
i

Topics in Programming Languages,

a Philosophical Analysis through
the case of Prolog

Luís Homem
Universidad de Salamanca

Facultad de Filosofia

A thesis submitted for the degree of

Doctor en Lógica y Filosofía de la Ciencia

Salamanca 2018

ii

This thesis is dedicated to
family

and friends

iii

Acknowledgements

I am very grateful for having had the opportunity to attend classes with
all the Epimenides Program Professors: Dr.o Alejandro Sobrino, Dr.o

Alfredo Burrieza, Dr.o Ángel Nepomuceno, Dr.a Concepción Martínez,
Dr.o Enrique Alonso, Dr.o Huberto Marraud, Dr.a María Manzano,
Dr.o José Miguel Sagüillo, and Dr.o Juan Luis Barba. I would like to
extend my sincere thanks and congratulations to the Academic Com-
mission of the Program. A very special gratitude goes to Dr.a María
Manzano-Arjona for her patience with the troubles of a candidate with-
out a scholarship, or any funding for the work, and also to Dr.o Fer-
nando Soler-Toscano, for his quick and sharp amendments, corrections
and suggestions. Lastly, I cannot but offer my heartfelt thanks to all
the members and collaborators of the Center for Philosophy of Sciences
of the University of Lisbon (CFCUL), specially Dr.a Olga Pombo, who
invited me to be an integrated member in 2011.

iv

Abstract

Programming Languages seldom find proper anchorage in philosophy
of logic, language and science. What is more, philosophy of language
seems to be restricted to natural languages and linguistics, and even
philosophy of logic is rarely framed into programming language topics.
Natural languages history is intrinsically acoustics-to-visual, phonetics-
to-writing, whereas computing programming languages, under man–
machine interaction, aspire to visual -to-acoustics, writing-to-phonetics
instead, namely through natural language processing. One such pro-
gramming language as Prolog has the peculiar attribute of having been
unfolded in the passage from grammar studies, linguistics and formal
symbolic grammar studies to the very specific and incipient compu-
tational enterprises of natural language processing and logic program-
ming. Recounting Prolog’s philosophical, mechanical and algorithmic
harbingers endorse us to the mechanical-computational background
explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Zuse, until
reaching to the ACE (Alan Turing) and the EDVAC (von Neumann).
Recursion theory and computability (Turing, Church, Gödel, Kleene),
cryptography and information theory (Shannon), permit us to inter-
pret ahead the evolving realm of programming languages. The line
from λ-Calculus to Lisp, and from Lisp to the Algol-family program-
ming languages, the procedural and declarative split with the C lan-
guage and Prolog, and the ensuing syntax and semantic branching
explosion are here investigated in relation with the original élan of
both C and Prolog. Philosophy of mathematics different approaches –
structuralist, formalist, logicist, intuitionist – are confronted with com-
putability, and furthermore, logic programming and Prolog, studying

v

closely such authors as Frege, Gödel, and Wittgenstein. The logicist,
first-order complete and atomist nature of logic programming, settled
on Horn clauses with SLD-resolution, is subsequently examined. Like-
wise, the path from linguistic semiotics and the linguistics turn from the
Saussurian Course Générale to the Chomsky-Schützenberger hierarchy,
with a clear glance towards automata and complexity theories, all in all
with a common background on the ancient Pān. ini grammar, drives the
research far wider than the use of the Backus-Naur form in Saussurian
semiotics and programming languages, yet forgotten about. It permits
to describe Prolog as a typical by-pass product of computational logi-
cism and linguistics structuralism, with the philosophical design of the
Chomsky-Schützenberger hierarchy, specially apt to (strong) AI illu-
sion, as seen by its input into the Fifth Generation Computer Systems
(FGCS) in Japan. It also brings about how the syntax-structuralism
and the phonological destitution in natural language processing his-
tory (firsthand in automated theorem-proving, but also in statistical
machine learning), and in logic programming and Prolog alike (through
Q-Systems), are sign of a most general destitution of philosophy of mu-
sic in western philosophy of language, reason enough to convoke the
Medievalist Boethius, and the Contemporary provenience of the gen-
erative theory of tonal music. The separate and individual treads of
the different artificers of Prolog – Alain Colmeraueur’s work in the ma-
chine translation prototype, Philippe Roussel’s work in SL-Resolution
and in the Prolog manual, and Robert Kowalski’s work on the de-
velopment of the Turing-complete logic programming paradigm – are
framed in the investigation, inasmuch as, more broadly, Kantian critic
philosophy, with the aim of endowing a classical thoughtfulness to arti-
ficiality, computing and informational philosophy, technology studies,
and programming languages, with Prolog highlighted. Kant’s anti-
nomies are forethought under the light of these premises, and infor-
matic anew antinomies are interacted with the concept of virtuality in
the computus era, by contrast with that of calculus. More narrowly,

vi

the Kantian doctrine of schemata is faced up against the core of pro-
gramming languages theory through a topic that the author has, con-
ventionally, named

⋃
-Mentalism, meaning the possibility of equaling

computable functions with computer vision hierarchy and, inasmuch as
the inversion of Kant’s account of schemata, the proper inversion of the
von Neumann or Princeton computer architecture (image philosophy
and ontological concepts, such as Bergson’s "La Pensée et le Mou-
vant", "Matière et mémoire" and Deleuze’s "L’Image-Mouvement"
and "L’Image-Temps" reveal themselves very fit to one such cogita-
tion). With this is also brought in the encounter with the Euclidean
parallel geometry, a long lasting tradition until Bolyai-Lobachevsky,
mainly under the relaxation of the fifth parallel postulate, having had
a determining fate in philosophy of physics (from Riemannn to Ein-
stein). In like manner, diagonalization proofs from Cantor to Gödel
(and the diagonalization process contained in computability and cryp-
tography in informational communication) is shown to have enrolled
the proper history of computation, with flagrant topological dimen-
sions included. Logic programming and Prolog are, along this line,
explored by calling upon the subject of the least possible constraint
limits to logic and its inherent paradoxes, inevitably constituted also
in programming languages topics and theory.

vii

Contents

I Prolog, The Language of Mathematical and Dynamic
Antinomies in Artificial Intelligence 1

1 Prolog and Logic Programming, a Declarative Language in Phi-
losophy of Science, Essential Decomposed Fundamentals 2
1.1 Preliminary Historical & Philosophical Remarks 6

1.1.1 The von Neumann Architecture, Artificial Neurons, and In-
formation Theory . 19

1.1.2 Informatic Anew Antinomies 77
1.1.3 Appendix on Virtuality . 105

2 Natural Language Processing in Prolog 113
2.1 W-grammars and Q-systems in Natural Language Processing 113

2.1.1 The Chomsky-Schützenberger Hierarchy 116
2.1.1.1 From Saussure’s Linguistics to the Algebraic The-

ory of Context-Free Languages 123
2.1.1.2 Musical Interlude 129
2.1.1.3 The Chomsky Hierarchy in Boethius’ Triptych . . . 136

II Core Prolog 142
2.2 Essentials . 143
2.3 Past Convergent Fragments of λ-Calculus, Lisp, and Algol 60-68,

and ahead divergent fragments of C/C++, Java, and Python 202

Bibliography 224

viii

List of Figures

1.1 Interpretation of multiplication. (Shannon’s "Figure 3") 29
1.2 The Parallells Vth Euclidean Postulate (and Paradox). 72
1.3 Computational Complexity Classes 76

2.1 The Chomsky Hierarchy . 116
2.2 The Chomsky hierarchy contained in Boethius’ triptych 137

ix

Part I

Prolog, The Language of
Mathematical and Dynamic

Antinomies in Artificial Intelligence

1

Chapter 1

Prolog and Logic Programming, a
Declarative Language in Philosophy
of Science, Essential Decomposed
Fundamentals

Prolog is a computational and logical programming language created in the Fall of
1972 (after a first preliminary version in late 1971), the name stands forProgramming
in Logic (in French Programmation en Logique) [78, 276, 223, 224, 125, 120]. A
definitive version of Prolog was finally completed in 1973, and although the syn-
tax retained the form of the preliminary version, it can be correctly said that its
constitution has been the harbinger and prior direct (logical and computational)
correspondent of all current Prolog(s). In this statement we are portraying, thus,
the Prolog version of 1973 as having been the first in a direct line to the first ISO
standardized Prolog (1995) and all its due natural corrigenda, considered in the
time span the Warren Abstract Machine (WAM) (1983) as the de facto standard
for all Prolog compilers/interpreters [78, 79, 321, 65].

The names involved in the core conception of the programming language Prolog
are, above all, those of Alain Colmerauer, Philippe Roussel and Robert Kowalski,
even if the foundational and philosophical articulation of a "Machine-Oriented
Logic Based on the Resolution Principle" [316] (1965) belonged to J.L. Robinson.
We can not neglect the various subsumed and hidden intellectual achievements
without which Prolog could not have ever taken its form, such as the DPLL Algo-

2

rithm by Martin Davis, Hilary Putnam, George Logemann and Donald Loveland
(1962), the (Alfred) Horn clauses (1951) or Herbrand’s theorem (1930). As for all
other sorts of efforts and accomplishments, they are naturally assumed.

For instance, Alan Turing’s general development of theoretical computer sci-
ence, Kurt Gödel’s fundamental theorems on foundational (incomplete) mathemat-
ics and (complete) logic calculus or Alfred Tarski’s "Concept of truth in formalized
languages" [113] (1933 in Polish). But there are also other indispensable founda-
tions such as Church’s evolution from the conjecture on computable functions to
the invention of λ−Calculus, John von Neumman’s computer architecture and lin-
ear optimization, or John MacCharthy’s coinage of "Artificial Intelligence" and
development of the Lisp [195, 153, 360, 5] family of programming languages, par-
allel with Algol-like [339, 400, 3, 97] programming languages included, wherefrom
Prolog sprouted.

We should not, anyway and in accordance with the precedent, fail to pay at-
tention to the different ground thesis of philosophy of mathematics and logic of the
contemporary age, namely, (1) logicism, (2) empiricism, naturalism and indispens-
ability, (3) anti-realist and nominalist formalism, (4) intuitionism and (5) struc-
turalism (following Stewart Shapiro’s diagnosis of the twentieth century’s western
philosophy of logic state of the art) [55, 338], nor should we lose sight of the out-
growth of what is usually referred to as modern logistic, symbolic or mathematical
logic. Encompassed in this expression are, more properly, the intellectual and
speculative trails from the early-to mid-nineteenth century algebraic movement
(e.g. George Boole in England, a generation later Ernst Schröder in Germany and
Giuseppe Peano in Italy, but also men such as Charles Sandes Peirce, Jon Venn,
Georg Cantor and even Hugh MacColl) up to the full logicist program between
Frege’s Begriffsschrift [134] (roughly Begriff for concept and Schrift for "script"
or "writing mode") (1879) and the Principia Mathematica [399] (1910,-12,-13) by
Bertrand Russell and Alfred North Whitehead.

These trails are all relevant under the general landscape posed by David Hilbert’s
program on metamathematics. In continuum with this idea, our aim should, at
last, by encompassing all the arguments and retaking the first and last chapters of
Martin Davis’ book The Universal Computer (The Road from Leibniz to Turing,

3

2000) [96], call upon the frontier from "Leibniz’s Dream" [96] to the terra incog-
nita of "Beyond Leibniz’s Dream", regarding the (possible realms of the) future
of philosophy of logic and computation.

Alain Colmerauer, Philippe Roussel and Robert Kowalski, are, therefore and
for as much as is revealed, the key figures in the birth of Prolog.

Due to intellectual and philosophical affinities and for the purpose of our inves-
tigation, we choose to separate Alain Colmeraueur and Philippe Roussel on one
side, and Robert Kowalski on the other. The combined work of Alain Comeraueur
and Philippe Roussel permits us to focus more on computer science field assump-
tions within Prolog, while Robert Kowalski’s background, work and approach lead
us more towards mathematical logic, philosophical and logical reasoning, thus ex-
tricating a natural ambivalence in Prolog itself. What is more, they permit us to
unfold a philosophical analysis into, respectively, the wedged apart but also con-
joined, realms of natural language processing and logic programming (while Alain
Colmerauer [78, 39] is an artificer of natural language processing, Robert Kowalski
[224, 223] is a prime mover in logic programming, with Philipe Roussel being the
representative of the work on SL-Resolution and automated theorem-proving, in
addition to having written the Prolog reference manual [323, 322]).

These two natural research directions represent together the presumptive and
inferred, theoretical and derivable status of Prolog (the disciplines of automated
theorem-proving and mechanical inference relative to natural language processing
and both natural deduction and first order logic relative to logic programming,
all in all sharing structural logic and formal reasoning), but also its adaptive,
pragmatic, observational, inductive and experimental nature (the two-level Van
Vijngaarden grammar extrapolation to Q-systems developed by Alain Colmerauer
in natural language processing, and Philippe Roussel’s different choice implemen-
tations from Un système de communication homme-machine en Français [323]
to the Prolog Manuel de référence et d’utilisation [322], not to mention Robert
Kowalski’s choice of procedural Horn clauses in logic programming).

In its own right, natural language processing and logic programming can be said
to equate, in encapsulated form in the computational era, the place of grammar
studies and formal logic in the broader spectrum of the history of language and
logic.

4

It is above all recommendable to abide by the order from natural language pro-
cessing to logic programming, owing to the same broader argument that encircles
grammar studies and formal logic, that is, the complexity argument [20, 406, 250,
146, 145, 289, 196], but also the superlative and convoluted movement from natural
languages to computational programming languages. This intellectual endeavour
consistently weakens the conjecture of one inherent bisection of natural and arti-
ficial languages. Overall and on the contrary, it sets a continuum in linguistic and
computational, natural and programming languages. Mutatis mutandis, without a
clear understanding of logic programming and program transformation techniques
associated, the core of the language Prolog can never be rightly scrutinized.

Throughout the investigation into Alain Colmerauer, Philippe Roussel, and
Robert Kowalski’s work, we will be instructed in the development from automatic
translation to the debuted research on man-machine communication (Prolog 0)
[79, 321, 348, 323, 322] after Turing’s Computing Machinery and Intelligence [368,
364] (1950) legacy.

Turing’s historical paper can be said to have divulged, in Kantian terms, an
internal and external critical experience or phenomena (the Turing Test or the Im-
itation Game [363, 366, 364, 365, 368, 362] as a special postulate in grave perpetual
doubt), resonating a sort of non-contradictory human and artificial (or rather sim-
ply of pure reason - mathematical and dynamical, but also of practical reason) new
antinomies, anon in computational terms. Such a critical experience should be con-
sidered on the presumption of one dialogic and conversational natural language.
This judgement is exceedingly important if we remember the labelling of Prolog
as a "conversational language" [73] (W.F. Clocksin & C.S. Mellish, Programming
in Prolog, Fourth Edition, 1987-1994).

All the more, envisaged under the close study of Alain Colmerauer’s work [78]
is the interpreter of a programming language in the style of theorem prover in first
order logic under Horn clauses restriction (Prolog 1, 1972), and the replacement of
unification by solving equations in tree-structures (Prolog 2, 1982). These offer the
backbone to the posterior arrival of constraint programming, where lists, rational
numbers and boolean values are tree-structure refinements (Prolog 3, 1989), and,
finally, the approximation to non-linear constraints by enclosure methods (Prolog
4, 1996). Philppe Roussel’s interim computer science production in implementing

5

formal equalities and a synthesis mechanism reaching the form of a full interpreter
of the emergent logic programming languages paradigm in one such form, has had
the ability to mirror the precedent stages in the history of Prolog.

Finally, Robert Kowalski’s investigations drive us through the avenue of logic
programming, theorem-proving and knowledge representation, granting us the
overall perspective of the computational significance of Prolog on one hand, and
logic programming on the other, from which we will license a wider philosoph-
ical discussion. Such a philosophical route shall be seized under the very spe-
cial and latter modern and contemporary historical-philosophical (cognitive and
declarative) ascendant spiral from Leibniz (1646-1716) to Turing (1912-1954) in
the first place, not consigning to oblivion, though, the preliminary, secluded and
long-lasting (industrial and procedural) path from Archimedes of Syracuse (c. 287
B.C.- c. 212 B.C.) to Charles Babbage (1791-1871).

1.1 Preliminary Historical & Philosophical Remarks

The philosophical substractum of the programming language Prolog is, like a gem,
shining and prismatic in nature. But like a proper gemstone, we can be avoided
from seeing through its interior. Its facets are wide-raging – from the bound of AI
[325, 141, 352, 324] and logic programming to algorithms and data structures, from
Lisp programming transactions to the implementation of neural networks, from hu-
man/computer interaction to computational linguistics, in between mathematical
logic and computational mathematics – but, regarding the critical requisites of
any advanced philosophical research, we must ask ourselves: has Prolog or, truly,
computer programming languages as a subject, really been found to fill the critical
gap in logic, philosophy of language and science?

Withholding Bordas-Demoulin’s chosen Leibniz’s "épígraphe de la pensée" –
"Sans les mathématiques on ne pénètre point au fond de la philosophie. Sans la
philosophie on ne pénètre point au fond des mathématiques. Sans les deux on
ne pénètre au fond de rien." [44] – finding, in addition, programming languages
(Prolog distinctively), to be superlative examples of the intricacy of mathematical
logic and philosophy’s different ontologies, is it licit to say that the programming

6

languages - the web and weaver of the computational and informational age - have
been philosophically probed?

Philosophy of language, after promising semiotic and symbolic underpinnings,
laying siege to the linguistic turn, structuralist and post-structuralist reviews, and
epistemological contra-revolutions, seems to have been afflicted with the passage
from natural languages to computing programming languages (with modern formal
logic and truth-conditional theories of meaning in the interpolation). Of course
the history of computing and programming languages has ventured on natural
language processing, computational linguistics and even cognitive science, accom-
panied by algebraic and applied combinatorics on words and lexical terms. But are
we entitled to say, in an upstream (semantic) instead of a downstream (syntactical
or computational behaviorist) sense, that philosophy of language has endeavored
to analyze computing programming languages, the proper artificial prolongation
of natural languages?

In regard to this, the history to state-of-the-art interregnum is quite clear if we
compare Graham White’s (The Philosophy of Computer Languages, 2004)[398, 53]
authentic introductory remark – "The semantics of programming languages grew
up in a particular historical context, and it is worth spending some time describing
it: it was developed by a group of philosophically literate mathematicians and
computer scientists, and the philosophical influences are quite evident."[398] – with
its conclusion – "The overall goal of programming semantics is quite similar to the
philosophical project of developing a theory of meaning: however, the methods and
results are strikingly difficult. To a large extent this is because the philosophical
project has been developed in isolation, with unsophisticated technical tools, and
with the aid of a very small number of examples, none of them either large or
complex."[398] – while considering, on the edge, that this exam is only compelled
to programming semantics and abstractness (with so many other prevailing aspects
left unconsidered).

Philosophy of science, absorbed in quarrels between underdetermination and
confirmation, superabundant models of explanation and abusive intertheoretic re-
duction, all throughout the computing and information age, is found almost in a
state of pleading for a new set of three constitutional Critiques - in spirit Kantian’s

7

Kritik der reinen Vernunft (1781-87), Kritik der praktischen Vernunft (1788) and
Kritik der Urteilskraft (1790) - now in the Cybernetics Age.

Indeed, the rebirth of European science, mainly driven, but also reciprocally
caused, by astronomy and physics to metaphysics and epistemology, – with the
scientists and natural philosophers Nicolaus Copernicus (1473-1543), Tycho Brahe
(1546-1601), Johannes Kepler (1571-1630), Galileo Galilei (1564-1642) and Isaac
Newton (1643-1727) as leaders – having, in hyperbolic fashion, elevated helio-
centrism and enlightenment, seems to be at an odd parallel with contemporaneity.
With this we mean to say that although obviously incommensurable - and not even
competing historical paradigms in Thomas Kuhn’s viewpoint [121, 217] (cosmos
was, on the brink of entering the XIXth century, in spatial and temporal terms,
just a gravitationally bound system comprising the sun and seven planets with
a narrow biblically-inspired chronology) – utterly, even though contemporaneity
lacks a physical unity theory, coetaneous metaphysics and epistemology are as off
center, and critically bewildered, as they would be if a new all-abridging (phys-
ical) theory like Copernicus’ On the Revolutions of the Heavenly Spheres [83] to
Newton’s Philosophiæ Naturalis Principia Mathematica [281] had taken place.

It could be argued that the shift to the modern post-Newtonian physics paradigm
– the advent of quantum mechanics by Max Planck (1858-1947), its reevalua-
tions by Erwin Schrodinger (1887-1961), Werner Heisenberg (1901-1976) and Max
Born (1882-1970), and, fundamentally, the theory of general relativity by Einstein
(1879-1955) – all above the previous work of Dmitri Mendeleev (1834-1907) in
chemistry and Charles Darwin (1809-1882) in biology –, had set the standard for
a new paradigm shift. This is absolutely true, but there is one striking element
that is a nonpareil to all other scientific achievements, insurmountable in breaking
through the frontiers of science and civilization: the computer as an artifact, i.e.,
computation theory in an analogue (non-symbolical physical)-to-digital (numerical
symbolic) machine [86, 127, 376, 12, 122, 345].

Theoretical computer science, in its philosophical-mathematical-symbolical nu-
cleus, corresponds, in short, to the Turing-Church thesis (1936) (the Turing-
machine and λ-Calculus; a proper computing-machine and a programming func-
tional language in abstract), cutting down to the utmost a whole research program
on formal models of computability initiated in the 1930’s and 1940’s.

8

Visibly, there was inalienable solid cumulative work, sharing the same patterns
of one "logic of the scientific discovery"1[304, 306, 305] (Karl Popper, 1959) in
contiguous time and in propinquity: Kurt Gödel (1906-1978), Jacques Herbrand
(1908-1931) and Stephen Kleene (1909-1994) worked on a number theory class
named partial recursive or µ-recursive functions prior to 1936, while, also prior
to 1936, Emile Post (1897-1954) drew very near to Gödel’s completeness theo-
rem, scrutinizing Whitehead and Russell’s Principia Mathematica, and John von
Neumann (1903-1957), the future artificer of the von Neumann (or Princeton) ar-
chitecture for computers [380] (1945), was the first witness and judge of Gödel’s
first and second incompleteness theorems.

But it is also very clear that, in what relates to computability and complexity
theories, typically foreshadowing the computer, in both its just referred to valences
– a machine and a program, as described in a Turing-machine and in λ-Calculus;
the same is saying, a recursive instruction carrier mechanism with arbitrary se-
quences of arithmetic or logical operations automatically driven –, even if prior to
the proper physical and realistic arrival of the computer, can only be circumscribed
to the work of Turing and Church.

As a matter of fact, this is so, but it is to be understood that really what
has molded the thesis author(s)-designation was the computer itself. In other
words, what has made the "Turing-Church" designation preferable, even over the
"Church-Turing" designation, was its conjoint machine-program (or instruction-
recursion) elementary architecture. We should not, in any way, forget that this is

1Truly, Karl Popper’s concept of "falsifiability" or, more generally, the epistemology of "falsi-
ficationism" is remarkably adequate to reason upon some underpinnings of philosophy of math-
ematics crisis under revolution, above all Gödel’s incompleteness theorems. Refutability (as
envisaged in theorems and not in simple conjectures), considered any formal axiomatic sys-
tem containing basic arithmetic - one such as Russel’s and Whitehead’s Principia Mathematica
-, of decidability or any "effective method", or algorithm with natural numbers expressions
(Gödel’s 1st theorem), and towards itself or its consistency as an extension (Gödel’s 2nd the-
orem), all together in between effective axiomatization and completeness, undecidability and
inconsistency, is really something that would relate Popper’s work on philosophy of science with
Gödel’s achievements: ("the problem of induction" [304]; "scientific objectivity and subjective
conviction" [304]; "why methodological decisions are indispensable" [304] and "methodological
rules as conventions" [304]; "falsifiability and consistency"[304] and even whole chapters as "de-
grees of testability" [304]) reasonably seem extensions of Gödel’s philosophy of mathematics into
philosophy of science, but, strangely enough, authoritative acknowledging is absent (primus inter
pares in Popper, or amongst academic inter pares).

9

the nucleus (analytic) of computation to which all the computer architectures –
the Princeton or von Neumann [380, 379, 378] (1945) and the Harvard (modified)
(1937-44) architectures included – are, literally, no more than a very elaborated
(dialectic) epiphenomenon.

We shall, for the moment, refrain our analysis from the deep waters of the
historical-mathematical unfolding of the concept of function – a many-to-one (or
sometimes one-to-one) relation, where the set A of values at which a function is
defined is called its domain, while the set f(A) subset B of values that the function
can produce is called its codomain or target (with possibly other elements as mem-
bers), while the range or image of the function is the set of outputs and the set of
all input-output pairs called its graph ([176, 7]) – which was responsible for, at the
shifting point of the invention of λ-Calculus and "effectively calculable functions"
(Church, 1936), the transformation from the placed Leibniz-Newton tradition of
calculus to the unplaced, as off center and critically bewildered, Turing-Church of
computus (technically, "transformation" in the proper geometria situs archetypal
sense, wherein the original shape of the object is called the pre-image and the final
shape and position of the object is the image under the transformation, out of
which translation and rotation – just about the simple transformations that en-
acted modern era heliocentrism and cultural enlightenment – are, although simple
as they are, fine grained demonstrations of sufficiently strong arguments as to have
put in motion the Copernican revolution).

Indeed, one of the characteristics of the artifact computer has been the trans-
formation, literally the transformation in terms of a congruent translation of object
X of Perimeter (ABCD), ideally the "scanned square" [362], or theoretically an
"electrical circuit" [335] – with the translation lines the length of X in the plane to
itself, else described as an automorphism, a one-to-one correspondence to itself in
the continuous function of space (and time, with some T (n) maximum amount of
time taken on any input of size n to the object Area (ABCD)) –, from the ideally
pure and noumenal bi-dimensional plane Turing-Machine (1936) to the empirical
and phenomenal three-dimensional vector digital and electronic integrated circuit
(1958, first semiconductor integrated circuit).

We can’t be mislead here, though: at the level of the binary Boolean in elec-
tronics communication, computing machinery and microprocessors circuitry (ana-

10

log to digital or mixed), and past the invention of the transistor (1947) and the
integrated circuit (1958), past even the inception and evolution of the ARPANET
(1969), with devices operated through instructions and data by using transistors
on-off states as (1 − 0) or (true − false), even if it is true that a flow of atoms
and electrons is being conducted and spatial (non-locality) three-dimensional ob-
servance (hypothetically "reality") has to be accepted at the quantum level, at
the conceptual level all the computability actions of digital set architecture level
instructions of devices with memory, with or without a microarchitecture, having
a logic design and implementation, necessarily follow the bi-dimensional ideality
of a Turing-machine.

Consequently, the Turing-machine two-dimensional ideality is akin to two-
dimensional axiomatic set theory, i.e., a study of collections of objects – in princi-
ple, positive integers or natural numbers in Peano’s axiomatic with the principle
of induction, moreover with possible correspondence to properties of all real al-
gebraic numbers that possess the same mathematical structure –, with the result
of one such topological space being set upon objects as points, and nearby other
points-localities a collection of subcollections as open sets [397, 344, 227, 303, 349,
54, 220, 72].

More accurately, thus, we affirm that the history of computation, approximat-
ing as much as possible the millenarian history of computation to that of modern
digital computer machinery [343, 409, 201, 386], has been, in spite of the Turing-
machine holding the Archimedean property of excluding the infinitely large and
the infinitely small, one of combining an odd geometrical-to-(quasi)-topological
balance:

In between and from the congruent movement of different "squares" [362],
taken as metric spaces, and current "m-configurations" [362], taken as isometric
transformations and mappings on one horizontal and bi-dimensional axis (such
that the distance between the pre-image and the image is equal to the distance
and time-function between the elements or "m-configurations"), i.e., an n−tuple
as a sequence or ordered list, as depicted originally in a Turing-machine, all in all
in bi-dimensional R2 ideality.

And in between the conjecturing conversion of each image and of the sequence
itself – the Turing-machine "supplied with a blank tape and set in motion, starting

11

from the correct initial m-configuration, the subsequence of the symbols printed by
it which are of the first kind will be called the sequence computed by the machine"
[362] –, by means of length and width with infinity, i.e., a space where any point
has no dimension, only position, to something quite new: an ideal R3 Euclidean
space where geometrical "squares" [362] relate in isometry to "m-configuration"
[362] symbols, solely through the perimeter by the rigid motion of a translation,
and wherein real numbers with expression, called the number computed by the
machine as binary decimals, are obtained by prefixing the sequence with a decimal
point.

Hence, this R3 entirely abstract ideality (not yet virtuality) corresponds to a
sort of open and infinite Euclidean-to-Hilbertian space simulacrum in pure and an-
alytic computability terms, while in symbolic dialectic terms it is admissible that
any non-Euclidean geometry is constructable and applicable as a computational
judgement2, wherein symbolic manipulation is set free, and Turing-machine’s dif-

2We follow here the idea behind Felix Klein’s Erlangen program [221] (1872), an original
breakthrough on classifying geometries by their underlying symmetry groups, connected with
group theory and projective geometry. It was published by Felix Klein as A Comparative Review
of Recent Researches in Geometry (1872) (on entering the Philosophical Faculty and the Senate
of the University of Erlangen). What is fundamental in Klein’s seminal paper is the hierarchic
constitution of geometry according to the paramount importance of projective geometry over
affine geometry, and the former and the latter over classic Euclidean geometry, all throughout
establishing a pattern in relation with complex analysis. With Klein, every geometry holds an
underlying group of symmetries, thus found to be invariants in association with the different
algebraic structures or groups in the hierarchy. If noticed, the Erlangen program is model wise
and frees itself from the undifferentiation mold wherein provability and truth are bundled, in
such manner resembling, almost six decades before, Alfred Tarsky’s mathematical definition of
truth in formalized languages [113] and the idea of semantic equivalence between the "object
language" and the "metalanguage", insofar as Klein’s program attests to geometrical languages
with satisfiable concepts in different "object languages". Also interesting to note is that Klein’s
Erlangen program, being more perceptual and akin to mathematical structures than Tarsky’s
conceptual theory of the formal notion of truth, shows a much more perspectivist and realistic
notion of the now both reckoned to be the correspondence (Plato, Aristotle, Aquinas, Descartes,
Leibniz, Kant, Gödel, Russell, Wittgenstein I), and the deflationary (Hume, Frege, Wittgenstein
II, Quine) theories of truth.
In Kantian terms, we could asseverate the Erlangen program to accommodate projective ge-

ometry with the three kinds of synthesis: on its own, the recognition in concepts of reason
(symmetries and groups), by enclosing affine geometry, the reproducing in imagination (trans-
formations as reproductions from points, lines, planes and dimensions), and by enclosing, lastly,
classic Euclidean geometry, the apprehending in intuition (Platonist solids and polyhedra per-
ceptual external and spatial inner receptivity) (Cf. Kant [A97-A105]), always bearing a decisive
and imperative duality of both the intuition and the concept.

12

ferent planes per "m-configuration" [362] through computable numbers – mini-
mally and conceptually two perpendicular planes in a three-dimensional coordinate
geometry establishing recursion (altogether a two-dimensional placed simulacrum)
–, are responsible for the whole idea of programming languages and its hierarchy:
Boolean values in the hardware rendered machine code (1st generation PL) in as-
cension to assembly language (2nd generation PL), to higher-level programming
languages, with or without the web (3rd generation PL), still to more advanced
features (4th generation PL), and, finally, to the constraint-based and logic pro-
gramming type with the declarative paradigm (5th generation PL), where Prolog
is included [350, 82, 256, 64, 66, 197, 313, 127, 24, 173, 226, 186].

Therefore, we have declared, in one such manner, in philosophical terms, an n-
recursive intelligible, and, in perspective, n-dimensional sensible spaciality of com-
putable functions (approaching virtuality if and only if the subject is considered),
at a distance from constricted functional-calculi as τoπoς (computable) topos (in
minimallity), or, more at large, taking the geometrical judgement of verticality
(more so a centrifugal planar opposition in pure geometrical terms), the very idea
of programming languages hierarchy (in maximallity).

Beyond this, we aim to establish an idealisticum continuum of x : a ∈ R (where
a is a lambda-variable), but necessarily restricted to natural numbers according to
the Turing-Church thesis and the limits of computable, or "effectively calculable"
functions, where f : Nk → N produces f(x), given sufficient time and memory.
This critical boundary of the set consisting of all possible variables (passive of being
bounded by lambda-abstraction (λx.M) and by lambda-application to (MN)),
so that the set consisting of all possible variables {x1, x2, x3, ..., xn} in Turing-
equivalence, taking the programming languages existing properties as (PL), to
be {x/x ∈ N, x satisfies (PL)}, can, in the end, be assumed as the group of
computable functions that are simultaneously also programming languages under
α-conversion and β-reduction.

This is precisely the reason why Raúl Rojas has written: "The λ-Calculus can
be called the smallest universal programming language of the world." [319] a fair
portraying statement that could very well have been substituted by its inverse, in
one such case being the λ-Calculus possibly described to be "the biggest universal

13

programming language of the world". This is so, accurately because of computabil-
ity’s proper projective nature, wherefore (and in between the imagined limits of a
vacuum and a plenum) and as if, taking the physical entities of fields, an imag-
ined (functionalist) field withholding Boolean symbolical manipulation over the
phenomenon of electromagnetism, would likewise produce a schema or schemata,
i.e., from within one topus (point; <name> <function> <application>) to con-
tinuum (list; <expression> <function> <application>) pure ideality. We will see
how fruitful it is to understand this computation ideality from philosophical roots
(metaphysically sprung from Leibniz-monadic to Kant-noumenal inceptions).

This is also the reason why John McCarthy, the creator of the programming
language Lisp (the name taken from "lists" expansion and linkage in data struc-
tures, having expanded as a sort of mathematical notation precisely for Church’s
λ-Calculus, spinning-off two dialects: Common Lisp and Scheme) has reportedly
said: "Lisp’s core occupies some kind of local optimum in the space of program-
ming languages." (John McCarthy, History of Lisp, 1978-79) [22, 189]. In this
fashion, John McCarthy alluded to a type of early Aristotelian Organon informa-
tional and computational Topics, i.e., machinating the art of διαλεκτικη (dialectic)
as the proper invention, discovery and abduction of arguments in which its (func-
tional) arguments, resting upon commonly held statements, would meet τοποι
(topoi) being such loci or "places" the conceivable programs.

It is also along these lines that congruity is found following G. Revesz’s notes
on the subject of "Variables and functions in mathematics and programming lan-
guages" [314]: "It is obvious that different procedures may compute the same
extensional function. But, in general, it is undecidable whether two procedurally
defined functions are extensionally equal (...) Now, the problem of deciding the
extensional equality of functions by examining their respective procedures is es-
sentially the same as the equivalence problem of Turing machines, which is known
to be unsolvable."[314]

Our strategy, after having captured Turing-equivalence of λ-Calculus, alongside
Post’s "Finite Combinatory Processes-Formulation 1" [308] really the only histori-
cal momentum equivalents amongst other logical-computing equivalents3 – includ-

3Turing’s On computable numbers, with an application to the Entscheidungsproblem [Received
28 May, 1936.—Read 12 November, 1936.]; Church’s An Unsolvable Problem of Elementary

14

ing Post’s Recursive Unsolvability of a Problem of Thue [307] (1946-1947) model,
Hao Wang B-machine (1954, 1957), Böhm’s theoretical machine language P"
(1964), the Markov (1903-1979) algorithm4, besides the so called Turing-machine
variants (such as non-deterministic, read-only, total, or universal, this last one
the most interesting, by far5) – is to, following equivalence, equate computability
theory (Turing-machine or λ-Calculus indifferently) with naïve set theory.

Our expectation is that from this basic equation, through constructive and
finitary methods of semantic equivalence holding between naïve set theory and its
computability equivalents – type-free λ-Calculus, µ-recursive functions, Turing-
machines, Markov algorithms –, in the simple form of one largely descriptive and
intuitive survey, we can interpret the computing spatial two-dimensional, contigu-

Number Theory [April 1936]; Post’s Finite Combinatory Processes-Formulation 1 [September
1936].

4It is worth noting that the Turing-machine equivalents (and/or variants) all share the fol-
lowing characteristics: "single-tape", "one-way infinite", and a "multi-symbol alphabet" that
cannot compute more mathematical functions than the algorithms, "m-configuration functions",
"m-functions", or, in Church λ-definability, any "λ-expressions" or "λ-terms" denoting variables
binding to the functions. Just so, this is the proper explanation why, in Kantian terms, we should
separate the Turing-machine equivalents according to the logical function of the understanding
in judgements, namely in modality, i.e., apodeictic (in which case we would find a reduction of
the Turing-machine) and assertorical (in which case we would find only constitutive variances in
the basic definitions of a Turing-machine) (Kant, CPR A70-B95). Problematic are also excep-
tionally important as they are the proper inner condition of the transcendental subject in most
of its inner dispositions and momenta of thought, wherefrom truthful propositions disjunct from
hypothesis, turning out to be a logical possibility or an as affirmed a priori logical necessity.
If we change in a Turing-machine "left-to-right" to "right-to-left", change the formal descrip-

tion of the alphabet, or even establish parallel computing, by going as far computing in quantum
matrices, for example, we are only asserting logical reality or truth, thus producing an alternative
Turing-machine modus ponens wherein, irrespective of many different antecedens, the consequens
will always be the Turing-Church thesis. Again, all of these modalities are important, but we
should only consider "formal reductions", as if a substitution derivation in calculus to formal
reduction was performed. This is why we should give a closer attention – and even more so as
it was a case of serendipity in science, with both Turing (prior five months) and Post articles
being independently received in 1936, really the annus mirabilis in philosophy of logic – to the
Post-Turing machine model (where one such apodeictical reduction occurs). Shortly, we should
better consider post-Post machines (including Post’s or Post-Turing machine) the only ones of
the apodeictic sort.

5The Universal Turing-machine (or machine U) is just about the only one that makes use
of the geometrical notion of reflection considered as a partial function, where reflection means
literally the fixing of thoughts on something or, indeed, a stored-program, as means of computing
a computable sequence. If this machine M is supplied with a tape on the beginning of which
is written the Standard description (S.D) we have the basic conditions for a Universal Turing-
machine (Cf. [362] Section 6).

15

ous and structural ideal "squares" [362]. We hope to do so, simplifying, attaining
only to the Turing-machine model, in the methodological fashion from geometry-
to-topology-to-imagination ("imagination" here understood as in Kant: the syn-
thesis reproduction of images)(Kant, [A120]).

If we computationally understand geometry connected to the faculty of sensi-
bility (informational and digital impressions), topology in turn with the faculty of
understanding (the reproduction of images in the synthesis of imagination, fun-
damentally by the perception of invariances in computer vision), and, finally, the
faculty of reason closest to computer programming (the recognition of concepts
of reason in relation to the patterns of the mind), we are, in our interpretation,
advancing resolutely to a wider comprehension of both the intensional and exten-
sional limits of computation. We call this prospect

⋃
-Mentalism.

Having computability testing equivalence with the human mind is naturally
outside the bonds of experience, and, therefore, is in such way out of the inherent
acts of experience (perceptio, sensatio and cognitio), but, in general, this act of
representation that we choose to call

⋃
-Mentalism as a representatio is, in our

conception, a relational fairly reasonable and permitted analogy of experience
from the dynamical principle. It naturally extends in dynamics (and dialectic) the
field of physical-philosophical and computational-programming possibilities, i.e, in
the field of modality all the (possible-to)-necessary postulates of empirical (and
computational) thought.

With one such methodology we propose looking closely at the equivalence
classes characterized by "integral" (non-variable) and "differential" (variable) trans-
formations from the Turing-machine "squares" [362] Euclidean space, through in-
creased licensed anew transformations, to further achieve – not exactly any sort of
non-Euclidean geometries (although we recognize the symbolical power of compu-
tation to reproduce non-Euclidean geometry-to-topology affine projections) –, but,
instead, the power of procedural rules by which human judgments form images in
perception, i.e., the force behind Kant’s original idea of schema and transcendental
schematism (Kant, [A137-B176 - A178-139 - B180 -A141]).

Insofar as we are calling attention to one geometry-to-topology-to-imagination
(methodological and computational) synthesis, it is advisable to, in conformance,
clarify that, although we are alluding to images (and a schematic and organized

16

synthesis of computational images in
⋃
-Mentalism), originally there is not any

single intuition connected with the schema, but instead the unity in the deter-
mination of sensibility, making the schema very distinguishable from the image
(Kant [A141]), albeit, in computational and programming terms under computer
vision (imagination), it shall be, precisely, the subsumption of each possible image
(imago, imaginis) to one necessary schematism (schema, schemata) that is worth
being studied and tested.

Plus, every possible programming art under this appraisal, necessarily meets
philosophy, and intensionality & extensionality augmented computer vision (in
one such way a computer programming medium, here understood, by analogy, as
language), as a formal and pure conception of "sensibility" (here computational,
informational, and digital impressions), to which the conception of the understand-
ing becomes unrestricted through its employment, provokes an unexpected turn:
likewise the schema of the conception of the understanding is naturally restricted in
sensibility (Kant, [B179-A140]), now the procedure of the understanding through
schemata, i.e., the schematism of the pure understanding, can become now also
computable (a naturally restricted domain of functions).

In one such effort, though, we are perspectively inverting Kant’s assessment, in
confrontation with computability. If in critic transcendental philosophy Kant was
interested in going from the transcendental unity of apperception (Kant, [A107]),
then to the pure categories of the understanding (Kant, [A129-A130]), and, fi-
nally, to the transcendental schemata of the principles of the understanding (Kant,
[A137-A147 B176-187] (envisaging the passage from empirical concepts, to pure
mathematical sensuous concepts, and, ultimately, to the pure concepts of the un-
derstanding schemata), in computability, alternatively, we are interested in the
exact inverse pathway:

We are equating any and all produced symbolic images as a transcendental
unity of any possible judgment (densely and extensively overpassing the limited
bound of variables, constants, rules, functions, or the like), towards the end of
producing imagery procedural programming and computing schemata.

The envisagement and fabrication (more so the exposition of critical limits of
computability) of

⋃
-Mentalism certainly is to be compared, in its integral constant

equivalences, with the Turing-Church thesis (1936) and computability equivalents

17

– type-free λ-Calculus, µ-recursive functions, Markov algorithms –, and, what is
more, it should also be compared, in its differential model, to all the modal vari-
ances that the apperception of the self permits. It should also be opposed, much
wider than the real opposing programming languages paradigms, with the concep-
tion of one architectonic, pointedly, as the exact inversion of the von Neumann
architecture or model6 [380] (1945).

6The von Neumann model resulted in being a pyramidal discipline, like a standard physical
theory, congregating different binding subjects: programming fundamentals and digital systems
(conceptual level), algorithms and data structures (mathematics), operating systems and com-
pilers (practical implementation and applied computer science), with computer architecture con-
sidered to be the focal point. There is a conducive historical line that is sharply representative
of the historical time acceleration phenomenon.
Its most ancient antecedents are the Babylonian abacus (3.000 b.C.) and the millennial leap

forward Hindu-Arabic numeral system (ca. 825), sorting a (practical) positional calculation
machine and (theoretical) thought on number theory (in a pre-Einstein’s sense of a Gedankenex-
periment), envisaging a transformation of nods into rods, and an action from glyphs to graphs
(in a pre-Euler sense), here understood as networks of dots and lines, or rather the passage from
vertices, nodes, and points connected by edges and lines, pair with in relation to quantity by
active synthesis, and constructed to find number systems in "tables" (in a pre-Turing sense).
Next in importance are XVIIth century Pascal’s Pascaline (1642) (a performing adding calcu-
lator for the first time using the carry mechanism) and Leibniz’s stepped reckoner (1674) (the
first direct-indirect addresses arithmetic four-operations performing calculator), ergo both firstly
anticipative of von Neumann’s First Draft automatic digital computing systems, attaining to the
"CA" or "central arithmetic part" [380] (forasmuch as it was possible in the pre-calculus era).
The Pascaline, a final ending to more than 50 prototypes, working with five different positional
cage gears with a set of ten spokes (0-9) for input dial with a hand stylus, starting the accu-
mulator with metal stops in zero and clockwise (addition only) performing in cascade through
a carry mechanism (reason why subtraction was performed by the rule of the nine-complement
digit C9(digit) = 9 − (digit) hence C

(nthpower)
9 = 10n

thpower − 1 − (digit) so that for
any given digit ϕ and a second φ, the positional (ϕ+φ) in the mechanical output could only be
readdressed to the very same positional (ϕ-φ)) is here seen to endorse, by Pascal’s machinery in-
telligence forethought, a "diagonalization argument" as understood by Cantor [119] (1891) (with
results in R uncountability and the continuum problem), also in Gödel through "Gödelisation"
[161, 160] (1931) (whereby arithmetic finds a naming alphabet that, through a fixed-point and
self-referentiality, leads to the 1st and 2nd incompleteness theorems), still in Kleene’s recursion
theorem [220] (1938) (application of computable functions to their own descriptions by the use
of code in a finite set of numbers to correspond to a single natural number), in Turing’s "Ap-
plication of the diagonal process" [363, 362], and in von Neumann’s carrying out of arithmetical
operations seized by a general logic control [380] (1945) (a proper need for "zigzag discussion of
the specific parts" [380] due the transversal "subdivisions of the system" [380].
The abacus-linear difference to the diagonal-calculator, beyond the other typical dichotomies

in the study of (analog-to-digital) automata, is very important, as it is to grasp that Leibniz’s
stepped reckoner was an improvement upon Pascal’s calculator: it was still an induced hand-
cranked calculating device, but now the Pascaline’s objects "five cage gears" and "ten spokes"
were put together and transformed into the form of one cylinder with nine bar-shaped sizes,

18

1.1.1 The von Neumann Architecture, Artificial Neurons,
and Information Theory

Succinctly, circumscribing at present time and from very different approaches and
sources [377, 87, 179, 149, 271, 320, 251, 169, 272, 170, 370, 225] the von Neu-
mann architecture has come after the fundamental "First Draft of a Report on the
EDVAC" [380] (1945) – with "EDVAC" supposedly meaning "Electronic Discrete
Variable Computer" (J. P. Eckert, Jr., and J.W. Mauchly; 1945 [198]) – written by
von Neumann so to configure a computing architecture planning for the EDVAC
construction and very much in debt to the collective and often secret work of the
Moore School group [198]. The original First Draft of a Report on the EDVAC
(1945), however inveigled in an aura of collective common ideas from the Moore
School, and even if sometimes against the author’s intent, is recognizably a work
of the genius of Von Neumannn.

