376 0,0000◊ 0,0003◊ 0,0049◊ 0,0000◊ 0,0000* 
8000 1,0000 0,3346 0,0000◊ 0,6199 0,8500 0,0000◊ 0,0000* 

12000 0,9996 0,0008* 0,0000◊ 0,0001◊ 1,0000 0,0000◊ 0,0000* 
16000 0,8154 0,0000* 0,0000◊ 0,0976 0,8015 0,0000◊ 0,0000* 
20000 1,0000 0,0003* 0,0000◊ 0,0404◊ 1,0000 0,0000◊ 0,0000* 

* WeVoS-Beta-SIM is significantly better (significance level of 0.05) 

◊ WeVoS-Beta-SIM is significantly worse (significance level of 0.05) 
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Table 8.7 Average testing CE ± STD over the 14 benchmark datasets 

Dataset Nº samples SIM Beta-SIM WeVoS-Beta-SIM SOM WeVoS-SOM MLHL-SIM ViSOM GNG 

1 

69 0.491±0.2007 0.476±0.1791 0.383±0.2025 0.563±0.2089 0.430±0.1539 0.538±0.2178 0.521±0.1393 0.349±0.1735 
138 0.442±0.0860 0.457±0.1524 0.419±0.0938 0.501±0.1204 0.407±0.1761 0.413±0.1482 0.375±0.1206 0.396±0.1676 
207 0.468±0.1189 0.464±0.0761 0.497±0.0994 0.478±0.1292 0.473±0.1099 0.479±0.1254 0.511±0.0820 0.473±0.1086 
276 0.468±0.0717 0.399±0.0775 0.441±0.1164 0.413±0.0792 0.417±0.1062 0.469±0.1010 0.460±0.0981 0.460±0.1015 
345 0.423±0.0720 0.473±0.1093 0.447±0.0832 0.482±0.1008 0.505±0.0835 0.411±0.0815 0.429±0.0852 0.455±0.0906 

2 

20 0.150±0.2415 0.200±0.3496 0.150±0.2415 0.250±0.3536 0.350±0.3375 0.150±0.2415 0.250±0.2635 0.150±0.2415 
40 0.118±0.1306 0.163±0.1927 0.123±0.1350 0.193±0.1607 0.155±0.1442 0.143±0.1294 0.135±0.1667 0.090±0.1663 
60 0.158±0.1660 0.127±0.1568 0.199±0.2467 0.079±0.0833 0.090±0.1405 0.146±0.1168 0.141±0.1733 0.158±0.1660 
80 0.286±0.1802 0.212±0.1288 0.176±0.1071 0.174±0.1185 0.137±0.0664 0.228±0.1084 0.213±0.1043 0.253±0.1256 

100 0.237±0.1530 0.235±0.1499 0.208±0.0957 0.149±0.0958 0.189±0.1078 0.258±0.1784 0.249±0.1219 0.228±0.1131 

3 

9043 0.112±0.0048 0.114±0.0023 0.117±0.0026 0.114±0.0013 0.114±0.0007 0.115±0.0053 0.114±0.0022 0.113±0.0040 
18086 0.117±0.0008 0.117±0.0019 0.117±0.0029 0.116±0.0011 0.116±0.0011 0.116±0.0010 0.116±0.0026 0.116±0.0030 
27129 0.117±0.0015 0.117±0.0017 0.117±0.0029 0.118±0.0004 0.117±0.0007 0.118±0.0005 0.117±0.0013 0.118±0.0005 
36172 0.119±0.0005 0.117±0.0037 0.118±0.0026 0.119±0.0003 0.119±0.0003 0.118±0.0023 0.117±0.0026 0.117±0.0027 
45211 0.117±0.0011 0.117±0.0013 0.117±0.0009 0.117±0.0009 0.117±0.0002 0.117±0.0009 0.116±0.0017 0.117±0.0010 

4 

30 0.083±0.1800 0.117±0.1933 0.033±0.1054 0.033±0.1054 0.067±0.1405 0.117±0.1933 0.067±0.1405 0.033±0.1054 
60 0.081±0.0856 0.134±0.1066 0.112±0.1106 0.114±0.1116 0.100±0.1165 0.098±0.0843 0.098±0.0843 0.114±0.1116 
90 0.053±0.1068 0.042±0.0892 0.043±0.0767 0.064±0.0898 0.076±0.0740 0.054±0.0778 0.043±0.0560 0.064±0.0764 

120 0.051±0.0588 0.042±0.0442 0.060±0.0693 0.034±0.0441 0.051±0.0440 0.049±0.0561 0.043±0.0456 0.033±0.0433 
150 0.047±0.0549 0.047±0.0632 0.053±0.0422 0.073±0.0584 0.060±0.0663 0.047±0.0450 0.073±0.0663 0.047±0.0632 

5 

36 0.092±0.1493 0.092±0.1493 0.098±0.1622 0.103±0.1372 0.157±0.1421 0.100±0.1610 0.078±0.1301 0.138±0.2061 
72 0.068±0.1147 0.082±0.1487 0.111±0.0832 0.096±0.1117 0.066±0.1237 0.082±0.1142 0.066±0.0915 0.109±0.1066 

