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Abstract

In this paper we present an application of the reduced basis method to a local high definition adjusted wind model.
The model provides a precise description of the wind in 3D and takes into account topography and thermal gradients
on the surface by solving only 2D linear equations; the buoyancy forces, slope effects, and mass conservation are
also considered. The wind field is adjusted to the point measurements through an optimal control problem in which
the wind flux acts as a control on the boundary. In order to use a reduced basis method, we consider an affine
decomposition in terms of the parameter related to the friction coefficient and the wind measures at some given
observation points. We also design an a posteriori error estimator that is needed to conduct our reduced basis process.
Finally, two numerical examples are presented: a test problem and a real-data scenario, we corroborate the correct
behavior of the method in both cases.
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1. Introduction

In this paper we implement the reduced basis method for the efficient resolution of an optimal control problem
associated to a wind field model. Wind models are a fundamental tool in the study of environmental problems such as
dispersion of pollutants, fire propagation, among others. Our starting point is a mass consistent vertical diffusion wind
field model. If the significant phenomena that we want to simulate occur in a zone, where the horizontal dimensions
are much larger than the vertical one, then an asymptotic approximation of the primitive Navier–Stokes equations can
be derived as in the model developed in [1, 2]. The most salient feature of this asymptotic approach is that it provides
a three-dimensional velocity wind field (which satisfies the incompressibility condition in the air layer) governed by
a two-dimensional equation, so that it can be coupled with the temperature surface distribution in order to take into
account the thermal effects such as sea breezes. In addition, the terrain elevation information is also taken into account
by the model.

The validity of this model has the following limits: the nonlinear terms are neglected and it is assumed that the air
temperature decreases linearly with the height. On the other hand, the model takes into account buoyancy forces, slope
effects, and mass conservation. The wind model presented in this paper is an adaptation of the wind model proposed
in [1]. When the data are given by meteorological predictions, an optimal control problem is obtained [2], which can
be solved using the adjoint equation-based method. We refer the reader to [3] for the details of this approach. The
corresponding numerical approximation leads to linear algebraic systems of equations that are very ill conditioned
and quite challenging to solve. In practical applications, the number of equations can be high (roughly between 100
000 and 600 000) and the algebraic system has to be solved many times in the course of a simulation. Moreover, the
model requires the estimation of the involved parameters. This adjustment is usually made by genetic algorithm [4],
and demands intensive computation. Therefore, the search for efficient solver methods is needed.

The reduced basis method is a procedure for the efficient solution of parametrized partial differential equations.
A general formulation of the method and an analysis of their properties can be found in [5] (see also [6]). This
method is premised upon a trustworthy technique to approximate the original problem, in our case the finite element
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method (FE). Then, an approximation of the FE solution is computed by means of a Galerkin projection onto a low-
dimensional subspace generated by a set of conveniently chosen basis functions, called the reduced basis. The method
is composed of two main steps: offline and online. The first one of them requires a considerable computational effort
which is carried out only once, and yields the reduced basis system. In the online stage the problem is solved using
the basis system generated at the previous step. It must be exceptionally fast. A great amount of applications of the
reduced basis method can be found in the literature in different fields (see, for instance, [7, 8, 9]).

The reduced basis methodology is especially appropriate in problems in which real time results are required and
when we need to calculate the solution many times, for example when the solution depends on several parameters.
In our case, having settled the domain and given that the stations have a particular localization, the solution wind
field depends on the point wind measures and on the friction coefficient. Having built the reduced basis system
at the offline process, the online process will allow the calculation in real time of the wind field associated to any
resulting point measures and to any friction coefficient. This framework can be used, for instance, as an alternative
mesoscale-microscale coupling technique for wind resource estimation in local terrains [10, 11, 12].

The rest of the document is organized as follows: in section 2 the wind model and its discretization are described.
Then, in section 3 the reduced basis method and its application to our problem are considered. Finally, in section 4
two numerical examples are reported: a test problem and a real-data scenario.

2. Wind model.

In this section we present the wind model. A complete description can be found in [1, 2]. Our model arrives from
an asymptotic analysis of Navier–Stokes equations and gives a three-dimensional convective model governed by a
two-dimensional equation. This model adjusts a three-dimensional velocity wind field in a layer under the influence
of the orography and temperature distribution.

2.1. Notation
Let us consider the three-dimensional domain Ω = {(x, z) | x ∈ ω,H(x) < z < δ} representing the air layer under

study. We assume that the height δ is small compared to the width, and that the surface height at point (x, H(x)),
is smaller than δ. We decompose the boundary of Ω into ∂Ω = S ∪ A ∪ L, where S = {(x, z) | x ∈ ω, z = H(x)}
is the surface, A = {(x, z) | x ∈ ω, z = δ} is the air upper boundary and L = {(x, z) | x ∈ ∂ω, H(x) < z < δ} is the
air lateral boundary; ω ⊂ R2 is a two–dimensional normalized bounded domain, representing the projection of the
three-dimensional geographical surface S . We denote by (x, z) any point of the three-dimensional domain Ω, and by
x any point of the two-dimensional domain ω.

2.2. Asymptotic equations
Consider an air velocity field U = (U,V,W) and a potential P satisfying the Navier–Stokes equations. Using the

fact that the thickness δ of the considered air layer is small compared with its width, we obtain the following vertical
diffusion model:

−∂2
zzV + ∇xP = 0, (1)

∂zP = µT, (2)
∇x · V + ∂zW = 0, (3)

where V = (U,V) denotes the horizontal velocity, µ is related to buoyancy forces and T is the temperature. We define
the horizontal flux at a point x ∈ ω by

V =

∫ δ

H(x)
V(x, z) dz.

Denoting by N and n the inner unit normal vector field to ∂Ω and to ∂ω, respectively, the boundary conditions can be
written as

∂zV = ζV, (V,W) · N = 0, on S , (4)
∂zV = 0, W = 0, on A, (5)

V · n = (δ − H)vm · n, on ∂ω. (6)
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Here vm denotes the meteorological wind, which is assumed to be known, horizontal, independent of z and with zero
total flux through the lateral boundary, that is,

∂zvm = 0,
∫
∂ω

(δ − H) vm · n dσ = 0.

