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ABSTRACT

The boom of the internet has marked the beginning of the digital era and it has
brought along a huge development of information and communication technologies,
among which cryptography is the queen. Current public-key cryptography is based
on two main problems that are widely accepted to be hard by the cryptographic
community, namely the factorisation and the discrete logarithm problems, both of
which would be compromised if efficient quantum computing was ever materialised.
Since quantum computers would put modern cryptography at risk and they do not
seem to be so far from becoming a reality in the not-so-distant future, the crypto-
graphic community has begun to explore other options in order to be ready in case
quantum computers appear. This has given an impulse to post-quantum cryptogra-
phy, which is based on the so-called quantum-resistant problems and remains secure
even for quantum computers. Post-quantum cryptography has recently attracted
much attention and it is at the moment in the process of standardisation, so study-
ing allegedly quantum-resistant problems was very relevant at the beginning of this
thesis.

The core of this thesis is the study of the hardness of the hidden subspaces prob-
lem (HSP for short) and the noisy hidden subspaces problem (NHSP for short), two
problems that have been claimed to be quantum-resistant. Aside from their rele-
vance as allegedly quantum-resistant problems, they are also important because they
constitute the hardness assumptions on which two versions of the very first public-
key quantum money scheme with a security proof rely. This scheme is Aaronson-
Christiano’s, and it intends to implement quantum money — a type of money that
exploits the laws of quantum mechanics to achieve unforgeability — that is verifiable
by everyone. Results on the hardness of the HSP and the NHSP have a direct impact
on the security of the scheme of Aaronson-Christiano, which made both problems
more than worthy in our eyes to be the heart of this thesis.

Chapter 3 contains our results on the hidden subspaces problem and it is mainly
based on our work [Conde Pena et al., 2015]. The HSP is originally defined by
its authors over the binary field, but we extend its definition to any other finite
field of prime size, always considering the instantiation proposed by its authors.
After modelling the HSP with a system of equations with good properties, we use
techniques of algebraic cryptanalysis to explore the system in depth. It turns out
that the HSP over a field that is different from the binary one can be efficiently solved
for instances meeting a certain condition, whereas the HSP over the binary field is
also efficiently solvable in practice. Both our algorithms compromise the hardness of
the HSP in practice as long as it is instantiated as Aaronson-Christiano propose. As
a consequence, our algorithms disprove the security of the noise-free version of their
scheme.

Chapter 4 contains our results on the noisy hidden subspaces problem and it is
mainly based on our work [Conde Pena et al., 2018]. As we did with the HSP, we



extend the definition of the NHSP to finite fields of prime size other than two and we
consider that it is instantiated as proposed by Aaronson-Christiano. It turns out that
the NHSP can be reduced to the HSP over finite fields other than the binary one for
instances satisfying a certain condition, whereas the NHSP over the binary field can
be solved with a probability that exceeds the one stated in a conjecture assumed by
the authors on which the security of the noisy version of the scheme relies. Note that
while our results are obtained from a purely non-quantum perspective, concurrently
to this thesis another author proved that there is a quantum reduction from the
NHSP to the HSP in all cases. Therefore, the hardness of the NHSP along with the
security of the noisy version of Aaronson-Christiano’s scheme are fully compromised
as a consequence of our findings on the HSP.



RESUMEN

El boom de internet ha marcado el comienzo de la era digital y ésta ha traído
consigo un desarrollo espectacular de las tecnologías de la información y de las comu-
nicaciones, entre las que la criptografía es la reina. La criptografía de clave pública
actual está basada principalmente en dos problemas que la comunidad criptográfica
asume como difíciles: la factorización y el logaritmo discreto. Sin embargo, si se
llegase a construir un computador cuántico lo suficientemente potente, esta dificul-
tad no sería tal. Así pues, la computación cuántica pondría en un grave aprieto
a la criptografía moderna y, puesto que la trayectoria reciente del campo sugiere
que ésta podría convertirse en una realidad en un futuro no muy lejano, la comu-
nidad criptográfica ha comenzado a explorar otras opciones para estar lista en caso
de que se logre construir un computador cuántico eficiente. Esto ha dado un im-
pulso a lo que se conoce como criptografía post-cuántica, aquella cuya dificultad no
se vería afectada por este nuevo paradigma de computación y que está basada en
los llamados problemas resistentes a la computación cuántica. La criptografía post-
cuántica ha suscitado mucho interés recientemente y actualmente está en proceso de
estandarización, por lo que en el momento de iniciar esta tesis resultaba relevante
estudiar problemas supuestamente resistentes al computador cuántico.

La parte central de esta tesis es el análisis de la dificultad del problema de los
subespacios ocultos (HSP por sus siglas en inglés) y del problema de los subespacios
ocultos con ruido (NHSP), dos problemas resistentes al computador cuántico según
sus autores. Además de la relevancia que su supuesta resistencia a la computación
cuántica les confiere, estos dos problemas son también importantes porque en su
dificultad se sustenta la seguridad de las dos versiones del primer esquema de dinero
cuántico de clave pública que cuenta con una prueba de seguridad. Este primer
esquema es el de Aaronson-Christiano, que implementa dinero cuántico — un tipo
de dinero que explota las leyes de la mecánica cuántica para crear dinero infalsificable
— que cualquiera puede verificar. Los resultados obtenidos acerca de la dificultad
del HSP y del NHSP tienen un impacto directo sobre la seguridad del esquema de
Aaronson-Christiano, lo cual nos motivó a centrar esta tesis en estos dos problemas.

El Capítulo 3 contiene nuestros resultados acerca del problema de los subespa-
cios ocultos y está fundamentalmente basado en nuestro trabajo [Conde Pena et al.,
2015]. Los autores del HSP lo definieron originalmente sobre el cuerpo binario, pero
nosotros extendemos la definición a cualquier otro cuerpo finito de orden primo, siem-
pre considerando que la instanciación es la que los autores proponen. Después de
modelar el HSP con un sistema de ecuaciones con buenas propiedades, usamos técni-
cas de criptoanálisis algebraico para explorar el sistema en profundidad. Para el HSP
sobre cualquier cuerpo que no sea el binario diseñamos un algoritmo que resuelve de
manera eficiente instancias que satisfacen una cierta condición. Utilizando técnicas
distintas, construimos un algoritmo heurístico, sustentado por argumentos teóricos,
que resuelve eficientemente instancias del HSP sobre el cuerpo binario. Ambos algo-



ritmos comprometen la dificultad del HSP siempre que las instancias del problema
sean escogidas como Aaronson-Christiano proponen. Como consecuencia, nuestros
algoritmos vulneran la seguridad de la versión del esquema sin ruido.

El capítulo 4 contiene nuestros resultados acerca del problema de los subespacios
ocultos con ruido y está fundamentalmente basado en nuestro trabajo [Conde Pena
et al., 2018]. Al igual que con el HSP, extendemos la definición del NHSP a cualquier
otro cuerpo de orden primo y consideramos instancias generadas como especifi-
can Aaronson-Christiano. Mostramos que el NHSP se puede reducir al HSP sobre
cualquier cuerpo primo que no sea el binario para ciertas instancias, mientras que
el NHSP sobre el cuerpo binario se puede resolver con una probabilidad mayor de
la asumida por los autores en la conjetura sobre la que la seguridad de su esquema
con ruido se sustenta. Aunque nuestros resultados se obtienen desde un punto de
vista puramente no cuántico, durante el desarrollo de esta tesis otro autor demostró
que existe una reducción cuántica del NHSP al HSP también en el caso binario. Por
tanto, la dificultad del NHSP y la seguridad del esquema de Aaronson-Christiano
con ruido se han visto comprometidas por nuestros descubrimientos acerca del HSP.
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Chapter 1

Introduction

We live in the digital era: we have a non-stop supply of news from all over the world
and information from any imaginable topic just one click away; we shop online, learn
online and job hunt online; we arrange video calls with friends who are thousands of
kilometres away; we track our runs to monitor our progress; we use social media to
interact with almost anyone we want and to raise our voices against any cause we
may feel passionate about...

These above are only some examples of how the internet has revolutionised our
daily lives and shaped the world we live in. As a consequence of this new lifestyle, the
amount of private information that users leave behind on the internet has grown to be
huge, while still expected by its owners to remain private. The need of meeting this
demand has driven cryptography, the discipline that studies mathematical techniques
to protect and make communications secure, to a level of development that would
have possibly not been anticipated in its early times (see [Singh, 2011] for a history of
cryptography). Today, cryptography is present everywhere and it has reached such a
peak that it seems difficult to find any technological device without any cryptography
embedded into it.

Cryptography has definitely come a long way since its origins. After the times
of the paradigm “security through obscurity” were over, cryptography started to be
mathematically systematised [Shannon, 1948], a crucial step for it to move forward.
Until around the 1970s, cryptography was based on secret-key (or symmetric) sys-
tems, which used the same key for encryption and decryption. Therefore, it was
required that the two parties intending to communicate exchanged a key prior to
their communication. Maintaining this key secret was crucial for the security of
these schemes, which meant that there had to be a secure channel for both par-
ties to exchange their shared key. This was not practical for mass adoption and
cryptography needed to transcend.

It did in 1976 when the Diffie-Hellman key exchange [Diffie and Hellman, 1976]
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was proposed, showing that a secure channel was not needed in order to establish a
key. This work was a breakthrough and it gave rise to public-key (or asymmetric)
systems, which use one key for encryption (which is public) and a different key for
decryption (which is kept secret by each user). The security of this kind of systems
relies on the fact that it is hard to recover the secret key from the public key, in the
sense that doing so would imply solving a mathematical problem that is assumed to
be computationally intractable by the cryptographic community.

Nowadays communications are usually protected with a combination of public-
key cryptography, often used for key establishment, and secret-key cryptography,
often used for encryption and decryption. As of today, it is widely accepted by
the community that cryptography is secure with the actual computational resources
assuming appropriate choices of key lengths and standard implementations. However,
this is not the whole story.

In 1997, Peter W. Shor proved in [Shor, 1997] that if a sufficiently powerful
quantum computer —a type of computer that takes advantage of the capability of
subatomic particles to exist in more than one state at any time— was built, then
there would exist polynomial-time algorithms that would break both the factorisa-
tion problem and the discrete logarithm problem. This would compromise the two
main hardness assumptions on which public-key cryptography is based [Rivest et al.,
1978, ElGamal, 1985, Koblitz, 1987, Miller, 1985]: in the era of quantum comput-
ers, RSA, ElGamal and cryptography based on elliptic curves would no longer be
secure. Furthermore, Grover showed in [Grover, 1997] that efficient quantum com-
puting would also have an impact on private-key cryptography, reducing the time
needed to break current private-key systems to its square root.

Efficient quantum computation may not have been any close to becoming a reality
back in the nineties, but today research in quantum computing is very active —with
corporate giants like Google, IBM or Microsoft getting involved— and showing some
progress [Conover, 2018, Google, 2018, IBM, 2018, Institute for Quantum Comput-
ing, 2018a, Institute for Quantum Computing, 2018b, Microsoft, 2018], which puts
modern cryptography in a very vulnerable position. So much that we are likely
witnessing yet another time in which cryptography needs to transcend. And it has
already started to do so.

Anticipating the threat that the construction of an efficient quantum computer
would pose to current cryptography, cryptographers have started to explore a new
kind of problems on which to base new public-key schemes. Specifically, prob-
lems that are hard even for quantum computers, which are usually referred to as
quantum-resistant problems. Since the cryptographic community agrees on the fact
that quantum computing may be a reality in the not-so-distant future, studying
quantum-resistant problems becomes particularly relevant.

The kind of cryptography that would still be secure if an efficient quantum
computer was ever built is known as post-quantum cryptography [Bernstein et al.,
2009] and it has recently attracted considerable attention. At the moment, post-
quantum cryptography comprises four main lines of research: lattice-based cryp-
tography [Peikert, 2014, Güneysu et al., 2012, Zhang et al., 2015, Ducas et al.,
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2013], hash-based cryptography [Merkle, 1979, Lamport, 1979, Buchmann et al.,
2011, Bernstein et al., 2015], code-based cryptography [McEliece, 1978, Niederreiter,
1986, Courtois et al., 2001] and multivariate-quadratic-based cryptography [Mat-
sumoto and Imai, 1988, Patarin, 1996, Faugère and Joux, 2003, Braeken et al.,
2005]. Multivariate-quadratic-based cryptography builds on the hardness of solving
random multivariate quadratic systems of polynomial equations and it caught our
attention at the beginning of this thesis. That gave rise to the article [Conde Pena
et al., 2014] focusing on the isomorphism of polynomials problem, which essentially
consists in deciding whether two families of multivariate polynomials are isomorphic
via two affine mappings.

However, the core of this thesis is a related problem introduced in [Aaronson
and Christiano, 2013] which we noticed some time later and whose study gave rise
to our work [Conde Pena et al., 2015, Conde Pena et al., 2018]. This problem
is known as the hidden subspaces problem and it was claimed by its authors to
be quantum-resistant. The problem was new in the literature to the best of our
knowledge, although it can be seen as a modification of a variant of the isomorphism
of polynomials problem known as the isomorphism of polynomials with one secret
problem [Patarin et al., 1998, Macario-Rat et al., 2013, Geiselmann et al., 2003,
Perret, 2005]. Since post-quantum cryptography was in an early stage of development
at the beginning of this dissertation (currently undergoing NIST’s post-quantum
cryptography standardisation process [NIST, 2018]), it seemed like the right time
to explore in depth allegedly quantum-resistant problems and study their hardness
to determine whether they stood or fell. Although the hidden subspaces problem
did not underlie the security of any post-quantum system, thoroughly analysing its
hardness was the only way to get an idea about its strength as a potential candidate
to do so.

Aside from its relevance in the context of post-quantum cryptography, the hidden
subspaces problem also has interest because it underlies the security of a public-
key quantum money scheme designed by Scott Aaronson and Paul Christiano in
the aforementioned paper [Aaronson and Christiano, 2013]. Public-key quantum
money does probably not sound familiar, but a naive guess about it having something
to do with money, cryptography and quantum mechanics turns out to be correct.
Surprisingly, and as oblivious to technological advances as the subject of cash may
appear, cryptography is having an impact over it. As of today, two areas of research
on the subject of money, namely cryptocurrencies and quantum money, stand out as
two different approaches to design what the money of the future could be.

Before going into quantum money, let us briefly go over the research area con-
cerning the so-called cryptocurrencies, which probably do sound familiar since the
advent of Bitcoin [Nakamoto, 2008, Nakamoto, 2009], the first and likely the most
widely-known cryptocurrency. Bitcoin is the first decentralised electronic currency,
which essentially means that it has a distributed generation and verification of
money. To picture what this means, think about Wikipedia, an online encyclo-
pedia that anyone can contribute to (by creating or modifying an entry) thanks to a
group of moderators that ensure the veracity and absence of abusive language of the
content. The functioning of Bitcoin is somehow analogous: transactions are from



24 1. Introduction

peer to peer and they are included in a public decentralised ledger (a blockchain)
by a group of users who are responsible for verifying the transactions and keep-
ing the consensus. For a more visual explanation of the foundations of a cryp-
tocurrency, see Figure 1.1 (source: https://course-studies.corsairs.network/
understanding-bitcoin-a-course-study-d919bd01730b).

Figure 1.1: Sketch of how a cryptocurrency works

The other research area concentrates on what is called quantum money, a type
of money devised with the hope of constructing money that cannot be forged other
than with a negligible probability. Ever since the origin of cash, forgery has been an
issue to worry about and even though many efforts have been put into preventing it
through history (from milled edges in Newton’s time to today’s embedded strips or
special inks that look different depending on the angle of vision), it is impossible to
completely prevent it. This is because cash is built with a physical device under the
laws of classical physics, which inherently makes it theoretically possible for a coun-
terfeiter to replicate the process. Furthermore, surpassing that physical implication
and preventing forgery seems rather insurmountable.

Even so, one can think out of the box and wonder if provably unforgeable money
can be created in any other way. This is what Stephen Wiesner wondered in his
article [Wiesner, 1983], where he proposed to break the mould and construct money

https://course-studies.corsairs.network/understanding-bitcoin-a-course-study-d919bd01730b
https://course-studies.corsairs.network/understanding-bitcoin-a-course-study-d919bd01730b
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that obeyed the laws of quantum mechanics instead. In the quantum mechanical
subatomic world, it turns out to be impossible to clone a quantum particle whose
state is unknown [Park, 1970, Wootters and Zurek, 1982, Dieks, 1982, Wootters and
Zurek, 2009]. With that in mind, Wiesner proposed that the bank embedded several
quantum particles into each banknote and stored their quantum descriptions in a
secret database. This way, every time a banknote needed to be validated, the bank
would need to look up the database and do appropriate quantum measurements
to check that the quantum particles of the banknote matched the corresponding
description stored in the database. However, a counterfeiter intending to replicate
a banknote would not know with certainty which were the states of the quantum
particles embedded into it, and so she would not be able to replicate them as a
consequence of the laws of quantum mechanics. The details of quantum money are
slightly more complex and will be explained in Chapter 2, but we have oversimplified
it now for the sake of a better understanding. See Figure 1.2 (source: https://
futureofmoney2025.weebly.com/quantum-money.html) to obtain an anticipation
of the detailed idea.

Figure 1.2: Sketch of how quantum money works

https://futureofmoney2025.weebly.com/quantum-money.html
https://futureofmoney2025.weebly.com/quantum-money.html


26 1. Introduction

1.1 Justification and objectives

Choosing the hidden subspaces problem to be the focus of this thesis has a double
motivation, in the sense that this problem is relevant regarding two different areas.

First, having a good understanding of the hardness of alleged quantum-resistant
problems seemed important in the context of increasing efforts being dedicated to
research on post-quantum cryptography at the start of this thesis. Analysing in
depth the hardness of the hidden subspaces problem, something no one had yet
accomplished to the best of our knowledge, felt then like an enticing challenge.

Second, studying the hardness of the hidden subspaces problem finds applications
in the area of quantum money, as it underlies the security of the quantum money
scheme of Aaronson-Christiano. Explaining why this scheme is particularly relevant
needs further details: let us try to explain why it marked a milestone in the field of
quantum money.

Although it was not well understood at the time of publication, the idea of Wies-
ner [Wiesner, 1983] was promising and his work brought along the hope of unforge-
able money. However, as it usually happens with papers that are groundbreaking, it
presented several drawbacks. Perhaps the most urgent issue of Wiesner’s quantum
money scheme was the size of the bank’s database, which was huge due to it having
to store the quantum description of each banknote in circulation. This was solved
in [Bennett et al., 1982]. Several other papers followed the work of Wiesner [Mosca
and Stebila, 2010, Gavinsky, 2012] and tried to overcome some of its disadvantages
in different manners.

Nevertheless, what might be the most profound issue of all is that Wiesner’s
money can only be verified by the issuing entity, jeopardising its usability. Some par-
tial solutions to this problem have been found in [Mosca and Stebila, 2010, Gavinsky,
2012, Molina et al., 2012, Pastawski et al., 2011], but the main efforts in quantum
money research today are directed towards achieving a more ambitious objective:
constructing quantum money that can be verified by anyone rather than only by the
authority that issued it. This concept of publicly-verifiable quantum money, referred
to as public-key quantum money in a clear analogy to public-key cryptography, was
first introduced by Scott Aaronson in [Aaronson, 2009].

In that very same paper Aaronson himself proposed the first public-key quantum
money scheme, subsequently followed by several other proposals by other authors
[Lutomirski, 2011, Farhi et al., 2012]. However, all proposed schemes were either
broken or lacked a systematic way for evaluating their security. In this sense, Scott
Aaronson and Paul Christiano were the first authors to propose a public-key quantum
money scheme [Aaronson and Christiano, 2013] that was proved to be cryptograph-
ically secure under a certain hardness assumption. The problem which was assumed
to be hard and quantum-resistant was precisely the hidden subspaces problem.

To sum up, as an allegedly quantum-resistant problem that underlay the security
of the first public-key quantum money scheme with a security proof, the hidden sub-
spaces problem appeared like a perfect problem to focus on. Additionally, quantum
money —which aspires to eliminate the traditional problem of counterfeit money
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and constitutes an exciting long-term challenge that could end up replacing stan-
dard money— seemed like a motivating background. We chose the objectives of this
thesis to be:

• The analysis of the hardness of the hidden subspaces problem over any finite
field of prime order, and the impact that the findings have on the security of
the quantum money scheme of Scott Aaronson and Paul Christiano [Aaronson
and Christiano, 2013].

• The analysis of the hardness of a noisy version of the hidden subspaces problem
over any finite field of prime order, and the impact that the findings have on
the security of the noisy version of the quantum money scheme of Aaronson-
Christiano, proposed in the same paper as the scheme without noise.

1.2 Methodology and work plan

The hidden subspaces problem and its noisy version, which constitute the heart of
this thesis, are strongly based on polynomial theory. To approach the analysis of
their hardness we first need to study the existing techniques for solving non-linear
multivariate polynomial systems, which is hard in general. Still, algorithms for
solving non-linear systems turn out to be efficient in practice in some occasions. In
this sense, we have to study the core details of two of the main algorithms for that
purpose, namely the F4 and the F5 [Faugère, 1999, Faugère, 2002], along with the
complexity results they achieve. These algorithms are the main tool we use to deal
with polynomial systems throughout this thesis.

Before proceeding to study the hidden subspaces problem, we need to find a
suitable polynomial system that models it. This is a relevant step because the system
should be constructed so that it has good properties that can translate into a better
performance of the algorithms on it. After constructing the model, we need to
implement the generation of instances of the hidden subspaces problem —that should
be as generic as possible— and the system of equations that the model particularised
to an instance yields. We use the Magma [Bosma et al., 1997] software for this step.
We should then try to see if we can identify any structure in the system, maybe
dependent on some characteristic of the instances, that makes the process of solving
it efficient. If that is the case, we will move on to design an algorithm to find a
solution of the hidden subspaces problem.

As for the hidden subspaces with noise, the natural approach is to investigate
if there is a reduction from the noisy hidden subspaces to the noise-free hidden
subspaces problem. If so, then we can apply the results we attained on the noise-free
case to the case with noise. If this approach does not succeed, we should then try to
see if the noisy hidden subspaces problem presents any intrinsic weakness that can
be exploited.
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1.3 Contents of the chapters

We close the introduction with a short overview of the chapters ahead.

1.3.1 Chapter 2. Preliminaries and notation

This chapter gathers all the information needed to read the rest of this manuscript
smoothly. We start by fixing the notation used throughout and by contextualising
our area of research, connecting it to previous and related work. We then go along
to formally define the hidden subspaces and the noisy hidden subspaces problems,
which constitute the core of this thesis, and to explain how they underlie the secu-
rity of the public-key quantum money scheme proposed by Scott Aaronson and Paul
Christiano in [Aaronson and Christiano, 2013]. Lastly, we dedicate considerable time
to explain the concept of a Gröbner basis and its application to non-linear multi-
variate polynomial system solving. We give details about the existing algorithms to
compute a Gröbner basis, with special emphasis on F4 and F5, and we discuss the
complexity results that they achieve.

1.3.2 Chapter 3. Cryptanalysis of Aaronson and Christiano’s sche-
me: The noise-free case

Along this chapter we construct a polynomial system that models the hidden sub-
spaces problem over a finite field of prime size. Once this model is presented, we
go on to study if there is any structure in it that can be exploited. In this sense,
we present an algorithm that solves instances of the hidden subspaces problem over
a finite field other than the binary one provided that a certain condition is met.
Our algorithm is randomised and it runs in polynomial time, with a complexity that
we characterise. This is complemented with experimental results that confirm the
efficiency of the algorithm in practice. Moreover, we present a probabilistic algo-
rithm that heuristically solves the hidden subspaces problem over the binary field
in polynomial time. We give a theoretical result that supports our heuristic algo-
rithm and run experiments that turn out to be very efficient in practice. Both of
these algorithms yield a cryptanalysis of the noise-free quantum money scheme of
Aaronson-Christiano and the extension of it to any other field as long as a certain
condition is satisfied.

This chapter is mainly based on our work [Conde Pena et al., 2015].