108 0.064±0.0941 0.071±0.0777 0.045±0.0475 0.056±0.0781 0.121±0.0971 0.027±0.0584 0.090±0.1074 0.045±0.0616 
144 0.063±0.0710 0.062±0.0677 0.056±0.0560 0.034±0.0475 0.041±0.0357 0.062±0.0775 0.062±0.0612 0.070±0.0744 
178 0.057±0.0547 0.045±0.0440 0.028±0.0300 0.045±0.0354 0.045±0.0440 0.034±0.0405 0.068±0.0648 0.045±0.0238 

6 

295 0.616±0.1162 0.617±0.1116 0.618±0.0650 0.539±0.0783 0.558±0.1048 0.603±0.0929 0.583±0.0861 0.569±0.0927 
590 0.600±0.0717 0.619±0.0551 0.614±0.0584 0.613±0.0757 0.602±0.0815 0.600±0.0415 0.612±0.0726 0.600±0.0463 
885 0.586±0.0613 0.590±0.0533 0.573±0.0514 0.581±0.0421 0.558±0.0899 0.547±0.0483 0.584±0.0597 0.590±0.0318 

1180 0.543±0.0385 0.577±0.0338 0.566±0.0464 0.558±0.0302 0.566±0.0413 0.548±0.0526 0.561±0.0479 0.557±0.0591 
1473 0.553±0.0475 0.551±0.0158 0.569±0.0510 0.541±0.0404 0.563±0.0438 0.537±0.0381 0.560±0.0391 0.566±0.0575 

7 

346 0.269±0.0497 0.257±0.0753 0.245±0.0529 0.254±0.0387 0.239±0.0754 0.211±0.0785 0.260±0.0750 0.181±0.0914 
692 0.254±0.0283 0.253±0.0645 0.247±0.0544 0.260±0.0713 0.236±0.0369 0.227±0.0469 0.248±0.0446 0.201±0.0314 

1038 0.197±0.0296 0.225±0.0545 0.227±0.0545 0.211±0.0443 0.217±0.0392 0.223±0.0337 0.228±0.0333 0.200±0.0474 
1384 0.217±0.0332 0.228±0.0304 0.231±0.0531 0.210±0.0373 0.238±0.0262 0.208±0.0398 0.240±0.0455 0.201±0.0386 
1728 0.203±0.0262 0.222±0.0360 0.215±0.0360 0.211±0.0283 0.214±0.0265 0.225±0.0385 0.237±0.0292 0.172±0.0372 

8 

72 0.041±0.0663 0.041±0.0663 0.113±0.1754 0.041±0.0663 0.029±0.0602 0.013±0.0395 0.041±0.0663 0.029±0.0602 
144 0.068±0.0614 0.050±0.0482 0.062±0.0404 0.042±0.0361 0.055±0.0535 0.084±0.0811 0.062±0.0767 0.058±0.0476 
216 0.079±0.0453 0.070±0.0557 0.054±0.0410 0.036±0.0347 0.088±0.0537 0.065±0.0561 0.046±0.0472 0.019±0.0240 
288 0.076±0.0553 0.038±0.0306 0.062±0.0141 0.055±0.0400 0.038±0.0407 0.063±0.0430 0.045±0.0369 0.052±0.0299 
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358 0.089±0.0389 0.039±0.0322 0.044±0.0338 0.039±0.0269 0.061±0.0362 0.072±0.0458 0.053±0.0304 0.045±0.0295 

9 

462 0.212±0.0723 0.098±0.0297 0.082±0.0270 0.147±0.0555 0.182±0.0436 0.171±0.0620 0.139±0.0491 0.152±0.0551 
924 0.157±0.0359 0.066±0.0164 0.066±0.0245 0.147±0.0313 0.170±0.0389 0.139±0.0427 0.136±0.0300 0.144±0.0256 

1386 0.175±0.0287 0.083±0.0147 0.075±0.0128 0.154±0.0291 0.186±0.0404 0.157±0.0149 0.141±0.0175 0.155±0.0231 
1848 0.154±0.0277 0.082±0.0205 0.070±0.0119 0.141±0.0248 0.176±0.0267 0.151±0.0309 0.127±0.0245 0.134±0.0276 
2310 0.152±0.0210 0.079±0.0189 0.067±0.0146 0.146±0.0247 0.160±0.0289 0.145±0.0178 0.129±0.0293 0.135±0.0174 

10 

1287 0.158±0.0280 0.156±0.0325 0.145±0.0358 0.156±0.0194 0.162±0.0249 0.160±0.0329 0.163±0.0218 0.304±0.0195 
2574 0.160±0.0231 0.154±0.0133 0.143±0.0220 0.178±0.0198 0.167±0.0153 0.160±0.0153 0.165±0.0196 0.300±0.0171 
3861 0.158±0.0163 0.144±0.0184 0.144±0.0255 0.164±0.0199 0.167±0.0238 0.152±0.0231 0.158±0.0225 0.314±0.0183 
5148 0.157±0.0133 0.139±0.0071 0.139±0.0106 0.164±0.0149 0.162±0.0140 0.156±0.0088 0.153±0.0162 0.309±0.0090 
6435 0.159±0.0131 0.135±0.0088 0.131±0.0110 0.158±0.0145 0.163±0.0083 0.154±0.0135 0.157±0.0112 0.312±0.0086 