Equations (1) to (6) are well posed: for given T and vm, there exists a unique solution (V,W, P) (up to an additive
constant for P). For more details about this convection asymptotic model, see [1]. The solution of problem (1)-(6)
can be obtained by explicitly computing P(x, z) and V(x, z) as functions of z, q(x), h(x) and ∇x p(x), where p is a 2D
potential.

Equation (1), together with conditions in (4) and (5), yields

V(x, z) = m(x, z)∇x p(x) + k(x, z)∇x t̂(x), (7)

where

m(x, z) =
1
2

z2 − δz −
1
2

H2(x) + (δ + ξ)H(x) − ξδ, (8)

k(x, z) = −
1

24
z4 +

1
6
δz3 −

1
3
δ3z +

1
24

H4(x) −
1
6

H3(x)(δ + ξ) +
1
2
ξδH2(x) +

1
3
δ3H(x) −

1
3
ξδ3, (9)

with ξ = 1
ζ

being the inverse of the friction coefficient ζ and t̂ being a re-scaled temperature related to the surface

temperature t = t(x) by t̂(x) =
µt(x)
δ−H(x) . We are assuming that the air temperature decreases linearly with the height,

T (x, z) = t(x) δ−z
δ−H(x) . The function p(x) is a potential that satisfies the following boundary value problem:

−∇x(a∇x p) = ∇x(r∇x t̂) in ω,

a
∂p
∂n

= −r
∂t̂
∂n

+ (δ − H)vm · n on ∂ω,
(10)

where
a = a(x) =

1
3

(δ − H(x))2(3ξ + δ − H(x)), (11)

and
r = r(x) =

1
30

(δ − H(x))2
(
2δ2(2δ + 5ξ) − 2δ(δ − 5ξ)H(x) − (3δ + 5ξ)H2(x) + H3(x)

)
.

Summarizing, the solution V of problem (1)-(6) is obtained by solving the 2D boundary value problem (10) and
then V is explicitly computed using the expression (7).

In practical applications [2], the inverse of the friction coefficient ξ is defined in terms of the roughness of the
terrain. Here, we propose a quadratic adjustment:

ξ = d0 + d1z0 + d2z2
0. (12)

The parameters {d0, d1, d2} could be computed by a genetic algorithm.

2.3. Adjustment of point data by solution of an optimal control problem
In practical applications the wind on the boundary is unknown. Instead, measurements of the wind intensity and

direction are given at the points where the weather stations are placed. So we have to reformulate problem (10) so
that the given data be the wind velocity at some fixed points.

To simplify the notation, and since in the following we are only concerned with the two-dimensional problem, we
omit the subscript ( )x in the differential operators.

Let v = (δ − H)vm · n, then v ∈ L2
0(∂ω), where L2

0(∂ω) = {v ∈ L2(∂ω)|
∫
∂ω

v dσ = 0}. We are going to reformulate
the original problem as an optimal control problem. Given E experimental measurements of the wind velocity Vi, i =

1, . . . , E, at E fixed points Pi = (xi, zi), i = 1, . . . , E, we look for the function v ∈ L2
0(∂ω) such that the values of

V(xi, zi) given by the expression in (7) are as close as possible to the experimental values of Vi. Thus, in the optimal
control framework we have:
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i) v ∈ L2
0(∂ω) is the control;

ii) The state equations are (10);

iii) The regularized cost functional to be minimized is given by

J(v) =
1
2

E∑
i=1

∫
ω

ρε,i(x)|m(x, zi)∇p(x) + k(x, zi)∇t̂(x) − Vi|
2dx +

α

2

∫
∂ω

v2dσ, (13)

where α is a regularization parameter and ρε,i is a suitable smoothing function given for example by

ρε,i(x) =
1
ε2 ρ

(x − xi

ε

)
, ρ(x) =

{
G e−

1
1−|x|2 for |x| < 1

0 for |x| ≥ 1,

for a small ε, and where G is a constant such that
∫
ω
ρε,i(x)dx = 1. Here and in the rest of the paper, we denote

the Euclidean length of a vector x by |x|.

With these definitions, the optimal control problem to be solved may be posed as follows:

Find u ∈ L2
0(∂ω) such that:

J(u) = inf
v∈L2

0(∂ω)
J(v). (14)

The solution u is characterized by the vanishing of the first variation: J′(u) = 0.

Remark 2.1 (Regularization parameter). The regularization term α
2

∫
∂ω

v2dσ is necessary for mathematical reasons
[3]. In practical applications, we do not usually have a good estimation of the flux at the boundary, and this is the
reason why we choose the value of α to be small, typically α = [0.01, 0.1].

Remark 2.2 (Alternative regularization term). If we have a good estimation of the flux on the boundary, say v ≈ v∗,
then the regularization term can be taken α

2

∫
∂ω

(v − v∗)2dσ, with α ≈ 1.

2.4. Weak Formulation

We here give a characterization of the solution of problem (14) using the adjoint state approach. We refer to [3]
for the general theory and [2] for the application to this particular case. We first define the spaces:

V := H1(ω) =
{
ϕ ∈ L2(ω) | ∇ϕ ∈ L2(ω)

}
,

V◦ := {v ∈ V |
∫
∂ω

v dσ = 0}.
(15)

In order to solve the optimal control problem (14), we derive the following equivalent problem where the unknown p
is the potential associated to u and q is its adjoint state (see [2]):

Find (p, q) ∈ V◦ × V◦ such that:∫
ω

a∇p · ∇ϕ dx +
1
α

∫
∂ω

qϕ dσ = −

∫
ω

r∇t̂ · ∇ϕ dx ∀ϕ ∈ V◦, (16)∫
ω

a∇q · ∇ψ dx −
E∑

i=1

∫
ω

ρε,i m2 ∇p · ∇ψ dx =

E∑
i=1

∫
ω

gi∇ψ dx ∀ψ ∈ V◦, (17)

where gi(x) := ρε,i(x)
(

k∇t̂ − Vi
)

m(x, zi). Then, the solution of (14) is given by:

u = −
1
α

q on ∂ω. (18)
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Using general control theory (see [3, Chapter1] or [2, Section 3.2]) it can be proved that (14) has a unique solution for
α > 0. This implies the existence and uniqueness of the solution of the previous system. However, we show below
that (16)-(17) satisfies an inf-sup condition which reveals that the problem itself is well-posed. We now introduce
some notations. Note that the problem above can be equivalently written as:

