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Abstract

In this paper, we present a new method for inserting several triangulated sur-

faces into an existing tetrahedral mesh generated by the meccano method. The

result is a conformal mesh where each inserted surface is approximated by a

set of faces of the resulting tetrahedral mesh. First, the tetrahedral mesh is re-

fined around the inserted surfaces to capture their geometric features. Second,

each immersed surface is approximated by a set of faces from the tetrahedral

mesh. Third, following a novel approach the nodes of the approximated sur-

faces are mapped to the corresponding immersed surface. Fourth, we untangle

and smooth the mesh by optimizing a regularized shape distortion measure for

tetrahedral elements in which we move all the nodes of the mesh, restricting the

movement of the edge and surface nodes along the corresponding entity they

belong to. The refining process allows approximating the immersed surface for
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any initial tetrahedral mesh. Moreover, the proposed projection method avoids

computational expensive geometric projections. Finally the applied untangling

and smoothing process delivers a high-quality mesh and ensures that the im-

mersed surfaces are interpolated.

Keywords: Surface Insertion, Meccano Method,

Tetrahedral Mesh Generation, Mesh Untangling and Smoothing,

Surface Parameterization, Volume Parameterization

1. Introduction

In most of the computational simulations in applied sciences and engineering,

the geometry, delimited by outer surfaces and probably including inner surfaces,

is usually a given data. However, in a wide range of applications, it is not

possible to generate a priori a mesh that contains the inner surfaces, since it

may be an unknown of the problem. This is the case of immiscible multi-fluid

problems in which the interface between fluids evolves in time, and its location

depends on the physics of the problem. Another situation is that the exact

location of the surface may be known in advance nevertheless it changes over

time. In this case, a new mesh for each time step has to be generated. For

instance, in computational fluid dynamics, the motion of a rotating propeller

is prescribed, and the surface position is known at each time step. Moreover,

during an advanced stage of a design process, a new geometric feature can be

added to an already discretized model. The additional surfaces impose the

generation of a new discretized model that reproduces the new surface. For

example, a new fault has to be inserted in an already meshed oil reservoir.

Several numerical strategies can be adopted to deal with this problem. It

is possible to design sophisticated solvers to track the new or moving surfaces.

For example, the phase-field approach consists of adding new unknown fields

in the governing equations. The surfaces are defined as the zero level set of

the additional field unknowns [1, 2, 3]. The extended finite element method (X-

FEM) formulation [4, 5, 6] adds new shape functions to include discontinuities in

the solution. Thus, the surface to be added is defined using these discontinuities.

Nevertheless, it is not always possible to modify the solver to include these

techniques. Therefore, it is necessary to modify the mesh in order to approx-
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imate the additional or moving surfaces using the triangles of the tetrahedral

mesh. A straightforward solution is to generate an entirely new mesh for the

geometric model. However, this is a costly operation, especially if it has to

be performed in all the time steps of a transient problem. Thus, other ap-

proaches have been developed to reduce the computational cost of generating

a new mesh. On the one hand, it is possible to approximate the surface by

performing a mesh moving technique, see [7, 8, 9]. First, it is selected a set of

triangles to approximate the surface. Then, these triangles are moved onto the

surface while keeping valid elements. To perform this process, the size of the

tetrahedral mesh has to be small enough to reproduce the geometric features of

the immersed surface. On the other hand, the tetrahedral mesh can be locally

remeshed in order to approximate the given surface, see [10, 11, 12]. First, a

triangular mesh on the surface is generated, and the tetrahedral elements that

are near the surface are removed. Then, the created cavity is remeshed to gen-

erate a conformal mesh that includes the surface. Note that the cavity has to

be large enough to accommodate the new elements, and small enough to keep

the number of modified elements as small as possible.

In this work we propose a novel approach to insert a given triangulated

surface into an existing tetrahedral mesh generated using the meccano method

[13, 14, 15, 16]. It combines the benefits of local remeshing processes and mesh

moving techniques. First, we locally refine the tetrahedral mesh around the sur-

face until the tetrahedral mesh captures the geometric features of the surface.

Specifically, we use the Kossaczký method that delivers a fast and robust pro-

cess, since it does not depend on geometric predicates. Second, we select a set

of triangles of the tetrahedral mesh to approximate the surface. To this end, we

use a set of rules to ensure that a high-quality mesh can be obtained. Second,

we propose a new projection algorithm based on the Floater parameterization

[17] of the immersed and approximating surfaces. We highlight that we use the

same parametric space for both surfaces. Therefore, we can define a mapping

from the approximating surface onto the immersed one. We use this mapping

to ensure that the projected nodes lie on the immersed surface. The projection

step introduces inverted and low-quality elements. Thus, in the fourth step,

we optimize the quality of the final mesh by using a robust untangling and
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smoothing process based on an optimization of a single distortion measure [18].

Specifically, we optimize a regularized version of the shape distortion measure

for tetrahedral elements in which we move all the nodes of the mesh, restrict-

ing the movement of the edge and surface nodes along the corresponding entity

they belong to [19]. This is achieved by expressing the coordinates of these

nodes in terms of their parametric coordinates during the optimization process.

Although the target of the optimization process is the distortion of the tetra-

hedra, the method also improves the quality of the triangles that approximate

the surfaces of the model since we allow moving the surface nodes.

The proposed method has several advantages. It is independent of the initial

mesh because of the refinement process that adapts the mesh to the features

of the immersed surface. Moreover, we propose a fast and robust projection

process that involves solving two linear problems. One for all the nodes of

the immersed surface, and another one for all the nodes of the approximating

surface. In this way, we avoid solving the non-linear problem involved in the

geometric projection to the immersed surface of each node of the approximating

surface. Finally, the applied untangling and smoothing process ensures a valid

and high-quality mesh that interpolates the immersed surface.

