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Abstract. Decision making with complete and accurate information is
ideal but infrequent. Unfortunately, in most cases the available infor-
mation is vague, imprecise, uncertain or unknown. The theory of soft
sets provides an appropriate framework for decision making that may be
used to deal with uncertain decisions. The aim of this paper is to propose
and analyze an effective algorithm for multiple attribute decision-making
based on soft set theory in an incomplete information environment, when
the distribution of incomplete data is unknown. This procedure provides
an accurate solution through a combinatorial study of possible cases
in the unknown data. Our theoretical development is complemented by
practical examples that show the feasibility and implementability of this
algorithm. Moreover, we review recent research on decision making from
the standpoint of the theory of soft sets under incomplete information.

Keywords: Soft sets; Decision making; Incomplete information; Choice
value; Combinatorics.

1 Introduction

The aim of this paper is to propose an effective algorithm that facilitates a mul-
tiple attribute decision-making based on the theory of soft sets under incomplete
information, under the general assumption that the distribution of the incom-
plete data is unknown. Han et al. [16], Qin et al. [26] and Zou and Xiao [37] laid
the foundation of soft-set based decision making under incomplete information.
Here we follow a novel and different approach.

Complete and accurate information is ideal for decision making, but this
situation is rarely met in practice. In most cases the available information is
vague, imprecise, uncertain or unknown.
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Motivated by these concerns, Zadeh [35] marked the beginning of fuzzy sets
theory. At its core, partial membership allows that imprecise information about
more complex situations can be faithfylly represented and correctly handled.
Many extensions of fuzzy sets broaden their scope (v., [4,10] for definitions and
relationships). Relatedly, Molodtsov initiated the concept of soft set theory [25],
whereas Aktaş and Çağman [1], Ali et al. [9], Maji et al. [24], Sezgin and Atagün
[29] and Feng et al. [15] are further essential references. Concerning extensions of
soft sets, Maji, Biswas and Roy [22] introduced fuzzy soft sets (v., [2,3,8,20] for
decision making criteria in this model), and Wang, Li and Chen [30] introduced
hesitant fuzzy soft sets. Ma et al. [21] provided a review of decision making
methods based on hybrid soft set models.

Maji et al. [23] provides a criteria for selecting an object in a soft set scenario,
which consists of maximization of the choice values of the problem. Applications
of extended soft set theory include rule mining (Herawan and Deris [18]), data
mining processes (Qin et al. [27]), international trade (Xiao et al. [31]), and
medical diagnosis (cf., e.g., [7,11,12,17,34]). Recent advances in this field include
the parameter reduction problem in soft set based decision making (cf., [36]).

Zou and Xiao [37] observed that in the process of collecting data, the prac-
titioner often encounters unknown, missing or inexistent data, which suggests
the concept of incomplete soft sets (v., Han et al. [16], Qin et al. [26], Lin et
al. [19] and Alcantud and Santos-Garćıa [5,6] for additional analyses). Deng and
Wang [14] extended this notion to incomplete fuzzy soft sets in order to predict
unknown data in fuzzy soft sets.3

However, there are situations where there is perfect uncertainty about the
real value of missing data, or we are sure that the alternatives or attributes
are independent. In those cases we cannot presume that averages, probabilities
or any other specific evaluations produce reliable estimations as in previous
solutions. To deal with these situations Alcantud and Santos-Garćıa [6] presented
a completely redesigned approach to soft set based decision making problems
under incomplete information. It relies on the classical Laplacian argument of
probability theory and consequently it suggests to examine all completed tables
arising from the original incomplete table. All these tables are then evaluated
as is standard, i.e., by their respective choice values (cf., [23]). The alternatives
are ultimately ranked according to the number or proportion of tables where
they are choice value maximizers. The computational costs of this procedure
are examined in [6]. The conclusion is that with a large number of missing
values, the problem cannot be efficiently solved by bruteforce. Hence in [5] these
authors propose two modified algorithms that permit to tackle problems where
the number of unknown values is larger.

In this paper we produce an exact solution to that problem based on the
application of combinatorics. We provide an algorithm that implements the
mathematical solution. The computational performance of the algorithm is then
compared with prior solutions in the literature.