1.3.3 Chapter 4. Cryptanalysis of Aaronson and Christiano’s sche-
me: The noisy case

In this chapter we focus on the noisy hidden subspaces problem, designed to allegedly
enhance the hardness of the hidden subspaces problem. In the case that the finite
field is not the binary one and as long as it satisfies a certain condition, we show that
there is a polynomial-time reduction from the noisy hidden subspaces problem to the
noise-free version of the problem. In combination with our results of Chapter 3, this
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yields a probabilistic polynomial-time solving the noisy hidden subspaces problem in
this scenario. This is complemented with experimental results on the performance of
the algorithm, which proves to be as efficient in practice as expected. As for the case
of the noisy hidden subspaces over the binary field, we show that exhaustive search
together with our algorithm that solves the noise-free problem is enough to break a
hardness conjecture made by the authors. The first algorithm yields a cryptanalysis
of the extension of the noisy scheme of Aaronson-Christian to any field other than
the binary one, whereas the second one breaks a conjecture on its hardness over the
binary field.

This chapter is mainly based on our work [Conde Pena et al., 2018].

1.3.4 Chapter 5. Conclusions, contributions and future work

In this chapter we summarise our contributions and we discuss the impact that our
findings have on the hardness of the hidden subspaces problem with and without
noise. We also comment on several areas of research that arose during this thesis
(some of them were initiated but unfinished and other were not explored) that could
be interesting for future work.

1.3.5 Appendix A. Magma codes

In this appendix we include the source code in the Magma software (also available
online in GitHub, see https://github.com/Marta-PhD/solving-HSP-NHSP) to gen-
erate and solve instances of the hidden subspaces problem and its noisy version. This
way, our experiments can be replicated and further ones can be performed if desired.

https://github.com/Marta-PhD/solving-HSP-NHSP
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Chapter 2

Preliminaries and notation

2.1 State of the art

Choosing the hidden subspaces problem with and without noise to be the centre of
this thesis is partially motivated by the fact that they underlie the security of the
noisy and noise-free version of Aaronson-Christiano’s public-key quantum money
scheme. In order to understand how these problems relate to the security of the
former quantum money schemes, we first need to explain more in detail what is
quantum money. As we sketched in the introduction, the idea of Wiesner’s quantum
money is to construct money that does not obey the laws of classical physics but
those of quantum mechanics instead, with the hope of preventing forgery by doing
so. Indeed, under the laws of quantum mechanics things are quite different: new
game, new rules.

Let us very briefly explain some basic notions of quantum mechanics that are
required to understand the idea of quantum money. First note that every quantum
particle has attributes that can be measured (called observables), and that the value
of these observables at a given time determines what is called the quantum state
of the particle. A particle can have many observables, but we are interested in one
that is called the spin projection, which can be measured along an (oriented) axis.
In particular, we are interested in quantum particles whose spin projection can take
only two distinct possible values, either a number that is greater than zero or its
opposite. Finding a classical analogy of what the concept of spin projection means
is not easy. Often, the result of measuring the spin projection of a particle along a
given axis is interpreted as if the quantum particle rotates (spins) either clockwise
or anticlockwise around that axis. This is, as if the quantum particle is polarised
along the axis. For simplicity, we refer to the spin projection as the polarisation and
we make use of this classical analogy in what follows.

The polarisation attribute of particles that can only take two distinct values
(either greater or less than zero) is important in the context of unforgeable money due
to the following. The laws of quantum mechanics guarantee that if the polarisation
is measured along the axis around which the quantum particle is indeed spinning,
then the result is always greater than zero. However, if the polarisation is measured
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along an axis which is different from the axis around which the quantum particle
is spinning, then the quantum state gets altered and the result of measuring the
polarisation is random.

Wiesner thought about using the above property of quantum particles in his
favour essentially as follows: whenever a banknote needs to be created, the bank
assigns a serial number to it and prepares n quantum particles with random po-
larisations, which are embedded into the banknote. More concretely, in Wiesner’s
scheme each of the quantum particles that form the banknote are chosen to be ei-
ther spinning clockwise or anticlockwise around the axis X or spinning clockwise or
anticlockwise around the axis Z (see Figure 1.2). Once the banknote is generated,
its serial number and the polarisation of the particles embedded into it are stored in
a secret database owned by the bank.

This way, every time that a banknote needs to be validated, the bank can look
up its secret database and measure the polarisation of each quantum particle along
the appropriate axis, which should be greater than zero. However, this measurement
will not be positive with certainty if it is carried out by a counterfeiter intending to
replicate the banknote, since he ignores the polarisations of the quantum particles.
Recall that if the counterfeiter measures the polarisation of a particle along an incor-
rect axis, then the quantum state changes and the measurement of its polarisation
is randomly positive or negative. Still, the counterfeiter may be lucky enough to
obtain the correct polarisation measurements if he happens to measure along all the
appropriate axes, but the probability of copying a banknote successfully is proved
in [Molina et al., 2012] to be at most (3/4)n (where n is the number of particles
embedded into the banknote), which means that it decreases exponentially with the
number of quantum particles embedded into the banknote.

We already said in the introduction that Wiesner’s proposal for quantum money
was not perfect and presented some drawbacks: let us detail this a bit more now.
The issue concerning the huge size of the bank’s secret database was solved in [Ben-
nett et al., 1982], where the authors propose a variant of Wiesner’s scheme (the
BBBW scheme) in which the quantum particles are generated using a pseudoran-
dom function depending on a key only known by the bank. Of course, this reduces
the information-theoretical security of Wiesner’s original scheme to computational
security, but reducing the size of the database was essential to bringing Wiesner’s
scheme any closer to being practical. Besides, all modern cryptography is constructed
over computational security anyway.

Another issue for both Wiesner’s scheme and the BBBW scheme was pointed out
in [Aaronson, 2009, Lutomirski, 2010]. It turns out that the former schemes can be
broken in linear time if a counterfeiter can submit an alleged banknote to the bank for
verification and get back not only the validity or invalidity of the banknote but also
the post-measurement quantum state. This allows the counterfeiter to successively
guess the polarisation of each of the quantum particles embedded into the banknote.
Nonetheless, note that it is not mandatory to return the post-measurement quantum
states to the counterfeiter.

But as we already sketched in the introduction, perhaps the most serious draw-
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back of Wiesner’s scheme is that money can only be verified by the issuer bank, which
somehow boycotts its usability. This is referred to in the literature as the verifia-
bility problem and it has attracted quite a lot of attention recently. Some solutions
have been found: in [Mosca and Stebila, 2010] the authors suggest for the bank to
delegate the verification process on the retailer through a blind quantum computing
protocol, and in [Gavinsky, 2012] Gavinsky proposed a variant of Wiesner’s scheme
which requires only classical communication between the vendor and the bank (see
also followup work [Molina et al., 2012, Pastawski et al., 2011]). These solutions
heavily rely on a trusted third party.

However, many efforts in the field of quantum money today are precisely directed
towards constructing money whose verification is less dependent on a third party.
More in detail, the aim is constructing quantum money such that:

• The bank can create banknotes, which means that there is an efficient algorithm
to generate the random quantum states.

• Anyone can verify the validity of a banknote, which means that there is an
efficient and public algorithm to verify, with high probability, if the banknote
was generated by the bank

• No one can copy it, this is, no one other than the bank can efficiently produce
quantum states that are accepted by the verification procedure with more than
an exponentially small probability.

A scheme that fulfils these requirements is called a public-key quantum money
scheme (see [Aaronson, 2009]), in analogy with public-key cryptosystems.

At the moment of starting this thesis, the public-key quantum money schemes
that had been proposed had either been broken or their security could not have been
proved. Indeed, Aaronson gave in his paper [Aaronson, 2009] the first proposal for
a public-key quantum money scheme, but it was broken soon after in [Lutomirski
et al., 2010] using techniques from [Alon et al., 1998]. Another public-key quantum
money scheme based on knot theory was suggested in [Farhi et al., 2012], and an ab-
stract version of it in the followup work [Lutomirski, 2011]. However, characterising
which quantum states were accepted by the verification procedure of [Farhi et al.,
2012] seemed to require major advances in knot theory, and similarly for the case of
[Lutomirski, 2011]. Therefore, all the public-key quantum money schemes proposed
in the literature suffered from the same problem at the beginning of this dissertation:
the lack of a systematic way to evaluate their security.

In this sense, Scott Aaronson and Paul Christiano were the first authors to pro-
pose a public-key quantum money scheme [Aaronson and Christiano, 2013] with a
proof of security assuming the resistance to quantum computing of a new problem in
the literature, which they called the hidden subspaces problem. In short, this prob-
lem consists in recovering two mutually orthogonal subspaces, each of them encoded
(hidden) as the common zeros of a set of polynomials. In this thesis we are the first
ones to address the question of how hard the hidden subspaces problem is.
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After this brief contextualisation we are ready to define the hidden subspaces
problem with and without noise. Before proceeding to do so, let us fix the notation
that will be used throughout this manuscript.

2.2 Notation

In this dissertation, Z≥0 denotes the set of integers greater than or equal to zero and
R+ denotes the set of real positive numbers.

Note that we follow the standard Big-O and Big-Omega notation to describe
asymptotic behaviour in the context of computational complexity theory. In partic-
ular, if f and g are real-valued functions defined on the set of natural numbers, we
write

f (x) = O (g (x))⇐⇒ ∃c ∈ R+,∃x0 ∈ N, such that f (x) ≤ cg (x) , forx ≥ x0

⇐⇒ lim
x→∞

f(x)

g(x)
= 0

and
f (x) = Ω (g (x))⇐⇒ g (x) = O (f (x)) .

In the same context, we denote the matrix multiplication exponent by ω. Elaborat-
ing a bit more, the matrix multiplication algorithm that results from the definition
requires n3 multiplications and (n− 1)n2 additions in order to multiply two square
matrices of order n. The naive computational complexity of matrix multiplication is
therefore O(n3). However, this complexity is not optimal and in [Strassen, 1969] a
complexity of

O
(
nlog2 7

)
≈ O

(
n2.807

)
was achieved. The exponent appearing in the complexity of matrix multiplication
has been improved several times, and the lowest bound for it is generally denoted by
ω. It occurs that, up to date, 2 ≤ ω < 2.373 [Le Gall, 2014].

Throughout this thesis, F denotes a finite field of any prime order and n always
denotes an even integer unless otherwise specified.

In what concerns polynomials, we set x = (x1, . . . , xv) to be a v-vector of symbolic
variables over F and F [x] denotes then the polynomial ring in v variables over F.
Given a certain subspace A ⊂ Fv and d ∈ N, we maintain the notation of [Aaronson
and Christiano, 2013] and we take Id,A to denote the set of degree-d polynomials
in F [x] that vanish on A. Furthermore, given a subspace A ⊂ Fv, the subspace
A⊥ denotes its orthogonal complement. Recall that given a subspace A ⊂ Fv, its
orthogonal complement is defined as

A⊥ = {x ∈ Fv : x · a = 0, ∀a ∈ A},

where · denotes the standard scalar product in Fv.
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Given m ∈ N and certain polynomials p1, p2, . . . , pm, q1, q2, . . . , qm in F[x], we
write (p,q) = ((p1, . . . , pm) , (q1, . . . , qm)) ∈ F[x]m × F[x]m. Finally, we denote by

M(F[x]), Md(F[x])

the set of monomials in F[x] and the set of monomials of degree d ∈ N in F[x]. Since
the cardinality of the set Md(F[x]) will be often used in Chapter 4, we denote it as

N
|F|
d,x

for the sake of shortness.

As for matrices, the sets

Mk,` (F) , Mk (F) , GLk (F)

denote the set of k × ` matrices with entries in F, the set of square matrices of
order k with entries in F and the set of invertible matrices in Mk(F), respectively.
For a matrix G =

(
gi,j
)
∈ Mk,` (F), the matrix GT =

(
gj,i
)
∈ M`,k (F) denotes

the transpose of the matrix G as usual. Given two matrices A1 ∈ Mk,` (F), A2 ∈
Mk,h (F), the matrix (A1|A2) ∈ Mk,`+h (F) denotes its concatenation. Finally, we
express by γ|F| (k) the probability that a square matrix of order k over F is invertible,
which is dependent on the size |F| of the ground field.

2.3 The hidden subspaces problem (with and without
noise)

Aaronson and Christiano introduced the hidden subspaces problem (with and with-
out noise) in [Aaronson and Christiano, 2013], along with two versions of a public-key
quantum money scheme based upon the latter problems. They claimed both ver-
sions of the problem to be quantum-resistant and, considering that the noise-free
problem is somehow similar to other hard problems used as a basis for multivariate
cryptography it is not unreasonable to believe a priori that it may be.

Briefly, the hidden subspaces problem consists in recovering a subspace whose
elements, along with those from its orthogonal, have been encoded as the set of zeros
of certain random multivariate polynomials over a finite field. It is formally defined
as follows.

The Hidden Subspaces Problem (HSP|F| for short)
Input: (p,q) = ((p1, . . . , pm), (q1, . . . , qm)) ∈ F[x]m × F[x]m of degree d ≥ 3, with
x = (x1, . . . , xn) and n ≤ m ≤ 2n.
Find: a subspace A ⊂ Fn of dimension n/2 such that

pi(A) = 0 and qi(A
⊥) = 0, ∀i ∈ {1, . . . ,m}.
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Remark 2.1 The hidden subspaces problem was defined by the authors over F2,
but we extended its definition to any finite field of prime size in order to study the
widest possible version of the problem. Besides, the hardness of the hidden subspaces
problem over a finite field of cardinality other than two is left as an open problem by
the authors themselves in [Aaronson and Christiano, 2013].

Even though the authors claimed that the hidden subspaces problem was already
quantum-resistant, they proposed a variant of the former problem with a supposedly
enhanced hardness due to the addition of noise. Adding noise to a problem is a
common technique used in cryptography to increase the difficulty of problems. The
learning with errors problem (LWE problem for short) introduced by Regev in [Regev,
2009] is an example of a hard problem used in cryptography derived from adding
noise to a problem that is not hard at all [Goldreich et al., 1997, Kawachi et al.,
2007, Peikert, 2009, Güneysu et al., 2012, Bos et al., 2015, Peikert, 2014, Alkim
et al., 2015].

More concretely, given a prime p ≥ 2, if we have a system of linear equations
over Zp as follows

c11x1 + c12x2 + . . .+ c1vxv = b1 mod p,
c21x1 + c22x2 + . . .+ c2vxv = b2 mod p,

...
cm1x1 + cm2x2 + . . .+ cmvxv = bm mod p,

with (cij) ∈ Mm,v (Zp) and (bi) ∈ Zmp , a solution of the system can be found in
polynomial time via Gaussian elimination. The LWE problem consists in solving
a system of equations derived from the former one by adding small perturbations
on the right hand side of the equations, this is, it consists in finding a solution
(x1, . . . , xv) ∈ Zvp of a linear system of the form

c11x1 + c12x2 + . . .+ c1vxv = b1 + ε1 mod p,
c21x1 + c22x2 + . . .+ c2vxv = b2 + ε2 mod p,

...
cm1x1 + cm2x2 + . . .+ cmvxv = bm + εm mod p,

where ε = (ε1, . . . , εm) ∈ Zmp is called the error and it is chosen so as to be small
(±1 according to [Regev, 2009]). It turns out that whereas solving a system of linear
equations is easy, the LWE problem is hard, which is why it has attracted consid-
erable attention and it has proved itself to be an interesting basis for cryptographic
constructions (see for example [Kawachi et al., 2007, Peikert et al., 2008, Bos et al.,
2015, Alkim et al., 2015]).

A naive approach to add noise to the hidden subspaces problem that resembles
the way in which it is done in the LWE problem would be adding noise to the
right-hand side of the equations as follows:

Input: (p,q) = ((p1, . . . , pm), (q1, . . . , qm)) ∈ F[x]m × F[x]m of degree d ≥ 3, with
x = (x1, . . . , xn) and n ≤ m ≤ 2n.
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Find: a subspace A ⊂ Fn of dimension n/2 such that

pi(A) ≈ 0 and qi(A
⊥) ≈ 0, ∀i ∈ {1, . . . ,m}.

However, the polynomials p1, . . . , pm, q1, . . . , qm have a very well-structured set of
zeros (bear in mind that A and A⊥ are subspaces) and this way of adding noise does
not make sense. Elaborating a bit more, any polynomial vanishing on either A or
A⊥ should also vanish on the n-vector (0, . . . , 0). Therefore, given the approximate
equation pi (A) ≈ 0, the left-hand side would equal exactly zero if the polynomial
pi did not have an independent term and it would equal exactly one if pi had an
independent term.

The next idea that comes to mind is to add noise by somehow adding pertur-
bations on the left-hand side of the equations instead, this is, by including in the
system decoy polynomials that look like those vanishing on the subspaces A or A⊥

but actually do not. It is not a very good idea to add polynomials that are chosen
fully at random as roughly half of them would have an independent term and so they
would be easily detected as fake ones. A convenient idea to avoid this issue is to add
to the system polynomials that vanish on a structured set as well, this is, to add
polynomials vanishing on subspaces other that A or A⊥. This is what Aaronson and
Christiano proposed to do in the noisy variant of their problem, which is formally
defined as follows.

The Noisy Hidden Subspaces Problem (NHSP|F| for short)
Input: (p,q) = ((p1, . . . , pm), (q1, . . . , qm)) ∈ F[x]m × F[x]m of degree d ≥ 3, with
x = (x1, . . . , xn), m = dβne where β ≥ 3/(1− 2ε)2, and 0 < ε < 1/2.
Find: a subspace A ⊂ Fn of dimension n/2 such that

pi(A) = 0, ∀i ∈ Ip, and qj(A
⊥) = 0, ∀j ∈ Iq,

for some Ip, Iq ⊂ {1, . . . ,m} with #Ip = #Iq = d(1− ε)me, and such that

pi(A
p
i ) = 0, ∀i ∈ {1, . . . ,m} \ Ip,

and
qi(A

q
i ) = 0, ∀i ∈ {1, . . . ,m} \ Iq,

where Ap
i ⊂ Fn and Aq

i ⊂ Fn are subspaces of dimension n/2 and

Ap
i 6= A, ∀i ∈ {1, . . . ,m} \ Ip,

Aq
i 6= A⊥, ∀i ∈ {1, . . . ,m} \ Iq.

Remark 2.2 Note that in the NHSP|F| there is no orthogonality relation between Ap
i

and Aq
j for any i ∈ {1, . . . ,m} \ Ip, j ∈ {1, . . . ,m} \ Iq.

Remark 2.3 Note that β is chosen to be greater than or equal to 3/(1−2ε)2 because
the authors prove that by doing so an instance (p,q) of the NHSP|F| uniquely defines
the subspace A with an overwhelming probability [Aaronson and Christiano, 2013,
Lemma 6.5].
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Aaronson and Christiano claimed the hidden subspaces problem with and without
noise to be quantum-resistant, so we state here their result for future reference.

Conjecture 2.4 [Aaronson and Christiano, 2013, Conjecture 6.7] Given a degree-d
instance of the HSP|F| (respectively the NHSP|F|), no polynomial-time quantum algo-
rithm can find a complete list of generators for A with success probability Ω(2−n/2).

2.4 Aaronson-Christiano’s public-key quantum money
scheme

2.4.1 Definition of a general quantum money scheme

Before giving details about the scheme of Aaronson-Christiano, we formally define
the general concept of a public-key quantum money scheme. We already said that
one such scheme must satisfy three requirements, namely: there must be an efficient
algorithm for the bank to prepare the quantum states, there must be an efficient and
public algorithm for anyone to verify whether a certain banknote is valid or not, and
no one other than the bank should be able to produce valid banknotes with a non-
negligible probability. The cryptographic realisation of the concept of a public-key
quantum money scheme is the following.

Definition 2.5 A public-key quantum money scheme S consists of three polynomial-
time algorithms:

• KeyGen, which takes as input a security parameter λ and probabilistically
generates a key pair (kprivate, kpublic). The key kprivate is called the private key
and it is kept secret by the authority issuing the money and kpublic is called the
public key and it is publicly accessible by anyone.

• Bank, which takes as input kprivate and probabilistically generates a quantum
state $ called a banknote. Usually, although depending on each public-key quan-
tum money scheme, $ is an ordered pair (s, ρs) consisting of a classical serial
number s and a quantum state ρs.

• Ver, which takes as input kpublic and an alleged banknote /c, and either accepts
it or rejects it.

Remark 2.6 In cryptography, the security parameter is a variable that measures
the input size of the computational problem. The resource requirements of the cryp-
tographic protocol as well as the adversary’s probability of breaking its security are
expressed in terms of the security parameter.

An attacker who wants to produce a fake banknote can take two different ap-
proaches: he can either try to replicate an existing banknote created by Bank by
preparing exactly the same quantum particles, or he can try to generate a banknote
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that is accepted by Ver. The first option is not feasible due to the laws of quantum
mechanics, as it is impossible to clone a quantum state which is unknown. The sec-
ond option could be carried out if the counterfeiter gained knowledge about kprivate,
as he would then be able to apply himself the algorithm Bank. However, the prob-
lem of inferring the private key from the public key is chosen to be computationally
intractable and the security of the scheme relies on it, analogously to what happens
in standard public-key cryptography.

The hidden subspaces problem with and without noise are the problems chosen
by Aaronson-Christiano to underlie the noise-free and noisy versions of their scheme.

2.4.2 Instantiation of the HSP|F| and the NHSP|F|. Key Generation
in the Scheme of Aaronson-Christiano

Aaronson and Christiano define in their paper how the hidden subspaces problem
with and without noise should be instantiated to generate key parameters for their
scheme. Given an appropriate degree-d instance (p,q) of the HSP|F| (respectively
the NHSP|F|), the key pair of their scheme with and without noise is set to be:

kprivate = A,

kpublic = (p,q) .

First, we detail how Aaronson and Christiano decided to instantiate the HSP|F|
to generate key pairs for their noise-free scheme. It is as follows: the n/2-dimensional
subspace A ⊂ Fn is chosen uniformly at random, whereas for each i ∈ {1, . . . ,m},
the polynomial pi is chosen uniformly at random from Id,A.

Remark 2.7 The choice of A⊥ and the polynomials qi, with i ∈ {1, . . . ,m}, is
analogous.

The instantiation of the NHSP|F| to generate key pairs for the noisy scheme is as
follows. On the one hand, for every i ∈ Ip the polynomial pi is chosen uniformly at
random from Id,A, while the n/2-dimensional subspace A ⊂ Fn is chosen uniformly
at random too. On the other hand, for every i ∈ {1, . . . ,m}\Ip the polynomial pi
is chosen uniformly at random from Id,Ap

i
, where Ap

i ⊂ Fn is an n/2-dimensional
subspace different from A.

Remark 2.8 The choice of A⊥ and Aq
i (i ∈ {1, . . . ,m}\Iq), as well as of the poly-

nomials qi (i ∈ {1, . . . ,m}), is analogous.

Remark 2.9 Note that the subspaces of each of the sets

{Ap
i }i∈{1,...,m}\Ip , {Aq

i }i∈{1,...,m}\Iq

are pair-wise different with overwhelming probability.
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Remark 2.10 From now on, whenever we say that

(p,q) = ((p1, . . . , pm), (q1, . . . , qm)) ∈ F[x]m × F[x]m

is a degree-d instance of the HSP|F| or of the NHSP|F|, we are referring to an instance
satisfying these conditions.

Now that the instantiation of both problems is set, we should focus on how to
generate such instances, this is, on how to generate key pairs. The generation of the
subspace A, as well as of the subspaces Ap

i if the NHSP|F| is being considered, is
straightforward: it suffices to choose a full-rank matrix in Mn/2,n(F) uniformly at
random.

Remark 2.11 The generation of the subspace A⊥ (and the subspaces Aq
i when the

NHSP|F| is being considered) is analogous.

The generation of uniformly random polynomials that vanish on a given sub-
space is slightly more complicated. The key result to produce uniformly random
polynomials vanishing on a certain subspace is the following.

Lemma 2.12 [Aaronson and Christiano, 2013] Denote by ei ∈ Fn the vector whose
i-th component equals 1 and whose other components equal 0, and by E the subspace
generated by the vectors e1, . . . , en/2. It holds that:

1. A polynomial belongs to Id,E if and only if each of its monomials is divisible by
an element in the set {xn/2+1, . . . , xn}.

2. If L is an invertible linear transformation on Id,A, the function

p (x)→ p (xL)

maps Id,A to Id,AL−1.

Indeed, Lemma 2.12 allows to devise a way to generate an uniformly random
polynomial vanishing on a certain subspace as follows.

