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Abstract

We propose a new augmented dual-mixed method for the Oseen problem based on the pseudo-
stress-velocity formulation. The stabilized formulation is obtained by adding to the dual-mixed
approach suitable least squares terms that arise from the constitutive and equilibrium equations.
We prove that for appropriate values of the stabilization parameters, the new variational formu-
lation and the corresponding Galerkin scheme are well-posed, and a Céa estimate holds for any
finite element subspaces. We also provide the rate of convergence when each row of the pseu-
dostress is approximated by Raviart-Thomas or Brezzi-Douglas-Marini elements and the velocity
is approximated by continuous piecewise polynomials. Moreover, we derive a simple a posteriori
error estimator of residual type that consists of two residual terms and prove that it is reliable
and locally efficient. Finally, we include several numerical experiments that support the theoretical
results.

Mathematics Subject Classifications (1991): 65N30; 65N12; 65N15

Key words: incompressible flow, Oseen equation, mixed finite element, stabilized finite elements, a
posteriori error estimator.

1 Introduction

The Oseen problem can be obtained as a linearization of the stationary incompressible Navier-Stokes
equations. The most popular formulation in computational incompressible Newtonian flows is the
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velocity-pressure formulation. The standard Galerkin finite element method presents two difficulties.
First, the presence of non-physical spurious oscillations on solutions when advection dominates makes
it difficult to capture boundary layers accurately. Second, the approximation spaces for the velocity
and pressure must satisfy the discrete inf-sup condition in order to ensure stability.

Several stabilized finite element methods have been developed and analyzed to handle these nu-
merical difficulties, including the well-known streamline upwind/Petrov-Galerkin (SUPG) method [12],
the pressure-stabilization/Petrov-Galerkin (PSPG) method [24, 23], grad-div stabilization [16, 22, 28],
RELP methods [4], Orthogonal Subscales method [15] or Local Projection Stabilization (LPS) meth-
ods [9]. In general, a stabilized finite element method adds extra terms to the Galerkin formulation,
usually suitable mesh-dependent terms, which can be residual, as in the SUPG, SUPG/PSPG or RELP
methods, or non-residual, as in the Orthogonal Subscales method or LPS methods. For a thorough
review of different stabilized finite element methods for the Oseen problem and a critical comparison,
we refer to [10].

On the other hand, for the numerical solution of the stationary incompressible Navier-Stokes equa-
tions it is very important to have a posteriori error estimates for both Stokes and Oseen equations. The
incompressibility condition and the presence of a non-self-adjoint operator in the momentum equations
are the main drawbacks to obtain a posteriori error estimates for the Oseen problem. The approach in
[1] is based on solving local residual problems and the analysis is valid for essentially any approximation
scheme. The corresponding error estimate provides an upper bound on the true error in an energy-like
norm. Moreover, under appropriate assumptions, the estimator gives two-sided bounds on the actual
discretization error. We should also mention [2], where structured anisotropic mesh refinement in
boundary layers is analyzed for a conforming stabilized Galerkin method of SUPG/PSPG-type with
equal-order interpolation of velocity and pressure.

In last years, the interest in non-Newtonian flows has increased. In this case, when the constitutive
law is nonlinear, we cannot eliminate the stress in general and the use of a formulation involving
the stress seems to be mandatory. However, the stress-velocity-pressure formulation involves more
unknowns and the stress tensor must be symmetric. To avoid these numerical difficulties, a mixed finite
element method for the stationary Stokes equations based on the pseudostress-velocity formulation was
proposed and analyzed in [13]. It is important to recall that the pseudostress, which is a nonsymmetric
tensor, contains more information than the stress, and physical quantities such as the stress, velocity
gradient, vorticity and pressure can be algebraically expressed in terms of the pseudostress. Therefore,
these quantities could be approximated through a postprocessing procedure without degrading the
accuracy.

In [13], the authors showed that using Raviart-Thomas elements of index k ≥ 0 for approximating
each row of the pseudostress and discontinuous piecewise polynomials of degree k ≥ 0 for approxi-
mating each component of the velocity yields a stable pair and quasi-optimal accuracy O(hk+1) for
sufficiently smooth solutions. The indefinite system of linear equations resulting from the discretization
can be decoupled using the penalty method. Then, the penalized pseudostress system can be solved
by a multigrid method, and the velocity can be calculated explicitly/locally. In the later paper [14],
the method in [13] is extended to the stationary incompressible Navier-Stokes equations. The authors
show, under appropriate assumptions, that both the continuous and discrete problems have branches
of nonsingular solutions, and established error estimates of the mixed finite element approximations.
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The purpose of the present work is to develop an a priori and a posteriori error analysis for a
stabilized mixed finite element method for the pseudostress-velocity formulation of the Oseen equation.
More precisely, we present an augmented mixed finite element method to solve the Oseen equation.
The need for stabilization techniques in this case arises because of the restriction in the possible choices
for the pseudostress and the velocity approximation spaces prescribed by the inf-sup condition, as well
as the instabilities encountered when convection is dominant. Both can be overcome by moving from
the standard Galerkin method to a stabilized formulation. The method presented here is based on the
addition of suitable least-squares type terms (not mesh-dependent) to the dual-mixed formulation of
the Oseen equation in pseudostress and velocity. This kind of method can be viewed as an extension
of the stabilized schemes introduced in [25, 7] for Darcy flow, [17, 18, 19, 20] for linear elasticity, [6] for
the Brinkman problem and [21] for the convection-diffusion equation. We show that, for appropriate
values of the stabilization parameters, the augmented formulation is well-posed and the corresponding
Galerkin scheme is stable for any combination of continuous velocity and pseudostress interpolations.
We also provide the rate of convergence when each row of the pseudostress is approximated by Raviart-
Thomas or Brezzi-Douglas-Marini elements, and the velocity is approximated by continuous piecewise
polynomials. Moreover, we derived a new a posteriori error estimator that consists of two residual
terms, and show that it is reliable and locally efficient. We implemented the corresponding adaptive
algorithm in two and three dimensions. Numerical experiments confirm the theoretical properties of
the method and the a posteriori error estimator.

The paper is organized as follows. In Section 2 we describe the pseudostress-velocity formulation
of the model problem. In Section 3 we introduce and analyze the augmented dual-mixed variational
formulation. Then, in Section 4 we analyze the stabilized mixed finite element method. Section 5
is devoted to the a posteriori error analysis of the augmented mixed finite element method. Finally,
numerical experiments are reported in Section 6.