The rest of the paper is structured as follows. In Section 2 we overview the

meccano method. In Section 3 we detail the proposed algorithm to insert a

given surface in a tetrahedral meccano mesh. Finally, in Section 4, we present

three examples, both academic and realistic, illustrating the capabilities of the

proposed method.

2. Meccano overview

The meccano method [13, 14, 15, 16] is an automatic tetrahedral mesh gener-

ator for complex genus-zero solids. The method requires a surface triangulation

of the solid boundaries and a computational domain that coarsely approximates

the solid. This computational domain is called meccano. The procedure builds

an adaptive tetrahedral mesh in the meccano and deforms it to match the phys-

ical domain. For this purpose, the method combines several procedures: an

automatic mapping from the boundary of the meccano to the boundary of the

solid, a 3-D local refinement algorithm, and a simultaneous mesh untangling and
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smoothing. It is important to point out that this method also provides a contin-

uous element-wise linear volumetric parameterization from the computational

domain to the genus-zero solid.

The main steps of the meccano tetrahedral mesh generation algorithm are

summarized in Algorithm 1. The input data is a solid, Ω, defined by its bound-

ary representation (surface triangulation or CAD model), and a given precision

to approximate its boundary, ε.

The first step of the procedure, Line 2, is to construct a meccano, D, that

approximates the solid, by connecting polyhedral pieces. Although the con-

struction of the meccano is not automatic in general, in certain cases it can

be performed with no manual interaction, see [15]. Then, in Line 3, a discrete

mapping, Π, between the boundary of the meccano and the boundary of the

solid is computed using the mean value parametrization proposed in [17]. Note

that the parameterization obtained from the Floater method is a continuous

and element-wise linear mapping. In Line 4, an initial coarse mesh of the mec-

cano is generated, and the boundary nodes are located on the solid boundary

using the mapping Π. In Lines 5–9, we obtain a mesh that approximates the

solid boundary with the given tolerance ε. Specifically, in Line 6, we get the list

of triangles that do not correctly approximate the boundary of the solid, and

then, in Line 7, we refine those triangles by dividing their adjacent tetrahedra

using the Kossaczký method [20]. In Line 8, we project the new nodes onto the

boundary of the solid using the mapping Π. We iterate this process until there

are no triangles to refine. Note that when the nodes are mapped onto the solid

boundary, low-quality and inverted elements may appear. Thus, a simultaneous

untangling and smoothing procedure [18, 21] is applied in order to obtain a valid

and high-quality tetrahedral mesh.

3. Surface insertion algorithm

In this section, we detail the proposed algorithm to insert a surface into

an existing tetrahedral mesh generated using the meccano method. Although

we describe the algorithm inserting a single surface, it can be extended to the

insertion of several surfaces. To illustrate the process, we show a 2D analogy.
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Algorithm 1 Meccano tetrahedral mesh generation.
1: function MeccanoMesher(Solid Ω, Real ε)

2: Meccano D ← getMeccano(Ω)

3: Mapping Π← getBoundaryMapping(D, Ω)

4: MeshM← getInitialMesh(D, Π)

5: while distance(∂M, ∂Ω) > ε do

6: TriangleList τ ← getTrianglesToRefine(M, Ω, ε)

7: TriangleList τ ′ ←refineTriangles(τ)

8: projectNewNodesToBoundary(τ ′, Π)

9: end while

10: qualityOptimization(M)

11: end function

(a) (b)

Figure 1: Initial meccano mesh and immersed polyline S (thick line). (a) Physical mesh; (b)

computational mesh.

3.1. Problem Statement

Our input data is a tetrahedral meshM generated by the meccano method,

composed of M tetrahedra, and an immersed triangular mesh S, containing

N triangles. We assume that S is simply connected, single oriented, and has

a boundary. Figure 1 shows the initial meccano mesh for a two-dimensional

geometry, and a polyline S to be inserted in the mesh.

Our target is to construct a surface SM composed of triangles, edges, and

vertices belonging to a conformal tetrahedral mesh, obtained by refining M,

which approximates S with a given tolerance.

3.2. Volumetric Approximation

We define T as the set of tetrahedra ofM that intersect the inserted surface,

S. Then, we recursively update the set T by refining those tetrahedra E ∈ T
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(a) (b)

Figure 2: Refined meccano mesh around the immersed polyline S. (a) Physical mesh; (b)

computational mesh.

such that

rE
c ≥ lc, E ∈ T (1)

where rE
c is the circumradius of the element E, and lc is characteristic length

of S provided by the user according to the geometric features of S. To refine

the tetrahedra, we apply the Kossaczký method. The original tetrahedra are

removed from T , and the refined ones that intersect S are added. This process

is iterated until there is no tetrahedron in T that verifies condition (1). Figure 2

shows the refinement process of the meshM and the triangles that intersect S.

3.3. Volumetric Approximation Healing

In order to obtain a high-quality mesh, we need to impose the following

constraints to the set of tetrahedra T . First, we add elements to T until its

boundary is topologically equivalent to the boundary of a sphere, Figure 3. To

this end, we ensure that all the nodes that belong to the boundary of T define

a local disk. That is, the Euler characteristic, χ, of each node on the boundary

T verifies:

χ := nE − nF + nC = 1, (2)

where nE , nF and nC are the number of edges, faces, and cells of T that are

adjacent to the node. Thus, we add the elements adjacent to the nodes that do

not verify condition (2).