The Draft Report [380] is organized into both one Euclidean-axiomatic way
(axioms, corollaries & theorems somehow aligned with "1.0 Definitions", "6.0 El-
ements", & "15.0 The Code" [380]) and also into one Vitruvian-architectural way
(with prescriptions for the planning and design of large structures and small con-
trivances of machines, measuring devices and instruments, utterly unveiling the
universal present-day hallmark of informational and computational design and
technology, dragging its modern analogies from aqueducts and mills, materials,
forces, central heating, surveying instruments and machines, etc, now under the
supine effort of computation). The First Draft [380] oscillates, thus, between en-
rollments that go from common-held and self-evident true statements to appended
deducted propositions and, finally, to equivalent computational-informational the-
orems, while also plunging into the flexibly industrial, problematically procedural,
statistical, often dynamical and ergodic implementation of machines.

The First Draft is divided into 15 sections of content, and the structure of
a "very high speed automatic digital computing system"(1.1) [380] is, right from

paired with counting wheels moving up and down the wheel and meshing with the different sizes,
a superb demonstration of spatial -function-topologized engineering and analysis situs in motion,
as if one characteristica geometrica propria in machinery was found for the pre-(Turing-Church)
calculus era.

19

the start, made dependent on its "logical control"(1.1) [380], something very in-
teresting to follow as, computationally, it means that the Frege-Russell logicism,
under Norbert Wiener’ sense of Cybernetics – Cybernetics, or Control and Com-
munication in the Animal and the Machine [404] and The Human Use of Human
Beings, Cybernetics and Society [405] – was made to survive its philosophical foun-
dation through "control and communication", after a tide of paradoxes, which,
curiously enough, are paradoxically, also responsible for the theoretical founda-
tions of computability and "effective calculability" through "computable numbers"
[368, 362, 366, 363, 364, 365]. Actually, the "automatic digital computing system"
[380] has ascended from an aboveground Boolean logic, but also through an un-
derground (Euclid-to)-Cantor diagonalization method. This has proceeded even
though great minds like Kurt Gödel (1906-1978) and Alonzo Church (1903-1995),
who had worked on the foundations of recursion and computability theories, never
came to think on the synthesis of both the theoretical and the practical different
verges, a proper "paradigm shift" [121, 217] (in itself standing in need of "diagonal-
ization", here taken as a directional "shift") that was only rightly emancipated by
Alan Turing with On Computable Numbers, with an Application to the Entschei-
dungsproblem [362] (1936).

Indeed, it is odd that the era of paradoxes has produced such a marvelously
effective piece of machinery as the computer, computability having entered into
the realm of metaphysics in the short span of decades, and how paradoxes, "di-
agonalization" (and its prospects of cryptography in complexity theory) were set
to be instructed to carry out arbitrary sequences of arithmetic by means of au-
tomata designed logical operations, on top of such a volatile phenomenon as elec-
tricity (overall a computational-informational David and Goliath parabola, where
a supreme force was elevated from its weaknesses). This computational neologi-
cism was, thus, made to survive through paradoxes, and it is worthwhile to observe
that both the strong version of logicism (which "maintains that all mathematical
truths in the chosen branch(es) form a species of logical truth" [356]) and the weak
version of logicism ("which maintains only that all the theorems do" [356]) are, in
analytic terms and mathematically, an impossibility, but have been made to seem
synthetically possible by a sort of computational (connectionalist) dialectic, where
from and where to programming languages respond, over and above, through a

20

massive network of computers, after the advent of the ARPANET (1969) and the
World Wide Web (1989-1991), as the pinnacle of modern communication systems.

The First Draft [380] aims solely for results in "numerical data" form (1.2)
which the "device can sense" (1.2) "through specialized organs" (2.2) – "punched
into a system of punchcards or on teletype tape, magnetically impressed on steel
tape or wire, photographically impressed on motion picture film, wired into one or
more fixed or exchangeable plugboards – this list being by no means necessarily
complete." [380] (1.2)7.

Also to take into account in the First Draft are the operations (+,−,×,÷),
possibly including (√, 3

√
, sgn) – the signum function of a real number x is defined

7With this passage it is clear in the rendering of the device various other computer architec-
ture historical landmarks, such as Joseph Jacquard’s (1752-1834) programmable loom, controlled
by a sequence of punched cards laced together. The Jacquard loom permitted that the woven
textiles, made by passing threads over and under one another (plain or patterned), were pro-
grammed by punched cards, firstly designed as if they were fabric (in fixed-point self-referential
logic) and, hence, copied from squared paper into punched, and afterward, stitched cards. In
such a way, automated woven patterns were made possible by holes in the cards controlling
which threads were raised and wires lifted in the intervals (here understood as the passage from
Leibniz’s stepped reckoner’s differential cylinder to a complete "m-configuration function" [362]
table (in pre-Turing sense), as if the cylinder was topologized to a simple plane, and furthermore
compacted and miniaturized, the processor and the program conjoint in its basic architecture).
The Jacquard Loom, due to its direct image-semiotic programming, is affine with the cath-
ode ray tube, the vacuum tube firing electrons to a phosphorescent screen, where it displays
its pattern and photon-weaving (something that was only peripherally examined by von Neu-
mann in the First Draft about the "iconoscope memory" [380] plate (12.8)). Computationally,
the Jacquard loom logic lived through until the 1980’s. It was the messenger for XIXth cen-
tury Charles Babbage’s analytical engine, XXth century Herman Hollerith’s electromechanical
punched card tabulator working for the American census, launching the Computing-Tabulating-
Recording Company (IBM). It influenced, under the aspect of the square paper with stitched
punched cards, reinvented as a paper tape (connected with a typewriter) and, later, film control-
ling the electromechanical process, Konrad Zuse-Schreyer’s Z1 (1936), Z2 (1940), Z3 (1941), Z4
(1949, -50) (originally V1-V4 for Versuchsmodell, meaning "experimental model" with a punch
tape and a tape punch reader), S1 (1942) and S2 (1944), John Atanasoff’s electronic machine,
known as the Atanasoff-Berry Computer (ABC) (1939, -42), the Harvard Mark I or ASCC by
IBM (1944), Stibitz’s Bell computers (1937, -44), the Colossus (1943, -45), up until the ENIAC
(1946-1956) and the EDVAC (1946, -62). The Jacquard loom is the first machinery to abandon,
in retrospect, Heron of Alexandria’s cogwheel mechanics for smoother gearing (pre-relay type), a
rather cleaver insight if we remember the difficulty of acceptance of the first logical schemes with
diodes (1942), and the transistor (1947), up until to the first fully transistor computer TRIADIC
(1955).
Philosophically, the Jacquard loom is the proper inferential image of physicist Brian Green’s

expression (and title of a science book): "The Fabric of the Cosmos: Space, Time, and the
Texture of Reality." [155].

21

as χ an array the same size as x, 1 if x > 0, 0 if x = 0, and -1 if x < 0 –, ‖ ,
log10, log2, ln (natural algorithm with constants), sin and inverses, all in all coming
from a logic-machinery produced ± (plus or minus). This marks a choice of exactly
two possible values, one of which is the negation of the other, and being Pascaline-
alike in its "first specific part: CA" [380] (central arithmetic) (2.2), described,
in an outline widely similar to topology, as "elastic" [380] (2.3), capturing with
this expression its all-purposefulness. Uniformly, the second specific part: CC"
[380] (central control) (2.3) comes with circumstantial memory and code. The
importance of fixed tabulations in many problems specific functions "on the basis
of the analytical definitions" [380] (2.4 c) should all have an addition-reducing
logic, and any partial differential equations, integrated along a variable t should
be counted into the cycle t (the cycle t + dt is the cycle wherein the variable t
parses with d, the initial and boundary conditions of the numerical material in the
memory): "the third specific part of the device: M " [380] (2.5). Such cycles may
include methods such as those of successive approximations, i.e., recursion within
recursion.

"The three specific parts CA, CC (together C) and M correspond to the asso-
ciative neurons in the human nervous system. It remains to discuss the equivalents
of the sensory (or afferent) and the motor (or efferent) neurons. These are the
input and the output organs of the device (...)" [380] (2.6) – this quote exposes
the all-engulfing hard-biophysiological metaphor with roots in W. S. MacCulloch
& W. Pitts8.

8W. S. MacCulloch & W. Pitts’s influence on von Neumann was mainly driven by the paper A
Logical Calculus of Ideas Immanent in Nervous Activity [248] (1943), in turn, thoroughly inspired
in logic: Carnap’s The Logical Syntax of Language (1938), Hilbert & Ackermann’s Principles of
Mathematical Logic (1928 first edition, 1938 second edition, 1950 American translation), and
Russell & Whitehead’s Principia Mathematica (1925) are the only references of the paper.
The "all-or none" character of nervous activity and its theoretical coinage by propositional

calculus – as for the rest, strongly assertable after Claude Shannon’s Boolean algebra (and nu-
merical) electrical application (1937), after A Symbolic Analysis of Relay and Switching Circuits
[335] – was the leading idea for connectionist nets, as if a neurophysiological equivalent was,
thus, only to be achieved, rather than unfeasible. As follows, in spite of the difficult locus and
precise range whereabouts of the equivalence, the net of neurons with soma and axons, synapses
as adjunctions forming impulse-driven instants-thresholds constituting the nervous system with
great velocity of communication are, in W. S. MacCulloch & W. Pitts’s paper, the "immanent
analogy" [248]. This analogy has deserved, often times, transcendental sealing (the dynamical
principle of experience being only possible through the presentation of a necessary connection
of perceptions wrongly taken on the grounds of the mere aprehension understood as necessary,

22

W. S. MacCulloch & W. Pitts’s vision is mathematically and neurophysiolog-
ically bounded by the arrival of impulses at points "unequally remote from the
same source" [248], and "from axonal terminations to somata" [248] even if the
net definition in terms of communication hid the reason behind the flux and even
speed timing, preventing more ad hoc interpretations. The excitabiliy of latent
addition and observed temporal summation is, therefore, a property of the struc-
ture, no matter reaching values sink to subnormal activity after rapid returns.
This overall specificity depending upon time and space with greater or lesser re-
fractonariness due to inhibitions, does not constitute a material argument against
the envisagement of one calculus equivalent to the structure. Hence, the argument
is one such of nervous nets as equivalent "in the extended sense" [248] and, nat-
urally, of a physical calculus where physiological relations are made equivalent to
relations between propositions and arguments, and where reactions can be read as
assertions.

Thus, "facilitation and extinction" [248] on one side, and "learning" [248] on the
other, akin to von Neumann’s understanding of M(emory), are difficulties to the
formalization, but the (neurophysio)-logical argument should not be understood
as factual explanations: the electric-chemical threshold, after potentials and ionic
concentrations, learning and enduring, are not a problem for formal equivalence
logic theories, and neither are phenomenons like "sleep, anaesthesia, convulsions
and coma."[248]. It is, in this way, captivating why and how, in a sort of geometry-
to-topology nervous physiology, as found also in Turing’s Morphogenesis [365]
the containment (in proper logical existential sense) of "many circular paths"
[248] connate with regeneration of excitation and reference to time past, i.e., to
M(emory) [380], and also to computability or recursion theory.

as if, by analogy of experience precisely, by the perceiving of events and an interior subjec-
tive determination of objects, one would think time itself was being experienced). This alert is
cognated and more than circumstantially akin with recursion theory, as, in Kantian terms, the
analogies of experience (even if taken conservatively from Hume’s full-blown inductive skepti-
cism) denote three analogies to the three modes of time (permanence the first, succession the
second, and simultaneity the third of analogies) all exemplary in recursion theory (memory, re-
cursion, and parallels/unification) and, for this reason, recommendable insofar as to point out
that computability is, onto any relation of other sciences, and namely biological and life systems,
regulative if anything, rather than constitutive.

23

W. S. MacCulloch & W. Pitts’s paper [248] directs onwards the discussion to
"nets without circles" and "nets with circles" provoking formalized theorems from
the formal calculus (related to any net structure unchangeable in time).

"The present theory is endowed with a symbolism "(...) of language II of R.
Carnap (1938), augmented with various notations drawn from B. Russell and A.
N. Whitehead (1927), including the Principia conventions for dots."9[248] (with
some typographical differences) Typically: the neurons of a given net N, where
the functor S whose property P holds of a number when P is equally right to
his predecessor, S(P)(t). ≡ .P (Kx).t = x′ 10denoting the property of synaptic
delay from the origin of time t with neuron ci firing action described as Ni(t),
and the nearest predicate expression [Pr] for S(P), and S2Pr for S(S(Pr)), and
so on, enabling quantified number variables through the subscripted numeral ci
or ‘c1 ’, ‘c2 ’, · · · , ‘cn.’ to work as functoral arguments, and exposing a list of
conjunctions and disjunctions with the actions ‘N1’, ‘N2’, · · · , now forming the
syntactical class ‘N ’.

The peripheral afferents of N that have no axons synapsing upon them, fall
9The use of dots in Principia Mathematica has its origin in Peano, and it was also used and

studied by authors such as Turing, Church, and Quine. In respect to the use of dots for punctu-
ation from the use in Principia Mathematica, "dots on the line of the symbols have two uses, one
to bracket off propositions, the other to indicate the logical product of two propositions. Dots
immediately preceded or followed by "V " or "⊃" or "≡" or "`" or by "(x)", "(x, y)", "(x, y, z)"
· · · or "∃(x)", "∃(x, y)", "∃(x, y, z) · · · or "[(1x)(φx)]" or "[R′y]" or analogous expressions, serve
to bracket off a proposition; dots occurring otherwise serve to mark a logical product. The
general principle is that a larger number of dots indicates an outside bracket, a smaller number
indicates an inside bracket."[241] Conventionally, dots, considered as primitive symbols, range
from ., for (), :, for [], ; ., for { }, ::, etc.

10If we attend the logical syntax of a symbolic language, with its formation rules, and also its
transformational rules, with deduction, properties, and relations between sentences defined on
the basis of these rules, confronted with the systematic development of "Language II"[59] by R.
Carnap (Language II as bearing the finitist Language I with propositional calculus and a Peano
arithmetic with customary axioms, a symbol for 0 and for successor, and enriching extensions
such as variables for propositions, predicates, and functors – functions with any number of argu-
ments of any type – and predicates forming classes in unbranched type theory, and some other
"fragments" such as the logical terms "demonstrable" and "refutable"), then the result is a sort
of "coordinate language"[249] similar to mathematical-formulae physics. Usually, under Car-
nap’s formalisation, the class of analytic sentences surpasses the class of demonstrable sentences.
Language II by Carnap is, of course, remnant of general syntax – "a syntactical investigation of
any symbolic language whatever"[249] enclosing a multitude of terms, from "variable" to "type",
from "universal operator" to "translation" – and wherefrom K is meant to signify the class k of
sentences implying the sentence S (and equally so in McCulloch & Pitts’s paper).

24

under the formalization N1, · · ·Np, and consequently, all the others included as
Np+1, Np+2, · · · , Nn, which turns to the idea that a "solution of N" [248] is related
only when there isn’t any free variable except under the order of [Pri], neither any
other descriptive symbol is contained in the expression, in one such way that Si,
taken as a numeral, is said true of N. Consequently, Pr1(1p1) (left superscripts
taken as random variables and contigencies and right superscript as a progressive
index) is only "realizable in the narrow sense" [248] if there exists a sense of a free
variable like Z1 at the end of the [Arg] and the constant sentence [sa], where the
series of actions of Ni in the net N shall meet N1(Z1). ≡ .P r1(N1, N2, · · · , Z1, sa1)

where sa1 is equal to N(0). Whenever it is not needed the subscripted nu-
meral of ‘N ’as if it were the prolongation of the functoral argument, and the
neurons meet the quantified variable from the natural order of the functor S, as
in Sn(Pr1)(p1, · · · , pp, z1, s) it is called "realizable in the extended sense, or simply
realizable" [248]. From here on, the authors Warren McCulloch (neuroscientist cy-
bernetician) & Walter Pitts (logician in the field of computational neuroscience),
move forward to expand this idea to theorems about realizability in the extended
sense, with this obtaining computable meaning classes of effective solutions mate-
rially stated, both cyclic and non-cyclic (presupposing a complexity notion made
dependent upon the order of the net through its index).

The result is, formally, the conception of the "linear threshold gate" model
(1943), wherein the summation ‘

∑
’(as syntax for disjunctions) and product ‘

∏
’(as

syntax for conjunctions) is, in adding-derived logical sense as that of computability
and related computer architecture, made very useful to minimally model the brain
activity and neural nets. Therefore, if we consider any set of inputs I1, I2, I3, · · · Im
with a single output y classified in binary logical and interpreted as

N∑
i=1

IiWi, where

in W1,W2,W3, · · · ,Wm are the weight values in the range in each input line, then,
by finding for each y a functor sum f(

∑
), there is a threshold constant associated,

independent of the numbers quantified. Besides this, the existence of temporal
proposition expression (a TPE) (1p1[z1] where p1 is a predicate-variable; and if
S1 and S2 contain the same free variable, so equally does SS1, S1, S1νS2, S1.S2

and Si. ∼ S2), building also a temporal propositional function (TPF) is all that
it was left to be explicit before attaining the sequence of theorems: (theorem VII

25

"alterable synapses can be replaced by circles" induces "nets with circles" excursus
and theorems VIII to X) [248].

What is also pivotal is the intermediary stand of both McCulloch & Pitts paper
(1943) and von Neumann’s First Draft (1945), with Claude Shannon’s A Symbolic
Analysis of Relay and Switching Circuits [335] (1938) and A Mathematical Theory
of Communication [336] (1948, -49). In a certain way, we can read in both McCul-
loch & Pitts paper [248] and von Neumann’s First Draft [380], respectively, the
repercussion and anticipatory echoes from digital to information theory. It is ex-
actly in this interval that symbolic electrical systems and digital switching circuit
theory with the use of Boolean algebra was emancipated to a fully inculcated and
newly founded field of information theory, whilst the debate of one dominant com-
puter architecture took place, while the positive curve of technological hardware
and software gathered power, speed and efficiency. It is, thus, recommendable to
convey some notes about Claude Shannon’s far-reaching work, before returning
to von Neumann’s First Draft, a text with several excerpted instances of "infor-
mation" [380](1.2;2.6-2-9;12.2-13-2), soundly on the verge of architecture design
of communication systems onset, all together a "blue print" for the digital age of
cybernetics [335, 336, 8, 1].

Once Shannon’s work is chiefly commanded by the initiatory A Symbolical
Analysis of Relay and Switching Circuits [335] (1938) and the concluding A Math-
ematical Theory of Communication[336] (1948, -49), also bringing to a close A
Mathematical Theory of Cryptography [333] (1945) and a Communication Theory
of Secrecy Systems (1949) [334] we will start from the first and end at the second,
relating as much as possible their most defining addresses.

Complex electrical systems with intricate interconnections of relay contacts
and switches (automata, industrial-motors, or telephone exchanges) all share a
"network synthesis" [335], as for the most part, its most relevant aspect is the re-
quirement of the least number of relay contacts and also switch blades (of regular
automata or pushdown sort), in prospect finding equivalence between all possible
different kinds of networks. This approach takes the form of one equational circuit
with a corresponding calculus, "exactly analogous to the calculus of propositions
used in the symbolic study of logic" [335]. In other words, the network synthesis
is not just one of relay contacts and switches, gates and control equipment. It is

26

a synthesis of a system of equations wielded by sentential calculus and enclosed
in a gyration bounded representation. Thus, any two terminals (open, with in-
finite impedance and 1 of hindrance value; else closed, with zero impedance and
0 hindrance) receives the variable form of a function of time Xab, and the sym-
bol + (plus) forms the series connections of the two-terminal circuits with added
hindrances. "Thus, Xab + Xcd is the hindrance of the circuit a − d when b and
c are connected together. Similarly the product of two hindrances Xab · Xcd or
more briefy XabXcd will be defined to mean the hindrance of the circuit formed by
connecting the circuits a− b and c−d in parallel" [335], one such stand combining
in circuit theory summation with an index, lower and upper limits.

The result is the development of theorems from circuitry postulates containing
only series and parallel connections, and the perfect demonstration of how an
(open or closed) circuit with electric one-only language (object-language) without
self-referentiality, obstructs meta-language diagonalizations. On the contrary, it
takes advantage of relay contacts and switches (a product ‘

∏
’ diagonalization)

to relate series and parallels connections. Still, not only this, but due to the
fact that absolute reciprocity with Boolean-valued and propositional logic truth-
tables (Postulates 1.a, 1.b, 2a, 2.b, 3.a, 3.b, 4.) [335] is a fact of "series-parallel
two-terminal circuits" (II), each theorem is, therefore, a dual theorem (with even
greater difference from ordinary algebra than prototypical Boolean algebra, as
relay and switching circuits do not have an algebrized ideal and are restricted, in
principle, to disjunction only11).

This is quite interesting, once parallel series in Boolean values over digital
circuits is one of computation’s possible definitions, and it offers a proper ana-
log prolongation of the machine discrete parts to the electrical phenomenon. It
reposes digital symbolic Boolean values, thereupon, more on the axis of math-
ematical foundations, and furthest from machinery implementation and natural

11Another proof for this statement is the fact appointed by Claude Shannon in relation to the
"Theorems" relating to (3b) : X+Y Z = (X+Y)(X+Z) and before to (3a) : X(Y +Z) = (XY)Z:
"The distributive law (3a) makes it possible to ’multiply out’ products and to factor sums. The
dual of this theorem, (3b), however, is not true in numerical algebra."[335] This assertion and
the related should uncover a lesser candid interpretation of Shannon’s words in relation to the
choice of symbols: "This choice of symbols makes the manipulation of hindrances very similar to
ordinary numerical algebra."[335] Also to remember is the case of the definition of the negative
of a hindrance: X +X ′ = 1.

27

phenomena. Thus, it is acceptable to think that there is a sort of naturally open
(infinite impedance) and typically closed zero hindrance, of relay and switching
circuits to logic itself, and to (algebrized) Boolean values, which is a diagonaliza-
tion on its own, as it would be expected, on the inverse, that there would be some
"resistance" in transposing electrical circuits to Boolean values and propositional
calculus, and, what is more, that zero impedance of closed systems should bring
forth positive hindrance to any other systems, even if running themselves on relay
and switching circuits. It shows, therefore, the sparkling quivering of the word
"symbolic" in the paper’s title "A Symbolic Analysis of Relay and Switching Cir-
cuits"[335] which grants also a great value to Shannon’s accomplishments, for the
reason alone that, besides the method of proof being that of "’perfect induction’
i.e., the verification of the theorem for all possible cases"[335], the analogue be-
tween the calculus of propositions and the symbolic relay analysis is, thus, granted
with a multitude of operational arguments, with sums passing to functions and
one all-ready machinable network synthesis12.

Now, Shannon meshed E. V. Huntington’s set of logic postulates with De Mor-
gan’s theorems (9a. 9b) (with the negative of a sum or product) and proceeds to
represent a function as in infinitesimal calculus (in particular, along the line that
any function continuously derivative may be expanded in a Taylor series)13. The

12The only stand admitted by Shannon of one metalanguage relating the "perfect analogy"
(almost as indiscernible) between circuits and classic logic is here: "This analogy may also be
seen from a slightly different viewpoint. Instead of associating Xab directly with the circuit a− b
let Xab represent the proposition that the circuit a− b is open. Then all the symbols are directly
interpreted as propositions and the operations of addition and multiplication will be seen to
represent series and parallel connections."[335] What is also fruitful to be shown is that from
this results the interchangeability of addition with multiplication at the operational level.

13Taylor series resorts to expand a series of functions about a point (under the logic of
closing almost to X = 0 geometric-transformation nearby points), here the variable X1

with the coefficients as multiplicative factors with the operations of addition, multiplica-
tion, and negation. The polynomial in the field of propositional calculus and relaying cir-
cuits engineering progresses, thus, with identity both for X1 and X

′

1 of the (n − 1) variables
X2 . . . Xn. Expanding about X2 we start noticing the pattern f.(1, 1)f.(1, 0)f.(0, 1)f.(0, 0) fixing
at f.(0, 0, 0, 0 . . . 0)f.(1, 1, 1 . . . 1))(Cf.(10a)-(12b) [335]). In one such way we are free to find a
circuit representing any given function recurring to the series expansion method, and in one
way in which results on permuting primes are strongly related to coefficients maintaining the
function value as 1, if any given variable appears at pairs - each time at most twice - a make
and break contacts are also postulated in terms of electrical communications. Quite interesting
is also to observe how a negative of a function equals replacing each and all variables by its
negative and permuting the + and . operation symbols, something that can be interpreted as an

28

x

y

=
x · y

Figure 1.1: Interpretation of multiplication. (Shannon’s "Figure 3")

conclusion parcels with the method of perfect induction and, more importantly,
reduction with the least possible number:

"Any expression formed with the operations of addition, multiplication, and
negation represents explicitly a circuit containing only series and parallel con-
nections. Such a circuit will be called a series-parallel circuit. Each letter in
an expression of this sort represents a make or break relay contact, or a switch
blade and contact. To find the circuit requiring the least number of contacts, it is
therefore necessary to manipulate the expression into the form in which the least
number of letters appear." [335] The way is paved for simplification to succeed,
manipulating the same genre of theorems of numerical algebra ((14a) − (18b)) so
as to replicate the simple minimal pattern of input current (().

At this point it is clear that Shannon’s preliminary work combined a sort of
structural view of circuit theory and sentential calculus, not only by finding their
synthesis and striving to find pattern matching, but also by seeing each equation
as a system of variables, thus enabling the multidimensional approach that trig-
gers algebraic manipulation with the inevitable integration of functions in space
and time, on which grounds some residual features of number theory and symbolic
analysis find correspondence in matrices as direct circuits, and graph theory as
direct communication control images. While this is true, minimal basic transfor-
mations relating objects such as lines, planes and even rotations are performed,

intimate philosophy of mathematics riddle mystery between diagonalization and De Morgan’s,
even transposing to geometrical typical of calculus visualness, as if it was negation of a point
what permits linearly and non-linearly "possibles", and as if each point was to be understood as
a product function (·) of (all possible different rays of its complex imaginary circumference and
sphere) taken as infinite possibilities f.♦(ε . . . ω). This is, of course, something very reminiscent of
Gottfried W. Leibniz’s idea of the monad. It also helps to fathom why monadism would always
supersede computability.
As for the rest, it is obvious that synthesis here is, in full, to be interpreted as a pervading

Kantian idea.

29

with electric logic as the dynamics agent of change.
Indeed, it is the proper basis of a computational and information age combi-

natorics with order theory, giving rise to multiplying analogues of structures by
the performing relay and switching circuits, definitely having strengthened Peirce’s
(1839-1914) and Wittgenstein’s (1889-1951) initial intuitions of applied engineer-
ing to a whole ecosystem of the informational age. Positively, it was so to the
extent that, even counting with the great probability of coming up verification
and eventual ascertainment of one such progress, in one blow the informational
age found a coordinate axis for communication theory (of Cartesian nature in elec-
tromagnetism), and symbolic computational graph theory (of Eulerian nature in
electromagnetism), all in all in great optimization. Ergo, calculus and a sort of
greatest lowerbound of computational and circuit theory topology (the abstractions
called vertices, nodes or points and each of the related pairs of vertices, an edge,
arc or line, in their least possible spacial and logic computational tractable form),
through the study of invariances and variances, have perfectly fit (in principle
in planar form, wherein networks can be drawn without crossing lines) the bidi-
mensional R2 theoretical ideal of the Turing-machine [362, 368], from the practical
phenomenon of relay and switching circuits.

This was done in outstanding simple diagrammatic form, barely a connection
of sets of dots for the vertices, joined by lines for the edges, therefrom found the
integral discrete mathematics of computational systems and networks.14

14Claude Shannon’s insights hide very interesting subtleties that are worth mentioning: take,
for example, the alphabetical ordering-to-cryptography same letter-labelling of relays and hin-
drances in the network from the voltage source – with simultaneously make and break contacts if
there is not any time delay –, all in all responding to the symmetric function, is a very powerful
argument in comparison with strong computationalist views, namely Konrad Zuse’s idea of a
"computation-based universe" (1969), following the very first book on digital physics: Calcu-
lating Space [423], more or less along the lines of popularized versions of the Wachowskis film
directors, authors of the triology The Matrix (1999), The Matrix Reloaded (2003) and The Matrix
Revolutions (2003).
Leaving aside the inner arduousness and quagmires of having to balance information theory,

statitical thermodynamics, and quantum mechanics, as first appointed by Edwin T. Jaynes (1922-
1998), we can imagine Shannon’s "III. Multi-Terminal and Non-Series-Parallel Circuits"[335] and
the equivalence of n-terminal networks to be the whole universe (the possibility of n-dimensional
parallel universes here contemplated), with the "voltage source" understood ontologically. In
one such case, a (digital De Morgan’s) change of the final reduction to its inverse would mean
an instantaneously re-orientated universe, if we accept both the notions of direction and space.
But what comes as more unexpected in this comparison is the idea that if a "computation-based

30

Shannon’s notes in "III. Multi-Terminal and Non-Series-Parallel Circuits"[335]
have an intrinsically established value with both mathematical multiplication and
ontological diagonalization, inviting still leading-edge fragments of digital meta-
physics. Transformation, as it was understood in geometry, was liaised with relay
and switches with N being designated the "network" (a general constant-voltage
relay circuit wherein N will equalM with respect to all the n terminals if and only
if Xjk = Yjk; j, k = 1, 2, 3 . . . n, where Xjk is the hindrance of N and Yjk the same
for M), a whole new ontology granted thereby that was to have its correspondent
new aurora with Tim Berners Lee invention of the W(orld) W(ide) W(eb) infor-
mation space (1989-1991). The W(orld) W(ide) W(eb) with integrated application
of hypertext in a transfer protocol (HTML via HTTP) for distributed hypermedia
information systems and relay data communication between nodes through the
use of logical hyperlinks was its successive digital-ontological materialization in
the environment of CERN (Conseil Européen pour la Recherche Nucléaire).

Maybe one of the big contradictions of a "IV. Synthesis of Networks"[335]
(1938), is, after its permitted transformations, also after the passage from the
bidimensional mostly planar15 ideality, to the practical existence of "synthesis of

universe" (Zuse, 1969) – rescuing various authors’ conceptions, such as Edward Fredkin (1934,
-) and Stephen Wolfram (1959, -) – was to be synchronously parallel, the only method by which
the universe would relate its worlds or n-dimensions without re-orienting itself, would have to be
either through absolute symmetry, or else by a very powerful diagonalization method, probably of
spacetime itself (in both cases being very difficult to prospect the communication and spacetime
complexity openings).
By the way, these grants offer the perspective on the difference between the exposed

⋃
-

Mentalism and digital ontology (as peered by Konrad Zuse (1910-1995), E. Fredkin (1934, -),
and Stephen Wolfram (1959, -), but also men as R. Rucker (1946, -), G. Chaitin (1947, -), and S.
Lloyd (1960, -)), once

⋃
-Mentalism refers to the possibility of synthesis of all different images as

representation and production of schemata for all different possible abstractions. It is true that
the hierarchy of images and of the corresponding schemata can be thought according to the law
of physics and computation, possibly through deep learning by "difference in itsef and repetition
for itself " [100] (borrowing from ontology an expression of Deleuze), but it is only incidentally
that computational physics is related to the broad infinite set of images and schemata. This
is so specially because

⋃
-Mentalism does not seem to be computable in the Turing sense, and

instead offers a critical limit to the idea of mind (including the case whether speculation falls on
a community of minds or on the religious idea of one such ens realissimum as God).

15Let us remember that there is in circuit theory a quasi -topological rule of non-planar net-
works, i.e., networks which cannot be drawn on a plane without crossing lines. As a result, due to
the fact that the inverse of the distributive law cannot hold – "X+Y Z = (X+Y)(X+Z)." – and
crossed lines mean multiplication, the equivalent of sketching all possible lines which would break
the circuit between the points under consideration, forcing the lines go through the hindrances

31

networks"[335], also under Kantian’s idea of synthesis, the strict impossibility of a
transcendental argument. In the electric relay and switching model analysis there
is never the possibility of a conclusion being held as a necessary condition of a
premise, thus obstructing the argument for apperception unity.

The drawn consequences of several different transformations – star-mesh (the
transform replaces N resistors with N(N − 1)/2 resistors with one less central
node, building a polygon with three interior triangles), delta-wye (from the ap-
plication of the distributive law Xab = R(S + T) = RS + RT at the node R,
considered as the side of one equiangular triangle, along with S and T) and wye-
delta (the opposite of the previous, equal also to the elimination of the central
node as in star-mesh), always require the least number of elements and the rule
of induction n− 1, transformation being very alike to n− 1 itself of star-mesh for
each node, and for series parallel networks. The study is then transposed to the
"Hindrance-function of a non-series parallel network"[335], closer to typical graph’s
theory bridging problems, where from and primarily reduction means settling the
network to an equivalent series-parallel circuit, with three methods involved: 1)
intuitively applying the transformations until the network is of the series-parallel
type and wherein the successive impediments of the hindrance-function match the
complex-valued resistance of the impedance; 2) writing the product of hindrances
of all possible paths between the two points, skipping paths that touch the same
point more than once, stating the hindrance of each path a factor of this product,
including function 0 for 0 hindrances, an overall congruent method with the first,
i.e., a product of sums; 3) writing the hindrance function as a sum of products,
for which what is needed is to draw all possible lines that can break the circuit be-
tween the points of the network, forcing the lines to break through the hindrances
of the circuit.

It is true, as Shannon expressed, that "the justification of this method is simi-
lar to that of the second method"[335], but maybe it is more accurate to describe
it as a method very like diagonalization, on which foreground and only trivially
the second and third methods are, indeed, similar and inter-reductive. Relating
inherently to the first method, that of applying transformations until the network

of the circuit, the result being a sum, is not always possible to achieve.

32

is of series-parallel type, logic is, thus, made planar and theoretically ideal in R2

as in the Turing-machine model [368, 362]. This puts us, after spectating multipli-
cation as diagonalization, more closely towards the envisagement of parallel-series
reduction from non-series-parallel networks, as a continuation of diagonalization
(the three methods being, discernibly, very similar), and wherein, most fundamen-
tally, no paradoxes, or inefficiencies in completeness and consistency, are found in
the network synthesis. This can be explained by the theory’s analytic and discrete
simple integral attainment (from the the second fundamental theorem of calculus
or the "Newton–Leibniz axiom", and considering a Riemann integrable with the
partition fine enough, taking the idea that if δ > 0 and ε > 0, there exists a tagged
partition y0, . . . , ym and r0, . . . , rm−1, thus and so that for any tagged partition
x0, . . . , xn and t0, . . . , tn−1 which is a refinement of y0, . . . , ym and r0, . . . , rm−1,
we have refinements constraining as much as possible close to 0 or the x axis of
a function, again, ideally through 0 (possibly with the orientation left-to-right),
here shown as the integer ideal (electrical) interpretation (() as close as possible,
firstly to the x axis (__), but also to (ideally equivalent) parallels (≡), and thus
to the y axis and constants for indefinite integrals with the approximation (w)16:

|
n−1∑
i=0

f(ti)(xi+1 − xi)− (()) |< ε

We are, hence, excluding, with reference to the closed interval [a, b] (greater
than or equal to a and less than or equal to b), taking the real-valued functions f
(derivative on almost all points of [a, b]) and F (continuous on all [a, b]), such
that x ∈ (a, b), turning 0, in limit, similar to (possible maximum/minimum)
F ′(x) = f(x), and if f is integrable on [a, b], then, attaining to a measure zero,
the following holds:

∫ b
a
f(x)d(x) = F (b) − F (a). In one such way, the greatest

lowerbound and the lowest upperbound are "discharged" and the theory is made
discrete (even if there are hindrance elements controlled by external sources, as
contacts on external relays or hand-operated switches, designated, in this fash-
ion, as independent variables, represented by the earlier letters of the alphabet, in
contrast with the later letters for dependent variables).

16We are here interpreting 0 to be the integral with an arbitrary constant.

33

With this being said, Shannon fits this interpretation towards the appraisal of
a system of equations defining in full the operations of the system, the dependent
variables prone to be computed. Transformations, under this prospect, are set
to one equative form where X0k – X0k = 0 has to have X0k as the hindrance
function of N between terminals 0 and k and, therefore, X0k(k = 1, 2 . . . n) is
made invariant, even if Xjk(j, k) = 1, 2 . . . – can be changed, transfiguring the
"old network", however the relays of the operations remaining the same.

From this standard, in diagrammatic form, "(...) drawing a vertical line after
the terms common to the various equations (...)" [335] we can have as an example of
reduction of simultaneous equations both a circuit design of relays and switching
circuits, as in one Gentzen-style propositional deduction. It is also convenient
to trust simplicity (a sum of products, instead of a product of sums, overall an
orienting argument, as relays should be as much minimally horizontal - "series-
parallel two-terminal circuits"[335] - as possible). With this, the higher-stand
logic system abridging neutrally the principle of duality, allows also its opposite:
multiplication to represent series connections, and addition parallel connections.17

Overall, time is a well-known bedevilment of complexity theory, and sometimes a
definite sequential relation of relay contacts, due to asynchronous relations, has to
lean on make-before-break (or continuity) and break-make (or transfer) contacts,
wherefrom the hindrance in series X(t) is exposed as X(t− p) with time p being
whichever unit-measure of time later in the description (with the operations of
addition, multiplication, negation, and equality).

Shannon’s "IV. Synthesis on Networks and Functions"[335] (1938) is, thus, the
epilogue paragraph that rehearses best the ciphering for Claude Shannon’s acme

17From this clause it is probably made clearer why, previously, it was here before said that,
under digital philosophy (e.g., Wheeler’s "it from bit"), diagonalization would have to be one
such powerful method as to be part of spacetime itself, and, thus, one orienting argument too,
in the proper Kantian sense. Also to add is a very interesting quotation by Shannon, very useful
to confront with digital physics and informational ontology in what has to do with spacetime,
but that I wish to call attention upon, mainly, in relation with

⋃
-mentalism’s use of function in

relation to the synthesis of images for each time and space, with all possible variations considered.
Shannon wrote: "The function requiring the most elements using any type of circuit has not as
yet been determined."[335] It is here being reasoned, on our side and from this example, nothing
else but the consideration of spacetime once, in absolute symmetry, it equals one dual network of
two series-parallel realizations (for convenience a Cartesian reduction called two coordinate-axis
x and y; or any other pair, such as vertical and horizontal axis) in what relates to orientation.

34

work: A Mathematical Theory of Communication[336] (Shannon & Weaver) (1948,
-49).

From the basics of a two-folded relation – a current (a magnetic field rate of
flow of electric charge the same through all components connected in series and
distributed over components connected in parallel) and voltage (the electrostatic
field potential difference in charge between two points in an electrical field dis-
tributed over components connected in series, and the same across all components
connected in parallel) – the very idea of network synthesis is stated18. If there are
only two variables, there are 16 functions at hand. Eliminating those that do no
involve directly both X and Y (X, Y,X ′, Y ′, 0, 1) we are left with 10. As this is
not proportional (3 variables and 64 functions do not give back (-8)), a theorem is
reached: |=.

φ(n) =
n∑
k=0

[

(
n

k

)
22k(−1)n−k]

We should read the theorem with φ(n) as the number of variables, for each

time under consideration and one-only n and k as
(
n

k

)
representing n!/k!(n−k)!,

made expressible by having resolved the previous result with time involved (the
number of variables being the difference between its exponentiation and the actual
sum with verified variables in the selection):

[φ(n) = 22k −
n−1∑
k=0

(
n

k

)
φ(k)]

It follows that the functions of n variables which require the most relay contacts
and the number of contacts needed comes from a sum modulo two or disjunct of
the variables (commutative, associative, and the distributive law in respect to
multiplication) from the equation: X1 ⊕X2 = X1X

′
2 +X

′
1X2.

Moduli two, in binary and digital logic, by the presence of the associative law,
paves again the way in for the reentrance of series-parallel X1⊕X2⊕X3 . . .⊕Xn =

18Network synthesis, understood as a sum of products, having the coefficient 0 or 1 (2n different
products if the division is set up dividing the set of primes and non-primes, and beyond 22

n

now
dependent on having the coefficient 0 or the coefficient 1) directs to the theorem "The number
of functions obtainable from n variables is 22

n

"[335] where each of these sums is a representation
of a different function (except if they are null f |Xk=0 = f |Xk=1, inoperative because the value
of Xk is made irrelevant).

35

Ξn
k=1Xk where the root advances a theorem for any two functions of n variables

which require the most elements (relay contacts) in a series-parallel realization,
for the right-hand side of the equation and its contrary – Ξn

1Xk and (Ξn
1Xk)

′

– each of which requires (3 · 2n−1) − 2) elements. Shannon first noted that for
n = 2 and for all the functions, only two required the two elements: X ⊕ Y and
its contrary (X ⊕ Y)′. It was then tried with (n− 1) to check if it held the most
elements for n variables, after the functions were expanded as terms for the nth

variable. It shows that the functions require the most elements. Adapted from
(19)[335] s(n) meaning the sum of all the (positive integer) number of elements
required, and for the equation s(n) = 2s(n−1)+2 the value is s(2) = 4. As this is
linear with constant coefficients, the solution is applying the method of boundary
conditions as constraints on solutions to equations, and from there the result is:
s(n) = 3 · 2n−1 − 2 recommended to informational theory.

Shannon’s A Mathematical Theory of Communication (1948, -49) is, truly, a
setpiece of an all-abridging era of synthesis. It was this "unifying vision that rev-
olutionized communication, and spawned a multitude of communication research
that we now define as the field of information theory" [8], hardly comparable in
its social, political, and technological synergy. The text spans five parts. They
are: "Part I: Discrete Noiseless Systems"[336], "Part II: The Discrete Channel
With Noise"[336], "Part III: Continuous Information"[336], "Part IV: The Con-
tinuous Channel"[336], "Part V: The Rate for a Continuous Source"[336]. We
will, obviously, try to keep them to the most clear-cut philosophical arguments,
always keeping in mind that the theory is mathematically complete and consistent,
mostly by cause of the fact that, while propositional logic equivalence is transposed
to mathematical higher-order irreproachable abstracts, what is continued is the fol-
lowing: "the semantic aspects of communication are irrelevant to the engineering
problem." [336]. This means that not only logic is balanced enough not to enter
higher-order domains, leaving that task to mathematical manipulated extensions,
as logic itself does not mean anything here except binary valences of bits ("a word
suggested by J. W. Tukey" [336]).

"Part I: Discrete Noiseless Systems"[336] – by the title, borrowing from noise
modulation methods (exchanging bandwidth for signal-to-noise ratio in the sharpest

36

balance), thus, electing natural language processing electrical channeled forewarn-
ings as relevant – aims to target savings within the referred balance. Beset in the
interpretation, has come the assessment of a whole new paradigm on the nature
of information theory. Inasmuch as Gödel’s work on the incompleteness theorems,
and even recursion theory, were shown to be, contrary to Gödel’s expectations, an
antiderivative basis of the curve for the domain of µ-recursive functions, thereby
within all the possible range of the functions of computability (with differentia-
bility here understood including the proper incompleteness of mathematics and
the negation to the decision problem unexpectedly and suddenly integrating com-
putability), and in a similar manner to Erwin Schrödinger’s, also to his own dis-
like19, new wave mechanics based on probability waves, so too information theory
was born out of high indeterminacy and entropy, statistical and probabilistic pre-
sumptions, but with a finer and wider gain on information processing and message
decoding. Obviously, this is a memento of the special ontological blend between
physics, computation, and information, whereby programming languages, as a
subject, should emancipate itself to the communication pattern inbetween them.

Indeed, information theory too, was born on the presumption of the proba-
bilistic view that any monotonic function typical of calculus (either entirely non-
increasing, or entirely non-decreasing), regarded as a measure of information, was
plainly distributive in both axes, meaning that each message chosen from the set
was a choice with equally likely values. The logarithmic measure, due to linear
comparison with common standards, where typical one bit two-stable positions,
"such as a relay or a flip-flop circuit"[336], 2N for any number of N circuits or
devices, and base 10 for decimal digits units log2M = log10M/ log10 2, with the
result of 3.32 log10M , approximates to the decimal digit, which is about 31

3
bits.