Throughout this paper, we will use the standard notations for Sobolev spaces and norms. Let Ω be
a bounded, connected domain in Rd (d = 2, 3), with a Lipschitz-continuous boundary Γ. We recall that
H(div,Ω) := {v ∈ [L2(Ω)]d : div(v) ∈ L2(Ω)}, H(div,Ω) := {τ ∈ [L2(Ω)]d×d : div(τ ) ∈ [L2(Ω)]d},
and we denote by H0 := {τ ∈ H(div,Ω) :

∫
Ω tr(τ ) = 0}, where tr(τ ) denotes the trace of a tensor τ .

2 A pseudostress-velocity formulation of the model problem

Let Ω be a bounded, connected domain in Rd (d = 2, 3), with a Lipschitz-continuous boundary Γ. We
consider the following Oseen problem: find the velocity field u and the pressure p such that

−ν∆u + a · ∇u + ∇p = f in Ω ,

div(u) = 0 in Ω,

u = 0 on Γ ,

(1)

where the kinematic viscosity of the fluid ν > 0, the advection velocity a 6= 0 and the external body
force f are given. We assume that a is solenoidal in Ω.
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Let I be the identity matrix in Rd×d and define σ := ν∇u− p I to be the pseudostress. Then, the
first equation of (1) can be written as follows:

−div(σ) + a · ∇u = f in Ω . (2)

On the other hand, the second equation in (1) can be stated equivalently as

tr(σ) = −d p . (3)

Thus, the pressure p can be computed from the pseudostress σ. Since the pressure is determined from
(1) up to an additive constant, it is usual to require that

∫
Ω p = 0. Accordingly, we will impose that∫

Ω tr(σ) = 0. Now, substituting (3) into the definition of σ, we deduce that

σd = ν∇u in Ω , (4)

where σd := σ− 1
dtr(σ)I is the deviator of σ. We remark that σd is a trace-free tensor. Then problem

(1) can be stated equivalently as follows: find σ and u such that
−div(σ) + a · ∇u = f in Ω ,

1

ν
σd = ∇u in Ω ,

u = 0 on Γ ,

(5)

It is easy to verify that problem (5) is equivalent to problem (1) in the sense of the following Theorem.

Theorem 1 If (u, p) is a solution to problem (1), then (σ,u), where σ = ν∇u− p I, is a solution to
problem (5). Conversely, if (σ,u) is a solution to problem (5), then (u, p), where p = −1

d tr(σ), is a
solution to problem (1).

Next, we derive a dual-mixed variational formulation of problem (5). Multiplying the first equation
of (5) by a test function v and integrating in Ω, we obtain

−
∫

Ω
div(σ) · v +

∫
Ω

(a · ∇u) · v =

∫
Ω

f · v .

Then, multiplying the second equation in (5) by a test function τ and integrating in Ω, we obtain,
after an integration by parts in the grad-term and using the boundary condition,

1

ν

∫
Ω
σd : τ d +

∫
Ω

u · div(τ ) = 0 ,

where we used that
∫

Ω σd : τ =
∫

Ω σd : τ d. Therefore, we have the following dual-mixed variational
formulation of problem (5): find σ ∈ H0 and u ∈ [H1

0 (Ω)]d such that
1

ν

∫
Ω
σd : τ d +

∫
Ω

u · div(τ ) = 0 , ∀ τ ∈ H0 ,

∫
Ω

div(σ) · v −
∫

Ω
(a · ∇u) · v = −

∫
Ω

f · v , ∀v ∈ [H1
0 (Ω)]d .

(6)
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Let us define the bilinear forms a(·, ·) : H0 ×H0 → R, b(·, ·) : [H1(Ω)]d ×H0 → R and c(·, ·) :
[H1(Ω)]d × [H1(Ω)]d → R as follows:

a(σ, τ ) :=
1

ν

∫
Ω
σd : τ d , b(u, τ ) :=

∫
Ω

u · div(τ ) , c(u,v) :=

∫
Ω

(a · ∇u) · v ,

for any σ, τ ∈ H0 and u,v ∈ [H1(Ω)]d. We also define the linear functional l : [L2(Ω)]d → R by

l(v) := −
∫

Ω
f · v, ∀v ∈ [L2(Ω)]d.

Then, the dual-mixed variational formulation (6) can be posed in the generalized saddle-point
form: 

a(σ, τ ) + b(u, τ ) = 0 , ∀ τ ∈ H0 ,

b(v,σ) − c(u,v) = l(v) , ∀v ∈ [H1
0 (Ω)]d ,

(7)

where we remark that the bilinear form c(·, ·) is not symmetric.
According to [11], to ensure that problem (7) has a unique solution, we require, among other

conditions, that the bilinear form a(·, ·) be coercive on H0. However, it is well-known that a(·, ·) is
coercive in the divergence free subspace of H0 (see, for instance, the proof of Theorem 2.3 in [13]) but
not on H0. We also require that the bilinear form b(·, ·) satisfies an inf-sup condition in H0× [H1

0 (Ω)]d.
These facts motivated us to consider an augmented formulation of problem (5).

3 Augmented dual-mixed variational formulation

In this section, we introduce an augmented variational formulation of problem (5) and show that it is
well-posed for appropriate values of the stabilization parameters. We follow ideas from [25] (see also
[7, 17, 20, 6]) and subtract the second equation in (7) from the first one and then, add the following
least-squares type terms, that arise from the equilibrium and constitutive equations in (5):

κ1

∫
Ω

(div(σ)− a · ∇u) · (div(τ ) + a · ∇v) = −κ1

∫
Ω

f · (div(τ ) + a · ∇v) (8)

and

κ2

∫
Ω

(∇u− 1

ν
σd) : (∇v +

1

ν
τ d) = 0 , (9)

where (σ,u) ∈ H0 × [H1
0 (Ω)]d is a solution of (5) and (τ ,v) ∈ H0 × [H1

0 (Ω)]d is a test function. The
parameters κ1 and κ2 are positive constants to be chosen so that the augmented bilinear form

A((σ,u), (τ ,v)) :=
1

ν

∫
Ω
σd : τ d +

∫
Ω

u · div(τ ) −
∫

Ω
div(σ) · v +

∫
Ω

(a · ∇u) · v

+κ1

∫
Ω

(div(σ)− a · ∇u) · (div(τ ) + a · ∇v) + κ2

∫
Ω

(∇u− 1

ν
σd) : (∇v +

1

ν
τ d)

be coercive in the whole space H0 × [H1
0 (Ω)]d.
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Let us define the linear functional F : H0 × [H1
0 (Ω)]d → R by

F (τ ,v) :=

∫
Ω

f · v − κ1

∫
Ω

f · (div(τ ) + a · ∇v) , ∀ (τ ,v) ∈ H0 × [H1
0 (Ω)]d .