Then, we enforce that the counterpart of the boundary faces and edges in

the computational space are parallel to the coordinate axis, Figure 4. This is

accomplished by adding additional tetrahedra into the set T . First, we identify

the faces in the computational domain that are not parallel to the axis. Then,
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(a) (b)

Figure 3: Extension of T to be topologically equivalent to a sphere. (a) Physical mesh; (b)

computational mesh.

(a) (b)

Figure 4: Extension of T to get boundary edges parallel to the computational axis. (a)

Physical mesh; (b) computational mesh.

we refine the adjacent tetrahedra to the same refinement level. Finally, we add

the new tetrahedra into T . This process ensures that we minimize the number

of added tetrahedra into T .

3.4. Surface Extraction

The set of tetrahedra T contains the given surface S completely in its inte-

rior. We will obtain SM, the approximation of S, from the boundary faces of T .

The main idea is to select the faces of the boundary of T that are at one side of

the inserted surface, S, and are not adjacent to any other surfaces of the model.

We first classify the boundary nodes of T according to the side of S they are

located. Figure 5a depicts the nodal classification of the boundary nodes of T

using black and white circles. Then, we select the boundary triangles of T that

have all the nodes classified in the same side of S and are not adjacent to any

other surface of the model.
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(a) (b)

Figure 5: Initial selection of SM. (a) Physical mesh and classification of boundary nodes of

T according the side of S they are located; (b) computational mesh.

3.5. Surface Healing

To increase the quality of the mesh and avoid inverted elements, we apply

the following steps to SM.

1. Remove thin protrusions at the boundary of SM. We define thin pro-

trusions as pairs of connected triangles of SM with three edges at the

boundary of SM. Thin protrusions at the boundary of SM may induce

low-quality elements in the tetrahedral mesh. Thus, we recursively remove

all thin protrusions in the surface approximation, see Figure 6a.

2. Remove high-connectivity nodes at the boundary of SM. Nodes at the

boundary of SM that are adjacent to five or more triangles in SM may

induce low-quality elements in the final mesh. To solve this issue, we add

the adjacent face to SM, see Figure 6b. The two edges of the boundary

of SM adjacent to the node, define a plane in the computational domain.

We add the faces of the boundary of T that belong to this plane and are

adjacent to the boundary edges.

3. Refine tetrahedra with more than one face on SM. In order to avoid

tetrahedral elements with zero volume, we impose that each tetrahedron

contributes with only one face on the approximation SM. Thus, we refine

all tetrahedra with two or more faces on SM, see Figure 6c. Note that the

resulting elements have only one face on SM, since we have imposed that

the faces in SM are parallel to the coordinate planes in the computational

space, and we are using the Kossaczký refinement.
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(a) Case 1: marked triangles of SM to be recur-

sively deleted

(b) Case 2: marked triangles to be added.

(c) Case 3: tetrahedron to be refined. (d) Case 4: marked triangles of SM are refined

(e) Case 5: marked edges are refined.

Figure 6: Illustration of the five different cases of the surface healing process.

4. Refine faces of M with more than one edge at the boundary of SM. In

order to avoid faces with a null area at the boundary of SM, we impose

that each face contributes to the boundary of SM with only one edge. To

solve this issue, we refine such faces, see Figure 6d.

5. Refine edges with nodes on different surfaces. When the nodes of an edge

belong to different surfaces (immersed or boundary surface), it may be

difficult to optimize the quality of the mesh and obtain high-quality ele-

ments. Hence, we refine such edges of the mesh to give more freedom to

the optimization process, see Figure 6e.
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Figure 7: Surface projection diagram.

3.6. Surface Projection

The next step consists on projecting the nodes of SM onto S. At the end of

this step, all of the nodes in SM will be located on the target surface S.

First, we compute the Floater parameterizations [17] of S and SM, denoted

by ϕ and ϕM, respectively, as

ϕ : U → S, ϕM : U → SM, (3)

where U = [0, 1] × [0, 1] is a common parametric space for both surfaces, see

Figure 7. Then, each node of SM, xi, is moved to the new position, x′i according

to:

x′i = ϕ ◦ϕ−1
M (xi) (4)

Note that this projection procedure has several advantages. We avoid to

solve a non-linear projection problem for each node to projected. Instead, we

solve two linear problems to compute the mappings of SM and S. Moreover, we

obtain the parametric coordinates of the projected nodes on S. This information

is necessary to perform the untangling and smoothing process, detailed in the

next section.

3.7. Mesh Optimization

After the projection process, inverted and low-quality elements may appear.

Thus, to obtain a valid and high-quality mesh, we apply an optimization proce-

dure based on the untangling and smoothing technique proposed in [18]. More-

over, we add the capability to optimize the mesh quality by moving the location

11



of inner, edge and surface nodes, according to [19]. Note that the result of the

optimization problem defines a high-quality volumetric mapping between the

computational domain and the physical domain in which the inserted surfaces

are interpolated.

3.7.1. Regularized Shape Distortion Measure

According to [22], the shape distortion measure is defined as

ηE(Jφ) = ‖Jφ‖2

3|σ(Jφ)| 23
(5)

where φ is the affine mapping between the ideal element EI and the physical

element, EP , Jφ is the Jacobian matrix of φ, ‖·‖ is the Frobenius norm, and

σ is the determinant. In the meccano method, the ideal element of a physical

tetrahedron EP
i is the rectangular tetrahedron that is its counterpart in the

computational space EI
i

EI
i = Π−1(EP

i ) (6)

This distortion measure is invariant to translation, rotation, and scale [22].