Proposition 2.13 (Vanishing polynomial) The generation of an uniformly ran-
dom polynomial in Id,A consists of the following two steps:

1. Generate a polynomial p′ ∈ Id,E: as a consequence of Lemma 2.12(1), this is
done by including each monomial of degree d or lower independently and with
probability 1/2 if it is divisible by an element in the set {xn/2+1, . . . , xn}.

2. Transform p′ ∈ Id,E into p ∈ Id,A: considering the matrix L of change of basis
(i.e., E = AL), the polynomial p = p′ (xL) vanishes on A by Lemma 2.12(2).
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The generation of a polynomial in Id,A takes polynomial time. The cost of the
first step in Proposition 2.13 is of the order of the total number of monomials in
F[x1, . . . , xn] of degree less than or equal to d, which is O(nd). The cost of the second
step in Proposition 2.13 is that of a matrix multiplication, which is O(nω), where
ω = 2 since xL is a vector-matrix multiplication, plus that of evaluating a polynomial
of degree d with O(nd) terms, which yields a total complexity of O((d+ 1)nd).

Remark 2.14 Note that the size of the field influences the time that it takes to
generate a polynomial in Id,A, as multiplications over F are slower as |F| increases.

2.4.3 Security of the scheme of Aaronson-Christiano

To precisely describe the scheme of Aaronson-Christiano it is necessary to have some
further knowledge of quantum mechanics, which is out of the scope of this thesis. For
our purposes, it is enough with knowing that the three polynomial-time algorithms
that constitute the scheme of Aaronson-Christiano are essentially as follows.

• KeyGen(λ) generates a degree-d instance (p,q) of the HSP|F| or the NHSP|F|
depending on the version of the scheme considered, outputting

(kprivate, kpublic) = (A, (p,q)) .

• Bank (A) prepares a banknote from a classical description of A (this is, a list
of n/2 elements that generate it).

• Ver (p,q) verifies whether a banknote is valid or not by querying the polyno-
mials of p (respectively q) to test membership in A (respectively A⊥) and by
carrying out certain quantum measurements.

As we have been saying from the beginning, the two versions of the scheme
of Aaronson-Christiano are secure provided that the HSP|F| and the NHSP|F| are
quantum-resistant. However, we have not formally defined yet the notion of a secure
quantum money scheme. Indeed, the formal notion of a secure quantum money
scheme is the following.

Definition 2.15 [Aaronson and Christiano, 2013, Definition 3.1] (Security of a
Quantum Money Scheme) We say that a public-key quantum money scheme S =
(KeyGen,Bank,Ver) has completeness error ε if

Ver(kpublic)

accepts a valid banknote $ with probability at least 1 − ε for all public keys kpublic
and all valid banknotes $. If ε = 0, then we say that the scheme S has perfect
completeness.

Now let Count take as input kpublic and a collection of alleged banknotes /c1, . . . , /cr
and output the number of indices i ∈ {1, . . . , r} such that Ver(kpublic) accepts the
banknotes /c1, . . . , /cr. Let

C
(
kpublic, /c1, . . . , /cq

)
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map q = poly (n) valid banknotes $1, . . . , $q to r = poly(n) alleged banknotes /c1, . . . , /cr
(note that q is polynomial in n). We say that S has soundness error δ if

Pr [Count (kpublic, C (kpublic, $1, . . . , $q)) > q] ≤ δ,

where Pr denotes the probability of an event.

We say that a public-key quantum money scheme S is secure if it has completeness
error less or equal than 1/3 and negligible soundness error.

Indeed, according to this notion of security the authors claim that their scheme
with noise and without noise is secure provided that the HSP|F| and the NHSP|F| are
quantum-resistant, as the following result expresses.

Theorem 2.16 [Aaronson and Christiano, 2013, Theorem 6.9] (Security Reduc-
tion) Assuming Conjecture 2.4, the public-key quantum money scheme of Aaronson
and Christiano with and without noise has perfect completeness and soundness error
2−Ω(n).

2.5 Gröbner bases: A tool for solving non-linear systems

Since the main building blocks of the HSP|F| and the NHSP|F| are sets of polynomials
in several variables that are not linear, trying to solve algebraic systems with these
properties will be a constant in this thesis. In this section we focus on the existing
techniques to compute what is called a Gröbner basis, with an emphasis on the F4

and the F5 algorithms. A Gröbner basis is a mathematical tool that enables to find
solutions for multivariate non-linear systems, aside from having other applications
in computational algebraic geometry (as for example ideal membership testing [Cox
et al., 2007, §2.8]). The purpose of this section is not to exhaustively explain the
core of the algorithms, but instead to give some details about the way they operate
and the complexity results they achieve so it is then possible to follow our results of
Chapter 3 and Chapter 4. The theory of this section is mainly based on [Cox et al.,
2007].

Let us first give some context. Solving linear systems is so easy that we learn how
to do it in high school. It is well known that one can solve them in polynomial time
via Gaussian elimination with a complexity of O(n3) in the number of variables. The
idea behind Gaussian elimination is simple: transform a given linear system into an
equivalent one which happens to have better properties, in the sense that the latter
turns out to be somehow easier to solve than the original one. For example, if we
consider a linear system over F with a unique solution, say

a11x1 + a12x2 + . . .+ a1vxv = b1,
a21x1 + a22x2 + . . .+ a2vxv = b2,

...
am1x1 + am2x2 + . . .+ amvxv = bm,
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the process of Gaussian elimination produces a linear system over F of the form

a′11x1 + a′12x2 + . . .+ a′1vxv = b′1,
a′22x2 + . . .+ a′2vxv = b′2,

...
a′mvxv = b′m,

in such a way that it is now possible to solve the univariate equation a′mvxv = b′m
and substitute backwards until a solution of the whole system is found.

This idea of finding an equivalent and better system of equations is also applied
in the non-linear setting as the key idea to solve a system. At high level, this better
set is called a Gröbner basis and the most efficient algorithm for its computation is
essentially a generalisation of Gaussian elimination to higher degrees. Unfortunately,
finding a Gröbner basis is not nearly as easy as Gaussian elimination is in the linear
scenario.

Since finding a Gröbner basis allows to find a solution of non-linear systems, the
complexity of computing such a basis is at least that of solving non-linear systems.
In this sense, note that NP-complete problems, a class of problems that are widely
considered to be hard and not efficiently solvable (see [Cook, 1971, Cook, 2000]),
can all be modelled with non-linear systems of polynomials. See for example the
knapsack problem, which was proved to be NP-complete in [Karp, 1972].

The Knapsack Problem
Input: (b1, . . . , bv, c) ∈ Nv+1

Find: a solution of the (overdetermined) system

v∑
i=1

xibi = c, xi (1− xi) = 0, i = 1, . . . , v.

The fact that NP-complete problems can be modelled with non-linear systems
strongly suggests that the worst-case complexity of computing a Gröbner basis can-
not be good. Indeed, it was proved in [Mayr and Meyer, 1982, Giusti and Lazard,
1983, Dubé, 1990] that it is at least doubly exponential in the number of variables.
Nonetheless, worst-case is called worst-case for a reason, and the behaviour of com-
puting a Gröbner basis for generic (as in random) systems is usually better.

In what follows we give the basic background that is necessary to introduce
the concept of a Gröbner basis in the way that seems the most intuitive to us.
Throughout Section 2.5.1 and Section 2.5.2, we set x = (x1, . . . , xv).

2.5.1 Basic notions

We start by introducing the concept of an algebraic variety. Varieties are the geo-
metric manifestations of the solutions of a system of polynomial equations and thus
the main object of study of algebraic geometry. Recall first the concept of an ideal
and a fundamental theorem of commutative algebra.
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Definition 2.17 A (polynomial) ideal I ⊂ F[x] is a non-empty F-subspace that is
closed under multiplication by elements of F[x], this is,

fI = {fp | p ∈ I} ⊆ I, p ∈ F[x].

Furthermore, given m ∈ N and a set of polynomials p1, . . . , pm ∈ F [x], the ideal
generated by p1, . . . , pm, denoted by 〈p1, . . . , pm〉, is defined as

〈p1, . . . , pm〉 =

 ∑
i∈{1,...,m}

fipi, fi ∈ F[x] ∀i ∈ {1, . . . ,m}

 .

The Hilbert basis theorem guarantees that every ideal in a finite field is finitely
generated.

Theorem 2.18 (Hilbert basis theorem) Let I ⊂ F [x] be an ideal. There exists
m ∈ N and p1, . . . , pm ∈ F [x] such that

I = 〈p1, . . . , pm〉.

Remark 2.19 Note that Theorem 2.18 is a particularisation of the Hilbert basis
theorem to finite fields, which is the setting we are working on throughout this thesis.

The concept of a variety is the following.

Definition 2.20 Let I = 〈p1, . . . , pm〉, with p1, . . . , pm ∈ F [x]. The variety associ-
ated to I (or associated to p1, . . . , pm), denoted by either V (I) or V (p1, . . . , pm), is
defined as follows:

V (I) =
{

(a1, . . . , av) ∈ F̄v : pi (a1, . . . , av) = 0, ∀i ∈ {1, . . . ,m}
}
,

where F̄ denotes the algebraic closure of F. Furthermore, we define:

VF (I) = {(a1, . . . , av) ∈ Fv : pi (a1, . . . , av) = 0, ∀i ∈ {1, . . . ,m}} .

Let us introduce the notion of a zero-dimensional ideal.

Definition 2.21 (Zero-dimensional ideal) Let I ⊂ F[x] be an ideal. The ideal I is
said to be zero-dimensional if V (I) is finite. In this case, the quotient

F[x]/I

is a vector space over F of finite dimension.

All throughout this thesis we are going to encounter ideals that are of this type.
Indeed, we are going to be looking for solutions of systems over a finite field F of
prime size, so the polynomials

x
|F|
1 − x1, . . . , x

|F|
v − xv
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will be present in the ideals whose associated varieties we will be trying to find. As
a consequence, the ideals on which we will focus are always zero-dimensional.

Prior to defining a Gröbner basis, we need to establish some way to order elements
in F [x]. Let us first recall some preliminary concepts.

Definition 2.22 A monomial is an element of F [x] of the form

x1
α1 . . . xv

αv (xα for short),

where α1, . . . , αv are integers greater than or equal to zero. The degree of a monomial
is denoted and defined as

deg(xα) = α1 + . . .+ αv,

and a term is a monomial with a coefficient, that is, an element of the form

cxα, c ∈ F.

Definition 2.23 A monomial ordering ≺mon on F [x] is a relation on Z≥0
v (i.e.,

the monomial exponents) such that

1. The relation ≺mon is a total order, which means that for any α, β ∈ Z≥0
v,

exactly one of the following statements

α ≺mon β, α =mon β, β ≺mon α

holds.

2. If α ≺mon β and γ ∈ Z≥0
v, then α+ γ ≺mon β + γ.

3. The relation ≺mon is a well ordering, this is, every non-empty subset has a
smallest element.

Given two monomials xα,xβ ∈ F[x], we say that xα ≺mon xβ if and only if α ≺mon β.

Note that in the univariate case the only order satisfying these conditions is the
degree, yielding the ordered sequence

1 ≺ x ≺ x2 ≺ x3 ≺ . . .

In the multivariate case, however, there are many different ways to order monomials.
We detail the two monomial orderings that are the most relevant ones regarding the
computation of a Gröbner basis.

Definition 2.24 We define the following orderings on F[x].

1. The lexicographical ordering. For α, β ∈ Z≥0
v, we say that α ≺lex β (and

xα ≺lex xβ) if and only if the leftmost non-zero entry in the vector difference
β − α is positive.
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2. The graded reverse lexicographical ordering. For α, β ∈ Z≥0
v, we say α ≺grevlex

β (and xα ≺grevlex xβ) if and only if
∑
βi = deg(xβ) <

∑
αi = deg(xα) or

deg(xα) = deg(xβ) and the rightmost non-zero entry in the vector difference
β − α is negative.

Example 2.25 Consider the polynomial ring F [x1, x2]. The lexicographic ordering
yields the ordered sequence

1 ≺ x2 ≺ x2
2 ≺ . . . ≺ x1 ≺ x1x2 ≺ x1x2

2 ≺ . . . ≺ x1
2 ≺ x1

2x2 ≺ x1
2x2

2 . . . ,

while the graded reverse lexicographic yields the ordered sequence

1 ≺ x2 ≺ x1 ≺ x2
2 ≺ x1x2 ≺ x1

2 ≺ x2
3 ≺ x1x2

2 ≺ x1
2x2 ≺ x1

2 ≺ . . . .

Once a monomial ordering is fixed the following notions, which will be useful
later on, can be defined.

Definition 2.26 Let p be a polynomial in F [x] and let ≺mon be a monomial ordering
on F [x]. Then,

• The leading monomial of p with respect to ≺mon, denoted by LM≺mon (p), is the
maximal monomial of p with a non-zero coefficient.

• The leading coefficient of p with respect to ≺mon, denoted by LC≺mon (p), is the
coefficient associated to the leading monomial of p.

• The leading term of p with respect to ≺mon, denoted by LT≺mon (p), is the term
LC≺mon (p)LM≺mon (p).

The last step before introducing the concept of a Gröbner basis is to define a
concept called reduction, which is a generalisation of the Euclidean division. It is
defined as follows.

Definition 2.27 Given a set of polynomials G = {p1, . . . , pm} ⊂ F [x] and a poly-
nomial p ∈ F [x], we say that p reduces to r by G, and we write p→G r, if p can be
written as

p = c1p1 + . . .+ cmpm + r, ci ∈ F [x] , ∀i ∈ {1, . . . ,m}, r ∈ F[x],

and the leading monomial of r is not divisible by the leading monomials of p1, . . . , pm.

After this preliminary background, we are finally in a position to give a definition
of a Gröbner basis.

Definition 2.28 Let I ⊂ F [x] be an ideal and ≺mon a monomial ordering. A finite
set G = {g1, . . . , gs} ⊂ I is a Gröbner basis of the ideal I with respect to ≺mon if

∀g ∈ I, g →G 0.

Furthermore, a Gröbner basis is said to be reduced if for all i = 1, . . . , s it occurs that
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1. LC (gi) = 1.

2. LM (gi) does not divide any term of any gj for any j 6= i, j ∈ {1, . . . , s}.

Note that the notion of a reduced Gröbner basis is introduced to guarantee
uniqueness, as the following theorem ensures.

Theorem 2.29 Let I ⊂ F [x] be an ideal and let ≺mon be a monomial ordering on
F [x]. Then, I admits a unique reduced Gröbner basis.

We gave this definition of a Gröbner basis because we thought that it is a nat-
ural way to introduce the concept. In fact, this is the characterisation used in the
first algorithm that computes a Gröbner basis [Buchberger, 1965] as we will see
later. However, there are many equivalent characterisations. One of them, which is
usually taken as the classic definition of a Gröbner basis, is stated in the following
proposition.

Proposition 2.30 Let G be a Gröbner basis of the ideal I ⊂ F [x]. Then it occurs
that

∀p ∈ I, ∃g ∈ G such that LM (f) is divisible by LM (g) .

In what follows, we elaborate on how to compute a Gröbner basis of an ideal
and why computing a Gröbner basis of an ideal suffices to solve the corresponding
non-linear system.

2.5.2 Algorithms to compute a Gröbner basis

In [Buchberger, 1965, Buchberger, 1970], Bruno Buchberger introduced the notion
of a Gröbner basis of an ideal and proposed the first algorithm to compute it. For
that, he devised a characterisation of a Gröbner basis known as the Buchberger’s
criterion, which relies on a special kind of polynomials called S-polynomials. The
definition of an S-polynomial is the following.

Definition 2.31 Let g, h ∈ F [x] be two non-zero polynomials. The S-polynomial of
g and h, denoted by S (g, h), is

S (g, h) =
L

LT (g)
h− L

LT (h)
g,

where L is the least common multiple of LM (g) and LM (h).

Buchberger characterised a Gröbner basis in terms of a property that the S-
polynomials of all pairs of polynomials in the Gröbner basis satisfy, which is stated
in the next theorem.
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Theorem 2.32 (Buchberger’s criterion) Let G ⊂ F [x] be a set of non-zero poly-
nomials. Then, G is a Gröbner basis if and only if

∀g, h ∈ G, g 6= h, S (g, h)→G 0.

Buchberger’s constructive algorithm to compute a Gröbner basis of an ideal builds
on the criterion of Theorem 2.32, and it basically consists in successively adding to
the initial generating set of the ideal the S-polynomials of pairs of elements that do
not reduce to zero. In particular, the algorithm is as follows.

Buchberger’s algorithm
Input: F = {f1, . . . , fm} ⊂ F [x] and ≺mon a monomial ordering on F [x]
G = F
S = {{p, q} : p, q ∈ G, p 6= q}
while S 6= ∅ do

Select {p, q} ∈ S
S := S \ {{p, q}}
Compute h such that S (p, q)→G h
if h 6= 0 then

S := S ∪ {{g, h} : g ∈ G}
G := G ∪ {h}

end if
end while
return G

Buchberger proved that his algorithm terminates and that it indeed outputs a
Gröbner basis.

Remark 2.33 Buchberger’s algorithm as written above does not return a unique
Gröbner basis. Note that it can be forced to do so by checking some extra conditions
to guarantee that the Gröbner basis is reduced.

However, a disadvantage of Buchberger’s algorithm is that it carries out many
useless operations, in the sense that it computes many reductions of S-polynomials
that will be zero. Note that those S-polynomials that reduce to zero make no contri-
bution to the final Gröbner basis, so computing their reductions only slows down the
algorithm. Later, Buchberger’s algorithm was improved in several ways [Kollreider
and Buchberger, 1978, Buchberger, 1979] and some results on its complexity were
achieved [Buchberger, 1983].

A different approach was taken by Lazard [Lazard, 1983] in 1983 , when he no-
ticed that successively performing Gaussian elimination without any row or column
swapping over a certain Macaulay matrix [Macaulay, 1994] was equivalent to per-
forming Buchberger’s algorithm. A Macaulay matrix in a certain degree of a given
set of polynomials in F[x] is essentially a matrix whose rows can be interpreted as
the multiples of those polynomials by all monomials up to a given degree. Let us
introduce the concept formally.
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Definition 2.34 Let p1, . . . , pm ∈ F [x] be polynomials with di = deg (pi), and let ≺
be a monomial ordering on F [x]. Denote by

M≺d (F [x])

the ordered set whose elements are those from the set Md (F [x]) ordered decreasingly
with respect to ≺. Denote its cardinality by N |F|d,x,≺.

For the polynomials p1, . . . , pm, the Macaulay matrix in degree d for ≺, denoted
by Macd,≺ (p1, . . . , pm), is a matrix with

N
|F|
d−d1,x,≺ + . . .+N

|F|
d−dm,x,≺

rows, N |F|d,x,≺ columns and entries in F in such a way that:

• The rows of Macd,≺ (p1, . . . , pm) are indexed by the polynomials

mjpi, where mj ∈ M≺d−di (F [x]) , j ∈ N |F|d−di,x,≺, i ∈ {1, . . . ,m}.

• The columns of Macd,≺(p1, . . . , pm) are indexed by the monomials in M≺d (F [x]).

• The entry of Macd,≺ (p1, . . . , pm) corresponding to the row indexed by mjpi,
with mj ∈ M≺d−di (F [x]) for some j ∈ N |F|d−di,x,≺ and some i ∈ {1, . . . ,m}, and
to the column indexed by mk ∈ M≺d (F [x]), is the coefficient of the monomial
mk in the polynomial mjpi.

More precisely, if

pi =
∑
α

cαx
α, and mj = xβ ∈M≺d−di (F [x]) for some β ∈ Nv,

then the entry of Macd,≺ (p1, . . . , pm) in the row indexed by xβpi and in the column
indexed by mk = xα+β is cα, this is,


xα+β

. . . . . . . . . . . .
xβpi . . . cα . . .
. . . . . . . . . . . .

.
To clarify the notion of a Macaulay matrix see the following example.

Example 2.35 Consider the polynomials

f1 = 1 + x2
2 + 2x1 + x1x

2
2, f2 = 4x1x

2
2 + 3x2

1 + x2
1x2

in F5 [x1, x2]. Under the lexicographic order ≺, the Macaulay matrix in degree 3,
Mac3,≺(f1, f2), equals

(x3
1 x2

1x2 x2
1 x1x

2
2 x1x2 x1 x3

2 x2
2 x2 1

f1 0 0 0 1 0 2 0 1 0 1
f2 0 1 3 4 0 0 0 0 0 0

)
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Since the Macaulay matrix constructed, Mac3,≺(f1, f2), is in the same degree as that
of the polynomials f1, f2, the matrix only represents the polynomials f1, f2.

The Macaulay matrix in degree four would represent the multiplications of f1, f2

by monomials of degree one in F [x1, x2], and so on for subsequent degrees.

Indeed, given an ideal I ⊂ Fn, Lazard proved [Lazard, 1983] that there exists
a certain degree D ∈ N such that Gaussian elimination (with no row or column
swapping) performed on the Macaulay matrix of the generating set of I in degree D
yields a Gröbner basis of I. This is stated in the following result.

Theorem 2.36 [Lazard, 1983, Lazard’s theorem] Let I = 〈p1, . . . , pm〉 be an ideal
of F[x]. There exists a degree D ∈ N such that the rows of the row echelon form (with
Gaussian elimination performed with no row or column swapping) of the Macaulay
matrix

MacD,≺ (p1, . . . , pm)

represent a Gröbner basis of the ideal I.

Lazard’s theorem ensures then that by successively performing Gaussian elim-
ination on Macaulay matrices in increasing degree a Gröbner basis is eventually
contained in a Macaulay matrix. Note that the Macaulay matrix that contains the
Gröbner basis is in a degree that equals at least that of the generating polynomials
of I of highest degree.

Remark 2.37 Note that testing whether a certain Macaulay matrix contains a Gröb-
ner basis can be done efficiently using any of the characterisations of a Gröbner basis
(see for example Proposition 2.30).

Several algorithms that build on this idea of successively computing row eche-
lon forms of Macaulay matrices in increasing degrees have been proposed. Among
these, we focus on the algorithms F4 [Faugère, 1999] and F5 [Faugère, 2002], both
introduced by Jean-Charles Faugère with the latter being one of the fastest known
algorithms to compute Gröbner bases. The F4 algorithm presents an analogous issue
to Buchberger’s, in the sense that many linear combinations of rows of the Macaulay
matrices that will end up being zero rows are computed anyway, yielding very sparse
matrices. In [Faugère, 2002] Faugère gave a criterion to detect some linear combina-
tions of rows that will lead to zero and avoid its computation, which gave rise to the
F5 algorithm.

Finally, and as we have been saying from the beginning, computing the reduced
Gröbner basis of an ideal suffices to solve the associated system of equations. This is
guaranteed by the following theorem, which gives the power of variable elimination
to Gröbner bases, analogously to what happens with Gaussian elimination in the
linear case.



2.5. Gröbner bases: A tool for solving non-linear systems 51

Theorem 2.38 (Elimination property of Gröbner bases) Let G be a Gröbner
basis of an ideal I ⊂ F [x] with respect to the lexicographic ordering, with x1 ≺ . . . ≺
xv. Then, for i ∈ {1, . . . ,m}, it holds that

I ∩ F [x1, . . . , xi] = 〈G ∩ F [x1, . . . , xi]〉,

where the ideal on the right hand side is generated over F [x].

A consequence of Theorem 2.38 is that a Gröbner basis G of an ideal I ⊂ F [x]
with respect to the lexicographic ordering is of the form

G =



g1,1 (x1, . . . , xv) ,
...

g1,`1 (x1, . . . , xv) ,

g2,1 (x2, . . . , xv) ,
...

g2,`2 (x2, . . . , xv) ,
...

gv−1,`v−1 (xv−1, xv) ,
...

gv (xv) .

for some `1, . . . , `v−1 ∈ N. In particular, the polynomial gv is univariate and so the
equation gv(xv) = 0 can be solved in polynomial time. Substituting the solutions of
the former equation in the equations of the form gv−1,j = 0, with j ∈ {1, . . . , `v−1},
yield univariate equations, which can again be solved in polynomial time. Succes-
sively substituting backwards, the solutions of the system of equations associated to
the ideal is found in polynomial time.

Let us briefly mention that this nice property of elimination only holds for a
Gröbner basis with respect to the lexicographic ordering. However, the lexicographic
ordering is usually less efficient than the graded reverse lexicographic ordering re-
garding the computation of a Gröbner basis. We do not extend on this, let us only
say that there are efficient algorithms to transform a Gröbner basis with respect to
one ordering into a Gröbner basis with respect to another ordering [Faugère et al.,
1993, Faugère et al., 2014].

