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The domain wall depinning field represents the minimum magnetic field needed to move a domain wall,
typically pinned by samples’ disorder or patterned constrictions. Conventionally, such a field is considered
independent on the Gilbert damping since it is assumed to be the field at which the Zeeman energy equals the
pinning energy barrier (both damping independent). Here we analyze numerically the domain wall depinning
field as a function of the Gilbert damping in a system with perpendicular magnetic anisotropy and Dzyaloshinskii-
Moriya interaction. Contrary to expectations, we find that the depinning field depends on the Gilbert damping
and that it strongly decreases for small damping parameters. We explain this dependence with a simple one-
dimensional model and we show that the reduction of the depinning field is related to the finite size of the pinning
barriers and to the domain wall internal dynamics, connected to the Dzyaloshinskii-Moriya interaction and the
shape anisotropy.
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I. INTRODUCTION

Magnetic domain wall (DW) motion along ferromagnetic
(FM) nanostructures has been the subject of intense research
over the last decade owing to its potential for new promising
technological applications [1,2] and for the very rich physics
involved. A considerable effort is now focused on DW
dynamics in systems with perpendicular magnetic anisotropy
(PMA) which present narrower DWs and a better scalability.
Typical PMA systems consist of ultrathin multilayers of heavy
metal/FM/metal oxide (or heavy metal), such as Pt/Co/Pt [3,4]
or Pt/Co/AlOx [5–7], where the FM layer has a thickness
of typically 0.6–1 nm. In these systems, PMA arises mainly
from interfacial interactions between the FM layer and the
neighboring layers (see Ref. [8] and references therein).
Another important interfacial effect is the Dzyaloshinskii-
Moriya interaction (DMI) [9,10], present in systems with
broken inversion symmetry such as Pt/Co/AlOx. This effect
gives rise to an internal in-plane field that fixes the DW chirality
(the magnetization rotates always in the same direction when
passing from up to down and from down to up domains)
and it can lead to a considerably faster domain wall motion
[10] and to new magnetic patterns such as skyrmions [11] or
helices [12]. Normally, DWs are pinned by samples’ intrinsic
disorder and a minimum propagation field is needed in order
to overcome such pinning energy barrier and move the DW.
Such a field is the DW depinning field (Hdep) and it represents
an important parameter from a technological point of view
since a low depinning field implies less energy required
to move the DW and, therefore, a energetically cheaper
device.

From a theoretical point of view, DW motion can be
described by the Landau-Lifshitz-Gilbert (LLG) equation [13]
which predicts, for a perfect sample without disorder, the
velocity vs field curve depicted in Fig. 1 and labeled as
Perfect. In a disordered system, experiments have shown
that a DW moves as a general one-dimensional (1D) elastic
interface in a two-dimensional disordered medium [3,4] and
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that it follows a theoretical velocity vs driving force curve,
predicted for such interfaces [14,15] (also shown in Fig. 1
for T = 0 and T = 300 K). Moreover, this behavior can be
reproduced by including disorder in the LLG equation [16–18].
At zero temperature (T = 0) the DW does not move as long
as the applied field is lower than Hdep, while, at T �= 0,
thermal activation leads to DW motion even if H < Hdep

(the so called creep regime). For high fields (H � Hdep) the
DW moves as predicted by the LLG equation in a perfect
system. Within the creep theory, the DW is considered as
a simple elastic interface and all its internal dynamics are
neglected. Conventionally, Hdep is considered independent of
the Gilbert damping because it is assumed to be the field at
which the Zeeman energy equals the pinning energy barrier
[19,20] (both damping independent). Such an assumption,
consistent with the creep theory, neglects any effects related
to the internal DW dynamics such as DW spins precession
or vertical Bloch lines (VBL) formation [21]. The damping
parameter, for its part, represents another important parameter,
which controls the energy dissipation and affects the DW
velocity and Walker breakdown [22]. It can be modified by
doping the sample [23] or by a proper interface choice as a
consequence of spin-pumping mechanism [24]. Modifications
of the DW depinning field related to changes in the damping
parameter were already observed in in-plane systems [23,25]
and attributed to a nonrigid DW motion [23,25]. Oscillations
of the DW depinning field due to the internal DW dynamics
were also experimentally observed in in-plane similar systems
[26]. Additional dynamical effects in soft samples, such as DW
boosts in current induced motion, were numerically predicted
and explained in terms of DW internal dynamics and DW
transformations [27,28].