Then, the augmented variational formulation of problem (5) reads: find (σ,u) ∈ H0 × [H1
0 (Ω)]d such

that
A((σ,u), (τ ,v)) = F (τ ,v) , ∀ (τ ,v) ∈ H0 × [H1

0 (Ω)]d . (10)

In what follows, we assume that a ∈ [L∞(Ω)]d and f ∈ [L2(Ω)]d.
Next we recall the following Lemma, that will be used to prove the coercivity of A(·, ·) in H0 ×

[H1
0 (Ω)]d.

Lemma 1 There exists a positive constant, c1, which depends only on Ω, such that

c1 ||τ ||2[L2(Ω)]d×d ≤
∣∣∣∣τ d

∣∣∣∣2
[L2(Ω)]d×d + ||div(τ )||2[L2(Ω)]d , ∀ τ ∈ H0 .

Proof. See Lemma 3.1 in [3] or Proposition 3.1, Chapter IV of [11]. �
In the following Lemma, we prove the coercivity of A(·, ·) in H0× [H1

0 (Ω)]d under some conditions
on the stabilization parameters.

Lemma 2 Assume that

0 < κ1 <
κ2

d ||a||2[L∞(Ω)]d
and 0 < κ2 < ν .

Then, there exists Cell > 0 such that

A((τ ,v), (τ ,v)) ≥ Cell ‖(τ ,v)‖2H0×[H1
0 (Ω)]d , ∀ (τ ,v) ∈ H0 × [H1

0 (Ω)]d .

Proof. Let (τ ,v) ∈ H0 × [H1
0 (Ω)]d. Then, using the definition of A(·, ·), we have

A((τ ,v), (τ ,v)) =
1

ν

(
1− 1

ν
κ2

)∣∣∣∣τ d
∣∣∣∣2

[L2(Ω)]d×d +

∫
Ω

(a · ∇v) · v + κ1 ||div(τ )||2[L2(Ω)]d

− κ1 ||a · ∇v||2[L2(Ω)]d + κ2 ||∇v||2[L2(Ω)]d×d

We remark that, since a is solenoidal, then

∫
Ω

(a · ∇v) · v = 0. On the other hand, it is easy to see

that
||a · ∇v||2[L2(Ω)]d ≤ d ||a||2[L∞(Ω)]d ||∇v||2[L2(Ω)]d×d .

Therefore,

A((τ ,v), (τ ,v)) ≥ 1

ν

(
1− κ2

ν

)∣∣∣∣τ d
∣∣∣∣2

[L2(Ω)]d×d + κ1 ||div(τ )||2[L2(Ω)]d

+
(
κ2 − κ1 d ||a||2[L∞(Ω)]d

)
||∇v||2[L2(Ω)]d×d .
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Then, by applying Lemma 1 and Poincaré inequality, the ellipticity of A(·, ·) follows for the feasible
values of κ1 and κ2, with

Cell = min(
1

ν

(
1− κ2

ν

)
c1,

κ1

2
c1,

κ1

2
,
(
κ2 − κ1 d ||a||2[L∞(Ω)]d

)
CΩ),

where CΩ is the Poincaré constant. �
Remark. We assumed that a 6= 0. In case a = 0, we would be dealing with the Stokes problem. In
this case,

Cell = min(
1

ν

(
1− κ2

ν

)
c1,

κ1

2
c1,

κ1

2
, κ2CΩ),

so that the values of the stabilization parameters that guarantee the coerciveness of the augmented
bilinear form A(·, ·) are

κ1 > 0 , κ2 ∈ (0, ν) .

�

Theorem 2 Assume the hypotheses of Lemma 2. Then, problem (10) has a unique solution (σ,u) ∈
H0 × [H1

0 (Ω)]d and

‖(σ,u)‖H0×[H1
0 (Ω)]d ≤ C−1

ell (1 + κ1 (1 +
√
d ‖a‖[L∞(Ω)]d)) ‖f‖[L2(Ω)]d .

Proof. From Lemma 2, the continuous bilinear form A(·, ·) is elliptic in H0× [H1
0 (Ω)]d. On the other

hand, the linear functional F is continuous in H0 × [H1
0 (Ω)]d, with

|F (τ ,v)| ≤ (1 + κ1 (1 +
√
d ‖a‖[L∞(Ω)]d)) ‖f‖[L2(Ω)]d ‖(τ ,v)‖H0×[H1

0 (Ω)]d .

The result follows by applying the Lax-Milgram Lemma. �
Remark. In order to maximize the ellipticity constant, Cell, we choose the stabilization parameters
κ1 and κ2 to be:

κ̃1 =
ν

c1
2CΩ

+ ν2

2 + d‖a‖2
[L∞(Ω)]d

, κ̃2 =
ν
(

c1
2CΩ

+ d‖a‖2
[L∞(Ω)]d

)
c1

2CΩ
+ ν2

2 + d‖a‖2
[L∞(Ω)]d

. (11)

This choice characterizes the ellipticity constant as a function of the physical parameters as:

Cell(ν,a) =
κ̃1

2
c1 =

ν c1
c1
CΩ

+ ν2 + 2d‖a‖2
[L∞(Ω)]d

. (12)

Thus, when convection is dominant (ν << ‖a‖[L∞(Ω)]d), we would have c ν ‖a‖−2
[L∞(Ω)]d

≤ Cell ≤
C ‖a‖−1

[L∞(Ω)]d
. Moreover, the continuous dependence constant in Theorem 2 will be ofO(ν−1 ‖a‖2

[L∞(Ω)]d
+

‖a‖[L∞(Ω)]d). �
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4 Augmented mixed finite element method

In what follows, we assume that Ω is a polygonal (d = 2) or polyhedral (d = 3) domain. Let {Th}h>0

be a family of shape-regular meshes of Ω̄ made up of triangles (d = 2) or tetrahedra (d = 3). We
denote by hT the diameter of an element T ∈ Th and define h := maxT∈ThhT . Let H0,h and Vh be
any finite element subspaces of H0 and [H1