11 

297 0.468±0.0729 0.494±0.1023 0.531±0.1070 0.450±0.1084 0.447±0.0723 0.478±0.0971 0.475±0.0697 0.469±0.1051 
594 0.483±0.0634 0.475±0.0942 0.454±0.0788 0.487±0.0499 0.509±0.0464 0.493±0.0721 0.458±0.0803 0.450±0.0578 
891 0.498±0.0552 0.485±0.0302 0.446±0.0542 0.495±0.0662 0.520±0.0502 0.499±0.0646 0.469±0.0485 0.479±0.0654 

1188 0.470±0.0433 0.454±0.0297 0.441±0.0666 0.488±0.0351 0.517±0.0612 0.465±0.0568 0.459±0.0530 0.438±0.0640 
1484 0.469±0.0471 0.456±0.0462 0.444±0.0470 0.503±0.0569 0.505±0.0372 0.461±0.0425 0.476±0.0594 0.456±0.0508 

12 

2199 0.089±0.0154 0.087±0.0312 0.081±0.0291 0.111±0.0276 0.124±0.0333 0.091±0.0293 0.110±0.0179 0.100±0.0278 
4398 0.089±0.0178 0.090±0.0132 0.084±0.0079 0.104±0.0187 0.123±0.0184 0.091±0.0176 0.103±0.0159 0.095±0.0150 
6597 0.096±0.0079 0.082±0.0085 0.080±0.0160 0.108±0.0110 0.136±0.0266 0.091±0.0135 0.099±0.0104 0.095±0.0110 
8796 0.092±0.0173 0.087±0.0103 0.076±0.0103 0.109±0.0120 0.128±0.0213 0.087±0.0125 0.109±0.0178 0.092±0.0096 

10992 0.085±0.0126 0.080±0.0118 0.076±0.0102 0.105±0.0151 0.123±0.0163 0.088±0.0125 0.105±0.0104 0.092±0.0094 

13 

1124 0.109±0.0354 0.097±0.0333 0.084±0.0292 0.137±0.0408 0.181±0.0515 0.101±0.0431 0.129±0.0327 0.078±0.0289 
2248 0.101±0.0165 0.076±0.0192 0.074±0.0191 0.120±0.0189 0.191±0.0382 0.093±0.0187 0.130±0.0236 0.087±0.0251 
3372 0.091±0.0097 0.073±0.0095 0.070±0.0193 0.104±0.0170 0.154±0.0338 0.085±0.0147 0.111±0.0185 0.082±0.0206 
4496 0.088±0.0155 0.073±0.0077 0.070±0.0158 0.110±0.0132 0.176±0.0230 0.088±0.0167 0.121±0.0199 0.087±0.0144 
5620 0.093±0.0109 0.074±0.0056 0.073±0.0131 0.115±0.0120 0.176±0.0245 0.085±0.0146 0.128±0.0167 0.088±0.0094 

14 

4000 0.531±0.0199 0.400±0.0176 0.383±0.0313 0.598±0.0404 0.656±0.0357 0.534±0.0322 0.559±0.0199 0.386±0.0245 
8000 0.510±0.0172 0.383±0.0168 0.366±0.0165 0.561±0.0114 0.658±0.0238 0.504±0.0227 0.541±0.0181 0.374±0.0179 

12000 0.502±0.0183 0.372±0.0164 0.361±0.0126 0.553±0.0235 0.635±0.0140 0.501±0.0134 0.528±0.0178 0.371±0.0133 
16000 0.511±0.0149 0.372±0.0223 0.351±0.0146 0.546±0.0218 0.640±0.0130 0.493±0.0195 0.518±0.0158 0.364±0.0204 
20000 0.509±0.0198 0.371±0.0205 0.354±0.0182 0.547±0.0193 0.625±0.0233 0.504±0.0171 0.517±0.0202 0.361±0.0090 
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Table 8.8 Average testing MQE ± STD over the 14 benchmark datasets 

Dataset Nº samples SIM Beta-SIM WeVoS-Beta-SIM SOM WeVoS-SOM MLHL-SIM ViSOM GNG 

1 

69 0.273±0.0581 0.270±0.0588 0.284±0.0547 0.314±0.0601 0.356±0.0836 0.284±0.0529 0.321±0.0582 0.267±0.0349 
138 0.302±0.0593 0.298±0.0544 0.296±0.0575 0.342±0.0771 0.410±0.0949 0.301±0.0557 0.363±0.0693 0.294±0.0482 
207 0.274±0.0342 0.270±0.0392 0.271±0.0355 0.320±0.0427 0.393±0.0469 0.286±0.0393 0.333±0.0325 0.266±0.0285 
276 0.271±0.0234 0.258±0.0368 0.254±0.0319 0.314±0.0424 0.381±0.0540 0.270±0.0301 0.325±0.0188 0.252±0.0240 
345 0.273±0.0452 0.257±0.0502 0.256±0.0512 0.316±0.0632 0.367±0.0707 0.268±0.0453 0.333±0.0586 0.251±0.0355 