It takes values in the range [1,∞), being η = 1 when the physical and ideal

element only differ in the invariants, and η = ∞ when the physical element is

degenerate. The quality of an element is defined as the inverse of the distortion

q = 1
η
. (7)

Thus, it takes values between 0 (degenerated element) and 1 (ideal element).

The shape distortion measure presents asymptotes when σ(Jφ), and this

prevents its use in a continuous minimization process when inverted elements are

present. To overcome this drawback, we use the regularized distortion measure

introduced in [23, 18] for linear elements, in which σ is replaced by

h(σ) = 1
2

(
σ +

√
σ2 + 4δ2

)
(8)

where δ is a small parameter that depends on the problem. This regularization

is also used for optimizing curved high-order meshes [24, 25, 19].

3.7.2. Objective Function

The simultaneous untangling and smoothing algorithm is based on the opti-

mization of an objective function defined in terms of the regularized distortion
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measure of the elements adjacent to a node. Let x be the location of the node,

and m the number of adjacent tetrahedra. Then, we define the objective func-

tion as

f(x) =
m∑

j=1
ηEj

(Jφ) (9)

where Ej is the jth element adjacent to the node. The derivatives of the objective

function are evaluated analytically according to [26].

3.7.3. Objective Function for Surface and Edge Nodes

We need to ensure that edge and surface nodes in the optimized mesh are

located on the corresponding entities they belong to. Therefore, we define a

new objective function that evaluates the regularized distortion measure of the

adjacent tetrahedra in terms of the parametric coordinates of the node, see [19].

For surface nodes, the corresponding objective function becomes

fϕ(u) = f ◦ϕ(u), (10)

where ϕ and u are the parameterization and the parametric coordinates of

surface S.

Each edge of the model is parameterized using the arc-length parameter,

γ(s). Thus the objective function for edge nodes is expressed using the param-

eterization γ(s) as

fγ(s) = f ◦ γ(s), (11)

Note that, the derivatives involved in the optimization process for surface and

edge nodes are computed numerically due to the linear piece-wise definition of

ϕ and γ.

We highlight that in the proposed approach, we do not use a distortion mea-

sure for the surface triangles, instead we only take into account the quality of

the tetrahedral elements. That is, we are computing a valid and high-quality

volumetric mapping between the computational domain and the physical do-

main, such that the surface and edge nodes are constrained to move along the

corresponding entities.

3.7.4. Optimization Approach

The optimization approach is devised as a Gauss-Seidel iterative process

moving one node at a time. That is, for each node we modify its position while
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Algorithm 2 Procedure to smooth a mesh,M.
1: function smoothMesh(MeshM, Real ε)

2: Boolean isConverged← false

3: while not isConverged do

4: Real disp← 0

5: for each free node, n do

6: Function g ← getObjectiveFuncion(n) . get edge, surface or

. inner objective function

7: Real nodeDisp← smoothNode(n,g)

8: disp← max{disp, nodeDisp}

9: end for

10: isConverged← (disp ≤ maxDisp)

11: end while

12: end function

keeping fixed the position of all the other nodes. The new position is computed

by optimizing the corresponding objective function of the node. This optimiza-

tion is performed using a line-search method in which the search direction is

computed using Newton’s method, and the step length is computed using the

strong Wolfe conditions, see details in [27]. Algorithm 2 details the proposed

untangling and smoothing process.

4. Examples

In this section the presented method is applied to three different geometries.

The first geometry is an academic example where a curved surface is inserted

in a cube. The two last examples are taken from realistic cases where the

insertion of the surface in the mesh is needed. In all the examples, we colour

the elements according their shape quality, see Equation (5). In addition, for all

of them, we present a table that summarizes the shape quality statistics of the

mesh elements. Specifically, we provide the number of tangled elements, and the

minimum, maximum, mean and standard deviation of the element quality. We

highlight that in all cases the cases the final mesh is a valid high-quality mesh,

where the insertion of the surfaces has not drastically decreased the quality of
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the initial mesh.

4.1. Simple Cube

The first example deals with the insertion of a sinusoidal surface inside a

tetrahedral mesh for a cube, M, see Figure 8a. Figure 8b shows the refined

tetrahedral mesh and the initial approximating surface, SM, extracted from

triangles ofM. Note that at this stage, the candidate triangles to approximate

the surface are parallel to the coordinate planes of the computational domain.

Then, the nodes of SM are projected onto the immersed surface, S, see Figure 8c.

Low-quality and inverted elements appear near the projected surface, due to the

movement of the nodes. Finally, the whole mesh is optimized using the presented

optimization method in order to repair the tangled elements and improve the

overall mesh quality, see Figure 8d. It is important to remark that the smoother

moves all the interior nodes of the mesh, including the ones that are located on

SM. In this case, such nodes are able to slide along the surface S. This is a

key point in order to obtain a valid and high-quality tetrahedral mesh, specially

around the high-curvature areas of the inserted surface, where the feasible region

is small.

Figures 9a, 9b, and 9c, present the distribution of the elements according

to their shape quality for the mesh before inserting the surface (Figure 8a),

the mesh once the nodes are projected onto the surface (Figure 8c), and the

mesh after applying the proposed smoother (Figure 8d). In this example, all

the elements before inserting the surface have a quality of 1.0. The projection

of nodes introduces low-quality and inverted elements. Then, the smoothing

process increases the overall mesh quality. Table 1 details the mesh quality

statistics. As it has been pointed out, all the elements of the initial mesh are of

the highest quality. The projection process has introduced 58 inverted elements

and therefore, the minimum quality is 0. Although the maximum quality is 1,

this mesh is not valid for any simulation process. Once the mesh is optimized,

there are not any inverted elements, and the minimum and mean quality are

increased to 0.35 and 0.92, respectively. The maximum quality is decreased

to 0.99 in order to accommodate the displacement of the nodes during the

optimization process. Also, the standard deviation is decreased by a factor of

3. The final mesh contains elements with lower quality than the initial mesh.
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(a) (b)

(c) (d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
shape quality

Figure 8: Approximation of an immersed sinusoidal surface, S, in a tetrahedral mesh for a

cube: (a) initial tetrahedral mesh and surface to be inserted; (b) refined tetrahedral mesh

and initial SM extracted from triangles of M; (c) nodes form SM projected onto S; and (d)

smoothed final mesh.