This means that only after three cycles of log10M one bit of information is per-
formed, and, overall, in geometric-to-topological terms, there is one slightly higher
π (3.14) ratio between the decimal values (diameter as spokes on a wheel) to bits
of information (the circumference equivalent circuit). Integration and differenti-
ation typical of calculus produce the natural logarithm e – approximately equal

19Schrödinger’s quote on the new wave mechanics (stationary and time-dependent, holding the
formalism of matrix mechanics) is as famous as it is unreported: “I don’t like it, and I’m sorry I
ever had anything to do with it.”

37

to 2.71828 and a result of the limit of (1 + 1/n)n as n approaches infinity – to
establish the natural units of information, after which stipulation the base a can
be changed to base b by multiplying logb a. The result is the famous schematic di-
agram of a general communication system [336] comprising the following elements:
an information source, a transmitter, the channel, the receiver and the destination.

The information source is the produced messages to be communicated to the
receiving terminal. These can be (a) of the alphabetical sort as a sequence of letters
(classically a teletype system), or (b) a single function of time f(t) (classically a
radio system). The most complete view is, though, that of (c) a function of time
and other variables, embedded in two space-coordinates and one of time "three-
dimensional" plane (classically black and white television), the same related with
sound transmission (classically multiplex individual channels), and even (e) several
functions of several variables (classically the three-dimensional continuum of color
television). Ultimately, it remains (f), i.e., various combinations of the previous.

This section is outstandingly important, precisely because it offers, under the
most important topic of information theory, the perfect correspondence between
information, philosophical and computer architecture, and medium or language.
We shall not forget that the medium or language is, primarily, not language it-
self, neither sound and light, nor even light alone except taken as a manifestation,
but more accurately electromagnetism only (mechanistically, sound are changing
sound pattern pressures into a proportional-transmitted electrical current, while
light does not account for another medium, and is fully set down in electromag-
netism, i.e., electrically charged particles in razing sharping confluence with other
fundamental forces, such as strong and weak interactions and gravity).

Shannon’s view is, thus, however dated and historical rooted in a recent past
differential techno-scientific conjecture (observable in the very same historic-root
as natural language processing in Prolog, by the tonic on the sonus paradigm,
against the more cutting-edge and monad-like photon), of sublime importance.
This is so not only in what has to do with the informational-statistical-probabilistic
new allegiance, breaking down to shatters much of what was the typical of calcu-
lus Aufklärung (and formally Kantian) illusion, a proper historical-dialectic tran-
scendental illusion (even if strong computationalism, in the core of information
theory and against computability theory analytic, represents its main dialectic).

38

Fundamentally, what comes about is the possibility of, in proper informational
paradigm transferring correspondence, the bridging to ontology, namely through
(f), with a full understanding of the "schematic diagram of a general communi-
cation system"[336], in its anew countenance with probabilistic, statistical, non-
determinist, and cryptographic indexes of truth as a logical value20.

Of course Shannon’s theory is clearly founded pertaining to communication
systems (discrete, continuous, and mixed) represented by mathematical entities
and its necessarily dated, mechanistically turnout physical counterparts. For many
different reasons, the simplest of the discrete systems, which respect both the
message and the signal, is a discrete sequence of letters, the signal dots, dashes
and spaces, as in telegraphy and, indeed, modern computing machines, which
establishes the foundations for the remaining types (continuous and mixed), reason
enough for an unmitigated study of "Part I: Discrete Noiseless Systems"[336].

Randomness and statistical dependence have found, really, its geometry-to-
topology coinage, dragging programming language’s fixed-point theorem, once a
discrete channel is a sequence of finite choices from a set of elementary symbols
S1 . . . , Sn from one point to another, each of which with a certain duration in time

20⋃-Mentalism can, by these standards, be described as the inversion of the various type of
messages both in predominance and in order, now from (f) to (a)[336]. The various combina-
tions of all types of information are reasoned, firsthand, in an equivalent cinematic "l’image-
mouvement"(Deleuze, 1983) photographie et photomachinae (not necessarily digital) group of
several functions of several variables (approximating as much as possible ideal total functions
from practical computable partial functions, i.e., functions defined for all possible input val-
ues, well within the limits of a the Turing-Church thesis), through which ideally and minimally,
the three functions f(x, y, t), g(x, y, t), h(x, y, t) "defined in a three-dimensional continuum"[336],
respond to the technological object "color television"[336], encountering, nevertheless, in onto-
logical terms and in

⋃
-mentalism, observable reality. Subsequential to this are the other "types"

of messages: (d) as the representation of two or more functions of time in respect to sound
transmission in a system, (c) its weaker version of one function of time and other variables, such
that f(x, y, t) are two space coordinates, (x, y) the light intensity at one-point and t its time,
whereby it is seen the similitude between the model for "black and white television"[336] and
"sound transmission"[336] in a system (without vector fields in the region), just with a Cartesian
2-dimensional "tube plate"[336], (b) a single function of time for sound and voice as in "radio or
telephony"[336], and, finally, (a) i.e., just about a sequence of letters.
We can conclude, therefore, by this exam, that programming languages are, in their state of

the art, inescapably aligned with the simplest form of communication, that is, "(a) A sequence
of letters as in telegraph of teletype system"[336]. Now, this is an historical cursive function
as recursive it is computability theory, but it shall be given the reflexive means through which
programming languages or programming media as a subject are properly acquainted with wider
goals, and thus both informatic and informational perspectives.

39

ti (one dot and one dash would haul different time instances, and there is also
an overall problem of transferring or break-make solutions in overall computation,
independently of the decision problem, for which case only a system of sponta-
neous and immediate imagetic recognizance of differences through repetition, with
a practical unlimited memory, could account for the same original sense as in pho-
tography’s revelatione comparing it to computational processing of information
data messages).

Now, the measure of the capacity of one channel to transmit information,
irrespective of the length of symbols and constraints on the sequences, targets the
maximum possible rate, sufficiently equal if the source of information is capable
of feeding supremely the channel (wherein, for instance, in the telegraphy, a dot –
one bit – with a two-state break-make line closure unit of time before – two bits –
and another break-make open unit of time after – two bits – would account in total
5 bits, the same as, say, a letter space of three units of line in an actual teletype
case, but not the same in telegraphy (overall tendentiously power of 2 and multiple
of 8 in modern computer processors). The capacity C of a discrete channel

C = lim
T→∞

logN(T)

T

expresses a formula where N(T) is the number of allowed signals of duration T .
Ensuing this, if it is supposed that all sequences of the symbols S1 . . . , Sn are
allowed, and have the duration t1 . . . , tn it is noted that the channel capacity cor-
responds to the total sum of the numbers of the sequence, and then the asymptotic
or limiting behavior for large t to AX t

0 where A is constant and X0 is the largest
real solution, transforms the previous formula, to the following

C = lim
T→∞

logAX t
0

T
= logX0

Here we need not be limited to solving the restrictions on sequences, and can find
the difference equation from any equation, and very much alike, from a (stochastic
and probabilistic) Markof model, wherein the junction points are states – any
possible states a1, a2, . . . , am – and the lines indicate the symbols – certain symbols
from the set S1 . . . , Sn – contained in the respective state (the first theorem exposes,
therefore, the relation between the "last" symbol allowable in certain defined state

40

leading to another determined state, where the channel capacity is the logarithm
of the largest real root of the determinantal equation, i.e., the "spaces" of matrices
with an undetermined upper bound on their ranks).

Onward, "2. The Discrete Source of Information"[336] is just about the most
relevant paragraph related with topics in programming languages and, conse-
quently, with computer science as it stands today. This is so because it engenders
the assumption that the logarithm of the number of possible signals in a discrete
channel, increasing linearly with time, establishing a rate of increase, in terms of
required bits per second, escalates to knowing the quantity of information produced
from each given source, bearing strongly on the statistical effect. Shannon’s view
was to understand that randomness shares some arbitrariness, and arbitrariness
shares some randomness. Hypertext and both mathematical and dynamic struc-
turalism have a natural imprint on the sequence of the alphabet economy, and
thus, also on its information encoding (visible, for instance, in the scrabble-type
shortest channel symbol – a dot – for the most common alphabet letter "E", while
the less common letters are composed with long sequences of dots and dashes,
but also in mechanical terms, for we can say that in pure anthropo-phonological
terms, where the scaphandre is our body, and the papillon our tongue21, the open
vocal "A" corresponds to the primeval scream, and all the other vocal closures
correspond to the remaining vowels, while consonants are specific constraints op-
erated by the tongue. Thereupon, a communication system as it the alphabet, is
naturally also a physical mathematical discrete source, stochastic in nature.

Again, Claude Shannon invites us to consider the following cases: 1) natural
written languages; 2) continuous information sources rendered discrete by quan-
tification, say the standard form of digital audio, or a quantized T.V. signal; 3)
mathematical cases with defined stochastic processes which generate sequences of
symbols [336].

21The image is rescued from the well-known book Le scaphandre et le papillon(1997), an
original autobiographical book by Jean-Dominique Bauby, a patient with the locked-in syndrome
with speech disabilities – wherefrom it is suitable to use the image of the scaphandre as the
locked-in body, and the papillon as the eyelid movement to pause the lettering of a moving
(computerized) alphabet. The book was, a decade later, adapted to film, with the English title
The Diving Bell and the Butterfly (2007).

41

Attention is systematized on the latter, and five letters, each of which with
probability .2, with successive independent choices, extracted from a table of ran-
dom numbers representing the letters, serves as an example:

BDCBCECCCADCBDDAAECEEAABBDAEECACEEBAEECBCEAD.

In turn, now, using these five letters now given the, respective, probabilities .4,
.1, .2, .2, .1, still with successive independent choices, a typical rendered message
follows as such:

AAACDCBDCEAADADACEDAEADCABEDADDCECAAAAAD.

An important step up in the ladder of complexity is when the structure is obtained
by adding the probability values made dependent on the preceding letter, but not
the ones before. A set of transition probabilities pi(j) states that the letter i is
followed by letter j, ranging over all the possible symbols. Another possibility is
p(i,j) which is reciprocal of the digram ij or its relative frequency. The probability
of the letter i is, thus:∑

j

p(i, j) =
∑
j

p(j, i) =
∑
j

p(j)pji) . . .

which is, roughly very similar to the recursive status of the λ operator in λ-
definability and induction, which goes the same as stating:∑

i,j

p(i, j) = 1

Nevertheless, the values of probabilities need not be the same everywhere, and
matrices of fractioned values can be found for each digram (trigram, and so on for
whichever n-gram cases), always in list form. One such arrangement of the form
from n-gram would bear the p(i1, i2, . . . , in) statistical structure. Consequently,
"words" are subject to be constituted as stochastic matrices, with associated prob-
abilities, such as in the example given by Shannon [336]:

.10 A .16 BEBE .11 CABED .04 DEB

.04 ADEB .04 BED .05 CEED .15 DEED

.05 ADEE .02 BEED .08 DAB .01 EAB

.01 BADD .05 CA .04 DAD .05 EE

42

A typical message under these "words" and associated probabilities structure
is nothing but an artificial subgroup of the so called natural languages, such as, for
instance, any of the five most spoken languages of the world (Mandarin, Spanish,
English, Hindi, and Arabic). This encasement permits us to think of programming
languages as a sort of (both abstract regressive and progressive) series into more
formally constricted "universals" and "types" from natural languages, and natural
languages as a sort of a very coherent, complex, unflinchingly game-like in nature
(in Wittgenstein’s "language-game" sense [418, 419]), indexed random process,
and indeed, a strong artificial constructum.

In some sense, it is, alike Shannon’s interpretation, the equilibrium between
the noise [336] of natural languages, and the coherent information for each vocalic
n-gram discrete parts as theoretical maximum information (phonemes), here with
memory as expanding new (polysynthetic) series, what permits natural languages
communication success, at vertical (in synchrony) and horizontal (in diachrony)
transmission ("transfer rates" [336]). This picture is shown more or less along
clustering patterns of areal topology, i.e., structural convergence, as it is induced by
the communication of speakers whose competence (Chomsky) (langue in Saussure)
and performance (Chomsky) (parole in Saussure) does not depend on, nor descends
from, a common ancestor language. (Excluding William Jones’ (1746-1794) and
Thomas Young’s (1773-1829) foreseen, or later established Franz Bopp’s (1791-
1867) imprint of one such vast language family of several hundred languages and
dialects as the Indo-European languages). This picture triggers also the reckoning
of the human-specific (highly complex and emergentist), and even, to some extent,
animal-specific (lowly complex and reductionist) language (informational) agents,
as exhibiting the characteristics of a channel transmitter, with electronics being
substituted by physiology, and where wavelengths (audio- and psycho-linguistics)
and mechanical filters (phonetics and phonology) are, literally, the differentiation
and integration basis for the omnipresent "noise", bluntly put, sonus universalis).

In fact, Ferdinand de Saussure’s (1879) proposal of coefficients sonantiques
[99, 317], in account for vowel length patterns in Indo-European languages, leading
to the laryngeal theory (with phonological "ablauts"22 generative, anthropological,

22Ablauts are systematic vowel variations in the same root or affix or in related roots or affixes,
more often than not in the Indo-European languages.

43

historical, and comparative morphophonology, accounting for a sort of differential
incompleteness) in materialistic sonus universalis (also in terms of sonus et sonitus
vector spaces), has potentially a direct structuralist parallel with programming lan-
guages (with constraint-based logic, functional, quantitative and cognitive integral
consistency) now in extant programming languages different types of formalism.
Often unnoticed and vitally needed to be expressed is the correspondent status of
the subject of programming languages with evolutionary linguistics, specially in
horizontal correspondence (in diachrony). This translates into Shannon’s logarith-
mic stochastic, and Saussure’s typical random arbitrariness, but also philogeneti-
cally deterministic, applied and experimental neurolinguistics powers (under which
the passage from universal sonus to existunt imagines, for which the consideration
of
⋃
-Mentalism is made ad imaginem, is rendered easier to sense and perceive).
Not forgetting the importance of space (and equivalent silence), which enables

the successive "words" constituencies, from the previous structure with associated
probabilities, we achieve something on the lines of what follows [336]:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE
BED DEED DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED
DAB DEED ADEB.

These artificial-(natural) languages comply, thus, nth order approximation to
its syntax and semantics aspects, and overall pragmatics, expandable from the ex-
posed case (in what respect zero-order approximations were obtained with all let-
ters with the same probability and independently; first-order the same by choosing
successive letters independently, but each letter having the same probability that it
has in the corresponding natural languages; second-order, introducing the digram
structure, wherein the next-to letter is chosen in accordance with the digram fre-
quencies pi(j); third-order, consequently with trigram probabilistic structure with
each next-to letter depending on the previous two letters; etc.). Still respecting
this order, if the passage is made to represent words instead of letters as n-gram
principal built structure (re-convoking first-order approximation with symbols, but
now words), but with the frequencies of the English language independent, and
in higher-order (with word transition probabilities, but with no further structure
introduced), the result is strikingly similar to this very same text the reader has

44

in front of him/her, or indeed any modern English text (the same being true of
any language, as English is here called upon as an infinum ad supremum example
of spoken and written language and, inherently, a communication pattern).

"It appears then that a sufficiently complex stochastic process will give a sat-
isfactory representation of a discrete source." [336] Stéphane Mallarmé Un Coup
de Dés Jamais N’Abolira Le Hasard (1897) and Jorge Luis Borges "La biblioteca
de Babel"(1941) creative literary visions lurk in, once one such statement is read,
and it is no wonder that in Shannon’s investigation at "7. The Entropy of an
Information Source" [336], James Joyce’s Finnegans Wake (1939) is presented as
the most extreme case of low redundancy, and, therefore, higher self-cryptography,
once large "crossword puzzles"[336] are only possible with low redundancy23. This
is elucidative of the problem of inductivism, constructivism, statistics and proba-
bility on one side, facing on the other side mathematical structuralism and even
(eventually digital-computationalist) Platonism, foreshadowed already in the con-
frontation between inherent structuralism, beyond mere formalism, of synthetic
a priori judgements in Kantianism, versus Humean skepticism. The case is, of
course, of Humean supervenience [239] above, not only mathematical Platonism
and structuralism, but also above all probability or statistics (including Borel’s

23In point of fact, Chebychev’s (1821-94) well-know student, Andrey Markof (1856-1922) him-
self, worked with probability and arithmetic towards poetry and literature. "By replacing the
vowels and consonants in Pushkin’s Eugene Onegin by the respective letters v, c he generated
a sequence with just those two symbols. In the original Cyrillic alphabet, vowels formed about
43% of the text. After a vowel, another vowel occurred some 13% of the time, while after a
consonant, vowels arose 66% of the time. To predict whether the next symbol would be v or c
he discovered that, given the current symbol, he could effectively ignore all its predecessors, so
little help did they give."[167] This observation led to the appraisal of random varying sequences
with independence towards past queries and series, as holding the Markov property. With roots
in Bernoulli trials and the law of large numbers – basically examining the proportion of successes
in a sequence of trials, not only estimating the chance of success, but also the reliability of the
size of the sample – one such law frequency or probable success eventually prompted Borel’s
(1871-1956) strong law of large numbers (very alike proofs by induction and arithmetic series
itself), which states that, given sufficient time and for any given tolerance band, there will be a
moment in which the actual frequency of success or probability complies within the band forever.
Even if we have just scratched one such notion in readying style, the so called Borel (positive)
measure [6, 2], implying the uniqueness of limits of sequences, nets, and filters, with an asso-
ciated σ-algebra generated by the closed or open sets, states that an µ-measure is true of any
topological space X so that functions µ :� [0,∞] are countably additive. Supposedly, thus, a
Borel measure on R is right-continuous and increasing with convergence both in filters (special
subsets of a partially ordered set) and in nets (with great digital-informational repercussion), on
the common mathematical background as of µ-recursive functions.

45

measure, and the fact that "the sun will rise tomorrow" [191] as hypothesized by
Hume).

But to this we must add that the balance between these two poles, in a
close sense to that of gravity, has changed, after the incompleteness theorems
[161, 160, 312, 280] (Gödel, 1931), towards a much wider sense of contingency, and,
reciprocally, non-trustworthiness of synthetic a priori judgements and, in exten-
sion, non-trustworthiness of the powers of reason. This might seem contradictory,
as one finds many to believe the information age to have licensed a reentering of
a (digital and cybernetics) Aufklärung, even if the mottus Sapere Aude was lost
with the derrocade of Hilbert’ program [420].

In some sense, it is fair to avow the view that, no matter how much com-
putationalism has overpassed the boundaries set by computability theory, com-
plexity theory in computability is too great an achievement, comparing to the
lack of complexity study in classic philosophy, even when confronted with the
new physics. Maybe classic philosophy of time (as in Kant or Hegel) could wel-
come the mathematical-bounded hierarchies of complexity theory, and even mat-
ters with mathematical bounded relations as inductive interdependent series in
probability theory, would benefit from studying the contingency presupposed lev-
els in "Humean supervenience" [239]. Conversely, programming languages with
assemblers and compilers are diagonal cryptographic machines, once it would be
impossible to interpret (absolute redundant) machine code if it wasn’t for discrete
"crosswords" [336], whereby a word is defined (alternatively "word size", "word
width", or "word length", accordingly a measurement theory insight) here with
"words" meaning the natural unit of data used by the processor design, fixed-sized
data handled as a unit by the instruction set and the hardware of the processor
(as in fixed or floating point numbers, addresses, registers, memory transfers, unit
of address resolution, instructions), after the 8-bit (or 1-byte) (IBM System/360
design), thereafter typically exponent of base 2 and multiples of 8, as seen with 16-,
32-, and 64-bits in general-purpose computers. Indeed, programming languages,
interjected by compilers (from high source languages all at once to low-level assem-
bly language, or even down to machine or object code) or interpreters (from high
source languages and at interval time to intermediate code), and assemblers (from
assembly language to machine or object code), are susceptible of being designated

46

hierarchical levels of a much wider philosophical argument which reposes at heart
in the so called (diagonal) "gödelisation" [161, 162, 163, 280, 160] argument, which,
in turn, is nothing more than a piece of a much larger subject, i.e., cryptography
(in the exact surmounting point, over which it is not just anymore mathematics
itself, and it complies with Claude Shannon’s use of information at its greatest
lower bound dialectic – ergodic and asymptotic – interpretation, and wherein an
imagined, along Kant’s idea of imagination, lowest upper bound corresponds to an
ontological, truly metaphysical, interpretation)24.

24Inasmuch as with
⋃
-Mentalism what counts is not anymore so much the way through which

abstractions are brought about in critic transcendental philosophy – from the transcendental
unity of apperception (Kant, [A107]), then to the pure categories of the understanding (Kant,
[A129-A130]), and, finally, to the transcendental schemata of the principles of the understand-
ing (Kant, [A137-A147 B176-187], in overall (top-to-bottom) idealization of empirical concepts
to pure formalized mathematics as in a priori synthetic judgements –, but the inverse, that
is, exploring how each uniquely produced symbolic image (imago, imaginis) (not necessarily
digital, but empirical) (bottom-to-top) as a transcendental unity of any possible judgment, can
constitute an (eventually programming) mind and alphabet in different (schema, schemata), so
too cryptography (more emphatically so after our understanding of diagonalization and gödeli-
sation) can and should be affected by one such displacement and permutation. In other words,
cryptography should not be deterred to the constricted spectrum of digital transactions - such
as constructing and analyzing protocols that prevent third parties or the public from accessing
private messages, or related issues of information security, data confidentiality and integrity,
authentication and non-repudiation, etc, including cryptology, i.e., "the art of code-making and
code-breaking"[301] - but should, instead, be considered as utterly ontological. Surely, cryptog-
raphy blends mathematics, computer science, electrical engineering, communication science, and
physics at its procedural level, but, nevertheless, at its declarative ontological status, it could be
said that the (free associative) idea of any (empirical or pure) being, as a symbol, power to be
a representation for any other (empirical or pure) being, is one major philosophical shortcoming
if not visualized. While it is worthwhile taking notice that

⋃
-Mentalism does rely on a bal-

ance between perspectivism and naturalism, as in between conventionalism and indispensability,
mathematical formalism and structuralism, for the sake of the argument, we are addressing cryp-
tography attending to the fact that Shannon himself worked on the subject very closely with the
concepts of information and entropy, in the book Communication Theory of Secrecy Systems[334]
(1949) and, on the earlier version of this research, in the classified report A Mathematical The-
ory of Cryptography [333] (1945, declassified version 1949), published under Bell Laboratories.
By this case in point, we understand how much cryptography envelops Shannon’s approach
to information theory. Indeed, it is not just Alan Turing’s (1912-1954) chief case of conduct-
ing work (with the electro-mechanical device known as the Bombe) deciphering of the Enigma
portable (cipher) machines with rotor scramblers in Bletchley Park, England, that endows an
apprehension of the latent intersection between computing, diagonalization, cryptanalysis and
information theories. Very keen to these grounds, examples coming forth from Linguistics, such
as Jean-François Champollion’s (1790-1832), founder of Egyptology, deciphering of Egyptian hi-
eroglyphs, and Michael Ventris’ (1922-1956) deciphering of the ancient Mycenaean Greek script
now known as Linear B, are often disregarded in relation to computation, even though they

47

"5. Ergodic and mixed sources"[336] is the next subject treated by Shannon,
wherein not only the treatment of Markov processes and graphs is shown in relation
to every statistical (and circuitry) sequence, or lettering and n-gram frequencies,
but also at which point it is made clearer the point of articulation wherefrom the
branch of mathematics that studies dynamical systems with invariant measures,
gradually shifting towards statistical physics and homogeneity, subsequently is
found to be transported to a fairly dialectic meaning, therefrom more suitable to
computer architecture. For this reason, this paragraph, right before the opening
to both "6. Choice, Uncertainty and Entropy" [336] and "7. The Entropy of
an Information Source" [336] is, most definitely, and beyond the mere statement
of periodic structures or averages over the ensemble, against the probability of a
discrepancy being zero, realizing equilibrium conditions and stationary processes
over Markof processes as information sources, can be conveniently faced with Nor-
bert Wiener’s Cybernetics, or Control and Communication in the Animal and the
Machine [404] (1948, -61) and its ensuing popularized version The Human Use of
Human Beings [405] (1950, -54). More narrowly, the chapters "II. Groups and
Statistical Mechanics" [404] and "III. Time Series, Information, and Communica-
tion" [404] sufficiently hold for the appraisal, but in convoking them what is put
forward is the whole spectrum that Wiener draws from the very first chapter "I.
Newtonian and Bergsonian Time" [404] until the closure of the two complementary
chapters, more importantly so the last named "Brain Waves and Self-Organizing
Systems" [404].

Plotted in the latter paragraphs (6.-9.)[336] cited in Shannon’s work is, thus,
the black box of mathematical information theory. It extends discrete noise-
less systems to a full-blown and well-defined concept of entropy. Imaginably, if
there is a set of possible events with the occurrence probabilities p1, p2, . . . , pn the
choice/uncertainty involved in the selection of the event, translates into a sort of
equivocation measure and monotonic increasing function H(p1, p2, . . . , pn), where
the original H is the weighted sum of the individual values of H, with the ob-
vious correlate "diagonalization" of useful information (the different individual
values of H can be parcelled into successive choices with associated probabili-
ties; accodingly, each branch in the graph must correspond to a choice in order).

partake inordinately common attainments.

48

We adapt here an hypothesis with set theory intersection, propositional calcu-
lus conjunction and probabilities product, under the general requirement that
H(1

2
, 1
2
) = H(1

2
, 1
2
) + 1

2
H(2

3
, 1
3
) + 1

2
H(7

8
, 1
8
) i.e. with the total value of 1, and with

the natural coefficient for each choice branch.

Choice p1, . . . , pn

Choice p2, . . . , pn

P (H1 ∩H2) = 1
2
· 1
8

H
1
8

P (H1 ∩H2) = 1
2
· 7
8

H
7
8

H
1
2

Choice p2, . . . , pn

P (H1 ∩H2) = 1
2
· 1
3

H
1
3

P (H1 ∩H2) = 1
2
· 2
3

H
2
3

H
1
2

With this in mind, the quantities of the form H = −
∑
pi log pi or the equiv-

alent H =
∑
pi log 1

pi
serves to define, clearly inspired in statistical mechanics, H

as the entropy in the system. Also to be noted, in attention to Turing’s terms in
defining formal computability [363, 362] (1936), and von Neumann’s awareness of
computer architecture design [380] (1945), providently in relation to both authors’
study of the physiological-biological processes in parallel (with a strong symbolic
topological variance, as might be statistics in mechanics25), is the assumption that

25As a matter of fact, Shannon points out H of (mathematical-informational) entropy as "the
H in Boltzmann’s famous H theorem"[336]. The H theorem, introduced by Ludwig Boltzmann
in 1872 [111, 374, 375, 384, 315, 369], describes the tendency to decrease in the quantity H
(molecules with kinetic energy) in the long-time behavior of a dilute classical gas according
to Newton’s equations (in the context of XIXth century science) proven to be asymptotically
Gaussian, imagining the molecules bouncing off against each other in abstract/ideal gas – the
Boltzmann equation firmed the idea that the "differential" d3r, at the position r, and with the
momentum nearly equal to a given momentum vector p (thus occupying a very small region of
momentum space d3p) in some instant of time within the probability density of the function –
in the core of dynamics of rarefied gases with very technical apparatus (an equation model with

49

time-dependent density, position, velocity, transport and collision operators, collision kernel, and
pre-collisional velocities, with local scalars and vectors, with also local parameters of density,
velocity, and temperature) established that both the entropy and the time-derivative were non-
decreasing and non-negative. This meant macroscopic irreversibility in large-time limits, and,
therefore, a direct connection with the second law of thermodynamics, even if theoretically it
is more correct to say that it is (almost zero probably) erroneous on the macroscopic level,
tested only in ideally close to equilibrium, spatial homogeneous or vacuum systems ab contrario.
Moreover, it is hypothetically disproved if three-local parameters (density p, velocity u, and
temperature T varying the velocity distribution) in covariance, and at each position, could show
at least a local equilibrium of the sort of a stable velocity distribution, as if infimum locality
would hold for a sort of helical symmetry with supremum organization as we find in ADN
structure. In other words, for each locality, there would have to be something equivalent to a
Leibnizian monad, hidden as a spectrum of observable reality, which is quite interesting to note,
once Boltzamnn vehemently defended atomistic views, although not quite atomist (at least of the
Leibnizian sort). As, along the lines of probability itself, this is somehow improbable and, at least
in normal distribution, against the time series limit implicit in Gaussian functions, what counts
is molecular chaos from, precisely, the consideration of a priori (spatial symmetric) microscopic
probability distribution.
Therefore, in Boltzmann’s conception, the following formula is presented:

H(t) =

∫ ∞

0

f(E, t)

(
ln
f(E, t)√

E
− 1

)
dE., where the function f(E, t)dE, is the energy dis-

tribution function of molecules at time t. The value f(E, t)dE is the number of molecules that
have kinetic energy between E and E + dE. As this quantity H was meant to represent the
entropy of thermodynamics, the H theorem implied a parallel speculation, or rather a very
fertile ansatz : that of the Boltzmann brain. The Boltzmann’s brain, remembering that entropy
translates how far from equilibrium a system is – the lowest the kinetic energy (as the number
of microscopic configurations Ω adequate to supposedly equivalent thermodynamic macroscopic
variables), the further from equilibrium the system image is –, accounts for the functional
and sentient self-aware entity that all of us are, born out of random fluctuations out of the
very same thermodynamic equilibrium system. With this being said, and thinking in terms of
energy dispersion, wherefrom more heat and motional energy, in a closed system, induce higher
self-contained disorder, all of the previous paraphrases the essence of both the universe and
the mind (in Cartesian res extensa et res cogitans). Put in another way, inside the observable
universe (not the universe as an isolated system) as an open system with exchanges of both
energy and matter, common to the existence of the universe has come to exist the observance
of the universe (and with memory and intelligence with the power of modelling the universe
itself), which corresponds to a very unlikely and improbable non-equilibrium state, with both
the exceptional existence of the universe and the mind, here understood as the most randomly
and non-independent occurrences that probability series can bring about.
A brief sketch coextensive with

⋃
-Mentalism is here recommended. It suffices to allude two

notes: first, in abstract, the idea of a "volume of microstates" [374] with the technical fetch
typical of physics and its branches, is very recommendable to apply in relation to programming
media, specially attending to the possible practicality of schemata born on a physical model, and
also to the multitude of existing images in cosmology, to which

⋃
-Mentalism sets to represent,

just so, the highest possible commonest probabilistic ground for both the mind (in schemata),
and the universe (in imaginis) in computable form; second, Boltzmann’s philosophy of science is,
truly, an example of the representational temporal and historical rooted, inconclusive, tentative,
rather describing than explanative, approach to scientific truth. One such notion brought about

50

"(...) pi is the probability of a system being in cell i of its phase space."[336].
H is, thus, trusted as the measure of choice or information, at most times pos-

itive or a joint occurrence of (at least two) events, where i for the first event x
and j for the second event y, bundle as H(x, y) = −

∑
i,j log p(i, j), defined as it is

the entropy of the joint event, with the correlate assumption that the "uncertainty
of a joint event is less than or equal to the sum of the individual uncertainties."
[336]. Accordingly, any change towards equalization of the probabilities increases
H, which translates to saying that an "averaging" [336] of information (as in coding
and decoding correlating together in "averaging" [336], or programming languages
meeting machine code) is an informational gain due to overloading "control" of
entropy – ahead and in parallel, a key concept in logic programming and in Pro-
log, with Prolog considered an AI artificial cells "brain" – herein considered the
conditional entropy of y depending on the average entropy of y for each value x
suiting Hxy.

Hence, they are directly proportional, which might seem counter-intuitive (on
the basis that it is not expectable that from higher entropy follows higher infor-
mation): the certainty of Hxy is the information – base 2 bits, base 3 trits, base 10
Hartleys, base e nats – so that information is measured as, precisely, this simple
"averaging" [336] expectancy from the event, and in accordance with the number
of outcomes, or its mass. In other words, information adheres to how much we
need to relay to describe a probable event, and the more expectable and common
(in full Humean inductivist sense) the event Hxy is, the less information outcome is
provided. Indeed, complexity theory affirms that a computer, as a (nearly) closed
system, cannot reduce its disorder; it can only remain unchanged or increase, most
especially a stored-program, no matter how proficient and balanced, in terms of
ergodic and informational theory, it might be. Should this be true in relation to
the history of programming languages and associated programs, and, itself, to the
future of programming media, is a great question to be asked. On broader lines,
a sharp topological understanding is granted if we imagine the average amount of
information produced by a stochastic source of data as mass, and the measure of in-
formation entropy associated with each possible data value the negative logarithm

the idea that "scientific theories are nothing more than images of Nature."[315]

51

of the specific probability mass function for the value. Thus, when any data source
has low probability tenability, this specific event, say Hxy for a line of code, carries
more information than when the source data has a higher-probability value. The
information channelled – at a definite time per second rate if the Markof process
is also definitive with an average frequency – by each event becomes, therefore, a
random variable whose expected value corresponds to its entropy. According to
the law of large numbers, it is fairly certain for any given case "(...) to have log p−1

N

very close to N when N is large." [336], which presupposes a limit boundary that
is also a list with numbers of bits per symbol specifying the sequence. In a rather
elegant expression, limN→∞ F (N) = H[336]. The passage to proper understanding
of the "8. Representation of the Encoding and Decoding Operations"[336] and the
"9. The Fundamental Theorem for a Noiseless Channel."[336] is the statement
that "(...) the ratio of entropy of a source to the maximum value it could have
while still restricted to the same symbols will be called its relative entropy. This
(...) is the maximum compression possible when we encode into the same alphabet.
One minus the relative entropy is the redundancy."[336]. A reasonable estimate
for programming languages, notorious for its specific focus on syntax is, at least,
75%.

In "8. Representation of the Encoding and Decoding Operations."[336] we find
the passage more consecutive to the Turing-machine model in the idea of a discrete
transducer, based on the fact that it holds an internal memory and the output is
a sequence that might relate to its past history (xn for the nth past input symbol,
pushing the finite internal memory transducer to behold the state αn when one such
symbol is introduced, producing the output sequence yn potentially in tandem, and
where the state of the source and the output symbols from the transducer form a
"product state space" [336]). As it is seldom free, and general constraints arrive at
it, the constraints, considered as a channel, follow the logarithm of the weighted
entropy sum. And, at the point where this dialectic turns effectively practical,
"by the proper assignment of the transition probabilities the entropy of symbols
on a channel can be maximized at the channel capacity." [336] Inward, the "9.
Fundamental Theorem for a Noiseless Channel"[336] shows up as fundamental,
stating that H is not only the rate of information, but also, in procedural and
statistics essentials, the determinant within limits, as a sort of integral, of the

52

channel capacity required that the most efficient coding is performed. Thus, let a
source have entropy H (bits per symbol) and a channel have capacity C (bits per
second). From this Shannon draws a concusion on the focal point of optimization,
like the subject of computer architecture in von Neumann’s work, that "then it is
possible to encode the output of the source in such a way as to transmit at the
average rate C

H
−ε symbols per second over the channel where ε is arbitrarily small.

It is not possible to transmit at an average rate greater than C
H
."[336]

Now, converging to von Neumann’s paper The First Draft of a Report on the
EDVAC [380] (1945), it shall, prior to that, be made explicit how connected the
forefront discussion of information [336, 53, 8, 386] and entropy [384, 369, 315, 292]
was to the Hungarian-American scientist, and thereupon cast how much computer
architecture communicates with the mind and physics, apart from control, once
even entropy’s very first inception against the informational background was his,
in advising Shannon26.

After one such debate, it definitely puts simple expressions and concepts in a
different light, such as that of pre-transistor "vacuum tubes" [380] (4.3; 5.5; 6.5)
(a device controlling electric current between electrodes in an evacuated medium
container, for the most part relying on thermionic emission of electrons from a hot
filament or a heated cathode, the thermionic tube, a configuration that is not ex-
clusive, as electron emission might be achieved also through photoelectric effect, or
even non-vacuum and saturated gas-filled tubes generally at low pressure). From
the diode (the simplest of the vacuum tubes, with only a heated electron-emitting
cathode, a filament and a plate, the anode), with unidirectional current flow, it
is not just the representation of vacuum and its inherent embodiment in a closed
system, according to the physics laws of thermodynamics, that is charted. It also
brings forth a strong analogy with information in its (machine-analog) embod-
ied version, with entropy in both a cosmological-physical and local-computational

26"For those who believe that entropy has always been a crystal-clear concept, let me recall a
famous quote by Shannon: ’I thought of calling it ’information’. But the word was overly used,
so I decided to call it ’uncertainty’. When I discussed it with John von Neumann, he had a
better idea: (...) ’You should call it entropy, for two reasons. In the first place your uncertainty
has been used in statistical mechanics under that name, so it already has a name. In the second
place, and more important, no one knows what entropy really is, so in a debate you will always
have the advantage." [374]

53

vertices, picturing, thus, excitatory [380] or inhibitory [380] actions over both the
brain-model (repraesentatum esse) and model-computer (repraesentatum id). It
displays synchronous or asynchronous spacetime (rational cosmology in Kantian
terms), I or the mind (rational psychology in Kantian terms) and Turing-machine
(ad hoc rational teleology in Kantian terms) (machine-analog) "time-clocks" or,
better said, (mind-continuous) philosophies of time.

With this we mean to weigh in an unavoidable extension to the Boltzmann’s
brain paradox, showing its engulfing enlarging antinomy with a central disparate
nucleus that is now the computer, the Turing-machine model or, more readily
perceived, the standard von Neumann computer architecture. Simplifying, as
we assert that computability (Turing-Church) and the incompleteness theorems
(Gödel) oblige to reevaluate Kantian antinomies, so too the Boltzmann brain para-
dox should be revisited.

Indeed, if it was already astonishing that the universe, in itself a cosmic lottery,
could have hypothesized a general thermodynamic equilibrium with exchanges
from first cosmological structures to far-reaching biological-chemical-genetic lists
to form a genealogy of brains as a complex (self- and outer-)aware entity that has
arisen due to random fluctuations, what were really the chances that the brain
could have produced, on phenomenological grounds, one such artifact object mir-
roring τέκνηε (techne) and μηκανη (mechane) into itself (the Turing-Church thesis
in a machine)? Not only that, but, more astonishingly, what were the chances that
with this, in expanding or evolving symmetry (in fractal autopoiesis) now in a sort
of ὰρκη (arche) artificiality – computus Archeozoic (Earth in the comparison),
or computus Arche inflation and digital synthesis (Universe in the comparison)
–, both the computer (fundamentally the concept of U -machine and the stored-
program on recursion and computability) and the brain complex and concomitant
existence, were therein reflected, and therefore, discretely, that of the Universe
too? Briefly, we are attending to an extension, impossible to have been made both
in Kant’s and Boltzamnn’s days, that would translate to a computability-based
version of the Boltzamnn’s brain. Its construct targets an extensional aesthetic
rational cosmology and one intentional practical rational psychology. It is with no
surprise that this valuation comes with a fair notice on Kant’s teleology and its

54

contrary pole of mechanism, moreover reflexive on Kant’s theoretical note on na-
ture’s purposiveness for our cognitive faculties, all in all under the backdrop of the
now classical concepts of information and entropy27. Peculiarly, it is the concept

27There are a multitude of nuances in this appraisal that are worth mentioning [291, 294, 292,
130]. Under the context of a universe with a measure of energy with the tendency to run down,
with high entropy suggesting less energy availability, encompassing, in perspective, the arrow of
time, however this very same arrow of time would have to be longitudinally expensive (with either
a great time line or great structure economy) towards infinity, so that given both the excited [380]
and quiescent [380] states of entropy (sort of its "forward" and "reversing" time phases [292, 369])
were to produce, alike the Turing-machine model, given enough time and memory, at least twice a
Boltzmann brain, it is not quite the fact that on top of this, one such evaluation is shared amongst
a community of billions of living minds hic et nunc, but more so the fact that in the cosmic sea
full of randomness information, this mind/brain, in apparent duality, is capable of modelling
its living paradox by having the capacity of philosophizing in the first place, with an absurd
waste of energy for apparently zero exchange, what is most scanty unravelled. It is also true
that from Kant’s sense of rational theology, being pure reason in its practicality a matter for the
receptivity of faith, inasmuch as the will to pursue moral goals, entropy becomes very problematic
to every rational theology (more specially so for the sort of Spinoza’s panentheism, forasmuch
as transcendental idealism bears on some sort of materialism, even if immaterialist such as in
Berkeley’s philosophy, and God himself would be variable and entropic). Overall, it does not give
any difference whatsoever from computationalist views affine with digital philosophy. Rational
theology is driven from teleology, alike computationalist teleology is driven from theology.
Underlining Boltzmann’s paradox, it could be said that if God existed (with his fabulous

dispense of energy), the universe would not exist anymore ... if it wasn’t for God (at which point it
shifts from being a paradox to being a parody). In the case of digital philosophy, and remembering
entropy’s natural antinomy – "entropy is the state of any system as proportional to the logarithm
of the number of different possible ways (also freedom-degrees) that state can be realized in" [292,
293] – allusion by Penrose, and Einstein’s alert – "Usually W is set equal to the number of ways
(complexions) in which a state, which is incompletely defined in the sense of a molecular theory
(i.e. coarse grained), can be realized. To compute W one needs a complete theory (something
like a complete molecular-mechanical theory) of the system. For that reason it appears to be
doubtful whether Boltzmann’s principle alone, i.e. without a complete molecular-mechanical
theory (Elementary theory) has any real meaning."[124] – and remembering Boltzmann’s sharp
accent on Darwin’s concept of adaequatio, computationalism (illegitimately surpassing Turing-
Church computability) is best described as a philosophy whose faith lays in reversing natural
entropic metaphysics (devolution) by means of artificiality (evolution).
We reinforce, for the sake of distinguishing sharply critical limits, that also in what relates to

the concept of
⋃
-Mentalism, and its causatum towards entropy and information, in the frontiers

of a proper educative, demarcate, and heuristic understanding, as in an ansatz (Boltzmann) or
gedankenexperiment (Einstein), hoping to test for Turing-Church thesis effective computability
limits, it is recommendable to accrue to the debate (natural and artificial, stochastic and pro-
gramming) symbolic languages. Indeed, insofar as, theoretically, gas clouds envelop the cosmic
surroundings of the (unobserved) isolated system of the entire universe, and inasmuch as gas
clouds are, practically, the proper trade-offs for the (observed) open system universe exchanging
both energy and matter, so too the frontier and communication for the mind – more vastly, the
mind-body ecosystem [422], on the account of rational psychology, even if erroneously, taken
classically as an (of the a priori kind) closed system – is nothing but language as a medium.

55

of architecture – from Kant’s to von Neumann’s sense, under the historiography
of the concept – which adjusts best to this magna quaestio.

Before proceeding to the final remarks, it should be noted that we are treating
von Neumann’s First Draft [380] as a thesaurus, i.e., a widely publicized glossary
and reference book, a historical rightly-established and solid foundation docu-
ment opening the field of computer architecture, far ahead and straightforwardly
both expository and explicatory. Nevertheless, in our quest and interpretation,
we find to be true that, in all the other aspects in computation theory, there is
not any element to its incipient history that was not promptly theorized, when not
thought-through in anticipation, sometimes by decades, by the British pragmatist,
mathematician and engineer Alan Turing (1912-1954). In this regard, the momen-
tum in philosophy of science (1936) of "computability" [362, 368] (Alan Turing)
and "effective calculability" [71] (Alonzo Church) in toto serendipity and coinci-
dence, is in every way very similar to both von Neumann’s First Draft of a Report
on the EDVAC [380] (1945) and Alan Turing’s Proposals for Development in the
Mathematics Division of an Automatic Computing Engine (ACE) [364] (1945),
this time, though, apparently with a greater expediency and ascendancy on von
Neumann’s side.

A clear proof of that would be Turing’s terminology, as he chose to replicate
von Neumann’s own technical phraseology. Indeed, right at the start Turing’s
advice is that "it is recommended (...) that it be read in conjunction with J. von
Neumann’s ’Report on the EDVAC’" [364] and, besides the acronyms – "IO" for
input organ, "OO" for output organ, "LC" for logical control, "CA" for central
arithmetic part, and "CL" for clock – there are several other unvaried pieces of
jargon, such as "[7]External Organs" [364], or in taking repeated notice of aspects

From here, it is legitimate to think that our approach to
⋃
-Mentalism can transfer important

understanding, for the most part related to artificiality acceleration and (natural-world)-physics-
patterning-to-schemata-(artificial-mind)-languages, hoping with this to forge ahead one rational
psychology advancement on the basis of programming media and programming languages.

⋃
-

Mentalism is the adaequatio of each and every possible idea with each and every possible image,
converging programming languages and computer architecture.
What is more, some classic arguments in metaphysics, can, with this turn, be expanded

through language-related themes, such as Descartes’ misleading God (Meditations on First Phi-
losophy, 1641) with cryptography, or, as another example, Leibniz’s Théodicée (1710) with time-
complexity and probability.

56

such as that of delay-memory and length, or yet in focusing in "[16] Alternative
Forms of Storage" [364].

It has to be said, overall, that there is one complexity articulateness line that
was common to both authors, proof enough of the late confluence on unsolved
problems in mathematics, a sort of Hilbertenian transaction28.