3 Although Yang et al. [32] showed some weaknesses of this approach, Deng and Chen
[13] successfully resolved these conflicting issues.
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The remainder of this paper is organized as follows. Section 2 briefly states
some terminology and definitions from soft set theory. Then we review the rele-
vant antecedents, define the technical notions that we need, and recall the dom-
ination sieve for incomplete soft sets. Section 3 shows the steps in the proposed
algorithm, as well as a fully developed example that proves the feasibility and
implementability of our proposal. Finally, Section 4 concludes the paper.

2 Definitions and Notation

2.1 Definitions: Soft Sets and Incomplete Soft Sets

In this section, we first introduce the standard definitions for complete and in-
complete soft sets. There is a fixed universe U of objects, options or alternatives,
and there is a universal set E of parameters, characteristics or attributes.

Definition 1 (Molodtsov [25]). A pair (F,A) is a soft set over U when A ⊆ E
and F : A −→ P(U), where P(U) denotes the set of all subsets of U .

Definition 2 (Han et al. [16]). A pair (F,A) is an incomplete soft set over U
when A ⊆ E and F : A −→ {0, 1, ∗}U , where {0, 1, ∗}U is the set of all functions
from U to {0, 1, ∗}.

The ∗ symbol in the previous definition represents an unknown data. In other
words, if the membership of an element u in the subset of U approximated by e is
unknown, then F (e)(u) = ∗. Of course, as in standard soft sets, if an object u is
(resp. is not) an element of the subset of U approximated by e, then F (e)(u) = 1
(resp., F (e)(u) = 0). Thus any soft set can be regarded as an incomplete soft
set in a natural way.

Henceforth we assume U = {u1, u2, . . . uN} and A = {e1, e2, . . . eM}. Yao [33]
explained that under this finiteness assumption, soft sets can be represented
either by matrices or in tabular form. Rows correspond to the options, and
columns correspond to the parameters. The same is true for incomplete soft sets.
Suppose that T = (tij)N×M is the N×M matrix associated with the incomplete
soft set (F,A). Then element tij is either one or zero or ∗, depending on whether
object i verifies property j, does not verify it, or it is unknown whether i verifies
property j, respectively.

Concerning the choice decision mechanism for soft sets, we agree with existing
literature in that choice values should be used. As to incomplete soft sets, our
proposal is original in that it does not discard any of the possible filled tables or
completed soft sets.

2.2 Previous literature

Table 1 summarizes the main previous approaches to our problem.
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Table 1. Summary of research studies about incomplete soft set based decision making.
The indexes are named as in the original papers.

Methodology and references Indexes

Weight-average of all possible choice values of objects.
Weights of each choice value given by distribution of the
other objects.
Original approach [37]

di,
di−p,
ci(0),
ci(1)

Data filling based on association between parameters.
Choice: choice values for completed set.
It presumes that objects are cross-related.
Inspired by above approach [26]

Qi

Elicitation criterions for incomplete soft sets generated
by restricted intersection.
This problem is related although different [16]

-

Elimination of dominated options. Random sam-
ple, thus results
depend on sam-
ple [5]†

s2i

Choice mechanism: choice values.

Laplacian argument: equal probability
to all completed tables. Suitable when
there is no guarantee that objects are
related to each other.

Brute force, thus
computationally
costly [6]

si

2.3 Notation and Fundamentals of our Algorithm

From the input matrix T we calculate the number of ones and unknown values
for every object in the soft set. These are fundamental elements for the analysis
of the optimal solution in a fully uncertain environment.

Let v1 be the vector of numbers of 1’s (ones values) by rows in T , i.e.,
v1 = (v11 , . . . v

1
N ), where v1i is the number of ones in object i. Observe that if

ci(0) is i’s choice value if all missing data are replaced with 0, then v1i = ci(0) =
|{ej ∈ A : F (ej)(ui) = 1}|.

The maximum value in vector v1 is c0 = max{ci(0) : i = 1, . . . , N} =
max{v1i : i = 1, . . . , N}.

Let v∗ be the vector of numbers of ∗’s (unknown values) by rows in T , i.e.,
v∗ = (v∗1 , . . . v

∗
N ), where v∗i is the number of unknown values in object i. This

means v∗i = |{ej ∈ A : F (ej)(ui) = ∗}|. We let m∗ denote the maximum value
in vector v∗, i.e., m∗ = max{v∗i : i = 1, . . . , N}.