Here we numerically analyze the DW depinning field in
a system with PMA and DMI as a function of the Gilbert
damping. We observe a reduction of Hdep for low damping and
we explain this behavior by adopting a simple 1D model. We
show that the effect is due to the finite size of pinning barriers
and to the DW internal dynamics, related to the DMI and
shape anisotropy fields. This article is structured as follows:
in Sec. II we present the simulations method, the disorder
implementation, and the Hdep calculations. The main results
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FIG. 1. DW velocity vs applied field as predicted by the LLG
equation in a perfect system and by the creep law at T = 0 and
T = 300 K.

are outlined and discussed in Sec. III, where we also present
the 1D model. Finally, the main conclusions of our work are
summarized in Sec. IV.

II. MICROMAGNETIC SIMULATIONS

We consider a sample of dimensions (1024 × 1024 ×
0.6) nm3 with periodic boundary conditions along the y direc-
tion, in order to simulate an extended thin film. Magnetization
dynamics is analyzed by means of the LLG equation [13]:

dm
dt

= − γ0

1 + α2
(m × Heff) − γ0α

1 + α2
[m × (m × Heff)],

(1)

where m(r,t) = M(r,t)/Ms is the normalized magnetization
vector, with Ms being the saturation magnetization. γ0 is the
gyromagnetic ratio and α is the Gilbert damping. Heff =
Hexch + HDMI + Han + Hdmg + Hzûz is the effective field,
including the exchange, DMI, uniaxial anisotropy, demag-
netizing, and external field contributions [13], respectively.
Typical PMA samples parameters are considered: A = 17 ×
10−12 J/m,Ms = 1.03 × 106 A/m,Ku = 1.3 × 106 J/m3,
and D = 0.9 mJ/m2, where A is the exchange constant, D is
the DMI constant, and Ku is the uniaxial anisotropy constant.
Disorder is taken into account by dividing the sample into
grains by Voronoi tessellation [29,30], as shown in Fig. 2(a). In
each grain the micromagnetic parameters {Ms,Dc,Ku} change
in a correlated way in order to mimic a normally distributed
thickness [31]:

tG = N (t0,δ) →

⎧⎪⎨
⎪⎩

MG = (MstG)/t0,

KG = (Kut0)/tG,

DG = (Dct0)/tG,

(2)

where the subscript G stands for grain, t0 is the average
thickness (t0 = 0.6 nm), and δ is the standard deviation of the
thickness normal distribution. The sample is discretized in cells
of dimensions (2 × 2 × 0.6) nm3, smaller than the exchange
length lex ∼ 5 nm. Grain size is GS = 15 nm, reasonable for
these materials, while the thickness fluctuation is δ = 7%.
Equation (1) is solved by the finite difference solver MuMax
3.9.3 [29].

FIG. 2. (a) Grains structure obtained by Voronoi tessellation.
(b) Initial DW state. (c) Sketch of the internal DW angle φ.

A DW is placed and relaxed at the center of the sample
as depicted in Fig. 2(b). Hdep is calculated by applying
a sequence of fields and running the simulation, for each
field, until the DW is expelled from the sample, or until the
system has reached an equilibrium state (i.e., the DW remains
pinned): τmax < ε(α). τmax indicates the maximum torque,
which rapidly decreases when the system is at equilibrium.
It only depends on the system parameters and damping. For
each value of α, we choose a specific threshold ε(α) in order
to be sure that we reached an equilibrium state (see the
Supplemental Material [32] for more details). The simulations
are repeated for 20 different disorder realizations. Within this
approach, Hdep corresponds to the minimum field needed to
let the DW propagate freely through the whole sample. In
order to avoid boundaries effects, the threshold for complete
depinning is set to 〈mz〉 > 0.8, where 〈mz〉 is averaged over all
the realizations, i.e., 〈mz〉 = ∑N

i=1〈mz〉i/N , where N = 20 is
the number of realizations. We checked that, in our case, this
definition of Hdep coincides with taking Hdep = Max{Hi

dep},
with Hi

dep being the depinning field of the single realization.
In other words, Hdep corresponds to the minimum field needed
to depin the DW from any possible pinning site considered in
the 20 realizations [33].