In this example, this is expected since the initial mesh is entirely composed of

ideal elements.
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Figure 9: Mesh quality histogram for: (a) initial mesh; (b) mesh with immersed surfaces

before optimization; and (c) mesh with immersed surfaces after optimization;

4.2. Faults Insertion

The second example deals with the insertion of fault surfaces into a dis-

cretized sub-soil model, see Figure 10. The tetrahedra of the mesh are not able

to resolve the geometric features of the inserted surface. This example shows

that the proposed method does not depend on the element size of the initial

mesh. Figure 11 shows the different stages of the insertion surface algorithm for

the last inserted fault (red surface in Figure 10). First, we refine the mesh and

select the candidate triangles to approximate the surface, Figure 11a. Then,

we apply the proposed projection algorithm to map the selected nodes onto

the inserted surface, Figure 11b. This step generates inverted and low-quality

elements. Thus, we apply the presented untangling and smoothing algorithm

to repair the inverted elements and increase the overall mesh quality, see Fig-

ure 11c.

Figures 12a, 12b, and 12c show the quality histogram of the mesh before

inserting the surface, the mesh once the nodes are projected onto the surface

(Figure 11b), and the mesh after applying the proposed smoother (Figure 11c).

The histogram is similar for both meshes where the number of elements in-

crease with the quality, being the more frequent qualities the highest interval.

The main differences is the dispersion of the qualities. The qualities in the

initial mesh are more concentrated towards the highest values whilst the qual-

ities in the final mesh are more dispersed. Figure 12b shows the quality decay

due to the projection process where some elements are not valid. Nevertheless,

the applied smoother increases the overall mesh quality. These remarks can

be observed quantitatively in Table 1. Comparing the initial and final mesh
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
shape quality

Figure 10: Initial tetrahedral mesh for a sub-soil model, elements coloured according their

quality, and the four faults to be inserted.

quality statistics, both the minimum and mean qualities have decreased—from

0.26 to 0.13, and from 0.92 to 0.81 respectively—and the standard deviation has

increased—from 0.09 to 0.14.These results agree with the qualitative observa-

tions. The optimization improvement is clear from comparing the projected and

final statistics; the minimum and mean quality have increased from 0 to 0.13,

and from 0.77 to 0.81, respectively, and the standard deviation has decreased

from 0.21 to 0.14.

4.3. Atmospheric Layer Insertion

In several atmospheric applications it is usual to create a base mesh and

then adapt it to each specific simulation. In this example, we will use a given

tetrahedral mesh of the East zone of the Gran Canaria island (Spain) to simulate

the transport and reaction of pollutants in the atmosphere. In particular, we

are interested in the distribution of pollutant concentration on two surfaces

that are an extrusion of the orography of the terrain. Therefore, we will use

the proposed method to insert them and we will show that the resulting mesh
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Figure 11: Approximation of the fourth immersed fault, S, in a tetrahedral mesh for a sub-soil

model: (a) refined tetrahedral mesh and initial SM extracted from triangles of M; (b) nodes

form SM projected onto S; and (c) smoothed final mesh.

is valid for simulation purposes.
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Figure 12: Mesh quality histogram for: (a) initial mesh; (b) mesh with immersed surfaces

before optimization; and (c) mesh with immersed surfaces after optimization;

4.3.1. Mesh generation

Figure 13 shows the orography of the considered area in the East part of

Gran Canaria island and the immersed surfaces. They are located at 1000 and

2000 meters above the terrain. Similar to the previous examples, Figure 14

illustrates the different stages of the insertion surface algorithm. In this figure,

the inserted surface is the highest one (red in Figure 13). Figure 14a shows the

refinement and selection step, Figure 14b presents the projection of the selected

mesh onto the inserted surface where low-quality and tangled elements appear;

and finally the resulting mesh, after the untangling and smoothing algorithm,

see Figure 14c.

Figure 15 shows the quality histogram of the mesh before inserting the second

surface, once the nodes are projected onto the second surface (Figure 14b), and

after applying the proposed smoother (Figure 14c). In this case, comparing

the initial and final meshes, the dispersion of the qualities has increased and

the minimum quality has decreased. This observation agrees with the Faults

insertion example, although in this case the differences are smaller. Regarding

the projected and final meshes, we highlight that the optimization process has

repaired all the tangled elements, and the minimum quality has improved. The

main statistical values of the mesh quality are detailed in Table 1. Comparing

the initial (before inserting any surface) and final meshes, we observe that the

minimum quality has decreased from 0.58 to 0.32, that the maximum and mean

qualities have detracted slightly from 1 to 0.99 and from 0.97 to 0.95 respectively,

and that the standard deviation has increased from 0.03 to 0.08. As in the
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Figure 13: East zone of Gran Canaria island and the two surfaces to be inserted.

previous examples, the optimization process has improved the quality repairing

6585 non-valid elements, increasing the minimum and mean quality from 0 to

0.32 and from 0.89 to 0.95 respectively; and decreasing the standard deviation

from 0.21 to 0.08.