Observe that if ci(1) is i’s choice value when all missing data are replaced
with 1, then ci(1) = ci(0) + v∗i for each i.
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The number of unknown values is M∗ =
∑N

i=1 v
∗
i . A simple combinatorial

analysis shows that the number of combinations of unknown choice values is:

M c =

N∏
i=1

(v∗i + 1).

Example 1 below illustrates these notions.

2.4 Domination Sieve

In order to gain efficiency, our algorithm performs a pre-screening by removing
the objects whose choice values can never be maximal. Put shortly, we eliminate
dominated alternatives defined as follows:

Definition 3 (Alcantud and Santos-Garćıa [6]). Let (F,A) be an incom-
plete soft set over U . Option i dominates option k if and only if ck(1) < ci(0).

Hence in order to check if an option i dominates an option k one needs to
verify if ck(0) + v∗k < ci(0). Intuitively, no matter how we complete the soft set,
option i has a choice value that is strictly higher than the choice value of option j.
Therefore dominated options should be rejected in any choice-valued approach.

In order to simplify our problem we compute the maximum value c0 = 3 of
the choice values v1i = ci(0) for every i. If c0 is greater than the choice value ck(1)
of object uk, then object uk can be dropped from the initial matrix because its
choice value can never be maximum in any posible completed soft set. In this
way, by reducing the number of rows in the matrix form of an incomplete soft
set, there are less missing data, which reduces runtime and improves final results.

After dominated options are sieved out, we apply the remaining steps to the
new trimmed matrix. To simplify the notation, this reduced matrix is also called
T . Its objects and features will be reappointed N (also number of rows of T )
and M (also number of columns of T ), respectively.

Example 1. Let T = (tij) be the following 5× 4 initial matrix, which represents
an incomplete soft set over a universe of 5 objects with 4 relevant characteristics
for evaluation of the alternatives:

T =


1 1 1 0
1 1 ∗ 0
1 ∗ ∗ 0
1 ∗ 0 0
0 0 0 0


It is easy to compute that v1 = (3, 2, 1, 1, 0), v∗ = (0, 1, 2, 1, 0) therefore

m1 = 3, m∗ = 2, M∗ = 4, and M c = 12.
We calculate the maximum value c0 of all choice values ci(0). Observe that

c4(0)+v∗4 = 1+1 < c1(0) = c0 = 3 and c5(0)+v∗5 = 0+0 < c1(0) = c0 = 3. Thus c0
is unattainable for the choice values ci(1) of objects u4 and u5, and these objects



6 Alcantud and Santos-Garćıa

Table 2. Tabular representation of the soft set in Example 1, and noteworthy associ-
ated indices.

e1 e2 e3 e4 v1i = ci(0) ci(1) v∗i
u1 1 1 1 0 c0 = 3 3 0
u2 1 1 ∗ 0 2 3 1
u3 1 ∗ ∗ 0 1 3 2

(u4) 1 ∗ 0 0 1 2 1

(u5) 0 0 0 0 0 0 0

can be safely removed from the initial matrix (see Table 2, where the relevant
items are underlined). Observe that no matter how the table is completed, the
choice values of options u4 and u5 will be smaller than the choice value of u1.

After removing objects u4 and u5, the new sieved matrix is:

T (sieved) =

 1 1 1 0
1 1 ∗ 0
1 ∗ ∗ 0


For the new trimmed matrix the vector of numbers of one values v1 and the

vector of numbers of unknown values v∗ are:

v1 = ( 3, 2, 1 ); v∗ = ( 0, 1, 2 )

which can be drawn from the corresponding columns in Table 2. And now it is
immediate to compute m1 = 3, m∗ = 2.

Moreover M∗ = 3 (number of unknown values) and M c = 6 (number of
combinations of unknown choice values). This means that the four unknown
values of the initial matrix T become three values for the new sieve matrix T ,
while the number of feasible states (in terms of configurations of choice values)
is halved. These states are:

(1) the choice values can be 3 for option u1, 2 for u2 and 1 for u3. This fact
happens in exactly one completed table.

(2) the choice values can be 3 for option u1, 2 for u2 and 2 for u3. This fact
happens in exactly two completed tables.

(3) the choice values can be 3 for option u1, 2 for u2 and 3 for u3. This fact
happens in exactly one completed table.

(4) the choice values can be 3 for option u1, 3 for u2 and 1 for u3. This fact
happens in exactly one completed table.