2.5.3 Complexity asymptotics

According to Theorem 2.36, the complexity of computing a Gröbner basis coincides
with that of performing Gaussian elimination over a Macaulay matrix of a certain
degree D ∈ N that is known to exist. As a consequence, this degree D at which
the Gröbner basis is found is crucial to the overall efficiency of the algorithms that
follow this approach. The concept of degree of regularity is introduced to formalise
this idea as follows.
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Definition 2.39 Let p1, . . . , pm ∈ F[x] be homogeneous polynomials and let I =
〈p1, . . . , pm〉 ⊂ F[x] be an ideal. We define the degree of regularity of I, denoted by
dreg (I), as

dreg (I) = min
{
d ∈ N : dimF (p ∈ F [x] with deg (p) = d) =

(
v + d− 1

d

)}
.

If p1, . . . , pm ∈ F[x] are not homogeneous, then denoting by p̃i the homogeneous part
of highest degree of pi for each 1 ≤ i ≤ m, we define:

dreg (〈p1, . . . , pm〉) = dreg (〈p̃1, . . . , p̃m〉) .

The degree of regularity bounds the maximal degree reached in the successive
computations of the echelon form of the Macaulay matrices, so the efficiency of com-
puting a Gröbner basis that the algorithms based on Theorem 2.36 display heavily
depends on it. In particular, it has been proved that the complexity of computing a
Gröbner basis with the F5 algorithm depends on the degree of regularity as follows.

Proposition 2.40 [Bardet et al., 2015] Let I = 〈p1, . . . , pm〉 ⊂ F[x] be an homoge-
neous zero-dimensional ideal and let dreg be its degree of regularity. The complexity
of computing a Gröbner basis for the graded reverse lexicographic ordering with the
F5 algorithm is, in field operations, bounded when dreg grows to infinity by

O
(
mdreg

((
v + dreg − 1

dreg

)ω))
,

which is very roughly O
(
mvωdreg

)
.

Determining the degree of regularity of a given system is not easy in general, as
it depends on the inner structure of the ideal. However, there is a certain class of
square systems (this is, those with as many equations as unknowns) whose degree of
regularity is well understood, as well as the behaviour of computing a Gröbner basis
of their associated ideals [Lazard, 1983, Giusti, 1984]. This class of systems are those
associated to an ideal whose generators form what is called a regular sequence. The
notion of regularity is the following.

Definition 2.41 An homogeneous sequence of polynomials (p1, . . . , pm) is regular if
for all i ∈ {1, . . . ,m} and g ∈ F[x] such that gpi ∈ 〈f1, . . . , fi−1〉, then g is also in
〈f1, . . . , fi−1〉.

A non-homogeneous sequence of polynomials (p1, . . . , pm) is regular if the homoge-
neous sequence (p̃1, . . . , p̃m) is regular, where p̃i denotes the homogeneous component
of highest degree of pi, i ∈ {1, . . . ,m}.

A particularly interesting property of homogeneous regular systems is that the
F5 algorithm does not perform any useless reductions to zero when performing the
F5 algorithm on the associated ideals. The smooth behaviour of the F5 algorithm
with respect to ideals generated by regular systems is ensured by the following result.
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Theorem 2.42 [Faugère, 2002] The homogeneous sequence (p1, . . . , pm) is regular
if and only if there are no reductions to 0 in the F5 algorithm.

For non-homogeneous regular systems, a degree fall is said to occur during the
computation of a Gröbner basis with the algorithm F5 if a linear combination of
rows of a Macaulay matrix produces a row that represents a polynomial of a degree
that is strictly lower than those that were combined. Degree falls are analogous
to reductions to zero in the homogeneous regular case and they should not occur
in general during the computation of a Gröbner basis with the F5 algorithm of an
ideal generated by a non-homogeneous regular sequence [Faugère et al., 2013, Bardet,
2004].

The notion of regularity applies only to square systems. However, throughout
this thesis we will encounter systems that have more equations than unknowns (i.e.,
that are overdefined). This is why it is important to mention that the notion of
regularity was extended to overdefined systems in [Bardet, 2004], giving rise to the
next notion of semi-regularity.

Definition 2.43 An homogeneous sequence of polynomials (p1, . . . , pm) is semi-regu-
lar if for all i ∈ {1, . . . ,m} and g such that

gpi ∈ 〈f1, . . . , fi−1〉 and deg (gpi) < dreg,

then g is also in 〈f1, . . . , fi−1〉.
A non-homogeneous sequence of polynomials (p1, . . . , pm) is semi-regular if the

homogeneous sequence (p̃1, . . . , p̃m) is semi-regular, where p̃i denotes the homoge-
neous component of highest degree of pi.

Analogously to what happened for regular systems, the behaviour of computing a
Gröbner basis of semi-regular systems is also well-understood. Analogously to what
occurs in the regular case, when performing the F5 algorithm on semi-regular systems
there are no unnecessary reductions to zero or degree falls occurring. Besides, the
degree of regularity can be characterised for semi-regular systems as we detail in this
proposition.

Proposition 2.44 Let (p1, . . . , pm) ∈ F[x] be a semi-regular sequence and let di =
deg(pi) for 1 ≤ i ≤ m. The degree regularity of 〈p1, . . . , pm〉 is the index i of the first
non-positive coefficient of the series∏m

i=1

(
1− zdi

)
(1− z)v

=
∑
i≥0

ciz
i.
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Chapter 3

Cryptanalysis of Aaronson and
Christiano’s scheme: The
noise-free case

This chapter is dedicated to analyse the hardness of the so-called hidden
subspaces problem, proposed by Scott Aaronson and Paul Christiano at
STOC′12.

Using techniques of polynomial modelling and algebraic cryptanalysis,
we design a randomised polynomial-time algorithm that solves degree-d
instances of the hidden subspaces problem over fields F of prime size that
satisfy the condition |F| > d. Over the field F2, we present a heuristic
randomised polynomial-time algorithm that solves degree-d instances of
the hidden subspaces problem with no constraints on the degree. We
report experimental results on the performance of both algorithms that
confirm that they are efficient in practice.

Since the security of the noise-free version of the public key quantum
money scheme of Aaronson-Christiano relies on the hardness of the hid-
den subspaces problem over F2, our results yield a cryptanalysis of their
scheme and of any of its extensions to a field F satisfying the condition
|F| > d.
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3.1 Modelling the HSP|F|

The process of modelling a problem essentially consists of transitioning from a con-
crete problem to an abstract system of polynomial equations that represents it, in
the sense that finding a solution of the concrete problem is equivalent to finding a
solution of the polynomial system that models it.

Along this chapter we focus on analysing the hardness of the HSP|F| and the
first step towards that aim is finding a convenient model for it. The relevance of the
model is not minor: the more optimal it is, the bigger the chances are of obtaining
favourable results from its analysis. In light of the complexity performance exhibited
by the algorithms to compute Gröbner bases that we described in Section 2.28, it
is convenient to construct a model for the HSP|F| taking into account the following
observations.

• The number of variables affects the complexity of a Gröbner basis computation
(the more the variables, the higher the complexity, see Proposition 2.40), so
we are interested in a model having as few variables as possible.

• It is better if the model has a unique solution. In general, finding an infinite
number of solutions for a problem that models the private key recovery in a
public-key system indicates that the model is not optimal and can be refined.

In the first part of this section we describe a straightforward model, which we
refer to as the naive one, and observe that it has two main drawbacks: first, the
system of equations has multiple solutions and second, it does not actively exploit
the relation of orthogonality between the subspaces A and A⊥. These flaws make
the naive model unappealing for our purposes, but it sets the ground to design an
optimised model, which is what we do in the second part of this section.

3.1.1 The naive model

A subspace is a particularly well-structured set that is determined by any basis of
it, as every element of a subspace can be expressed as a linear combination of the
elements of such a basis. Therefore, the first thing that comes to mind in order to
recover a subspace that has been encoded as the zeros of a certain set of polynomials
is to recover a basis of it.

Therefore, given a degree-d instance (p,q) ∈ F[x]m × F[x]m of the HSP|F|, the
straightforward idea to recover the subspaces A ⊂ Fn and A⊥ ⊂ Fn of dimension n/2
is to define two matrices of unknowns that represent a basis of A and A⊥ respectively,
and go from there. By expressing the elements of A and A⊥ as linear combinations
of the elements in the corresponding basis, and by forcing the polynomials of the
m-tuple p ∈ F[x]m to vanish on all the elements of A and the polynomials of the
m-tuple q ∈ F[x]m to vanish on all the elements of A⊥, we obtain a first and naive
approach to construct a system of equations that models the HSP|F|.
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To make it more visual we write some equations of the model constructed as
explained above, derived from a toy example of a degree-2 instance of the HSP2, say
(p,q) ∈ F2[x]4 × F2[x]4, where x = (x1, . . . , x4) and

p1 = x1x2 + x2x4 + x2,

q1 = x1x2 + x1 + x2x3 + x2x4 + x3 + x4.

Remark 3.1 Note that the polynomials are chosen to be quadratic only to make the
example short, since the degree of the polynomials in the HSP|F| is at least three.

To construct the naive model we define a matrix of unknowns in M2,4(F2) that
represents a basis of the 2-dimensional subspace A ⊂ F4

2. We denote the matrix of
unknowns by

G =

(
g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

)
and we set (y1, y2) to be formal variables over F2. This way, a generic element of A
can be expressed as (y1, y2)G and so we can force the evaluation of p1 on (y1, y2)G
to be zero, this is,

p1 ((y1, y2)G) = (g1,1g2,2 + g1,2g2,1 + g1,2g2,4 + g1,4g2,2) y1y2

+ (g1,1g1,2 + g1,2g1,4 + g1,2) y1

+ (g2,1g2,2 + g2,2g2,4 + g2,2) y2

=0

Now, since a degree-2 polynomial over F2[y1, y2] is identically zero if and only if each
of its coefficients is zero, we finally obtain the following equations in the unknown
elements of the basis matrix:

g1,1g2,2 + g1,2g2,1 + g1,2g2,4 + g1,4g2,2 = 0,

g1,1g1,2 + g1,2g1,4 + g1,2 = 0,

g2,1g2,2 + g2,2g2,4 + g2,2 = 0.

Similarly, we define a matrix of unknowns inM2,4(F2) as the basis of the 2-dimen-
sional subspace A⊥ ⊂ F4

2, which we denote by

G⊥ =

(
g⊥1,1 g⊥1,2 g⊥1,3 g⊥1,4
g⊥2,1 g⊥2,2 g⊥2,3 g⊥2,4

)
and proceed as before. Only for completeness, the equations obtained from the
polynomial q1 in the unknowns g⊥1,1, . . . , g⊥2,4 are

g⊥1,1g
⊥
1,2 + g⊥1,1 + g⊥1,2g

⊥
1,3 + g⊥1,2g

⊥
1,4 + g⊥1,3 + g⊥1,4 = 0,

g⊥1,1g
⊥
2,2 + g⊥1,2g

⊥
2,1 + g⊥1,2g

⊥
2,3 + g⊥1,2g

⊥
1,4 + g⊥1,3g

⊥
2,2 + g⊥1,4g

⊥
2,2 = 0,

g⊥2,1g
⊥
2,2 + g⊥2,1 + g⊥2,2g

⊥
2,3 + g⊥2,2g

⊥
2,4 + g⊥2,3 + g⊥2,4 = 0.
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Remark 3.2 To obtain all the equations of the naive model, we would need to include
the equations derived analogously from the polynomials p2, p3, p4, q2, q3, q4, whichever
they are.

After exemplifying how to construct the naive model we are ready to formally
define it, which we do in the following proposition.

Proposition 3.3 (The Naive Model) Let (p,q) ∈ F[x]m × F[x]m be a degree-d
instance of the HSP|F|, where x = (x1, . . . , xn). Let the following matrices

G =
(
gi,j
)

1≤i≤n/2
1≤j≤n

∈Mn/2,n (F) , G⊥ =
(
g⊥i,j
)

1≤i≤n/2
1≤j≤n

∈Mn/2,n (F)

be matrices of unknowns. The naive model, denoted by SysNaiveHSP|F|
, is defined as

the following system of equations:

SysNaiveHSP|F|
= {Coeff(pi, t) = 0,Coeff(qj , t) = 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ m,

t ∈ M
(
F[y1, . . . , yn/2]

)
},

where Coeff(pi, t) denotes the coefficient of the monomial t ∈ M
(
F[y1, . . . , yn/2]

)
in

the expression
pi
(
(y1, . . . , yn/2)G

)
,

and Coeff(qj , t) denotes the coefficient of the monomial t ∈ M
(
F[y1, . . . , yn/2]

)
in the

expression
qj

(
(y1, . . . , yn/2)G

⊥
)
.

SysNaiveHSP|F|
is a model for the HSP|F| with

O
(
nd+1

)
equations over F in n2 variables. Indeed, for every n/2-dimensional subspace A ⊂ Fn
such that A is a solution of the HSP|F| on (p,q), it occurs that the entries of the
matrices

G =
(
gi,j
)
∈Mn/2,n(F), G⊥ =

(
g⊥i,j
)
∈Mn/2,n(F)

are solutions of the system SysNaiveHSP|F|
, where G denotes a basis matrix of A and

G⊥ denotes a basis matrix of A⊥.

Proof. Let (p,q) ∈ F[x ]m × F[x ]m be a degree-d instance of the HSP|F|, where
x = (x1, . . . , xn), and let the matrices

G =
(
gi,j
)

1≤i≤n/2
1≤j≤n

∈Mn/2,n (F) , G⊥ =
(
g⊥i,j
)

1≤i≤n/2
1≤j≤n

∈Mn/2,n (F)

denote a basis matrix of A and a basis matrix of A⊥, respectively. Observe that for
every i, j ∈ {1, . . . ,m} it holds that

pi
((
y1, . . . , yn/2

)
G
)

=
∑

t∈M(F[y1,...,yn/2])

Coeff(pi, t)t,

qj
((
y1, . . . , yn/2

)
GT
)

=
∑

t∈M(F[y1,...,yn/2])

Coeff(qj , t)t.
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It follows that A is a solution of the HSP|F| if and only if{
pi(A) = 0, ∀i ∈ {1, . . . ,m},
qj(A

⊥) = 0, ∀j ∈ {1, . . . ,m},

⇐⇒

{
pi(
(
y1, . . . , yn/2

)
G) = 0, ∀i ∈ {1, . . . ,m},

qj
((
y1, . . . , yn/2

)
GT
)

= 0, ∀j ∈ {1, . . . ,m},

⇐⇒


∑

t∈M(F[y1,...,yn/2])
Coeff(pi, t)t = 0, ∀i ∈ {1, . . . ,m},∑

t∈M(F[y1,...,yn/2])
Coeff(qj , t)t = 0, ∀j ∈ {1, . . . ,m},

*⇐⇒

{
Coeff(pi, t) = 0, ∀i ∈ {1, . . . ,m},
Coeff(qj , t) = 0, ∀j ∈ {1, . . . ,m},

this is, if and only if the entries of G, G⊥ are solutions of the system SysNaiveHSP|F|
.

Note that the last equivalence, *⇐⇒, derives from the fact that a polynomial over a
finite field is identically zero if and only if its coefficients are.

Besides, note that for each i ∈ {1, . . . ,m}, the polynomial pi (respectively qi)
gives rise to at most as many equations of the form

Coeff(pi, t) = 0, t ∈ M
(
F[y1, . . . , yn/2]

)
,

as the total number of existing monomials in F
[
y1, . . . , yn/2

]
of degree less than or

equal to d. The number of monomials in F[y1, . . . , yn/2] of a given degree 1 ≤ deg ≤ d
equals the number of combination with repetitions of n/2 choose deg, which we
denote by ((

n/2

deg

))
:=

(
n/2 + deg − 1

deg

)
.

Then, the total number of equations derived from pi is at most((
n/2

d

))
+

((
n/2

d− 1

))
+ . . .+

((
n/2

1

))
= O

(
nd
)
.

Now, considering that (p,q) is a pair of m-tuples of polynomials, with each of the
polynomials giving rise to equations, and bearing in mind that n ≤ m ≤ 2n, the
total of equations of SysNaiveHSP|F|

is O(nd+1), as required.

The naive model is a first approach. However, it has characteristics that may
slow down the computation of a Gröbner basis of the ideal associated to the system.
First, the system has as many equivalent solutions as pairs of the form (G,GT ),
where G,GT are full rank matrices representing a basis of the subspace A and A⊥

respectively. This equals(
(|F|n − 1)(|F|n − |F|), . . . , (|F|n − |F|n/2−1)

)2
,

which grows rapidly. Second, we are not actively exploiting the orthogonality be-
tween A and A⊥ since we have defined two uncorrelated basis matrices G and G⊥,
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underusing information and possibly losing structure on SysNaiveHSP|F|
. This sug-

gests that the model can be refined.

In what follows we optimise the model in such a way that we use the orthogonality
relation between the subspaces and we achieve uniqueness of the solution, at the
expense of having a model that is only valid with a certain probability.

3.1.2 Our optimised model

The lesson we extract from the naive model is that if we want to construct a model for
the HSP|F| that has a unique solution, then we need to impose some extra conditions
on the subspace A. The following result is the key for the design of our model:

Lemma 3.4 Let (p,q) ∈ F[x]m×F[x]m be a degree-d instance of the HSP|F| and let
A ⊂ Fn be a subspace of dimension n/2. If A is a solution of the instance (p,q) of
the HSP|F|, then SA is also a solution of the instance (p,q) of the HSP|F| for any
S ∈ GLn/2(F).

Proof. Note that since S ∈ GLn/2(F), the function

Fn/2 → Fn/2

(y1, . . . , yn/2) 7→ (y1, . . . , yn/2)S

is a bijection. Indeed, surjectivity holds since given an element (z1, . . . , zn/2) ∈ Fn/2,

∃(y1, . . . , yn/2) ∈ Fn/2, (y1, . . . , yn/2) = (z1, . . . , zn/2)S−1,

such that (y1, . . . , yn/2) 7→ (z1, . . . , zn/2). Injectivity holds since

(y1, . . . , yn/2)S = (y′1, . . . , y
′
n/2)S =⇒ (y1, . . . , yn/2) = (y′1, . . . , y

′
n/2)

as a consequence of multiplying the equality by S−1.

The bijectivity of the mapping guarantees that if
(
y1, . . . , yn/2

)
∈ Fn/2 is a vector

of formal variables, then (y1, . . . , yn/2)S = (ỹ1, . . . , ỹn/2) is also a vector of formal
variables, and so

pi
((
ỹ1, . . . , ỹn/2

)
A
)

= 0 ∀i ∈ {1, . . . ,m},

as a consequence of (p,q) being a solution of the HSP|F|. Furthermore, the equation

qj

((
y1, . . . , yn/2

)
(SA)⊥

)
= 0, ∀j ∈ {1, . . . ,m},

holds because (SA)⊥ = A⊥. By definition of the orthogonality relation,

A⊥ = {a⊥ ∈ Fn : a · a⊥ = 0, ∀a ∈ A}
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where · is the standard scalar product over Fn. Translating this condition into matrix
form, G⊥ is a basis matrix of A⊥ if and only if G⊥GT = 0, where G is a basis matrix
of A. Now it occurs that

G⊥ (SG)T = G⊥GTST = 0

and so (SA)⊥ = A⊥ as required.

Lemma 3.4 allows us to construct a model for the HSP|F| with a unique solution
provided that some condition on the subspace A is imposed. Let us explain how.
Suppose that we have a degree-d instance (p,q) ∈ F[x]m × F[x]m of the HSP|F| and
that the entries of the bases G and G⊥ are solutions of the system SysNaiveHSP|F|

.
Suppose that G has the form

(3.1) G = (G1|G2) , G1 ∈ GLn/2 (F) .

If we set S = G1
−1, then Lemma 3.4 guarantees that

SG = G−1
1 (G1|G2) = (I|G−1

1 G2),

where I ∈ GLn/2(F) is the identity matrix, is a basis of A. In this case the subspace
A admits a basis of the form (I|G−1

1 G2), which is unique since it coincides with the
reduced row echelon form of the matrix G. We say that the basis G is in systematic
form.

Clearly, though, not every subspace admits a basis in systematic form. In fact, it
only admits one if condition (3.1) is verified. The probability that a subspace admits
a basis in systematic form coincides then with the probability that the square matrix
of order n/2 denoted by G1 is invertible, which is known to be

γ|F|(n/2) =

n/2∏
i=1

(
1− 1

|F|i

)
.

This probability can be approximated very roughly by

1− 1

|F|

when n takes large values, which is reasonably high even when |F| = 2. Condition 3.1
seems then a sensible restriction to impose over subspaces.

Note that a consequence of considering only solutions that admit a basis in sys-
tematic form is first the reduction of the number of unknowns and second the explicit
use of the orthogonality relation between the subspaces since(

I|G−1
1 G2

)⊥
=
(
(−G−1

1 G2)T |I
)
.

By considering only subspaces that admit a basis in systematic form we can
construct a refined model that fulfils the characteristics of a good model that we
mentioned at the beginning of this chapter. The optimised model constructed by
restricting to subspaces that admit a basis in systematic form is formalised in the
following proposition.
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Proposition 3.5 (Our Model) Let (p,q) ∈ F[x]m × F[x]m be a degree-d instance
of the HSP|F|. Set N = n2/4 and let

(
y1, . . . , yn/2

)
∈ Fn/2 be formal variables. Let

G =
(
gi,j
)

1≤i≤n/2
1≤j≤n/2

∈Mn/2,n/2 (F)

be a matrix of unknowns. Our model, denoted by SysHSP|F|
, is defined as the following

system:

SysHSP|F|
= {Coeff(pi, t) = 0,Coeff(qj , t) = 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ m

t ∈ M
(
F[y1, . . . , yn/2]

)
},

where Coeff(pi, t) denotes the coefficient of the monomial t ∈ M
(
F[y1, . . . , yn/2]

)
in

the expression
pi
((
y1, . . . , yn/2

)
· (I|G)

)
and Coeff(qj , t) denotes the coefficient of the monomial t ∈ M

(
F[y1, . . . , yn/2]

)
in the

expression
qj
((
y1, . . . , yn/2

)
·
(
−GT |I

))
.

SysHSP|F|
is a probabilistic model for the HSP|F| with

O
(
nd+1

)
equations over F in N variables. Indeed, if the n/2-dimensional subspace A ⊂ Fn is
a solution of the HSP|F| on (p,q), then A admits with probability γ|F|(n/2) a basis
(I|G) in systematic form and the entries of G ∈ Mn/2,n/2(F) are solutions of the
system SysHSP|F|

.

We have constructed a refined model SysHSP|F|
for the HSP|F|. Before proceeding

further, it may prove useful to spend some time exploring if the system presents
different characteristics depending on the choice of the parameters of the HSP|F|
instance and, if so, study the systems separately.

It turns out that the size of the ground field F impacts the structure of our model.
We explain how in the following example.

Example 3.6 Set n = 4, d = 3 and suppose that the degree-3 polynomial

p1(x) = x1x2x3 + x2x3x4 + x1x2 + x3x4 + x4 ∈ F2[x], x = (x1, x2, x3, x4),

vanishes over a 2-dimensional subspace A ⊂ F4
2 that admits a basis in systematic

form. According to our model SysHSP|F|
of Proposition 3.5, if we denote a basis in

systematic form of A by

G =
(
gi,j
)

1≤i≤2
1≤j≤2

∈M2,2 (F2) ,
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the equations of SysHSP|F|
derived from p1 are the coefficients of all monomials of

F2[y1, y2] appearing in the expression

p1 ((y1, . . . , y2) (I|G)) =p1(y1, y2, g1,1y1 + g2,1y2, g1,2y1 + g2,2y2)

=y2
3(g2,1g2,2) + y1

2y2(g1,1 + g1,1g1,2)

+ y1y2
2(g2,1 + g1,1g2,2 + g2,1g1,2)

+ y1y2(1 + g1,1g2,2 + g1,2g2,1)

+ y1
2(g1,1g1,2) + y2

2(g2,1g2,2) + g1,2y1 + g2,2y2.