Find (p, q) ∈ V◦ × V◦ such that:
A((p, q), (ϕ, ψ)) = F ((ϕ, ψ)) ∀(ϕ, ψ) ∈ V◦ × V◦,

(19)

where

A((p, q), (ϕ, ψ)) :=
∫
ω

a∇p · ∇ϕ dx +
1
α

∫
∂ω

qϕ dσ +

∫
ω

a∇q · ∇ψ dx −
E∑

i=1

∫
ω

ρε,i m2 ∇p · ∇ψ dx, (20)

F ((ϕ, ψ)) := −
∫
ω

r∇T̂ · ∇ϕ dx +

E∑
i=1

∫
ω

gi∇ψ dx. (21)

We denote by (p, q)a :=
∫
ω

a∇p∇q dx the inner product in V◦, and by ‖p‖2a := (p, p)a its induced norm. Using the
trace theorem, there exists a constant cω > 0 such that

‖ϕ‖L2(∂ω) ≤ cω ‖ϕ‖a ∀ϕ ∈ V◦. (22)

Finally, because of the definitions of m, a, and ρε,i, there exists positive constants a−, a+, m−, m+, and ρ+ such that

0 < a− ≤ ‖a(x)‖L∞(ω) ≤ a+,

0 < m− ≤ ‖m2(x, z)‖L∞(Ω) ≤ m+,

‖

E∑
i=1

ρε(x)‖L∞(ω) ≤ ρ+.

(23)

We now prove that the bilinear form A(·, ·) satisfies inf-sup conditions on V◦. These conditions are equivalent to
saying that the linear operator induced byA(·, ·) is bijective, i.e. the problem (19) has a unique solution for any linear
F (·) [13].

Proposition 2.1 (Inf-sup). There exist a constant βA > 0, which depends on α
c2
ω

, such that the bilinear formA satisfies
the inf-sup conditions:

sup(ϕ,ψ)∈V◦×V◦
A((p,q),(ϕ,ψ))
‖(ϕ,ψ)‖a

≥ βA‖(p, q)‖a ∀(p, q) ∈ V◦ × V◦, (24)

sup(p,q)∈V◦×V◦
A((p,q),(ϕ,ψ))
‖(p,q)‖a

≥ βA‖(ϕ, ψ)‖a ∀(ϕ, ψ) ∈ V◦ × V◦, (25)

where ‖(p, q)‖a = (‖p‖2a + ‖q‖2a)1/2. In fact, we obtain

βA ≥

2
√

1 + max
{

c2
ω

2α
,
ρ+m+

2a−

}2

−1

. (26)

Proof. We prove only (24); estimate (25) can be derived similarly. On one hand, combining Young’s inequality with
the parameter ε1 > 0 and estimation (22) , we derive∫

∂ω

pq dσ ≥ −
ε1

2
‖p‖2L2(∂ω) −

1
2ε1
‖q‖2L2(∂ω) ≥ −

ε1c2
ω

2
‖p‖2L2(ω) −

1
2ε1
‖q‖2L2(∂ω). (27)

On the other hand, again using Young’s inequality with the parameter ε2 > 0 and the bounds for functions a, m and
ρε,i in (23) we infer

−

E∑
i=1

∫
ω

ρε,i m2 ∇p · ∇q dx ≥ −
1

2ε2

E∑
i=1

∫
ω

ρε,i m2 ∇p · ∇p dx −
ε2

2
ρ+m+

a−
‖q‖2a. (28)
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We now choose ϕ = p + Mq and ψ = q − Mp where M ∈ R is a parameter to be found later. By definition of the
bilinear formA(·, ·) and the equations (27)-(28), we have

A((p, q), (ϕ, ψ)) = ‖p‖2a +
M
α
‖q‖2L2(∂ω) +

1
α

∫
∂ω

pq dσ + ‖q‖2a

−

E∑
i=1

∫
ω

ρε,im2∇p · ∇q dx + M
E∑

i=1

∫
ω

ρε,im2∇p · ∇p dx

≥

(
1 −

c2
ω

2α
ε1

)
‖p‖2a +

(
M −

1
2ε1

)
1
α
‖q‖2L2(∂ω)

+

(
1 − ε2

ρ+

2
m+

a−

)
‖q‖2a +

(
M −

1
2ε2

) E∑
i=1

∫
ω

ρε,i m2 ∇p · ∇p dx.

We then fix the parameters ε1, ε2 and M to be:

ε1 =
α

c2
ω

, ε2 =
a−
ρ+m+

, M ≥ max
{

1
2ε1

,
1

2ε2

}
,

to obtain

A((p, q), (ϕ, ψ)) ≥
1
2

(
‖p‖2a + ‖q‖2a

)
.

Finally, from the fact that

sup
(ϕ,ψ)∈V◦×V◦

A((p, q), (ϕ, ψ))
‖(ϕ, ψ)‖a

≥

1
2

(
‖p‖2a + ‖q‖2a

)
√

1 + M2‖(p, q)‖a
≥

‖(p, q)‖2a
2
√

1 + M2 ‖(p, q)‖V◦×V◦
,

we conclude the desired result.

Remark 2.3 (Discrete inf-sup conditons). We note that the proof of Proposition 2.1 does not require any characteristic
of the space V◦ × V◦, and therefore the result is also valid at the discrete level, that is, the problem (19) has a unique
solution for any finite dimensional subspace of V◦.

2.5. Finite Element Approximation

A reduced basis method hinges on a procedure that is able to provide a trustworthy approximation, in our case, the
finite element method (FE) on a finer mesh. To obtain the FE approximation of (19), we first consider a shape regular
triangulation Th := {T } of ω where h denotes its size (i.e. h := maxT∈T diam(T )). We then introduce V◦h ⊂ V◦ as
the space of continuous, piecewise linear functions subordinated to Th. Recall that a function ϕh ∈ V◦h has zero mean
value on ∂ω, i.e.