0 (Ω)]d, respectively. Then, the Galerkin scheme associated
to problem (10) reads: find (σh,uh) ∈ H0,h × Vh such that

A((σh,uh), (τ h,vh)) = F (τ h,vh) , ∀ (τ h,vh) ∈ H0,h × Vh . (13)

Under the hypotheses of Lemma 2, the bilinear form A(·, ·) is coercive in H0× [H1
0 (Ω)]d, and hence,

in any finite element subspace H0,h × Vh of H0 × [H1
0 (Ω)]d. Therefore, problem (13) has a unique

solution (σh,uh) ∈ H0,h × Vh. Moreover, there exists a constant CCea > 0, independent of h, such
that

||(σ − σh,u− uh)||H0×[H1
0 (Ω)]d ≤ CCea inf

(τ h,vh)∈H0,h×Vh
||(σ − τ h,u− vh)||H0×[H1

0 (Ω)]d , (14)

where for the values κ̃1 and κ̃2 defined in (11), CCea = O(ν−1 ‖a‖3
[L∞(Ω)]d

) if ν << ‖a‖[L∞(Ω)]d .

In order to establish a rate of convergence result, we consider specific finite element subspaces H0,h

and Vh. Hereafter, given T ∈ Th and an integer l ≥ 0, we denote by Pl(T ) the space of polynomials of
total degree at most l on T and, given an integer r ≥ 0, we denote byRT r(T ) the local Raviart-Thomas
space of order r + 1 (cf. [26]),

RT r(T ) := [Pr(T )]d ⊕ [x]Pr(T ) ⊂ [Pr+1(T )]d ,

where x is a generic vector of Rd.
Let r ≥ 0 and m ≥ 1. Then, we let H0,h be either

H0,h := [RT t
r ]
d =

{
τ h ∈ H0 : τ h

∣∣
T
∈ [RT r(T )t]d, ∀T ∈ Th

}
,

or
H0,h := [BDMt

r+1]d =
{
τ h ∈ H0 : (τ h)i

∣∣
T
∈ [Pr+1(T )]d, i = 1, . . . , d, ∀T ∈ Th

}
,

where (τ h)i denotes the i-th row of τ h, and define

Vh := [Lm]d =
{

vh ∈ [C(Ω) ∩H1
0 (Ω)]d : vh

∣∣
T
∈ [Pm(T )]d, ∀T ∈ Th

}
.

The corresponding rate of convergence is given in the next theorem.

Theorem 3 Assume σ ∈ [Ht(Ω)]d×d, div(σ) ∈ [Ht(Ω)]d and u ∈ [Ht+1(Ω)]d. Then, under the
assumptions of Lemma 2, there exists C = O(CCea) > 0, independent of h, such that

||(σ − σh,u− uh)||H0×[H1
0 (Ω)]d ≤ C hmin{t,m,r+1}

(
||σ||[Ht(Ω)]d×d + ||div(σ)||[Ht(Ω)]d + ||u||[Ht+1(Ω)]d

)
.

(15)
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Proof. It follows straightforwardly from inequality (14) and the approximation properties of the
corresponding finite element subspaces. �
Remark. Under the hypothesis of the previous Theorem, we have that

‖p− ph‖L2(Ω) ≤ C hmin{t,m,r+1}
(
||σ||[Ht(Ω)]d×d + ||div(σ)||[Ht(Ω)]d + ||u||[Ht+1(Ω)]d

)
,

where we recover ph = −1
dtr(σh) and C = O(CCea). �

Remark. If we approximate σ by continuous piecewise polynomials, that is, if we choose

H0,h =
{
τ h ∈ H0 ∩ [C(Ω̄)]d×d : (τ h)

∣∣
T
∈ [Pr(T )]d×d, ∀T ∈ Th

}
,

we will obtain the corresponding error estimate

||(σ − σh,u− uh)||H0×[H1
0 (Ω)]d ≤ C hmin{t,m,r}

(
||σ||[Ht+1(Ω)]d×d + ||u||[Ht+1(Ω)]d

)
.

for σ ∈ [Ht+1(Ω)]d×d and u ∈ [Ht+1(Ω)]d, with C = O(CCea). Notice that this result requires more
regularity on σ. �

5 A posteriori error analysis

In this section, we develop a residual-based a posteriori error analysis of the augmented mixed finite
element method (13). That analysis is similar to the one presented in [5] and [7] for the linear elasticity
and the Darcy problems, respectively. We derive a simple a posteriori error estimator that consists of
two residual terms and show that it is reliable and locally efficient. In what follows, we assume that
the stabilization parameters, κ1 and κ2, satisfy the hypotheses of Lemma 2.

Let H0,h and Vh be any finite element subspaces of H0 and [H1
0 (Ω)]d, respectively, and let (σ,u) ∈

H0×[H1
0 (Ω)]d and (σh,uh) ∈ H0,h×Vh be the unique solutions to problems (10) and (13), respectively.

Then, we define the residual

Rh(τ ,v) = F (τ ,v)−A((σh,uh), (τ ,v)) , ∀ (τ ,v) ∈ H0 × [H1
0 (Ω)]d. (16)

Applying the coercivity of the bilinear form A(·, ·) to the error, (σ − σh,u − uh) ∈ H0 × [H1
0 (Ω)]d,

and using the definition of the residual (16), we deduce that

‖(σ − σh,u− uh)‖H0×[H1
0 (Ω)]d ≤ C−1

ell

A((σ − σh,u− uh), (σ − σh,u− uh))

‖(σ − σh,u− uh)‖H0×[H1
0 (Ω)]d

≤ C−1
ell sup

(τ ,v)∈H0×[H1
0(Ω)]d

(τ ,v) 6=(0,0)

A((σ − σh,u− uh), (τ ,v))

‖(τ ,v)‖H0×[H1
0 (Ω)]d

= C−1
ell sup

(τ ,v)∈H0×[H1
0(Ω)]d

(τ ,v)6=(0,0)

Rh(τ ,v)

‖(τ ,v)‖H0×[H1
0 (Ω)]d

.

(17)

In the next Lemma, we obtain an upper bound for the residual.
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Lemma 3 There exists a positive constant C, independent of h, such that

sup
(τ ,v)∈H0×[H1

0(Ω)]d

(τ ,v)6=(0,0)

Rh(τ ,v)

‖(τ ,v)‖H0×[H1
0 (Ω)]d

≤ C
(
||f +div(σh)−a ·∇uh||[L2(Ω)]d + ||∇uh−

1

ν
σd
h||[L2(Ω)]d×d

)
.