However, since F2 is cyclic of order two, the following equalities hold

g2
1,1 = g1,1, g

2
1,2 = g1,2, g

2
2,1 = g2,1, g

2
2,2 = g2,2,

y1
2y2 = y1y2

2 = y1y2,

y2
1 = y1,

y2
2 = y2,

and produce simplifications on the expression above. More in particular, the expres-
sion above gets finally reduced to

p1 ((y1, . . . , y2) (I|G)) =(g1,1g1,2 + g1,1 + g2,1 + 1)y1y2

+ (g1,1g1,2 + g1,2)y1 + g2,2y2

and the equations of SysHSP|F|
derived from p1 after making the appropriate reductions

are:

g1,1g1,2 + g1,1 + g2,1 + 1 = Coeff(p1, y1y2) + Coeff(p1, y1y2
2) + Coeff(p1, y1

2y2) = 0,

g1,1g1,2 + g1,2 = Coeff(p1, y1) + Coeff(p1, y1
2) = 0,

g2,1g2,2 + g2,2 = Coeff(p1, y2) + Coeff(p1, y2
2) = 0.

This shows that our model for the HSP2 must take into account the field equations

y2
1 − y1 = 0, y2

2 − y2 = 0,

g2
1,1 − g1,1 = 0, g2

1,2 − g1,2 = 0,

g2
2,1 − g2,1 = 0, g2

2,2 − g2,2 = 0.

Abstracting a bit further, we can see that reductions do not only occur over F2, but
any time that the condition |F| ≤ d is satisfied, since the field equations

y
|F|
i − yi = 0, ∀i ∈ {1, . . . ,m},

cause in this case that reductions take place. This is not the case if |F| > d.

By dedicating some time to analyse the model first, we have detected a difference
between the cases |F| ≤ d and |F| > d, which is why we divide the study of the
hardness of the HSP|F| into those two scenarios. We start studying the case HSP|F|
when |F| > d.
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3.2 The HSP|F| for |F| > d

We dedicate this section to analyse the system SysHSP|F|
in the case |F| > d, so this

condition over the field F is assumed hereafter although not explicitly stated.

We first present an algorithm that solves the HSP|F| by detecting and exploiting
the presence of linear equations in the system SysHSP|F|

. We show that our algorithm
runs in randomised polynomial-time and that its probability of success is high, in-
creasing with the size of F. Our algorithm translates in a randomised polynomial-time
cryptanalysis of the quantum money scheme of Aaronson-Christiano extended to a
field F verifying that |F| > d. Finally, we report experimental results supporting our
theoretical findings and proving our algorithm to be very efficient in practice.

3.2.1 Our algorithm solving the HSP|F| for |F| > d

As we saw in Example 3.6, in this scenario the equations in the system SysHSP|F|
do

not reduce modulo the field equations, which actually ends up causing the system
to display a very favourable behaviour. In fact, the existence of linear equations in
the system, along with the fact that we can characterise them and that there are
sufficiently many of them, allows us to design an algorithm that solves the HSP|F|.

In the following result we characterise the linear equations that are present in
the system SysHSP|F|

.

Lemma 3.7 Let
(
p,q

)
∈ F[x]m × F[x]m be a degree-d instance of the HSP|F|. For

i ∈ {1, . . . ,m}, let p(1)
i , q

(1)
i denote the homogeneous components of degree 1 of pi

and qi, respectively, that is:

pi
(1) =

n∑
j=1

λpi,jxj , where λpi,1, . . . , λ
p
i,n ∈ F,

qi
(1) =

n∑
j=1

λqi,jxj , where λqi,1, . . . , λ
q
i,n ∈ F.

For i ∈ {1, . . . ,m} and k ∈ {1, . . . , n/2}, the linear equations
n/2∑
j=1

λpi,j+n/2gk,j + λpi,k,

n/2∑
j=1
−λqi,jgj,k + λqi,k+n/2,

are in SysHSP|F|
.

Proof. Recall that according to the definition of our model SysHSP|F|
in Propo-

sition 3.5, if the matrix of unknowns

G = (gi,j)1≤i,j≤n/2 ∈Mn/2(F)
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is such that (I|G) represents a basis in systematic form of the subspace A that is
solution of the degree-d instance (p,q) ∈ F[x]m×F[x]m of the HSP|F|, the equations
in SysHSP|F|

are

SysHSP|F|
= {Coeff(pi, t) = 0,Coeff(qj , t) = 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ m,

t ∈ M
(
F[y1, . . . , yn/2]

)
},

where Coeff(pi, t) is the coefficient of the monomial t in the expression

pi
((
y1, . . . , yn/2

)
(I|G)

)
,

which after expanding equals

(3.2) pi

y1, . . . , yn/2,

n/2∑
k=1

gk,1yk, . . . ,

n/2∑
k=1

gk,n/2yk

 ,

and Coeff(qi, t) is the coefficient of the monomial t in the expression

qi
((
y1, . . . , yn/2

) (
−GT |I

))
,

which after expanding it equals

(3.3) qi

n/2∑
k=1

−g1,kyk, . . . ,

n/2∑
k=1

−gn/2,kyk, y1, . . . , yn/2

 .

Recall from Example 3.6 that the condition |F| > d guarantees that the field
equations

y
|F|
i − yi = 0, ∀i ∈ {1, . . . ,m}

do not affect any of the equations of SysHSP|F|
by causing reductions. This is, given

a monomial
t ∈ Md′(F[y1, . . . , yn/2]),

no other monomial t′ 6= t in F[y1, . . . , yn/2] reduces to t. Therefore, for any i ∈
{1, . . . ,m}, the expression Coeff(pi, t) depends solely on the monomial t and more
generally on the homogeneous component of degree d′ of pi. This is,

Coeff(pi, t) = Coeff
(
p

(d′)
i , t

)
.

Furthermore, the monomial t can be expressed as

t = yi1yi2 . . . yid′ i1, . . . , id′ ∈ {1, . . . , n/2},

and observing the expression (3.2) we see that Coeff
(
p

(d′)
i , t

)
is of degree exactly d′

if at least one of the coefficients of the monomials in the set

(3.4) {mon ∈ Md′(F[x]) : xi divides mon for all i ∈ {n/2 + 1, . . . , n}}
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is non-zero. Indeed, the i-th component of the vector (y1, . . . , yn/2)(I|G) has depen-
dency on the unknowns of G for all i ∈ {n/2+1, . . . , n}, whereas the j-th component
of the vector does not have dependency on the unknowns ofG for all j ∈ {1, . . . , n/2}.
Thus the expression Coeff(pi, t) is of degree exactly d′ with probability

1− 1

|F|
(
(n/2d′ )

) ,
which is overwhelming for large values of the parameters.

Remark 3.8 An analogous argument can be used for qi for every qi ∈ {1, . . . , n} to
conclude the same, only considering that the set of expression (3.4) is now

(3.5) {mon ∈ Md′(F[x]) : xi divides mon for all i ∈ {1, . . . , n/2}} .

Therefore, the expressions
(3.6)

Coeff
(
p

(1)
i , y1

)
, . . . ,Coeff

(
p

(1)
i , yn/2

)
,Coeff

(
q

(1)
i , y1

)
, . . . ,Coeff

(
q

(1)
i , yn/2

)
are each of them linear with overwhelming probability. The expressions (3.6) above
are the coefficients of the monomials y1, . . . , yn in the expressions

(3.7)


p

(1)
i

(
y1, . . . , yn/2,

n/2∑
t=1

gt,1yt, . . . ,
n/2∑
t=1

gt,n/2yt

)
, 1 ≤ i ≤ m,

q
(1)
i

(
n/2∑
t=1
−g1,tyt, . . . ,

n/2∑
t=1
−gn/2,tyt, y1, . . . , yn/2

)
, 1 ≤ i ≤ m.

Substituting in (3.7) the expressions

pi
(1) =

n∑
j=1

λpi,jxj , where λpi,1, . . . , λ
p
i,n ∈ F,

qi
(1) =

n∑
j=1

λqi,jxj , where λqi,1, . . . , λ
q
i,n ∈ F,

and expanding the expression of the evaluations, we see that for k = 1, 2, . . . , n/2,

Coeff(pi, yk) = Coeff
(
p

(1)
i , yk

)
= λpi,k +

n/2∑
j=1

λpi,j+n/2gk,j , ∀i ∈ {1, . . . ,m},

Coeff(qi, yk) = Coeff
(
q

(1)
i , yk

)
= λqi,k+n/2 −

n/2∑
j=1

λqi,jgj,k, ∀i ∈ {1, . . . ,m},

as required.

After having found that there are linear equations in the system SysHSP|F|
, it

is sensible to wonder how many of these linear equations happen to be linearly
independent, just in case there are enough to find a solution.
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Given i ∈ {1, . . . ,m}, Lemma 3.7 shows that there are n/2 linear equations
derived from pi (one derived from each linear monomial in F[y1, . . . , yn/2]) and anal-
ogously for qi. Since 1 ≤ i ≤ m and n ≤ m ≤ 2n, the total number of linear
equations in SysHSP|F|

is

2m
n

2
= mn ≥ 4N,

where N denotes the number of unknowns in SysHSP|F|
, this is, n2/4. The system of

linear equations present in SysHSP|F|
is already overdetermined, so it is seems feasible

that there are at least N of those linear equations that are linearly independent.

The following lemma shows that there are indeed N linearly independent linear
equations in the system SysHSP|F|

with overwhelming probability.

Lemma 3.9 Let
(
p,q

)
∈ F[x]m × F[x]m be a degree-d instance of the HSP|F|. It

occurs that at least N = n2/4 linear equations from SysHSP|F|
are linearly independent

with probability
γ|F|(m)

γ|F|(m− n/2)
.

Proof. Recall that the linear equations of SysHSP|F|
given by Lemma 3.7 are, for

i ∈ {1, . . . ,m} and k ∈ {1, . . . , n/2},
Coeff(pi, yk) =

n/2∑
j=1

λpi,j+n/2gk,j + λpi,k

Coeff(qi, yk) =
n/2∑
j=1
−λqi,jgj,k + λqi,k+n/2

Let us construct the matrix of coefficients associated to the linear system of equations
to examine its rank. The columns represent the unknowns

g1,1, g1,2, . . . , g1,n/2, g2,1, g2,2, . . . , g2,n/2, gn/2,1, gn/2,2, . . . , gn/2,n, 1,

whereas the entries of the matrix represent the coefficients of the linear equations

Coeff(pi, yk) = 0, Coeff(qi, yk) = 0, ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n/2}.

in the above unknowns.

We obtain the matrix of coefficients given in (3.8).

Before continuing, recall from the proof of Lemma 3.7 that, on average, there are

mn− d mn

2n/2+1
e

rows of the matrix of coefficients that are non-zero, which tends to mn for large
values of n.
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We can see that the matrix of coefficients has a noticeable structure with sym-
metries. In particular we can see that, for given i ∈ {1, . . . ,m} and k ∈ {1, . . . , n/2},
if the row corresponding to the equation Coeff(pi, yk) = 0 has non-trivial entries

λpi,n/2+1, λ
p
i,n/2+2, . . . , λ

p
i,n,

then the row corresponding to the equation Coeff(pi, yk+1) = 0 has exactly the same
non-trivial entries shifted n/2 positions to the right.

Furthermore, for given i ∈ {1, . . . ,m} and k ∈ {1, . . . , n/2}, if the row corre-
sponding to the equation Coeff(qj , yk) = 0 has non-trivial entries

λqj,1, λ
q
j,n/2+2, . . . , λ

q
j,n,

then the row Coeff(qj , yk+1) has exactly the same non-trivial entries, each of them
shifted one position to the right.

Let us now restrict our attention to the followingmn/2×N submatrix containing
the equations Coeff(pi, yk), for i ∈ {1, . . . ,m} and for all k ∈ {1, . . . , n/2},

(3.10)



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
λpi,n/2+1 . . . λpi,n 0 . . . 0 . . . 0 . . . 0

0 . . . 0 λpi,n/2+1 . . . λpi,n . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 . . . λpi,n/2+1 . . . λpi,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Due to its very particular shape, the matrix (3.10) has rankN if the followingm×n/2
matrix

(3.11)


λp1,n/2+1 λp1,n/2+2 . . . λp1,n
λp2,n/2+1 λp2,n/2+2 . . . λp2,n
. . . . . . . . . . . .

λpm,n/2+1 λpm,n/2+2 . . . λpm,n


has rank N . Indeed, if the matrix (3.11) has rank N then there is a certain n/2×n/2
submatrix of the matrix (3.11) that has maximum rank. If we denote it by

(3.12)


λpi1,n/2+1 λpi1,n/2+2 . . . λpi1,n
λpi2,n/2+1 λpi2,n/2+2 . . . λpi2,n
. . . . . . . . . . . .

λpin/2,n/2+1 λpin/2,n/2+2 . . . λpin/2,n


for i1, . . . , in/2 ∈ {1, . . . ,m}, then the matrix (3.9) has full rank N , and since that
matrix is a submatrix of the matrix (3.10), the matrix (3.10) has rank N as stated.

Therefore, we have proved that the matrix of coefficients has rankN if them×n/2
matrix (3.11) has full rank. Now, since the coefficients of the matrix (3.11) are
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uniformly random, the probability that the matrix (3.11) has full rank N coincides
with the probability that a random m × n/2 matrix has maximum rank N , which
according to [Brent and McKay, 1987], is precisely(

1− 1
|F|

)
. . .
(

1− 1
|F|m

)
(

1− 1
|F|

)
. . .
(

1− 1

|F|m−n/2

) =
γ|F|(m)

γ|F|(m− n/2)
,

as required

At this point, the results from Lemma 3.7 and Lemma 3.9 ensure that there are
enough linearly independent linear equations in SysHSP|F|

to solve it with overwhelm-
ing probability, which gives rise to our algorithm to solve the HSP|F|.

Theorem 3.10 Let |F| > d. There is a randomised polynomial-time algorithm solv-
ing degree-d instances of the HSP|F| in time:

O
(
n2ω
)
,

where ω is the exponent of matrix multiplication, and with success probability

γ|F|(n/2)γ|F|(m)

γ|F|(m− n/2)
.

The success probability of our algorithm can be asymptotically approximated by

1− 1

|F|
.

Proof. The algorithm that solves the HSP|F| is a direct derivation from Lemma 3.7
and (3.9), namely:

Input: (p,q) ∈ F[x]m × F[x]m a degree-d instance of the HSP|F|, with |F| > d.
Compute the solution EA of the system of linear equationsλpi,k +

n/2∑
j=1

λpi,j+n/2gk,j , ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n/2}


A← span(EA)
return A

As for the probability of success of our algorithm, the algorithm succeeds first if
the subspace solution A of the instance (p,q) ∈ F[x]m×F[x]m of the HSP|F| admits
a basis in systematic form (see Proposition 3.5), which occurs with probability

γ|F|(n/2),

and second if the system of linear equations has at least N linearly independent ones,
which has been proved in Lemma 3.9 to happen with probability

γ|F|(m)

γ|F|(m− n/2)
.



3.2. The HSP|F| for |F| > d 71

The product of both probabilities gives the desired probability of success. Further-
more, taking into account that

γ|F|(n) =

n∏
i=1

(
1− 1

|F|i

)
and

lim
n→∞

γ|F|(n) = 1− 1

|F|
+O

(
1

|F|2

)
,

it follows that

lim
n→∞

γ|F|(n/2)γ|F|(m)

γ|F|(m− n/2)
= 1− 1

|F|
+O

(
1

|F|2

)
,

and so the asymptotic success probability of our algorithm increases as we increase
the cardinality of F.

Before moving on to present the experimental results of our algorithm, it is
important to remark that the HSP|F| is the problem on which the security of the
public-key quantum money scheme of Aaronson-Christiano relies. Their scheme is
defined in [Aaronson and Christiano, 2013] over the field F2, but in the same paper
it is left as an open question whether or not an extension of the scheme to other
fields is possible. Our algorithm of Theorem 3.10 gives a negative answer to that
question: it solves the HSP|F| in randomised polynomial time for degree-d instances
of the HSP|F| that satisfy the condition |F| > d, breaking Conjecture 2.4 and hence
yielding a cryptanalysis of Aaronson-Christiano’s quantum money scheme extended
to fields other than the binary one.

3.2.2 Experimental results

Here in we present experimental results (see Tables 3.1 and 3.2) that complement
our theoretical findings summed up in Theorem 3.10. All experiments were run on
a 2.93 GHz Intel PC with 128 Gb of RAM with the Magma software (V2.20-10)
[Bosma et al., 1997] and our Magma source code is available online on GitHub
(https://github.com/Marta-PhD/solving-HSP-NHSP) and can also be read in Ap-
pendix A.

Due to the fact that generating instances of the HSP|F| is costly, our source code
generates degree-d instances such that its subspace solution A can be expressed in
systematic form and so our optimised model is always valid. Our algorithm behaves
as expected from Theorem 3.10: it is very efficient in practice and it succeeds with
high probability.

We start by choosing the parameters d = 3 and m = n due to reasons of both
speed and memory consumption. We select m = n as this is the most unfavourable
scenario for our attack (recall that n ≤ m ≤ 2n): asm increases, the system SysHSP|F|
becomes more overdefined. Furthermore, we perform experiments over fields of very
different sizes to observe any potential variation of speed. Note that in Table 3.1,
Timegen denotes the time needed to generate the degree-3 instances of the HSP|F|
to which we applied our algorithm, and that Time is the time that our algorithm

https://github.com/Marta-PhD/solving-HSP-NHSP
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takes to output a solution (which essentially coincides with the time spent solving
the linear system of Theorem 3.10).

d = 3, m = n
|F| = 5 |F| = 216 + 1

n 10 12 20 10 12 20

Time (in sec.) 0.00 0.00 0.02 0.00 0.00 0.03

Timegen (in sec.) 1 2 135.1 1 4 244.7

Table 3.1: Performance of the cryptanalysis (Theorem 3.10) of the HSP|F|

We can see that the algorithm of Theorem 3.10 is very fast and that an increase of
the size of the field does not imply an increase of the time that the algorithm takes
to output a solution. However, we can see that the generation of the instances is
significantly slower for |F| = 216 + 1. As we mentioned in Remark 2.14, this occurs
due to the fact that the speed of multiplications over a field depends on its size.
More in particular, when applying Proposition 2.13 to generate m polynomials in
Id,A and m polynomials in Id,A⊥ , the first step takes O(mnd) and the second step
takes O(mdnd), so the total cost is always dominated by the cost of the second step,
i.e, the total cost is

O
(
mndd

)
.

However, the cost of the multiplications in F when |F| = 216 + 1 is higher than when
|F| = 5.

We maintain the notation of Table 3.1 and the same choice of parameters m = n
for degree d = 4 for the reasons explained above. We report the following experi-
ments.

d = 4, m = n
|F| = 5 |F| = 216 + 1

n 10 12 10 12 20

Time (in sec.) 0.00 0.00 0.00 0.00 0.03

Timegen (in sec.) 8 40 18 107 5154.050

Table 3.2: Performance of our algorithm (Theorem 3.10) that solves the HSP|F|

The behaviour displayed by our algorithm for d = 4 is, in terms of speed, similar
to the case d = 3: it is very fast and the generation of degree-4 instances of the
HSP|F| is slower as expected.

Regarding the probability of success of our algorithm assuming that our optimised
model can be applied, bear in mind that the quotient

γ|F| (m)

γ|F| (m− n/2)

tends to 1 very quickly irrespective of the degree of the instances of the HSP|F|
and almost irrespective of the size of F, which barely affects this tendency. Our
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algorithm succeeded for all the experiments that we performed on degree-3 and
degree-4 instances of the HSP|F|.

Remark 3.11 Note that the generation of instances of the HSP|F| is rather slow in
practice, probably due to a non-optimal implementation of the Evaluate function in
Magma for symbolic polynomials.

3.3 The HSP2

We dedicate this section to study the hardness of the hidden subspaces problem over
F2, a particular case satisfying the condition |F| ≤ d and hence not covered in the
previous analysis. The hidden subspaces problem was originally defined over F2 in
[Aaronson and Christiano, 2013], so the results we obtain herein have a direct impact
on the security of the original quantum money scheme of Aaronson-Christiano.

Let us anticipate that the strategy used in Section 3.2 cannot be replicated since
linear equations no longer exist. However, our system modelling the hidden subspaces
problem over the field F2 is still largely overdefined, which leaves open the possibility
that the computation of a Gröbner basis is somehow efficient. Throughout this
section we particularise our model for F2 and then we present a heuristic randomised
polynomial-time algorithm that solves the HSP2 assuming a conjecture about the
degree of regularity of our system. After that, we present theoretical results that
support the polynomial-time nature of our algorithm.

3.3.1 Structure of our model over the field F2

As we saw in Example 3.6, the field equations

g2
i,j − gi,j = 0, ∀i, j ∈ {1, . . . ,m},

produce reductions in the equations of our model from Proposition 3.5, so we have to
include them in the system. Our model particularised to the case of F2 is as follows.

Proposition 3.12 Let (p, q) ∈ F2[x]m×F2[x]m be a degree-d instance of the HSP2.
Set N = n2/4, let

(
y1, . . . , yn/2

)
∈ Fn/22 be formal variables and let

G =
(
gi,j
)

1≤i≤n/2
1≤j≤n/2

∈Mn/2,n/2 (F2)

be a matrix of unknowns. Our model, denoted by SysHSP2
, is defined as the following

system:

SysHSP2
= {Coeff(pi, t) = 0,Coeff(qj , t) = 0: 1 ≤ i ≤ m, 1 ≤ j ≤ m,

t ∈ M
(
F2[y1, . . . , yn/2]

)
}
⋃
{g2
ij − gij : 1 ≤ i ≤ n/2, 1 ≤ j ≤ n/2},

where Coeff(pi, t) denotes the coefficient of the monomial t ∈ M
(
F2[y1, . . . , yn/2]

)
in

the expression
pi
((
y1, . . . , yn/2

)
(I|G)

)
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and Coeff(qj , t) denotes the coefficient of the monomial t ∈ M
(
F2[y1, . . . , yn/2]

)
in

the expression
qj
((
y1, . . . , yn/2

) (
GT |I

))
.

SysHSP2
is a probabilistic model of the HSP2 of

O
(
nd+1

)
equations over F2 in N variables. Indeed, if A ⊂ Fn2 is a solution of the HSP2 on
(p,q), then A admits with probability γ2(n/2) a basis (I|G) in systematic form such
that the entries of G ∈Mn/2,n/2(F) are solutions of the system SysHSP2

.

Proof. Our model SysHSP2
is a particularisation of our model from Proposi-

tion 3.5 to the case HSP2. Please note that −GT = GT over F2, and that due to the
field equations

y2
i − yi = 0, ∀i ∈ {1, . . . , n/2},

the monomials in F2[y1, . . . , yn/2] are square-free. Therefore, the total number of
monomials in F[y1, . . . , yn/2] is now(

n/2

d

)
+

(
n/2

d− 1

)
+ . . .+

(
n/2

1

)
= O

(
nd
)
.

Since (p,q) is a pair of m-tuples of polynomials and considering that n ≤ m ≤ 2m,
we obtain that the total number of equations of SysHSP2

is O(nd+1) as desired.

The fact that there are modular reductions taking place over F2 is less innocent
than it seems and it is the ultimate reason why there are no linear equations in the
system, contrary to what occurred in Section 3.2. Recall that in the case |F| > d,
equations of the form

(3.13) Coeff(pi, yj) = 0, Coeff(qi, yj) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n/2,

were linear. However, over F2 it occurs that

yj = yj
2 = yj

3 = ... . . . = yj
d, j ∈ {1, . . . , n/2},

and so the analogous equations to the equations (3.13) present in our system after
reductions are

Coeff (pi, yj) + Coeff
(
pi, yj

2
)

+ . . .+ Coeff
(
pi, yj

d
)

= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n/2,

Coeff (qi, yj) + Coeff
(
qi, yj

2
)

+ . . .+ Coeff
(
qi, yj

d
)

= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n/2,

which are not linear. In fact, they have degree d with high probability. Indeed,
recall from the proof of Lemma 3.7 that the expression Coeff(pi, yj

d) has degree d if
at least one of the coefficients of the monomials in the set Md

(
F[xn/2+1, . . . , xn]

)
of

pi is non-zero, which occurs with probability

1− 1

2(n/2d )
,

which is very high for appropriately large values of the parameters.
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Remark 3.13 The same argument applies for the expressions

Coeff
(
qi, yj

d
)

= 0, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n/2},

which are of degree d if at least one of the coefficients of the monomials in the set
Md

(
F[x1, . . . , xn/2]

)
of qi is non-zero, which occurs as well with probability

1− 1

2(n/2d )
.