2 

20 1.271±0.4257 1.253±0.4362 1.299±0.4564 1.543±0.3992 1.576±0.4144 1.272±0.4763 1.264±0.4367 1.271±0.4981 
40 1.185±0.2158 1.151±0.3075 1.164±0.1639 1.559±0.1349 1.678±0.1624 1.137±0.2281 1.184±0.2166 1.082±0.2010 
60 1.082±0.1299 1.135±0.1129 1.004±0.3907 1.555±0.0644 1.726±0.1009 1.070±0.1453 1.074±0.1206 0.979±0.1642 
80 1.065±0.1432 1.159±0.1951 1.106±0.2257 1.533±0.1191 1.694±0.1569 1.052±0.1598 1.083±0.1516 0.982±0.1406 

100 1.083±0.1255 1.080±0.1832 1.087±0.1921 1.546±0.1504 1.661±0.1187 1.044±0.1568 1.042±0.1540 0.968±0.1053 

3 

9043 1.055±0.0212 1.112±0.0442 1.086±0.0461 1.223±0.0185 1.330±0.0460 1.041±0.0311 1.005±0.0259 0.994±0.0142 
18086 1.062±0.0102 1.115±0.0473 1.061±0.0321 1.218±0.0136 1.364±0.0798 1.039±0.0211 0.998±0.0109 0.995±0.0156 
27129 1.047±0.0226 1.101±0.0257 1.082±0.0361 1.232±0.0111 1.367±0.0560 1.042±0.0153 1.004±0.0116 1.000±0.0133 
36172 1.042±0.0216 1.084±0.0194 1.041±0.0218 1.224±0.0181 1.384±0.0683 1.027±0.0104 0.995±0.0126 0.991±0.0155 
45211 1.048±0.0194 1.113±0.0304 1.101±0.0406 1.224±0.0112 1.349±0.0547 1.030±0.0159 1.001±0.0079 0.999±0.0138 

4 

30 0.150±0.0471 0.159±0.0429 0.162±0.0530 0.212±0.0698 0.254±0.0781 0.159±0.0398 0.141±0.0309 0.171±0.0446 
60 0.189±0.0424 0.173±0.0337 0.170±0.0367 0.216±0.0569 0.256±0.0637 0.182±0.0415 0.172±0.0481 0.176±0.0368 
90 0.157±0.0297 0.146±0.0265 0.157±0.0260 0.216±0.0513 0.255±0.0654 0.150±0.0228 0.147±0.0257 0.157±0.0214 

120 0.168±0.0182 0.154±0.0221 0.152±0.0273 0.221±0.0430 0.259±0.0332 0.177±0.0259 0.162±0.0212 0.156±0.0180 
150 0.172±0.0232 0.155±0.0255 0.164±0.0251 0.220±0.0536 0.252±0.0694 0.176±0.0224 0.153±0.0208 0.155±0.0199 

5 

36 0.788±0.2192 0.770±0.2263 0.779±0.2192 0.815±0.2219 0.891±0.2175 0.757±0.2419 0.770±0.2309 0.800±0.2016 
72 0.785±0.1029 0.792±0.1327 0.799±0.1349 0.843±0.1338 0.913±0.1594 0.779±0.0977 0.781±0.1124 0.778±0.0630 

108 0.731±0.0834 0.729±0.0765 0.748±0.0813 0.782±0.0741 0.858±0.0710 0.704±0.0747 0.711±0.0885 0.687±0.0604 
144 0.703±0.0165 0.729±0.0248 0.739±0.0268 0.780±0.0322 0.845±0.0562 0.713±0.0321 0.715±0.0233 0.678±0.0225 
178 0.707±0.0532 0.737±0.0635 0.736±0.0757 0.792±0.0591 0.849±0.0762 0.711±0.0538 0.717±0.0567 0.665±0.0436 

6 

295 0.786±0.0393 0.698±0.0493 0.691±0.0567 0.901±0.0606 1.114±0.0607 0.755±0.0496 0.727±0.0491 0.555±0.0309 
590 0.765±0.0540 0.667±0.0320 0.635±0.0518 0.883±0.0580 1.096±0.0929 0.735±0.0453 0.717±0.0436 0.502±0.0413 
885 0.760±0.0463 0.674±0.0404 0.655±0.0391 0.885±0.0516 1.115±0.1007 0.729±0.0433 0.713±0.0498 0.508±0.0247 

1180 0.745±0.0314 0.650±0.0194 0.634±0.0243 0.871±0.0220 1.063±0.0822 0.721±0.0288 0.696±0.0215 0.486±0.0191 
1473 0.740±0.0241 0.731±0.1435 0.642±0.0323 0.869±0.0376 1.096±0.0805 0.715±0.0220 0.704±0.0284 0.492±0.0189 

7 

346 1.067±0.0433 1.011±0.0413 1.000±0.0616 1.192±0.0176 1.345±0.0421 1.027±0.0317 1.047±0.0273 0.863±0.0349 
692 1.086±0.0440 1.033±0.0300 0.979±0.0222 1.193±0.0353 1.351±0.0326 1.030±0.0342 1.037±0.0272 0.865±0.0270 