4.3.2. Transport and reaction of pollutants

Once the mesh with the surfaces is generated we simulate the transport and

reaction of pollutants. In this case, we assume that a pollutant leak from a

ship in the sea is transported into the island by a wind field. We know that

the general direction of the wind field is from East to West (from sea to the

island). To generate a more realistic wind field we use a mass-consistent wind

model [28, 29] that assumes constant density and verifies the continuity equation

(mass conservation) in the domain and impermeability on the terrain.

Using the resulting wind field, we simulate the transport and reaction of

pollutants. A finite element model designed to simulate the microscale [30, 31]

is used in this example. This model uses a finite element method stabilized

with least squares [32] to prevent the numerical oscillations that arise with the

classical Galerkin formulation. The resulting linear system has a symmetric

matrix and we solve it using the conjugate gradient method preconditioned
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Figure 14: Approximation of the second immersed surface, S, in a tetrahedral mesh for an

air quality model: (a) refined tetrahedral mesh and initial SM extracted from triangles of M;

(b) nodes form SM projected onto S; and (c) smoothed final mesh.
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Figure 15: Mesh quality histogram for: (a) initial mesh; (b) mesh with immersed surfaces

before optimization; and (c) mesh with immersed surfaces after optimization;

with an incomplete Cholesky factorization density type [33, 34].

The prescribed boundary conditions for the pollutant concentration are the

following: a Dirichlet condition of 0.5 g m−3 at a region of the sea boundary,

a null Dirichlet condition in the inflow boundary—we assume that the air out-

side the area of interest is clean, a natural Neumann condition on the outflow

boundaries, and a dry deposition velocity of 0.5 m s−1 in the terrain. We use

typical diffusion values with a horizontal diffusion of 10 m2 s−1 and a vertical of

5 m2 s−1.

Figure 16 shows the resulting wind field and the isosurfaces of pollutant

concentration after 5 min, 30 min and 60 min. Note that the impermeability

condition in the terrain channels the wind field into the valleys and circle the

mountains. Looking at the pollutant concentrations, we observe that the front

of the plume is transported along the domain and the smaller concentrations

flow up to the valleys when the pollutant plume evolves. To highlight the

properties of the surface insertion algorithm, we have not applied an automatic

mesh refinement to capture the plume front as suggested in [35].

The output of interest is the distribution of the pollutant on the inserted

surfaces. Figure 17a shows the concentration after 30 minutes—it corresponds to

Figure 16b. At this moment, the front of the 0.5 g m−3 concentration is crossing

the bottom surface. Note that the pollutant concentration is smaller on the top

layer. Figure 17b shows the distribution after one hour when the plume has

developed completely—it corresponds to Figure 16c. At this stage, we observe

that the distribution on both surfaces is similar, although the concentration
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Figure 16: Slice of the isosurfaces of pollutant concentration after (a) five minutes; (b) thirty

minutes; (c) one hour.
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Figure 17: Pollutant concentration distribution in the inserted surfaces after (a) thirty minutes

and (b) one hour.

Table 1: Element quality statistics of the presented high-order meshes.

sinusoidal sub-soil fault atmospheric layer

original projected smoothed original projected smoothed original projected smoothed

inverted 0 58 0 0 1 0 0 6585 0

min 1 0 0.35 0.26 0 0.13 0.58 0 0.32

max 1 1 0.99 0.99 0.99 0.99 1.00 0.99 0.99

mean 1 0.74 0.92 0.92 0.77 0.81 0.97 0.89 0.95

std dev 0 0.33 0.10 0.09 0.21 0.14 0.03 0.22 0.08

values are smaller on the top surface due to the distance to the centre of the

plume and wind direction.

This example has shown the applicability of the proposed surface insertion

method where the quantity of interest is on the immersed surface.

5. Conclusions

In this work, we propose a novel approach to insert several triangulated

surfaces into an existing tetrahedral meccano mesh. The inserted surfaces are

approximated using triangles extracted from the tetrahedral mesh. To properly

approximate the geometric features of each inserted surface, we propose to apply

25



a refinement process to the tetrahedral mesh. Thus, we avoid the dependence

of the proposed algorithm on the element size of the initial tetrahedral mesh.

Then, we select the candidate triangles and project them onto each surface using

a novel projection algorithm based on the Floater parameterization. The key

idea is to parameterize the initial surface and the approximating surface with

the same parametric space. Finally, an untangling and smoothing technique is

applied to repair the tangled elements and improve the overall mesh quality.

We move the nodes on the edges and surfaces (inner and boundary surfaces)

taking into account only the quality of the tetrahedral elements. To this end,

we express the objective function in terms of the parametric coordinates of the

moving edge surface nodes. We have shown that the proposed method generates

high-quality meshes that can be used in numerical simulations.

The presented algorithm has been developed for inserting triangulated sur-

faces. Nevertheless, the same presented algorithm can deal with parameterized

surfaces coming from a CAD model. The only restriction is that the CAD sur-

face has to be simply-connected (no holes) and non-trimmed, in order to define

a quadrilateral parametric domain.

Several aspects of the presented method can be improved in order to deal

with more complex situations. First, the proposed algorithm does not deal

with the insertion of intersecting surfaces, because we do not prescribe the

approximation of the intersection between these surfaces. Moreover, since we

are using a square parametric domain to perform the projection and smoothing

process, we require that the surfaces to be inserted have to be simply-connected

surfaces with boundary. Nevertheless, one possible solution is to divide the

initial surfaces into simply-connected patches with boundary.