Turing’s paper The Proposal (1945), nevertheless, was openly directed to the
ACE, in itself a rehash of the EDVAC – not forgetting that there is the von
Neumann EDVAC, or "vN-EDVAC" [179], and the Moore School EDVAC, or the

28John von Neumann addressed the International Congress of Mathematicians in Amsterdam
(September 2-9, 1954) and, despite "a manuscript was not available" [272] it bore the title
"Unsolved Problems in Mathematics" [272]. The paper focused on operator theory, that is, a
branch of functional analysis that studies linear (and non-linear) operators on function spaces
(differential and integral), adjusting inevitably to the topology of function spaces, to the point
that the minacious field of quantum theory was made neighbor to rings of operators. On top of
this layer, and more importantly to the discipline of logic, von Neumann intended to draw some
unification lines in logic and probability theory based on this approach [272]. Alan Turing, also
in 1954, submitted the paper Solvable and Unsolvable Problems [364], a reflection on the furthest
output layer of complexity theory, that is, the frontier whereupon a problem does not admit the
existence of any efficient algorithm and, as such, is considered undecidable. From a very basic
solvable problem, although not computationally – the sliding squares puzzle – Turing showed
the minatory and impeding details. On top of this layer, Turing held focus on the so called word
problem for groups, announced to be undecidable in 1952 by Novikov – in combinatorial group
theory, the word problem for a finitely generated group is the algorithmic problem of deciding
whether two words in the generators represent the same element, being insurmountable once
for as one and only normal form in use, the result is always undecidable in relation to group
isomorphism, i.e., for a finite group the relation was proven not to have any possible efficient
algorithm, the same holding in general; this was a somehow expected result, in consequence of the
unsolvability of finitely presented groups having been proved before, which also may have sent
forth Markov’s own proof next (1958) of the unsolvability of the fundamental homeomorphism
(or topological isomorphism) problem [351, 262]. In addition, it can be said that while Turing
was centered in algorithmic complexity, turning up, for that reason, more on time complexity,
and forecasting the proper ground for the Kolmogorov–Chaitin complexity, algorithmic entropy,
or program-size complexity (1963, -64), finally allocating oneness to Cantor’s diagonal argument,
Gödel’s incompleteness theorem, and Turing’s own halting or decision problem, von Neumann
had convened more on space complexity instead, centered on a sort of "algebra of unbounded
operators" [272] and wherein the superlative view was one such, quoting the Hungarian-born
scientist "(...) where the dimensionality is like real numbers with a finite ceiling (...)" [272].
Minimally convoking the idea of

⋃
-Mentalism, where visualness meets programming media, it

highlights through von Neumann’s note both a spatial and an orientation radial point: "So in
order to have logic you need in this set a projective geometry with a concept of orthogonality in
it." [272]
The 1950’s were, for what transpires, the blossoming of complexity theory. Let us remember

that the P vsNP problem is recorded to have been first discussed in these years too, in letters
from John Forbes Nash Jr. to the NSA, and from Kurt Gödel to John von Neumann, then finally
formalized in 1971 by Stephen Cook [81].

57

"M-EDVAC" [179]29– but in the shade, we can not let it be forgotten that there
had been put an effort with mastery success in the Colossus in absolute secrecy
(de facto, so great of a secrecy that it involved the destruction of its plans in the
1960’s, and the outlasting of the confidentiality status until the the mid 1970’s).

The Colossus (1943-45) was a set of computation machines – a total of 10
Colossi were in use by the year 1945, while an extra eleventh was under commis-
sion – developed by British codebreakers from the Government Code and Cypher
School (GC&CS) at Bletchey Park, England, in "a remarkable synergy of math-
ematics and engineering" [60] right around the years before computer architec-
ture had its self-professed baptism (1943–1945) at the will and wise manipulation
of cryptanalysts of the Lorenz cipher – itself a series of electro-mechanical rotor
stream Vernam30 cipher machines with in-line attachments to standard teleprint-

29Firstly, the Moore School Eckert & Mauchly’s "Automatic High-Speed Computing: a
Progress Report on the EDVAC" [198] was only turned "unclassified" in 1947, and the handwrit-
ten form of von Neumann’s document was typed at the Moore School with neither Goldstein’s
recovering of the original document, nor with any of von Neumann’s subsequent proofreading
being known. Furthermore, the two EDVAC’s under contention – von Neumann’s descriptive
form (curiously, not implemented in the Moore School, neither at the Princeton Institute for
Advanced Study), and the constructed Moore School form – were different. They were both
synchronous and sequential design machines, with a binary internal number system, but while
"M-EDVAC" [179] was 44 binary digits per word, and 32 data bits per word, with 0 memory
tag bits, 4 bits per command, and 10 binary digits per address, the "vN-EDVAC" [179] was
32 binary digits per word, and 31 data bits per word, with 1 memory tag bits, 3+5 bits per
command, and 13 binary digits per address. What is surprising is that many reports on the
Moore School EDVAC missed in detail these numerical system facts. Of course there were also
other differences: in the physical part, the mercury acoustic delay line in media storage – a
non-random, thus sequentially-accessed line refreshable memory, endowed with an amplifier and
a pulse shaper in between the output or request and the response or input – was intended to be
much higher in von Neumann’s plan, just to mention one example.

30On the basis of trying to attain perfect secrecy, in one such scenario wherein a sender emits
the message (the encrypted plaintext is called the ciphertext or cryptogram) to the intended
receiver, with a cipher system (the set of rules used to encrypt information plaintext is the
encryption algorithm) unintelligible to any third-party interferer, the highest possible expecta-
tion on the side of both the sender and the receiver to disguise information is that, in case the
third-party interferer gets a hold of the message (the united input of both the encryption key
and the plaintext message, but not the encryption key, nor the plaintext message), no one is
capable of deciphering any information in the content of the message, in which case, though, an
intelligence system of deciphering/decoding can still always operate, specially if, in the lines of
(very high-order) complexity theory, P = NP . Indeed, the borderlines of the P vs.NP problem
are just about the same that permit us to understand why it is true that perfect secrecy can
only be obtained if the number of keys is at least as big as the number of messages, in which
case perpetual guessing might occur. If we notice, the form [plaintext+key=ciphertext =⇒ ci-

58

ers, very few in nature: the Lorenz SZ40 (1941), SZ42a (1943) and SZ42b (1944)
(SZ for Schlüssel-Zusatz, meaning "cipher attachment").

Concertedly, both Colossus (1943-45), in relation to the Lorenz cipher, and the
specifically designed electro-mechanical Bombe (1939-40) machine to decode the
electro-mechanical rotor cipher machines Enigma (1920’s), appoint in parallel to
unequivocal demonstrations:

They are both a diagonalization argument, a typical task-performance expe-
rienced IP-complexity class problem, insofar an interactive proof system consists
also of two machines, a prover P (the Lorenz cipher, and Enigma machine), and
a verifier V (the Colossus, including simulators such as the Tunny – an emulator
of the Lorenz SZ42 cipher machine built at Dollis Hill in 1943 – and the Bomber)
that checked their correctness, with the difference that the prover P was not in-
finite neither in computation, nor in storage, but, correspondingly, wherein the
verifier V was a probabilistic polynomial-time machine with access to a random
(bit) string whose length was polynomial on the size of the first machine’s strings
and formal language. To this we can add that it corresponded also to a finite group

phertext+key=plaintext] is not much different from the hypothetical form [ontology+law=nature
=⇒ nature+law=ontology], which is the reason why Pascal (1623–62) not quite religious, but
instead practical -teleology-fearful argument was placed as a wager. This also helps us to un-
derstand why – excluding monads and La Monadologie(1714) (Monadology sort of representing
NP in case NP 6= P or maybe a consistency ultimate bound beyond NP-hardness; or yet
non-decidable, or even rather non-recognizable problems in complexity theory, as far as the
comparison to XVII-XVIIIth philosophy and the induction of a hierarchy on classes defined
by constraining the respective resources is legitimate – Leibniz’s system was deistic, very close
to the (although deterministic) idea behind MONADS /∈ NP ⊆ PSPACE ⊆ EXPTIME,
and how much of this fractionation welcomed Gödel’s (mathematically and culturally) "context-
sensitive" ideas on incompleteness. Analogizing, let us also affirm that while La Monadologie is
metaphysical declarative, Platonist, monad-centered, logic-biased and reactive-reductionist, the
idea of

⋃
-Mentalism and programming media is meant to be, in contrast, ontological procedural,

perspectivist, mind-centered, image-biased and active-emergentist. If the monad was to be a
determinist centrum et medium for the physical reality, we permit ourselves to think, instead, of
each non-deterministic possible medium et centrum to hold for all the possible viewpoints and
for each and every possible spacetime dimensions. In the "place" of each monad, we take hold
for every possible viewpoint and for every possible mind, including God’s or similar.
Conceptually, perfect secrecy embarks in the description of the one-time pad (OTP), requiring

the use of a one-time pre-shared key (the one-time pad random secret key) the same size as,
or longer than, the message being sent, with the notable difference that the Vernam cipher
corresponds to its binary digital version, where the cryptogram is obtained via adding the message
and the key modulo 2 (due to the short modulo number and also short remainders to cope with
the 0’s and 1’s of the binary system).

59

representation of isomorphism being checked and tested, considering symmetric-
key algorithms, i.e., same cryptographic keys for both encryption of plain text and
decryption of cipher text.

The abstract types of resources involved in the Colossus computation (time,
space, randomness, interaction, alternation, non-uniformity, oracles, complemen-
tation, non-determinism, and counting) – while Turing experimented NP -genre
inductive (on a conditional object for YES) and P -genre deductive (on an uncon-
ditional structure for YES) solutions – faced up with automata theory finite, and
strictly local fragments, extensively stretching the radius of complexity and au-
tomata organization up to context-sensitive (Type-1) and recursively enumerable
(Type-0) hierarchy levels, are, really, computational dimensions that we have to
inveigle, in looking back to the design of computer architecture, and also to the
buildup of the proper computer machine. As a matter of fact, the frontier itself
from typical (Type-1) linear-bounded non-deterministic finite state machines –
wherein a grammar for every possible cryptographic formal translation production
α→ β, and wherefrom the length of β is larger than or equal to the length of α31,
really on the frontier of (Type-0) grammars without any restriction whatsoever in
possibly generating, beyond decidability (a Turing-machine producing strings in
the language and not producing strings not in the language) Turing-recognizable
languages – is elucidating of the difficult overlap and complexity that was at stake
at the time: an absolute sea of unknown. Literally, all possible languages gener-
ated and recognized by a Turing machine, i.e., recursively enumerable languages
(and not just recursive), in any case possibly halting in full exemplification of
the worst possible scenario, also particularizes, beyond doubt, the standard that
computation had met by that period in what concerns the embranglement of com-
plexity and automata hierarchies, linguistic and cryptographic hardness. All in
all, Turings effort in computer architecture, beyond code, is, to say the least, as
extraordinary as von Neumann’s.

Under this appraisal, we have, thus, thought back to Shannon’s contribution to
the Communication Theory of Secrecy Systems [334] (1948, -49) in the context of

31The meaning of symbols in automata theory usually goes as: a = terminal; α= terminal,
non-terminal, or empty; β= terminal, non-terminal, or empty; γ= terminal or non-terminal; A=
non-terminal; B= non-terminal.

60

the birth of A Mathematical Theory of Cryptography [333] (1945; declassified 1949)
all abridged by the synoptical view of a Mathematical Theory of Communication
[336] (1948), now interwreathed with the ascendancy idea of computer architecture
both in Turing and von Neumann. It is fair to assert that the main idea resting on
Shannon’s work, while "diagonalization" was shown to be the proper computabil-
ity inherent practicality in intelligent electrical-digital machinery short history, was
that, and ever since long lasting, of perfect secrecy and the one-time pad [301] –
first ever described by Frank Miller in 1882 [301] – in the exact sense wherein a
cipher comes to be theoretically unbreakable (information-theoretic secure). By
theoretically unbreakable it is meant the following: to have come forth in conse-
quence of a pre-shared random, never reused in whole or in part, key the same
size as, or longer than the sent message, having been paired, again in full structure
unexpectedness, with the plaintext, using modular addition. For instance, taking,
alpha-numerically, each letter A to Z to be associated with the numbers 0 to 25

in the same order, and for each message m1,m2, . . .mn, with the key k1, k2, . . . kn,
the ith element to the cryptogram produces:

ci = (mi + ki) mod 26

It is important to notice that the case is not that as in NP known problems
solutions, wherein we know that solutions exist within (non-deterministic) poly-
nomial time. In one such scenario, a correct hint would immediately produce a
verifiable result, and possibly even a theorem. It is not so much a question of
decryption not being possible, because it is, provably, possible. Instead, whatever
the message taken out from the ciphertext with the same number of characters
– in extreme, all possible range YES choices within verifiability, comparing with
the P vs. NP problem – is regarded simply as one among any possible use of a
different key, redundant in essence. It is of absolutely no use. Even if one possible
found answer or decryption is semantically congruent (possibly valid), furthermore
superimposed on any ordered structure of the world, and also with underlying epis-
temic logic of the subjects involved (possibly sound), there is not any possible way
of knowing if that was the original plaintext message.

On the contrary, in encryption one-time pad, as long as the key modulo addition
is truly random, and presupposing that nature is the chaotic stochastic generator of

61

large, truly random numbers (A mod Ω in physics or natural philosophy, i.e., the
dividend expansion and the divisor entropy in terms of objects, lists and structures
in philosophy – possibly programmed – of mathematics), if a new "message" was
to be emitted for each t, t′, t′′ . . . tn, say for each second, for all the entire time
of the universe (thus with both the message and the key growing each turn), it
would definitely come to an halt, turning out to be practically impossible (even
for a mind and as such constituted in the upper bound to that of humanity’s)
to decode any of the turnout "plaintext messages" (actually hardness would grow
just as exponentially as in non-recognizability). This would be so recurrently
now and ever, and dramatically impossible to decrypt, even if the chaotic and
stochastic unknown generator method of nature would be, at some point in time –
fortuitously (non-deterministic, weak nominalist, or strong intuitionist), in which
case a deciphering method could exist based on time and experience, or selectively
(deterministic, weak formalist, or strong structuralist), in which case a method
could exist based on structure and patterns – here shown to be somehow equivalent.
This is exactly the point wherein synthetic a priori judgments find their final fading
erosion, and the question of "how is mathematics possible?" [211, 63] with the fine
distinction of prevision, dies away.

It could be true that structures "cipher blocks" would facilitate decryption as
they grow, but, just like the passage from the 1st to the 2nd of Gödel’s results
on the incompleteness of mathematics, a decidable decoding, insofar the key is
truly random, and, at worst, as long as the "plaintext" is decisively (any-order)
incomplete and undecidable, under the scope of one-time pad cryptography [80,
332, 177, 178, 95, 301] with ontology and metaphysics here playing the role of
"information", its decryption is found to be impossible.

This, besides constituting an inversion of Kantian’s whole architectonic [211,
63], demonstrates the need of digital ontology, as a sort of computability’s dialec-
tic, to institute a parallel running universe with computability as diagonalization,
even though a fatal error is made in one such envisagement, for the reason that
computability is here a just a fragment of the plain text at hand, not a cipher,
little less a random key, and impossibly so, imaginably, the one-time pad secret
key with the ontology’s information on the world.

62

The most disturbing conclusion is, however, mostly violent to the well known
and uncontested pronouncement by the Tuscan polymath Galileo Galilei – "The
Book of Nature is written in the language of mathematics" in the modern ver-
sion, and the Renaissance version “Mathematics is the language in which God
has written the universe” – once if mathematics was taken to be the random key,
mathematics would no longer be mathematics, which provokes Gödel’s results to
be newly valuated in a proper Gödelian sense, wherein mathematics is necessarily
so incomplete, alike reason in Kant (fractured in analytic and dialectic), and nec-
essarily so for a strong (secret) "mathematical reason". If mathematics is truly
infinite and random, the random key (in the Renaissance version the key being pre-
shared between the world and God, but in the modern version naturalism being
absolute secrecy) would always be secret, even if hidden by the simple mechanism
of modular addition, which leads us to think that computability (imagining recur-
sive theory in the place of modular addition) even if constituted as the random
key, could produce secrecy given enough time (P 6= NP). But as time here is
the time of the universe, there is no point in having an insecure (unknown) key to
an almost infinite in time world and universe, and even if time acceleration was
superior and entropy minor, both mathematics, and computability as a part of
pure mathematics, would always be incomplete (insecure).

Time, as long as it is the same size as the key (the key possibly being even
time itself accelerated to one absolutus of the Hegelian sort, and set apart), would
itself be known (secure) and unknown (insecure) information and randomness at
the same time, i.e., also in between, constituted as the message, in ontological
terms. If, by any chance, meaningful to decipher the information-theoretic secure
ontology of the world (conceding that "plain text" time never had re-used in whole
or in part the "key" time – and, thus, time would not be time anymore following
substantia – and conceding that "plain text" time would be longer than "key"
time – and, thus, time would not be time anymore following accidens), it would
be at a loss forever, once the moment at which time would surpass the length of
the key, time itself would no longer exist, and neither would the world. With this
we reach a time-complexity problem, very different from typical hierarchical levels
related with the nature and evolution, language and grammar, or computation and

63

complexity, pronto instead as a collection of the above-named, and not only that,
but contended as a paradox.

Having seen how cryptography and information entice rich ontological and
mathematical crossroads, anticipating what we understand as new antinomies of
the Kantian tradition in one anon informatic and cybernetics standpoint, one such
debate is also convenient to the more narrow topic of programming (languages) me-
dia. Cryptography permits us to think on the analogy of ontology-theoretic secure
information, and, consequently so, the place of communication and programming
media languages in diagonalization with the world’s ontology in sharp distinction
of analytic and dialectic. Evidently, the Boltzmann brain paradox converges also
to logical calculus and logic programming, from Aristotle to Prolog.

This divergence between pure determinism and empirical chance is certainly a
mark of recognizable problems in complexity hierarchy. In relation to the accor-
dance with the P vs.NP problem – remembering Stephen Cook’s simple formula
"The P versus NP problem is to determine whether every language accepted by
some nondeterministic algorithm in polynomial time is also accepted by some (de-
terministic) algorithm in polynomial time. To define the problem precisely it is
necessary to give a formal model of the computer." [81], provokes, yet, a read
into consideration, that of encryption one-time pad of natural physical spacetime
before any instance of computer science time complexity. Aside from this, to un-
derstand how the P vs.NP problem, excepting the Turing-Church computability
thesis (1936), germinated from the period of emergence and mergence of the von
Neumann architecture, is a different matter of interest.

If, on one side, computers were too limited to describe a wider range of problems
with the concept of stored-program yet to be implemented, on the other side,
attainable and recognizable grammars were to be constituted as too general to
describe the syntax of natural languages, more hardly so encrypted (artificial)
natural languages, and even more so programming languages to come32.

32After the disclosure of the λ-Calculus formalism by Church (1936), and even though Turing in
the same year had referred to the possibility of a U -machine, which was clearly a foresight of the
stored-program concept (as it is justifiably recalled by Chris Bernhardt in Turing’s Vision, The
Birth of Computer Science (2016) [36]) and Lorenz, still in the very same year, had designed two
patent applications, in what respect machine instructions could be stored in the same storage
used for data, the fundamental perception and theorizing of the stored-program concept, to

64

With a solid grasp of these historical notions, we understand how linear the
line was between the original Charles Babbage’s description of the analytical en-
gine (1837), the Colossus (1943-45), and also the abstract design of the ACE
(Automatic Computing Engine) (1945-46). Before the actual construction of the
pilot ACE (a preliminary, modest, and partially disagreed on version by Turing
himself, constructed in the 1950’s), the Lecture to the London Mathematical So-
ciety [364] (1947) by Alan Turing, in the stage of De Morgan’s learned society
(1865), really epitomizes the ending of an industrial to enterprisal, steam-power to
electronic-control, small- to large-scale, store-to- computer, mechanical-analogue
to digital-discrete transformation [349]. Preferably, this historical passage with
strong industrial-procedural, but also "context-sensitive" historical-cultural envi-
ronment that is here characterized, not without the pinnacle of the von Neumann
First Draft [380], represents best the ascendancy of computer architecture, in its
fundamental underpinnings (machine code and general type-hierarchy, industrial
assemblage to electronic design, ultimately hardware to software). If, bearing on
the inevitable industrial-technological-cybernetics curve, to this we add the sort
of IP-complexity (Interactive Polynomial Time) = PSPACE – where from we
conjecture PSPACE = PTIME ?; or alike question: is physical spacetime com-
putationally/a priori just as naturally/a posteriori partitioned or divided?) – war
that was involved in the Colossus and Bombe face up with the Lorenz ciphering
and the Enigma machine, in consummation of cryptography as the most stren-
uous method of diagonalization, with incremental quantitative design, memory

which, inevitably, programming languages are associated with, in the specific context of computer
architecture, was, in the faultless and integral fundamentals, von Neumann’s. However, this did
not translate to any programming language, but instead to the ability of referring "any word in a
programme by means of a label or tag attached to it arbitrarily by the programmer, instead of by
its address in the store" [275], meaning a detachment from machine code and, simultaneously, an
higher-order ranking in the abstract types-hierarchy (reflected in standards, syntax, instructions,
control flow, arrays, strings, strings functions, or any other "abstract types"), retractable, in
addition, to Alda Lovelace’s translation (1842–1843) of Babagge’s analytical engine machine
(fully abstract) procedures of a calculating method for Bernoulli numbers, in the first place. At
a time when programming had itself to detach in abstractedness from coding, in contrast to
actuality, where programming languages seem to hold for less differential space and time, the
ENIAC coding architectural system by von Neumann and the Moore School (1945) really seems
complementary to the introduction of the programming language fabrication of Plankalkül (1942-
45) by Konrad Zuse. The idea of a stored-program was incisive in the dawning of general-purpose
modern computers, also transporting higher concepts to computability.

65

hierarchy, instruction-level and analysis, and the consequent field widening for
complexity theory, it is our understanding that a more scrupulous account of com-
puter architecture is unfolded, instead of the one and only showcase of the von
Neumann or Princeton architecture [380].

The Analytical Engine (1837) devise by Charles Babbage was an operational
full plan upgrade from the Difference engine. So, rather than saying it was sup-
posed to test, we should say it was, indeed, a non-binary, 50 decimal places and
floors with thousands of positions, general purpose arithmetic steam power mer-
cury machine, engineering full plan. It was so prior to the electromagnetic induc-
tion with electromagnetic rotary devices consequent to the experimental inventions
of Faraday (1761-1867), and far away from Maxwell’s (1831-1879) electromag-
netism equations and new unification in physics. Contrary to mere Jacquard’s
loom patterns sensitive rods feeding cords between cards, Babagge’s machine was
able to achieve conditional branch statement jumps and loops, with the ability
to store numbers anywhere in memory, sorting to pull in and push back out data
from the bus (having the ingress and outgress barrels – sort of rotating drums
with pegs inserted – reading off the data). It incorporated functionally complete,
store assembly level programming logarithmic tables, and printers for a permanent
record. This was only in appearance a "false dawn" of computation, and not even
the "largest, heaviest, complexiest" confront with systems organization could lead,
eventually, to its depreciation. Its cog wheels apparatus permitted the system to
be Turing-complete, an exceptional realization. When the printer, curve plotter
and bell would compute a result, the base-10 fixed-point arithmetic, with a capac-
ity of 1,000 numbers of 40 decimal digits (16.2 Kb in equivalence, i.e., 132710.4
bits) the proper arithmetic unit, which was a mill difference machine curved back
upon itself in a circular layout (although later drawings depicted a regularized grid
layout), would carry out (Turing-complete) system data-manipulation rules from
three different types of punched cards: one for arithmetical operations, one for
numerical constants, and one for load and store operations, with three separate
corresponding readers. Babbage was acutely aware of the wide range opening for
the creation of programs for the Analytical Engine, and indeed he himself devel-
oped several between 1837 and 1840, from iterative formulas to Bernoulli numbers.

66

What is even more astonishing is that the far ahead in time Analytical Engine,
specially knowing that it remained beclouded in implementation tribulations, de-
served a not very delayed appreciation by Luigi Menabrea (1809-1896) in the paper
"Notions sur la machine analytique de M. Charles Babbage" [263]. This paper was
translated by Ada Lovelace, who, along with Babbage, added extended notes, tes-
tifying for the only detailed account of the Analytical Engine for posterity. Later,
upon the death of Charles Babbage, his son H. P. Babbage wrote and read The
Analytical Engine [17] for an audience – increasingly, as we hear the name, sound-
ing more and more a Kantian justified concept for a machine, and simultaneously
every machine’s critical limit – wherein we find the following note: "It is only a
question of cards and time. Fabrics have been woven requiring several thousand
cards. I possess one made by the aid of over twenty thousand cards, and there
is no reason why an equal number of cards should not be used if necessary, in an
Analytical Engine for the purposes of the mathematician" [17]. This is exemplary
in understanding

⋃
-Mentalism, if we substitute cards for empirical images.

The Colossus (1943-45) – including the prototype Colossus Mark 1 (1943),
and the improved Colossus Mark 2 (1944) —, in any case, at the physical level,
using thermionic valves (vacuum tubes) (1,500 at the request of Tommy Flowers)
to perform Boolean and counting operations, executed in a special purpose logic,
namely to find the (one time pre-shared) "key" to the Lorenz cipher (removable
rotor stream ciphers adapted to a teleprinter; Lorenz SZ40, SZ42a and SZ42b for
Schlüssel-Zusatz, or cipher attachment). The series of computers Colossus can,
therefore, be described as the first to combine programmable, electronic, digital
computation, even if programs were controlled by switches and plugs, along with
the use of paper cards (5,000 characters per second, roughly 30 miles per hour).
The continuation and direct analogy with Babbage’s Analytical Engine [17] is also
very clear, now with Babbage’s store as the hard disk and memory, the mill as
the central processing unit, the steam engine as the power, the printer as the
electrical boards, the barrel controllers as the microprograms, and the various
(operation, number, and variable) cards, now making up the software in the paper
tape with patterns of the alphabetical linguistic sort. It, thus, testifies to the
imminent transition from the industrial revolution to the digital age, and the
foreseen passage from special purpose to general purpose computation with the

67

Automatic Computing Engine (ACE) (1945) design by Alan Turing, following the
Proposal for Development in the Mathematics Division of an Automatic Computing
Engine (ACE) [364] (1945), and the ensuing Lecture to the London Mathematical
Society [364] (1947).

Even if the idea of stored-program in the ENIAC-EDVAC project was publicly
advanced first, it was not as fully mechanistically depicted as with the ACE, apart
from the fact that von Neumann had been acquainted with Turing’s work in the
first place. Gladly so, however, the idea of stored-program and the free enterprise
vision combined in the USA, rapidly boosted the ENIAC-EDVAC project, both
with military and civilian aims. Consequentially, it was, mainly, secrecy in Britain,
and governmental public policy’s many different aspects in the USA which gave
a visible edge and publicity to the ENIAC (1943-1945) and the EDVAC (1944-
1949). It is interesting to think what would have been an equivalent paper to von
Neumman’s The First Draft [380] eventually written in concurrence by Tommy
Flowers, Max Newmann and Alan Turing, not so much tied to mechanical aspects
as was the Proposal for Development in the Mathematics Division of an Automatic
computing Engine(ACE) [364] (1945), but instead more free in philosophizing as
was von Neumman’s.

Maybe it could never be as such, and only through von Neumann’s First Draft
[379] could we have seen one informatic anthropology understood, molded by as
special a high-calibre polymath as von Neumann, a genius of the stature of Gauss,
Euler, and Hilbert. The permanent analogy with the human body is never lost, to
the point of the text being presented as an incorporation of the principles exposed
in ergodic and measure theory – the 10−6 seconds vacuum tube reliable reaction
time, overcoming both the telegraph relay reaction time of 10−2, as the proper
synaptic time of a human neuron, in the order of 10−3 seconds – in one all-or-none,
two equilibrium, binary (simpler than decimal) arithmetic, with a very strong note
on computing aesthetics and general purposiveness teleology of machines.

The R(ecording) medium, C(entral) A(rithmetic), C(entral) C(ontrol), as for
the rest, M(emory), I(nput), and (O)utput, with parallel simultaneous telescoping
operations [380], and the "schematic picture for the functioning of the standard
element of the device", meaning with this the "E-element" [380] as one hypothetical
element, overly states an electromagnetic entity assumed to have synaptic delay

68

at fixed time. These absolute units of time – stipulated as 2T with T being a
microsecond – is described as a synchronized function, evidently comparable to
the human brain’s consciousness.

It continues in having a central clock as an electrical oscillator, whose pulse is
(1/5)T and a strict synchronism of stimuli which are integer multiples of T , with
vacuum tubes circuits, in this fashion, resembling a sort of computational τoπoς
topos for autonomic nervous system computational thresholds, permitting elec-
trons, here the artificial lymph, to connect the "planning networks of E-elements"
[380]. von Neumann, then, chooses that for the standard number of about 30
digits, instead of being represented simultaneously, rather to be in succession, all
30 digits of one number at the same point, here with the binary point the ana-
log of the decimal point. This is the base to the formation of a network which
can add, subtract, multiply, divide and square root, depending on the C(entral)
A(rithmetic), the connections for transfers between C(entral) A(rithmetic) and
M(emory) being decisive.

Accordingly, the capacity of the M(emory), which are the actual vacuum tube
trigger circuits, with k-fold memory in blocks, eventually converted into cyclical
memories, responds to the organization of one unit as the value of one binary digit.
This should also be the value for "standard orders" [380], of one minor cycle of
32 units. This is, conveniently, the base for the the estimation of requirements
of memory type and function tables (with nthorder of minor cycles, with an ap-
proximate value of 9x the standard punch card place for 80 digits). Solutions to
mathematical problems have reached as high as 6,000 minor cycles estimates in
the calculus of the author (even with fewer function tables and less complicated
"set ups"), but what hides in this study of most relevance is the consideration of a
bottleneck: "It shows a most striking way where the real difficulty, the main bot-
tleneck, of an automatic very high speed computing device lies: At the memory.
Compared to the relative simplicity of CA, and to the simplicity of CC and of its
’code’, M is somewhat impressive: The requirements formulated in 12.2, which are
considerable but by no means fantastic, necessitate a memory M with a capacity
of about a quarter million units!" [380].

Not to forget that this equates to a synaptic body of memory, with as many E-
elements as the desired capacity of M needed, with the construction of dl (cyclical

69

or delay memory with about 10 vacuum tubes associated in the architecture) or-
gans with k values up to several thousand being unmanageable (specially uncertain
when k ≈ 10, 000), and besides this, compelling to consider the choice of either
feeding each dl back into itself, or else to have longer dl ’s cycles. A: Amplifica-
tion and SG: Switching & Gating redirect the arrangements to the correct clock
pulse for the output, wherein the dl ’s delay time is a relative precision fraction t′

of t.
Attending to the unit’s memory capacity, the minor cycle with due numbers

and orders (12.2 First Draft [380]), or more organically, not exactly the number
of stimuli the organ can remember (localist atomist interpretation), but instead
"the number of occasions for which it can remember whether or not a stimulus was
present" [380] (network synthesis interpretation), the required choices of thousands
of cycles to the power of two – conventionally the 262,272 minor cycles = 218 units,
or the M(emory) capacity of 218 minor cycles ≈ 250,000 (a quarter million) units
– and taking into account that each dl with a capacity k – the aggregate between
any two SG has the capacity k′ = kl – commands that "250,000

k′
SG’s are needed

altogether, and the switching problem of M is a 250,000
k′

way one" [380]. Because
of this insurmountable task, one such factorization was replaced by a 250-way
switching problem solution for the factor of 1,000 immediate and synchronous
temporal succession t (1, 000t i.e, c=250,000, k=1,000, h=250, hopefully in powers
of two).

With this, and leaving ahead the relation between CC and M (related with code
words and programming), we reach the most important point in von Neumann’s
First Draft (12.8) [380] in relation to visualness programming and

⋃
-Mentalism.

We are referring to the prima facie more natural solution of the iconoscope mem-
ory, for technological-historical reasons impracticable and not usable at the time:
"The solution to which we allude must be sought along the lines of the iconoscope.
This device in its developed form remembers the state of 400 x 500= 200,000 sep-
arate points, indeed it remembers for each point more than one alternative. As is
well known, it remembers whether each point has been illuminated or not, but it
can distinguish more than two states: Besides light and no light it can also recog-
nize – at each point – several intermediate degrees of illumination. These memories
are placed on it by a light beam, and subsequently sensed by an electron beam, but

70

it is easy to see that small changes would make it possible to do the placing of the
memories by an electron beam also." [380] We wish to stipulate this principle of a
single electron beam and the switching action (steering and deflecting) from and
to the focal point in the plate, a (computational) visual impression, as the baseline
idea for the inception of

⋃
-Mentalism (as, simultaneously, a computer architecture

and programming media, inverse to the established von Neumann architecture). It
is not so much the concept of rapid switching to any part of the memory, liberated
from temporal sequence, neither the holding of information per se in the static
form of the dielectric plate that is fundamental, but instead the possible synthesis
of the transient light waves, and the fact that information can be organized into
a model theory programming media language, which should constitute its main
appraisal33.

For the moment, though, it suffices to signal
⋃
-Mentalism in relation with

the fundamental concept of the von Neumann or Princeton computer architec-
ture [380], and capture, essentially, the following: first, that, independently from
complexity theory polynomial, logarithmic and exponential algorithm problems
and complexity classes [95, 250, 406, 178, 289], eventually seeking a similar sep-
aration of analytic (integral) and dialectic (differential) match of the greatest
lower bound (infimum) and least upper bound (supremum) of calculus now in
computus, the von Neumann architecture as exposed in the First Draft [380],
in its special emerging body and machine metaphor and de computa architec-
tura, not only foreshadows the passage from topology to a wider sense of the
perceptiveness-of-the-self and the mind-body problem, as for the very same reason
of a false continuity line from the machine to the self, becomes an attesting line
of sight for the right comprehension of the Fifth Generation Computer Systems
in Japan (FGCS) with the programming language Prolog as the perfect errata
for the break out of the boundaries above exposed, under the context of (strong)

33Here and now, in a machine learning era [109] 1,000,000,000,000 frames/per second is achiev-
able, there are, surely, dozens of trillions of digital images in digital storage (probably reaching
soon a quadrillion 1015) – not mentioning the possibility of capturing in footage natural light
waves permanently and disseminating –, and particle accelerator machines, in particular, elec-
trostatic accelerators, of which a cathode ray tube regular screen is a small scale example, has
the ability to dimension itself, in architectural terms, to future computation, seeking the natural-
to-artificial bounds of computability into wider perspectives.

71

α β

γ δ

E

F

A B

C D
When we assume that AB and
CD are parallel, i. e., AB‖CD,
then α = δ and β = γ.

Figure 1.2: The Parallells Vth Euclidean Postulate (and Paradox).

AI deception; second, that in the history of computation, the emerging nature of
paradoxes and the oblique sense of cryptography (discernible in the transition
from the industrial-mechanical Analytical Engine to the electronic-digital pre-
stored and stored-program computers, respectively, the Colossus and the ACE)
is truly affine with diagonalization [273, 138, 358, 312]. It should be worth, in-
deed, expanding computation as a diagonalization machine and comparing it with
the birth of recursion theory and its ancestral historical roots since Euclid until
Gödel [312, 216, 160, 182, 280, 346, 148, 92, 161, 162, 163, 219, 245]), the paral-
lells postulate here envisaged as containing "gödelisation" topological arguments
[264, 28, 156, 341, 132].

Assuredly, the Euclid-to-Gödel geometry-to-topology diagonalization arguments
allow for both a critical thinking and a reasoning on the symbolical power of images
in computation, demanding a photon computer vision & multiple view geometry
paradigm [87, 309, 174] contemporaneous research on the limits of computability,
in contrast with the sonus et vox natural language processing in logic programming
and Prolog [39, 78]. Given credit to the renewing and sheer spirit of research and
enterprise as visible in Prolog’s strong AI history chapter with the Fifth Genera-
tion Computer Systems (FGCS) in Japan, what is now important is to reinforce
this justified semiotic turn.

This is precisely the reason why untyped λ-Calculus (1936) (after the paradoxes
exhibited by Kleene and Rosser on the 1932-22 earlier version) or the logically
consistent typed λ-Calculus (1940), and thereupon, the Turing-machine model
likewise (though never in need of corrections, and an imposing model over Church’s
for that reason alone), both share a structural and topological nearness.

72

We shall observe how this nearness translates into the important topological
concept of neighboring points, or the study of boundaries (with a close eye on
the continuum hypothesis, independent of set theory). This idea of neighboring
points and boundaries, if taken notice, was the proper idea behind the Leibniz-
Newton mathematical study of continuous change, in its birthplace the rise of
the fundamental theorem of the differentiating and integrating power of calculus,
inalienable from the contemporaneous assertion on the limits of functions. The
idea of limits of a function, in notational form limx→p f(x) = L which attests
for the idea that f(x) can be made as close as desired to L by making x close
enough, but not equal, to p, makes possible the interpretation of f to be a real-
valued function defined on a subset D of the real numbers, where c is the limit
point of D and L also a real number, so that lim

x→c
f(x) = L.

Conceivably, the idea of the limits (ε, δ) in informal and intuitive manner34,
34The Epsilon-Delta (ε, δ) definition of limit was vague and pretty much informal, ever since

the inception of calculus with Newton (1642-1726/7) and Leibniz (1646-1716), and the treatment
of infinitesimal quantities ("differential" quotient as a ratio of infinitesimal differences, "integral"
as a sum of infinitesimals for Leibniz; whereas for Newton the derivative was a "fluxion" as a
rate of change, and the integral was the "fluent"). One century later men such as d’Alembert
(1717-1783), Lagrange (1736-1813) and Euler (1707-1783) also dealt intuitively with this notion,
and were familiarized with a verbal definition only (Euler in the XVIIth century himself was very
aware of "uncritical" sums of series settled on the theory of equations, a foretoken for d’Alembert’s
solution for the bounds of errors in binomial series, and Lagrange’s use of continued fractions
as a new approximating method from iterations). Pierre de Fermat (1607-1665) had been also
responsible for the use of "adequality" to find the maxima and minima of functions, in the context
of trying to find the incommensurability measure – the slope of the tangent line – in such way
that at a point x of a function, it could be reinstantiated in equational algebraic reasoning in any
expression containing E, here taken as infinitesimal (almost zero value unknown) in any form
of univariate (variable) algebraic equation. And it was precisely as a "variable quantity" that
A.-L. Cauchy (1789-1857) used the expression under mathematical analysis. His lines of thought
were as follows: "Let δ, ε be two very small numbers; the first is chosen so that for all numerical
values of h less than δ and for any value of x included, the ratio (f(x+ h)− f(x))/h will always
be greater than f ′(x)− ε and less than f ′(x) + ε."[62, 152].
Further on, Weierstrass (1815-1897) and Bolzano (1781-1848) finally refined the apparatus of

calculus, but it is, arguably, fair to say that, in the midst of all the contributions, Cauchy was
the forerunner in being able to show the sum approach to a fixed value, and so the integral
interval of the function, ahead proving the fundamental theorem of calculus from the mean-
value theorem by Lagrange. The achievements by Weierstrass and Bolzano have, in turn, set in
motion number theory extensions. The most notorious is the construction of R (real numbers) by
Richard Dedekind (1831-1916), but it is also the case of hyperreals (or nonstandard reals) ∗R by
Abraham Robinson (1918-1974) and even surreal numbers, not forgetting the recognizable and
intermediate case of computable numbers. To all of these, a higher commuting analysis medially
constructed between mathematical and philosophical structures can also be ascertained, visible

73

is that a function f approaches the limit L near a symbolical lim
x→a

f(x) = L if
we can make f(x) as close as we like to L by requiring that x be sufficiently
close to, but unequal to, a, is remarkably similar to the Turing-machine model,
λ-Calculus, and computable µ-recursive functions. This is so in the sense that
all the "variables" – in Cauchy’s sense (Cours d’Analyse, 1821), wherein algebra
was set aside for the emancipation of the visual geometric method, algebraic or
combinatorial topology substituted by continuous topology –, taken as values, can,
singling out the Turing-machine model or λ-Calculus in comparison, be taken as
follows: values are successively attributed to the same variable, and approach
indefinitely a real value, eventually differing from it by as little as possible, with
that real value being called a computable number, as a limit of all the others.

Dramatically, the inner limitations of both arithmetic formal systems (Gödel’s
incompleteness theorems, 1931) and computation (the negative answer to the
Entscheidungsproblem by Church and Turing, 1936) seem to appeal to nonstandard
methods (almost a von Neumann pointless topological concept set from metric R
distance to *R as an extension), while, at the same time, with the distance from
fluxions of infinitesimals (ε) to the infinite (ω) in Leibniz-Newton calculus, now be-
ing transformed to the distance from µ-recursive functions to R in Turing-Church
computus, meaning a step forward (computability theory) and two steps back

in the new unfolding of imaginary and complex numbers in face of real numbers, and, exquisitely,
in model theory.
In mere formal terms, focusing on the Epsilon-Delta definition: let c be a limit point of D and

let L be a real number. We say that lim
x→c

f(x) = L if for every ε > 0 there exists a δ such that,
for all x ∈ D, if 0 < |x− c| < δ, then |f(x)− L| < ε [347].
It really shines through how much the paradigms of calculus and computus have been born on

congruous birthright. Berkeley’s attack on calculus in The Analyst, or a Discourse Addressed to
an Infidel Mathematician [35] (1734), specially for someone who had inaugurated immaterialist
idealism, and coming forward criticizing "evanescent increments" [35] and "ghosts of departed
quantities" [35], really matches mathematical Platonism and functionalism embroilment charac-
teristic also of computus, and more could be said on sums approaching fixed values in relation to
µ-recursive functions and the prefigurative Turing-equivalent machines, and equally so in relation
to an integral-differential correspondence, especially in the turnover from 1931 (The incomplete-
ness theorems by Kurt Gödel) and 1936 (the Turing-Church thesis). Overall, thus, regarding
the transition from calculus to computus there is a major shifting paradigm that we wish to call
attention to by precisely submitting their dynamic field of "equalities" and "inequalities" to a
change of unbound limit. Hence, the use of calculus to computus expression under limits, here
taken as of mathematic’s own limits, serves as if it was a metalanguage notation with respect to
computus increments on calculus.

74

(the Hilbert program delusion and the very probable P vsNP negative answer in
mathematics and computer science). We herein convey a graphic of computational
complexity classes (1994) (See figure 1.3, page 76) [288] that we will refer to later
in our discussion. For now it is enough to give a proper diagrammatic representa-
tion of the different classes of problems concerning computational algorithms and
the decision problem 35.

35The Acronyms involved in the graphic are: "LOG Time" = logarithmic time, "LOG Space"
= logarithmic space, "PTime" = polynomial time, "NPTIME" = nondeterministic polynomial
time, "co-NPTIME" = complement of the nondeterministic polynomial time, "NPC" = non-
deterministic polynomial time complete, "PSPACE" = polynomial space, "EXPTIME" = ex-
ponential time, "EXPSPACE" = exponential space, "2EXPTIME" = doubly exponential time,
"ELEMENTARY" = elementary recursive functions, and "R" = recursive languages.
Roughly, following Kant’s division of the formal a priori intuitions of (external) space, and

(interior) time, and for an (abstract) order of O – (constant O(1)- logarithmic O(log2N)- linear
O(N)- quadratic O(N2)- cubic O(N3)- exponential O(2N) – growth rate or order of a function,
attesting therefore for a description of a function providing an upper bound, we can moderate
an hierarchy in the first place. Following this, we can avow, imagining the human brain to be, in
a simple analogy of experience [Kant, A180-B223] (claiming only general principles of substance,
cause, and community), not in transcendentality, but instead through schemata – "analogies
have their sole signification and validity not as principles of understanding’s transcendental use,
but merely as principles of its empirical use" [Kant, B224] – a gedankenexperiment the closest
possible to a non-deterministic Turing machine, wherein the set of rules may indicate more than
one action to be performed for any given substitution (a non-deterministic Turing Machine, thus,
being a tripartite model with the first analogy of permanence, the second analogy of succession,
and the third analogy of simultaneity) [Kant, A182-A28]. In a very general outline, the formal
a priori intuition of time, corresponds in Turing [362, 363] to "computability" and "effective
calculability" (Church, 1936) and, thinking along von Neumann’s concepts in the First Draft
[380], to the general input (I), whereas the formal a priori intuition of space, suitably corresponds,
in Turing, to "memory" [362, 363], and in von Neumann [380], not so much to M(emory), but
more so to the general output (O).
The preeminent class of time is, hence, observable to be insurmountably interior. This attests

also for an impossible "refutation of idealism" [Kant, B274], something that is illustrated through
the lines of computer science, bypassing metaphysics. In other words, complexity theory and
the study of the limiting behavior of a function from any argument towards infinity, under the
context of recursiveness, is rather rebutting than affirmative of Kant’s "theory which declares
the existence of objects in space outside us either to be merely doubtful and indemonstrable
or to be false and impossible" [Kant, B 274]. This explains why computationalism is congru-
ent with idealism and skepticism, in conformity with the (inverse) expressions "doubtful and
indemonstrable".
Knowing that for open questions, there is not a way to find an answer "quickly" (in polynomial

time), in spite of the fact that if one is provided with information showing the answer, it is possible
to verify the very same answer "quickly enough" (in polynomial time), i.e, that for any problem,
verifiability translates to consistency – NP as "quickly" checkable as P is "quickly" solvable, all
together tested in the equivalence relation – proving that any problem under non-deterministic
polynomial time is also under polynomial time, thus, being, "tractable", "feasible", "efficient",
or "fast" [74], equates asymptotically faster algorithms being open to discovery, presumably

75

Figure 1.3: Computational Complexity Classes

Really, "distance" itself has been projectively augmented – in Cayley’s sense
that "every geometry is a projective geometry" [128] (not the same as saying that
each and every geometry is projective) – in relation also with the limits in Kant’s
antinomies of pure reason. We are, thus, considering the (mathematical) first
antinomy "of space and time", the second of "atomism"; the (dynamical) third
of "spontaneity and causal determinism", and the fourth of "necessary being or
not", as constituted with relational bounds between them, herein "distance" as a
proper philosophical (mathematical and dynamical) symbolic concept.