1038 1.071±0.0166 1.034±0.0362 1.003±0.0280 1.190±0.0302 1.362±0.0367 1.031±0.0275 1.038±0.0259 0.852±0.0153 
1384 1.077±0.0333 1.039±0.0408 1.000±0.0182 1.209±0.0232 1.377±0.0212 1.034±0.0268 1.038±0.0145 0.861±0.0119 
1728 1.075±0.0247 1.038±0.0235 0.991±0.0206 1.205±0.0234 1.373±0.0307 1.041±0.0244 1.049±0.0239 0.855±0.0069 

8 
72 1.907±0.1526 1.875±0.1530 1.648±0.5929 1.930±0.1503 2.090±0.1507 1.893±0.1591 1.902±0.1489 1.821±0.1609 

144 1.848±0.1067 1.753±0.0817 1.653±0.1058 1.868±0.0886 1.959±0.1094 1.840±0.1073 1.846±0.0767 1.744±0.0932 
216 1.867±0.1031 1.725±0.0808 1.677±0.0827 1.866±0.0853 1.954±0.0946 1.883±0.0760 1.851±0.0896 1.738±0.0777 
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288 1.827±0.0721 1.679±0.0702 1.676±0.0748 1.859±0.0642 1.979±0.0992 1.828±0.0719 1.838±0.0837 1.713±0.0627 
358 1.831±0.0650 1.685±0.0633 1.675±0.0679 1.861±0.0616 1.911±0.0635 1.826±0.0809 1.830±0.0584 1.705±0.0587 

9 

462 0.467±0.0206 0.317±0.0187 0.310±0.0217 0.524±0.0290 0.628±0.0732 0.456±0.0190 0.510±0.0270 0.542±0.0229 
924 0.474±0.0337 0.338±0.0322 0.323±0.0266 0.542±0.0355 0.621±0.0468 0.468±0.0323 0.537±0.0341 0.557±0.0341 

1386 0.484±0.0172 0.330±0.0124 0.319±0.0123 0.551±0.0142 0.683±0.0727 0.471±0.0161 0.536±0.0190 0.558±0.0187 
1848 0.472±0.0175 0.320±0.0263 0.305±0.0197 0.539±0.0203 0.647±0.0631 0.467±0.0187 0.531±0.0203 0.548±0.0210 
2310 0.472±0.0164 0.320±0.0172 0.304±0.0122 0.541±0.0151 0.670±0.0686 0.460±0.0191 0.525±0.0143 0.549±0.0153 

10 

1287 0.593±0.0272 0.523±0.0220 0.514±0.0195 0.650±0.0216 0.674±0.0221 0.588±0.0299 0.619±0.0265 0.596±0.0335 
2574 0.595±0.0286 0.518±0.0191 0.505±0.0221 0.651±0.0238 0.674±0.0212 0.592±0.0218 0.629±0.0324 0.599±0.0244 
3861 0.597±0.0163 0.514±0.0135 0.503±0.0098 0.658±0.0180 0.694±0.0179 0.593±0.0222 0.629±0.0151 0.600±0.0199 
5148 0.596±0.0168 0.516±0.0091 0.499±0.0100 0.654±0.0113 0.687±0.0168 0.593±0.0167 0.622±0.0142 0.584±0.0166 
6435 0.600±0.0127 0.516±0.0081 0.497±0.0092 0.655±0.0119 0.688±0.0103 0.594±0.0103 0.624±0.0113 0.587±0.0094 

11 

297 0.277±0.0268 0.255±0.0201 0.255±0.0277 0.311±0.0311 0.345±0.0273 0.276±0.0325 0.286±0.0269 0.281±0.0269 
594 0.283±0.0225 0.247±0.0157 0.246±0.0149 0.334±0.0318 0.364±0.0287 0.274±0.0238 0.295±0.0266 0.287±0.0251 
891 0.274±0.0159 0.241±0.0122 0.238±0.0093 0.317±0.0243 0.356±0.0346 0.274±0.0150 0.291±0.0211 0.282±0.0183 

1188 0.276±0.0181 0.246±0.0158 0.240±0.0144 0.317±0.0248 0.356±0.0287 0.270±0.0191 0.290±0.0249 0.282±0.0204 
1484 0.278±0.0124 0.246±0.0108 0.239±0.0118 0.320±0.0131 0.349±0.0222 0.272±0.0109 0.293±0.0117 0.288±0.0120 

12 

2199 0.719±0.0198 0.679±0.0216 0.667±0.0175 0.888±0.0172 1.097±0.1305 0.702±0.0218 0.907±0.0238 0.916±0.0195 
4398 0.695±0.0129 0.667±0.0147 0.651±0.0094 0.872±0.0140 1.032±0.1071 0.683±0.0140 0.890±0.0121 0.893±0.0150 
6597 0.705±0.0103 0.665±0.0149 0.653±0.0146 0.877±0.0061 1.080±0.1605 0.693±0.0129 0.896±0.0096 0.904±0.0096 
8796 0.702±0.0099 0.669±0.0125 0.651±0.0040 0.880±0.0073 1.084±0.1445 0.689±0.0130 0.901±0.0069 0.903±0.0077 

10992 0.699±0.0109 0.662±0.0081 0.649±0.0124 0.881±0.0068 1.073±0.1346 0.689±0.0056 0.899±0.0065 0.904±0.0096 