∫
∂ω
ϕh = 0. Finally, the corresponding FE approximation of (19) reads as follows:

Find (ph, qh) ∈ V◦h × V
◦
h such that:

A((ph, qh), (ϕh, ψh)) = F ((ϕh, ψh)), ∀(ϕh, ψh) ∈ V◦h × V
◦
h.

(29)

We note that the previous problem is well-posed and has an unique solution, (see Remark 2.3). Hereafter, and follow-
ing [6], we will refer to the FE approximation as the “truth” FE solution.

3. Reduced Basis Approximation

In this section we design a reduced basis procedure to approximate the “truth” FE solution with minimal compu-
tational effort. In order to make the article self-contained we first present briefly the RB method (for details see [5]).
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Let X be a Hilbert space with inner product (·, ·)X and associated norm ‖ · ‖X, we consider the following general model
problem:

Find u(γ) ∈ X such that:
a(u(µ), v; γ) = l(v; γ) ∀ v ∈ X, (30)

where a(., .; γ) is a continuous bilinear form satisfying an inf-sup condition and l(.; γ) is a continuous linear functional.
Both depend on a set of parameters γ ∈ D ⊂ Rp; whereD denotes the domain of variability of the parameters. We also
introduce a norm ‖ ·‖X(γ), equivalent to the norm ‖ ·‖X of X, but γ dependent. The RB method requires affine parameter
dependence of the bilinear form a(., .; .) and of the functional l(·; .), that is, we assume the following representation:

a(u, v; γ) =

Ja∑
l=1

Θl
a(γ)al(u, v) ∀u, v ∈ X,∀ γ ∈ D,

l(v; γ) =

Jl∑
l=1

Θl
l(γ)ll(v) ∀v ∈ X,∀ γ ∈ D,

where Θl
a(·), Θl

l(·) : D → R are functions of γ while al(·, ·) and ll(·) are parameter independent.
We also assume that the problem (30) is approximated with a reliable and high cost numerical procedure, for

example a FE method on a finer mesh. If Xh ⊂ X is a finite dimensional subspace, we introduce uh(γ) ∈ Xh as the
solution of the discrete problem:

a(uh(γ), vh; γ) = l(vh; γ) ∀ vh ∈ Xh. (31)

The aim of the RB method is to approximate the FE solution for any parameter γ ∈ D with minimal computational
effort. In order to do that, the method selects a N-dimensional subspace XN ⊂ Xh spanned by the set {ζ1, . . . , ζN} of
basis functions, where N is small enough compared with the dimension of Xh. Then, the reduced basis approximation
uN(γ) ∈ XN is introduced as the Galerkin projection onto the low dimensional subspace XN :

a(uN(γ), vN ; γ) = l(vN ; γ) ∀ vN ∈ XN . (32)

One of the key ingredients when the method selects the basis function of XN is a sharp and inexpensive a posteriori
error bound, ∆N(γ), of the error e(γ) = uh(γ) − uN(γ). The estimator, ∆N(γ) usually depends on the residual of (31).
Note, that given any approximation uN(γ) of the solution uh(γ) of the problem (31), the error e(γ) = uh(γ)−uN(γ) ∈ Xh

satisfies
a(e(µ), vh; γ) = (r(uN(γ)), vh)X, (33)

where r(uN(γ)) ∈ Xh denotes the Riesz representation of the residual and is given by

(r(uN(γ)), vh)X = l(vh; γ) − a(uN(µ), vh; γ) ∀vh ∈ Xh.

This implies

‖e(γ)‖X(γ) 4 ‖r(uN(γ))‖X := sup
vh∈Xh

|l(vh; γ) − a(uN(γ), vh; γ)|
‖vh‖X

4 ‖e(γ)‖X(γ), (34)

where the hidden constants depend on inf-sup and continuinity constants, and on the parameter γ.
We can now describe the two main steps of the RB method:

• Offline Process. The RB method builds a sequence of approximation spaces X1 ⊂ X2 ⊂ . . . ,⊂ XN ⊂ Xh step
by step so that at the end of the process it gets a set of “optimal” functions {ζ1, . . . , ζN} spanning the space XN .
The construction of the sequence of approximation spaces is based on a greedy algorithm. First it is necessary
to discretize the parameters inD. We call Ξ the discrete set of parameters. Having chosen a random parameter
γ1, the problem (31) is solved, this solution is the first element of the basis ζ1 ∈ XN . Suppose now that the first
k elements Xk have already been obtained. Then, for each γ ∈ Ξ we obtain the approximate solution uk(µ) of
the problem (32) as the Galerkin projection onto the subspace generated by Xk = 〈ζ1, . . . , ζk〉 associated to the
set of parameters S k = {γ1, . . . , γk}. At this point we select the parameter associated to the solution uk(γ) with
the highest estimator, i.e.:

γk+1 = arg max
γ∈Ξ

∆k(γ). (35)
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Finally the new element of the basis ζk+1 is chosen as the solution of the problem (31) with parameter γ = γk+1.

The cardinality of the basis, N, can be set directly, or through a prescribed tolerance over the estimator. The
affine decomposition makes its calculation independent of the dimension of the high-fidelity model. However
the cardinality of Ξ still play a major role since the estimator has to be computed for all the parameter points in
Ξ. The set of functions is usually orthogonalized.

• Online process. Given a parameter γ ∈ D, the problem (32) is solved to obtain uN(γ). The associated system
has a smaller dimension when compared to the original, even though the associated matrix does not have a
sparse structure.

In our case, X is the space V◦ × V◦, and the unknown is u = (p, q). The set of parameters includes the wind
measures at the stations {Vi = (V1

i ,V
2
i )T }Ei=1 and the coefficient d := {d0, d1, d2} involved in the adjustment of the

inverse of the friction coefficient ξ (12), that is:

γ ≡ {d, {Vi}
E
i=1} = {d0, d1, d2, {(V1

i ,V
2
i )T }Ei=1}. (36)

The bilinear form a(·, ·; γ) and linear functional l(·; γ) are given by A(·, ·; d) and F (·; γ) defined in (20) and (21),
respectively. To make explicit this dependence, we write from now, Aγ(·, ·) and Fγ(·). In order to have a parameter
independent norm, we first need to fix mean values {d̄0, d̄1, d̄2} of parameters in the expansion of ξ and then we
introduce the inner product and its associated norm as:

(p, q)a :=
∫
ω

a∇p∇q dx, ‖p‖a :=
√

(p, p)a, ∀, p, q ∈ V◦,

where a = a(d̄0, d̄1, d̄2). That is, in our framework ‖ · ‖X := ‖(·, ·)‖a and ‖ · ‖X(γ) := ‖(·, ·)‖a .