Remark 3.14 We wrote expressions of the form

Coeff
(
pi, y

d
j

)
= 0, Coeff

(
qi, y

d
j

)
= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n/2,

only for the sake of clarity in order to explain that reductions take place and that an
expression of the form

Coeff(pi, t), t ∈ M
(
F[y1, . . . , yn/2]

)
,

gets contributions from all monomials t′ ∈ M
(
F[y1, . . . , yn/2]

)
that reduce to t. In

what follows, we write Coeff(pi, t) simply to refer to the final coefficient once the
contributions coming from reductions over F2[y1, . . . , yn/2] have been added up.

Therefore, our system SysHSP2
consists —with very high probability— of equa-

tions of degree d over F2. However, the system is greatly overdetermined with
O(nd+1) equations versus n2/4 unknowns, so we can hope that computing a Gröbner
basis of SysHSP2

can be done efficiently. In what follows we conjecture that indeed
it can.

3.3.2 Our heuristic algorithm solving the HSP2

A priori we intended to run some tests only to get an impression of whether com-
puting a Gröbner basis seemed to be efficient or not. A posteriori, a deeper study
of our experimental results — which ended up pointing to the fact that SysHSP2

is
indeed much easier to solve than a semi-regular system with the same parameters —
allowed us to conjecture the existence of a randomised algorithm that heuristically
solves the HSP2 in polynomial time.

We report experiments run on a 2.93 GHz Intel PC with 128 Gb. of RAM with
the Magma software (V2.20-10) [Bosma et al., 1997] for the most disadvantageous
choice of parameters in terms of overdefinition of the system, this is, m = n. The
notation used in Tables 3.3 and 3.4 is the following: n is the number of variables
of the polynomials of the pair (p,q), N = n2/4 is the number of unknowns of the
equations in the system SysHSP2

, Ueqs is the upper bound on the number of equations
in the system excluding the field equations (see Proposition 3.12), this is,(

n/2

d

)
+

(
n/2

d− 1

)
+ . . .+

(
n/2

1

)
,

and finally, dreg is the degree of regularity observed in practice and dsg
reg is the theo-

retical degree of regularity treating the system as if it was semi-regular.
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d = 3

n N Ueqs dsg
reg dreg Time (in sec)

8 16 224 4 3 1
10 25 500 5 3 1
12 36 984 5 3 2
14 49 1764 5 4 136
16 64 2944 6 4 150
18 81 4725 7 4 8000

Table 3.3: Behaviour of a Gröbner basis computation of the ideal associated to the
system SysHSP2

for degree-3 instances of the HSP2

d = 4

n N Ueqs dsg
reg dreg Time (in sec)

8 16 240 6 4 1
10 25 600 6 4 1
12 36 1344 7 5 38
14 49 2744 8 5 3960

Table 3.4: Behaviour of a Gröbner basis computation of the ideal associated to the
system SysHSP2

for degree-4 instances of the HSP2

Remark 3.15 Recall that Proposition 2.44 establishes that the degree of regularity of
a semi-regular system with degree, size and number of variables following the notation
in Table 3.3 is computed as the index of the first non-positive coefficient of the series

(3.14)
∏Ueqs
i=1 (1− zd)

∏N
i=1(1− z2)

(1− z)N
=
∑
i≥0

ciz
i.

If the system corresponding to the first row of Table 3.3 was semi-regular, its degree of
regularity would be computed by substituting the values n = 8, d = 3,Ueqs = 224, N =
16 in the expression (3.14), which equals

(1− z3)224(1− z2)16

(1− z)16
= 1 + 16z + 120z2 + 336z3 − 1764z4 − . . .

and so the degree of regularity of such a semi-regular system would be 4, as written
in the table. Analogously computed for the rest of the cases.

The first thing we observe in Tables 3.3 and 3.4 is that the number of equations
of our system coincides with the upper bound Ueqs, this is, that the system is as
overdetermined as it can be. This occurs because as we said in Remark 3.14 every
equation of our model gets many contributions (from coefficients of monomials that
get reduced by the field equations) and the probability that all these coefficients are
zero tends to zero as the parameter n increases.

The next thing we observe is that solving the systems derived from our instances
of the HSP2 is easier than if they were actually semi-regular: the degree of regularity
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observed in practice is lower than the expected one, which suggests that there is an
underlying structure in SysHSP2

. Not only the observed degree of regularity is lower
than the expected one, but it also seems to increase less rapidly and stay bounded.
This is precisely our conjecture.

Conjecture 3.16 Given a degree d-instance (p,q) ∈ F2[x]m × F2[x]m of the HSP2,
the degree of regularity of our model SysHSP2

is bounded above by d+ 1.

If our conjecture is true, it yields a heuristic randomised polynomial-time algo-
rithm that solves the HSP2.

Theorem 3.17 Assuming Conjecture 3.16, there is a randomised polynomial-time
algorithm, consisting in the computation of a Gröbner basis, solving the HSP2 with
complexity

O
(
n2ω(d+1)

)
,

where ω is the exponent of matrix multiplication, and success probability

γ2(n/2).

So far our experiments indicate that the system SysHSP2
is indeed not semi-

regular. In what follows we give theoretical results that further support our conjec-
ture.

3.3.3 Theoretic results supporting our heuristic algorithm: degree
falls

The goal of this section is to provide theoretical arguments that support the fact that
the system of equations SysHSP2

is not semi-regular and thus our Conjecture 3.16.
Our main achievement is proving that linear combinations of certain equations of
degree d in SysHSP2

lead to equations of degree lower than d.

During a Gröbner basis computation, when a combination of equations yields an
equation of a lower degree than that of the equations combined we say that there is
a degree fall. This is typically a behaviour which does not occur in a semi-regular
system of equations and so it is a first step towards proving Conjecture 3.16. Even
more, combining linearly the equations of SysHSP2

is actually the first computation
carried out by an algorithm aiming at computing a Gröbner basis, and as a conse-
quence of our finding, solving the system of degree d-equations SysHSP2

presents a
degree fall in a single step.

Let (p,q) ∈ F2[x]m × F2[x]m be a degree-d instance of the HSP2 and let us
consider a pair formed by one polynomial of p and one polynomial of q, which
we denote simply by (p, q), ignoring subindices to avoid an overcomplication of the
notation. It turns out that from a pair (p, q) it is possible to obtain an equation of
degree lower than d. Let us set

Nd =

(
n/2

d

)
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and let us order lexicographically the monomials of degree d in the sets

Md

(
F2

[
y1, . . . , yn/2

])
,Md

(
F2

[
xn/2+1, . . . , xn

])
,Md

(
F2

[
x1, . . . , xn/2

])
,

obtaining, respectively, the ordered sequences

t1 ≺lex . . . ≺lex tNd ,

m1 ≺lex . . . ≺lex mNd ,

m⊥1 ≺lex . . . ≺lex m
⊥
Nd
.

We can express the pair (p, q) in the following manner.

(3.15)

{
p = α1m1 + . . .+ αNdmNd + p′, with α1, . . . , αNd ∈ F2,

q = β1m
⊥
1 + . . .+ βNdm

⊥
Nd

+ q′, with β1, . . . , βNd ∈ F2,

where p′ is thus a polynomial in F2 [x] that does not have any term with a monomial
in Md

(
F2[xn/2+1, . . . , xn]

)
and q′ is a polynomial in F2 [x] that does not have any

term with a monomial in Md

(
F2[x1, . . . , xn/2]

)
.

As a consequence, the only monomials of degree d that can be present in p′ are
divisible by xi for some i ∈ {1, . . . , n/2}. Analogously, the only monomials of degree
d that can be present in q′ are divisible by xj for some j ∈ {n/2 + 1, . . . , n}, which
implies that

Coeff(p′, t)
(d)

= 0 = Coeff(q′, t)
(d)
, ∀t ∈ M

(
F2[y1, . . . , yn/2]

)
.

To see why, recall that Coeff(p′, t) and Coeff(q′, t) are the coefficients of the
monomial t ∈ M(F[y1, . . . , yn/2]) in the expressions

p′
((
y1, . . . , yn/2

)
(I|G)

)
= p′

(
y1, . . . , yn/2,

n/2∑
k=1

gk,1yk, . . . ,
n/2∑
k=1

gk,n/2yk

)
,

q′
((
y1, . . . , yn/2

) (
GT |I

))
= q′

(
n/2∑
k=1

g1,kyk, . . . ,
n/2∑
k=1

gn/2,kyk, y1, . . . , yn/2

)
,

for 1 ≤ i ≤ m, and since p′ has only monomials in F[x] of degree d that are divisible
by

xi, for some i ∈ {1, . . . , n/2},

the equation Coeff(p′, t) is of degree at most d − 1 due to the i-th component of
the vector (y1, . . . , yn/2)(I|G) having no dependency on the unknowns of G. There-
fore, the homogeneous component of degree d of Coeff(p′, t) is zero as stated, and
analogously for the homogeneous component of degree d of Coeff(q′, t).

Therefore, we can write

Coeff(p, t)(d) = α1Coeff(m1, t)
(d) + . . .+ αNdCoeff(mNd , t)

(d),

Coeff(q, t)(d) = β1Coeff(m⊥1 , t)
(d)

+ . . .+ βNdCoeff(m⊥Nd , t)
(d)
.
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We will see that the fact that G and GT have the same entries in different posi-
tions will produce relations between the homogeneous components of degree d of the
equations in SysHSP2

, which will ultimately allow us to combine expressions of our
system in a certain manner such that the homogeneous component of degree d of
such a combination gets cancelled out and so the combination is of degree at most
d − 1. The appropriate way to combine equations of SysHSP2

to obtain equations
of degree lower than d is inferred from the following result, which shows that the
structure of SysHSP2

is indeed very particular.

Proposition 3.18 Let (p,q) ∈ F2[x]m × F2[x] be a degree-d instance of the HSP2.
Let (p, q) ∈ F2[x]× F2[x] be a pair in the set

{(pi, qj) : 1 ≤ i ≤ m, 1 ≤ j ≤ m}

and set Nd =
(n/2
d

)
. Let us order lexicographically the monomials of degree d in the

sets

Md

(
F2

[
y1, . . . , yn/2

])
,Md

(
F2

[
xn/2+1, . . . , xn

])
,Md

(
F2

[
x1, . . . , xn/2

])
,

obtaining, respectively, the ordered sequences

t1 ≺lex . . . ≺lex tNd ,

m1 ≺lex . . . ≺lex mNd ,

m⊥1 ≺lex . . . ≺lex m
⊥
Nd
.

For all i, j ∈ {1, . . . , Nd}, it holds that:

(3.16) Coeff
(
mi, tj

)(d)
= Coeff

(
m⊥j , ti

)(d)
.

Proof. Let mi be a degree-d monomial in F2[xn/2+1, . . . , xn] and let tj be a
degree-d monomial in F2[y1, . . . , yn/2] for some i, j ∈ {1, . . . , Nd}. The monomials
mi and tj can be expressed as

mi = xi1+n/2xi2+n/2 . . . xid+n/2, for some i1, . . . , id ∈ {1, . . . , n/2},
tj = yj1yj2 . . . yjd , for some j1, . . . , jd ∈ {1, . . . , n/2}.

Let us focus on the left-hand side of the equation (3.16). It holds that:

Coeff(mi, tj)
(d) = Coeff

(
d∏

k=1

xik+n/2, yj1yj2 . . . yjd

)(d)

.

Observing the system

(3.17)


p
((
y1, . . . , yn/2

)
(I|G)

)
= p

(
y1, . . . , yn/2,

n/2∑
t=1

gt,1yt, . . . ,
n/2∑
t=1

gt,n/2yt

)
,

q
((
y1, . . . , yn/2

) (
GT |I

))
= q

(
n/2∑
t=1

g1,tyt, . . . ,
n/2∑
t=1

gn/2,tyt, y1, . . . , yn/2

)
,
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for 1 ≤ i ≤ m, it holds that the expression

Coeff

(
d∏

k=1

xik+n/2, yj1yj2 . . . yjd

)(d)

coincides with the degree-d homogeneous component of the coefficient of yj1yj2 · · · yjd
in the expression

d∏
k=1

n/2∑
`=1

g`,iky`,

which in turn coincides with the homogeneous component of degree d of the coefficient
of yj2 . . . yjd in the expression

d∏
k=1

d∑
`=1

gj`,ikyj` .

After expanding the latter expression, we finally obtain that

(3.18) Coeff(mi, tj)
(d) =

∑
π∈Sd

d∏
k=1

gjπ(k),ik .

Let us focus now on the right-hand side of the equation (3.16). Note that the
rings F2[y1, . . . , yn/2] and F2[x1, . . . , xn/2] are related through a bijection φ : yi 7→ xi,
so the j-th term in the ordered sequence

m⊥1 ≺lex . . . ≺lex m
⊥
Nd

is the image through φ of the j-th element of the ordered sequence

t1 ≺lex . . . ≺lex tNd ,

this is,
m⊥j = xj1xj2 . . . xjd .

Analogously, the rings and F2[xn/2+1, . . . , xn] and F2[y1, . . . , yn/2] are related through
a bijection φ : xi 7→ xi−n/2, and so the i-th monomial in the ordered sequence

t1 ≺lex . . . ≺lex tNd

coincides with the image through φ of the i-th monomial in the ordered sequence

m1 ≺lex . . . ≺lex mNd ,

and so
ti = yi1yi2 . . . yid .

Now it occurs that

Coeff(m⊥j , ti)
(d) = Coeff

(
d∏

k=1

xjk , yi1yi2 . . . yid

)(d)

.
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Observing the system (3.17), it holds that

Coeff

(
d∏

k=1

xjk , yi1yi2 . . . yid

)(d)

coincides with the degree-d homogeneous component of the coefficient of yi1yi2 · · · yid
in the expression

d∏
k=1

n/2∑
`=1

gjk,`y`,

which in turn coincides with the homogeneous component of degree d of the coefficient
of yi1yi2 . . . yid in the expression

d∏
k=1

d∑
`=1

gjk,i`yi` .

After expanding the latter expression, we finally obtain that

(3.19)
∑
π∈Sd

d∏
k=1

gjk,iπ(k) .

Finally, expressions (3.18) and (3.19) coincide since

∑
π∈Sd

d∏
k=1

gjk,iπ(k) =
∑
π∈Sd

d∏
k=1

gjπ−1(π(k))
, iπ(k) =

∑
π−1∈Sd

d∏
k′=1

gjπ−1(k′)
, ik′ .

The following theorem allows us to exploit the structural symmetries that the
system SysHSP2

presents and thus generate equations of degree lower than d from
appropriately selected linear combinations of equations in the system.

Theorem 3.19 Taking into account the notation of Proposition 3.18, for a given
t ∈ M

(
F[y1, . . . , yn/2]

)
, bear in mind that

Coeff(p, t)(d) = α1Coeff(m1, t)
(d) + . . .+ αNdCoeff(mNd , t)

(d),

Coeff(q, t)(d) = β1Coeff(m⊥1 , t)
(d)

+ . . .+ βNdCoeff(m⊥Nd , t)
(d)
.

Under these conditions, there exist indices i, j ∈ {1, . . . , Nd} such that the equation

Coeff(p, tj) + Coeff(q, ti) +
∑
k 6=i

Coeff(q, tk) +
∑
` 6=j

Coeff(p, t`) = 0

is of degree lower than d.
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Proof. Denote by i, j ∈ {1, . . . , Nd} the smallest indices such that αi 6= 0,
βj 6= 0. Using Proposition 3.18, it holds that

(3.20) Coeff(mi, tj)
(d) = Coeff(m⊥j , ti)

(d).

For every k 6= i and for every ` 6= j, we can use Proposition 3.18 to establish some
more equalities:

Coeff(mk, tj)
(d) =Coeff(m⊥j , tk)

(d)
,(3.21)

Coeff(m⊥` , ti)
(d)

=Coeff(mi, t`)
(d),(3.22)

Coeff(m⊥` , tk)
(d)

=Coeff(mk, t`)
(d).(3.23)

The following relations hold:

Coeff(mi, tj)
(d) +

∑
k 6=i

Coeff(mk, tj)
(d) = Coeff(p, tj)

(d),

Coeff(m⊥j , ti)
(d) +

∑
`6=j

Coeff(m⊥` , ti)
(d) = Coeff(q, ti)

(d),

∑
k 6=i

Coeff(m⊥j , tk)
(d) +

∑
` 6=j,
k 6=i

Coeff(m⊥` , tk)
(d) =

∑
k 6=i

Coeff(q, tk)
(d),

∑
6̀=j

Coeff(mi, t`)
(d) +

∑
k 6=i
`6=j

Coeff(mk, t`)
(d) =

∑
`6=j

Coeff(p, t`)
(d).

Now taking into account the equalities (3.20), (3.21), (3.22), (3.23), the expression
obtained by adding up the left-hand side of all the equalities above equals zero, which
means that

Coeff(p, tj) + Coeff(q, ti) +
∑
k 6=i

Coeff(q, tk) +
∑
` 6=j

Coeff(p, t`) = 0,

as required.

This result can be immediately used to generate low-degree equations from the
equations in the system SysHSP2

.

Corollary 3.20 Let
(
p,q

)
∈ F2[x]m × F2[x]m be a degree-d instance of the HSP2.

We can generate O(m2) equations of degree lower than d, which are linear combina-
tions of the degree-d equations of SysHSP2

.

Proof. We apply simply Theorem 3.19 to each pair of polynomials (pi, qj) ∈
F2[x] × F2[x]. From the proof of Theorem 3.19, it is clear that these equations are
linear combinations of the equations from SysHSP2

.

Before moving on to present some experimental results, it is important to re-
mark that our algorithm of Theorem 3.17 solves the HSP2 in heuristic randomised
polynomial time for degree-d instances, thus yielding in practice a cryptanalysis of
Aaronson-Christiano’s quantum money scheme.
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3.3.4 Experiments

Since there are equations of degree lower than d in SysHSP2
, it is natural to wonder

whether it is algebraically meaningful or not, which translates into studying whether
the equations of degree lower than d are linearly independent. To conclude this
chapter, in Tables 3.5 and 3.6 we report experimental results on the number of
equations of degree lower than d generated from the equations of SysHSP2

(as in
Corollary 3.20) which happen to be linearly independent. In the tables, we denote
by #eqspr the number of linearly independent equations obtained in practice and by
#eqsth the maximum number of linearly independent equations that can be obtained,
which is at most the total number of equations of degree lower than d generated, i.e.,
m2.

d = 3
#eqspr #eqsth

m = n = 10 99 100

m = n = 12 144 144

m = n = 14 196 196

m = n = 16 256 256

Table 3.5: Degree-2 linearly independent equations obtained from degree-3 instances
of the HSP2

d = 4
#eqspr #eqsth

m = n = 10 71 100

m = n = 12 144 144

m = n = 14 196 196

m = n = 16 256 256

Table 3.6: Degree-3 linearly independent equations of obtained from degree-4 in-
stances of the HSP2

We observe that the behaviour is unstable for small values of the parameters.
This is partially due to the fact that if a polynomial pi does not have terms of degree
d in F2[xn/2+1, . . . , xn], then we do not get equations of degree lower than d applying
Theorem 3.19 to the pair (pi, qk) for all k ∈ {1, . . . ,m} (and analogously for qi). This
happens with probability

1

2Nd
,

which is not too small for low parameters, i.e, if Nd is low. So, for small parameters
it is possible that we obtain a number of equations of degree lower than d which is
less than m2. However, if this is the case there are equations of degree lower than d
anyway, derived from the terms of degree d− 1 or lower. We see that the behaviour
stabilises for big enough values of the parameters m,n obtaining as many equations
of degree lower than d as possible.
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Chapter 4

Cryptanalysis of Aaronson and
Christiano’s scheme: The noisy
case

This chapter is dedicated to analyse the hardness of the hidden subspaces
problem with noise, proposed by Scott Aaronson and Paul Christiano
at STOC′12 aiming at enhancing the hardness of the hidden subspaces
problem.

We design a randomised polynomial-time algorithm that solves degree-d
instances of the noisy hidden subspaces problem over fields F of prime size
that satisfy the condition |F| > d, and we report experimental results on
its performance that confirm that it is efficient in practice. Over the field
F2 we present a probabilistic algorithm that combines exhaustive search
and our algorithm from Chapter 3, yielding a probability of success that
exceeds the one conjectured by its authors.

Since the security of the noisy version of the public-key quantum money
scheme of Aaronson-Christiano relies on the hardness of the noisy hidden
subspaces problem, our results yield a cryptanalysis of any extension of
the scheme to a field F for degree-d instances satisfying the condition
|F| > d. Over the field F2 we break a conjecture made by the authors
about the hardness of the noisy hidden subspaces problem.
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4.1 The NHSP|F| for |F| > d

In Chapter 3 we divided the study of the hardness of the hidden subspaces problem
into two different scenarios, so it seems only sensible to divide the study of the
noisy version of the former problem into the same cases. We dedicate this section to
analyse the hardness of degree-d instances of the NHSP|F| whenever |F| > d, so this
condition over the field F is assumed hereafter although not explicitly stated.

First we present an algorithm that solves degree-d instances of the NHSP|F|,
which we derived from an algorithm that solves only instances of the NHSP2 that are
linear. Our algorithm runs in polynomial time and it is randomised, succeeding with
an overwhelming probability. Second we report experimental results that support
our theoretic findings, this is, they experimentally verify that our algorithm is very
efficient in practice and that its probability of success is overwhelming.

4.1.1 Our algorithm solving the NHSP|F| for |F| > d

Our algorithm solving degree-d instances of the NHSP|F| is based upon a simple
algorithm that solves just linear instances of the NHSP2. The latter algorithm was
mentioned by the authors themselves in [Aaronson and Christiano, 2013] and stated
over the field F2, but it can be extended to work over any other field. This result was
supposed to be a mere remark on why they were choosing the instances underlying
their scheme to be non-linear. However, it turns out that it can be extended to build
an algorithm that solves instances of the NHSP|F| of degree higher than one, and
more in particular of degree less than the cardinality of the field F.

Let us first describe the algorithm that solves linear instances of the NHSP2 and
point out that the size of the field does not affect its validity. The result concerning
the algorithm that solves linear instances of the NHSP2 is stated in the paper of the
authors as follows.

Lemma 4.1 [Aaronson and Christiano, 2013, Claim 6.10] Let us consider a degree-1
instance of the NHSP2, (p,q) ∈ F2[x]m × F2[x]m, such that the subspace A ⊂ Fn
is a solution of it. Then, there exists an algorithm that recovers A in randomised
polynomial time.

To see why there exists an algorithm such as the one in Lemma 4.1, the key
observation is the following. If (p,q) ∈ F2 [x]m × F2 [x]m is a degree-1 instance of
the NHSP2, then it occurs that for any i ∈ {1, . . . ,m},

(4.1) qi vanishes on A⊥ ⇐⇒ qi (x) = λqi x for some λqi ∈ A.

Note that this characterisation is inferred from the orthogonality relation between A
and A⊥. Indeed, if for a given i ∈ {1, . . . ,m} we express the linear polynomial qi as

qi(x) =
n∑
j=1

λqi,jxi = λqi x, whereλqi = (λqi,1, . . . , λ
q
i,n) ∈ Fn,
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then by definition of orthogonality it occurs that(
A⊥
)⊥

= {a ∈ Fn : a · a⊥ = 0, ∀a⊥ ∈ A⊥} = A,

which translates precisely into the condition (4.1).

Remark 4.2 The analogous property

(4.2) pi vanishes on A ⇐⇒ pi (x) = λpi x for some λpi ∈ A
⊥

holds, but for simplicity of exposition we focus on the characterisation (4.1).

Also note that the property (4.1) holds over any field F, as it is just a consequence
of the orthogonality relation between A and A⊥.

Now the condition (4.1) guarantees that for each polynomial qi that truly vanishes
on A⊥, the element λqi belongs to A. Therefore, among the set

(4.3) {λqi ∈ Fn : qi (x) = λqi x, i ∈ {1, . . . ,m}}

there must be d(1−ε)me elements, as many as the number of non-noisy polynomials
of q, that belong to A. The remaining εm elements, as many as the number of noisy
polynomials of q, do not belong to A except with a negligible probability.

Remark 4.3 Recall that every noisy polynomial is chosen such that it vanishes on
a n/2-dimensional subspace that is different from A⊥. The probability that it still
accidentally vanishes on A coincides with the probability that it vanishes on every
element of one of its basis, this is,

1

|F|n/2
.