(5) the choice values can be 3 for option u1, 3 for u2 and 2 for u3. This fact
happens in exactly two completed tables.

(6) the choice values can be 3 for option u1, 3 for u2 and 3 for u3. This fact
happens in exactly one completed table.

We can represent the completed soft sets for cases (1), (2) and (3) as follows:
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e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4
u1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
u2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
u3 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0

And the completed soft sets for cases (4), (5) and (6) are represented as

e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4
u1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
u2 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
u3 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0

3 Algorithm: Incomplete Soft Sets for Decision Making
Problem

3.1 The Main Elements of the Algorithm

Our algorithm computes the number of tables that produce every possible config-
uration of choice values. Under the Laplacian assumption that they are equally
probable, it chooses the alternative that is best in the highest proportion of com-
pleted soft sets. However our algorithm does not compute them explicitly as in
Example 1, but instead we use a combinatorial analysis in order to define several
auxiliary matrices corresponding to possible values and probabilities for each of
the objects that we actually use. Let PV1 (resp., PPV1) be the (N × (m∗ + 1))-
matrices of potential values (resp., proportion by rows of potential values) for
each object. For computational purposes, the rows with a number of elements less
than m∗ + 1 are filled up with zero values. Its elements are calculated according
to the following formulas:

PV1(i, j) = v1i + j − 1; PPV1(i, j) =

(
v∗
i
j

)
2v

∗
i
,

where i varies from 1 to N and j varies from 1 to v∗i + 1.4 These matrices are
shown in Example 2.

Example 2. According to the data of Example 1, now we calculate matrices PV1

and PPV1:

PV1 =

 3 0 0
2 3 0
1 2 3

 , PPV1 =

 1.00 0 0
0.50 0.50 0
0.25 0.50 0.25

 .

Hence for example, the fact PV1(1, 1) = 3 and PPV1(1, 1) = 1 means that in
100% of the 8 filled tables, the choice value of u1 is 3. The fact PV1(2, 2) = 3

4 As usual,
(
n
k

)
or “n choose k” returns the binomial coefficient, i.e., the number of

combinations of n items taken k at a time, defined as
n!

(n− k)!k!
.
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and PPV1(2, 2) = 0.5 means that in 50% of the 8 filled tables, the choice value
of u2 is 3. And PV1(3, 2) = 2 and PPV1(3, 2) = 0.5 means that in 50% of all
filled tables, the choice value of u3 is 2.

It is well-known that if two events A and B are independent then their joint
probability equals the product of their probabilities, i.e., P(A∩B) = P(A) P(B).
Because choice values are independent events, with probability 1 ·0.5 ·0.5 = 0.25
the choice values of u1, u2 and u3 are 3, 3, and 2, respectively. And in that case,
both u1 and u2 are optimal because they are choice value maximizers.

After calculating the auxiliary matrices PV1 and PPV1, we analyze all fea-
sible combinations of decision values. As shown in Example 2, we know the
probabilities for each of the possible events. Computationally, we build all pos-
sible different vectors CV with N rows, in which each element will be a non-zero
element of each row in PV1 matrix. That is, the element CVi for each object i
has a value between ci(0) and ci(0) + v∗i .

For this particular case, we now calculate the probabilities of occurrences
from matrix PPV1. The joint probability XP is the product of all the individual
probabilities. When the choice value of that particular case is maximal (may be
several maximal), we add that probability XP to the decision values matrix DV .

We repeat the process for all possible vectors CV . The final decision of our
Algorithm will consist of the object(s) with greater DV values.

Figure 1 shows a flowchart for the proposal of a decision making procedure
under incomplete information that we have described throughout this section.

Step 1 Input incomplete soft-set matrix T

Step 2 Calculate c0 = max1≤i≤k ci(0)

Step 3
Remove each row i in T
that verifies ci(1) < c0

Step 4
Compute PV1 (potential val-
ues) and PPV1 (proportion
by rows of potential values)

Step 5
CV (choice values), XP (joint prob-
ability), and DV (decision values)

Step 6
Decision is any object ul such
that DVl = maxi=1,...,N DVi

Fig. 1. Step by step procedure for decision making under incompleteness.
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Example 3. According to the data of Example 1 and 2, now we calculate final
matrices CV , XP , and DV . In particular we obtain

DV =

 1.00
0.50
0.25


which we interpret as follows. In 100% of the randomly filled tables, option 1
achieves the maximum choice value. In 50% of the randomly filled tables, option 2
achieves the maximum choice value. And in 25% of the randomly filled tables,
option 3 achieves the maximum choice value. We recall that ties may happen,
which explains why this figures sum up over 100%.