They are now exceptionally divorced in the computus age, meaning more dis-

subscribing NP = P . Once every problem in NP has an exponential time algorithm – in short,
exposing NP ⊆ PSPACE ⊆ EXPTIME – one such NP = P equivalence would have a
counter-elliptic effect on the diagram. The reason is that all different classes would be subsumed
into one only equivalence set – PSPACE = NPSPACE = IP – wherefrom IP or interactive
polynomial time would consist of two machines, a prover P , and a verifier V , as if machines were
oracles for each other [81]. In spite of the preeminence of time, in complexity theory, nevertheless,
once memory needs always to supersede the length of the steps, PSPACE, EXPSPACE, are always
shown as outer layers to, respectively, PTIME and EXPTIME.

76

tant between each other, as if we should read limcalculus→computus f(calculus) =

Limit where calculus is typical of Kantian antinomies, and computus is typical
of radically augmented antinomies, i.e., from the (post)-modern age and Leibniz-
Newton calculus (1666-1704), on which the transcendental subject of Kant inquired
about the knowledge limits, to (post)-contemporaneous Turing-Church computus
(1936), on which the transcendental subjects of billions are permanent oracles for
extensions of information.

Here we settle minimal indispensable examples for each and every one of them,
with the purpose of grounding a perfected judgment of the established by Kant
antinomies (thesis cum antithesis) [A421], henceforth in the computus age and
concerted with the guiding principle of pure reason. Originally, surmounting to
explain how the conflict of transcendental ideas is contemporaneously aggravated
– symbolically asseverated into spatial -to-topological provisions, insofar as Kant
himself referred to a "dialectical arena" [A423] – we proceed to expose a brief
rationale on the inflection of anew antinomies. Again, the antinomies are four in
total. They are the "Mathematical Antinomies" [A426-B454 – A442-B470] –"The
First Antinomy (of Space and Time)" [A426-B454 –A434-B462] and "The Second
Antinomy (of Atomism)" [A434-B462 –A444-B472] – and also "The Dynamical
Antinomies" [A444-B472 – A461-B489] – "The Third Antinomy (of Spontaneity
and Causal Determinism)" [A444-B472 – A452-B480] and also "The Fourth Anti-
nomy (of Necessary Being or Not)" [A452-B480 –A462-B490]:

1.1.2 Informatic Anew Antinomies

Theorem 1 (∗3 · 24) Dem.[
∗2 · 11∼p

p

]
` . ∼ p∨ ∼ ((∼ p). ⊃[

∗3 · 14∼p
q

]
` . ∼ (p. ∼ p)

The above is the law of contradiction[399].

[Thesis: the world has a beginning in time, and is also limited as regards space.]
& (conjunctive, non-contradictory: apparently the converse of Principia Mathemat-
ica’s theorem of non-contradiction: ∗3 · 24. ` . ∼ (p. ∼ p) . . . but now in the

77

negation form ∼ . ∼ (p. ∼ p) and, thus, openly equivalent to (p. ∼ p)) [(Anti-thesis:
the world has no beginning, and no limits in space; it is infinite as regards both time
and space.]:

In the computus age, and considering the fulcrum year of 1936, inevitably, compu-
tation is more dissociated from physics substantiation of reality, in the sense that
Turing-machine’s R2 ideality, within the limitations of computable functions and
the negative answer to the decision problem, clashes even more with R3 when it
engulfs differential geometry of surfaces as in Riemannian geometry, the basis for
the theory of general relativity by Einstein, and the proper imbrication of space-
time. Recursion theory is neither capable, through time-functions or elementary
operations performed by the algorithm at a fixed time, either in linear time al-
gorithm T (n) = O or polynomial time algorithm where T (n) = O(nα) for some
constant α, such that α ≥ 1α ≥ 1, to process all the different images of non-
linear time if considered as time-functions (even if parceled into sequential frames
in Minkowski spacetime36 they would fail to be computed in a U-machine, let

36Minkowski spacetime corresponds to putting together R3 (three-dimensional Euclidean
space) and the extra spaciality-conformed dimension of time, recorded as a mere event frame,
into a more global quasi -four-dimensional manifold (really a R2 plane for space, and a single
metric vector R3 cone as a time-function for the speed of light, or alternatively, recurring to
slicing, a cone into various R3 idealities in successive R2 planes, wherein the so called spacetime
interval between any two events is made, in one such invention, independent of the inertial frame
of reference belonging to each singular event). Fascinatingly, the so called Minkowski proper time
(a single point event in the light-cone) or time-distance (the proper distance between any two
or more than one-point events in the light cone), setting a speed of light-metric to the distance,
supposedly linear, is, nevertheless, made both elliptical and hyperbolic in representation, due to
the perceiving point of view of the transcendental subject (never coincident with light speed),
but also for the speed of light, once it lacks orthonormality (the notion of perpendicularity of
two-linear forms, affected to "Newtonian" space and time, or, if imagined from the speed of light
standpoint, not afflicted by Olber’s paradox, in a sort of infinite spacetime). But, again, these are
representational only. This is exactly the point where Kantianism directly bounds with model
theory, in saying that in between the model and the model, in a similar manner as, physiologi-
cally, exists a blind spot - punctum caecum - the place in the visual field that corresponds to the
lack of photo-receptor cells on the optic nerves, there exists, philosophically, a punctum caecum
coincident with the invisible. This is made worse because of the natural unrestricted extension
of the power of knowledge beyond critical limits, as the brain extends vision by interpolation to
the surroundings. In the same way, never compromising satisfiability and validity, representation
of three-dimensions (in R2 planes or axis of coordinates) is standard, as it is the necessary shift
from Minkowski spacetime to the curvature of real (Riemannian) spacetime in general relativity,
although the very same philosophical blind spot is still pertinent. And the same would be true,

78

alone n-dimensional spacetime). But computability theory, on the other side, if it
can partially and structurally model all different mathematical structures - in the
proper collective pseudonym Nicolas Bourbaki’s meaning of "mother structures":
algebraic, topological, and order - accommodating partial lists of possible struc-
tures to partial recursive functions, important practical or experimental results
can be achieved recurring to extra-computability, though embedded mathematical
concepts, such as measures, algebraic structures (groups, fields, etc.), topologies,
metric n-dimensional geometries, besides orders, events, equivalence and categor-
ical relations, integral and differential upper and lower bounds, and the like.

[Thesis: every composite substance in the world is made up of simple parts, and nothing
anywhere exists save the simple or what is composed of the simple.] & (conjunctive,
non-contradictory: apparently the converse of Principia Mathematica’s theorem of
non-contradiction: ∗3 · 24. ` . ∼ (p. ∼ p) . . . but now in the negation form
∼ . ∼ (p. ∼ p) and, thus, openly equivalent to (p. ∼ p)) [Anti-thesis: no composite
thing in the world is made up of simple parts, and there nowhere exists in the world
anything simple.]:

In the computus age, and considering the fulcrum year of 1936, it can be war-
ranted that Leibniz’s De Arte Combinatoria (1666), later designated ars charac-
teristica or characteristica universalis (obeying the principle that all in existance
can be reduced to primitive elements, harmony being a composition of the simple)
is, in its modern translation, symbolical Boolean values sequentially computed by
a Turing-machine, nowhere near the Lullian-Leibnizian idea of a sort of heuris-
tic rational mechanicism proving to be in relation to monads. Eventually, this
was prospected by postulating vibrating conatus, as transpiercing pre-localities in
all types of phenomena, reclaiming, thus, inasmuch as causality and spontane-
ity together, a reduction to one-point "elementary particle" monads (although

taking Gödel’s incompleteness theorems, even if our eye was all we had for a body, and this body
was the body of mathematics.
Minkowski spacetime is, furthermore, not only naturally adequate to the electromagnetic spec-

trum of light as a phenomenon, after Maxwell and Lorentz, but was recognizably conformed to
the physics of special relativity (1907). Computability theory, in its complexity branch, should
be attentively close to such constructs, as it is, really, in between electromagnetism and new
physics-related models.

79

less simple and more dual-paradoxical than one-circle R2 to one-sphere R3 im-
ages of unity in Platonism). We assume, comparing to Newton, this to be an
eloquent demonstration of the similar concept of "action at a distance", though
purely metaphysical and, therefore, more so conceptual relativist distance (Leib-
niz), than, if ever so, physical absolutist (Newton), in either case space (and time)
being considered as sensorium dei. Inasmuch as Leibniz’s sufficient reason of the
totality of contingent things (in relativist space and time) endorses to the neces-
sary being in metaphysical terms, Newton’s physical gravity is to be considered
also spontaneously theistic37 (in absolute space and time). Hence, in retrospect,
we understand how both Leibniz’s and Newton’s systems were, even if antagonis-
tic (relativist metaphysical vs. physical absolutist) facing space and time, metrical
anew. What made the difference, both for the author of the La Monadologie (1714)
as for the author of Philosophia Naturalis Principia Mathematica (1687), in the
spectrum of classical mechanics and classical metaphysics, was physical motion
and metaphysical movement, necessarily a preterius-(projective and topological)
spark, even more so in the heliocentric universe. Throughout the Euclidean-space
limits of necessary plenum and impossible vacuum, the frame of reference of dis-
tances between all members of the heliocentric universe considered as a set were
made more explicit: for both Leibniz and Newton, the artificers of calculus, agreed
fundamentally that the perceiving of time, but also of space, was metric and rel-
ativistic in essence. Difference was in the ensuing postulation in trans-finite and
metaphysical -limits (Leibniz) vs. postulation in trans-finite and physical -limits
(Newton). This obliged Leibniz to metaphysically differentiate space and time
towards relativism (measure being non-physical, non-metric, but strongly projec-
tive), while Newton was driven to physically integrate absolute space and time
(measure being physical, metric, but weakly projective). Physical motion, with
Newton, was prone to the upper bound integral measure of the plenum (connected
in extension as an open set without points in the boundaries) with the observer

37In this regard, we read from Newton’s Opticks: "(...) can be the effect of nothing else than
the Wisdom and Skill of a powerful ever-living Agent, who being in all Places, is more able by
his Will to move the Bodies within his boundless uniform Sensorium, and thereby to form and
reform the Parts of the Universe, than we are by our Will to move the Parts of our own Bodies.
And yet we are not to consider the World as a Body of God, or the several Parts thereof, as the
Parts of God. He is an uniform Being, void of Organs, Members or Parts (...)"[282]

80

in relativist metrical space and time finding these to be movable dimension mea-
sures of absolute space and time), while metaphysical movement, with Leibniz,
was set forth in the lower bound differential measure of the plenum (compacted in
extension, and even collapsed as 0-dimensional points38).

We affirm, considering the frame field in general relativity – with the timelike
unit vector field ~e0 and the three spacelike unit vector fields ~e1, ~e2, ~e3 –, and facing
a system endowed with Einstein field (partial different) equations, that what is
forthwith definitely observable is, quite unexpectedly, the physical vindication of
relativist views (Newton meeting Leibniz), and the metaphysical vindication of
absolutist views (Leibniz meeting Newton): non-quantum (in the "quantification"
sense) monad-like behavior in the subparticles world, after general relativity &
quantum mechanics; and absolutists space and time behavior-like in relation with
light, due to the permanent self-measured and self-metric spacetime in relation
with extension. Once again, it is movement and motion that are in question, as if
the real velocity and the real constant was that of immovable spacetime (monad or
universe), in Kantian terms (converging Leibniz and Newton), a general outwards
(exterior space) and inwards (interior time) transcendental non-metric a priori
affect, coincident in receptivity with the formal elements of intuition, space and
time.

Now, this is the cosmological equivalent of the continuum hypothesis, i.e., the
idea that "there is no set whose cardinality is strictly between that of the integers
and the real numbers" [355] (Hilbert’s 1st problem), which goes on the same line as
extension and set theory, as it is deeply ingrained in recursion theory. No wonder

38The 0-dimensional point, or nildimensional point (lacking any metrics, in form of length,
area, volume, or any other dimensional predicates, as higher-equivalents 1-D. line segment, 2-D.
plane and 3-D. Euclidean geometry), bears, in topological and physical terms, a collapsing action
(although, contrary to what might be expected, invariant and, therefore, constant), very similar
with the monad, as understood by Leibniz, and also very similar with gravity, as understood by
Newton (and, indeed, in Einstein’s general relativity, understood as it should be, a geometric
theory of gravitation, more specially so if compared with, in pursuit, but also moved against,
quantum theory, for, attained to the Copenhagen interpretation – Heisenberg, Bohr, and Born
in 1928 –, rose the idea of "collapsing" properties of subatomic particles, all averse to observance
and measurement, such as position and momentum). It is clear by now that Leibniz’s physics
relativism has modelled positively the necessary plasticity towards the physics of general relativ-
ity, while Newton’s absolutists space and time doubtlessly structured the necessary grounds of
physics law.

81

then, that Gödel, who worked himself with a (truly cryptographical) numbering
diagonalization – a function assigning to each symbol and well-formed formula of
some formal language a unique natural number, a technique called Gödel num-
bering (clearly a non-classical Vth or parallel postulate suppression in philosophy
of mathematics, permitting numbers "lines" to meet different trans-finite or close
to infinity cardinalities) – also dedicated attention to the so called "Gödel met-
ric" or "Gödel solution"[164]. It was explored in the context of Einsteinian par-
tial field equations and the energy–momentum tensor, where its second term is
associated with a nonzero cosmological constant, designated the lambdavacuum
solution. This is important to refer to as it exposes the passage from Einstein’s
envisagement of a constant (Λ) to account for a stationary universe (Einstein,
1917), neither expanding nor contracting, thus, untopologized and holding back
gravity (quasi -congruent with Newton’s absolutists views on space and time) on
one side, and after Hubble observing that the universe is expanding, the cosmo-
logical constant being substituted by a vacuum energy density of empty space
(the proper division in the energymomentum tensor between matter and vacuum)
(quasi -congruent with Leibniz’s relativists views in La Monadologie) on the other
side. This solution is also a reminder of ℵ0 (smallest infinite cardinal number)
after Cantor’s diagonalization proof, and the idea that infinite sets can have dif-
ferent (symbolic) cardinalities, similar also to Turing-Church computus in having
cardinality ℵ0 of recursive numbers in one-to-one correspondence with the natural
numbers, in contrast with infinity (∞) in calculus, which attests an extreme limit
of the real numbers line, as if the function arrow was a leap forward, increasing
without bound. Being space and time considered instead the proper dimension
measures in accordance with the "position" of the monads, the universal physical
"locality" of gravity was, thus, equivalent, to the universal metaphysical "posi-
tion" of the monad. Contrary to having integral inertial frames of references as
metric spaces, monads (entelechial created or others) have a constant differential
energeia (non-metric: without space, time, motion, force, mass, velocity or accel-
eration). Now, computability theory and the computus paradigm, following the
Turing-Church thesis, and in a time where mechanics holds two sub-fields (classi-
cal mechanics and quantum mechanics), inducting strong and weak nuclear forces,
besides gravity and electromagnetism (electromagnetism, really, being the only

82

field of physicality in close relation with state of the art computers, even consider-
ing quantum-computing, necessarily enclosed in the Turing-Church thesis), is very
far away from any sort of metaphysical or physical (either in substantiation or
transubstantiation) metrical power. All that is within its scope are computations
according to theoretical measurements, and above all those of number theory sym-
bolic manipulation in a limited ideal bi-dimensional plane.

[Thesis: causality in accordance with laws of nature is not the only causality from
which the appearances of the world can one and all be derived. To explain these
appearances it is necessary to assume that there is also another causality, that of
spontaneity.] & (conjunctive, non-contradictory: apparently the converse of Principia
Mathematica’s theorem of non-contradiction: ∗3 · 24. ` . ∼ (p. ∼ p) . . . but
now in the negation form ∼ . ∼ (p. ∼ p) and, thus, openly equivalent to (p. ∼ p)

) [Anti-thesis: there is no spontaneity; everything in the world takes place solely in
accordance with laws of nature.]:

In the computus age, and considering the fulcrum year of 1936, it is noticeable
that if the rationale of the four Aristotelian causes (Aristotle, Physics II, 3, and
Metaphysics V, 2) - the mutually exclusive "material", "formal", "efficient" (or
"moving"39), and "final" causes - were absorbed into late Medieval Thomism,
since David Hume’s (1711-1776) A Treatise of Human Nature (1738-40) and con-
sequently Kant’s "awakening from the dogmatic slumber" (Kant, Prolegomena to
Any Future Metaphysics 1783), never again was it possible to decease the power
of inductive reasoning, especially considering the historical-philosophical artery
where from skeptic natural empiricism gradually shifts to scientific artificial em-
piricism (from Hume to Darwin, and from Darwin to Turing). Surely, Aristotle’s
aetiology still brings a germane analytic to the field of AI. In particular, the philo-
sophical assessment of the Aristotelian "efficient cause" (liable to movement and
motion), should be an object of study, as it is the primogenitor root of calculus

39We should not lose sight of the important connection marked in ancient Greek metaphysics,
persevering to contemporary science, between the deist artificer demiurge and efficient cause,
as well as between an external cause and movement, out of which motion is just the physical
correspondent.

83

(differentiation, integration and function analysis in dynamics) and, therefore, of
computus as well (the Turing-Church equivalent λ-definability of µ-recursive func-
tions, capable of recurring to primitive functions composition). In what relates
to Hume, the fundamental causation reduction to custom and habit, a belief or
trust without any other natural contract except time and experience, has really
launched a study of the continuous, "of ideas, their origin, composition, connexion,
abstraction, &c." [191] (Treatise of Human Nature, Book 1, Part I), so markedly
continuous that the difference between impressions and ideas is only one of degree,
amongst the "infinite divisibility of our ideas of space and time" [191] (Treatise of
Human Nature, Book I, Part II. I), framed in a renewed interpretation "of proba-
bility; and the idea of cause and effect" [191] (Treatise of Human Nature, Part III,
II). If noticed carefully, Hume corresponds to an eccentric case in modern philos-
ophy, a combination of being the latest in tradition, and of proper philosophical
singularity. To discern the important causation induction principle, this very sub-
tle difference of Hume being the only one to oppose all the other philosophers
about various epistemic assumptions, while sharing most of the modern tradition
topics (oppositus sed non adversarius) needs to be highlighted. While doing so,
we should bear in mind that the keystone differential is based on the collapse
of causation, derived from radical "sceptical doubts about the operations of the
understanding" [190] (An Enquiry Concerning Human Understanding, Section IV,
1748), at which point it is rendered clear the strengthening of systemic (Cartesian)
doubt, largely beyond the bounds thereof set by Descartes himself. David Hume
(1711-1776) is, thus, the sole modern philosopher, though belonging to the group
of empiricists – Francis Bacon (1561-1626), John Locke (1632-1704), and George
Berkeley (1685-1753), signally inductive – to have gone beyond the acceptance
of a scientific method (Bacon), worldly sense perception against the Cartesian
dream argument (Locke), and explanatory ideal empiricist immaterialism (Berke-
ley). Indeed, to Hume, causation, being an old habit, was just about a timely
natural principle of connection, next in importance to contiguity and resemblance,
"the three only bounds that unite our thought together" [190] (An Enquiry Con-
cerning Human Understanding, Section V, 1748). Hume is also the sole modern
philosopher, even if sharing with the rationalists – Descartes (1596-1650), Spinoza
(1632-1677), and Leibniz (1646-1716), signally deductive – a practical vindication

84

of reason (although void of its dogma), to have established its nature on the in-
ductive free association of ideas and probability, all in all a matter of perceiving
sensibility, i.e., the faculty of reason being, uniformly with all possible experience,
abstractions of impressions that arise from the senses [191, 190] (Hume, Treatise
of Human Nature, Section V). Consistently, Hume is the sole modern philosopher,
contrary to all the others aforementioned, to have granted the principle of unifor-
mity and the continuum: the outset Cartesian dualism, in separating thought and
extension, even in different unfoldings (as with Spinoza’s substantia, modi and
attributa), markedly differentiating ontological divisions in one neutral monism,
is, however, not akin to Hume’s principle of uniformity. This is taken as one on-
tological continuum, moreover inductively-ordered and resiliently skeptic towards
any effect of causality, even if borrowed everlastingly to time and experience. In
this fashion, by strengthening systemic doubt to the core of human reason, not
falling to disassociate reason from relativism, intermittent time was made a per-
petual judge for any extension of human knowledge. This is directly contradistinct
to the ὲποκηὲ (epoché) method, in the sense of a state where all judgments are
suspended, of all the other modern philosophers: it is only hypothetically that
Descartes discerns on the dream argument and the misleading God (Meditations
on First Philosophy, 1641); it is only hypothetically that Berkeley imagines reality
as a whole product of sensory intersubjective relativism (A Treatise Concerning
the Principles of Human Knowledge, 1710; Three Dialogues between Hylas and
Philonous, 1713), both, henceforth, shielding theological views. And the same
could be said in relation to the proper nature of sensory experience and evidence
in relation to causation: even if assertorically establishing a scientific method,
Bacon never went to purge the idol of causation in the system of sciences and
empiricist natural philosophy; even if assertorically emptying human nature to a
sort of tabula rasa, Locke never went further to include reason and causation as
rasae; even if assertorically construing freedom as postulated, never were mod-
ern philosophers, except Hume, seen to evolve to the skeptical position where both
causation and human reason were, respectively and problematically, succession and
free association, as found equally two and a half centuries later with the Turing-
machine model and, most specially, with Turing’s Imitation Game in Computing

85

Machinery and Intelligene (1950) [368] (it is also this exceptional philosophical in-
cidence, more than just mathematical logic, of Turing’s machine model (1936) and
heteromorphic thought, balanced between declarative problems in philosophy, and
procedural machinery, that gives about computability an extra edge to Turing in
relation with Church, even though recursion theory was all throughout a concur-
rent and emergent field with exceptional men and women). Most importantly, and
enveloping both, Hume’s principle of uniformity was set as one ontological princi-
ple in continuum, and, extraordinarily, also of inexcusable de omnibus dubitandum
est. In spite of the uniformity principle in continuum – though never falling to
breaches like dualism, substantia, modus et attributus unfoldings, or even to the
empiricist primary/secondary quality distinction –, Hume was able to prospect
– though never subsiding axiomatic natural deduction systems, comparing with
later Kantian critical philosophy –, a mindfulness’ continuum, also unequivocal in
Turing (and hardly so engendered if we remember that it was performed only from
computable numbers and a machine model). It appears as such, in the context of
modern philosophy, as a sort of combination of the inductive ideas of a compact
connected metric space, and unboundedness extension, i.e., where succession and
free association were coped with infinitude of both the immeasurably large and
small, and also of nondenumerable reality, always plunged within subjective time.
It is only inside this fully subjective skeptical empiricism of Hume, taken as a
philosophical lattice, breaking down at once both dualism and causation, that is
made comprehensible the following tracts of systematization handed down by the
Scottish philosopher, decisive to the characterization of subsequent shifts in natu-
ral philosophy: the separation of the necessary vs. contingent (concerning reality),
the a priori vs. a posteriori (concerning knowledge), and the analytic vs. synthetic
(concerning language), with truths relating ideas (abstract) all made parallel on
one side (necessary, a priori, analytic), whereas truths on actualities (concrete) all
made parallel on the other side (contingent, a posteriori, synthetic) [133]. It is only
now that the passage to Darwin is enlightened, as, something that has been largely
dismissed in the subject matter précis, Kant was the only natural philosopher be-
fore Darwin to have critically envisaged the natural mechanism of evolution by

86

means of natural selection, only to integrally deny it afterwards 40. Hence, Kant
was likewise the only natural philosopher to give continuity from Hume’s princi-
ple of uniformity under the natural sciences, fundamentally in ὲποκηὲ (epoché)
method to thereupon critically discard it, while, also in ὲποκηὲ (epoché) method

40As there are many mathematical logic techniques (with ramifications into set theory, model
theory, recursion theory, and proof theory), we can address logic and semantic technicalities in
metaphysics. The philosophies of Descartes and Berkeley are good examples of the use of such
techniques of formal reasoning, with deeply entrenched consequences in the outline of metaphys-
ical theories. Descartes made use of testability to the end of falsifiability forecasting counterex-
amples and, therefore, confirmability, in the explicit case "the demonstration of the existence
of God and the immortality of the soul" (Meditations on First Philosophy, 1641, Meditation I:
Concerning Those Things That Can Be Called into Doubt), thus, tactically advancing hypothe-
ses, just to be eventually refuted. Berkeley used defeasibility also, yet to the end of contingency
(A Treatise Concerning the Principles of Human Knowledge, Part I, 1710; Three Dialogues Be-
tween Hylas and Philonous, 1713, Part I) tactically advancing hypothesis – exposing numbers
and sensed qualities as mental and non-material, disputing knowledge of external objects –, just
to call upon them as a contingency of logical form in respect to materialism ∨ immaterialism,
now with the end of inspecting topics wherein the "chief causes of error and difficulty in the
sciences, with the grounds of scepticism, atheism, and irreligion are inquired into" [34], all in all
very similar to Descartes’ desiratum. Kant too, prior to teleology winning over gesetzmässigkeit
(conformity to law) or weckverbindung (general purposiveness), made use of a general hypothe-
sis under the form of an inquiry to determine the possibility, principles and extent of human a
priori knowledge, necessarily overlapping (pure) analytic from (empirical) dialectic, conceiving
an extension of pure reason in a practical point of view, without speculative knowledge being
enlarged alike, establishing in completion the primacy of pure practical reason in its union with
the speculative, carrying inevitably the immortality of the soul as a postulate of pure practical
reason (summum bonum). Kant’s critical philosophy is, therefore, an argument in the lines of
Gödel’s philosophy, and foremost its 2nd Incompleteness Theorem in relation to Platonism. They
both go one step back (critical limits, and incompleteness) and two steps further (practical di-
alectic, and mathematical Platonism), with the great risk of the libel ex contradictione sequitur
quodlibet, i.e., "from a contradiction, anything follows". This was enough for later critics, such
as Nietzsche, to have remarked that Kant retracted to this burrow "like a fox which strays back
into its cage" [283]. We should note that Locke’s primary and secondary qualities (An Essay
Concerning Human Understanding, Chapter VIII, 1690) are also a fairly good argumentum ad
absurdum to test Berkeley’s philosophical contingently said empiricist immaterialism, or else
said material idealism. Provided these, and attaining only to primary qualities – solidity, ex-
tension, motion, number, and figure [243] – it is seen that Berkeley’s metaphysics, contrary to
Leibniz’s La Monadologie, did not evolve to possibly, perceptively and in perspective, conjecture
to make collapse all except "solidity" and, tough less clear and carrying contradictions, "num-
ber". Therefore, having kept "extension", "motion" and, inevitably as such, "figure", is better
understood why Bergson spoke as of Berkeley’s "screen" [33, 31, 30, 32, 29] (necessarily claiming
"extension" and "motion", besides "figure"), and why inter-subjective idealism was Berkeley’s
keystone, while Leibniz’s metaphysics held more physicalist concerns than Berkeley’s (although
incomparable to Newton’s), reason being that if perspective relativism in Berkeley’s philosophy
was taken to its (differential) limits, something very close to the (integral) concept of a monad
would break in (neither with "solidity", "extension", "motion", "number", nor "figure").

87

and onwards, to critically envisage, in anticipation, evolution by means of natu-
ral selection. While it is intelligible that one such defense was conformed to the
practical moral philosophy hoped for in the Critique of Practical Reason (Kritik
der praktischen Vernunft, 1788), such tenets are clearly patent in the Critique of
Judgment (Kritik der Urteilskraft, 1790), settled on aesthetics and teleology. Fi-
nally, with Darwin, natural selection, following On the Origin of Species by Means
of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life
(1859), opening with an artificiality touchstone – "Variation under domestication"
[94] (Chapter I), with a strong ending statement on "Man’s power of selection"
[94]41, whether addressing on cattle, sporting plants or pigeons – with natural se-
lection therein being described simply as the "preservation of favourable variations
and the rejection of injurious variations" [93], with those neither useful nor inju-
rious left as a fluctuating element, as in those labelled polymorphic, settled, thus,
in heritage, a line of study that would, eventually, correspond to Turing’s and von
Neumann’s later work. Turing’s production on morphogenesis and his only paper
devoted to biology – The Chemical Basis of Morphogenesis [365] (1951) – was,
nevertheless, a building sign of areas as important as The System of Logic [367]
(Princeton PhD 1938), Mathematical Logic [363], Mechanical Intelligence [364],
and Pure Mathematics [366]. Indeed, there is a transposing flux of former content
– left-right equivalence in complex-valued functions, approximations to Lie Groups
(1938 A & B), a detailed design of an electronic universal machine with hierarchic
series primitive programming (1945), intelligent machinery focus on subroutines,
theorem-proving, and machine learning (1948), large routines checking (1949), and
a computer arbitrarily random guessing game (1950), just to name a few42 – to

41"Man’s power of selection" [94] as understood by Darwin, is not to be taken as an absolute
radical principle. We know Darwin also to have declared in the same work: "But Natural
Selection, as we shall hereafter see, is a power incessantly ready for action, and is as immeasurably
superior to man’s feeble efforts, as the works of Nature are to those of Art."[94].

42In more precise terms, we are referring to the papers written by Turing Equivalence of Left
and Right Almost Periodicity (1935), Finite Approximations to Lie Groups (1938 A), Proposals
for Development in the Mathematics Division of an Automatic Computing Engine (ACE) (1945),
Intelligent Machinery (1948), Checking a Large Routine (1949), Computing Machinery and In-
telligence (1950), and Digital Computers Applied to Games (1953) [363, 366, 364]. In all of them,
crossing different matters and during different periods, we are able to notice similar interests by
the author, accumulating to the morphogenesis studies. Just confront "pattern or structure due
to an instability of the homogeneous equilibrium", "system of reactions and diffusions in a sphere

88

a naturalistic stance, that of the real and spontaneous imbricating texture of bi-
ology. Turing was able, in one such way, to explore biological-chemical concerns
and research pathways On Growth and Form [357] (D’ Arcy Thompson’s book
that much impressed Turing in his early youth) with sterling original insights from
computer science, at one time when Darwinian natural selection and Mendelian ge-
netics were about to enter the time of the DNA structure discovery by Watson and
Crick (1953) [391]. As for the case of von Neumann, the rendering, also in rather
hard conditions, of The Computer & the Brain (1958), is equally so a condensation
of permeating ideas from many different fields the author had contact with and
even has come to found. In this book, envisioned to depart from a description
of the computer – the conventional and unusual basic operations of the analog
procedure, and also digital procedure markers, combinations and embodiments,
types and basic components, parallel and serial schemes, etc., building essentially
to characteristics of modern digital machines – evolving to a consequent part on
the brain – a simplified description of the function of the neuron, the nature of
the nerve impulse, stimulation criteria, and the problem of memory, casting after-
wards the equivalent digital and analog parts in the nervous system –, is where
von Neumann ultimately ties the knot between biological-neurology causality and
computer systems design architecture43. The proper historiography’s development

and in a ring of cells", "difficulty mainly concerned with organisms which have not got bilateral
symmetry" [365], "P -symmetry" [365] with almost periodicity and commuting groups of the kind
of symmetric operation exposed in the main diagonal (as in a Cayley table), and on von Neum-
man general theory (which applies to every group in all series expansions, free from topological
assumptions, with the property of closure, or continuous functions in a certain topology). The
same goes for continuous symmetry of mathematical structures and n-dimensional differential
manifolds, including the work on machinery: "stationary-wave patterns tables obtained with the
aid of the Manchester University Computer", "somewhat artificial chemical reaction system",
and "the linearity assumption"[365]. Also the last section "13. Non-linear Theory. Use of Digital
Computers"[365] and the recognition that "most of an organism, most of the time, is developing
from one pattern into another, rather than from homogeneity into a pattern"[365] while recog-
nizing that "the difficulties are, however, such that one cannot hope to have any very embrancing
theory of such processes beyond the statement of the equations"[365] is something that points to
a reflective anamnesis, to the time when Turing was thinking on the theme of large routines and
general properties of computer programs and programming languages semantics, most generally
of mathematics as a medium for the specification of systems, life sciences systems included.

43John von Neumann in The Computer & the Brain [379] (1958), ten years after the publishing
of A Mathematical Theory of communication [336] (1948) by Claude Shanonn – and building not
only from Turing’s implications (1936), but from roughly the same year as computation theory,
Shanonn’s digital circuit design theory A symbolic analysis of relay and switching circuits [335]

89

of the idea of natural selection in Charles Darwin is helpful to penetrate into
the different, extremely laborious and seemingly insurmountable stages Darwin

(1937) –, comes to present a summarized admittance of an envisioned future, not just the setting
principles of the modern, non-overcome, computer (von Neumann) architecture. Neurobiology
and the nervous system, with or without encompassing the mind as a subject, with or without
charting monism vs. dualism, truly has become the axiomatic & axiology of contemporaneous
(digital) computation theory. The triad – information, computation and neurobiology – has been
paced with the operative triad – communication, memory and logic gates –, as recognized by
Raimond Kurzweil [379] (2012), one of the proponents of strong AI (and posthumanity transhu-
manism under the motto "Singularity is Near: When Humans Transcend Biology" (Kurzweil,
2005); "transhumanism" was, in point of fact, a concept that conquered the arena in the year of
1957 by the biologist Julian Huxley). Paul and Patricia Churchland’s (2nd Edition) [379] preface
insights, more into historical-connectionism and interdisciplinary-science agenda, are also very
interesting to follow, namely von Neumann’s laying open of "complete codes" meaning "machine
language programs" and "short codes" meaning "high-level programming languages", in essence
programming languages seen as a sort of genetics of computation, i.e., the idea of programming
languages as deciphering data machine sequences, as if Boolean values were (artificial) genome
combinations. On the overall, though, the connectionism illusion is perceptively stronger (2000)
– the labelling of the brain as a "massively parallel analog machine" [379] and the praising of
von Neumann as "the Newton of the mind" [379] are bounced off expressions –, while theoretical
boundaries are seen more balanced in Kurzweil [379] (2012), where we can read, within justified
and correct limits that "a von Neumann machine can simulate a brain’s processing. The con-
verse does not hold, however, because the brain is not a von Neumann machine and does not
have a stored program as such." [379] (Kurzweil, 2012). Under the big picture, the main lessons
to be learned from von Neumann’s incomplete book (originally a Yale’s Silliman lectures draft),
are, straightforwardly, the unbalance between the digital computer, with advantage in processing
speed and logical depth, and the brain, with advantage on logical breadth and parallelism, based
on the comparative observation that nature produces large efficiency without complete serial
memory processing, even if self-terminating and not exhaustive.
In our view, von Neumann’s book attains to the perfect representational theory of the utmost

limit in mathematical and philosophical terms, as if it was drawn over the critical line of the
Turing-Church thesis, stressing to the utmost the statistical, procedural, and mechanistically
orientated pattern matching stored-program and hierarchical programming languages digital
computer architecture, mirroring, in reflection, the brain. But this does not mean that the
brain, and even less the mind, were wholly reflected as an object, and, indeed, it should even
be conceivable, in our perspective, a different computer architecture model to test the limits of
the brain, mirroring it with an equivalent U -Turing machine displayed as a cortex of organized
dynamic images hierarchy, represented as a lower bound to the mental activity, as computable
numbers are to the real number system (R; +; ·;<). In essence, thus, the Princeton architecture
may just be an imaginary representation of a bound from the above U -Turing-machine equivalent,
while in truth a non-digital U -Turing-machine with dynamical images hierarchy, a bounded from
below in relation to the brain (and the mind) processing unit or computational cortex, physically
connected to the phenomenon of photons and light, can be more constituent of a coefficient, i.e.,
a real root, and therefore a proper upper bound of the Turing-Church thesis. The hypothetical
equivalence of dynamic images or computational cortex with the computability thesis, such as
the Turing-machine and λ-Calculus, would thereupon, most naturally, become an indispensable
matter of investigation.

90

went through, until arriving at the scientifically-based natural selection mecha-
nism, which states, simply, that it guards a tendency "only to make each organism
as perfect as, or slightly more perfect than the other inhabitants of the same coun-
try, with which it has to struggle for existence", although "not producing absolute
perfection" [94, 93]. One such consideration should be contemplative even if con-
sidering one such "most perfect organ as the eye"[93]44, something that was to
be shared by strong AI holders or defendants of the procedural view all alone. In
point of fact, we learn from Dov Ospovat that "Darwin continued to believe in
perfect adaptation until the mid-1850’s" [286] almost two decades after the five
year’s voyage on the Beagle and, furthermore, in one almost as epiphanic as epige-
netical moment, that "from September 1854, when the investigations on barnacles
were concluded, until June 1858, when Wallace’s letter arrived announcing his in-
dependent formulation of the theory of natural selection, Darwin worked full time
on his species theory. In 1856 he began writing the big book, now published as
Natural Selection, which he abandoned after the receipt of Wallace’s letter in order
to produce quickly an abstract of it – the Origin of Species." [286] This serves to
explain that even coming to contact with the study of serial homologies by Cuvier
(1769-1832), on the background of the tradition overture by Lamarck45 (1744-

44John van Wyhe, 2002, The Complete Work of Charles Darwin Online. http://darwin-
online.org.uk/

45Even though we are scrutinizing one connexio (in Hume’s proper sense), between Darwin’s
natural-artificial philosophy and Turing’s artificial-natural philosophy, and more circumspectly,
the homology between the mechanism of natural selection and recursion theory equivalent Turing-
machine, both sharing basic general-law given decidability over arbitrarily randomness, it is very
interesting to note that Turing’s later work on Morphogenesis accomplishes to restore a research
line buried in Lamarck – the idea of one (mathematical)-alchemical complexifying force freeing the
emergence of organisms up in the "ladder" of complexity – and also seen later, by the time of The
Origin of Species (1859), in Richard Owen’s work – the restless stressing of complexity, i.e., the
idea that evolution has its own developmental evolution, a remarkable standpoint in the XIXth

century, not only decades before the modern synthesis, and one century before the extended
synthesis, but prior even to Mendelian genetics, not to mention recombinant DNA technology in
molecular genetics – all in all an often forgotten debate. John von Neumann’s later work also
bears resemblances with this line of research, specifically the idea of a Universal constructor, that
is, a self-replicating machine in biological-form automata, whose integral explanation with full
details would only come forth with the publishing by Arthur Burks (an ENIAC senior engineer)
after von Neumann’s death, of the book Theory of Self-Reproducing Automata [378] (1966). The
book is divided into two parts. Part one "Theory and Organization of Complicated Automata"
comprises five lectures, of themes dispersed such as computing machine powers and problems of
hierarchy and evolution, bridged upon statistical theories of information. Part two "The Theory

91

1829) of the "inheritance of acquired characteristics", a whole throughout am-
plified debate between (catastrophist) functionalism proposed by Georges Cuvier
and (pre-evolutionary Goethean) morphology advocated by Geoffroy Saint-Hilaire
(1772-1844), until philogeny in relation to analogy and homology was defined in
developmental countours by Richard Owen (1804-1894), it was a painstaking, al-
most punctilious, difficult process for Charles Darwin to explore a fully inductivist
serial, analogical, and homological natural philosophy. The best endorsement for
this observation is the fact that geology, the most abridging field and the most
influential arena to have acted on Darwin’s ideas, namely through deep time plu-
tonist conception of James Hutton (1726-1797), and in decisive manner, Charles
Lyell’s46 (1797-1875) uniformitarianism (or doctrine of uniformity) was extensively,
although in neutral form, yet theological, teleological, and rationalist; thus, still es-
timable in the panorama of Kantianism, very far away, though, from the principle
of uniformity of David Hume. The full skeptical and inductivist principle of unifor-
mity of David Hume resounded patently in Darwin’s natural selection and also in
artificial recursion (Turing-machine equivalents). Surely, as we discuss causation
and spontaneity, it seems that the Theodosius Dobzhansky’s essay title – Nothing
in biology makes sense except in the light of evolution47 (Dobzhansky, 1973) – is

of Automata: Construction, Reproduction, Homogeneity" clearly demands expanded contents,
bringing upon concerns such as a system of design-states (29) with a general transition-rule, also
the design of basic organs, the tape and its control, up to the idea of automata self-reproduction.
Fundamentally, it should be noticed that we are dealing, in Kantian and von Neumann’s terms,
with a "synthesis of automata by automata"[378].

46Lyell’s uniformitarianism is pivotal, guarding unnoticed countenances. The science historian
Reijer Hooykaas (1906-1994), having distinguished "different conceptions of the history of the
earth "[187] – "a. non actualistic" (a1. "differ in kind and energy"; a2. "differ in kind but
not in energy"), "b. actualistic" (b3. "differ not in kind, sometimes differ in energy"; b.4
"neither in kind, nor in energy") [187] – elaborated on Lyell’s uniformitarianism, attending
to law, methodology, kind, and degree. Now, the evolutionary biologist Stephen Jay Gould
(1941-2002) appointed uniformitarianism to hold two methodological assumptions – uniformity
of law across time and space, and of process across time and space – and two less accepted but
dependent substantive hypotheses – uniformity of rate across time and space, and of state across
time and space –, which on the overall (even if dissociated from Hume’s principle of uniformity),
help us to understand not only the "Newtonian root of the synthesis" [57] and the geological-
geometrical transformational analogy, but also to apply this tenets from philosophy of nature to
the philosophy of the artificial. The field of complexity in computation convenes natural-physical
orders as such presented, earnestly foreseen by John von Neumann (utterly helping us to grasp
Churchland’s labelling of von Neumann as the "Newton of the mind" [379]).

47The theistic evolutionist Dobzhansky got inspiration for the title from the vitalist evolutionist

92

expandable to the realms of logic and physics: semantic truth, in Tarsky’s sense,
either in correspondence or deflactionary theories, seems to have "collapsed" to
less than neutral, fully inductivist logical adequationes, and, equally so, natural
laws in physics were made dependent on a T-schema, wherein inductivist defini-
tions are subject to coherence into models of explanation. These adequationes are
dynamically moving, i.e., related with both metaphysical movement and physical
motion, in one expression, with the Aristotelian "efficient cause". Darwin’s natural
selection (1859), Turing-Church (1936) both ideal machine-model and equivalent
µ-recursive functions, in the prolongation of Hume’s principle of uniformity, have
contributed to the investigation of the difficult antinomy between causation and
spontaneity, but in any way has it been unveiled. If anything, both causation and
spontaneity have retreaded to paradoxical physical naturalistic instances, of the
kind seen in general relativity facing quantum mechanics or in quantum physics
alone. In effect, Darwin’s natural selection "difficulty of distinguishing between
varieties and species"[93] holds resemblance with paradoxes and Russell’s type the-
ories in logic (Appendix B: The Doctrine of Types, Bertrand Russell, 1903) [399], in
the sense that if, naturalistically, varieties considered as elements are more numer-
ous than species, logically each variety considered as a potential subset consistently
outnumbers any number of elements, as if the number of species grew always faster
than the given varieties, but with the impossible condition of nature being – as
the class of all sets, but not a set itself – a special class of classes that does not
belong to itself. Ever since and at the time present circumvoluted natural-artificial
studies exhibit the functionalist paradigm whereby are considered: i – as the type
of individuals –, () – as the type of propositions –, and (A1, ...,An) – as the
type of n-ary relations over objects of the respective types mentioned in A1,...,An
[117] –, therefore approximating the logicist (Frege, Russell), semantic (Gödel,
Tarksi), type-functionalist (Church), intuitionist-constructivist (Per Martin-Löf)
views, but essentially, in the hidden depression of the curve, the works on the
mechanism of natural selection by Charles Darwin and of a U -machine by Alan
Turing. In truth, attaining to the functional relations in equivalent transfinite

Theillard de Chardin. Chardin’s judgement is very interesting in its original form, due to its
transformational and topological insight: "Evolution is a light which illuminates all facts, a curve
that all lines must follow." (Le phénomène humain, 1955).