Proof. Using the definitions of the linear functional F and the bilinear form A(·, ·), we have

Rh(τ ,v) = R1(τ ) +R2(v) , ∀ τ ∈ H0 , ∀v ∈ [H1
0 (Ω)]d ,

where R1 : H0 → R and R2 : [H1
0 (Ω)]d → R are defined by

R1(τ ) := −κ1

∫
Ω

f · div(τ ) −
∫

Ω
uh · div(τ ) − κ1

∫
Ω

(div(σh)− a · ∇uh) · div(τ )

− 1

ν

∫
Ω
σd
h : τ d − κ2

ν

∫
Ω

(∇uh −
1

ν
σd
h) : τ d ,

R2(v) :=

∫
Ω

(f+div(σh)−a·∇uh)·v−κ1

∫
Ω

(f+div(σh)−a·∇uh)·(a·∇v)−κ2

∫
Ω

(∇uh−
1

ν
σd
h) : ∇v .

Then, integrating by parts the second term in R1 and using the boundary condition, we deduce that

R1(τ ) = −κ1

∫
Ω

(f + div(σh)− a · ∇uh) · div(τ ) +

∫
Ω

(∇uh −
1

ν
σd
h) : τ − κ2

ν

∫
Ω

(∇uh −
1

ν
σd
h) : τ d .

Now, applying the Cauchy-Schwarz inequality and using that ‖τ d‖[L2(Ω)]d×d ≤ ‖τ‖[L2(Ω)]d×d , we
have

|R1(τ )| ≤ κ1 ‖f + div(σh)− a · ∇uh‖[L2(Ω)]d‖div(τ )‖[L2(Ω)]d

+
(
1 +

κ2

ν

)
‖∇uh −

1

ν
σd
h‖[L2(Ω)]d×d‖τ‖[L2(Ω)]d×d ,

and

|R2(v)| ≤ ‖f + div(σh)− a · ∇uh‖[L2(Ω)]d‖v‖[L2(Ω)]d

+ κ1

√
d ‖a‖[L∞(Ω)]d ‖f + div(σh)− a · ∇uh‖[L2(Ω)]d‖∇v‖[L2(Ω)]d×d

+ κ2 ‖∇uh −
1

ν
σd
h‖[L2(Ω)]d×d‖∇v‖[L2(Ω)]d×d .

Therefore, the proof follows using the triangle inequality, with

C = max
(
1 + κ1(1 +

√
d‖a‖[L∞(Ω)]d), 1 + κ2(1 +

1

ν
)
)
.
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�
Motivated by the previous result, we define the a posteriori error estimator θ as follows:

θ2 :=
∑
T∈Th

θ2
T , with θ2

T := ‖f + div(σh)− a · ∇uh‖2[L2(T )]d + ‖∇uh −
1

ν
σd
h‖2[L2(T )]d×d . (18)

In the next theorem we establish the equivalence between the total error and the estimator θ. Inequality
(19) means that the a posteriori error estimator θ is reliable, whereas inequality (20) means that θ is
locally efficient.

Theorem 4 Let (σ,u) ∈ H0× [H1
0 (Ω)]d and (σh,uh) ∈ H0,h×Vh be the unique solutions to problems

(10) and (13), respectively. Then, there exists a positive constant Crel, independent of h, such that

‖(σ − σh,u− uh)‖H0×[H1
0 (Ω)]d ≤ Crel θ , (19)

and there exists a positive constant Ceff, independent of h and T , such that

Ceff θT ≤ ‖(σ − σh,u− uh)‖H(div,T )×H1(T ) , ∀T ∈ Th . (20)

Proof. Using (17), Lemma 3 and the definition of θ, we deduce inequality (19) with Crel :=
√

2C−1
ellC,

with C being the constant of Lemma 3. On the other hand, to prove inequality (20), we recall from
(5) that f = −div(σ) + a · ∇u and 1

ν σ
d −∇u = 0 in Ω. Then, using the triangle inequality

‖f + div(σh)− a · ∇uh‖2[L2(T )]d
= ‖div(σh − σ)− a · ∇(uh − u)‖2

[L2(T )]d

≤ 2
(
‖div(σh − σ)‖2

[L2(T )]d
+ ‖a · ∇(uh − u)‖2

[L2(T )]d

)
≤ 2

(
‖div(σh − σ)‖2

[L2(T )]d
+ d ‖a‖2

[L∞(Ω)]d
‖∇(uh − u)‖2

[L2(T )]d×d

)
,

and

‖∇uh −
1

ν
σd
h‖2[L2(T )]d×d ≤ 2

(
‖∇(uh − u)‖2[L2(T )]d×d +

1

ν2
‖(σh − σ)d‖2[L2(T )]d×d

)
≤ 2

(
‖∇(uh − u)‖2[L2(T )]d×d +

1

ν2
‖σh − σ‖2[L2(T )]d×d

)
.

Therefore,

θ2
T ≤ 2

(
max(1,

1

ν2
) ‖σh − σ‖2H(div;T ) + 2 (1 + d ‖a‖2[L∞(Ω)]d)‖∇(uh − u)‖2[L2(T )]d×d

)
and the proof follows with C−1

eff :=
√

2 max( 1
ν2 , 1 + d ‖a‖2

[L∞(Ω)]d
). �

Remark. From the previous analysis, we have that if ν << ‖a‖[L∞(Ω)]d , then the efficiency constant

is C−1
eff = O(max( 1

ν , ‖a‖[L∞(Ω)]d)). We notice that this constant is independent of the choice of the
stabilization parameters κ1 and κ2. If ν << 1 ≤ ‖a‖[L∞(Ω)]d , for the choice (11), the reliability

constant is Crel = O(C−1
ell) = O(ν ‖a‖−2

[L∞(Ω)]d
) . �
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6 Numerical experiments

In this section, we present some numerical experiments that illustrate the performance of the aug-
mented scheme (13) and confirm the properties of the a posteriori error estimator θ defined in (18).