13 

1124 2.470±0.0891 2.406±0.0658 2.390±0.0886 2.712±0.0712 3.239±0.1038 2.456±0.0834 2.814±0.0665 2.714±0.0742 
2248 2.444±0.0340 2.347±0.0402 2.311±0.0376 2.693±0.0374 3.230±0.0561 2.445±0.0339 2.807±0.0380 2.691±0.0361 
3372 2.462±0.0278 2.340±0.0336 2.305±0.0185 2.691±0.0211 3.171±0.0785 2.447±0.0271 2.800±0.0185 2.696±0.0274 
4496 2.460±0.0324 2.331±0.0319 2.311±0.0270 2.705±0.0311 3.216±0.0826 2.447±0.0253 2.811±0.0329 2.711±0.0324 
5620 2.455±0.0238 2.337±0.0205 2.296±0.0174 2.702±0.0158 3.191±0.1283 2.454±0.0158 2.813±0.0197 2.707±0.0202 

14 

4000 0.526±0.0070 0.439±0.0076 0.425±0.0086 0.601±0.0081 0.716±0.0292 0.524±0.0090 0.566±0.0103 0.450±0.0046 
8000 0.527±0.0114 0.436±0.0054 0.423±0.0060 0.603±0.0048 0.735±0.0387 0.525±0.0068 0.568±0.0047 0.447±0.0050 

12000 0.527±0.0040 0.436±0.0037 0.421±0.0035 0.604±0.0042 0.729±0.0218 0.522±0.0071 0.568±0.0040 0.449±0.0053 
16000 0.530±0.0029 0.434±0.0047 0.420±0.0022 0.604±0.0050 0.738±0.0269 0.523±0.0067 0.567±0.0045 0.448±0.0020 
20000 0.530±0.0033 0.432±0.0034 0.420±0.0054 0.605±0.0035 0.715±0.0352 0.521±0.0051 0.567±0.0035 0.447±0.0037 
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Table 8.9 Average testing TE ± STD over the 14 benchmark datasets 

Dataset Nº samples SIM Beta-SIM WeVoS-Beta-SIM SOM WeVoS-SOM MLHL-SIM ViSOM GNG 

1 

69 0.239±0.1829 0.224±0.1579 0.417±0.2234 0.127±0.1420 0.149±0.1203 0.258±0.1316 0.039±0.0634 0.768±0.1341 
138 0.364±0.1955 0.311±0.1050 0.401±0.1315 0.057±0.0656 0.160±0.1298 0.378±0.1434 0.093±0.0827 0.805±0.1124 
207 0.280±0.1090 0.391±0.1368 0.357±0.0948 0.073±0.0714 0.204±0.1149 0.310±0.0887 0.072±0.0337 0.787±0.0873 
276 0.311±0.0615 0.363±0.1388 0.333±0.0792 0.087±0.0535 0.149±0.0434 0.312±0.0741 0.066±0.0597 0.744±0.1065 
345 0.319±0.0861 0.386±0.0780 0.391±0.1045 0.108±0.0524 0.140±0.0720 0.340±0.0634 0.055±0.0495 0.730±0.0589 

2 

20 0.200±0.2582 0.150±0.2415 0.150±0.2415 0.000±0.0000 0.000±0.0000 0.150±0.2415 0.350±0.3375 0.600±0.3162 
40 0.110±0.1912 0.143±0.1601 0.190±0.1404 0.053±0.1167 0.092±0.1493 0.000±0.0000 0.070±0.1135 0.600±0.3074 
60 0.098±0.1395 0.119±0.1431 0.133±0.0994 0.000±0.0000 0.149±0.1466 0.050±0.0805 0.166±0.1422 0.438±0.1767 
80 0.087±0.0799 0.190±0.1909 0.199±0.1774 0.013±0.0395 0.100±0.1294 0.174±0.1323 0.061±0.0645 0.417±0.1434 

100 0.081±0.0793 0.088±0.1082 0.150±0.0972 0.010±0.0316 0.010±0.0316 0.041±0.0711 0.068±0.0793 0.401±0.1517 

3 

9043 0.054±0.0133 0.118±0.0277 0.109±0.0483 0.027±0.0155 0.074±0.0350 0.057±0.0192 0.021±0.0081 0.323±0.0437 
18086 0.048±0.0135 0.116±0.0419 0.098±0.0174 0.020±0.0065 0.116±0.0740 0.066±0.0169 0.028±0.0060 0.293±0.0370 
27129 0.051±0.0219 0.106±0.0362 0.125±0.0305 0.025±0.0095 0.105±0.0782 0.060±0.0234 0.026±0.0121 0.312±0.0324 
36172 0.050±0.0187 0.123±0.0347 0.092±0.0239 0.023±0.0096 0.164±0.1018 0.054±0.0132 0.027±0.0109 0.302±0.0392 
45211 0.065±0.0317 0.123±0.0456 0.121±0.0382 0.022±0.0050 0.120±0.0632 0.057±0.0125 0.028±0.0100 0.316±0.0276 