93

set theory, type theory clearly bestows a continuous function from any (analyti-
cally rigid) "square" in a Turing-machine, to the (dialectically continuous defor-
mation) of every-possible end-points in Darwin’s mechanism of natural selection.
If this is taken as a valid homotopy, then actually Darwin’s natural selection is
Turing-complete, and therefore naturally incomplete within the bounds of nature
itself (as in Gödel’s Incompleteness Theorems, this time nature taking the place of
mathematics)48, although not hurting its all-round, comprehensive and many-sided
topological validity and logical-mathematical correctness. Besides being odd to
discover artificiality’s mechanism (computation and decidability) in first grounded
natural mechanism by Darwin (except recalling that it was industriously a mecha-

48Gödel’s incompleteness theorems are, indeed, valid for natural philosophy: either by demon-
strating the critical limits or inherent limitations of 1st) every formal axiomatic system in the
lines of Russell & Whitehead’s Principia Mathematica arithmetic of natural numbers insuffi-
ciency to produce, by any given consistent axiomatic system orderly and correctly deduced by
a correspondent effective procedure, the truths about arithmetic, and, therefore, new theorems;
or 2nd) (what is much more powerful and, in principle, limiting) the critical insufficiency of
the very same axiomatic system in the lines of Russell and Whitehead’s Principia Mathematica
arithmetic of natural numbers to prove or demonstrate, as a theorem, its own consistency –
even though, for Gödel’s mathematical philosophy as for Kant’s critical philosophy, these crit-
ical limits and inherent limitations, by order, in theoretical-mathematical-analytic (Gödel), and
practical-dynamic-dialectic (Kant) domains, are reason enough (the lower bound now the utmost
upper bound to something unknown or the infinite) to be extended, beyond proof or any theorem
– holding, if we wish to maintain some semantic truth and logical validity concepts, the inherent
consequence that consequences are no longer to be understood fully as consequences –, and thus,
causality found to be spontaneous along Hume’s natural philosophy, and, to a certain extent,
Darwin’s too (a sort of overlapping new argument from Hume’s inductivism against the overpass
of the limits by Kant and Gödel). As for the case of Turing, having integrated Gödel’s results in
his work, and having always worked on the decidable, consistent and logically valid lower bounds
set of by both the 1st and the 2nd incompleteness theorems, makes him a clear representative,
in the lines of a critical philosophy and necessarily aporetic Kantianism, of pure reason (and
computability’s critical limit).
Unexpectedly, though, it might be said that, in the lines of both natural philosophy and com-

plexity in computation (Turing, von Neumann) there is always the possibility of reclaiming a new
overridden argument by Lamarck-to-Owen order, by which nature itself would "demonstrate", as
morals in Kant, the insufficiency of incompleteness itself, as incompleteness did to its consistency.
This is also the reason why Tarski’s semantic truth is not, in truth, naturalistically adapted to
the truth, but necessarily so, therefore bounding the critical limits of logic in relation or corre-
spondence with semantics, and why natural philosophy’s "efficient cause" subject to motion or
movement adequationes is, of utmost and maximum skeptical, inductivist, and relativist nature
(an impossible to overthrown Humean argument at last). Hume’s philosophy and skepticism is,
thus, seen as having been much depreciated. This is also why David Lewis’ (1941-2001) exposed
"principle of Humean supervenience" [239] targets critical philosophy and western philosophy
where it could possibly be felt more forcefully.

94

nism beforehand), what is most astonishing is to discover, as seen in modern and
contemporaneous physics, a "collapse" of the function considered as transforma-
tional end-points, as these are permeated with "trans-finite matter" so to say, as if
Darwin’s natural-artificial philosophy appointed at the end to full-blown atomism,
and consequently Turing’s artificial-natural philosophy was its most upper bound
"integral" standard possible method for interpretation, itself pursued intensively
by Turing in Morphogenesis studies. As in the Ancient Greek problem of squar-
ing the circle aiming to find the same area number, ideally π as transcendental
number (Leibniz, 1682), the same is found herein: being the use of a compass-
and-straightedge construction in a finite number of steps the representation of a
Turing-machine, it is impossible to achieve one such goal, even though methods of
approximation offer non-perfect accuracy (though never the root of a nonzero poly-
nomial equation with equivalent integers). This sums up to saying that, inasmuch
as decidability (and the class of computable numbers) is a sort of last tangent to
incommensurability, the mathematical Ancient Greek doctrine of proportionality
for geometric magnitude is represented now, namely after Gödel’s incompleteness
theorems, by computable numbers in (type theory) "squares" as approximations
or equivalents, although never accurate. As computation and artificial philoso-
phy have evolved to complexity theory, natural philosophy transcendentalism has
complexified itself to one exceptional status, with a far greater antinomomy’s dis-
tance – both in Kant’s philosophy as in Euler’s mathematics avowals –, and has
become itself a field with possible conceivable practical passage from morphogen-
esis (as found in Turing: empirical, categorial, phenomenic), to cosmogenesis (as
found in Gödel and von Neumann: pure, speculative, noumenic) – largely more
synthetic, schematic, architectonic in system sciences, hopefully within the critical
theoretical limits of the Turing-Church thesis49. The class of partial µ-recursive

49Alonzo Church never ventured to machinery computer science beyond mathematical logic
[254], Alan Turing never ventured beyond Morphogenesis to strictly cosmological problems, but,
on the contrary, Kurt Gödel and John von Neumann unraveled some problems factually and
stringently in the cosmological domain. Gödel was highly influenced by the intellectual environ-
ment of the Institute for Advanced Study in Princeton from 1933 to his death in 1978 (apart
from his role as a Professor in the School of Mathematics from 1953 to 1976), having contacted
with many cosmology physicists (Hermann Weyl, H. P. Robertson, et. al.), the most prominent
Einstein, of whom he became a dear friend. Bearing this cosmological mark, Gödel published:
"An example of a new type of cosmological solutions of Einstein’s field equations of gravitation"

95

functions, from natural numbers to the very same natural numbers, equivalent to
computable numbers and λ-Calculus, serves, thus, as a demonstration of the "col-
lapse" of causation, and the supremum or least upper bound field for spontaneity
in nature. Just so, it is thereby exhibited an adequate example of computabil-
ity’s or Turing-machine’s adaptability, as if affected by natural selection itself, to
other forms of equivalent postulations. How, up to which point, and wherein are
mathematical processes and computable functions morphogenetic – and, possibly,
in extension, with affiliated methods and limits, cosmogenetic – is, all the more so
for the time present, a very pertinent interrogation. Now, computability theory
and the computus paradigm, following the Turing-Church thesis (1936), in relation
to causation and spontaneity, bounded by morphogenesis and cosmogenesis, is set
to continue the study of homologies from natural-artificial trended to artificial-
natural trended philosophies, thus exposing an evolution from serial homology
in biology, to analogical homology in mathematics (or, strictly, any sequence of
algebraic objects accountable to both calculus and computus). If it is admirable
how from the slightest variations were to emerge the spectacular diversity of the
natural world, it is also marvelous how µ-recursive functions, a class for partial
functions, is so lively capable of unifying the concept of science by computational
means.

(Gödel, 1949), "A remark about the relationship between relativity theory and idealistic philos-
ophy" (Gödel, 1949a), "Rotating universes in general relativity theory" (Gödel, 1952), with an
imperishable interest in the continuum as in "The consistency of the axiom of choice and the
generalized continuum hypothesis" (Gödel, 1938), "Consistency proof for the generalized con-
tinuum hypothesis" (Gödel, 1939a), and "What is Cantor’s continuum problem?" (Gödel, 1947,
1964). Timely to a cosmological comprehension, in proper Kant’s terminology, is the idea "we
learn in remark 13.9.72 that Gödel was committed to ’the method of bold generalization’ as he
called it, recommending that philosophers have the audacity to ’generalize things without any
inhibition.’"[216], which articulates with his appraisal for the reflection principle in set theory,
i.e., the possibility of finding sets that resemble the class of all sets. Imparting still on this aspect,
Gödel’s critically dialectic transcendental mathematical philosophy meets, through mathemat-
ical Platonism and cosmology together, the summum bonum of Kant’s (moral and extended)
dialectic. As for the case of von Neumann, and besides extensive work in the most diverse fields
– logic, theory of sets, operators, ergodic theory, almost periodic functions in a group, rings of
operators, continuous geometry, design of computers, automata theory, numerical analysis, the-
ory of games –, was also able to establish knowledge in the foundations of quantum mechanics,
astrophysics and even meteorology.

96

[Thesis: there belongs to the world, either as its part or as its cause, a being that
is absolutely necessary.] & (conjunctive, non-contradictory: apparently the converse
of Principia Mathematica’s theorem of non-contradiction: ∗3 · 24. ` . ∼ (p. ∼ p)

. . . but now in the negation form ∼ . ∼ (p. ∼ p) and, thus, openly equivalent to
(p. ∼ p)) [Anti-thesis: an absolutely necessary being nowhere exists in the world, nor
does it exist outside the world as its cause.]:

In computus age, and considering the fulcrum year of 1936, the idea of ens realis-
simum (Kant, [A576/B604]) [211, 63], one such being that contains all reality and
predicates, responding to transcendental aesthetic and the inherent transcendental
ideality of space and time, and also to the systematic bearing of transcendental
analytic (prior to dialectic), in Kantian terms, seems to have transformed the
typical of calculus era rational psychology, cosmology and theology (the rational
soul, the totality of the world, and God), including the general taken impossibil-
ity of synthetic a priori propositions in metaphysics, to one de novo, hodiernus
computus dialectic (not ideally transcendental, thus not pure with the seat in
illusory reason as prototypon transcendental, and very negligent towards the in-
terest of reason in its self-contradictions, or to the necessity imposed upon pure
reason of presenting a solution of its transcendental problems). If it wasn’t for
the natural amphiboly of the conceptions of reflection and transcendental dialectic
naturalness (Kant, [A270/B326]) [211, 63], it was hardly understandable why so,
for the equivalent computus era transcendental aesthetic of space and time bear-
ing judgements (classical mechanics, general relativity, quantum physics, kinetic
theory, electromagnetism, strong and weak interactions in the standard model of
particle physics), with all of which computation permeates, outright establish clear
critical limits to the idea of a science which shall determine the possibility, prin-
ciples, and the extent of a priori human knowledge (Kant, B III, Introduction)
[211, 63]. Computus dialectic as so, a computational metaphysics with compu-
tus morus postulates in the place of morals (confronted with Kantianism), seems
to have reclaimed a sense of (technological and informational anew) religion not
properly within the bounds of pure reason. Most often (computationalism opposed
to the critical limit of computability), it corresponds to a dogmatic use of pure
reason. And, what is more, one such computus dialectic (to the limit of corrupting

97

the original sense of διαλεκτικη "dialectic") can also be said to have illegitimately
expanded according to the proper acumen (both transcendental dialectic and sum-
mum bonum Platonist) interpretation by Kant, where practical reason assumes the
formula guidance of the universal law of nature (Groundwork of the Metapysics
of Morals 4:421) [211, 63], else called categorical imperative (supposedly objec-
tive, rationally necessary and unconditional), once, in its architectonic, there is,
clearly, a misuse of speculative reason in relation to the computus power, in any
way being computus an analogy of experience with practical philosophy or morals.
Neither is it, anyway, with the system of transcendental ideas and of pure reason
as the seat of transcendental illusory. The reasons for this are the following: be-
sides illegitimately extending beyond, most strongly Gödel’s 2nd incompleteness
theorem (1931), but also the core of the Turing-Church thesis (1936), therefore
corrupting one hodiernus formally constituted analytic of principles grounded on
the idea of transcendental logic (Kant, [A131]) (even more so and possibly con-
taining an irreparable breakage of the transcendental clue to the discovery of all
pure conceptions of the understanding (Kant, [A67]), precisely due to Gödel’s in-
completeness theorems and the Turing-Church thesis with negative results to the
Leibniz-Hilbert-Ackermann Entscheidungsproblem), it is also patent that a system
of transcendental ideas and the seat of transcendental illusory are absent in the
computus era, i.e., it should be recognized, in fact and inversely, as the proper
field where any dialectic (transcendental) procedure is truncated. What is more,
transcendental analytic is dead. Indeed, we go as far as to say that, in essence,
Gödel’s 2nd incompleteness theorem – for it presupposes the 1st, and the 1st, im-
plicating the negative answer to the decision problem, endorsing (even if for a
time unreceptive)50, in anticipate groundwork, the Turing-Church thesis or com-

50Gödel’s prospects on the power of recursion theory, being himself a forerunner of the disci-
pline, were not particularly high, and neither was his reception of recursion theory in relation
to its computable functions and extensional powers, something that drastically changed towards
the end of his activity. Actually, after the height of his reputation following the incompleteness
results, Gödel gave lectures at the Institute for Advanced Study in Princeton, and specifically
On Undecidable Propositions of Formal Mathematical Systems (Gödel, 1934) (which are edited
as Gödel’s lectures notes taken by Kleene and Rosser, Kleene himself being a forebearer of recur-
sion theory). We read from Solomon Feferman’s Gödel’s Life and Work (Kurt Gödel Collected
Works, volume I, Publications 1929-1936): "These notes cover much the same ground as 1931,
though now starting with a form of second-order arithmetic. One of the main points of interest
in 1934 is Gödel’s introduction of the notion of general recursiveness, following a suggestion of

98

putability equivalents – defines a new censuring and demanding critical limit of
(transcendental) analytic towards (transcendental) dialectic. What is meant by
this is that this computus era’s new censuring and demanding critical limit is now,
just as rightly as devastatingly, founded on and broke down the (believed) mathe-
matical terra firma of the synthetic a priori judgements, the proper (theoretic and
practical) underpinning of critical judgments, a sort of Archimedes lever of the en-
tire transcendental philosophy. The fact that the boundaries and limits of critical
philosophy have been imperturbably unquestioned after the incompleteness theo-
rems by Kurt Gödel (1931) and the negative answer to the Entscheidungsproblem
posed by David Hilbert (1928) really should be thought of as a fatal flaw. Syn-
thetic a priori judgments (computus, beyond calculus, now included) make the

Herbrand." [161] Understandably, this was later set equivalent with Church’s λ-definability and
"effective calculability" (1936). It is, therefore, quite explanative but also exegetical, by virtue of
what has been said, why Gödel resisted to Church’s thesis, having on his own settled recursion
functions (Herbrand, 1932; Gödel, 1934) and Church’s λ-definability (Church 1932, 1936a) on its
own being a functional (both theoretic abstract and implementation concrete) progression, and
why did he not accept "Church’s thesis", on this only recognizing its importance after Turing’s
publication on computability in terms of machines (Turing, 1937), as for the rest the former
and latter were afterwards shown to be equivalent, naturally along with general recursiveness,
as trusted in Gödel’s exploratory work. More it is strange if we read from Solomon Feferman,
now in the "Historical Introduction" of the "Mathematical Logic" volume of the Collected Works
of A. M. Turing that it was originally Church who was "promoting a universal system for logic
and mathematics in the framework of the lambda (λ)-symbolism for defining functions, and
set Kleene the problem of developing the theory of positive integers in his formalism, using an
identification of the integers with certain λ-terms. The initial steps were rather difficult (even
the predecessor function posed a problem), but once the first hurdles were cleared, Kleene was
able to show more and more number-theoretic functions definable by the conversion processes of
λ-terms. But Church’s original system was shown before long (by Kleene and Rosser in 1934)
to be inconsistent, and attention was then narrowed to a demonstrably consistent subsystem,
which came to be called the λ-calculus." [363] The story tells that consistency and definability
were showing non disproving results from the calculus, making it more and more convincingly
"effectively calculable" under the eyes of Church, who finally, after seeing it pass any function
test contrived by Kleene, eventually up to the point of testing it with diagonalization, the out-
performing of which led Kleene to have become "overnight a supporter of the thesis" (Kleene,
1981, p. 59), contributed to their final common avowal. Gödel should have embarked in the all-
involving coherent reception of λ-calculus (especially for someone who had disproven arithmetic
from the inside through diagonalization) but, instead, he thought of λ-Calculus to be "thoroughly
unsatisfactory" and, in a much more praising label, "heuristic". We believe one such attitude to
have been motivated, certainly among other decisive factors, by the most important aspect of
Gödel’s belief on the impossibility of lower bound calculus effectiveness and, therefore, of disbe-
lief of λ-definability prevailing over diagnonalisation, being in his mind mathematical functions
also part of arithmetic related systems, and diagonalization proven to be capable of ruining its
edifice.

99

passage from analytic to dialectic, theory to practice, mathematical to dynamic
spontaneous and innate cognitive capacities (with Aristotelian "efficient cause"
of physical motion and metaphysical movement both conjectured). And, as the
Archimedes lever, synthetic a priori judgments represent the proper machine in
image, that of a beam or rigid rod with the pivot point at a fixed hinge, or else
said fulcrum, the reason why we have been calling attention to the equivalent
fulcrum year of computation theory (1936) in relation to metaphysics and phi-
losophy of science, relating, in essence, philosophy of nature with the archetypal
Turing-machine. In its most natural form, a lever is, except for two-way probability
bit-like dual equilibrium, diagonalized51. As is recognized, a lever can, nonetheless,
be made equivalent in exerting forces if in the exertion of a great force over a small
distance, at the other end is compensated with the exertion of a small force with
a greater distance. This is the reason why the continuum problem is fundamental
in Gödel to perceive how the greater distance (mathematical Platonism) imposed
over a little weight (both arithmetic and mathematics related 2nd incomplete-
ness theorem) was a necessary judgment for mathematical realism in the line of
Plato, Leibniz, Kant, and, fundamentally, to make adequitata – in the sense also of
equivalence (thus, non-antinomic, and mathematical-practical dialectic) – Gödel’s
mathematical philosophy to metaphysics. In one such turn, Gödel’s mathematical
philosophy was made adequitata not only to (realist or Platonist) mathematics but
also to (ideal, critical transcendental) philosophy (moreover helping to understand
the Viennese logician interest in Kant’s philosophy of time born on "Observations
on the relationship between Einstein’s theory and Kantian philosophy" [385, 161],
and also his late approval of recursion theory as a solid mean "On a hitherto unuti-
lized extension of the finitary standpoint" (Gödel, 1958) [161, 160]. This is also
patent in late texts: "Postscript to Spector (Gödel, 1962)" [161, 160], "What is
Cantor’s continuum problem?" (2nd Edition, Gödel, 1964), "On an extension of

51diagonalization is to be made central, as never it was thought that the method responsible for
the incompleteness theorems and the end of the Hilbertian formalist and full-blown decidable and
complete program on mathematics, was to be exactly the same responsible for the main process in
computability and equivalent theories. Computers are, indeed, diagonalization methods insofar
as they render unification with substitutions rather than proof, even if the diagonalization method
behind computability has disproven something as profound as the foundations (presumably both
decidable and complete) of formalized systems containing elementary arithmetic.

100

finitary mathematics which has not been used" (Gödel, 1972) [161, 160], "Some
remarks on the undecidability results" (Gödel, 1972a) [161, 160], and "Remark on
non-standard analysis" (Gödel, 1974) [161, 160].

One such conclusion is made noticeable by various sound arguments: 1) firstly,
if the mere logical form of cognition containing the origin of pure conceptions a
priori which indicate the synthetical unity responsible for the empirical cognition
of objects, hence the form of judgements converted into a conception of the synthe-
sis of intuition (Kant, [A321-B378]) is admitted, then, by the 1st and 2nd Gödel’s
incompleteness theorems (critical mathematical theoretical judgements), and the
Turing-Church thesis and negative answer to the Entscheidungsproblem (critical
dynamic practical-empirical judgement), both are made our form of judgments,
i.e., the mere logical form of our cognition (Kant, [A321-B378]); 2) secondly, being
logica incompleteness and theoretical computus a critical limit to pure reason, there
is not in any way an warranting consideration from the form of syllogisms, when
applied to the synthetic unity of intuitions, following the rule of categories contain-
ing a priori conceptions, quite the contrary, i.e., the understanding of the totality
of experience according to principles having been denied by proof – never of the syl-
logistic sort "Caius is mortal" (Kant, [A322]), but instead from diagonalization –,
with universisalitas and universitas now being, along with the rationalist, logicist
and formalist conceptions of the unconditioned, seriously faulted, most irrevocably
from Gödel’s 2nd incompleteness theorem, inevitably brings about the impossibil-
ity of one architectonic of pure reason; 3) thirdly, apart from the blunt fact that
(quantified) logic or any axiomatic system of arithmetic, and, thus, mathematics,
cannot denote intrinsically as a predicate of a thing considered in itself, and much
to the contrary, being absolutely impossible one such endeavour, against the cal-
culus era toto caelo (Kant, [A325]) that the philosopher from Königsberg lived in,
what is made explicit from the tenets of the hodierna era of computus (1936), is a
debacle in concreto of the sovereign validity of the absolute (complete, satisfiable
and sound, consistent, furthermore decidable and tractable) use of transcendental
reason; 4) next in order, it also should be taken into account that the impossibility
of the absolute totality in the synthesis of conditions, past the staging of the 1st

and 2nd Gödel’s incompleteness theorems (1931), therefore breaking the rational
unity of the phenomena (Kant, [B383]) and moreover its terming with the unity

101

of understanding – (ignoramus et ignorabimus plead against David Hilbert’s "Wir
müssen wissen, wir werden wissen" ("We must know, we will know") – inevitably
and critically reconfigures reason to the lower bound of the grounds of possible
experience (immanent), instead of to the higher bound of the unity of understand-
ing (transcendental); 6) surely, the profession by which conceptions of pure reason
regard empirical cognition by means of the absolute totality of conditions is still a
sound argument – in accord with the idea that soundness prevails if and only if its
inference rules prove formulas that are valid with respect to its semantics, in one
such case, dialectic reason (in the sense that reason naturally holds transcendental
ideas) –, although it can’t be said critically valid, to the extent that Gödel himself
– paradoxically Brutus and Julio Caesar simultaneously in the tribunal of pure rea-
son (Kant, [A751-B779]) – never introduced mathematical Platonism or any form
of transcendental practical a priori judgments, herein included the proper analytic
of mathematics, in any of his theorems, proofs, or demonstrations; 7) it would be
easy to affirm that this asserts for the proper cleavage between mathematics and
philosophy of mathematics, with the only alternative of possibly including bona
fide in the foundations of mathematics, but a definitely less easy flip-side for Gödel
would have been to have established Kant’s transcendental doctrine of the faculty
of judgments or analytic of principles, on to the system of all principles of pure un-
derstanding to the necessity of transcendental ideas and dialectic, from the 1st and
2nd Gödel’s incompleteness theorems, as if (in practical Kantian sense of a form of
analogy towards a maxim of regulative judgement) the 1st theorem insufficiency of
"effective procedure" to prove all truths in arithmetic related systems, would match
analytic, and as if (in practical Kantian sense of a maxim of regulative judgement
now as a regulative principle in transcendental dialectic) the 2nd theorem, showing
that any arithmetic related system cannot prove its own consistency, would match
dialectic, in which case Gödel’s practical -mathematical philosophy would have not
only destituted theorems to mere analogies, found in the collapse of analytic a new
transcendental nature, but also and at last, corresponded transcendental nature
with its debacle, and this void with the dogmatic equivalent of negative theology;
8) surely, this would not be a realizable possibility for Gödel as a believer in math-
ematical Platonism and neither for Gödel the mathematician, but it has to be said
that it would be just as hazardous to reckon upon the inclusion of mathematics on

102

which pure reason was born, and not just pure reason, in the antinomies of pure
reason, collapsing, thus, synthetic a priori judgments, or conceding the sublime to
negation, as admitting both, and at the same time, the incompleteness results and
mathematical Platonism; 8) it is also emblematic that Gödel’s influences reveal,
in what concerns his philosophy of mathematics, the inescapable passage from
noumena to phenomena, where from Leibniz’s dogmatism and Kant’s critical phi-
losophy find Husserl’s phenomenology, to the point that it is brought about a sense
of a "Gödelian phenomenological turn" [216], which, undeniably, shows a sense of
nexus from Kant’s antinomies of pure reason, to Gödel’s incompleteness theorems,
being the the suitable image rescued in the focus imaginarius as nature’s unity
desired by reason ([Kant, B 673]), but with the capital and also inescapable truth
that a systematic unity of all knowledge and the equidistant equilibrium of the
antinomies poles are now forever thrown away and vanquished by the diagonaliza-
tion argument in synthetic a priori judgements, with the result of reason itself, and
not just its transcendental ideas, being contradictory and paradoxical; 9) computus
has, therefore, changed the system of transcendental ideas in Copernican fashion,
and computationalism (computationalism as the dialectic of the proper analytic
of computability) appertainng to experience – trough (mathematical) principles of
quantity and quality, and (dynamic) principles of relation and modality, however
dealing with axioms of intuition, antecipations of perception, analogies of expe-
rience, and postulates of empirical thought, namely making use of the analogies
of experience with substance (permanence), cause (succession), and community
(simultaneity) to the extent of trying to find in the idea of an universal Turing
machine pure reason in a black box –, is, quite the opposite, neither and nowhere
to be found a procedure of pure reason; 10) again, it is the correspondent of the
Aristotelian efficient (or moving) cause – concerted with metaphysical movement
and physical motion, and in our perspective the rightly found locality or τoπoς
(topos) for the unfolding of the artificial from the natural –, that is seen to make
born out, through relation and the analogy of experience, the dynamical princi-
ple, further disentangling, through modality, the postulates of empirical thought;
11) in this sense exposed, computus dialectic, foreign as it is to its analytic –
the foundations of computability in the Turing-Church thesis (1936) – even if a
system of transcendental ideas and the pure reason proper dialectic in computus,

103

neither transcendental analytic nor logic, are seen abiding the critical limits in
computability and recursion theory, as described in Church’s An unsolvable prob-
lem of elementary number theory (1936) & A note on the Entscheidungsproblem
(1936) [71, 72], in Turing’s On Computable Numbers, with an application to the
Entscheidungsproblem (1936) [362], altogether in relation with the negative an-
swer to the Hilbertian decision problem and the positive diagonally decidable and
complete "effective calculability" [71, 172] and the Turing-machine model [362],
imaginably resorting to discover all the pure conceptions of the understanding
and their deduction (as described in Gödel’s Theorem VI and "1st Incomplete-
ness Theorem" in On formally undecidable propositions of Principia Mathematica
and related systems (1931) [160, 161], and Turing’s Systems of Logic Based on
Ordinals (1936) [367] in relation to mechanical formal systems, searching for in-
herent completeness, consistency, and effective axiomatization, in the road to the
analytic of principles, and in respect with the transcendental faculty of judgment
(Gödel’s Theorem XI and "2nd Incompleteness Theorem" in On formally undecid-
able propositions of Principia Mathematica and related systems (1931) [160, 161],
and Turing’s Computing Machinery and Intelligence (1950) [364, 368], does not
give rise, anyway, to any just foundations for analytic in the computus age; 12) the
computus era dialectic, and in particular the analog-to-digital passage in modern
computation, seems to ultimately aspire to commute sensorium dei for senso-
rium computi in aesthetics, which mediates for a sort of digital and informational
transcendental doctrine of elements, a demonstration of such being the failure to
capture the inner subjectivity of the external and internal perceptions of space and
time ([Kant, A26-B42], [B49-A33]), and the flaw of never contemplating mathe-
matics in itself as an axiom of enumerable nature and neither the tautological
– never transcendental except if seen as transcendental by the phenomenological
seat (not exactly transcendental illusion) – nature of analytic, which permeates
flagrantly with a substitution of practical summum bonum for practical summum
computum, born out of diagonalization with truth-correspondence models, oddly
reclaiming the conception of ens perfectissimum, in a sort of computationalist
tomism; 13) the bearing of the question "How are synthetic a priori propositions
possible?" (Kant, [B14–18, A158/B197]) – incidental to the question of "How is
metaphysics possible as a science?" (Kant, [B19-B23]) – has held the critical test

104

for mathematics, the natural sciences and metaphysics, until the computus era, but
ever since we cannot say that the question has changed, but rather the hardness
of its answer and interpretation, now in turn and in itself being the paramount
(self-)reference to the proper conflict of transcendental ideas and the antithetic of
pure reason, besides having shifted the conception of pure reason by inference to
a sort of transcendental induction, marked by the inalienable experiential, almost
experimental nature of time.

1.1.3 Appendix on Virtuality

As in Kant’s theory of knowledge and metaphysics and as perceived in the previous
paragraphs, we understand that knowledge in the Turing-Church computus age –
the Turing-machine model being descriptively complete in computational terms,
as it contains the logic from compilers (translating the source code as a whole
into machine code) and/or interpreters (translating the program one statement
at a time from source code to machine code), all the way up to stored-programs
[36] – is peculiarly constrained in mathematics and the empirical world, making
it impossible to extend knowledge to supra-sensible speculation in metaphysics,
herein contemplated the image of pure extensionality and a close observance on
the axiom of extensionality - ∀x∀y[∀z(z ∈ x⇔ z ∈ y)⇒ ∀w(x ∈ w ⇔ y ∈ w)] –
while producing an exceptionally strong (transcendental and non-transcendental)
illusion in human-computer interaction and AI.

Taking hold of the essence of computable functions in its definability (Hilbert,
Gödel, Church, Kleene, Post, Turing, and also Markov), in all its mathematical-
philosophical possible pure analytic and synthetic dialectic concepts and judg-
ments, it is extraordinary that this mathematical and dynamic antinomies in AI
are widened by an ideal and sensible, pure and empirical manifold apperception
(Kant, [A106]) by the effect of virtuality.

In short, the Turing-machine corresponds to a R2 abstractedness, which, by
the concreteness (and existential postulate) of any "a-machine" [362] (with pro-
gramming languages and a sort of hierarchical detachment from machine code or
functional λ-Calculus as detailed in the Turing-Church thesis), is set to be ex-
tended to a renewed abstractedness, now replenished and dense in R3 space, an

105

edging transfinite space frontier in human-computer interaction.
In the first case with the Turing-machine and R2 ideality we observe an Eu-

clidean axiomatization in recursion theory and computation, and in the succeed-
ing R3 ideality intrinsic to the concurrent development of "a-machines" [362] and
programming languages, we are prone to observe a Cartesian coordinates system
revolution in computer science, i.e., a system wherein signed distances to the point
from a memory of translated directed lines, computed in the same unit of length,
building each reference line a program with instructions – plural axes in the hierar-
chy from binary code to the programming language of the system -, find the point
where they meet, technically called its "origin", not so much in the geometrical
ordered pair (0, 0) – in configuration, conformed to the Kantian "orientation in

thinking" [202] according to the model (
abscissa︷︸︸︷
x ,

ordinate︷︸︸︷
y) –, but instead in the symbol-

ical Boolean (0,1). A paramount difference, though, is that with this last Cartesius
revolution with computer science, and for as many future advancements in the age
of digital computus to come, we are and will be, contrary to the Cartesian coor-
dinate system (matching Euclidean geometry and algebra), matching only, and in
bare essence, bi-dimensional flat Boolean symbolic values with arithmetic values
considered as computable functions. This is to say that, contrary to the Cartesian
coordinate system, there will never be an embodiment of computable functions in
nature more so than what is already embedded through algebra, even if arithmetic
could possibly be a vague formalist or indispensable natural-empirical mathemat-
ical structure for the most part. This could only change if we dramatically and
contrary to the Gödelian revolution of the incompleteness theorems in mathemati-
cal logic [312, 216, 160, 161], did as Gödel himself, and contradictorily as it seems,
apparently against the demonstration of inherent limitations of every formal ax-
iomatic system containing basic arithmetic, finished by accepting mathematical
(and to a partial degree, computerized) Platonism. The exception is if computa-
tion or computable functions are algebra-to-structures pathways powerful enough
to model the models, so to speak (which is affine with

⋃
-Mentalism) .

Mathematical Platonism is, indeed, a participating/predicative relational the-
ory, as if there was simultaneously an inversion from R to Z+ = {1} where {1} is

106

just about the sensitive and intellective image of the unity of oneness and many-
ness. Mathematical Platonism goes, thus, from Euclidean R3 to an ideal one 1

√
1
1

where {1} as an image, neither precedes nor equals reals : R {1} as if 1 7→ f(x)

� {R}, and neither succedes nor equals reals : R {1} as if 1 7→ f(x) � {R}
(maybe the reason for Gödel to have thought that arithmetic in one such system
as Peano’s or Principia Mathematica was not decisive, somehow contrary to the
computational exigence of decidability in partial recursive functions, to overall and
in spite of all this, go against Mathematical Platonism).

Indeed, mathematical Platonism has this idiosyncrasy of sharing with general
topology, or point-set foundational definitions, an investigation departing from
geometry, capable of metaphysically reason according to substratal notions, such
as compactness and connectedness, but, by quitting algebraic and geometrical
methods, de-topologizing the world to little less (or a lot more) than a point, in
ideality. This ideal de-topologizing to one-point is a striking reason to understand
how monism (mathematical Platonism) and monadism (mathematical elemental
Leibnizianism) are just a matter of perspective, even though different as they are.
More in detail, it can be said that mathematical Platonism’s unmindfulness to-
wards physicality (as mathematical Leibnizianism, though less acutely), has made
it neglect the intermediary focus on νooυµενoν (noumenal) objectivity, i.e., the
thing-in-itself.

But it is not to blame that mathematical Platonism is taken as a philosophy of
the substance, as this has also to be taken into perspective. The formerly explained
by Plato allegory of the cave (The Republic, 514a-520a) and the analogy of the sun
(The Republic, 508b-509c), figures out this de-topologized one-point as nothing but
the best affordable image for the oneness and manifolding unity of truth, holding,
in essence, a more profound sense beyond spaciality, locality or τoπoς (topos). It
fetches, fundamentally, beyond algebraic structural mathematics, beyond ordinary
topological embodiment, and even beyond human sensible and intellectual incar-
nation, visualness, i. e., the capability of bearing sight, intuitive consciousness, as
perceptional and emotional movement.

At this point, at check with necessary compactedness and connectedness, the
recognizable account of a philosophy of substance and mathematical Platonism are,
thus, quite contradictory. Incipiently, mathematical Platonism in Q was largely

107

acquainted with the method of a quotient or fraction of two integers, a numerator
and a non-zero denominator, with Q =

{
a
b
| a ∈ Z ; b ∈ Z∗

}
, hence, very similar to

mathematical Leibnizianism (oneness or the monad as the primitive root of unity).
Positively, thus, is it is fair to say ahead, in what concerns at its core the

Turing-Church thesis and the fulcrum year of computation (1936), that "effectively
calculable" [72, 362], µ-recursive or Turing-computable functions, all represent, in
terms of philosophy of science and mathematics combined in computer science, a
sort of three-folded geometrical-to-(quasi)-topological conceptual hierarchy:

• First, a canonical discrete Euclidean-to-Hilbertenian geometry, where reduc-
tion to primitive notions (point, line, plane, as in Hilbert’s geometry, all in
all resembling the "square", "tape", and the r-th bearing of the symbol in
the "a-machine" [362]) and also primitive relations (betweenness, contain-
ment, and congruence in Hilbert’s geometry, all in all resembling the four
m-configurations "b", "c", "e", "f"52, memory and computable functions),
are simple and shared philosophical axiomatization concepts, in point of fact
almost a minimal Computus Organum, i. e., a new scientific (computerized)
method.

• Second and intermediate, and departing from the Euclidean-to-Hilbertenian
geometry, we find the nucleus of projective geometry continuous transfor-
mations, wherein the Boolean bi-dimensional values and electric signs in
traditionally linear serial computation are impelled to meet, in simulacrum
fashion, the world of symbols in outlined diagrammatic projections, i. e.,
where the Boolean invariant pre-images emancipate, through instructions

52In this respect we can confront the sequence of four m-configurations, as depicted in the
paper On Computable Numbers, with an Application to the Entscheidungsproblem [362] (1936) by
Turing, with chapter IV of Bertrand Russell’s Introduction to Mathematical Philosophy (1919) in
what relates to Russell’s efforts on defining the notion of "between", essentially the "fundamental
notion of ordinary geometry" and in "ordering the points on a straight line". Assuming that this
relation "between" may arrange the points of the line in the simplest order from left to right, a
group of seven assumptions are needed, as to define, without a shred of doubt, (1) points between
a and b; (2) points x such that a is between x and b; (3) points y such that b is between y and a.
What is worth observing here is that if we remove the exclusively identity-disambiguation cases,
and imagining the sequence to be the subsequence of printed symbols in a Turing-machine,
we get exactly the same remaining four cases. This might seem standard, but it permits us
to immediately test serial relations in computability, by each of the three combined properties
essential to define a series: "asymmetry, transitiveness, and connexity" (Russell 1919). .

108

and memory, a sort of transformation matrix (assembly languages) and affine
transformations (programming languages). It can be said that this open
symbolic projective space emanates, at heart, from λ-Calculus, the proper
inducement of programming languages. An extraordinary remark to pay
attention to is the fact that one "intensional theory of functions as rules
of computation, contrasting with an extensional theory of functions as sets
of ordered pairs"[10], in one such form as described in λ-Calculus, is, by
pure intentional means, capable of inducing also a very powerful extensional
perspective, as it drags, by the synthesis of imagination with auxiliary a-
machines [362], inherent geometrical-to-(quasi) topological transformations.

• Third and final, we find a sense of quasi -topological transformations, i. e.,
passing the rigid transformation of translation as an invariant property that
was able to build congruent and equivalent classes (Turing-machine as an
Euclidean, axiomatic and synthetic, paradigm), with continuous affine and
projective transformations with invariant extensions maintaining orienta-
tion in the process of combining equivalence classes (assembly languages
and all level-hierarchy programming languages, a non-Euclidean geometry
paradigm), lastly resounds in a quasi -topological space. The idea behind is
that theory of programming languages and programming language semantics
in n-dimensional abstract levels, even if always related to the bi-dimensional
ideality of a Turing-machine (with the properties of asymetry, transitiveness,
and connectedness), is seen intuitively to impend over, by strict connected-
ness and compactness, with all possible one-to-one bi-continuous permitted
transformations. We might define this open (quasi)-topological conceptual
level as virtuality, i.e., one such bestowal where all that pervades are non-
metric spatial relationships.

But, more importantly and truthfully, this conceptual (quasi)-topological sense
of virtuality, arisen from affine transformations, as the acme of programming
languages semantics is, more satisfactorily instead, an intuitive (quasi)-corporeal
sense of vitality, arisen from effective and affective transformations, with the hu-
man body as the epitomized experience. Precisely, what topology does not autho-
rize are tearing and cutting, just what the body is averse to, and minimally, whats

109

is conceded, in virtuality (one ideally informational processing continuous space),
are informatic deformations (such as stretching, bending, and twisting). In reality,
the topic of programming languages and its hierarchy commanded in the human-
computer interaction realm with a perspective of ne plus ultra past machine code,
at the bottom, and ne plus ultra high-level programming languages, at the top,
really plays an eccentricity role, in plain Kantian cosmological means, if compared
with the modern Copernican revolution [168, 396, 158, 123, 287, 90, 88, 129, 108,
98]. Orientation [63, 202], even if no longer dependent on an equalizing point
around which the heavenly bodies moved in uniform fashion as in Ptolemy, the
heliocentric new system with the sun as the center of the deferents of the planets,
allowing the circles of the planets with all the spheres in one system revolving more
uniformly, even if diminishing the eccentricity of the sun, was all in all eccentric
due to the lack of ellipses in the orbits of the planets. Likewise, programming
languages are seen, like in Aristotelian and Ptolemaic cosmologies, as with one
independent non-elliptic orbit each, spreading from the radius to a perfected and
more rarefied perimeter, in other words, with neither the idea of a gravitational
center, nor a common space. This meets the right fulcrum in philosophy of science
confronted with programming: programming languages are strictly Copernican in
essence, for the reason that even if containing the seeds of non-Euclidean geom-
etry (with hyperbolic diagonalized, and n-dimensional elliptic features) and the
seeds of projective geometry (with an invariant transformation matrix and trans-
lations, described as affine transformations), they are still a normative, rather that
disruptive, paradigm.

This digression is critical to grasp how the concurrent evolution of "a-machines"
[362] and programming languages semantics has produced a compacted (or com-
pressed) and contiguously accelerated, inasmuch as the physicality of the integrated
circuit and computer data architecture, (prolongation of the) modern age revolu-
tion in western science.

If it is astonishing that the so called Copernican revolution, still the norm of
a "paradigm shift" [121, 217] due to its cosmological nature, was engaged by the
simple geometrical transformations of translation and rotation with relation to the
celestial bodies, following (post-Hyparchus and Arabic transmission of astronomy
schools), Copernicus’ De Revolutionibus Orbium Coelestium (1543), equally or

110

more astounding is to recognize that the almost mathematical-clustered Turing-
machine model, by setting a simple geometrical translation from simple "squares"
one to another, was capable of transcending a cosmological revolution.

Going to the essentials, we have in mind, Turing’s On Computable Numbers,
with an Application to the Enstcheidungsproblem, 1936) [362]:

"We may compare a man in the process of computing a real number to
a machine which is only capable of a finite number of conditions q1: q2.
.... qI; which will be called ’m-configurations’. The machine is supplied
with a ’tape’ (the analogue of paper) running through it, and divided
into sections (called ’squares’) each capable of bearing a ’symbol’. At
any moment there is just one square, say the r-th, bearing the symbol
S(r) which is ’in the machine’. We may call this square the ’scanned
square’. The symbol on the scanned square may be called the ’scanned
symbol’. The ’scanned symbol’ is the only one of which the machine is,
so to speak, ’directly aware’. However, by altering its m-configuration
the machine can effectively remember some of the symbols which it has
’seen’ (scanned) previously. The possible behavior of the machine at
any moment is determined by the ra-configuration qn and the scanned
symbol S (r). This pair qn, (r) will be called the ’configuration’."[362]

At this point, although minimally, we would like to address virtuality with a
sense of vital embodiment found in quasi -topological transformations – amplifying
mere R3 ideality to one such sense as Merleau-Ponty’s (1908-1961) phenomeno-
logical "corporeity of words and speech" [235] (The Phenomenology of Percep-
tion [265, 267, 268] (1945); The Visible and the Invisible: The Intertwining—The
Chiasm [269, 266], posthumous) –, with some concepts that belong to the philo-
sophical tradition from Henri Bergson [33, 31, 30, 29, 32] (1859-1941) one such
thinker who devoted meticulous attention to George Berkeley’s (1685–1753) An
Essay Towards a New Theory of Vision [34, 35] (1709) and Three Dialogues be-
tween Hylas and Philonous [34] (1713) impacting on the concept of visualness, to
Gilles Deleuze (1925-1995), author of Cinéma 1 L’Image-Mouvement [101, 104]
(1983), and Cinéma 2 L’image-temps [102, 103] (1985), bringing to a new light
the thesis of Bergson, mainly from Matière et mémoire (1896). Although we do

111

not have the time to expand this thesis in larger lines, it suffices to say, in a direct
and intuitionistic manner, that a perfectioned schmemata to informatic virtuality
is found if we make correspond in an universal Turing-machine the apperception
of "m-configurations" to "frames", "tape" to "film", "squares" to "matter and
memory" [29], the "set of images between the representation and the object" to
"Time-Movement" [101, 104] and the r-th bearing of the symbol to "the Time-
Image" [102, 103].

Noticeably, virtuality, in one such way, captures in sharp poignancy, neither the
naturalis nor the artificalis aspects of metaphysics, but the natura naturata move-
ment instead, while the hyletic and perceptual-phenomenic time-consciousness of
the embodied subject with knowledge, and the human-machine interaction proper
of information and cybernetics [404, 405], are not divorced, neither afflicted by false
imperative duality problems, conveying at the same time programming languages
and computer architecture studies with the cortex sciences through the bridge of
computer vision and multiple-view geometry, in the exposed line of investigation
of
⋃
-Mentalism.
This lines along "la pensée et le mouvant" [29] in informatic virtuality (passing

from tekné to autopoiesis [100]) are also capable of guiding a just interpretation
of natural language processing in Prolog, in the context of the delusional dream of
strong AI in the "Fifth Generation Computer Project" (FGCS) [52, 139, 193], an
audacious government and business venture in Japan (1982-1994), which regarded
as feasible man-to-machine communication, and was truly engaged in factoring
man-to-man communication in machines, wishing, therefore, to have machines
understanding language to the Shakespearean height of "such stuff as dreams are
made on" (William Shakespeare, The Tempest) and also to the basal line found
in Merleau-Ponty’s chiasm and the flesh [266, 269], with the corporeality of the
simultaneous act of perceiving and the thing perceived now the plentiful machinery.

112

Chapter 2

Natural Language Processing in
Prolog

2.1 W-grammars and Q-systems in Natural Lan-
guage Processing

W-grammars [77, 39, 78, 85, 142] are, technically, (Adrian) van Wijngaarden gram-
mars (a two-level grammar) encoding the potentially infinite universe typical of
context-free grammars [67, 115] in a finite set of rules, thus belonging to the more
general class of affix grammars, while Q-Systems [77] is the direct graph, for-
mal (and programming) language used in natural language processing by choice
of Alain Colmerauer at the Université de Montréal (1967-1970) and, therefore,
the language formalism vault therein present in the machine translation system
prototype (TAUM-73)1.

The both unavoidable and intended structure of natural languages processing is
perceptible from the instance that the class of affix grammars is a meta-syntactical
description of computer languages syntaxes using the regular formalisation of nat-
ural languages, and also by the fact that the van Winjgaarden grammar was an
innovation in the ALGOL programming languages family [339, 400] (ALGOL 60,
ALGOL 68) to the extent that (ALGOL 60 and onward) came as the first project
wherein BNF (Backus-Naur form)2 was ever first forged, a metalanguage notation

1TAUM was the acronym for the research group Traduction Automatique à l’Université de
Montréal formed in 1965.

2John Backus and Peter Naus were involved in the conception and design of ALGOL 60,

113

inspired in the classical Sanskrit grammar devised originally by Pān. ini (4th century
BCE) 3. To this it can be added that both the linguistic boom (with roots in struc-
turalism and the linguistics turn to the brewing incubation of post-structuralism)
and strong artificial intelligence in concurrence of the 50’s and 60’s accelerated
what can be termed as an "affix grammar inter-dialogue epoch", having enhanced
one sort of linear bijection or one-to-one correspondence between the natural and
computing languages sets (not coincident with the natural and artificial languages
sets, neither with the different sets of natural and programming languages), always
understood under the proper limitation of context-free grammars.

Indeed, it is not only through BNF (Backus-Naur form) and W-grammars (van
Wijngaarden grammars) cases within ALGOL (ALGOL 60 and onward) that the
series of natural language studies (formal language, grammar, linguistics and phi-
losophy of language) has come to be manifest or come to be limited to specific
illustrations, if we take in consideration the transition to computational program-
ming languages. Thus and so, apart from BNF and W-grammars [212, 68] (the two
main notation techniques for context-free grammars in the form of both one origi-
nal and ancient notation of grammar studies on Sanskrit and one extant derivative
metalanguage description of different forms of syntax from natural languages), it

both of them having been present at the ALGOL 60 meeting in Paris (January, 1960). John
Backus was present in representation of USA along names such as John McCarthy (creator of
Lisp), while Peter Naus represented Europe alongside van Wijngaarden himself. John Backus
had, indeed, in front, been one of the mentors and designers of the first called IAL (International
Algorithmic Language), alternatively named ALGOL 58, upon which the use of one metalanguage
with metalinguistic formulae was clear.