Following this strategy, the DW depinning field is numeri-
cally computed with two different approaches:

(1) By static simulations, which neglect any precessional
dynamics by solving

dm
dt

= − γ0α

1 + α2
[m × (m × Heff)]. (3)

This is commonly done when one looks for a minimum of the
system energy and it corresponds to the picture in which Hdep

simply depends on the balance between Zeeman and pinning
energies [34].

(2) By dynamic simulations, which include precessional
dynamics by solving the full Eq. (1). This latter method
corresponds to the most realistic case. Another way to estimate
the depinning field is to calculate the DW velocity vs field
curve at T = 0 and look for minimum field at which the DW
velocity is different from zero. For these simulations we use
a moving computational region and we run the simulations
for t = 80 ns (checking that longer simulations do not change
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FIG. 3. Average 〈mz〉 as a function of applied field for different
damping parameters for the (a) static simulations and (b) dynamic
simulations. (c) DW velocity vs applied field for different damping.
(d) Dynamical depinning field, normalized to Hs , as a function of
damping.

the DW velocity, meaning that we reached a stationary state).
This second setup requires more time and the calculations are
repeated for only three disorder realizations.

Using these methods, the depinning field Hdep is calculated
for different damping parameters α.

FIG. 4. (a) DW energy density as a function of DW position for
different damping. The final drop corresponds to the expulsion of
the DW. (b) Average DW density as a function of damping. Dashed
line represents the analytical value σ∞ ∼ 10 mJ/m2. (c) Total energy
density of the system as a function of DW position for different
damping parameters.

III. RESULTS AND DISCUSSION

A. Granular system

Our first result is shown in Figs. 3(a) and 3(b), which depicts
the final average magnetization 〈mz〉 as a function of the
applied field for different damping parameters. In the static
simulations [Fig. 3(a)] Hdep does not depend on damping,
so that a static depinning field can be defined. Conversely,
in the dynamic simulations [Fig. 3(b)], Hdep decreases for
low damping parameters. The depinning field is indicated
by a star in each plot and the static depinning field is
labeled as Hs . The same result is obtained by calculating
Hdep from the DW velocity vs applied field plot, shown in
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FIG. 5. (a) Snapshots of the magnetization dynamics at subsequent instants under μ0Hz = 70 mT, for two different damping: (a) α = 0.02
and (b) α = 0.5. The grains pattern, and therefore the energy barrier, is the same for both cases. In order to let the DW move across more
pinning sites, these simulations were performed on a larger sample with Lx = 2048 nm.

Fig. 3(c). The stars in Fig. 3(c) correspond to the depinning
fields calculated in the previous simulations and they are in
good agreement with the values predicted by the velocity vs
field curve. The dynamical depinning field μ0Hd , normalized
to the static depinning field μ0Hs = (87 ± 1) mT, with μ0

being the vacuum permeability, is shown in Fig. 3(d) as a
function of the damping parameter α. Hd saturates for high
damping (in this case α � 0.5) while it decreases for low
damping until Hd/Hs ∼ 0.4 at α = 0.02. This reduction must
be related to the precessional term, neglected in the static
simulations. The same behavior is observed with different
grain sizes (GS = 5 and 30 nm) and with a different disorder
model, consisting of a simple variation of the Ku module
in different grains. This means that the effect is not related
to the grains size or to the particular disorder model we
used.

Additionally, Fig. 4 represents the DW energy [35] as
a function of DW position and damping parameter for
μ0Hz = 70 mT. At high damping, the average DW energy
density converges to σ∞ ∼ 10 mJ/m2, in good agreement
with the analytical value σ0 = 4

√
AK0 − πD = 10.4 mJ/m2,

where K0 is the effective anisotropy K0 = Ku − μ0M
2
s /2.

On the contrary, for low damping, the DW energy increases
up to σ (0.02) ∼ 14 mJ/m2. This increase, related to DW
precessional dynamics, reduces the effective energy bar-
rier and helps the DW to overcome the pinning barriers.
Figure 4(c) shows the total energy of the system (including
Zeeman). As expected [36], the energy decreases as the DW
moves.