4 

30 0.267±0.3443 0.242±0.3250 0.125±0.2265 0.158±0.2306 0.375±0.3711 0.308±0.3380 0.033±0.1054 0.533±0.3244 
60 0.241±0.2004 0.423±0.2518 0.177±0.1302 0.062±0.1048 0.146±0.1286 0.319±0.1823 0.000±0.0000 0.652±0.1935 
90 0.277±0.1686 0.335±0.1647 0.174±0.1129 0.138±0.1062 0.238±0.1438 0.220±0.1254 0.060±0.0868 0.586±0.1702 

120 0.209±0.0900 0.269±0.1457 0.245±0.1549 0.113±0.1002 0.149±0.0736 0.277±0.1622 0.091±0.0817 0.555±0.1944 
150 0.260±0.1456 0.333±0.1089 0.300±0.1305 0.153±0.1219 0.207±0.1153 0.160±0.1004 0.073±0.0734 0.587±0.0932 

5 

36 0.205±0.2577 0.375±0.2443 0.127±0.1705 0.020±0.0632 0.140±0.1818 0.248±0.2217 0.125±0.2265 0.618±0.1729 
72 0.211±0.1196 0.288±0.2056 0.357±0.2234 0.109±0.0827 0.152±0.1546 0.268±0.1742 0.041±0.0663 0.764±0.1157 

108 0.225±0.0851 0.378±0.0943 0.195±0.1107 0.081±0.0784 0.103±0.1185 0.213±0.0982 0.019±0.0403 0.661±0.1558 
144 0.231±0.0845 0.318±0.1290 0.257±0.1208 0.076±0.0832 0.161±0.0908 0.208±0.0892 0.021±0.0338 0.694±0.1519 
178 0.310±0.0748 0.395±0.1535 0.208±0.0897 0.074±0.0538 0.136±0.0868 0.269±0.0991 0.056±0.0741 0.725±0.1448 

6 

295 0.081±0.0322 0.199±0.0870 0.145±0.0620 0.030±0.0399 0.176±0.0726 0.085±0.0586 0.030±0.0247 0.580±0.0437 
590 0.059±0.0293 0.134±0.0564 0.105±0.0429 0.043±0.0259 0.142±0.0580 0.058±0.0379 0.024±0.0198 0.500±0.0329 
885 0.084±0.0249 0.123±0.0483 0.091±0.0521 0.025±0.0167 0.154±0.0879 0.089±0.0180 0.025±0.0175 0.539±0.0540 

1180 0.081±0.0302 0.124±0.0254 0.105±0.0454 0.036±0.0164 0.123±0.0785 0.101±0.0436 0.043±0.0177 0.546±0.0371 
1473 0.081±0.0437 0.155±0.0669 0.081±0.0353 0.039±0.0199 0.176±0.0693 0.075±0.0179 0.037±0.0167 0.508±0.0344 

7 

346 0.127±0.0570 0.286±0.0815 0.208±0.0407 0.046±0.0281 0.312±0.0952 0.116±0.0522 0.072±0.0543 0.681±0.0613 
692 0.132±0.0392 0.327±0.0594 0.192±0.0633 0.052±0.0268 0.207±0.0633 0.134±0.0244 0.049±0.0316 0.687±0.0386 

1038 0.128±0.0322 0.314±0.0612 0.194±0.0684 0.050±0.0256 0.223±0.0388 0.133±0.0194 0.059±0.0202 0.672±0.0498 
1384 0.156±0.0443 0.289±0.0420 0.174±0.0338 0.042±0.0122 0.202±0.0496 0.123±0.0294 0.064±0.0267 0.670±0.0458 
1728 0.133±0.0309 0.306±0.0425 0.177±0.0293 0.054±0.0244 0.198±0.0346 0.124±0.0255 0.052±0.0160 0.686±0.0286 

8 

72 0.082±0.0979 0.219±0.1702 0.161±0.1943 0.095±0.1111 0.098±0.1170 0.111±0.1119 0.113±0.1123 0.557±0.2346 
144 0.132±0.1237 0.167±0.0991 0.166±0.0738 0.077±0.0653 0.115±0.0961 0.131±0.0826 0.026±0.0453 0.569±0.1583 
216 0.230±0.1105 0.183±0.0808 0.125±0.0848 0.060±0.0507 0.148±0.0939 0.150±0.0914 0.032±0.0306 0.455±0.1053 
288 0.107±0.0496 0.166±0.0832 0.239±0.0712 0.045±0.0232 0.145±0.0598 0.133±0.1113 0.034±0.0363 0.456±0.1382 
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358 0.163±0.0798 0.168±0.0649 0.182±0.0774 0.056±0.0460 0.097±0.0673 0.154±0.0729 0.028±0.0229 0.436±0.0924 

9 

462 0.143±0.0751 0.283±0.0583 0.236±0.0671 0.084±0.0276 0.113±0.0513 0.148±0.0980 0.061±0.0433 0.292±0.0906 
924 0.125±0.0674 0.285±0.0359 0.263±0.0586 0.053±0.0202 0.104±0.0398 0.177±0.0794 0.047±0.0215 0.318±0.0581 