3As a term of comparison, the culminating effort of the Vedic Vyākaran. a (lit. "Analysis")
discipline of the As.t.ādhyāȳi (lit. "Eight Chapters") summula on grammar and semantic studies
by Pān. ini collected a total of 3,959 sūtras (lit. "strings"; "threads") about Sanskrit, while the W-
grammar saved and assembled a "maximum of around 300 rules altogether, including meta-rules
and pseudo-rules" (W-Grammar, Chastellier, Guy de, PROJECT DE TRADUCTION AUTOMATIQUE ;
Colmerauer, Alain, DEPARTEMENT D’INFORMATIQUE, UNIVERSITÉ DE MONTRÉAL). By this stance
we can evaluate the blunt and minimalist version of the W-grammar towards French, in com-
parison with Vedic Pān. ini’s headed for Sanskrit. This 1/10 rules economy is best explained
by the difference between one linguistic description defining classical Sanskrit and one natural
language processing hyper-rules type of syntax interpreter using meta-rules translation processes
under algebraic manipulation. Also to be noticed is the Sanskrit-restraint form in As.t.ādhyāȳi’s
description and the opposed unrestrained natural languages (yet French-defined and morphologi-
cally constrained) process of translation description of W-grammars, which saves a great stack of
rules. This rule commands greater strings and threads economy as more and more one grammar
is context-free, hence far from the constrained and defined form of one such natural language as
Sanskrit, French, or any other.

114

shall be firstly addressed the general meta-theory on language where from such a
recollection of terms and definitions sprang. One such structuralis sententiae urges
on general acquittance, and is not dissociable from the birth of the programming
language Prolog.

We can find the immediate answer to the referred structuralis sententiae general
problem in the so called Chomsky hierarchy [67, 115] (or else called the Chomsky-
Schützenberger hierarchy), the found model to the respective "affix grammar inter-
dialogue epoch" from the Turing machine to the decades of creation of the first
programming languages. The Chomsky hierarchy (1956-1963) is, basically, a self-
contained type of hierarchy comprising, besides the implicit group of finite length
of various symbols, four different classes of formal grammars, namely (and from
outward to interior), Type-0 or unrestricted grammars, Type-1 or context-sensitive
grammars, Type-2 or context-free grammars, and Type-3 or regular grammars. In
this spectrum we have to take notice that the outer-circle of this self-contained
rings order, going from the least to the most restrictive, places the outer-bond of
the hierarchy as a range of unsettled problems (i.e., algorithms or functions that
are not effectively computable).

We can also refer to the Chomsky hierarchy of different types of formal gram-
mars (again from outward to interior) as being the collection of Type-0, recur-
sively enumerable or generally recursive, Type-1 or context-sensitive, Type-2 or
non-deterministic and, finally, Type-3 or automata formal grammars.

Prevalently, both W-grammars and BNF (Backus-Naur form) are perceiving
rationalizations of Type-2 or context-free grammars under the Chomsky hierarchy
[67, 115, 68], as, ultimately, Q-systems and Algol-68 [77, 339, 400] were two-level
Van Wijngaarden grammars. This formalisation tailored by Noam Chomsky and
Marcel-Paul Schützenberger in the late 50’s corresponds, in Kantian terms, as a
perceptive judgement related to universality and necessity in our experience of
objects, to a sort of synthetic apperception (if not transcendental at least indis-
pensable) argument, of all classes of formalised syntax of natural languages and
the emergent field of complexity, having mechanistic linguistics [197, 142, 253] and
natural language processing [39, 85] been abridged in the theoretical, historical
and philosophical interpolation.

115

2.1.1 The Chomsky-Schützenberger Hierarchy

The Chomsky hierarchy [67, 115, 68] (1956-1963) quarters sufficiently, in the sy-
tle of one causata grammaticae, the universal extension of formal grammars, in
accordance with levels of both mathematical ordered and random phonological
restrictions.

The Chomsky hierarchy draws in one stroke a capable practical and cognitive
demonstration of the human transcendental faculties (mind), as well as the propo-
sitional content (language in the form of any phonological or semiological strings
of symbols, states and representations) of any type of judgment of the entire spec-
trum of possible phenomena (world). Moreover, random naturalistic complexity
of natural languages and informational computational complexity are, by means
of the innateness and spontaneity of the power of synthesis, apprehended in one
conceptual form as if it were proper the scheme of the faculty of cognition tractable
under the referred hierarchy in relation with the mind, language and the world.

Figure 2.1: The Chomsky Hierarchy

More in depth, we are considering an originally linguistic triadic model – "Three
Models for the Description of Language" [67] (1956) sketched by Noam Chomsky
– that rapidly evolved to an excel form in the subsequent years in the paper "The

116

Algebraic Theory of Context-Free Grammars" [115] (1963) written in concurrence
by Noam Chomsky and Marcel-Paul Schützenberger. The pair thoroughly worked,
in this fashion, one hierarchy on certain formal properties of grammars ascendant
through both linguistic (natural) languages and algebraic (enumerated) levels of
restriction.

By these means, addressing grammars as one enumerating power (a "sentence-
generating grammar" [67, 115] of any L corresponding to the function whose range
is L), endorsed as a collection of sentences of finite lenght constructed from a finite
alphabet, entices a mechanism of derivation of "phrase structures" [67, 115] into
more complex sequences. The kernel or nucleus of the Chomsky-hierarchy is a
typical representation of automata finite-state Markov process (an enumeration
of different variables, each of which, at any point in time, is fully conditional, as
an if-clause representation of the present state of the system, irrespective of both
the past or the future). Along the (utterly phonological but generally unrestricted
symbolical) "phrase-structure" [67, 115] level sequence of restrictions, we find the
outer last ring (Type-0) and limitation boundary in Turing machines [368, 363,
366, 364, 365].

In between Markov finite-state process (Type-3) and a Turing-machine (Type-
0) there are two types of system representations. From unrestricted to restricted,
and descending down the hierarchy of complexity we find, respectively, the context-
sensitive (Type-1) and context-free (Type-2) types of grammars.4 Context-free
(Type-2) regards the same level as push-down type of automata, while context-
sensitive (Type-1) is in conformity with linear-bounded typical automata. More
in detail, we can assert to the four stages in the complexity and increasingly
unrestricted hierarchy (Types- 3,2,1 and 0) at least two intermediate inner-stages
comprised: deterministic context-free grammars between regular and context-free
grammars (Types- 3,2), and also generally recursive grammars between context-
sensitive and recursively enumerable grammars (Types- 1,0).

In this very same attainment, we shall find a gradation that expands from reg-
ular linear (Type-3) to polynomial context-free grammars (Type-2), from this to

4Remember that W-grammars, a member of the affix grammars class (where affixes are ar-
guments), are Type-2 or context-free grammars under the Chomsky hierarchy.

117

exponential context-sensitive formalisations (Type-1) and, finally, to the undecid-
ability upper limit [160, 161, 162, 312], as part of the transformational grammars
overall process and arrangement of proper subsets. We should, in advance, recog-
nise that if Type-0 grammars or Turing machines [362] represent the outer-finite
layer of Chomsky’s hierarchy, and Type-3 grammars are finite automata, Type-2
and Type-1 are, in turn and sequentially, intermediate representational "phrase
structure" [67, 115] descriptions.

Bringing together the original paper on "Three Models for the Description of
Language" [67] (Chomsky, 1956) (published in the same year that Claude Shannon,
the pioneer in information theory, demonstrated the two-colours/n-state Turing
Machine), and "On Certain Formal Properties of Grammars" [115] (Chomsky,
1959) we aim to resume the following inception formalization:

A grammar is a set of rules, according to which the valid phrases of one language
are constructed. In formal terms, a grammar is defined by the tuple:

G = (Υ,Σ, P, S)

• Υ− is a non-empty finite set, constitued by variables (nonterminal symbols).
These are generally the symbols of the grammar that can be affected in
principia, in media res or in finale by one substitution of any symbol or
sequence of symbols.

• Σ− is a non-empty finite set designed as the alphabet (set of terminal sym-
bols). These are symbols of the grammar that can not be substituted and
correspond to the valid sentences of the language.

• P - is a grammatical rule defining how can nonterminal symbols be substi-
tuted, under the general form (X→ Y1Y2Y3 · · ·Yn)

...note that this could be replaced by...

(X→ Y1 a Y2 a Y3 a · · ·Yn an +1)

118

• it expresses, thus, the general concatenation and, in mathematical and sym-
bolical terms, more specifically, the concatenation power of any "phrase
structures" [67, 115, 68] of any strings of symbols of any alphabet. Unavoid-
ably, this resumes to having on the left side (or causata) of the expression –
modus ponens or linguistic implicature – a nonterminal symbol or syntactic
variables on hold to be replaced by groups of terminal symbols (on the right
side or causa of the expression) always in accordance with the "production
rules" [67, 115, 68], whose general form should obey to a binary truth func-
tion connecting elements from two symbolic and derivation prone disjoint
sets. The practical result of a free monoid should, therefore, be the language
itself, under, in principle, the standard premises of abstract algebra [349].

• S - corresponds to the nonterminal symbols where from starts the string
derivation or "phrase structure" [67, 115, 68] (linguistic or computational)
process.

• it aims now at building a general theory of linguistic structure (emanci-
pating gramaticalness from grammar studies to formal universal grammar,
and an as consistent as complete hierarchy) from observed general laws of
the linguistic corpus (phonemes to phrases), Chomsky elaborated an En-
glish language (could have just referred natural languages instead and have
pinpointed English as a subclass) "revealing" nth-order statistical approxi-
mation to what he referred as a "transformational grammar" [67, 115, 68],
by means of phonemic and alphabetic (rather wholly symbolical under later
views) transcription of its * or + – Kleene closure of more than zero (*) or
more than one (+) elements – into a set of strings or symbols of characters
under VP (the verb phrase structure).

x, y ∈ (Υ ∪ Σ)∗ ∧ α→ B ∈ P

• thus, being the undergone produced substitution operated if and only if the
following provision of elements in the data logical structure is given

(u = xαy ∧ υ = xBy)→ (u⇒ υ)

119

It is true that, by the time of one consolidated "Algebraic Theory of Context-
Free Languages" [115, 69] (N. Chomsky; M.P. Schützenberger, 1963) the concern
was, explicitly, on several classes of sentence-generating devices with ties to the
grammars of both natural and artificial languages, while Chomsky’s attention,
was, at the beginning, centered only in the English language repeated transforma-
tions tested against finite-state Markov processes. At the outset of the incipiently
drawn hierarchy, the thesis submitted (and theoretically proven) was that the con-
struction of a finite-state Markov processment of transition symbols could never
include an English (or any natural language) grammar. Suitably, we should expect
total failure in generating, from finite-state Markov processes as well as through
transformational and generated phrases by infinite sentencing, one such result as
reasonable (false or truthful) sentences, or any acceptable customary philosophical
inquiries and the like (whichever valid syllogism deduction in the form of terminal
symbols of whichever either formal or natural language).

Radically, what was also vindicated, in a sort of logical antinomy materialised
in the landmark paper, was that uncountable many languages are, literally, not
describable and can not be either by any general linguist metatheory on any form
of symbolical natural languages such as English. The postliminary question was to
know if there were possible discretional and elective symbolical languages outside
the range of description.

Typically, a language generated by one grammar L(G) corresponds to the
derivational result of all its different states from the initial nonterminal state S,
thus producing potentially infinite sequence of symbols of the alphabet (Σ).

L(G) = (υ ∈ Σ∗ : S ⇒∗ υ) is, therefore, the custom result of potentially finding
how an arbitrary element can be generated by another of the same nature in one
step only (υ ⇒ v) no matter how many times convoked (υ ⇒∗ v), into a set of
finite-lenght strings or sets of symbols or characters, usually under more than one
step of the transformational grammar (υ ⇒+ v).

If we admit that Aristotle’s famous definition of the universal (and definien-
dum) "humankind", in which man is the sole participant – bearer of thought and
speech, with the principle (λóγoν ε̈χoν), reckoned in the Latinized, more abstract
and diffused expression animal rationale – instantiates speech, language and sym-
bolic expression through special and specific utterances of human communication

120

with the unavoidable structure of vocal sentencing words (the symbolical power
of free concatenation of mental and ideal sentencing words of the universal AB
alphabet (A_+B)), we are welcoming indisputably the Chomsky-Schützenberger
hierarchy, and, therefrom, accepting some dialecticae et logica explicanda.

It is impossible to find, according to Aristotle’s definition of man, a void gram-
mar G0, wherein one language would assume the state of one empty string {ε}
or ∅. This stance strongly suggests, over Aristotle’s antropological definition or
indeed Plato’s – “Man is the plume-less genus of bipeds" (Plato, Politikus, 266)
– the neo-Kantian author Ernst Cassirer’s definition of man as, intrinsically, one
"animal symbolicum" [61](Cassirer, An Essay on Man, 1944). So too, we shall
find one algebraic form of the general (ideal or mental, utterly phonological and
general symbolical) power of infinite concatenation (υ ⇒+ v · · ·∞), if accepted
the applicability of the Chomsky hierarchy to the universe of all languages (natu-
ral and artificial, stochastic and programming), whereupon we should investigate
what are the critical limits of language. More is to be investigated as to why,
inasmuch as a finite Markovian source is a too limiting grammar (Type-3), why
a recursively enumerable arrangement of sets and grammar (Type-0) is also in-
appropriate to describe the typical undecidability, randomness and unpredictabil-
ity of any natural language. This sets, thus, the question of the more general
stand of natural language processing and human-computer interaction in AI (from
"transformational grammars" [67, 115, 68] conceptual ontologies under Chomsky’s
view on computational linguistics to machine translation and the statistical ap-
proach [276, 122, 39]), to the distinguished particular case of natural language
processing in Prolog [373, 85, 142] (parsing or syntactical analysis from finite-
state automata to feature-based grammars). The paramount question under the
continuum paradigm and the algebraic substratus is to know whether the succes-
sive containment model of the Chomsky hierarchy overall replicates the (Type-3)
finite-Markov states to Turing computability (Type-0) background, against the
nth-statistical, nth-probabilistic and real-valued queries subsumed in the general
evolution of natural language processing, as if the general symbolic (linguistic and
computational) corpora was to be encapsulated in one such algebraic form, and
the Chomsky hierarchy, apart from universally valid, is, under human-computer

121

interaction [404, 69] (and both naturalistic and computational complexity), evolu-
tionary correct.

Is there, thus, one sort of mathematicae et mathesis universalis explanans in
Lebnizian style? Does this mean that the correctness (or even quasi-correctness)
of Chosmky’s hierarchical model and the appropriateness of such anthropological
definition captivates the contemporary problems and open questions in philosophy
of mathematics in the fields of philosophy of language, information complexity
and generally AI, instantiating a sort of informational and computational "anew"
antinomies in between Leibniz’s caractheristica universalis and Gödel’s numbering
in the incompleteness theorems, convoking a debate about transcendental idealism
and its expressiveness, the critical limit of judgments and experience (the mind,
language and the world in omnia relata)? One such view would render, thus, in
perspective, a debate, not only about semiotics and philosophy of language, but
also its framing on the cosmological idea of totality of composition and division
of phenomena in the universe through transcendental mathematical ideas in ac-
cord with the possibility of freedom in harmony with the universal law of natural
necessity, along the philosophies of Leibniz, Kant and Gödel.

At hand with these remarks on the broader context, we can proceed to fur-
ther investigate the nature of the Chomsky-Schützenberger hierarchy, by way of
challenging a drawn parallel with the foundation of Saussurean [99] linguistics.

In order to achieve a comprehensive survey of the W-grammars and Q-systems
[77] in natural language processing work transacted by Alain Colmeraueur in Pro-
log, it is inevitable to retrace and retell, in backtracking mode5, to the precedent
Sanskrit-inspired linguistics paradigm of Saussure [99, 212, 123, 278, 276], with-
out which is would be virtually impossible to apprehend the context-free grammar
(Type-2) BNF (Backus-Naur form), the description of formal and abstract systems
behind Algol 60 [339, 400], neither would it be possible to capture W-grammars
(the only other notation technique for context-free (Type-2) grammars, the up-
front formalism for Algol 68 [49]. Complementing this historical, computational

5Reference to the programming and computational notion of "backtacking", the algorithm
general procedure for constraint satisfaction search problems, coined by Derrick Henry Lehmer
in the 1950’s, a built-in facility since string-processing languages like SNOBOL (1962-1967), and
yet in Prolog itself as its chief tree-structure search feature.

122

and philosophical digression, it is also ineluctable to convene the open questions
in the debate of the philosophies of computation and information, language and
mind, mathematics, science and technology that can best access the proposed aim.

2.1.1.1 From Saussure’s Linguistics to the Algebraic Theory of Context-
Free Languages

As we shall start with a demonstrative expression, we choose to use the same
example appointed by Noam Chomsky and Paul Schützenberger in [115] "The
Algebraic Theory of Context-Free Languages":

Those torn books are completeley worthless.

This expression corresponds to the one such diagram in which the whole string
or sentence can be seen decomposed in its essential building blocks. The general
philosophical and symbolical view obeys to observing the structural description of
the pinpointed sentence in all its subdivisions and various categories (a determiner,
an adjective, a noun, all building up a noun phrase, bracketed with a verb phrase,
constituted by one adjective phrase, with one adverb and one adjective), being the
whole string the one sentence under analysis.

S

VP

AP

Adj

worthless

D

completelyare

NP

N

books

Adj

torn

Det

Those

In this way we have at display an alternative configuration

[Sentence [Noun Phrase [DeterminerˆThose [Adjeciveˆtorn] [Nounˆbooks]]
[Verb Phraseˆare] [Adjective Phrase [Adverbˆcompleteley] [Adjectiveˆworthless]]] .

123

which is also capable of being replicated in the phonological form [D@Uz TO:n
bUks A: ’w3:Tęıs] in IPA6 terminology, by putting forward, in possible executable
terms, the ideal of fixing a universal phonetic alphabet, by defining the class of
possible strings, which could, furthermore, correspond to the following idealized
form under the concatenation proper of the algebraic apparatus: [Da@a Ua za Ta

Oa :ana baUa kasa A:a ’wa3a:aTa ęa ıa sa]. Indeed, under pure algebraic
terms, responsive to the continuum explanans and remembering what Chomsky
referred as the possibility of the infinite lengthening – addendum ad infinitum –
of generative grammar phrasing, one other representational equivalent, recurring
to the Kleene operator (* or +) would be: [(⇒*)Da (⇒*)@a (⇒*) Ua (⇒*) za
T(⇒*) · · · · · · · · · (⇒*)a ęa (⇒*) ıa (⇒*) sa (⇒*)].

Any of the following sentences could as well be resumed under the preceding
formal symbolic expressions, in potentia continuum, from the very same original
phrase 1), followed by any of its "transformations" [67, 115, 68, 69] 2), 3), 4), 5)
and 6), which correspond to the still phonetic, but more ideal and less rhapsodized
form of 1):

1. Those torn books are completely worthless.

2. 01010100 01101000 01101111 01110011 01100101 00100000 01110100 01101111
01110010 01101110 00100000 01100010 01101111 01101111 01101011 01110011
00100000 01100001 01110010 01100101 00100000 01100011 01101111 01101101
01110000 01101100 01100101 01110100 01100101 01101100 01111001 00100000
01110111 01101111 01110010 01110100 01101000 01101100 01100101 01110011
01110011 00101110

6IPA (International Phonetic Alphabet since 1888, with its most recent change in 2005) is
the most diffused of the intended standardized representations of the sounds of oral language,
markedly Westernized and primarily devised on the original Latin alphabet. It is composed of
107 letters, 52 diacritics and 4 prosody marks (figures upon which it is possible to perceive, in
discrete and atomistic manner, the elementary and combinatorial reductionism in the form of
speech segments of the discipline of sounds of speech analysis). IPA itself, like the Chomsky-
hierarchy, can be said to accommodate, in linear progressive fashion, the entire range of sequential
(material to ideal), (physical to abstract) segmented phonotypic elements. These are perceptible
from phones to phonemes (and superfluent intonation) or, alternatively, as depicted in the official
IPA 2015 chart, from consonants (pulmonic to non-pulmonic) to vowels, with modifying diacritics
and suprasegmental qualities such as length, tone, stress, and intonation.

124

3.
.
.
.

.

.

.r .
.
.

.

.

.
rr rr .

.

.

.

.

.

rr r .
.
.

.

.

.

rr r .
.
.

.

.

.
rr r .

.

.

.

.

.

r r .
.
.

.

.

.

.

.

.

.

.

.
rr rr .

.

.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

.

.

.

.

.

.

rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr .
.
.

.

.

.
rr r .

.

.

.

.

.

.

.

.

.

.

.

r .
.
.

.

.

.

rrr r .
.
.

.

.

.

r r
.
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr .
.
.

.

.

.

r r .
.
.

.

.

.
rr rr .

.

.

.

.

.

r r .
.
.

.

.

.

rrr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

.

.

.

.

.

.
r rrr .

.

.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr rr .

.

.

.

.

.

rr r .
.
.

.

.

.

rrr .
.
.

.

.

.

r r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr r .

.

.

.

.

.
r rr

4. Master Key with Encryption, Hash and Compression Algorithms from GoAny-
where OpenPGP Studio Software 1.0.1 Linoma Software:

Passphrase: Prolog
ASCII Armored:

-----BEGIN PGP MESSAGE-----

Version: BCPG v1.48

hQEOA4sRGZS1Lk0zEAP/csRnj+6zX5Xk3sXAXGLIPSlultneunQmUPTi4lRN6oOZ

lIGpXgAfP3tfjasaFiwdNzvuTuN8ndU9DdEkajI41hkgf6DMLxvOH4gcgS5tS74a

fZGW1bLKJOHjef8jjVdY+/Yj4/ZNeypzQ0Ve412+VSB+oeYcMXKGFTClJVv2q2UD

/iWNlUE05HArun/2uuDfoKQ1T6/Nd5sTZxE0pWl9/4yr0p+rJfXSDcqoATbjLBM4

lb+ZBsaQarVu11cqeoZVO9S8jmA11h4qhi+trpqooAlB+4MEA8ohnHyXBKxRNNlG

FSjtglbASvZkV02u7UsEKLL7MtHJnI9Kn4diZpRRNMlp0msBASo1/B7u1r5J8FWn

mSlUZcQU6Bb7787lPK/JIQB+VjaqKrs4GkJ1LBy73HqMy8DHx+zOZwlLoSgdIppL

DgzC4v3PAtBvEMWWLJ+Ap5ypXBCjcx0WcIrol4hsiNRltmz/8I174gTVJvaENg==

=4P2Q

-----END PGP MESSAGE-----

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: BCPG v1.48

mQGiBFnSDcARBADRQztFDTN7HxCEqzkVr5QSt1Zn+w0m1Q/GYyRRBupxU1bbMHLy

lzKBGdYyU4G+P4HmhBOmFGeXaqmpIpnfaAijqP9sxjY+pYi4255WouD3it2ECtwz

125

bev4OytzKgJD2wVuuoNMKVNbdBA1X1Lfivsn9nzD6WLFuL6esa6LSWPqqwCghIj6

iNbncjL9doaajnmOAL7a0gMEAMnrvu9J5IbXLSlgo+wzn9OpOR0QjmqFf+wtT6iH

bB5XIrOxFfYNyEDjIfbh3NGXtAm77y77J++W1hygvyZAfiAU0zUU+y0kpkLhMAAy

KniSYo2rE38N4AE1ziVdwqaZ27X4LxGgwuXOgnDCNf8m6OCrfB+TzsLD12srx9pN

jKMjBAClrQ//abpNuc0hOlax8ItVNvLUQyMICZQEQrGGOVNCbnmRkD6aZdDuN29u

XwNZkI004aK4m61QiMbZRvI9SRrRxXskWWTGgVXPDDHVvlV61TmV9y1424+ZoH/n

xQO4J04jduVr/YBCNE0wsueF+oZebKP92WsTbakDVVQPjqjUKbQHYXMgPGFzPohk

BBMRAgAkBQJZ0g3ABQmce7kQCgsHCAkEAwYFAgoIFQUBAwIICQoDFgECAAoJEGLM

VfaS3OmZ0H0AnisYLZSiUXukRTJJYvCY3Igm4QMHAJ9LLhZ4VHvmLWP03fzzfCa/

5MOXBrkBjARZ0g3AEAQAohTYvvXV3joTIk3WFIxE7b7TZZ17frdj23As0Jv8OSMe

Ngcitj0TIu7CrbyM08mP3g3KrfbJBwX/8lO6i65iIghVKfwLe0aUxKd83tp0cBO+

8CIEuo4w7RnfMYyfGqKexS3lND7T/LvQe/cWtQTAVu9TF7dXGU3ObquQR7FuXUsD

/j3PcVyKFoAtsObQT8bVTJM70uY+FAU/Dx4CRb6RHNdQTJLESuY7kKnI2NXOIeqO

Ac7tUgVmz+0v2r8PIEMDdrNnZBK8ClAd0oK7V2tUZJLqHfMfGLziRYW0I587JHd7

/vFtR1BlrHebZl8UiCtcMDW0WJLhJcdfO3zsba3H1+JwA/9wkGawIAh7M5TE99fW

rinn45YEh2gkr8QDBfCKVTVlgPmhIFF63NjW3orN7j+IX39KZROT15s4bjWwZvTW

m0VWMY9eBGENlYYAVF+5yOGdb9ijRMBp2I4zO1J35nwHafoFzjmmcq7SVFArWasm

9T1H+EVNz8LYORSDnt+HbDkYIohkBBgRAgAkBQJZ0g3BBQmce7kQCgsHCAkEAwYF

AgoIFQUBAwIICQoDFgECAAoJEGLMVfaS3OmZHtIAn0432PyyoSLJAWZVVEWZfjc8

VlK4AJ9AMXuY0onLJ+IGRc6K7E1cFEXrAw==

=xtQs

-----END PGP PUBLIC KEY BLOCK-----

-----BEGIN PGP PRIVATE KEY BLOCK-----

Version: BCPG v1.48

lQHXBFnSDcARBADRQztFDTN7HxCEqzkVr5QSt1Zn+w0m1Q/GYyRRBupxU1bbMHLy

lzKBGdYyU4G+P4HmhBOmFGeXaqmpIpnfaAijqP9sxjY+pYi4255WouD3it2ECtwz

bev4OytzKgJD2wVuuoNMKVNbdBA1X1Lfivsn9nzD6WLFuL6esa6LSWPqqwCghIj6

iNbncjL9doaajnmOAL7a0gMEAMnrvu9J5IbXLSlgo+wzn9OpOR0QjmqFf+wtT6iH

126

bB5XIrOxFfYNyEDjIfbh3NGXtAm77y77J++W1hygvyZAfiAU0zUU+y0kpkLhMAAy

KniSYo2rE38N4AE1ziVdwqaZ27X4LxGgwuXOgnDCNf8m6OCrfB+TzsLD12srx9pN

jKMjBAClrQ//abpNuc0hOlax8ItVNvLUQyMICZQEQrGGOVNCbnmRkD6aZdDuN29u

XwNZkI004aK4m61QiMbZRvI9SRrRxXskWWTGgVXPDDHVvlV61TmV9y1424+ZoH/n

xQO4J04jduVr/YBCNE0wsueF+oZebKP92WsTbakDVVQPjqjUKf8JAwJHdzXQslf+

TmBtFzdptB9rbgCzj4mYgnkoEBGkSLg21yspblrRKHnIpDSDCgNJnd+stAdhcyA8

YXM+iGQEExECACQFAlnSDcAFCZx7uRAKCwcICQQDBgUCCggVBQEDAggJCgMWAQIA

CgkQYsxV9pLc6ZnQfQCeKxgtlKJRe6RFMkli8JjciCbhAwcAn0suFnhUe+YtY/Td

/PN8Jr/kw5cGnQItBFnSDcAQBACiFNi+9dXeOhMiTdYUjETtvtNlnXt+t2PbcCzQ

m/w5Ix42ByK2PRMi7sKtvIzTyY/eDcqt9skHBf/yU7qLrmIiCFUp/At7RpTEp3ze

2nRwE77wIgS6jjDtGd8xjJ8aop7FLeU0PtP8u9B79xa1BMBW71MXt1cZTc5uq5BH

sW5dSwP+Pc9xXIoWgC2w5tBPxtVMkzvS5j4UBT8PHgJFvpEc11BMksRK5juQqcjY

1c4h6o4Bzu1SBWbP7S/avw8gQwN2s2dkErwKUB3SgrtXa1Rkkuod8x8YvOJFhbQj

nzskd3v+8W1HUGWsd5tmXxSIK1wwNbRYkuElx187fOxtrcfX4nAD/3CQZrAgCHsz

lMT319auKefjlgSHaCSvxAMF8IpVNWWA+aEgUXrc2Nbeis3uP4hff0plE5PXmzhu

NbBm9NabRVYxj14EYQ2VhgBUX7nI4Z1v2KNEwGnYjjM7UnfmfAdp+gXOOaZyrtJU

UCtZqyb1PUf4RU3Pwtg5FIOe34dsORgi/wkDAkd3NdCyV/5OYBy11Dxg2YP4Swj8

6FvXAfAZNX42WQKiHPmWl2TLWMJAIfTQv2sbJ34NUztS/qeCLcR8NL+8nMLm4xn8

zw015aNDUnTUll/Szv7fq9CNVfOTduWJMuyrm+brXepS1CBUlfLtrOsX6baICIsp

FZ7SF3cPmMNDbbmTOaCC55JftNoqxhwUXpmO/b5ewHA657hyw1IogV+IZAQYEQIA

JAUCWdINwQUJnHu5EAoLBwgJBAMGBQIKCBUFAQMCCAkKAxYBAgAKCRBizFX2ktzp

mR7SAJ9ON9j8sqEiyQFmVVRFmX43PFZSuACfQDF7mNKJyyfiBkXOiuxNXBRF6wOZ

AaIEWdINwBEEANFDO0UNM3sfEISrORWvlBK3Vmf7DSbVD8ZjJFEG6nFTVtswcvKX

MoEZ1jJTgb4/geaEE6YUZ5dqqakimd9oCKOo/2zGNj6liLjbnlai4PeK3YQK3DNt

6/g7K3MqAkPbBW66g0wpU1t0EDVfUt+K+yf2fMPpYsW4vp6xrotJY+qrAKCEiPqI

1udyMv12hpqOeY4AvtrSAwQAyeu+70nkhtctKWCj7DOf06k5HRCOaoV/7C1PqIds

Hlcis7EV9g3IQOMh9uHc0Ze0CbvvLvsn75bWHKC/JkB+IBTTNRT7LSSmQuEwADIq

eJJijasTfw3gATXOJV3CppnbtfgvEaDC5c6CcMI1/ybo4Kt8H5POwsPXayvH2k2M

oyMEAKWtD/9puk25zSE6VrHwi1U28tRDIwgJlARCsYY5U0JueZGQPppl0O43b25f

A1mQjTThoribrVCIxtlG8j1JGtHFeyRZZMaBVc8MMdW+VXrVOZX3LXjbj5mgf+fF

A7gnTiN25Wv9gEI0TTCy54X6hl5so/3ZaxNtqQNVVA+OqNQptAdhcyA8YXM+iGQE

ExECACQFAlnSDcAFCZx7uRAKCwcICQQDBgUCCggVBQEDAggJCgMWAQIACgkQYsxV

9pLc6ZnQfQCeKxgtlKJRe6RFMkli8JjciCbhAwcAn0suFnhUe+YtY/Td/PN8Jr/k

127

w5cGuQGMBFnSDcAQBACiFNi+9dXeOhMiTdYUjETtvtNlnXt+t2PbcCzQm/w5Ix42

ByK2PRMi7sKtvIzTyY/eDcqt9skHBf/yU7qLrmIiCFUp/At7RpTEp3ze2nRwE77w

IgS6jjDtGd8xjJ8aop7FLeU0PtP8u9B79xa1BMBW71MXt1cZTc5uq5BHsW5dSwP+

Pc9xXIoWgC2w5tBPxtVMkzvS5j4UBT8PHgJFvpEc11BMksRK5juQqcjY1c4h6o4B

zu1SBWbP7S/avw8gQwN2s2dkErwKUB3SgrtXa1Rkkuod8x8YvOJFhbQjnzskd3v+

8W1HUGWsd5tmXxSIK1wwNbRYkuElx187fOxtrcfX4nAD/3CQZrAgCHszlMT319au

KefjlgSHaCSvxAMF8IpVNWWA+aEgUXrc2Nbeis3uP4hff0plE5PXmzhuNbBm9Nab

RVYxj14EYQ2VhgBUX7nI4Z1v2KNEwGnYjjM7UnfmfAdp+gXOOaZyrtJUUCtZqyb1

PUf4RU3Pwtg5FIOe34dsORgiiGQEGBECACQFAlnSDcEFCZx7uRAKCwcICQQDBgUC

CggVBQEDAggJCgMWAQIACgkQYsxV9pLc6Zke0gCfTjfY/LKhIskBZlVURZl+NzxW

UrgAn0Axe5jSicsn4gZFzorsTVwUResD

=WJzI

-----END PGP PRIVATE KEY BLOCK-----

5. If I am not wrong, those torn books are completely worthless︸ ︷︷ ︸ and moth-eaten.

6. Yes, you are right, those torn︸ ︷︷ ︸ dusty books︸ ︷︷ ︸ and magazines are completely worthless︸ ︷︷ ︸
and forgotten.

In point of fact, the entire concatenation formal power series of the sounds
of human language (# _+ #), ideally not just the past, present and future of
all human languages and inherent derivability, but instead the universe of all the
possible combinations of the sounds of speech, under which sentences (through
either syntax parsing or speech recognition under natural language processing) are
microscopic atomic parts, could well be characterized by the Aum. (or else know
as Om.) (transliterated from Nāgar̄i) Sanskrit expression. Aum. or Om. , as a dis-
tinct syllable sound and vocalization, is supposed to attest for the ultimate reality
and cosmic principle, as if it was a sort of phonological Λ, the well-known cosmo-
logical constant in physics. Truly, even if it is correct to place the phenomenon
of language under the strict limit of the sounds of speech, and one such form is
advisably tractable under the articulatory and vocal tract apparatus proper of
man, it is also true that the mental aspect permits the envisagement of one such
symbolic description notably ascending from the (yet fully perceptive idea) of pure

128

mathematical sound in physics to, perhaps more importantly, (yet fully a priori
determined) wholly phenomenological music.

2.1.1.2 Musical Interlude

Most notably, in all the course of the Western philosophy of language, and since
the invention of the first modern music theory by Aristoxenus of Tarentum (IVth

century BCE), roughly two generations after the writing of Cratylus by Plato –
the first recognisable book in philosophy of language discerning on naturalism vs.
conventionalism, and also arbitrariness vs. fixed theory of forms over the right
appropriateness of signs and the different subjects of naming -, it was almost only
incidentally that music impregnated the disputable theories on language.

We are invoking the decisive contributions made by the two Late Antiquity to
Medieval Era philosophers, Augustine of Hippo and the Roman senator Boethius.

Augustine of Hippo (354-430) expanded in De Musica [14] upon the theory on
metrics and rhythmic allied with ethics, whose opera’s confluence with language
would be minor, if did not also include the determinant concourse of De Magistro
[9], a seminal undertaking in philosophy of language. In the work De Magistro [9],
Augustine was able to reason on a whole range of unprecedentedly schematized
concepts in philosophy of language. With a stance in the discipline sufficiently
neutral in relation with Doctrina Christiana [13], the Christian theologian and
philosopher was able to upsurge philosophy of language and semiotics (or else said
sign theory), from grammar studies typical of the liberal arts (grammar, logic and
rhetoric, later know as trivium; arithmetic, geometry, music and astronomy, later
known as quadrivium).

In such way, concentrating on the "phrasing structure" [67, 115, 69] of pars
orationis, nomen, uerbum and different coniunctiones, departing from the atomic
parts of speech (si, uel, nam, namque, nisi, ergo, quoniam, et, que, at, atque)
attaining also to the pragmatics analysis of loquendi regula (speech acts rules),
Augustine, by having given attention to the reflexive judgement of the homo in-
terior, explained, thus, in full form, the prime motive of De Magistro’s docere et
commemorare (to teach and recall). Under Augustine’s analysis it is of paramount
importance the overall doctrine of cognitio signi (semiotics), to ascend (in formal
agreement with Plato’s doctrine of ideas) to cognitio rei, the acknowledging truth

129

as it would be. The whole range distinction between signa (signs), significatio
(meaning) and significabilia (visual or acoustic image), from the traits of dicibile
(what is and can be said), definitely asserted new values to the field, in a trip-
tych embracement of intellectus, ratio et mens. By this effect, Augustine achieved
having non problematically combined metaphysical decidability with language con-
ventionalism.

The product of Augustine’s De Magistro [9] was, therefore, not only to have
reinvigorated the Stoic’s tradition from onomatopoetic naturalism to anticipated
nominalism and even Saussure’s [99] linguistic arbitrariness, but also to have sur-
passed the already meaningful Stoic model of ϕωνή (phone), λέξιζ (lexis), λεκτ óν
(lekton) and λóγoζ (logos). It is clear the liaison and influence exerted on Saus-
sure’s linguistics, while it is fair to admit that are really pale improvements both
John Stuart Mill’s distinction between connotation and denotation, as well as
Frege’s [234, 53] logic model of sense (sinn) and reference (bedeutung) in philoso-
phy of mathematics (as for the rest, a bivalence that could be original if Anthistenes
and Cleanthes had not been credited in Antiquity for the exact same distinction),
compared in such spectrum the rich legacy of Ancient philosophy, passed more
than 1500 years from its decline.

In what concerns Boethius (480-524), the author expressed in De Institutione
Musica [42] a threefold vision of philosophy of music with an universal and holis-
tic scope. By order, Boethius exposed the concepts of musica mundana, musica
humana et musica instrumentis7:

“Sunt autem tria. Et prima quidem mundana est, secunda vero humana, tertia,
quae in quibusdam constituta est instrumentis.” [42] (Boethius, De Instututione

Musica, Librum I, § II, Tres esse musicas; in quo de vi musicae).
7At the time Boethius wrote De Institutione Musica he never referred tomusica instrumentalis

instead of musica instrumentis. This shift of word ending might, nevertheless, be allowed, as it
was an epoch assumption that vocal music was part of instrumental music. This ambivalence is
crucial to grasp the place of not only vocal music, but also human voice and speech in Boethius’s
philosophy of language and music, as it might mean that the venerated martyr safeguarded vocal
music from instrumental music. In contrary to this stance, it is a very strong argument to posit
why, thus, in face of such a great prominence of vocal music, never was it made explicit, adducing
a great case of evidence if, indeed, we know that the proper term instrumentis eventually evolved
to instrumentalis from Boethius’ time to Thomas Aquinas’ XIIIth century.

130

More in detail, it encompassed, laid down as in categorical formulae, musica
mundana (correspondent with musica universalis and the originally Pythagorean
idea of music of the spheres), musica instrumentalis (in which division the "last of
the Romans" presumably included vox humana or vocal music), and, finally, mu-
sica humana, an exquisitely crafted concept of humanism, illusive and pervasive
of all the different entrenched divisions of the liberal arts and very pertinent to
the new to come cultural and epistemological turmoils in Western thought. Plau-
sibly, musica humana is best described as a sort of special antechamber between
the inner silence and the verb, as well as between silentium interior and musica
universalis, by means of the same locus of breath as used in one of the forms of
musica instrumentis, that is, vox humana (the human voice). Maybe the just re-
ferred Aum. (or else know as Om.) (transliterated from Nāgar̄i) Sanskrit expression,
a sort of universal constant and human respiration whisper can do justice and be,
indeed, a parallel cultural concept to Boethius’ musica humana.

We should strive in deepening our understanding of philosophy of music (consti-
tuted as it is, echoing Boethius’ metaphor, as a sort of antechamber of philosophy of
language). The idea here subscribed is contrary to the idea of philosophy of music
as a late epiphenomenon coming from emancipated and sophisticated philosophy
of language or even set apart philosophical points of convergence, but matches
instead the thesis defending philosophy of language and linguistics subordinate to
philosophy of music.

Prima faciae it is the concept of musica humana the mainspring concept, all
too forgotten. Bréf, we are adopting a wider view of philosophy of (perceived)
sound in (intuitive, interior and perceptual) time, and also of spatial forms, ca-
pable of accounting for the full eidetic-tonemic-phonetic circle. One such circle is
best described as a constrained aerophone, under which the Chomsky-hierarchy
[67, 115, 69, 68] can be considered a proper formal substructure (on the premise
that encompasses sonus universalis, from which music and language are deriva-
tive orders) and where natural language processing is a sub-problem [39, 85, 142].
It is obvious that there are not any languages endowed with higher-level musi-
cal features, such as harmony (indeed, neither did have Ancient Greek language
which sought for harmonically crafted effects by means of concord of sounds), but
it is clear that low-level musical features, such as the ubiquitous range of tones,

131

rhythm, meter, articulation, tempo and texture, and even common accidentals and
breath marks, are passable to non-musical phonemic orders of any language and
its (phonetic or ideographic) alphabets [18, 394, 285].

Extended notes on philosophy of music are, thus, welcomed, both in general
philosophical and historical terms, as under the triplicate division of Boethius
[42], to the aim of understanding natural language processing in the transfer from
linguistics to formal grammar studies, from semiotics to computation [199, 53, 350].

In particular, it shall be unveiled the Chomsky–Schützenberger hierarchy [69]
in inceptum finis est status, as we are to discover, plainly, that inasmuch as the
cutting edge and present-day sense of one generative universal grammar is the
generative tonal (musical) grammar [238] (A Generative Theory of Tonal Mu-
sic, GTTM, 1983-2009), in principle, something as the general presumptions of
natural language processing in any programming language [39], and one such
as Prolog [85, 142, 78] (and throughout the spectrum of failure of the FGCS
[52, 139, 86, 141, 324] to comply with self-proffered AI [352] prognosis), can not
be discerned without grasping the leading fundamentals of philosophy of music
(ultimate phenomenological unrestricted and utmost structured sound).

The generative theory of tonal music [238] not only represents the vanguard of
the latest improvement efforts in the Chomskyan theory [67, 115] of the transforma-
tional and universal grammar, as in tectonic and architectonic terms, is supposed
to expand from the principles of natural language processing, taking into account a
full eidetic-tonemic-phonetic circle. This should illustrate the prevalence of philos-
ophy of music over philosophy of language and the articulation of natural language
processing into a wider frame of perceived sounds in perceptual time or flux of con-
sciousness (even if settled beyond regular expressions and automata, morphology,
finite-state transducers and computational phonology, and attaining exclusively to
parsing with context-free grammars with unification) [199]. The same should be
valid, in our understanding, in the body of the theory of programming languages
[313, 377, 53, 173]. We are, thus, pointing out the need of universal horizons and
the reexamination of the first principles.

In one way or another, it resembles that the quadrivium – arithmetic (static
discrete quantity), geometry (stationary magnitude), astronomy (dynamic magni-
tude) and music (discrete quantity in movement) –, in the futurity of the passage

132

from Modern to Contemporary Age, were to be unprivileged of their proper dox-
astic and belief logic, the reason being that Turing’s computing limit [363, 366,
364, 365] and Gödel’s incompleteness theorems [161, 162, 160] in mathematical
logic containing arithmetic, Gauss’ and Bolyai-Lobachevskian’s discovery of non-
Euclidean geometry [174, 349, 408], Einstein’s relativity and the quantum revo-
lution in physical astronomy [124], have gone-ahead to leave music as the only
left realm of indisputable acquiescence of one such accepted status as one of an
universal language. Music is, therefore, the only remaining symbolical science of
indisputable universal status, in pristine state and unmoved aura [394, 285]. Along-
side with this observations, it can be said to enjoy a free continuum of its own,
an acousmatic more than acoustics, intuitive monochord. The concept of mousike
techne [18, 244, 330, 166] in language stands out and is best described, then, by
saying that it resounds a sharp (µελoς− επoς) (melos-epos) or (musical-linguistic)
metronome, with a concept of time neither extensible, nor abridgeable, enshrining
also a mingled aerophone and chordophone in musica humana [42] constitution.
Originally, the paramount feature in regard to Ancient Greek mousike techne in
language, was the multi-dimensional (lyrical; dramatic recitative; musical; geomet-
rical and mathematical) sort of extant formal Pythagorean transcendental type of
natural judgement, with a preeminent acousmatic nature8.

At this point we can fully expose the necessary reasons for a Musical Inter-
lude segment, clear of the as of now disclosed and assumed principle of philosophy
of language subsumption in philosophy of music. We choose to separate the reasons
in order below:

• the historical different frameworks of the original Chomskyan [67, 115, 69, 68]
linguistic theory of the transformational or generative grammar, mainly pro-
pounding the core thesis of universal grammar innateness behind Saussure’s
[99] historical structuralism, encompassing the standard theory (1957-1965),

8Not to forget that ακoυσµατικoι (akousmatikoi) used to refer to the probationary pupils of
Pythagoras required to sit in absolute silence while listening to their teacher delivering the lesson
from behind a veil or screen, stands out in the context of mousike techne, in Archaic to Ancient
Greek language, as a superlative philosophy of language {νóυς} (nous-thetic) consciousness,
obviously under the common norm of ητoς (ethics).