In order to implement the mean zero condition for the traces of functions in the space H0,h, we
introduce, as described in [8], a Lagrange multiplier (ϕh ∈ R below). That is, instead of (13), we
consider the equivalent problem: find (σh,uh, ϕh) ∈ Hh × Vh × R such that

A((σh,uh), (τ h,vh)) + ϕh

∫
Ω
tr(τ h) = F (τ h,vh) ,

ψh

∫
Ω
tr(σh) = 0 ,

(21)

for all (τ h,vh, ψh) ∈ Hh × Vh × R, where Hh is a finite element subspace of H(div; Ω).
In the next theorem we establish the equivalence between (13) and (21).

Theorem 5 Let (σh,uh) ∈ H0,h × Vh be the solution of (13). Then, (σh,uh, 0) is a solution of (21).
Conversely, let (σh,uh, ϕh) ∈ Hh × Vh × R be a solution of (21). Then ϕh = 0 and (σh,uh) is the
solution of (13). In particular, problem (21) has a unique solution.

Proof. Let (σh,uh) ∈ H0,h × Vh be the solution of (13) and let (τ h,vh) ∈ Hh × Vh. Then, τ h =
τ 0,h + ch I, where τ 0,h ∈ H0,h and ch = 1

d |Ω|
∫

Ω tr(τ h). We remark that div(τ h) = div(τ 0,h) and

τ d
h = τ d

0,h. Therefore,

A((σh,uh), (τ h,vh)) = A((σh,uh), (τ 0,h,vh)) = F (τ 0,h,vh) = F (τ h,vh)

where in the second identity we used that (σh,uh) is the solution of (13). We deduce that (σh,uh, 0)
is a solution of problem (21).

On the other hand, let (σh,uh, ϕh) ∈ Hh × Vh ×R be a solution of (21). Then, taking (τ h,vh) =
(I,0) in the first equation of (21), it is easy to see that ϕh = 0. Since the second equation of (21)
implies that σh ∈ H0,h, we have that (σh,uh) is the solution of problem (13). �

The numerical experiments were performed with the finite element toolbox ALBERTA using re-
finement by recursive bisection [27]. The solution of the corresponding linear system is computed
using the backslash operator of MATLAB. Given the features of system (21), MATLAB chooses an
LU solver (UMFPACK routines) to compute the solution. We present numerical experiments for the
finite element pairs (H0,h, Vh, ) given by ([RT t

0]
2
, [L1]2), ([RT t

1]
2
, [L2]2) and ([BDMt

1]
2
, [L1]2) and

([RT t
0]

3
, [L1]3).

We use the standard adaptive finite element method (AFEM) based on the loop:

SOLVE→ ESTIMATE→ MARK→ REFINE.

Hereafter, we replace the subscript h by k, where k is the counter of the adaptive loop. Then,
given a mesh Tk, the procedure SOLVE is a direct solver for computing the discrete solution (σk,uk).

12



Figure 1: Degrees of freedom for RT 0 (left), BDM1 (center) and RT 1 (right) on a triangle T

ESTIMATE calculates the error indicators θk(T ) for all T ∈ Tk depending on the computed solution
and the data. Based on the values of {θk(T )}T∈Tk , the procedure MARK generates a set of marked
elements subject to refinement. For the elements selection, we rely on the maximum strategy: Given
a threshold γ ∈ (0, 1], any element T ′ ∈ Tk with

θk(T
′) > γ max

T∈Tk
θk(T ), (22)

is marked for refinement. Finally, the procedure REFINE creates a conforming refinement Tk+1 of Tk,
bisecting d times (d = 2 or 3) all marked elements.

We will compare the performance of a finite element method based on uniform refinement (U)
with the adaptive method (A) that we have described above.

In order to get the best ellipticity constant Cell in Lemma 2 and taking into account that c1 ∈ (0, 1)
is unknown, we choose κ1 and κ2 to be:

κ1 =
ν

1 + ν2 + d‖a‖2
[L∞(Ω)]d

, κ2 =
ν
(

1 + d‖a‖2
[L∞(Ω)]d

)
1 + ν2 + d‖a‖2

[L∞(Ω)]d
,

that satisfy the hypotheses of Lemma 2.
In what follows, DOFs stands for the total number of degrees of freedom (unknowns) of (21) and

we define the individual errors

ek(σ) := ‖σ − σk‖H(div;Ω) , ek(u) := |u− uk|[H1(Ω)]d , ek(p) := ‖p− pk‖L2(Ω) ,

where the pressure pk is recovered as pk = −1
dtr(σk), and the total error

ek(σ,u) :=
(
ek(σ)2 + ek(u)2

)1/2
.

The efficiency index with respect to the error estimator θk is defined as effk := ek(σ,u)/θk.
We present four examples. The aim of the first one is to confirm Theorem 3, and to verify the

efficiency and reliability of the a posteriori error estimator derived in Section 5. We also analyze the
influence of relatively small values of the viscosity ν in the numerical method. The second and third
examples are two-dimensional examples in which the solution presents a boundary layer and an inner
layer, respectively; they allow us to show the efficiency of the adaptive method. Finally, the fourth
example shows the behavior of the algorithms in a three-dimensional problem with a boundary layer;
in this case, the role of the a posteriori error estimator is crucial due to the increasing number of
DOFs in three-dimensional problems.
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Figure 2: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and

([RT t
1]

2
, [L2]2) and ν = 1 .

6.1 A smooth example

Let Ω = (0, 1)2, φ(x, y) = x2(1− x)2y2(1− y)2 and a = (2, 3). We choose f so that the exact solution
of problem (1) is:

u = curl φ =

(
∂φ

∂y
,−∂φ

∂x

)
, p = exp

(
−10

(
(x− 1/2)2 + (y − 1/2)2

))
− pm, (23)

where pm ∈ R is such that
∫

Ω p = 0. We remark that u = 0 on Γ.
We solve this problem for different values of the viscosity, ranging from 1 to 10−6, with the finite

element pairs ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and ([RT t

1]
2
, [L2]2) on a sequence of uniform meshes

(i.e., in each step the elements of the mesh are bisected twice). Figures 2–8 show the decay of the
errors ek(σ), ek(u), ek(p) versus the DOFs and the behavior of the total error and the estimator.
Convergence rates predicted by the theory for the total error (Theorem 3) are attained in all cases
(we recall that hk ∼ DOFs−k/d on uniform meshes), independently of the value of the viscosity. This
fact shows that the original problem is stabilized correctly. Nevertheless, for the finite element pair
([RT t