Finally, Fig. 5 shows the DW motion as a function of time
for α = 0.02 and α = 0.5, along the same grain pattern (and

therefore along the same pinning barriers). The applied field
is μ0Hz = 70 mT, which satisfies Hd (0.02) < Hz < Hd (0.5).
The initial DW configuration is the same but, for α = 0.02,
VBL start to nucleate and the DW motion is much more tur-
bulent (see the Supplemental Material [32] for a movie of this
process). At t = 4 ns the DW has reached an equilibrium posi-
tion for α = 0.5, while it has passed through the (same) pinning
barriers for α = 0.02. Thus, one might think that the reduction
of the depinning field could be related to the presence of VBL
and their complex dynamics [21]. Further insights about this
mechanism are given by analyzing the DW depinning at a
single energy barrier as described in the next subsection.

B. Single barrier

In order to understand how the DW precessional dynamics
reduces Hdep, we micromagnetically analyzed the DW depin-
ning from a single barrier as sketched in Fig. 6. We considered
a strip of dimensions (1024 × 256 × 0.6) nm3 and we divided
the strip into two regions, R1 and R2, which are assumed to
have a thickness of t1 = 0.58 and t2 = 0.62 nm, respectively.
Their parameters vary accordingly (see Sec. II), generating the
DW energy barrier (δσ ) shown in Fig. 6(b). A DW is placed
and relaxed just before the barrier. The finite size of the DW
(π
DW ∼ 15 nm, with 
DW being the DW width parameter)
smooths the abrupt energy step and, in fact, the energy profile
can be successfully fitted by using the Bloch profile [22]

σDW = σ0 +
(

δσ

2

)(
1 + cos

{
2 arctan

[
exp

(
x0 − x


DW

)]})
,

(4)
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FIG. 6. (a) Sketch of the two regions implemented for the single
barrier (SB) micromagnetic simulations. (b) DW energy as a function
of DW position along the strip. Blue solid line represents the analytical
value, red points the DW convoluted energy (due to the finite size of
the DW), while black dashed line a fit using Eq. (4). (c) Dynamical
depinning field, normalized to the static depinning field, for the single
barrier simulations as a function of damping, obtained from full
micromagnetic simulations and the 1D model.

where x0 = 20 nm is the step position, while σ0 and σ1 are
the DW energies at the left and right side of the barrier as
represented in Fig. 6(b). This means that the pinning energy
barrier has a spatial extension which is comparable to the DW
width. By performing the same static and dynamic simulations,
we obtain a static depinning field of μ0Hs = 120 mT and,
when decreasing the damping parameter, we observe the same
reduction of the depinning field as in the granular system [see
Fig. 6(c)]. In this case the DW behaves like a rigid object
whose spins precess coherently and no VBL nucleation is
observed. Hence, Hdep reduction does not depend directly
on the presence of VBL but on the more general mecha-
nism of spins’ precession already present in this simplified
case.

Nevertheless, an important characteristic of these single
barrier simulations is that the barrier is localized and it
has a finite size which is of the order of the DW width.
Note that the same holds for the granular system: de-
spite a more complex barrier structure, the dimension of
the single barrier between two grains has the size of the
DW width.

Thus, in order to understand the interplay between the DW
precessional dynamics and the finite size of the barrier, we
considered a 1D collective-coordinate model with a localized
barrier. The 1D model equations, describing the dynamics

of the DW position q and the internal angle φ [sketched in
Fig. 2(c)], are given by [16]

(1 + α2)φ̇ = γ0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Hz + Hp(q)]

−α

(
HK

sin 2φ

2
− π

2
HDMI sin φ

)
︸ ︷︷ ︸

Hint(φ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (5)

(1 + α2)
q̇


DW
= γ0

{
α[Hz + Hp(q)]

+
(

HK

sin 2φ

2
− π

2
HDMI sin φ

)}
, (6)

where HK = MsNx is the shape anisotropy field, favor-
ing Bloch walls, with Nx = t0 log 2/(π
DW) [37] being
the DW demagnetizing factor along the x axis. HDMI =
D/(μ0Ms
DW) is the DMI field. Hint(φ) represents the internal
DW field, which includes DMI and shape anisotropy. Hint

favors Bloch (φ = ±π/2) or Néel wall (φ = 0 or φ = π )
depending on the relative strength of HK and HDMI. In
our system, the DMI dominates over shape anisotropy since
μ0HDMI ∼ 170 mT while μ0HK ∼ 30 mT. Hence, the DW
equilibrium angle is φ = π (φ = 0 or φ = π additionally
depends on the sign of the DMI). Hp(q) is the DW pinning
field, obtained from the DW energy profile [Eq. (4)] as follows:
the maximum pinning field is taken from the static simulations
while the shape of the barrier is taken as the normalized DW
energy gradient (see the Supplemental Material [32] for more
details),