Therefore, if we could distinguish whether a given scalar in the set (4.3) belonged to
A or not, then that would yield an algorithm to learn at most d(1− ε)me elements
that belong to A.

Remark 4.4 Note that the set (4.3) contains as many non-zero elements as the
number of polynomials of q whose linear homogeneous components are not zero, so
there are at most d(1− ε)me elements of A in the set (4.3).

It turns out that deciding whether a given element of Fn belongs to A or not can
be done efficiently. To explain how, let us introduce a couple of definitions that will
avoid overcomplicated notation later on.

Definition 4.5 Let (p,q) ∈ F[x]m × F[x]m be a degree-d instance of the NHSP|F|.
We define the weight of a vector v ∈ Fn with respect to p (resp. q), denoted by
wp
|F| (v) (resp. wq

|F| (v)), as the cardinal of the set

Wp
v = {pi : pi (v) 6= 0, i = 1, . . . ,m} (resp.Wq

v = {qi : qi (v) 6= 0, i = 1, . . . ,m})

this is, wp
|F| (v) = |Wp

v | (resp. wq
|F| (v) = |Wq

v |).
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Definition 4.6 Let (p,q) ∈ F[x]m × F[x]m be a degree-d instance of the NHSP|F|.
We define the set Zp

|F| ⊂ Fn (resp. Zq
|F| ⊂ Fn) as

Zp
|F| = {v ∈ Fn : wp

|F| (v) < εβn} (resp.Zq
|F| = {v ∈ Fn : wq

|F| (v) < εβn}).

Bearing these definitions in mind, the following result essentially states that the
polynomials of p can be used as an oracle to test membership in A.

Lemma 4.7 [Aaronson and Christiano, 2013, Lemma 6.4] Let us consider a degree-d
instance of the NHSP2, (p,q) ∈ F2[x]m × F2[x]m. Then,

A ⊆ Zp
2 and Pr

[
A = Zp

2

]
= 1− 2−Ω(n),

where Pr[·] denotes the probability of an event.

Remark 4.8 Lemma 4.7 applies over a generic field F, occurring in that case that

A ⊆ Zp
|F| and Pr

[
A = Zp

|F|

]
= 1− |F|−Ω(n)

Indeed, Lemma 4.7 allows to test if a given element z belongs to A with over-
whelming probability by verifying that the only polynomials of p that do not vanish
on z are at most the noisy ones, which is equivalent to checking whether z ∈ Zp

|F|.

Therefore, we are now in a position to recover all the elements of the set (4.3)
that belong to A, this is, to recover at most d(1−ε)me elements of A. A lower bound
of the probability that we can extract a basis of A from a set of d(1− ε)me elements
of A can be computed using the following theorem.

Theorem 4.9 [Brent and McKay, 1987, Theorem 1.1] Recall, to begin with, that the
|F|-rank of a matrix G ∈ Mj,k(F) is the greatest integer ` such that G has a ` × `
submatrix (not necessarily contiguous) whose determinant is non-zero. For integers
n ≥ 1, ∆ ≥ 0 and 0 ≤ δ ≤ n, define

P∆,δ (n, p)

to be the probability that a random (n+ ∆) × n matrix over F has |F|-rank n − δ,
and set P∆,0 (0, p) = 1. For an integer k and indeterminate t, set

Πk(t) = (1− t)(1− t2) . . . (1− tk).

It occurs that:

P∆,δ (n, |F|) =
1

|F|δ(δ+∆)

Πn(1/|F|)
Πδ(1/|F|)Πn−δ(1/|F|)

Πn+∆(1/|F|)
Πδ+∆(1/|F|)

.

As a consequence of Theorem 4.9, the probability that we can extract n/2 linearly
independent elements among a collection of d(1− ε)me elements coincides with the
probability that a certain d(1 − ε)me × n matrix over F has |F|-rank n/2, which is
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greater than the probability that a certain d(1 − ε)me × n/2 matrix has |F|-rank
n/2. Replacing in Theorem 4.9 (n by n/2, ∆ by d(1− ε)me − n/2 and δ by 0), the
probability that a certain d(1− ε)me × n/2 matrix has |F|-rank n/2 is

(4.4)
d(1−ε)me∏

i=d(1−ε)me−n/2+1

(
1− 1

|F|i

)
=

γ|F| (d(1− ε)me)
γ|F| (d(1− ε)me − n/2)

,

which is overwhelming for large values of n.

Therefore, the algorithm that solves a degree-1 instance (p,q) ∈ F[x]m × F[x]m

of the NHSP|F| consists in checking how many of the elements in the set (4.3) are in
A (see Lemma 4.7), as we can then extract a basis of A with probability at least (4.4)
provided that the set (4.3) has d(1− ε)me elements. Note that the algorithm runs in
polynomial time, essentially requiring m computations of the weight of each element
in the set (4.3) with respect to p and the computation of the |F|-rank of a matrix.

Now, as we said in the beginning, it is possible to extend the algorithm solving
linear instances of the NHSP|F| to an algorithm that solves degree-d instances of the
NHSP|F| whenever |F| > d. As it happened in Chapter 3, the condition |F| > d
is very favourable for exactly the same reasons of no reductions modulo the field
equations taking place. The following lemma shows that solving a degree-d instance
of the NHSP|F| can be reduced to solving a degree-1 instance of the same problem.

Lemma 4.10 Whenever |F| > d, any degree-d instance (p,q) ∈ F [x]m × F [x]m of
the NHSP|F| can be reduced to a degree-1 instance of the NHSP|F|.

Proof. Let (p,q) ∈ F [x]m×F [x]m be a degree-d instance of the NHSP|F|. Recall
that A is a solution of the instance (p,q) if

pi(A) = 0, ∀i ∈ Ip,
qj(A

⊥) = 0, ∀j ∈ Iq.

Recall from the proof of Lemma 3.7 that for any degree-d polynomial r ∈ F[x]
vanishing on a n/2-dimensional subspace B we can write

r = r(d) + r(d−1) + . . .+ r(1),

so if we denote an unknown basis matrix of B by G ∈ Mn/2,n(F) and we set y =

(y1, . . . , yn/2) ∈ Fn/2 to be a vector of formal variables as usual, it holds that

(4.5) r(yG) = r(d)(yG) + r(d−1)(yG) + . . .+ r(1)(yG).

Since |F| > d, no monomial of F[y1, . . . , yn/2] reduces modulo the field equations

y
|F|
i − yi = 0, i ∈ {1, . . . , n/2}.

Therefore, given 1 ≤ deg ≤ d, the set of monomials of F[y1, . . . , yn/2] that are
present in the homogeneous component r(deg) is disjoint to the set of monomials that
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are present in every other homogeneous component of r of a different degree. And
now, since a polynomial over F[y1, . . . , yn/2] vanishes if and only if all its coefficients
are zero, it must occur that

r(deg) = 0, ∀deg ∈ {1, . . . , d},

and in particular, that
r(1) = 0.

As a consequence, if A is a solution of the degree-d instance (p,q) of the NHSP|F|,
then A is also a solution of the degree-1 instance

(p(1),q(1)),

as required.

First reducing a degree-d instance (p,q) of the NHSP|F| to the degree-1 instance
of the NHSP|F| as in Lemma 4.10 and then applying the algorithm of Lemma 4.1
that solves linear instances yields an algorithm that solves degree-d instances of the
NHSP|F|, as detailed in the following theorem.

Theorem 4.11 Let |F| > d. There is a randomised polynomial-time algorithm that
solves the NHSP|F| with complexity

O
(
mωdnd

)
and probability of success at least(

1− 1

|F|n

)d(1−ε)me γ|F| (d(1− ε)me)
γ|F| (d(1− ε)me − n/2)

Proof. Let (p,q) ∈ F [x]m × F [x]m be a degree-d instance of the NHSP|F|.
Denoting the homogeneous components of degree 1 of p and q by

p
(1)
i (x) = λpi x, q

(1)
i (x) = λqi x, where λpi , λ

q
i ∈ Fn, i ∈ {1, . . . ,m},

the following algorithm solves the NHSP|F| as an application of Lemma 4.1 and
Lemma 4.10:

Input: (p,q) ∈ F[x]m × F[x]m a degree-d instance of the NHSP|F|, with |F| > d.
EA ← ∅
for j=1 to m do
//We identify which scalars λq

i of the set (4.3) belong to A

weight← wp
|F|

(
λqj

)
if m− weight ≥ d(1− ε)em then

EA ← EA ∪ {λqj }
end if

end for
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if dim(span(EA)) = n/2 then
//We check if there are n/2 elements of EA that are linearly independent

A← span(EA).
return A

else
print “The algorithm fails”

end if

The complexity of the algorithm is that of computing m weights with respect
to each of the m polynomials of p, with each weight involving m evaluations of a
polynomial in F[x], and that of computing a rank, which is

O
(
m2dnd

)
+O (d(1− ε)meω) = O

(
mωdnd

)
Regarding the success probability, the algorithm above succeeds if among the

d(1− ε)me elements from EA there are n/2 linearly independent ones, this is, if the
corresponding d(1 − ε)me × n matrix has rank n/2. The probability that a d(1 −
ε)me×nmatrix has rank n/2 is at least the probability that a certain d(1−ε)me×n/2
submatrix has rank n/2, which equals the expression obtained in (4.4), namely

γ|F| (d(1− ε)me)
γ|F| (d(1− ε)me − n/2)

.

Furthermore, in order to succeed the algorithm also needs that in the instance (p,q),
all the d(1 − ε)me non-noisy polynomials of q have linear terms. Given a certain
i ∈ {1, . . . ,m}, the probability that a non-noisy polynomial qi has a linear term is
1− 1/|F|n and it is independent from any other qj (with j 6= i) having linear terms.
Therefore, the event that the d(1 − ε)me non-noisy polynomials of q have linear
terms equals: (

1− 1

|F|n

)d(1−ε)me
Therefore, the overall probability that the algorithm succeeds given any degree-d
instance of the NHSP|F| is at least:(

1− 1

|F|n

)d(1−ε)me γ|F| (d(1− ε)me)
γ|F| (d(1− ε)me − n/2)

Remark 4.12 Note that in the unlikely case that the algorithm above fails to recover
a basis of A it is still possible to try to recover a basis of A⊥ instead using the
characterisation of Remark 4.2 involving the scalars λpi .

This theorem gives a randomised polynomial-time algorithm solving degree-d
instances of the NHSP|F| whenever |F| > d, which means that the noisy scheme
of Aaronson and Christiano is not secure extended to fields F such that |F| > d.
Besides, the probability of success of our algorithm is overwhelming, so the break
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can be considered total. However, note that the attack depends on the polynomials
having linear terms, so if the authors change the parameters of their scheme then
our attack could be avoided. A possible way to do this would be by considering
homogeneous instances of degree at least three.

4.1.2 Experimental results

In this section we report experimental results (see Tables 4.1 and 4.2) to complement
our theoretical results of Theorem 4.11. All experiments were run on a 2.93 GHz
Intel PC with 128 Gb of RAM with the Magma software (V2.20-10) [Bosma et al.,
1997] and the Magma source code is written in Appendix A and available online on
GitHub (https://github.com/Marta-PhD/solving-HSP-NHSP).

The experiments show that the algorithm that solves degree-d instances of the
NHSP|F| behaves as expected: it is very efficient in practice and it succeeds with
overwhelming probability.

In Table 4.1 we start by choosing the smallest degree possible (d = 3), the average
value for the noise in order not to have a biased impression of speed (ε = 0.25) and
as few public polynomials as possible to get the lowest possible success probability
(β = 3/(1−2ε)2). Furthermore, we perform experiments over fields F of very different
sizes to observe any potential variation of speed.

d = 3, ε = 0.25, m = dβne
|F| = 5 |F| = 216 + 1

n 10 12 14 20 10 12 14 20

Time (in sec.) 0.25 0.6 1.59 13.13 0.43 1.03 3.09 20.14

Table 4.1: Performance of our algorithm (Theorem 4.11) solving the NHSP|F| for
d = 3

We can see that the algorithm is very fast and that increasing the size of the base field
does not entail a significant decrease of the speed. However, note that a decrease of
speed is occurring during the generation of degree-3 instances of the NHSP|F|, which
is due to the fact that the cost of multiplications over F increases as the cardinality
of the field increases.

Next, we maintain the same choice of parameters only increasing the degree of
the instance (d = 4):

d = 4, ε = 0.25, m = dβne
|F| = 5 |F| = 216 + 1

n 10 12 14 10 12 14

Time (in sec.) 1.28 4.41 11.32 2.54 7.85 17.96

Table 4.2: Performance of our algorithm (Theorem 4.11) solving the NHSP|F| for
d = 4

https://github.com/Marta-PhD/solving-HSP-NHSP
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We can see that our algorithm experienced a slight decrease of speed with respect to
the case d = 3 (note that the cost of evaluating pi over a certain element increases
with the degree) but it is still very fast. The decrease of speed when generating an
instance over a field with |F| = 5 and |F| = 216 + 1 is again noticeable.

Finally, our attack succeeded for all the instances we performed experiments on.
This is what is expected from Theorem 4.11, since particularising the expression of
the probability of success for the most disadvantageous parameters we performed
experiments on (d = 3, n = 10 and ε = 0.25) we obtain

γ|F| (d(1− 0.25)120e)
γ|F| (d(1− 0.25)120e − 5)

≈ 0.9
(60

· · ·9033,

for the first factor of the expression, whereas the second factor amounts to(
1− 1

510

)d(1−0.25)120e
≈ 0.9

(5

· · ·90784.

Undoubtedly, the probability of success —which is the product of both factors
above— for the most disadvantageous parameters we chose is already overwhelm-
ing. Furthermore, both factors of the probability in Theorem 4.11 increase with n
and |F|, and so asymptotically the situation only improves.

4.2 The NHSP2

This section is dedicated to study the hardness of the hidden subspaces problem with
noise over F2, a particular case verifying the condition |F| ≤ d and so not affected
by the results we obtained in Section 4.1.1. The noisy hidden subspaces problem is
originally defined over F2 in [Aaronson and Christiano, 2013], and thus the results
we obtain here have a direct impact on the noisy quantum money scheme proposed
by the authors.

As it happened in Chapter 3, the field F2 is very particular and the algorithm
that works under the condition |F| > d does not apply (as in this case Lemma 4.10
is no longer true due to reductions modulo the field equations).

The algorithm we present runs in polynomial time and it is randomised, with its
success probability being Ω(2−n/2) provided that the proportion of noise ε ∈ (0, ε) lies
within a certain range. Achieving this probability demonstrates that Conjecture 2.4,
made by the authors of the scheme precisely claiming the contrary, is false. Even
more, the conjecture states that no quantum algorithm exists succeeding with such
probability either and ours is purely classical.

Our algorithm simply combines both an exhaustive search and the algorithm
that solves HSP2 (see Theorem 3.17) from Chapter 3. Given a degree-d instance
(p,q) ∈ F2[x]m × F2[x]m of the NHSP2, the idea is to choose n polynomials at
random from p, say {pi}{i∈F} with |F| = n, and hoping that they happen to be
non-noisy. If they are, the algorithm for the HSP2 of Theorem 3.17 succeeds and if
they are not, the algorithm for the HSP2 fails and we repeat the process of choosing
n polynomials from p at random.
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The algorithm above succeeds if the randomly-chosen polynomials in the set
{pi}{i∈F} chosen at random are non-noisy and if the algorithm for the HSP2 succeeds
for the instance {pi}{i∈F}. The probability that n polynomials chosen at random
from p are non-noisy is approximated by the following result.

Lemma 4.13 Given a degree-d instance (p,q) ∈ F2[x]m×F2[x]m of the NHSP2, the
probability of choosing n polynomials from p (analogously from q) that are non-noisy
is given by the quotient (d(1−ε)βne

n

)(dβne
n

) .

Furthermore, the asymptotic expression of the above probability, which we denote by
P ε,βn , is as follows:

P ε,βn =

[(
β − 1

β

)β−1(
1 +

1

(ε− 1)β

)(ε−1)β (
1− ε− 1

β

)]n
.

Proof. We rely on the following asymptotic approximation of a binomial coeffi-
cient,

log2

(
b

a

)
≈ bH2

(a
b

)
, a, b ∈ N,

which derives from Stirling’s approximation

log n! ≈ n log,

where
H2(x) = −x log2 x− (1− x) log2(1− x)

is the binary entropy. By means of these approximations, we get the expression
above.

As the algorithm solving HSP2 is randomised, we also need to take into consider-
ation its probability of success to determine the overall probability of success of the
algorithm solving the NHSP2. The following result sums it up.

Theorem 4.14 Given a degree-d instance (p,q) ∈ F2[x]m × F2[x]m of the NHSP2,
the algorithm

Input: (p,q) ∈ F[x]m × F[x]m a degree-d instance of the NHSP|F|, with |F| ≤ d.
pi1 , . . . , pin ← n polynomials chosen at random from the set {p1, . . . , pm}
Apply the algorithm from Theorem 3.17 on pi1 , . . . , pin .
if the algorithm from Theorem 3.17 yields a solution then

return A
else

print “The algorithm fails”
end if
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runs in polynomial time and succeeds with probability

γ2 (n/2)P ε,βn .

Proof. Extracting from p at random a family of polynomials {pi}{i∈F}, with
|F| = n, takes O (n) time, and so the running time of the algorithm is O(n) times
the running time of the algorithm solving the HSP2, which is polynomial (The-
orem 3.17). Note that, heuristically, applying the algorithm of Theorem 3.17 to a
degree-d instance (p,q) works without changes if only the polynomials of p are being
considered.

Concerning the probability, on the one hand the probability that the n randomly
chosen polynomials are non-noisy is P ε,βn , and on the other hand the algorithm for
HSP2 works with probability γ2 (n/2).

Finally, we prove that the algorithm succeeds with probability Ω(2−n/2) if the
proportion of noise lies within a certain range. We set β = 3/(1− 2ε)2 since this is
the least advantageous choice.

Theorem 4.15 Let β = 3/(1 − 2ε)2. Given a degree-d instance (p,q) ∈ F2[x]m ×
F2[x]m of the NHSP2, the algorithm has an asymptotic probability of success

cε
−n/2, with cε < 2,

for ε ∈ (0, εβ], 0.2836336067907370 < εβ < 0.2836336067907371.

Proof. Once a proportion of noise ε is fixed, the expression P ε,βn depends solely
on n. Since the success probability of the algorithm is γ2 (n/2) · P ε,βn and consid-
ering that limn→∞ γ2 (n/2) ≈ 0.288788, the success probability of the algorithm is
Ω(2−n/2) whenever the following holds

P ε,βn = Ω(2−n/2) ⇐⇒ P ε,βn > 2−n/2.

Solving numerically the latter inequality, we obtain that this happens when

0 ≤ ε ≤ εβ, with 0.2836336067907370 < εβ < 0.2836336067907371.

Remark 4.16 The success probability Ω(2−n/2) of our algorithm can be made any
higher (e.g., Ω(2−n/3)) at the expense of suitably reducing the width of the interval
(0, εβ] within which such success probability is reached.

Remark 4.17 It is also easy to check that increasing (but fixed) values of β give
increasing values of the εβ boundary; this fact justifies the choice of β in the statement
of Theorem 4.15.
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This theorem implies that, for ε ∈ (0, εβ], there is a non-quantum polynomial-
time algorithm solving the NHSP2 with a success probability that is Ω(2−n/2). This
contradicts the conjecture of Aaronson and Christiano about the noisy version of
their scheme (see Conjecture 2.4) and it is, to the best of our knowledge, the first
non-quantum but classical algorithm that does so. Finally, we want to remark that
we do not include experimental results in this section because the running time of
this algorithm is O (n) times the running time of the algorithm that solves the HSP2,
so we consider that it does not provide any meaningful information aside from the
one already displayed in Section 4.1.2.
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Chapter 5

Conclusions, Contributions and
future work

In this chapter we address our conclusions on the hardness of the hidden
subspaces problem and its noisy counterpart, revisiting our contributions,
and we briefly comment what are the implications over the noise-free and
the noisy version of Aaronson-Christiano’s scheme.

We also discuss particularly relevant concurrent work done by other au-
thors and sketch several lines of research that could be explored in the
future.
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5.1 Conclusions

At the start of this thesis, in the context of post-quantum cryptography gaining
relevance due to the threat that efficient quantum computing would pose to modern
cryptography, two problems claimed to be quantum-resistant struck our attention.
These problems were the HSP|F| and the NHSP|F|, which underlay the security of
two versions of the first public-key quantum money scheme with a security proof,
Aaronson-Christiano’s. We noticed that no one had neither approached yet the
analysis of the hardness of the hidden subspaces problem and its noisy counterpart
nor studied the security of Aaronson-Christiano’s scheme. This thesis aimed at filling
this gap and, once finished, the global picture is as follows.

• The HSP2 can be heuristically solved in randomised polynomial time as long as
it is instantiated as the authors specify (see Theorem 3.17). As a consequence,
the noise-free version of the scheme of Aaronson and Christiano is not secure.

• The HSP|F| can be solved in randomised polynomial time for degree-d instances
of the problem that satisfy the condition |F| > d (see Theorem 3.10). This
algorithm yields a cryptanalysis of any extension of the scheme of Aaronson-
Christiano to a finite field satisfying the former condition.

• The NHSP2 can be solved in polynomial time with a probability that exceeds
that established in Conjecture 2.4 for roughly half of the choices of the noise pa-
rameter, thus disproving it (see Theorem 4.14). This conjecture was stated by
the authors and it constitutes the assumption under which their noisy scheme
achieves perfect completeness and negligible soundness error. Therefore, the
scheme is no longer secure.

• The NHSP|F| can be solved in randomised polynomial time for degree-d in-
stances of the problem that satisfy the condition |F| > d (see Theorem 4.11).
The algorithm solving the NHSP|F| yields a cryptanalysis of the noisy version
of Aaronson-Christiano’s scheme extended to any field F that satisfies the for-
mer condition. In particular, the NHSP|F| is not harder than the HSP|F| in this
setting, since we achieved a non-quantum reduction from the noisy version of
the problem to the noiseless one.

Note that our findings on the noisy hidden subspaces problem, which were ob-
tained from a non-quantum but classical perspective, already suggested that the
noisy version of the problem may be no harder than the noise-free version of it ir-
respective of the field. Concurrently to this thesis, Paul Christiano and Or Sattath
confirmed it by proving that there is in fact a quantum reduction from the noisy
hidden subspaces problem to the noiseless hidden subspaces problem [Aaronson,
2016, Aaronson, 2018].
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5.2 Contributions

For a given a degree-d instance of the HSP|F|, the system that models the HSP|F|
presents a different structure depending on whether |F| > d or |F| ≤ d. This is why
we divided the study of the HSP|F| and the NHSP|F| into two different scenarios.

5.2.1 Contributions regarding the HSP|F|

In the scenario |F| > d we found out that there were linear equations in the system,
which turned out to be sufficiently many for it to be solved by considering the linear
equations only. In this sense, we obtained a randomised polynomial-time algorithm
that solves degree-d instances of the HSPF and performs well in terms of efficiency
(see Tables 3.1, 3.2). In particular, our main result in this regard is the following.

Theorem 3.10 Let |F| > d. The algorithm

Input: (p,q) ∈ F[x]m × F[x]m a degree-d instance of the HSP|F|, with |F| > d.
Compute the solution EA of the system of linear equationsλpi,k +

n/2∑
j=1

λpi,j+n/2gk,j , ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n/2}


A← span(EA)
return A

runs in randomised polynomial-time and it solves the HSP|F| in

O
(
n2ω
)

with success probability
γ|F|(n/2)γ|F|(m)

γ|F|(m− n/2)
,

which can be asymptotically approximated by 1− 1
|F| .

Unfortunately, in the case |F| ≤ d there were no linear equations in the system.
However, we noticed that the degree of regularity of our system was lower than
the expected degree of regularity if the system was semi-regular. In fact, it seemed
to stay bounded (see Conjecture 3.16). This behaviour suggested that the system
had likely some internal structure that could be exploited, possibly imposed by the
orthogonality relation between the subspaces A and A⊥. Indeed, we proved in The-
orem 3.19 that there were a kind of symmetries in the equations that allowed to
construct equations of degree strictly lower than d from linear combinations of equa-
tions in the system. These are the main findings that support our algorithm solving
the HSP2, which is efficient in practice (see Tables 3.5, 3.6). It is the following.