1]
2
, [L2]2) and values for the viscosity less than 10−3, we observe certain instabilities in the first

steps of the refinement procedure, although in the asymptotic regime the order is correct.
The errors ek(σ) and ek(u) decay with the same velocity as the total error. The same happens for

the error ek(p) when RT -elements are employed. The error ek(p) presents an apparent superconver-
gence when BDM-elements are used and ν < 10−2. We are not able to determine if this is because
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Figure 3: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and

([RT t
1]

2
, [L2]2) and ν = 10−1 .
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Figure 4: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and

([RT t
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, [L2]2) and ν = 10−2 .
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Figure 5: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and

([RT t
1]

2
, [L2]2) and ν = 10−3 .
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Figure 6: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and

([RT t
1]

2
, [L2]2) and ν = 10−4 .
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Figure 7: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and

([RT t
1]

2
, [L2]2) and ν = 10−5 .
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Figure 8: Example 6.1. Decay of errors and estimator for ([RT t
0]

2
, [L1]2), ([BDMt
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2
, [L1]2) and
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2
, [L2]2) and ν = 10−6 .
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Figure 9: Example 6.1. Efficiency indices for ([RT t
0]

2
, [L1]2), ([BDMt

1]
2
, [L1]2) and ([RT t

1]
2
, [L2]2)

and the different values of ν.

the graph of the error in the pressure variable is still in the preasymptotic regime or if for this finite
element pair the error ‖σ − σk‖L2(Ω) converges quadratically. In all cases the total error and the
estimator have the same decay, which confirms that they are equivalent.

Figure 9 shows the efficiency indices for the different finite element pairs and viscosities considered.
Efficiency indices are around 1 and independent of the value of ν for the families ([RT t

0]
2
, [L1]2) and

([BDMt
1]

2
, [L1]2). For the finite element pair ([RT t

1]
2
, [L2]2), efficiency indices seem to degrade as ν

decreases, according to Theorem 4.

6.2 Two-dimensional boundary layer

In this example we consider Ω = (0, 1)2, ν = 10−3 and a = (1, 1). We define the potential φ(x, y) =
x2y2(1−eλ(x−1))2(1−eλ(y−1))2, with λ = 0.5/

√
ν, and choose f such that the exact solution of problem

(1) is:

u = curl φ =

(
∂φ

∂y
,−∂φ

∂x

)
, p = ex+y − pm, (24)

where pm ∈ R is such that
∫

Ω p = 0. We remark that the velocity u exhibits a boundary layer around
the lines x = 1 and y = 1. We also remark that u = 0 on Γ. In the adaptive procedure we chose
γ = 0.4.

Figure 10 shows the decay of the individual errors, ek(σ), ek(u) and ek(p) for the adaptive and
uniform refinements when the finite element pair ([RT t

0]
2
, [L1]2) is used. We observe a fast convergence

of the adaptive procedure for the variables of interest (velocity and pseudostress) as a consequence of
the localization of the boundary layer (see Figure 12). We also remark that the error in the pressure
variable is several orders of magnitude smaller than the error in the velocity and the pseudostres
variables, so that the a posteriori error estimator does not see this error yet.

In Figure 11-left, we can observe the total error and estimator for the uniform and adaptive
refinements. From this graph, we conclude that the adaptive algorithm is more competitive than the
uniform procedure. Figure 11-right shows the efficiency indices, that tend to stabilize around 0.4.

Figure 13 shows the velocity module for iterations 5, 10 and 15 of the adaptive procedure. In
Figures 14 and 15 we can observe the profile of the first component of the velocity near the boundary
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Figure 10: Example 6.2. Errors decay for the adaptive (A) and uniform (U) procedures.
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Figure 11: Example 6.2. Decay of total error and estimator (left) and efficiency indices for the adaptive
(A) and uniform (U) procedures

Figure 12: Example 6.2. Meshes generated by the adaptive algorithm in iterations 0, 10 and 15
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Figure 13: Example 6.2. Velocity module in iterations 5, 10 and 15 of procedure A

layers. We notice that the method captures the boundary layer correctly when the mesh is finer enough
in case of uniform refinement or as the adaptive procedure advances, respectively. Finally, Figure 16
shows the pressure obtained in iterations 5, 12 and 17 of the adaptive procedure. We observe some
oscillations in the first steps of the adaptive algorithm that diminish later as the algorithm advances.

6.3 Two-dimensional inner layer

Let Ω = (0, 1)2, ν = 10−4 and a = (1, 0). We consider φ(x, y) = x2(1− x)2y2(1− y)2(1− tanh((1/2−
x)λ)) with λ = 150, and choose f so that the exact solution of problem (1) is:

u = curl φ =

(
∂φ

∂y
,−∂φ

∂x

)
, p = e−(x−1/2)2 − pm, (25)

where pm ∈ R is such that
∫

Ω p = 0. We remark that the solution presents an inner layer around the
line x = 1/2 and that u = 0 on Γ. In the adaptive procedure we used γ = 0.4.

Figures 17 and 18 show the decay of the errors and estimator with the DOFs for the uniform and
adaptive refinements when the finite element pair ([RT t

0]
2
, [L1]2) is used. The same observations of

the previous example apply. Again, the adaptive procedure obtains quasi-optimal meshes and it is
more competitive than the uniform procedure concerning the reduction of the total error. We have
to take into account that the adaptive algorithm is leaded by an a posteriori error estimator that is
equivalent to the total error. Then, it can happen, as can be observed from Figure 17, that the errors
in the pressure variable can be smaller in the uniform sequence than in the adaptive sequence. Since
in this case the pressure is a smooth function, the refinement that captures the inner layer of the
velocity is not appropriate for a correct approximation of the pressure.

Figure 19 shows the initial mesh and the meshes generated by the adaptive algorithm in iterations
5 and 9. We remark that the adaptive algorithm detects the inner layer of the velocity. In Figure 20
we present some graphs of the velocity module in iterations 4, 7 and 11. In Figures 21 and 22 we show
the velocity profiles near the inner layer. We observe that the oscillations in the velocity profiles that
are present in the first steps tend to dissapear when the mesh is finer enough. Finally, in Figure 23
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Figure 14: Example 6.2. Velocity profile at y = 0.96 (left) and x = 0.85 (right) in different iterations
of procedure U

Figure 15: Example 6.2. Velocity profile at y = 0.96 (left) and x = 0.85 (right) in different iterations
of procedure A
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Figure 16: Example 6.2. Pressure in iterations 5, 12 and 17 of procedure A
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Figure 17: Example 6.3. Errors decay for the adaptive algorithm (A) and the uniform algorithm (U)
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Figure 18: Example 6.3. Decay of the total error and estimator (left) and efficiency indices for the
adaptive algorithm (A) and uniform algorithm (U)

Figure 19: Example 6.3. Meshes generated by the adaptive procedure at iterations 0, 5 and 9.

we present some graphs of the pressure in iterations 4, 8 and 11. Again, in the first iterations there
are some instabilities that diminish as the algorithm advances.