Hp(q) = Hs

(
∂σDW(x)

∂x

)
N

= 2Hs

exp
(

x0−q


DW

)
sin

{
2 arctan

[
exp

(
x0−q


DW

)]}
1 + exp

( 2(x0−q)

DW

) . (7)

The corresponding pinning field is plotted in Fig. 7(a) [38].
The results for the dynamical Hdep, obtained with this

modified 1D model, are plotted in Fig. 6(c) and they show
a remarkable agreement with the single barrier micromagnetic
simulations. This indicates that the main factors responsible
for the reduction of Hdep are already included in this sim-
ple 1D model. Therefore, additional insights might come
from analyzing the DW dynamics within this 1D model.
Figures 7(b) and 7(c) represents the DW internal angle φ

and the DW position q as a function of time for different
damping. The plots are calculated with μ0Hz = 55 mT which
satisfies Hdep(0.02) < Hz < Hdep(0.1) < Hdep(0.5). As shown
in Figs. 7(b) and 7(c), below the depinning field (α = 0.1,

α = 0.5), both the internal angle and the DW position oscillate
before reaching the same final equilibrium state. However, the
amplitude of these oscillations (the maximum displacement)
depends on the damping parameter. Figure 7(d) shows the
final equilibrium position as a function of the applied field
for different damping. The equilibrium position is the same
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FIG. 7. (a) Pinning field obtained from Eq. (7) as a function of DW position. DW position internal angle φ as a function of time
for different damping parameter and μ0Hz = 55 mT. (c) DW position q as a function of time for different damping and μ0Hz = 55 mT.
(d) Equilibrium position as a function of applied field for different damping. (e) Maximum DW displacement as a function of the applied
field for different damping. (f) DW coordinates {q,φ} for μ0Hz = 55 mT and different damping. (g) DW coordinates {q,φ} inside the energy
landscape: σ = σDW(q,φ) − 2μ0MsHzq.

for all damping and it coincides with the position at which
Hz = Hp(q). Conversely, the maximum displacement, shown
in Fig. 7(e), strongly increases for low damping parameters.
For applied field slightly smaller than the depinning field, the
DW reaches the boundary of the pinning barrier, meaning that
a further increase of the field is enough to have a maximum
displacement higher than the barrier size and depin the DW.
In other words, the decrease of the depinning field, observed
in the single barrier simulations, is due to DW oscillations
that depend on α and that can be larger than the barrier size,
leading to DW depinning for lower field. The DW dynamics
and the depinning mechanism are further clarified in Figs. 7(f)
and 7(g). Figure 7(f) represents the DW coordinates {q,φ}
for μ0Hz = 55 mT and different damping. Before reaching
the common equilibrium state, the DW moves in orbits (in the
{q,φ} space) whose radius depends on the damping parameter.
For α = 0.5 (black line) the DW rapidly collapse into the final
equilibrium state. Conversely, for α = 0.1 (red open circles),
the DW orbits around the equilibrium state before reaching it.
If the radius of the orbit is larger than the barrier size the DW
gets depinned, as in the case of α = 0.02 (blue full circles).
This mechanism is also represented in Fig. 7(g), where the
DW orbits are placed in the energy landscape. The energy is
calculated as σ (q,φ) = σDW(q,φ) − 2μ0MsHzq, where σDW

is given by Eq. (4). Figure 7(g) shows that the equilibrium state
corresponds to the new minimum of the energy landscape.
Furthermore, it confirms that the applied field is below the
static depinning field, at which the pinning barrier would
have been completely lifted. Nevertheless, while reaching the
equilibrium state, the DW moves inside the energy potential

and, if the radius of the orbit is larger than the barrier size, the
DW can overcome the pinning barrier, as shown for α = 0.02
in Fig. 7(g).