Theorem 3.17 Assuming Conjecture 3.16, there is a randomised polynomial-time
algorithm (consisting on the computation of a Gröbner basis) solving degree-d in-
stances of HSP2 with a complexity of

O
(
n2ω(d+1)

)
,
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and success probability
γ2(n/2).

Our results yield a heuristic cryptanalysis of Aaronson-Christiano’s noise-free
scheme, as well as a cryptanalysis of any extension of Aaronson-Christiano’s noise-
free scheme to any field F other than F2.

5.2.2 Contributions regarding the NHSP|F|

Given a degree-d instance of the NHSP|F|, we found out that there is a reduction
from the NHSP to the HSP whenever the condition |F| > d is satisfied, which allows
to apply our algorithm that solves the HSP|F|. The main result concerning our
algorithm solving the NHSP|F|, which achieves good results in terms of efficiency
and success probability (see Tables 4.1, 4.2), is the following.

Theorem 4.11 The algorithm

Input: (p,q) ∈ F[x]m × F[x]m a degree-d instance of the NHSP|F|, with |F| > d.
EA ← ∅
for j=1 to m do
//We identify which scalars λq

i of the set (4.3) belong to A

weight← wp
|F|

(
λqj

)
if m− weight ≥ d(1− ε)em then

EA ← EA ∪ {λqj }
end if

end for
if dim(span(EA)) = n/2 then
//We check if there are n/2 elements of EA that are linearly independent

A← span(EA).
return A

else
print “The algorithm fails”

end if

solves the NHSP|F|, with |F| > d, with complexity

O
(
mωdnd

)
and probability of success at least(

1− 1

|F|n

)d(1−ε)me γ|F| (d(1− ε)me)
γ|F| (d(1− ε)me − n/2)

.

In the case of the NHSP2 we could achieve no reduction, but exhaustive search
alone combined with our algorithm for the hidden subspaces problem performs better
than O

(
2−n/2

)
for slightly more than half of the values that the noise can take.
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Theorem 4.15 Let β = 3/(1 − 2ε)2. Given a degree-d instance (p,q) ∈ F2[x]m ×
F2[x]m of the NHSP2, the algorithm has an asymptotic probability of success

cε
−n/2, with cε < 2,

for ε ∈ (0, εβ], 0.2836336067907370 < εβ < 0.2836336067907371.

This disproves Conjecture 3.16, which was assumed by Aaronson-Christiano and
it is the main assumption on which they base their noisy quantum money scheme.

5.3 Future work

The problem of designing a public-key quantum money scheme with a proof of secu-
rity remains open. In this regard, perhaps the more natural research area that arises
from this thesis is exploring if another instantiation of the HSP|F| can make the
HSP|F| hard and thus the scheme of Aaronson-Christiano secure. Studying whether
or not choosing the instances to be homogeneous makes a difference on the hard-
ness of the HSP|F| might be a good point to start. However, let us say that our
uninformed guess is that A and A⊥ are too structured not to impose an exploitable
structure on the system of equations. Note that throughout this thesis we have not
contemplated the case |F| ≤ d for fields other than F2, so that is also worth a look,
although we believe that the behaviour might be somehow analogous. These studies
would be from a purely classical (as in non-quantum) perspective.

From a quantum perspective there is some other research could be carried out.
Zhandry claims in [Zhandry, 2017] that instantiating the quantum money scheme
of Aaronson-Christiano with indistinguishability obfuscation that is secure against
quantum computers yields a secure quantum money scheme. Another proposal of
a quantum money scheme, based on the scheme of Aaronson-Christiano, is given in
[Ben-David and Sattath, 2017], so it should be further investigated.

As an anecdote, in the process of trying to find a distinguisher to detect noisy
polynomials over F2, we noticed that the number of zeros of the sum of two noisy
polynomials was greater that the number of zeros of the sum of either two non-noisy
polynomials or one noisy polynomial and one non-noisy one. We dedicated some
time to apply statistical techniques to test how good of a distinguisher it was, but
it did not seem to perform better than exhaustive search. However, we have not
fully exhausted the options of study derived from this observation, so it might be
something interesting to look at more in depth.
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Appendix A

Magma codes

In this appendix we include the source codes (in Magma software [Bosma
et al., 1997]) of the algorithms for the HSP|F| and the NHSP|F| of Chap-
ter 3 and Chapter 4, so the experiments can be reproduced or different
ones can be run if desired. The codes are also available online on GitHub
(https://github.com/Marta-PhD/solving-HSP-NHSP).

A.1 Generating and solving the HSPF

The main routine regarding the HSP|F| is Solve, which generates a degree-d instance
of the HSP|F as described by Aaronson-Christiano and then finds a solution for it.
This routine has several dependencies, so we include a tree of code dependencies in
Figure A.1 to make it more visual.

Solve

RandomPolyVanishingSubspaces

PublicPolys

RandomSinglePoly

Figure A.1: Dependencies of the main routine Solve for the HSP|F| case

Solve takes as parameters the cardinality of the finite field F, the number m
of polynomials to vanish on each A and A⊥, the number of variables n of each
polynomial and the degree d of all the polynomials. Note that by including the

https://github.com/Marta-PhD/solving-HSP-NHSP
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cardinality of the base field as a parameter in the code we cover both the case
|F| > d and the case |F| = 2 in the same piece of code.

We include here all the subroutines. VanishingSubspaces generates uniformly
at random an n/2-dimensional subspace A over Fn and computes its orthogonal, A⊥.

function VanishingSubspaces(q, n)
// Generation of the subspace E=(0|I) in
// n number of variables
E:=ZeroMatrix(GF(q), n div 2, n);
for i:=1 to n div 2 do

E[i,i]:=1;
end for;

// Generation of A=(A1|A2) where A1 is invertible of size n/2
// and A2 random of size n/2
repeat

A1:=Random(KMatrixSpace(GF(q), n div 2, n div 2));
until Rank(A1) eq n div 2;
A:=Random(KMatrixSpace(GF(q), n div 2, n));
for i:=1 to n div 2 do

for j:=1 to n div 2 do
A[i,j]:=A1[i,j];

end for;
end for;

// Computation of the change of basis matrix L (s.t. E=AL)
LT,N:=Solution(Transpose(A),Transpose(E));
W:=ZeroMatrix(GF(q),n,n);
repeat

for i:=1 to n do
W[i]:=W[i]+LT[i]+Random(N);

end for;
until Rank(W) eq n;
L:=Transpose(W);

AO:=KernelMatrix(Transpose(A));
LOT,NO:=Solution(Transpose(AO),Transpose(E));
WO:=ZeroMatrix(GF(q),n,n);

// Computation of the change of basis matrix LO (s.t. E=AO LO)
repeat

for i:=1 to n do
WO[i]:=WO[i]+LOT[i]+Random(NO);

end for;
until Rank(WO) eq n;
LO:=Transpose(WO);
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return A, AO, L, LO;
end function;

GenerateMonomials is an auxiliary function that returns the list of monomials
of degree [1, . . . , d], for a given d, in the given ring of polynomials R, such that are
divisible by an element in the set {xn/2+1, . . . , xn}.

function GenerateMonomials(n, d, EqR, R)
Mon:=[];

for degree:=1 to d do
for a in MonomialsOfDegree(R, degree) do

for k:=n div 2+1 to n do
if IsDivisibleBy(a, R.k) then

if NormalForm(a, EqR) notin Mon then
Mon:=Mon cat [a];
break k;

end if;
end if;

end for;
end for;

end for;
return Mon;
end function;

RandomSinglePoly, RandomPoly and PublicPolys are concerned with generating
random sets of polynomials that vanish on A and A⊥. RandomSinglePoly generates
uniformly at random a polynomial of degree d with coefficients in F that vanishes on
the subspace E generated by {xn/2+1, . . . , xn}. Observe that both take as input the
list of monomials generated by GenerateMonomials.

function RandomSinglePoly(q, d, Mon)
// Generation of a polynomial of degree d uniformly at random
// vanishing over E

repeat
P := &+ [Random(GF(q))*Mon[j] : j in [1..#Mon]];

until TotalDegree(P) eq d;
return P;
end function;

RandomPoly generates two sets of m uniformly random polynomials of degree d
with coefficients in F vanishing on the subspace E.

function RandomPoly(q, m, d, Mon)
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P:=[]; Q:=[];
P[1]:=RandomSinglePoly(q, d, Mon);
Q[1]:=RandomSinglePoly(q, d, Mon);

Y1:={P[1]}; Y2:={Q[1]};
for i:=2 to m do

repeat
P[i]:=RandomSinglePoly(q, d, Mon);

// Generation of m polynomials of degree d uniformly
// at random vanishing over E...

until {P[i]} meet Y1 eq {};
// assuring that the m generated polynomials are distinct

Y1:=Y1 join {P[i]};
end for;

for j:=2 to m do
repeat

Q[j]:=RandomSinglePoly(q, d, Mon);
// Generation of m polynomials of degree d uniformly
// at random vanishing over E...

until {Q[j]} meet Y2 eq {};
// assuring that the m generated polynomials are distinct

Y2:=Y2 join {Q[j]};
end for;

return P, Q;
end function;

The routine PublicPolys transforms (according to Proposition 2.13) the two sets
of m uniformly random polynomials of degree d vanishing on E into two sets of m
polynomials vanishing on A and A⊥, respectively.

function PublicPolys(q, m, n, d, R)

EqR:=[R.i^q-R.i : i in [1..Rank(R)]];

Mon:=GenerateMonomials(n, d, EqR, R);
Pb,Qb:=RandomPoly(q, m, d, Mon);

A,AO,L,LO:=VanishingSubspaces(q, n);

g:=[&+ [L[j,i]*R.j : j in [1..n]] : i in [1..n]];
h:=[&+ [LO[j,i]*R.j : j in [1..n]] : i in [1..n]];

P:=[]; Q:=[];
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for k:=1 to m do
P[k]:=NormalForm(Evaluate(Pb[k],g),EqR);
Q[k]:=NormalForm(Evaluate(Qb[k],h),EqR);

end for;

return A, L, AO, LO, P, Q;
end function;

Finally, the main routine Solve calls PublicPolys to generate a degree-d ran-
dom instance of the HSP|F| and then goes on to solve SysHSP|F|

of Proposition 3.5
distinguishing between the cases |F| > d and |F| = 2 as in Chapter 3.

function Solve(q, m, n, d)

R:=PolynomialRing(GF(q), n);

// Generation of a degree-d instance of HSP
A,AO,L,LO,P,Q:=PublicPolys(q, m, n, d, R);

G<[g]>:=PolynomialRing(GF(q), n^2 div 4, "grevlex");
EqG:=[G.i^q-G.i : i in [1..n^2 div 4]];
F:=PolynomialRing(G,n div 2);
EqF:=[F.i^q-F.i : i in [1..Rank(F)]];

// Algorithm for HSP when q > d
if q gt d then

h:=[];
for i:=1 to n div 2 do

h[i]:=F.i;
h[i+n div 2]:=&+[G.(i+n div 2*t)*F.(t+1) : t in [0..n div 2-1]];

end for;
Ho:=[];
for k:=1 to m do

Ho[k]:=HomogeneousComponent(P[k],1);
end for;
z:=[];
for k:=1 to m do

z[k]:=Evaluate(Ho[k],h);
end for;
peqs:=[];
for k:=1 to m do

peqs[k]:=Coefficients(z[k]);
end for;
newlisteqs:=[];
for k:=1 to m do

newlisteqs:=newlisteqs cat [a: a in peqs[k]];
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end for;
I:=ideal<G|newlisteqs>;
J:=Variety(I);

end if;

// Algorithm for HSP when q = 2
if q eq 2 then

h1:=[];
h2:=[];
for i:=1 to n div 2 do

h1[i] := F.i;
h1[i+n div 2]:= &+[G.(i+(t-1)*(n div 2))*F.t:t in [1..n div 2]];
h2[i] := &+[G.(t+(i-1)*(n div 2))*F.t:t in [1..n div 2]];
h2[i+n div 2]:= F.i;

end for;

z:=[];
w:=[];
for k:=1 to m do

z[k]:=NormalForm(Evaluate(P[k],h1),EqF);
w[k]:=NormalForm(Evaluate(Q[k],h2),EqF);

end for;

peqs:=[];qeqs:=[];
for k:=1 to m do

peqs[k]:=Coefficients(z[k]);
qeqs[k]:=Coefficients(w[k]);

end for;

Listp:=[];Listq:=[];
for k:=1 to m do

for i:=1 to #peqs[k] do
Listp:=Listp cat [peqs[k][i]];

end for;
for i:=1 to #qeqs[k] do

Listq:=Listq cat [qeqs[k][i]];
end for;

end for;
eqs:=Listp cat Listq;
I:=ideal<G | eqs,EqG>;
SetVerbose("Faugere",1);
J:=GroebnerBasis(I);

end if;
return P,Q,J;
end function;
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A.2 Generating and solving the NHSP|F| for |F| > d

As before, the main routine regarding the NHSP|F| is Solve, which generates a
degree-d instance of the NHSP|F| and then finds a solution for it, only that now we
only implemented the case |F| > d. The scenario |F| = 2 covered in Chapter 4 is
not implemented. Solve has several dependencies, so again we include a tree of code
dependencies in Figure A.2 to make it more visual.

Solve

PublicPolys

VanishingSubspaces

RandomPoly

RandomSinglePoly

Denoising

Figure A.2: Dependencies of the main routine Solve for the NHSP|F| case

In the noisy case, Solve takes as parameters the cardinality of the finite field,
the number n of variables of each polynomial, the proportion ε ∈ (0, 1/2) of noise
and the degree d of the polynomials.

We include here all the subroutines. VanishingSubspaces generates uniformly
at random an n/2-dimensional subspace A over Fn and computes its orthogonal A⊥,
as well as other d2εme uniformly random subspaces of dimension n/2 over which the
polynomials added as noise will vanish.

function VanishingSubspaces(pr, n, delta)
// Generation of the subspace E=(0|I)
E:=ZeroMatrix(GF(pr), n div 2, n);
for i:=1 to n div 2 do

E[i,i] := 1;
end for;

// Generation of A=(A1|A2) where A1 is invertible of size n/2
// and A2 random of size n/2
repeat

A1:=Random(KMatrixSpace(GF(pr), n div 2, n div 2));
until Rank(A1) eq n div 2;
A:=Random(KMatrixSpace(GF(pr), n div 2, n));
for i:=1 to n div 2 do

for j:=1 to n div 2 do
A[i,j]:=A1[i,j];
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end for;
end for;

// Computation of the change of basis matrix L (s.t. E=AL)
LT,N := Solution(Transpose(A), Transpose(E));
W := ZeroMatrix(GF(pr), n, n);
repeat

for i:=1 to n do
W[i] := W[i] + LT[i] + Random(N);

end for;
L := Transpose(W);

until Rank(L) eq n and A*L eq E;

// Computation of the change of basis matrix LO (s.t. E=AO LO)
AO := KernelMatrix(Transpose(A));
LOT,NO := Solution(Transpose(AO), Transpose(E));
WO := ZeroMatrix(GF(pr), n, n);
repeat

for i:=1 to n do
WO[i] := WO[i] + LOT[i] + Random(NO);

end for;
LO := Transpose(WO);

until Rank(LO) eq n and AO*LO eq E;

B := [];
for i:=1 to delta do

repeat
B[i] := Random(KMatrixSpace(GF(pr), n div 2, n));

until Rank(B[i]) eq n div 2;
end for;

LT:=[]; N:=[]; BL:=[];
for i:=1 to delta do

LT[i], N[i] := Solution(Transpose(B[i]), Transpose(E));
W := ZeroMatrix(GF(pr), n, n);
repeat

for j:=1 to n do
W[j] := W[j] + LT[i][j] + Random(N[i]);

end for;
BL[i] := Transpose(W);

until Rank(BL[i]) eq n and B[i]*BL[i] eq E;
end for;

BO:=[];
for i:=1 to delta do

repeat
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BO[i] := Random(KMatrixSpace(GF(pr), n div 2, n));
until Rank(BO[i]) eq n div 2;

end for;

LOT:=[]; NO:=[]; BOL:=[];
for i:=1 to delta do

LOT[i], NO[i] := Solution(Transpose(BO[i]), Transpose(E));
WO := ZeroMatrix(GF(pr), n, n);
repeat

for j:=1 to n do
WO[j] := WO[j] + LOT[i][j] + Random(NO[i]);

end for;
BOL[i] := Transpose(WO);

until Rank(BOL[i]) eq n and BO[i]*BOL[i] eq E;
end for;

return A, AO, B, BO, L, LO, BL, BOL;
end function;

GetMonomials is an auxiliary function that returns the list of monomials of degree
[1, . . . , d], for a given d, in the given ring of polynomials R, such that are divisible
by an element in the set {xn/2+1, . . . , xn}.

function GetMonomials(R, d)
Mon := [];
n := Rank(R);
for degree:=1 to d do

for a in MonomialsOfDegree(R, degree) do
for k:=n div 2 + 1 to n do

if IsDivisibleBy(a, R.k) then
Mon := Mon cat [a];
break k;

end if;
end for;

end for;
end for;
return Mon;

end function;

As it happened before, RandomSinglePoly, RandomPoly and PublicPolys are
concerned with the generation of an instance of the NHSP|F|. RandomSinglePoly
generates uniformly at random a polynomial of degree d with coefficients in Fn that
vanishes on the subspace E generated by {xn/2+1, . . . , xn}.

function RandomSinglePoly(R, Mon, d)
pr := Characteristic(R);
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n := Rank(R);
repeat

p := &+[Random(Set([0..pr-1]))*Mon[j] : j in [1..#Mon]];
until TotalDegree(p) eq d;
return p;

end function;

The routine RandomPoly generates two sets of m polynomials of degree d chosen
uniformly at random with coefficients in F vanishing on the subspace E. As an
auxiliary, we use the routine GetMonomials.

function RandomPoly(R, m, d)
p := [];
q := [];
Mon := GetMonomials(R, d);

p[1] := RandomSinglePoly(R, Mon, d);
q[1] := RandomSinglePoly(R, Mon, d);
Y1 := {p[1]};
Y2 := {q[1]};

for i:=2 to m do
repeat

p[i] := RandomSinglePoly(R, Mon, d);
until {p[i]} meet Y1 eq {};

Y1 := Y1 join {p[i]};
end for;

for i:=2 to m do
repeat

q[i] := RandomSinglePoly(R, Mon, d);
until {q[i]} meet Y2 eq {};

Y2:=Y2 join {q[i]};
end for;

return p, q;
end function;

The routine PublicPolys generates the following:

• A list of indicesK1 (resp. K2), with |K1| = |K2| = d(1− ε)me, and d(1− ε)me
polynomials with indices in K1 (resp. K2) that vanish on A (resp. A⊥).

• A list of indices J1 (resp. J2), with |J1| = |J2| = dεme, and dεme polynomials
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with indices in J1 (resp. J2) that vanish on the 2dεme random n/2-dimensional
subspaces generated with VanishingSubspaces.

function PublicPolys(R, m, d, delta)
pr := Characteristic(R);
n := Rank(R);

J1 := [];
J2 := [];

for i:=1 to delta do
repeat

tmp := Random([1..m]);
until tmp notin J1;
J1 := J1 cat [tmp];

end for;

for i:=1 to delta do
repeat

tmp := Random([1..m]);
until tmp notin J2;
J2 := J2 cat [tmp];

end for;

Sort(~J1);
Sort(~J2);

K1 := [ x : x in [1..m] | x notin J1];
K2 := [ x : x in [1..m] | x notin J2];

pb, qb := RandomPoly(R, m, d);

T:=[]; BT:=[]; C:=[]; BC:=[];
for i:=1 to m do

T[i] := Terms(pb[i]);
C[i] := Coefficients(pb[i]);
BT[i] := Terms(qb[i]);
BC[i] := Coefficients(qb[i]);

end for;

S:=[];
for i:=1 to m do

S[i] := [];
for j:=1 to #T[i] do

S[i][j] := [];
for k:=1 to n do
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S[i][j][k] := 0;
repeat

if IsDivisibleBy(T[i][j], R.k) then
S[i][j][k] := S[i][j][k] + 1;
T[i][j] := T[i][j]/R.k;

end if;
until IsDivisibleBy(T[i][j], R.k) eq false;

end for;
end for;

end for;

BS:=[];
for i:=1 to m do

BS[i] := [];
for j:=1 to #BT[i] do

BS[i][j] := [];
for k:=1 to n do

BS[i][j][k] := 0;
repeat

if IsDivisibleBy(BT[i][j],R.k) then
BS[i][j][k] := BS[i][j][k] + 1;
BT[i][j] := BT[i][j]/R.k;

end if;
until IsDivisibleBy(BT[i][j], R.k) eq false;

end for;
end for;

end for;

A, AO, B, BO, L, LO, BL, BOL := VanishingSubspaces(pr, n, delta);
Unk := Matrix(R, 1, n, [R.i : i in [1..n]]);
NL := Matrix(R, n, n, [L[i] : i in [1..n]]);
NLO := Matrix(R, n, n, [LO[i] : i in [1..n]]);

NBL:=[]; NBOL:=[];
for i:=1 to delta do

NBL[i] := Matrix(R, n, n, [BL[i][j] : j in [1..n]]);
NBOL[i] := Matrix(R, n, n, [BOL[i][j] : j in [1..n]]);

end for;

xL := Unk*NL;
xLO := Unk*NLO;
xBL :=[]; xBLO:=[];
for i:=1 to delta do

xBL[i] := Unk*NBL[i];
xBLO[i] := Unk*NBOL[i];

end for;
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p:=[]; q:=[]; b:=0;
for i:=1 to m do

if i in K1 then
p[i] := &+[C[i,j]*&*[xL[1][k]^S[i][j][k] : k in [1..n]

| S[i][j][k] ne 0] : j in [1..#T[i]]];
else

b:=b+1;
p[i] := &+[C[i,j]*&*[xBL[b][1][k]^S[i][j][k] : k in [1..n]

| S[i][j][k] ne 0] : j in [1..#T[i]]];
end if;

end for;

c:=0;
for i:=1 to m do

if i in K2 then
q[i] := &+[BC[i,j]*&*[xLO[1][k]^BS[i][j][k] : k in [1..n]

| BS[i][j][k] ne 0] : j in [1..#BT[i]]];
else

c:=c+1;
q[i] := &+[BC[i,j]*&*[xBLO[c][1][k]^BS[i][j][k] : k in [1..n]

| BS[i][j][k] ne 0] : j in [1..#BT[i]]];
end if;

end for;

return p, q;

end function;

Now, the routine Denoising implements the algorithm of Theorem 4.11 solving
the NHSP|F|.

function Denoising(R, m, p, q, gamma)
pr := Characteristic(R);
n := Rank(R);
Lambdaq := [];
ListEval := [];
LambdaOK := [];

for i:=1 to #q do
Lambdaq[i] := [];
ListEval[i] := [];
for j:=1 to n do

Lambdaq[i][j] := MonomialCoefficient(q[i], R.j);
end for;
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for k:=1 to #p do
ListEval[i][k] := Evaluate(p[k],Lambdaq[i]);

end for;

numberzeros := #[ x : x in [1..#ListEval[i]]
| ListEval[i][x] eq 0];

if numberzeros ge gamma then
LambdaOK := LambdaOK cat [Lambdaq[i]];

end if;
end for;

EltsA := ZeroMatrix(GF(pr), #LambdaOK, n);
for i:=1 to #LambdaOK do

for j:=1 to #LambdaOK[i] do
EltsA[i][j] := LambdaOK[i][j];

end for;
end for;

BasisA := [];
if Rank(EchelonForm(EltsA)) ge n div 2 then

for i:=1 to n div 2 do
BasisA := BasisA cat [EchelonForm(EltsA)[i]];

end for;
else

"Algorithm failed.";
end if;

return BasisA;

end function;

Finally, the main routine Solve integrates the process of generating and solving
a degree-d instance of the NHSP|F| with a proportion ε of noise.

function Solve(q, n, epsilon, d)
R := PolynomialRing(GF(q), n);
beta := 3/(1 - 2*epsilon)^2;
m := Ceiling(beta*n);
gamma := Ceiling((1-epsilon)*m);
delta := m - gamma;

P, Q := PublicPolys(R, m, d, delta);
BasisA := Denoising(R, m, P, Q, gamma);

return BasisA;
end function;
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