3.1. Affine Decomposition.

We now show that the problem (19) admits an affine decomposition, therefore its resolution can be approached by
means of the reduced basis method.

By simplicity, in the following we assume uniform temperature on the surface so that the temperature gradient
∇T̂ = 0.

As we commented before, we consider as parameters the coefficients {d0, d1, d2} of the expansion of the inverse
of the friction coefficient ξ (12) and the wind measures at the observation points {Vi = (V1

i ,V
2
i )T }Ei=1, (36). We recall

that the coefficients a, m and k in (11)-(8))-(9) depend on the parameter ξ (see [2]). By expanding the terms in ξ, and
using (12) we rewrite the coefficients a, m and k as functions of the roughness of the terrain, z0:

a =
1
3

(δ − H)3 + (H − δ)2ξ = a0 + a1ξ = a0 + a1(d0 + d1z0 + d2z2
0),

m = −
1
2

(H − z)(H + z − 2δ) + (H − δ)ξ = m0 + m1ξ = m0 + m1(d0 + d1z0 + d2z2
0),

k =

(
−

1
24

z4 +
1
6
δz3 −

1
3
δ3z +

1
24

H4 −
1
6
δH3 +

1
3
δ3H

)
,+

(
−

1
6

H3 +
1
2
δH2 −

1
3
δ3

)
ξ = k0 + k1(d0 + d1z0 + d2z2

0).

As a consequence, the problem (19) admits an affine decomposition in terms of the set of parameters γ (36). We write
below the explicit decomposition for the system associated to the discrete problem (29). Given a finite element basis
{φ j}

N
j=1 of V◦h, the discretization of the problem (29) provides the system

Aγ

[
p
q

]
= Fγ,
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where, the matrix system Aγ admits the following decomposition:

Aγ = A0 +

9∑
l=1

θl
A(d0, d1, d2) Al

=

[
B0 C
D0 B0

]
+ d0

[
B1 0
D1 B1

]
+ d1

[
B2 0
D2 B2

]
+ d2

[
B3 0
D3 B3

]
+ d0d1

[
0 0

D4 0

]
+ d0d2

[
0 0

D5 0

]
+d1d2

[
0 0

D6 0

]
+ d2

0

[
0 0

D7 0

]
+ d2

1

[
0 0

D8 0

]
+ d2

2

[
0 0

D9 0

]
, (37)

with

B0 =

{∫
ω

a0∇φ j · ∇φr

}
j,r

B1 =

{∫
ω

a1∇φ j · ∇φr

}
j,r

B2 =

{∫
ω

a1z0∇φ j · ∇φr

}
j,r

B3 =

{∫
ω

a1z2
0∇φ j · ∇φr

}
j,r

D0 = −

 E∑
i=1

∫
ω

ρε,im2
0∇φ j · ∇φr


j,r

D1 = −2

 E∑
i=1

∫
ω

ρε,im0m1∇φ j · ∇φr


j,r

D2 = −2

 E∑
i=1

∫
ω

ρε,im0m1z0∇φ j · ∇φr


j,r

D3 = −2

 E∑
i=1

∫
ω

ρε,im0m1z2
0∇φ j · ∇φr


j,r

D4 = −2

 E∑
i=1

∫
ω

ρε,im2
1z0∇φ j · ∇φr


j,r

D5 = −2

 E∑
i=1

∫
ω

ρε,im2
1z2

0∇φ j · ∇φr


j,r

D6 = −2

 E∑
i=1

∫
ω

ρε,im2
1z3

0∇φ j · ∇φr


j,r

D7 = −

 E∑
i=1

∫
ω

ρε,im2
1∇φ j · ∇φr


j,r

D8 = −

 E∑
i=1

∫
ω

ρε,im2
1z2

0∇φ j · ∇φr


j,r

D9 = −

 E∑
i=1

∫
ω

ρε,im2
1z4

0∇φ j · ∇φr


j,r

,

and 1 ≤ j, r ≤ N . On the other hand, the right hand side vector F can be written as:

Fγ = −

E∑
i=1

{
Vi

[
0

F0
i

]
+ d0Vi

[
0

F1
i

]
+ d1Vi

[
0

F2
i

]
+ d2Vi

[
0

F3
i

] }
, (38)

where the parameter independent vectors Fl
i for l = 0, 1, 2, 3 and i = 1, . . . , E are given by

F0
i =

{∫
ω

ρε,i m0 ∇φ j

}
j

F1
i =

{∫
ω

ρε,i m1 ∇φ j

}
j

F2
i =

{∫
ω

ρε,i m1 z0∇φ j

}
j

F3
i =

{∫
ω

ρε,i m1 z2
0∇φ j

}
j
.

with 1 ≤ j ≤ N .

3.2. Definition of Reduced Spaces and Well-Posedness of Reduced Problem.

We select the same reduced space for the state and its adjoint, i.e. XN := V◦N×V◦N , with V◦N ⊂ V◦h. This particular
choice guarantees the existence and uniqueness of the solution of the reduced problem (32), because Remark 2.3 also
applies to the reduced level. Another selection can improve the error estimation, however requires an ad-hoc analysis
(see [14]).
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3.3. A posteriori Error Bound
As we have mentioned before, an essential step for the method is the a posteriori error bound, it allows us to

enable the offline process. Note that the bound that we seek (34), is a stability condition for the error in terms of the
residual.