Table 3 contains the elements that produce our solution. In view of our
arguments, option 1 should be selected.

Table 3. Combinations of choice values and their respective probabilities in Example 1.

Choice value Probability Optimal

u1 u2 u3 solutions

3 2 1 1/8 u1

3 2 2 1/4 u1

3 2 3 1/8 u1, u3

3 3 1 1/8 u1, u2

3 3 2 1/4 u1, u2

3 3 3 1/8 u1, u2, u3

3.2 Decision of the Algorithm

Intuitively, our practical implementation of the ideas above is based on the fol-
lowing arguments. According to Laplace’s principle of indifference in probability
theory, under complete ignorance we must assume that in all tables ∗’s are re-
placed in equiprobable manner with either 0 or 1. Hence the best we can do
is consider in each of these cases that the objects should be selected according
to soft-set based decision making procedures. Consequently we should opt for
any object that is optimal in the highest proportion of cases with the completed
information. The number of possible cases is exponential on the number of un-
known values, however we only need to consider completed soft sets which are
equivalent for purposes of decision making.

To do this we note that for any object i, if it has multiple unknown char-
acteristics that are completed, we are only interested in the number, not in the
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order, of 1’s assigned to these unknown values. Thus, the calculation is reduced
to a combinatorial analysis in each object.

In accordance with this idea, we endorse the following algorithm for the
problems where both U and A are finite:

Algorithm 1 Incomplete Soft Sets Algorithm for Making Decision

1: Input an incomplete soft set (F,E) with k objects and l parameters in a matrix
form, where tij ∈ {0, 1, ∗} denotes a cell (i, j).

2: Calculate c0 = max1≤i≤k ci(0) from the incomplete matrix, where ci(0) is the choice
value for i if all missing data are assumed to be 0.

3: Remove each row i from the incomplete matrix that verifies ci(1) < c0, where ci(1)
is the choice value for i if all missing data are assumed to be 1.

4: From the new reduced matrix, calculate the auxiliary matrices PV1 (matrix of
potential values) and PPV1 (matrix of proportion by rows of potential values).

5: Compute the following matrices: choice values CV , joint probability XP , and de-
cision values DV .

6: The result of the decision is any object ul such that DVl = maxi=1,...,N DVi.

4 Discusion and conclusions

The works of Han et al. [16], Qin et al. [26] and Zou and Xiao [37] present inter-
esting approaches to incomplete soft set based decision making. These authors
used averages, probabilities or other specific evaluations in order to estimate the
real value of missing data in a general way and afterwards, they made a decision
based on the complementary data.

In this paper we look at the problem from an altogether different perspec-
tive. Rather than filling the incomplete data table (see also Khan et al. [28]),
we propose a combinatorial study through all possible filled tables that can be
produced from the original incomplete table. Then the alternatives are ranked
by the proportion of filled tables where they achieve the highest choice value. In
other words, a final indicator for each of the objects by our algorithm is defined
as the value of this ratio. And our decision making procedure consists of selecting
alternatives that maximize this indicator. A classical Laplacian argument from
probability theory justifies our research method. In general there is perfect un-
certainty about the real value of missing data. Therefore, we cannot support the
idea that other aspects would let us faithfully estimate these unknown values.
Under Laplace’s principle of indifference, due to our complete ignorance we are
entitled to assume that all possible tables where the missing data are replaced
with either 0 or 1 are equiprobable.

Our novel approach meets the following targets: (1) We do not need to as-
sume any cross-relations among options. (2) We do not attempt to fill the tables
with hypothesized values. (3) We adopt a Laplacian position and make use of
combinatorics. (4) A unique, computationally tractable solution is provided.
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An example illustrates the detailed implementation process of our approach
and shows evidence of its potential applications in decision-making problems
with incomplete information.

In practice, problems where all parameters describing compared options are
equally important rarely exist. Our algorithm has been tightly designed for the
exclusive purpose of decision making, hence the introduction of weighted param-
eters would not be trivial and as such deserves a separate analysis. Domination
sieve is simple to read in that instance, though.
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