At this point we need to understand why the amplitude of
the DW oscillations depends on damping. By solving Eqs. (5)
and (6) for the equilibrium state (q̇ = 0, φ̇ = 0) we obtain

q̇ = 0 ⇒ |Hp(q)| = Hz + Hint(φ)

α

≈ Hz − π

2

HDMI

α
sin φ, (8)

φ̇ = 0 ⇒ |Hp(q)| = Hz − αHint(φ)

≈ Hz + α
π

2
HDMI sin φ, (9)

since μ0HDMI � μ0HK and, therefore, Hint ≈
−(π/2)HDMI sin φ. These equations have a single common
solution which corresponds to |Hp(q)| = Hz and φ = φ0 = π

[at which Hint(π ) = 0]. However, at t = 0, the DW starts
precessing under the effect of the applied field and, if φ �= π

when |Hp(q)| = Hz, the DW does not stop at the final
equilibrium position but it continues its motion, as imposed
by Eqs. (8) and (9). In other words, the DW oscillations in
Fig. 7(b) are given by oscillations of the DW internal angle
φ, around its equilibrium value φ0 = π . These oscillations
lead to a modification of the DW equilibrium position due
to the DW internal field [Hint(φ)], which exerts an additional
torque on the DW in order to restore the equilibrium angle. As
previously commented, if the amplitude of these oscillations
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FIG. 8. Maximum deviation of φ from its equilibrium position as
a function of damping.

is large enough, the DW gets depinned. From Eq. (8) we see
that the new equilibrium position (and therefore the amplitude
of the oscillations) depends on the DMI field, the value of
the DW angle φ, and the damping parameter. In particular,
damping has a twofold influence on this dynamics: on the one
hand, it appears directly in Eq. (8), dividing the internal field,
meaning that for the same deviation of φ from equilibrium,
we have a stronger internal field for smaller damping. On
the other hand, the second influence of damping is on the
DW internal angle: once the DW angle has deviated from
equilibrium, the restoring torque due to DMI is proportional
to the damping parameter [see Eq. (9)]. Hence, a lower
damping leads to lower restoring torque and a larger deviation
of φ from equilibrium. The maximum deviation of φ from
equilibrium (δφ = φmax − φ0) is plotted in Fig. 8(b) as a
function of damping for μ0Hz = 40 mT. As expected, a lower
damping leads to a larger deviation δφ.

In this latter section, the DW was set at rest close to
the barrier and, therefore, the initial DW velocity is zero.
Nevertheless, one might wonder what happens when the DW
reaches the barrier with a finite velocity. We simulated this case
by placing the DW at an initial distance d1 = 200 nm from the
barrier. The depinning is further reduced in this case (see the
Supplemental Material [32] for more details). However, in
the static simulations, the depinning field remains constant,
independently from the velocity at which the DW reaches the
barrier, meaning that the reduction of Hdep is again related to
the DW precession. When the DW starts from d1 it reaches
the barrier precessing, thus with a higher deviation from its
equilibrium angle, leading to a higher effect of the internal
field.

C. Different DMI and pinning barriers

Finally, by using the 1D model it is possible to explore
the dependence of Hdep on the pinning potential amplitude Hs

(related to the disorder strength) and on the DMI constant D.
The depinning field as a function of damping for different
values of Hs is plotted in Fig. 9(a). The reduction of Hdep

is enhanced for larger values of Hs (strong disorder). This is
consistent with our explanation, since for strong disorder we
need to apply larger fields that lead to larger oscillations of φ.

Figure 9(b) represents the dynamical Hdep as a function
of damping for μ0Hs = 120 mT and different DMI con-
stants (expressed in term of the critical DMI constant Dc =

FIG. 9. (a) Dynamical Hdep as a function of damping for different
Hs (disorder strength). (b) Dynamical Hdep as a function of damping
for different DMI constant and μ0Hs = 120 mT. (c) Dynamical Hdep

as a function of damping for different DMI constant and μ0Hs =
30 mT.