We now introduce some notations. Let ep(γ) := ph − pN and eq(γ) := qh − qN be the errors associated to the RB
approximations, that satisfy:

Aγ((ep(γ), eq(γ)), (ϕh, ψh)) = Rγ((ϕh, ψh)), ∀(ϕh, ψh) ∈ V◦h × V
◦
h. (39)

The previous equation arises by subtracting the FE problem (31) and its RB counterpart (32), and where the forms
a(·, ·) and l(·) are replaced byAγ(·, ·) and Fγ(·), respectively. The corresponding residual Rγ(ϕh, φh) is

Rγ((ϕh, ψh)) =Fγ(ϕh, ψh) −Aγ((pN , qN), (ϕh, ψh))

=

E∑
i=1

∫
ω

gi∇ψh dx −
∫
ω

a∇pN ∇ϕ dx −
1
α

∫
∂ω

qN ϕ d

−

∫
ω

a∇qN ∇ψ dx +

E∑
i=1

∫
ω

ρε,i (m∇pN)(m∇ψ) dx

=:Rγ,1(ϕh) + Rγ,2(ψh).

Finally, we introduce the Riesz representation rγ,1 ∈ V◦h (resp. rγ,2 ∈ V◦h ) of Rγ,1(·) (resp. Rγ,2(·)) as:

(rγ,1, ϕh)a = Rγ,1(ϕh), (rγ,2, ϕh)a = Rγ,2(ϕh), ∀ϕh ∈ V◦h. (40)

The following result give us the bound that will be used in the offline process, to obtain efficient computable error
estimates.

Proposition 3.1. Let ep(γ) := ph − pN and eq(γ) := qh − qN be the errors associated to the RB approximations. Then,
there exist constants C1,C2 ≥ 0 such that

‖ep(γ)‖a + ‖eq(γ)‖a ≤ C1‖rγ,1‖a + C2‖rγ,2‖a (41)

where

C1 =

√
a+

a−

(
1 +

ρ+m+

a−
+ cω

√
ρ+m+

αa−

)
, C2 =

√
a+

a−

(
1 +

c2
ω

α
+ cω

√
ρ+m+

αa−

)
. (42)

Proof. For simplicity, we omit the subscript h on functions in this proof. Let (p1, q1), (p2, q2) in V◦h × V◦h, be the
solutions of the following problems, respectively,∫

ω

a∇p1 ∇ϕ dx +
1
α

∫
∂ω

q1 ϕ dσ = 0 ∀ϕ ∈ V◦h, (43)∫
ω

a∇q1 ∇ψ dx −
E∑

i=1

∫
ω

ϕε,i (m∇p1)(m∇ψ) dx = (rγ,2, ψ)a ∀ψ ∈ V◦h, (44)

and ∫
ω

a∇p2 ∇ϕ dx +
1
α

∫
∂ω

q2 ϕ dσ = (rγ,1, ϕ)a ∀ϕ ∈ V◦h, (45)∫
ω

a∇q2 ∇ψ dx −
E∑

i=1

∫
ω

ρε,i (m∇p2)(m∇ψ) dx = 0 ∀ψ ∈ V◦h, (46)

Note that, according to Proposition 2.1, the problems (43)-(44) and (45)-(46) have unique solutions. Therefore, by
linearity, we can split the error functions as

ep(γ) = p1 + p2 and eq(γ) = q1 + q2.
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We estimate each term separately. First, taking ϕ = p1 in (43), we have

‖p1‖a ≤
cω
α
‖q1‖L2(∂ω). (47)

On the other hand, replacing ϕ = q1 in (43) and ψ = p1 in (44), and subtracting, we get

1
α

∫
∂ω

q2
1 dσ +

E∑
i=1

∫
ω

ρε,i (m∇p1)2 dx = −(rγ,2, p1)a, (48)

then
1
α
‖q1‖

2
L2(∂ω) ≤ ‖rγ,2‖a ‖p1‖a ≤

√
a+

a−
‖rγ,2‖a ‖p1‖a,

and, from (47), we arrive at

‖p1‖
2
a ≤

c2
ω

α2 ‖q1‖
2
L2(∂ω) ≤

c2
ω

α

√
a+

a−
‖rγ,2‖a ‖p1‖a,

and hence

‖p1‖a ≤
c2
ω

α

√
a+

a−
‖rγ,2‖a. (49)

We now proceed with the term q1. By taking ψ = q1 in (44), we obtain

‖q1‖
2
a =

E∑
i=1

∫
ω

ρε,i (m∇p1)(m∇q1) dx + (rγ,2, q1)a

≤

( E∑
i=1

∫
ω

ϕε,i m2|∇p1|
2 dx

)1/2( E∑
i=1

∫
ω

ρε,i m2|∇q1|
2 dx

)1/2
+ (rγ,2, q1)a

≤

√
|(rγ,2, p1)a|

√
ρ+m+

a−
‖q1‖a +

√
a+

a−
‖rγ,2‖a · ‖q1‖a

≤

(
a+

a−

)1/4 √
ρ+m+

a−

√
‖rγ,2‖a

√
‖p1‖a ‖q1‖a +

√
a+

a−
‖rγ,2‖a · ‖q1‖a,

where, we have used that
E∑

i=1

∫
ω

ρε,i m2|∇p1|
2 dx ≤ |(rγ,2, p1)a| because of (48). Hence

‖q1‖a ≤

(
a+

a−

)1/4 √
ρ+m+

a−

√
‖rγ,2‖a

√
‖p1‖a +

√
a+

a−
‖rγ,2‖a,

and using (49), we conclude that for q1:

‖q1‖a ≤

√
a+

a−

(
cω

√
ρ+m+

αa−
+ 1

)
‖rγ,2‖a. (50)

Analogously, by taking ϕ = p2 in (45) we get

‖p2‖a ≤
cω
α
‖q2‖L2(∂ω) +

√
a+

a−
‖rγ,1‖a. (51)

Choosing ϕ = q2 in (45) and ψ = p2 in (46) and subtracting, we obtain

1
α

∫
ω

q2
2 dσ +

E∑
i=1

∫
ω

ρε,i (m∇p2)2dx = (rγ,1, q2)a,
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and hence

‖q2‖
2
L2(∂ω) ≤ α ‖rγ,1‖a

√
a+

a−
‖q2‖a, (52)

E∑
i=1

∫
ω

ρε,i (m∇p2)2dx ≤ (rγ,1, q2)a, (53)