Acknowledgements

This work has been supported by FEDER and the Spanish Government,

“Ministerio de Economía y Competitividad” grant contracts: CTM2014-55014-

C3-1-R, CTM2014-55014-C3-3-R, CGL2011-29396-C03-01, CGL2008-06003-03-

01, CGL2008-06003-03-02, UNLP08-3E-010, CSD2006-00032C; and by CONA-

CYT-SENER (“Fondo Sectorial CONACYT SENER HIDROCARBUROS”, grant

contract: 163723).

26



References

[1] Ohno M, Matsuura K. Quantitative phase-field modeling for dilute al-

loy solidification involving diffusion in the solid. Physical Review E

2009;79(3):031603.

[2] Hachem E, Feghali S, Coupez T, Codina R. A three-field stabilized fi-

nite element method for fluid-structure interaction: elastic solid and rigid

body limit. International Journal for Numerical Methods in Engineering

2015;104(7):566–84.

[3] Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-

field model for local max-ent approximants applied to crack propagation.

Computer Methods in Applied Mechanics and Engineering 2016;.

[4] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth

without remeshing. International journal for numerical methods in engi-

neering 1999;46(1):131–50.

[5] Zlotnik S, Díez P. Hierarchical x-fem for n-phase flow (n> 2). Computer

Methods in Applied Mechanics and Engineering 2009;198(30):2329–38.

[6] Tamayo-Mas E, Rodríguez-Ferran A. A medial-axis-based model for prop-

agating cracks in a regularised bulk. International Journal for Numerical

Methods in Engineering 2015;101(7):489–520. URL: http://dx.doi.org/

10.1002/nme.4757. doi:10.1002/nme.4757.

[7] Rangarajan R, Lew A. Universal meshes: A new paradigm for computing

with nonconforming triangulations. 2012. arXiv:1201.4903.

[8] Rangarajan R, Lew AJ. Universal meshes: A method for triangulating

planar curved domains immersed in nonconforming meshes. International

Journal for Numerical Methods in Engineering 2014;98(4):236–64. doi:10.

1002/nme.4624.

[9] Rangarajan R, Chiaramonte MM, Hunsweck MJ, Shen Y, Lew AJ. Simulat-

ing curvilinear crack propagation in two dimensions with universal meshes.

International Journal for Numerical Methods in Engineering 2015;102(3-

4):632–70.

27

http://dx.doi.org/10.1002/nme.4757
http://dx.doi.org/10.1002/nme.4757
http://dx.doi.org/10.1002/nme.4757
http://arxiv.org/abs/1201.4903
http://dx.doi.org/10.1002/nme.4624
http://dx.doi.org/10.1002/nme.4624


[10] Zaide DW, Ollivier-Gooch CF. Inserting a curve into an existing two dimen-

sional unstructured mesh. In: Proceedings of the 22nd International Mesh-

ing Roundtable. 2014, p. 93–107. doi:10.1007/978-3-319-02335-9_6.

[11] Zaide DW, Ollivier-Gooch CF. Inserting a surface into an existing unstruc-

tured mesh. International Journal for Numerical Methods in Engineering

2015;.

[12] Bonfiglioli A, Grottadaurea M, Paciorri R, Sabetta F. An unstructured,

three-dimensional, shock-fitting solver for hypersonic flows. Computers &

Fluids 2013;73:162–74.

[13] Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G. An auto-

matic strategy for adaptive tetrahedral mesh generation. Applied Numeri-

cal Mathematics 2009;59(9):2203–17. doi:10.1016/j.apnum.2008.12.010.

[14] Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G. The

meccano method for simultaneous volume parametrization and mesh gen-

eration of complex solids. IOP Conference Series: Materials Science and

Engineering 2010;10(1):012–8. doi:10.1088/1757-899X/10/1/012018.

[15] Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G. The

meccano method for automatic three-dimensional triangulation and vol-

ume parametrization of complex solids. In: Topping B, Adam J, Pal-

larés F, Bru R, Romero M, editors. Developments and Applications in

Engineering Computational Technology; chap. 2; seventh ed. Stirling-

shire: Saxe-Coburg Publications. ISBN 978-1-874672-48-7; 2010, p. 19–48.

doi:10.4203/csets.26.2.

[16] Cascón JM, Rodríguez E, Escobar JM, Montenegro R. Comparison of the

meccano method with standard mesh generation techniques. Engineering

with Computers 2015;31(1):161–74. doi:10.1007/s00366-013-0338-6.

[17] Floater MS. Mean value coordinates. Computer Aided Geometric Design

2003;20(1):19–27. doi:10.1016/S0167-8396(03)00002-5.

[18] Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste

JM. Simultaneous untangling and smoothing of tetrahedral meshes. Com-

28

http://dx.doi.org/10.1007/978-3-319-02335-9_6
http://dx.doi.org/10.1016/j.apnum.2008.12.010
http://dx.doi.org/10.1088/1757-899X/10/1/012018
http://dx.doi.org/10.4203/csets.26.2
http://dx.doi.org/10.1007/s00366-013-0338-6
http://dx.doi.org/10.1016/S0167-8396(03)00002-5


puter Methods in Applied Mechanics and Engineering 2003;192(25):2775–

87. doi:10.1016/S0045-7825(03)00299-8.

[19] Ruiz-Gironés E, Roca X, Sarrate J. High-order mesh curving by distortion

minimization with boundary nodes free to slide on a 3D CAD representa-

tion. Computer-Aided Design 2016;72:52–64. doi:10.1016/j.cad.2015.

06.011.

[20] Kossaczký I. A recursive approach to local mesh refinement in two and

three dimensions. Journal of Computational and Applied Mathematics

1994;55(3):275–88. doi:10.1016/0377-0427(94)90034-5.