6.4 Three-dimensional boundary layer

Let Ω = (0, 1)3, ν = 1 and a = (1, 1, 0). We consider the vector potential

φ(x, y, z) = x2(1− x)2y2(1− y)2z2(1− eλ(z−1))2 (1, 1, 1)t

with λ = 20, and choose f so that the exact solution of problem (1) is:

u = curl φ =

(
∂φ3

∂y
− ∂φ2

∂z
,
∂φ1

∂z
− ∂φ3

∂x
,
∂φ2

∂x
− ∂φ1

∂y

)
, p = e−10((x−1/2)2+(y−1/2)2+(z−1)2) − pm,

(26)
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Figure 20: Example 6.3. Module of the velocity field at iterations 4, 7 and 11.

Figure 21: Example 6.3. X-velocity profiles near the boundary layer in different iterations of procedures
U (above) and A (below)
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Figure 22: Example 6.3. Y-velocity profiles near the boundary layer in different iterations of procedures
U (above) and A (below)
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Figure 23: Example 6.3. Pressure at iterations 4, 8 and 11.
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Figure 24: Example 6.4. Errors decay with DOFs for the adaptive (A) and uniform (U) algorithms.

where pm ∈ R is such that
∫

Ω p = 0. We remark that the velocity field u is divergence-free and vanishes
on Γ. In this case, we took γ = 0.5 in the adaptive procedure.

Figures 24 and 25 show the decay of the errors and estimator with the DOFs for the uniform and
adaptive refinements when the finite element pair ([RT t

0]
3
, [L1]3) is used. We observe that the adaptive

procedure generates quasi-optimal meshes from the third iteration, while the error curves associated
to the sequence of uniform meshes exhibit a slow convergence and seem to be at the pre-asymptotic
regime. In this example the efficiency index is almost one (see Figure 25-left).

Finally, in Figure 26 we show some meshes generated by the adaptive algorithm. Figures 27 and
28 show the module of the velocity field and the pressure, respectively.
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Figure 25: Example 6.4. Decay of total error and estimator (left) and efficiency indices for the adaptive
(A) and uniform (U) algorithms.

Figure 26: Example 6.4. Meshes generated by the adaptive process at iterations 0, 4 and 7
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Figure 27: Example 6.4. Module of the velocity field at iterations 3, 6 and 8 of the adaptive process

Figure 28: Example 6.4. Pressure at iterations 3, 6 and 8 of the adaptive process
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7 Conclusions

We proposed and analyzed a new augmented dual-mixed variational formulation for the Oseen problem
in the pseudostres-velocity variables. We obtained sufficient conditions on the stabilization parameters
such that the augmented variational formulation and the corresponding Galerkin scheme are well-posed
and a Céa estimate holds whatever finite element subspaces are used. We also obtained error estimates
when Raviart-Thomas or Brezzi-Douglas-Marini elements are used to approximate the rows of the
pseudostress, and continuous piecewise polynomials are used to approximate the velocity components.
The pressure can be recovered from the pseudostress; in this case, we deduced an a priori estimate in
the L2(Ω)-norm (see Remark after Theorem 3).

Moreover, we developed a residual-based a posteriori error analysis and proposed a simple a poste-
riori error indicator that is shown to be reliable and locally efficient. This a posteriori error indicator
consists only of two residual terms, namely, the residual in the momentum equation and the residual
in the incompressibility condition. It is valid in two and three dimensions, and for any conforming
finite element approximation. We remark that we characterized the behavior of the constants in the
a priori error analysis as well as the a posteriori error analysis in terms of the problem parameters
(viscosity and advective velocity).

We performed some numerical experiments to support our theoretical results. Numerical results
show that the adaptive refinement algorithm performs better than the uniform refinement algorithm
concerning the reduction of the total error, in the velocity and pseudostress variables. Moreover, the
adaptive algorithm is able to detect boundary and inner layers. We appreciated certain oscillations
in the pressure that decrease asymptotically as the mesh is refined. It appears necessary to use some
post-processing procedure to recover this variable.
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[5] T.P. Barrios, E.M. Behrens and M. González, Low cost a posteriori error estimators for an aug-
mented mixed FEM in linear elasticity, Appl. Numer. Math. 84 (2014) 46-65.
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[8] T.P. Barrios, G.N. Gatica, M. González and N. Heuer, A residual based a posteriori error estimator
for an augmented mixed finite element method in linear elasticity, ESAIM: M2AN, vol. 40, pp. 843-
869 (2006).

[9] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations
based on local projections, Calcolo 38(4) (2001) 173-199.

[10] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized
Oseen problem, Comput. Methods Appl. Mech. Engrg., vol. 196, pp. 853-866 (2007).

[11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.

[12] A.N. Brooks and T.J.R. Hughes, Streamline upwind Petrov-Galerkin formulation for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput.
Methods Appl. Mech. Engrg. 32 (1982) 199-259.

[13] Z. Cai, C. Tong, P. Vassilevski and C. Wang, Mixed finite element methods for incompressible
flow: stationary Stokes equations, Numer. Methods PDEs, 26:4 (2010), 957-978.

[14] Z. Cai, C. Wang and S. Zhang, Mixed finite element methods for incompressible flow: stationary
Navier-Stokes equations, SIAM J. Numer. Anal., 48 (2010), 79-94.

[15] R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using
orthogonal subscales, Appl. Numer. Math., vol. 58, pp. 264-283 (2008).

[16] L.P. Franca and S.L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233.

[17] G.N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity al-
lowing RT0-P1-P0 approximations., ESAIM: M2AN Math. Model. Numer. Anal., 40 (2006) 1-28.

[18] G.N.Gatica, An augmented mixed finite element method for linear elasticity with non-
homogeneous Dirichlet conditions, Electron.Trans.Numer.Anal. 26 (2007) 421438.

[19] G.N. Gatica, A. Márquez and S. Meddahi, An augmented mixed finite element method for 3D
linear elasticity problems, J. Comput. Appl. Math. 231 (2009) 526540.

30
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