On the other hand, taking ψ = q2 in (46), we have

‖q2‖
2
a =

E∑
i=1

∫
ω

ρε,i (m∇p2)(m∇q2)dx ≤
( E∑

i=1

∫
ω

ρε,i m2|∇p2|
2dx

)1/2( E∑
i=1

∫
ω

ϕε,i m2|∇q2|
2dx

)1/2

≤

√
|(rγ,1, q2)a|

√
ρ+m+

a−
‖q2‖a,

where we have used (53). Hence, we obtain the following bound for q2

‖q2‖a ≤

√
a+

a−

ρ+m+

a−
‖rγ,1‖a. (54)

Now, from (51) and (52), we have

‖p2‖a ≤
cω
α

√
α

(
a+

a−

)1/4 √
‖rγ,1‖a

√
‖q2‖a +

√
a+

a−
‖rγ,1‖a,

and using (54) we obtain for p2:

‖p2‖a ≤

√
a+

a−

( cω
√
α

√
ρ+m+

a−
+ 1

)
‖rγ,1‖a. (55)

Finally, combining (49), (50), (54), and (55), we obtain the desired result.

Remark 3.1 (Approximation of C1 and C2). In order to get an a posteriori error bound, we need to estimate the
constants C1 and C2, and therefore cω in (22). It is easy to show [15] that cω is the inverse of the square root of the
least positive eigenvalue associated to the problem

∇ · a∇u =0 in Ω,

∇u · n =λu on ∂Ω.
(56)

Remark 3.2 (Estimation based on the inf-sup). Using Proposition 2.1, it is possible to obtain a similar result to (41)
(see [14, 16]):

‖(ep(γ), eq(γ))‖a ≤
1

βA(γ)

√
a+

a−

(
‖rγ,1‖a + ‖rγ,2‖a

)
.

We reject this estimation, because the worse term, c2
ω

α
, affects both the residuals rγ,1 and rγ,2.

Remark 3.3 (Estimation at continuous level). Note that the estimation in Proposition 3.1 is also valid for the error
(p − ph, q − qh), where (p, q) is the solution of problem (19) and (ph, qh) is the FE approximation (29).

In view of Proposition 3.1, we introduce the estimator and its corresponding effectivity index as:

∆N(γ) = C1‖rγ,1‖a + C2‖rγ,2‖a, ηN(γ) =
∆N(γ)

‖(ep(γ), eq(γ))‖a
. (57)

We end this section with the folowing result:
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Proposition 3.2. For any N > 0 and γ ∈ D, the effectivity index satisfies

1 ≤ ηN(γ) ≤ max{C1,C2}CA

√
a+

2a−
, (58)

where CA is the continuity constant ofAγ(·, ·) and C1 and C2 are given by (42).

Proof. The lower bound is a simple consequence of (57). We next resort to (39) and (40) to obtain:

∆N(γ) ≤ max{C1,C2}(‖rγ,1‖a + ‖rγ,2‖a) ≤
max{C1,C2}

√
2

‖(rγ,1, rγ,2)‖a

=
max{C1,C2}

√
2

sup
(ϕh,ψh)∈V◦h×V◦h

Aγ((ep(γ), eq(γ)), (ϕh, ψh))
‖(ϕh, ψh)‖a

≤ max{C1,C2}

√
a+

2a−
CA‖(ep(γ), eq(γ)), ‖a

which gives the upper bound in (58) and concludes the proof.

4. Numerical experiments

In this section, we present two numerical examples that illustrate the performance of our reduced basis scheme
and confirm its efficiency.

In order to implement the mean zero condition for the traces of functions in V◦, we introduce Lagrange multipliers.
That is, instead of (19) , we consider the equivalent problem: find (p, q, λ1, λ2) ∈ V × V × R × R such that

Aγ((p, q), (ϕ, ψ)) + λ1

∫
∂ω

ϕ + λ2

∫
∂ω

ψ = Fγ((ϕ, ψ)), ∀(ϕ, ψ) ∈ V × V

µ1

∫
∂ω

p + µ2

∫
∂ω

q = 0 ∀ (µ1, µ2) ∈ R × R
. (59)

In the next theorem we establish the equivalence between (19) and (59).

Proposition 4.1. Let (p, q) ∈ V◦ × V◦ be the solution of (19). Then, (p, q, 0, 0) is solution of (59). Conversely, let
(p, q, λ1, λ2) ∈ V×V×R×R be the solution of (59). Then λ1 = λ2 = 0 and (p, q) is the solution of (19). In particular,
(59) has a unique solution.

Proof. Let (p, q) ∈ V◦×V◦ be the solution of (19), and (ϕ, ψ) ∈ V×V. We introduce cϕ = 1
|∂ω|

∫
∂ω
ϕ and cψ = 1

|∂ω|

∫
∂ω
ψ,

and note that ϕ̃ := ϕ − cϕ ∈ V◦ and ψ̃ := ψ − cψ ∈ V◦. From the definitions ofAγ(·, ·) and Fγ(·), and since p ∈ V◦ (ie.∫
∂ω

p = 0) we have

Aγ((p, q), (ϕ, ψ)) =Aγ((p, q), (ϕ̃, ψ̃)) +
1
α

cϕ

∫
∂ω

q

=Aγ((p, q), (ϕ̃, ψ̃)) = Fγ((ϕ̃, ψ̃)) = Fγ((ϕ, ψ)),

where in the third identity we use that (p, q) is the solution of (19). This implies that (p, q, 0, 0) is the solution of (59).
On the other hand, let (p, q, λ1, λ2) ∈ V×V×R×R be the solution of (59). Then, taking (1, 0) ∈ R×R in the second
equation of (59) we get

∫
∂ω

p = 0 and therefore p ∈ V◦. Using the same argument with the pair (0, 1) we also obtain
q ∈ V◦. Now, choosing (ϕ, φ) = (1, 0) in the first equation of (59) we have