[21] Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM.

SUS code: simultaneous mesh untangling and smoothing code. http://

www.dca.iusiani.ulpgc.es/SUScode; 2010.

[22] Knupp PM. Algebraic mesh quality metrics. SIAM J Sci Comput

2001;23(1):193–218. doi:10.1137/s1064827500371499.

[23] Garanzha V, Kaporin I. Regularization of the barrier variational method.

Computational mathematics and mathematical physics 1999;39(9):1426–

40.

[24] Gargallo-Peiró A, Roca X, Peraire J, Sarrate J. Optimization of a regular-

ized distortion measure to generate curved high-order unstructured tetra-

hedral meshes. International Journal for Numerical Methods in Engineer-

ing 2015;103(5):342–63. URL: http://dx.doi.org/10.1002/nme.4888.

doi:10.1002/nme.4888.

[25] Gargallo-Peiró A, Roca X, Peraire J, Sarrate J. A distortion measure to val-

idate and generate curved high-order meshes on cad surfaces with indepen-

dence of parameterization. International Journal for Numerical Methods

in Engineering 2015;.

[26] Ruiz-Gironés E, Roca X, Sarrate J, Montenegro R, Escobar JM. Simul-

taneous untangling and smoothing of quadrilateral and hexahedral meshes

using an object-oriented framework. Advances in Engineering Software

2015;80:12–24.

29

http://dx.doi.org/10.1016/S0045-7825(03)00299-8
http://dx.doi.org/10.1016/j.cad.2015.06.011
http://dx.doi.org/10.1016/j.cad.2015.06.011
http://dx.doi.org/10.1016/0377-0427(94)90034-5
http://www.dca.iusiani.ulpgc.es/SUScode
http://www.dca.iusiani.ulpgc.es/SUScode
http://dx.doi.org/10.1137/s1064827500371499
http://dx.doi.org/10.1002/nme.4888
http://dx.doi.org/10.1002/nme.4888


[27] Dennis JE, Schnabel RB. Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equations. Society for Industrial & Applied Mathemat-

ics (SIAM); 1996. doi:10.1137/1.9781611971200.

[28] Ferragut L, Montenegro R, Montero G, Rodríguez E, Asensio M, Escobar

JM. Comparison between 2.5-D and 3-D realistic models for wind field

adjustment. Journal of Wind Engineering and Industrial Aerodynamics

2010;98(10-11):548–58. doi:10.1016/j.jweia.2010.04.004.

[29] Oliver A, Rodríguez E, Escobar JM, Montero G, Hortal M, Calvo J,

et al. Wind forecasting based on the HARMONIE model and adap-

tive finite elements. Pure and Applied Geophysics 2015;172(1):109–20.

doi:10.1007/s00024-014-0913-9.

[30] Oliver A, Montero G, Montenegro R, Rodríguez E, Escobar JM, Pérez-

Foguet A. Finite element simulation of a local scale air quality model

over complex terrain. Advances in Science and Research 2012;8:105–13.

doi:10.5194/asr-8-105-2012.

[31] Oliver A, Montero G, Montenegro R, Rodríguez E, Escobar JM, Pérez-

Foguet A. Adaptive finite element simulation of stack pollutant emissions

over complex terrains. Energy 2013;49(0):47–60. doi:10.1016/j.energy.

2012.10.051.

[32] Jiang B. The Least-Squares Finite Element Method. Springer Berlin Hei-

delberg; 1998. doi:10.1007/978-3-662-03740-9.

[33] Lin CJ, Moré JJ. Incomplete Cholesky factorizations with limited memory.

SIAM Journal on Scientific Computing 1999;21(1):24–45. doi:10.1137/

S1064827597327334.

[34] Rodríguez-Ferran A, Sandoval M. Numerical performance of incomplete

factorizations for 3D transient convection–diffusion problems. Advances

in Engineering Software 2007;38(6):439–50. doi:10.1016/j.advengsoft.

2006.09.003.

[35] Monforte L, Pérez-Foguet A. Esquema adaptativo para problemas tridi-

mensionales de convección-difusión. Revista Internacional de Métodos

30

http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1016/j.jweia.2010.04.004
http://dx.doi.org/10.1007/s00024-014-0913-9
http://dx.doi.org/10.5194/asr-8-105-2012
http://dx.doi.org/10.1016/j.energy.2012.10.051
http://dx.doi.org/10.1016/j.energy.2012.10.051
http://dx.doi.org/10.1007/978-3-662-03740-9
http://dx.doi.org/10.1137/S1064827597327334
http://dx.doi.org/10.1137/S1064827597327334
http://dx.doi.org/10.1016/j.advengsoft.2006.09.003
http://dx.doi.org/10.1016/j.advengsoft.2006.09.003


Numéricos para Cálculo y Diseño en Ingeniería 2014;30(1):60–7. doi:10.

1016/j.rimni.2012.11.003.

31

http://dx.doi.org/10.1016/j.rimni.2012.11.003
http://dx.doi.org/10.1016/j.rimni.2012.11.003

	Introduction
	Meccano overview
	Surface insertion algorithm
	Problem Statement
	Volumetric Approximation
	Volumetric Approximation Healing
	Surface Extraction
	Surface Healing
	Surface Projection
	Mesh Optimization
	Regularized Shape Distortion Measure
	Objective Function
	Objective Function for Surface and Edge Nodes
	Optimization Approach


	Examples
	Simple Cube
	Faults Insertion
	Atmospheric Layer Insertion
	Mesh generation
	Transport and reaction of pollutants


	Conclusions