4
√

AK0/π = 3.9 mJ/m2) [39]. In this case, the reduction of
Hdep is enhanced for low DMI, until D = 0.05Dc, but a neg-
ligible reduction is observed for D = 0. This nonmonotonic
behavior can be explained by looking at the dependence of δφ

and Hint on the DMI constant.
Figure 10(a) shows the maximum fluctuation δφ as a

function of DMI for μ0Hz = 30 mT. δφ increases for low DMI
and it has a maximum at πHDMI = HK , which in our case
corresponds to D = 0.014Dc. The increase of δφ for small
values of D is due to the smaller restoring torque in Eq. (9).
This holds until πHDMI = HK , where shape anisotropy and
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FIG. 10. (a) Max DW angle fluctuation δφ = φmax − φeq as a
function of DMI for μ0Hz = 30 mT. (b) Internal DW field μ0Hint

as a function of DMI and δφ. The green points correspond the max
fluctuation plotted in (a). Note that the scale is logarithmic in (a).

DMI are comparable and they both affect the DW equilibrium
configuration. As a consequence, the reduction of Hdep is
enhanced by decreasing D until D ∼ 0.014Dc, while it is
reduced if 0 < D < 0.014Dc. Another contribution is given
by the amplitude of the internal field Hint. Figure 10(b) depicts
μ0Hint as a function of δφ and D. The maximum δφ, obtained
at μ0Hz = 30 mT, is additionally marked in the plot. The
internal field decreases with the DMI but this reduction is
compensated by an increase in δφ, which leads to an overall
increase of μ0Hint, as discussed in the previous part. However,
at very low DMI, the internal field is dominated by shape
anisotropy and, independently on the DW angle displacement,
it is too small to have an effect on the depinning mechanism.
Note, however, that the amplitude of Hint should be compared
with the amplitude of the pinning barrier Hs . Figure 9(b) is
calculated with μ0Hs = 120 mT and the internal field, given
by shape anisotropy (HK/2 ∼ 15 mT), has indeed a negligible
effect. However, larger effects are observed, in the case D = 0,
for smaller Hs , with reduction of Hdep up to Hd/Hs ∼ 0.6, as
shown in Fig. 9(c), which is calculated with μ0Hs = 30 mT.
In other words, the reduction of the depinning field depends

FIG. 11. (a) Dynamical Hdep as a function of damping for
different Hs (disorder strength). (b) Dynamical Hdep as a function
of damping for different DMI constants.

on the ratio between the pinning barrier and the internal DW
field.

Finally, it is interesting to see what happens for weaker
disorder and different DMI in the system with grains. Figure 11
shows the dynamical Hdep, for different pinning potential and
different DMI, obtained in the granular system. The results
are in good agreement with what was predicted by the 1D
model for different disorder strengths. However, we observe
a smaller dependence on the DMI parameter. This is due to
two reasons: (1) in the system with grains the static pinning
barrier is μ0Hs = 87 mT and the dependence of the depinning
field with DMI is smaller for smaller barriers, as shown in
Fig. 9(c). (2) The DW motion in the granular system presents
the formation of VBL which might also contribute to the
reduction of the depinning field. The mechanism is the same:
a VBL is a nonequilibrium configuration for the DW (as a
deviation of φ from equilibrium) that generates additional
torques on the DW, which contribute to the DW depinning.

IV. CONCLUSIONS

To summarize, we have analyzed the DW depinning field
in a PMA sample with DMI and we found that Hdep decreases
with the damping parameter with reductions up to 50%. This
decrease is related to the DW internal dynamics and the finite
size of the barrier: due to DW precession, the DW internal
angle (φ) deviates from equilibrium and triggers the internal
DW field ( DMI and shape anisotropy) which tries to restore its
original value. At the same time, the internal field pushes the
DW above its equilibrium position within the energy barrier.
This mechanism leads to DW oscillations and, if the amplitude
of the oscillations is higher than the barrier size, the DW gets
depinned for a lower field. Deviations of φ from equilibrium
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and DW oscillations are both damping dependent and they are
enhanced at low damping.

In the system with grains the mechanism is the same
but deviations from the internal DW equilibrium include the
formation of VBL with more complex dynamics. The effect
is enhanced for low DMI (providing that πHDMI > HK) and
for stronger disorder since we need to apply larger external
fields, which lead to larger DW oscillations. These results are
relevant both from a technological and theoretical point of
view, since they first suggest that a low damping parameter
can lead to a lower Hdep. Furthermore, they show that
micromagnetic calculations of the depinning field, neglecting

the DW precessional dynamics can provide only an upper
limit for Hdep, which could actually be lower due to the DW
precessional dynamics.
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