0 = Fγ((1, 0)) = Aγ((p, q), (1, 0)) =
1
α

∫
∂ω

p + λ1

∫
∂ω

1,

that implies λ1 = 0. The same computation with (ϕ, φ) = (0, 1) gives λ2 = 0. Finally, since V◦ ⊂ V we conclude that
(p, q) is the solution of (19).
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The numerical experiments were performed with the finite element toolbox FreeFEM[17] and the MATLAB en-
vironment. The generation of the mesh (adapted to the orography of the terrain) and the assemblage of the ma-
trices were done with FreeFEM. The solution of the linear system was computing with MATLAB (backslash op-
erator). Given the features of system (59), MATLAB chooses a LU solver (UMFPACK routines). An efficient
strategy to solve this type of problem could also be implemented[18]. The offline/online procedures were devel-
oped on MATLAB. Parallelism was exploited to speed up the evaluation of the a posteriori error estimate dur-
ing the greedy algorithm. The simulations were performed on a Dell Precision T7610 workstation, equipped with
2 Intel Xeon E52670 v2 processors (10 cores each one) and 64 GB RAM. From [19] we choose the parameters
{d0, d1, d2} in the range: [0.8, 1] × [−0.4,−0.2] × [0.025, 0.05]. The parameter independent norm is defined for values
{d̄0 = 0.9, d̄1 = −0.3, d̄2 = 0.015}.

4.1. Example 1: A toy problem
We first deal with a simple example where we analyze the effect of orography and roughness on the wind. We

consider a domain ω = 6 × 6 (km) with two hills and composed of two subdomains with different roughness (see
Figure 4.1). We also assume δ = 0.5 (km) and four observations points at coordinates (1, 1), (1, 5), (5, 1) and (5, 5).
Then, our problem admits an affine decomposition with Ja = 10 and Jl = 32 (compare with section 3.1) and the
number of parameters is 3 + 2 × 4 = 11 (roughness adjustment and two components of velocity at each point).

Figure 1: Example 1: Orography, observation points (left) and roughness (right).

For the FE discretization we use piecewise linear elements on a mesh Th of 131072 triangles. The total number of
degrees of freedom is 132100 , i.e. the size of the system (59).

The training set Ξ ⊂ D is chosen as follows. We discretize the range of parameters {d0, d1, d2} with a set of 64
equidistributed points in [0.8, 1]× [−0.4,−0.2]× [0.025, 0.05]. About the velocity, we consider four directions (North,
South, East and West) and where its module can be active ( ‖V‖ = 10km/h) or inactive ( ‖V‖ = 0) at each station.
It gives a set Ξ of cardinality 39936. As we mentioned in section 3.3, the computation of the a posteriori estimator
requires the constants C1 and C2 in (57). In order to approximate them, we solve the eigenvalue problem (56) for each
value of {d0, d1, d2} during the offline procedure. To estimate the error on the online process we use linear interpolation
to get C1 and C2.

The greedy procedure for the construction of the RB space selects N = 64 for a tolerance tol =1.e−2. We note that
the number of basis functions required to achieve this tolerance does not vary for finer discretization of the parameters
spaceD. In Figure 2 (left) we show the evolution of the error estimator ∆(γ) and of the true error between the FE and
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RB approximations during the greedy algorithm. Although the estimation is not sharp, we point out a good correlation
with the true error. In Figure 2 (right) we report the effectivity index.
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Figure 2: Example 1: Evolution of the estimator and of the true error during the greedy procedure (left) and its corresponding effectivity index.

As regards the computational performances, the time spent in the offline procedure is about 10 hours, while the
online procedure (which demands the computation of the solution and the estimation of the error) only requires 0.3 s.
Let us remark that the solution of the FE problem (assemblage and solution of the linear system) needs about 12 s. It
provides a reduction factor 1:40.

Finally, we solve the problem for {d0, d1, d2} = {0.9,−0.2, 0.03}, and uniform measures of velocity given by a
module 10 km/h and eastward direction. We report details of the solution in Figures 3 and 4. As expected, the wind
field is deflected by the hills and perturbed by the roughness of the terrain. In this example, where the approximation
of the constants C1 and C2 requires interpolation, we obtain ∆(γ) ≈ 7.5e − 3 and (‖ep(γ), eq(γ)‖a ≈ 2.5e − 4, which
corroborates the reliability of the RB approximation.

Figure 3: Example 1: Potential and module of the velocity 10 m above the terrain.
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Figure 4: Example 1: Velocity field 10 m above the terrain.

4.2. Example 2: A real case

We now consider a scenario with real data. The studied domain is located at Quintero-Puchuncavı́ area (Chile, V
Region). It has dimensions 12 × 12 (km) and the upper boundary has been taken at a height δ = 0.7 (km). There are
four weather stations in the area (Quintero(1), Valle Alegre(2), La Greda(3), Sur(4)), that we use as data. The wind
measures were provided by SINCA, [20]. A digital elevation map of the domain and its roughness data is used. In
Figure 5 we show the orography of the terrain, the weather station location and its roughness map.

As in the previous case, we obtain an affine decomposition with Ja = 10 and Jl = 32. The training set Ξ ∈ D

is chosen as in example 1, i.e. #Ξ = 39936. The FE discretization uses piecewise linear elements on a mesh Th of
205474 triangles, that provides 206678 degrees of freedom.

The greedy procedure for the construction of the RB space selects N = 181 for a tolerance tol= 1.e − 2. We report
in Figure 6 (left) the evolution of the estimator ∆(γ) and of the true error during the greedy algorithm. Again, we
observe a good correlation between estimator and error.

As regards the computational performances, the time spent in the offline procedure to build the RB spaces is about
4 days in our system. However, the online procedure only requires 1.02 s. On the other hand the FE problem needs
about 46 s. to provide a solution. It provides a reduction factor 1:45.

We conclude with the wind field simulation corresponding to the measures shown in Table 1. In this example we
take {d0, d1, d2} = {0.95,−0.23, 0.045}. We show details of the solution in Figures 7 and 8. The online procedure
required 4 s. to solve the problem and provided ∆N(γ) = 7.3.e − 3.
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Figure 5: Example 2: Orography, observation points (left) and roughness map (right).

Weather Station Module Direction
(Km/h) (clockwise from North)

1 11.04 301.60
2 6.86 259.80
3 13.30 295.60
4 11.40 297.70

Table 1: Example 2: Wind measures at the weather stations.
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Figure 7: Example 2: Potential and module of velocity 10 m above terrain.

Figure 8: Example 2: Velocity field 10 m above terrain.
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