1386 0.146±0.0474 0.263±0.0554 0.269±0.0525 0.066±0.0330 0.115±0.0381 0.181±0.0774 0.062±0.0240 0.284±0.0408 
1848 0.130±0.0421 0.268±0.0420 0.256±0.0498 0.078±0.0229 0.121±0.0632 0.143±0.0743 0.061±0.0213 0.318±0.0481 
2310 0.120±0.0460 0.257±0.0400 0.228±0.0446 0.069±0.0122 0.102±0.0314 0.119±0.0447 0.046±0.0165 0.287±0.0384 

10 

1287 0.215±0.0873 0.308±0.0815 0.225±0.0727 0.069±0.0241 0.068±0.0239 0.219±0.0745 0.046±0.0208 0.493±0.0584 
2574 0.188±0.0954 0.294±0.0655 0.233±0.0622 0.075±0.0186 0.071±0.0188 0.194±0.0725 0.042±0.0126 0.492±0.0299 
3861 0.191±0.0446 0.303±0.0444 0.249±0.0593 0.087±0.0256 0.083±0.0176 0.193±0.0597 0.034±0.0089 0.520±0.0376 
5148 0.228±0.1048 0.298±0.0506 0.223±0.0411 0.078±0.0153 0.068±0.0181 0.164±0.0451 0.041±0.0089 0.500±0.0320 
6435 0.213±0.0810 0.295±0.0639 0.218±0.0477 0.082±0.0191 0.083±0.0257 0.173±0.0759 0.042±0.0084 0.492±0.0345 

11 

297 0.253±0.0686 0.307±0.0544 0.225±0.0768 0.060±0.0302 0.162±0.0770 0.232±0.0959 0.054±0.0324 0.542±0.0945 
594 0.239±0.0507 0.289±0.0627 0.216±0.0325 0.076±0.0252 0.165±0.0642 0.263±0.0550 0.032±0.0243 0.490±0.0684 
891 0.305±0.0572 0.317±0.0442 0.220±0.0434 0.079±0.0287 0.162±0.0593 0.280±0.0680 0.048±0.0145 0.509±0.0608 

1188 0.257±0.0616 0.320±0.0418 0.219±0.0620 0.084±0.0327 0.141±0.0525 0.316±0.0561 0.064±0.0271 0.482±0.0369 
1484 0.314±0.0253 0.284±0.0333 0.214±0.0387 0.071±0.0258 0.115±0.0383 0.291±0.0373 0.046±0.0172 0.485±0.0573 

12 

2199 0.094±0.0203 0.143±0.0244 0.101±0.0266 0.054±0.0140 0.141±0.0696 0.100±0.0289 0.048±0.0116 0.309±0.0349 
4398 0.102±0.0260 0.152±0.0238 0.094±0.0157 0.050±0.0139 0.103±0.0479 0.101±0.0112 0.038±0.0083 0.301±0.0397 
6597 0.091±0.0189 0.131±0.0138 0.086±0.0131 0.051±0.0079 0.134±0.0982 0.110±0.0228 0.043±0.0116 0.294±0.0239 
8796 0.105±0.0319 0.137±0.0144 0.091±0.0189 0.048±0.0079 0.128±0.0955 0.098±0.0239 0.040±0.0076 0.302±0.0212 

10992 0.089±0.0171 0.132±0.0142 0.081±0.0145 0.052±0.0086 0.123±0.0631 0.106±0.0141 0.044±0.0098 0.300±0.0223 

13 

1124 0.060±0.0225 0.115±0.0309 0.072±0.0293 0.047±0.0147 0.213±0.0600 0.079±0.0393 0.031±0.0178 0.302±0.0348 
2248 0.060±0.0105 0.101±0.0245 0.061±0.0279 0.036±0.0134 0.215±0.0447 0.053±0.0111 0.037±0.0161 0.284±0.0294 
3372 0.059±0.0158 0.092±0.0127 0.059±0.0188 0.040±0.0123 0.135±0.0448 0.062±0.0157 0.029±0.0105 0.292±0.0277 
4496 0.056±0.0107 0.099±0.0122 0.056±0.0145 0.040±0.0102 0.173±0.0300 0.060±0.0123 0.026±0.0086 0.297±0.0277 
5620 0.058±0.0152 0.102±0.0154 0.059±0.0138 0.038±0.0059 0.165±0.0549 0.062±0.0134 0.031±0.0076 0.286±0.0166 

14 

4000 0.203±0.0233 0.257±0.0254 0.221±0.0187 0.060±0.0141 0.183±0.0418 0.193±0.0266 0.087±0.0170 0.468±0.0317 
8000 0.213±0.0181 0.240±0.0143 0.206±0.0204 0.062±0.0105 0.193±0.0553 0.197±0.0166 0.074±0.0144 0.471±0.0270 

12000 0.206±0.0135 0.241±0.0206 0.206±0.0207 0.075±0.0084 0.172±0.0191 0.212±0.0192 0.075±0.0096 0.477±0.0124 
16000 0.213±0.0113 0.249±0.0107 0.202±0.0135 0.071±0.0085 0.181±0.0316 0.213±0.0186 0.069±0.0085 0.480±0.0157 
20000 0.202±0.0152 0.242±0.0171 0.199±0.0132 0.071±0.0101 0.169±0.0459 0.199±0.0152 0.069±0.0101 0.470±0.0123 

 