133

the extended standard theory (1965-1973), the (by the time of birth of Pro-
log) revised extended standard theory (1973-1976), both the relational and
government binding principles and parameters theory (1975-1990) and, fi-
nally, the minimalist program (1990 to the present), has led, from the begin-
ning of the 1980’s to the very present (permeated in the context of context-
free grammars, linguistics post-structuralism and natural language process-
ing [142, 39]), to a series of studies on music theory and analysis that can
better be summed up in the generative theory of tonal music [238] (GTTM,
1983-2009). Following Leonard Bernstein’s insightful recommendations in
the The Unanswered Question series in the Charles Eliot Norton Lectures
at Harvard University (1973), idealistically advocating the possibility of a
musical grammar, in terms comparable to the transformational or genera-
tive grammar of Noam Chomsky, the sequent groundwork effected from the
1980’s on by the American composer and music theorist Fred Lerdahl (n.
1943) and the American linguist Ray Jackendoff (n. 1945), has, in the course
of more than three decades of investigation, definitely marked a signature era
to supplant the evolution of the different frameworks of the Chomskyan gen-
erative grammar. In the aftermath of Schenkerian analysis [27, 37] (natural
language processing equivalent in music analysis), this era, very plainly, is
to be called the Generative Tonal Music Program (1980 to the present), and
has evolved to produce, in minimal conceptualization and analicity coinci-
dent with the minimalist program (1990 to the present), the thesis for the
identity of language and music, all in all a title work (2009) by the authors
Jonah Katz and David Pesetsky [213]. As a motto for this program we recall
Mendelssohn’s (very ahead or yet affine with musica universalis) remark:
"Music is too precise to be put into words." [394, 285]

• general (strong) AI [352, 141, 325] undelivered and often absurd historical
claims, namely in the field of man-machine communication [279, 87], mir-
rored in the failure of the Fifth Generation Computer System [52, 139, 193]
(FGCS) in Japan (1982-1992) whose programming language of choice was
Prolog, the postliminary historical drift and uncertainty in the discipline
of natural language processing whose computational linguistics foundation

134

was the Chosmkyan paradigm before the shift was made to machine learn-
ing algorithms and statistics [109, 199], leading, at least in surface and at
non-structural level, to the abandonment of the Chosmkyan syntactic trans-
formational grammar paradigm in computational linguistics and natural lan-
guage processing, should give us enough reasons to appoint a serious lack of
philosophy of language discernment (often times found in linguistics and phi-
losophy of language itself), very much induced by the lack of one acousmatic
awareness. The most adequate motto for this stance is the famous Jules
Combarieu’s dictum: "Music is the art of thinking with sounds." [394, 285]

• the focus on philosophy of language subsumption and abridgement in philos-
ophy of music permits us to test the methods of Chomskyan’s latest achieve-
ments under the ongoing minimalist program, in the form of context-free
transformational tonal-oriented grammar, with the abandoned Chomskyan
paradigm itself in natural language processing, and while checking why this
is so and why this divorce happened, we are best prepared to evaluate the
rejoining arguments of phonos (sensuous common perceptual linguistics) and
tonos (sensuous common perceptual music), and, what is more, to properly
inquire on the photos (sensuous common perceptual optics), the one only left
exploited experiential and perceptual expanding point in the knowledge from
senses to understanding and from understanding to reason that, not just in
external recollection, but also in internal apperception [211, 63, 202], is con-
ducive to a possible mathesis universalis theory based on what we choose to
call visualness. As a motto for this view, we posit Claude Debussy’s apho-
rism: "Music is the arithmetic of sounds as optics is the geometry of light."
[394, 285]

135

2.1.1.3 The Chomsky Hierarchy in Boethius’ Triptych

With all these elements at hand, we are ready to scrutinize in wider comprehen-
siveness the terra incognita of philosophy of language in the emergent generative
theory of tonal music [238, 237] (GTTM, 1983-2009) under philosophy of music
[330, 18, 283, 411, 14, 42], accounting for an "internal merge" [213], in contrast
with the proper matter of natural language processing in the programming lan-
guage Prolog [39, 389, 296, 78, 85, 142] and beyond, in the due course of computa-
tional linguistics evolution [20, 142, 253] (in either text-based or speech-based
man-machine interactive approaches), and past the XIXth and XXth centuries
grammatici certant delve, conscious that a definitive orderly, either in esse or
in posse schematizing, is impossible to achieve, nevertheless propose the following
diagram (2.2 page 137):

136

BA C

Type-0 Type-1

Type-2Type-3

Acousmatic Musical

Eidetic

Phonological

Figure 2.2: The Chomsky hierarchy contained in Boethius’ triptych

Nomenclature

A Musica Humana

B Musica Mundana

C Musica Instrumentis

137

A proper and fair idealization of the discipline of natural language processing
[142, 122, 39, 389, 296, 199], contemplating speech recognition and pragmatics (vs.
limited syntax parsing, semantic analysis and logic programming) [199], should
naturally deflect its scope to a full phonetic-tonemic (quasi-musical) [213] circle
and, what is more, to a common ground of mental perceptual acousmatic sonus.

Natural language, principally phonetic in speech form (vox humana nascent
from vox instrumentis brewed in musica humana) has had inherent the object
of a major driven conversion under the "prolongational" [67, 115, 69] discipline
of natural language processing, which was not text-to-speech form (tractable un-
der finite-state transducers and computational linguistics phonology) [199], neither
speech-to-text (tractable under speech recognition, also as a sub-field of computa-
tional linguistics) [199].

Natural language processing [85, 389, 52, 139, 193] really intends instead to
speech-to-speech form under the ideal human-computer interaction (an extraordi-
narily incumbent argument on the "Imitation Game" [368, 363, 366, 364, 365, 367]
and, thus, a counterpart representative of Boethius’ [42] musica humana in one
contemporaneous computa humana analogue and correlative symbolic revolution).

One such envisagement is determinant to foreshadow the status of natural
language processing, its proposed aims and inherent philosophy of language, more
significantly so if crafted in one such programming language as Prolog [85, 78, 39,
389, 296] (an exclusive semantic network of a context-free grammar in Prolog with
a database and a syntactic analyzer or parser). Forasmuch as a former analysis
should attain correct meaning representation and a sense of unambiguous word
sense, more so under philosophy of language and natural language processing,
and even for a "conversational language" [73] (W.F. Clocksin & C.S. Mellish,
Programming in Prolog, Fourth Edition, 1987-1994)) like Prolog, it should be noted
the distance from programmatic topics to contents of pragmatics (prosody dialogue
and utterance in conversational agents, in sum the relation between the natural
phenomenon of language and the context-of-use) [67, 115, 69, 199].

Being Prolog a context-free finite collection of rules defined grammar designed
to convey computational linguistics and natural language processing, such a con-
dition cannot be a contravention to fully understand the exogenous levels outward

138

the context-free grammar (Type-2), or the furthermost investigations on the sub-
stratus of philosophy of language and sound.

This is precisely one of the reasons why, ultimately, while considering Prolog
a proper subject under philosophical analysis, from logic programming to meta-
logic facilities, part of its interest relies on its peculiar history as a Fifth Genera-
tion [52, 139, 193] (1982-1994) logic declarative programming language with failed
desiderata in AI, with one majoritas lacuna: one absent (although parallel to)
programming language philosophy pledged to speech recognition and pragmatics
design. In 1971, less than two years before Prolog was crafted, speech recognition
and synthesis technology was endowed with a funded five years speech understand-
ing research DARPA program aiming at a minimum vocabulary size of 1000 words,
which helped to catalyze hope on one side, but was self-explanatory enough about
goals) 9 [199, 142].

Prolog, by, being (syntactically) sealed in context-free grammars, was inef-
fectual, in terms of AI [352, 325], in endowing comprehension of grammar com-
plex outer-bounds, from linear bounded automata (Type-1) to unrestricted re-
cursively enumerable languages (Type-0) [67, 115, 69] (within the proper Chom-
sky–Schützenberger hierarchy), as if its partake into a Turing machine [362] meant
an inclusive bound within the limits of tractable [122] complexity. This is even
more surprising if we confront AI practitioners’ circumscribed interchanging knowl-
edge and motivations with the 1970’s vibrant and noteworthy scenario in philoso-
phy of language.

With this special innuendo in mind, it’s not to be forgotten either and with
great importance, that enshrouded in the transformation from formal logic and
grammar hierarchy [51, 354, 110] to computability and complexity [256, 86, 173,
289, 16], is the Leibniz-Newton calculus to Church-Turing computus [72, 368, 362,

9Speech recognition is, in hindsight and recognizable structure of natural language processing,
such a distinctive and founding field (inseparable from phones, pragmatics and the context-of-use
of words, the proper matter of information and communication of symbols) that the success of
the five years DARPA speech recognition research program (having attained a 1011 words power
machine understanding in Carnegie Mellon), might have strongly influenced the philosophical
ambiance in the industry welcoming Prolog. Indeed, the year of 1971, just about the time
Prolog was to come up, is an hallmark date in the field of speech recognition, period after which
speech recognition rose to high accuracy and multitude of tractable phones due to increased
computational power and techniques.

139

194]. In treating the foundations of computation, we abide to an historical, logical
and philosophical-symbolical perspective to the greatest possible dimension. These
are such that cherish and critically think through the antecedent groundwork con-
tributions of George Boole [43] (1815-1864), Gottlob Frege [234, 134] (1848-1925)
David Hilbert [420, 119] (1862-1943) and Bertrand Russell [399, 234] (1872-1970),
going beyond still to charting the different perspectives over different times and
origins. They can range from Antiquity’s Pān. ini’s Sanskrit grammar (3959 sutra-
rules) Ashtadhyayi and Hero’s of Alexandria machine sequence control, to Modern
Age Pascal’s controlled carry "machine arithmétique" and Leibniz’s explanation of
binary arithmetic; they can go from the Late Medieval Lullian circle and Kerala’s
school invention of the floating-point number system, to the XXth century creation
of the first high-level programming language (Plankalkül) (non-von-Neumman) by
Konrad Zuse in Germany, and the successful development of EDSAC (integrally
the von-Neumann architecture in the computer) in Britain.

It is, thus, impossible to conveniently address computability and complexity
theory without recovering the algebraic logic and holistic reference to the universe
of discourse (Boole, Investigation of the Laws of Thought on Which are Founded
the Mathematical Theories of Logic and Probabilities, 1854) [43]. As to the foun-
dations of arithmetic, the distinction on sense and reference (Frege, Über Sinn und
Bedeutung, 1892) [135], shielded in function–argument analysis of the proposition,
compositionality and context principle, and also the concept and object (Begriff
und Gegenstand), all of these distinctions utterly important to grasp the emer-
gence of automata theory (abstract machines in relation with the context) and
also type-theory (originally a Russell’s response to Frege’s naive set theory), can
neither be neglected in a broader study.

The same holds for all the other various proposed Russell’s theory of types
[234, 399, 117, 58], namely the ascendance from the problematic of Cantor’s diag-
onal argument [358, 119] (and inherent paradoxes into transfinite cardinal num-
bers) to the notion of “extensional hierarchy” [117] (Russel, 1959), an entire area
of research without which high achievements in philosophy of mathematics and
computation could have been truncated. To behold this statement is enough to
recall that Alan Turing [363, 366, 364, 365, 367] used the original Cantor’s diag-
onal method in proving the undecidability of the decision problem (the Entschei-

140

dungsproblem originally posed by Hilbert in 1928), Kurt Gödel also recurred to
the same diagonal argument in a self-referential mirroring lemma to prove the two
incompleteness theorems following On Formally Undecidable Propositions of Prin-
cipia Mathematica and Related Systems [312, 161, 162, 160, 216, 280] (1931) and,
finally, Alonzo Church used the diagonal method in the fabrication of λ-Calculus
[137, 194, 331, 21, 172], all without which computation and programming languages
[53, 58, 197] would not have risen.

141

Part II

Core Prolog

142

2.2 Essentials

Prolog is a programming language that, as other programming languages, demon-
strates its interrogative and, thus, philosophical status, right from the system
prompt shell in the command-line interface or command language interpreter
(CLI), here SWI-Prolog[403] on a typical Unix environment:

1 machine% swip l
2 Welcome to SWI−Prolog . . .
3 . . .
4

5 1 ?−

The console SWI-Prolog (SWI-Prolog 7.7.10) itself, is not only "used as an embed-
ded language where it serves as a small rule subsystem in a large application"[403]
– congregating a prototyping environment, program structuring modules, multi-
threading support in between servers, command line and graphics usage –, as it is
also a dialogue between C (the general purpose, imperative programming language,
with a strong design mapped directly to machine instructions, thus with a more
mechanical-industrial ontology, developed by Dennis Ritchie between 1969 and
1973 at Bell Labs, intimate with AT&T Unix, also a product of Bell Labs in the
1970’s) and Prolog (the general-purpose declarative programming language, with
a strong design mapped to logic, thus with a more methodological-cognitive on-
tology, developed by Alain Colmerauer and Philippe Roussel from Aix-Marseille
Université, and Robert Kowalski from the University of Edinburgh in the early
1970’s). (As a warning, and to facilitate referencing, by Prolog we mean the ISO
Prolog standard: ISO/IEC 13211-1 that was published in 1995)10.

Indeed, when one is referring to a Prolog console – GNU-Prolog[105], XSB[390],
and ECLiPSe[382], or even (compiled, non-interpreted, multi-paradigm) Turbo
Prolog, PDC Prolog and now Visual Prolog[329]11 –, with the natural requisites

10"Work on the standard began in Britain in late 1984. In 1985 AFNOR formed a Prolog group,
which worked in cooperation with the British group. Only in 1987 was the ISO/IEC JTC1/SC22
group WG17 created"[184], where the JTC1/SC 22 is the international standardization subcom-
mittee for programming languages, their environments and system software interfaces, called the
"portability subcommittee"(https://www.iso.org/.html).

11There is a wide range of Prolog implementations, besides SWI-Prolog (most of them com-
pliant with ISO Prolog, and when not with Edinburgh Prolog): BProlog, JIProlog, Ciao, DOS-
PROLOG, ECLiPSe, GNU Prolog, Jekeke Prolog, JLog, JScriptLog, jTrolog, LPA-Prolog, Open

143

of interaction with the environment, scalability, (I/O) reliance, standard protocols
compliance, etc., it is already at stake the necessary recursive interaction with the
C-language. Generally, thus, we have to be cautious not to interpret any imple-
mentation of Prolog as ethereal, once some contact with intermediate procedural
and imperative language closer to machine language is an unavoidable coercion.
In like manner but inversely, it is presumed that Boolean logic (bitwise or logi-
cal), sketching factorization in the construct of abstracts (just like diagonalization
and cryptography) does not impose any limits to the ethereal realm of abstracts,
even if it is admissible the existence of an (unaproachable) lower bound, in which
case a (non-achievable) irreducibility acts on computational mathematics, software
engineering and linguistics.

SWI-Prolog relies on the virtual machine ZIP (Bowen et al. 1983; Neumerkel
1993) [278, 232, 277] – "The SWI-Prolog VM is a structure copying machine that
passes arguments through the environment and addresses arguments using an ar-
gument pointer. The argument pointer is also used to read and write arguments
in lists and compound terms. The C-based emulator currently implements 145
instructions."[232] out of which in SWI-Prolog a restrict group of 7 instructions
only is remnant[403] – represents already a far-away settled methodological ap-
proach in what concerns abstract machines. More often than not, it is thought
that the WAM (Warren abstract machine) predates ZIP, but that is not the case.
After Prolog 0 (1972) by Roussel working with Algol-W, Prolog I (1973) by Bat-
tani and Meloni working with Fortran, the PLM (Programmed Logic Machine)
(1977-1979) by Warren finally produced the DEC-10[89] time-sharing and later on
last call optimization mainframe system.

The WAM (Warren abstract machine), which contains the memory architecture
and instruction set of all the Prolog compilers – with a global stack or heap to store
all the compound terms; a local stack for environment frames and choice-points;

Prolog, Poplog Prolog, SICStus Prolog, Strawberry Prolog, tuProlog, Visual Prolog, XSB Prolog,
and YAP-Prolog.
SWI-Prolog complies with ISO Prolog and Edinburgh Prolog, is flexible across operating sys-

tems (Unix, Linux, Windows, macOS), is permissively distributed within a minimal restrictions
free software license, with native graphics communicating with compiled code and unicode (non-
object oriented), is endowed with native OS control, stand alone executable performance, and
both C and Java interfaces. Its toolkit has the characteristics of an interactive interpreter,
debugger, and code profiler.

144

and a trail to record variables bindings to be undone on backtracking12 – for
sequential Prolog, dates from 1983, but in the meanwhile (1982) ZIP was crafted.

A small instruction set with a simple meta-interpreter for the essential archi-
tecture, an efficient source-to-intermediate-to-machine code emulator, often with
source level optimization (with methods such as common subexpression elimina-
tion[407] and function inlining [407])13drives the abstract machine to greater com-
pactness and optimality.

In the overall, in terms of data instruction formats we have the following "data
areas"[278], here under Backus-Naur form (BNF):

〈AND-control〉 ::= 〈local/environment stack〉 | 〈global/copy stack〉 | 〈heap〉

〈OR-control〉 ::= 〈choice-point stack/trail〉
12Backtracking is a general algorithm specially for the type of constraint satisfaction problems.

By definition, it is, therefore, metaheuristic. A typical glossary definition is sufficient for the
moment, and so we can assert, very simply, that backtracking is what many have said, all with
a share of truth: Clocksin & Mellish: "a behavior where Prolog repeatedly attempts to satisfy
and re-satisfy goals in a conjunction"[73] (in case of satisfying goals, with a place-maker behind
and in case and any time a goal fails, going left-hand back, starting from its past place-maker,
undoing all the temporarily instantiated variables, until a fact is found); Max Bramer: "the
process of going back to a previous goal to find alternative ways of satisfying it."[284]; M. A.
Covington, D. Nute, and A. Vellino: "Prolog does not know in advance which clause will succeed,
but it does know how to back out of blind alleys(...)A good way to conceive of backtracking is
to arrange all possible paths of computation in a tree"[373].
Backtracking is also a programming technique and a computational mathematical theorem.

If one is interested in exploring how, through the use of the semi-colon ; or the goal fail, for
example, to experiment results, can follow James L. Hein Prolog Experiments in Discrete Mathe-
matics, Logic, and Computability [175] (2009) ("Or-Clauses"; "Adding New clauses"; "Modifying
Clauses"; "Deleting Clauses"; "The Cut operation" in basics, but many more related); in what re-
gards the precise delimitation of the SLD (Selective Linear Definite clause) resolution – the basic
inference rule in logic programming akin to resolution – and backtracking, can check Logic, Pro-
gramming and Prolog (2000) by Ulf Nilsson and Jan Maluszynski (namely the relation between
depth-first search – originally in Zuse’s Plankalkül[229, 26] – and the soundness and completeness
of SLD-resolution).

13Direct examples from An Introduction to GCC - for the GNU compilers gcc and g++[407]
by Brian J. Gough include:

x = cos(v)*(1+(u/2)) + sin(w)*(1-sin(u/2))

where sin(u/2) is instantiated to a free variable t as common subexpression elimination; and
also:

double sq (double x) return x * x;

where, in case of loops, the function inlining replaces x by a temporary variable suitably small,
permitting the loop to run.

145

... and machine logic operands combined in decoding the Head and Goal with
necessary prefix or postfix control transfer positions, also possibly with instruction
removal in each action, are all possible variable responsive shreds of design. ZIP
(1983)[278] initializes all arguments on stack, with choice points of constant size
in linear sequence of code.

We also learn from Wielemaker and Neumerkl [277] that SWI-Prolog (5.6.54
and most certainly still 7.6.x) and ZIP have their volatility primarily stemming
from backtracking, instead of forward recursion. As a matter of fact, the "black-
box procedure"[404, 48, 242] and the "partial candidate solution"[222] presupposed
in the technique of backtracking[383], with roots in SNOBOL (1962), definitely has
a correspondence, not only with the idea of a "storehouse of facts and rules"[73],
but also with the "open-world assumption"[325]. While this is very recommendable
in trivializing a philosophical (and non-dogmatic, truly skeptical) fine print – the
assumption that the truth value of a statement may be true mindless of whether
or not it is known to be true –, comes with the drawback of carrying the load of
memory for each atom of the knowledge representation basis or stack in successive
trails.

As we shall see with logic programming and Prolog – recognizing that its declar-
ative status is calculated on and trusted in procedural routines, very much like
definite integrals under the curve – also the typical "closed-world"[73, 171, 46, 45]
(CWA) assumption of Prolog – "Prolog’s behavior on queries including negated
ground queries can thus be considered either as sound relative to the Closed World
Assumption, or as sound relative to the minimal Herbrand model."[342] –, has, very
much due to the mechanism of backtracking, necessarily to be balanced in relation
to the open-world assumption (OWA). Hence, in Prolog, axiomatic knowledge,
akin to classical logic and the closed-world assumption (CWA) divides but de-
pends on consequent inferred knowledge, akin to constructive/intuitionistic logic,
and the open-world assumption (OWA). All in all, even if Prolog does no retract
any of its Facts neither at compile time nor at run time, there is some monotonicity
of entailment with freely extended additional assumptions, and, except for first or-
der predicate Rules, axioms of the system can always be subject to cut and failure,
even if provisionally with backtracking, and yet more definitely so re-instantiating
Facts, Predicates and Rules.

146

This liaison of Prolog with expendable and disposable information has its in-
formatics epitome in initialisation proper. In Dec-system-10[89] (1.11) (1982) this
is very clear with same call realization of both ’prolog.bin’ in the default path:

1 | ?− r e s t o r e (’ pro log . bin ’) .

... and, in case no such file is found, the automatic equal search, now ’prolog.ini’

being set in motion (it is also possible to run one program Prolog file through an
already existent work file, by typing plsys(run(_, _)) for, respectively, program
file and offset):

1 | ?− [’ p ro log . i n i ’] .

In the case of SWI-Prolog[403, 232], it happens to have its own built-in native de-
velopment tools. Some are, clearly, OS inspired, such as the Prolog navigator,
with a windows and folders mouse-pad friendly file presentation and management.
It also contains a Cross Referencer creating a hiearchical file overview, an Ex-
ecution Profiler which displays call and time statistics of the program (also
executable through profile(:Goal)), a Graphical tracer with source-level debug-
ging, using two parallel windows – with variable bindings and the stack – and
one detached window providing top-level source code processing for verification
and performance analysis. But, more important and above all, in analyzing the
conundrum between philosophy of language problemata, programming languages
theory and logic programming, we refer to PceEMacs.

PceEMacs is the work on XPCE/Prolog[401, 402, 403], being XPCE/Prolog
a product of "knowledge intensive graphical applications"[402] for dynamic typed
languages, developed by Anjo Anjewierden and Jan Wielemaker from the depart-
ment of SWI, so to create an "object-system written in the C language"[402], but,
by its nature, at the same time mimetic, for how much it is permitted, of the object-
oriented paradigm in the facets of "event-driven control and global state"[402].
With XPCE/Prolog, thus, combining an object-system, a GUI (graphical user in-
terface), multi-threading typical-Unix process and file system blocks, and, finally,
debugging and statistics – and specially if recalling that PceEMacs14 is, in its

14PceEmacs – started by using the predicates emacs/0 (directly opening the scratch buffer),
edit/0 (editing the default file) or edit/1 (edit+Specification) – being a Richard Stallman’s
GNU-Emacs act-like in XPCE/Prolog, has implemented Prolog syntax highlighting based

147

turn, a clone of GNU-Emacs, a family of extensible text editors that are writ-
ten both in C, and largely on Emacs Lisp, a (Turing-complete) dialect of Lisp –
the result at hand is a sort of informational (code) and informatics (programming
languages) example of the phylogenetic law of recapitulation [150, 258].

By this we mean that at a single point, after decades of programming lan-
guages development and the turnover of multiple paradigms surges and crossovers
– functional, imperative, structured, procedural, automata-based, declarative, object-
oriented and event-driven – with decades of dynamic programming languages di-
alectic – from λ-Calculus (1936) to Plankalkül (1943-45), from LISP (1956-58) to
Algol 68, from Prolog and C (1972) to C++ (1983) and Python (1991), from Java
(1995) to the none-unique languages web-development era – it seems that, arti-
ficiality and modern cybernetics considered, programming ontogeny recapitulates
code phylogeny.

It is, therefore, admissible that functional, algorithmic, and also philosophy of
mathematics and programming (conjectural) formalism and (type-theory) struc-
turalism, partake, at least in what regards automata and computational classes,
in some sort of determinism.

It is also true that in this prospect, the procedural and imperative paradigms
would correspond to the least upper bound, while the declarative paradigm would
be accounted for the greatest lower bound of the programming abstract (ma-
chine and automata) field. Historically, it is very interesting to observe that this

on parsing and cross-referencing in the editor buffer. The result is "colouring highlights vari-
ables, quoted entities, comments, goals (classified as built-in, imported, local, dynamic and
undefined), predicates (classified as local, public and unreferenced), and file references (classified
as existend/non-existend)" (http://www.swi-prolog.org/IDE.html).
The colour highlighting is also present at the proper LATEXThe Listings Package[185] in play

on this thesis. This very simple feature is, nevertheless, tremendously important. If we observe
carefully, it is the most basic, mild and benignant syntax feature related with the faculty of
understanding and schemata, confronting with the programming idea of

⋃
-Mentalism. One very

good example of the very same, faint but at the same time bright, applied principle is Oliver
Byrne’s The First Six Books of The Elements of Euclid [56] (1847) edition in colour. If we think
that currently per year there are large groups of tens of trillions of digital images, mounting
on growing values each year, apart from the proper photon natural ontogeny of metaphysics,
creating a massive world’s image data bank, independently of the computer vision and multiple-
view geometry programming media syntax or "language code" (with or without machine learning)
in relation with the programming ideal of

⋃
-Mentalism, we understand how much it is suitable

a grounded apperception, in Kantian terms, of the exposed new riddle.

148

artificial-natural programming antinomy has resulted in a constitutive regulation
of both the procedural and the declarative paradigms in the same year (1972) –
alike the truth tables method of testing validity (1921-22), computability (1936)
and computer architecture (1945) anni mirabiles – with the craft of C and Prolog.
C and Prolog (1972) represent, in terms of postulates of programming reason, the
most equally rational, but-contradictory principles, regarding natural-artificiality
as the transcendental (virtual) reality.

Most surely, after the ENIAC [320, 179] (1943–45) coding system by John
von Neumann (with the conjoint work by Mauchly, Eckert, and Goldstine) and
Alan Turing’s ACE [364] (1945) – bearing in mind that both authors engaged
into the stored-program concept and the idea of programming languages, also
cogitating about naturalistic biological phenomena, and even though neither one
did come to live past the 1950’s, or even J. McCarthy’s LISP (1956-58) – it would
not be to astonish their appraisal and maybe concordance with one such law of
recapitulation in artificiality. Indeed, Ernst Haeckel’s Art Forms of Nature[165]
(1899-1904) is certainly, one of the foregoing building examples of the interest
in morphogenesis, and Mendel’s (1822-1884) work on inheritance and the idea
of (self-replicating) genetics is at the core of von Neumann’s computational and
programming philosophy.

Using SWI-Prolog straightforwardly with C/C++, it is also possible, through
MinGW, a "Minimalist GNU for Windows"(http://www.mingw.org/), to write
C/ C++ code loadable into SWI-Prolog and call it as a predicate, or the other
way around, embedding SWI-Prolog in C/C++. MinGW, (a non-Linux kernel) a
minimalist development environment for native Microsoft Windows applications,
obliges, thus, SWI-Prolog to depend on Microsoft Visual C++ MSVC, itelf an
integrated development environment (IDE) for C/C++. In one such case, and in
spite of swipl-ld.exe automatic compatibility, to use in plenty manner MinGW
it is required to set the the path environment variables – the SWI-Prolog binary
variables and the MinGW binary folder – in the same place, usually

C:\MinGW\bin

so to find GCC (’G’NU ’C’ompiler ’C’ollection) files, which include front
ends for various programming languages – C/C++/Objective-C/Fortran/Ada/Go

149

– along its libraries, meant to work as a compiler for the GNU OS.
The necessity of SWI-Prolog depending on the debugging and writing facilities

of MinGW, is forwardly incremented by its dependency on MSVC’s C/C++/C#
code writing and debugging (Microsoft Windows or the operating system, the
.NET Framework with language interoperability and code management, or DirectX
as a set of routines, protocols, and tools for building software applications for audio
and video hardware). Anyway, even if work is being run independently in SWI-
Prolog, we know that the very same language interoperability, code management
and technical translation is being matched, but underneath SWI-Prolog’s skin.
All in all, it is one scenario to think back the quote in Essentials of Programming
Languages [136] (2001):

"Consider again the basic idea: the interpreter itself is just a program.
But that program is written in some language, whose interpreter is it-
self just a program written in some language whose interpreter is itself
(...) Perhaps the whole distinction between program and program-
ming language is a misleading idea, and future programmers will see
themselves not a writing programs in particular, but as creating new
languages for each new application."[136]

Accordingly and in the same line, we should not be oblivious to other appointments
[106, 387, 107, 75]. Indeed, we learn from Daniel Diaz and Philippe Codognet, for
instance, in relation to the creation of the wamcc system, a Prolog to C compiler
based at the Wam (Warren abstract machine), how intrinsically the passage to C
flashes back to a time when the standard compilation and one abstract machine
for the execution of Prolog, consisting of a memory architecture and an instruction
set, was itself a "breakthrough in logic programming"[75].

Not only elements of computer architecture were studied close to the concept
of logic programming – the idea of "computation being expressed as controlled
deduction from declarative statements"[15] by Kowalski – but what is also rele-
vant is that, after the forerunner Q-systems[77] written in Algol (1967-1970), the
first Prolog implementation (an interpreter written in Fortran) by Colmerauer’s
group, the DEC-10 Prolog system[89] (1982) by the University of Edinburgh (an
interpreter written in DEC-10 machine code), later refined into the WAM (Warren

150

abstract machine) (1983), precisely at a time when the FGCS (Fifth Generation
Computer Systems) (1982) was leveraged (with KL1, a Prolog parallelised version
as the system’s language), the wield of a Prolog standard compiler also commanded
critical consultation to the theory of programming languages.

This exceptional, although unnoticed, overcome was achieved by way of me-
chanical explanation of SLD-resolution[140] (Maarten van Emden’s coinage for the
unnamed inference rule introduced by Robert Kowalski in logic programming),
originally dimensioned by Davis and Putnam principle of resolution (1960), and
J. A. Robinson’s [316] (1965) unification algorithm, all in all bestowed on (Alfred)
Horn clauses (1951) mathematical formulae fit for formal specification.

Hence, the Wam (Warren abstract machine), in terms of mechanical intelli-
gence, avows for the SLD-resolution (Selective Linear Definite clause resolution),
which was no more than a clause translation – by means of a restricted linear se-
quence of clauses – which, in turn, accounted for extensive work by J. A. Robinson
(1965) on the restricted syntactical unification algorithm by calling the instantiated
formula only to equal satisfiability with refutation completeness (P -like problem),
thus disciplining Davis and Putnam’s resolution (1960), which was combinatori-
ally explosive, in that their algorithm tried out all ground instances of the given
formula (NP -like problem).

New exploratory avenues shall be encouraged, routing from these observations.
A clear portrait, as it seems rational, is to understand how the Wam (Warren
abstract machine) (1983), the standard Prolog compiler, represents a programming
philosophy recapitulation of the C-language and Prolog (1972) conjoint, although
dual, event, in their procedural and declarative paradigms. With this in mind,
it shall be clearer the nature of logic programming. At a more abstract level, it
should be understood how resolution and its craft (constraint optimization) as
a refutation complete (P -like problem, falsificationist in terms of philosophy of
science) accounts for the essence of logic programming.

Contrary to the inherent dilemmas of philosophy of mathematics in relation
to completeness and consistency fetched away from the intricacies of mechanical
intelligence, the "how" (procedural) and the "what" (declarative) have really come
to approximate themselves to the most possible constricted and self-harboured
programming shell. With this we mean that logic was elevated to a programming

151

paradigm, vindicating the declarative status, precisely by constricting itself to
control in procedural terms. It is under this guise, that we shall understand the
famous Robert Kowalski’s logic programming equation and work title:

"Algorithm = Logic + Control" [120].

Exactly like Turing resolved computability (in a bottom-up approach, through
mechanical intelligence) faced up with Gödel’s announced mathematics incom-
pleteness (in a top-down approach, through philosophy of mathematics), logic was
elevated to a declarative status by resolving procedurally typical mechanical intel-
ligence problemata, such as Horn-clauses (1951), Davis and Putnam principle of
resolution (1960), and J. A. Robinson’s [316] (1965) unification algorithm, and con-
sequently the SLD-resolution (1972) refinement method over simple SL-resolution
(Kowalski and Kuehner, 1970/1971). The Wam (Warren abstract machine) (1983),
although not having called great attention as the FGCS (Fifth Generation Com-
puter Systems) (1982) in Japan, is, nevertheless, the paramount event, regarding
programming philosophy.

More so and crucially, it can be said to have reevaluated an artificial-natural
programming antinomy – the procedural and the declarative paradigms – with a
correspondent equilibrium executed by Control in

"Algorithm = Logic + Control" [120].

When we refer to one such equalization expression – wherefrom an equivalent
expression, maybe more suitably critic, would be

Control = Algorithm + (– Logic)

are, really, deeply ingrained, the antagonist edges coming to a full-fledged pro-
gramming core. This core is best described as having associated the algorithmic,
numerical, procedural, and akin to diagonalization computing methodology (with
previous Q-systems in Algol, implementations such as Fortran and DEC-10 ma-
chine code), contrasted with the logic, syntactical, declarative, and akin to parallel
computing methodology (with implementation such as SLD-resolution, a special
kind of Horn clauses). In this formalism and equilibrium, logic satisfiability and

152

theorem-proving correctness were, all in all, resolved in one programming language,
"in which a computation is in fact a refutation"[140].

Horn clauses [188, 326, 393, 73] (1951) – at a time when AI’s birthright (1956)
by McCarthy in Dartmouth College, with attendees such as Claude Shannon (1916-
2001), Marvin Minsky (1927-2016) Allen Newell (1927-1992) and Herbert Simon
(1916-2001), was not even established as a field – are, basically, an important
formalisation towards any knowledge basis representation, in respect to the logical
inference problem.

In a knowledge representation basis – no more than a "set of sentences"[325] –
we need to know if a sentence α, understood as a theorem or a logical consequence
of the the axioms, is, under the expressed according syntax well-formed formulas of
the language, said semantically true with respect to each possible world. Knowing
that semantics crosses representation (wherein a sentence entails other sentences)
and the world (wherein a world grounding reasoning follows from another congru-
ent established aspect of the mind/world), we need to know, as a Goal, if our model
knowledge basis is theoretically sound, or else called truth-preserving (by means of
carrying out logical inference while model-checking [54, 349, 327]) and if it holds
completeness, in the sense that an "inference algorithm is complete if it can derive
any sentence that is entailed"[325]. Under the very same propositional logic law
of equivalence and propositional logic proper taken as a model15 of representation

15In model theory[327, 349, 54] are famous the equation-like formulas MODEL THEORY =
UNIVERSAL ALGEBRA + LOGIC [215], as well as MODEL THEORY = ALGEBRAIC GE-
OMETRY - FIELDS [183]. Duality in model theory – the idea, indebted to Alfred Tarski’s
(1901-1983) of the definition of a "true sentence" (1933; revised in 1956 with Robert Vaught)
for particular formal languages, and consequently, meeting a truth definition for model-theoretic
languages, which is balanced both syntactically and semantically, in logical completeness and
soundness (and both in procedural and declarative biases; and in, less obvious, but also ade-
quately, analytic and synthetic ways), even if with pairwise equivalence, and therefore, redundant
metatheoretically, is a representational (sound over complete) correct (correcteness being the ar-
row from syntax to semantics) and valid (validity being the arrow from semantics to syntax)
theory – something that finds echo in the following: "Model theory is not a semantical theory
which relates natural languages to the physical and social reality, but rather a mathematical the-
ory which relates some mathematical structures to other mathematical structures."[54]. Model
theory, in its rigour, can be, thus, considered an analytic and mathematical critical philosophy
improvement of Kantian philosophy, and also, among many exemplary contributes, very much
bounded to many-sorted logic and typeful programming philosophy[58].
In a short note, apart from the programming abstract FIELD being inclined to harbour model

theory LOGIC – thus, letting speculate on the nature of ALGEBRA and GEOMETRY natural

153

of our knowledge basis – p ≡ q, Epq, or p ⇐⇒ q – we ask if the knowledge rep-
resentation in which all of the formalised statements are true, entails the atomic
sentence α – in Backus-Naur form (BNF):

〈Sentence〉 ::= 〈AtomicSentence〉 | 〈ComplexSentence〉

〈AtomicSentence〉 ::= True | False | P | Q | R | ...

〈ComlexSentence〉 ::= 〈Sentence〉 | 〈Sentence〉
| ¬ 〈Sentence〉
| 〈Sentence〉 ∧ 〈Sentence〉
| 〈Sentence〉 ⇒ 〈Sentence〉
| 〈Sentence〉 ⇔ 〈Sentence〉

– and from here we can assert that Rules are no more than if-then statements.
If carefully noticed, this is a proof of recursion-completeness of propositional

calculus, as long as a formula or assertion that is true in every possible interpre-
tation makes the model checking set of sentences derivable.

This sense of tautology, a formula whose negation is unsatisfiable regardless
of its possible truth-values – the heart of SLD-resolution [140, 223] in logic pro-
gramming and Prolog –, is very suitable to entail itself tautological implication
with the law of equivalence. But, while this has a positive theorem-like implication
[25, 236] for sentential calculus being both consistent and complete, as for the rest,
any logic programming based on formal logic Rules whose negation is unsatisfiable,
and forwardly and on the far side, higher-mathematical abstract first-order calcu-
lus proof of completeness – (1929) (Gödel’s completeness theorem establishing
a correspondence between semantic truth and syntactic provability in first-order
logic)[160, 216, 280, 161]; (1947) (Leo Henkin’s simplified proof of the semantic
completeness of first-order logic) – the fact that in propositional calculus proof itself
is the proper calculus should make us regard tautology also into the more obscurely
quizzical Wittgenstein’s view [144, 413, 412, 143, 417, 274, 416, 310, 91, 415, 411].

isomorphism – we let also be thought throughout how
⋃
-Mentalism, as a programming philos-

ophy critical limit, as the collection of all possible differential images for each possible integral
viewpoint, can be explored in one such equation as:

⋃
-MENTALISM = MODEL THEORY +

MULTIPLE VIEW GEOMETRY & COMPUTER VISION.

154

Indeed, � S (here in the double turnstile notation, and S for sentence) indicates
a tautology, yet there is also a sense of redundancy >S (here in the tee symbol
notation) denoting an arbitrary tautology – capturing the sense of adding, at the
utmost, one positive (unnegated) literal to a clause such that it forms a disjunction
of literals, i.e., a Horn clause in the global – or even ⊥S (here with the dual symbol
falsum) denoting a contradiction (which is, alike a tautology, a universal truth in
formal logic). Now, this last example is as much transparent of Wittgensteinian
fideism [418, 419, 416, 310, 91] (faith being independent of reason,), as it is of
Kantian critical philosophy [116, 114, 211, 63, 209, 205, 204, 208, 207, 206, 203, 210]
(faith being grounded in the needs of practical reason).

Moreover, this serves as the best example of both Kant’s critical philosophy
in relation to antinomies [63, 209, 211] (apart from the ideal representation that
contradictions are inherent to the necessary transcendental reality, focusing in the
fact that, logically and necessarily, they are contradictory S, established as a Fact,
inasmuch as a Query and a Goal coincide) and, to our aim, in terms of programming
philosophy, the idea, not contrary to many procedural programming languages and
databases, however also of Prolog’s, closed-world assumption (CWA)[73, 171, 46,
45].

In the closed-world assumption (CWA), we depict a statement S to be true
also known to be true. Conversely, any statement S not known to be true, is
automatically interpreted as false in Prolog. This complies with so called "negation
as failure"[337, 214], intrinsically related to the closed-world assumption (CWA).

Indeed, Prolog is a recursive computational sentential function, Goal and Query
are isomorphic, and each and every Rule of the system is a program computer first-
order logic (FOL) formalism and axiom. This is also the exact point where about
the analytically a priori Hilbert’s program can meet a synthetically a posteriori
computer program. And it is also bearable of a fairly grounded suspicion of the
law of atavism in logic and programming philosophy, whereby an ancestral trait
reappears after having been dismissed through evolutionary change. Crudely, after
the established limits in computation defined by Gödel and Turing, it is thoroughly
non-congruent to have been found in any way the sort of social-technological and
philosophical-informatics expectations as the strong AI design of the Fifth Gener-
ation Computer Systems (FGCS) in Japan, nor, for what the matter concerns, the

155

same kind of contemporaneous strong AI Principle of Hope[41] (adapting a term
from Ernst Bloch’s utopianism).

By the same token, and as a reductio ad absurdum proof, conflagrating the
sense of tautology and contradiction in one proof (itself the intricate sense of a
Kantian antinomy exposition, or Gödel’s incompleteness theorems), if we managed
to Predicate, in a Prolog program, its first-order logic T (theory) and syntax S as
a set of sentences S, wherein for each wff φ, its naming pφq would account also for
a prolog.swi File, we know (CWA) that for any wff α(υ) (with one free variable)
meaning an instantiating placeholder in the general program (OWA), for a sentence
T (FOL’s classical logic theory nth possible lists), according to the fixed-point
theorem and the diagonalization mapping, would, consequently, map each φ(v)

to φ(p(φ(v)q)) representable in T, and therefore, by means of the programming
language pφ(pφ(v)q)q in a compiler. With that accomplished, diagonalization
is performed, and so is imaginably computation: at the level of compiler and
interpreter final processing to binary mathematical arithmetized machine code.

In continuity, once our representation (OWA) has formalized a diagonal met-
alanguage in self-reference (imagining the 46 preliminary Gödelian definitions for
Principia Mathemtica formalized calculus to be fully arithmetized and bound to
primitive recursive arithmetical truths, although in conventional symbols of a met-
alaguage), thus producing, in diagonalization, for any single Gödelian number
interwined to any recursive computer Prolog program and prolog.swi File, a
non-provable nor disprovable list of sentences S, the result is that Prolog, however
in its formalization represents a constant value and, thus, a first-order logic (FOL)
axiomatic construction, it is, in truth16, nothing but a variable, unknowable and

16There is an antagonism of Wittgenstein towards Gödel’s theorems (to the 1st at the very
heart, but also to the 2nd as an extension) that is worth our attention. In §8 of Remarks on the
Foundations of Mathematics (Appendix 3) (published posthumously in 1956) belonging to the
period 1937-1944 and, in general, apart from the philosophical incidence in 1929-1934, recollected
and published in Philosophical Remarks (1964) and Philosophical Grammar (1969), this was a
never-repeated focus on philosophy of mathematics by Wittgenstein. In the referred §8, now
renowned as the "notorious paragraph", Wittgenstein imagines, in reductio ad absurdum or, in
this case, reduction ad logicam, what conclusions would have to be drawn if the Gödelian formula
P in "P is not provable in Russell’s system"[414] – P ∨¬P – accounting for both true and provable
in demonstration of the so called "key claim" – would be false.
The author wrote: "Must I not say that this proposition on the one hand is true, and on the

other hand unprovable? For suppose it were false; then it is true that it is provable. And that

156

antinomical.
In other words, inasmuch as Gödel’s incompleteness theorems recur to syn-

tactic constructs in formal logic made representable in the very same theory by
alternate naming, so do we find an adequate understanding of the mechanical (di-
agonal and computing) action of a compiler and interpreter indifferently. Indeed,
computing meets diagonalization, insofar a compiler or interpreter denote equality

surely cannot be! And if it is proved, then it is proved that it is not provable. Thus it can only
be true, but unprovable.”[414]
In respect to this passage the most extreme critics have been publicized. As soon as the

book was published, Kreisel (1958), Dummett (1959), and Bernays (1959), appraised negatively
Wittgenstein’s Remarks, and in the past twenty years so did Rodych (1999, 2002, 2003, 2008)[118]
and Steiner (2001)[328]. On the contrary, Floyd and Putnam have described it as having a
“remarkable insight”[311] into Gödel’s proof.
In our view, we have to say, in defense of Gödel, that incompleteness and undecidability

resolve in a sort of natural antinomy of mathematics towards itself, and consequently, it is just
as permissible to think "P is not provable in Russell’s system"[414] – P ∨¬P – as it is to depart
from the assumption "P is provable in Russell’s system" –P – finding, in both ways, either truths
about the arithmetic of natural numbers in PM (Russell & Whitehead’s Principia Mathematica)
that are not provable, or a failure to demonstrate the overall consistency of any system containing
the truths about the arithmetic of natural numbers in PM.
But in defense of Wittgenstein, and except the lines where his critic seems to fall to Gödel’s

own philosophy of mathematics, the incompleteness theorems and the undecidability thesis, we
have to call attention to the fact that, precisely attending to the tenure of the the latter, in one
such case, "truth" and "proof" cannot mean much. In a sense, if it is fair, as a logical method, to
formalize reductio ad absurdum, presuming a certain axiom to be false, so to deduct the logical
truth of a set of sentences in a system, it is also fair to presume an axiom to be true, when
not provable (in the context of the Gödelian argument for the incompleteness of mathematics
and its undecidability), so to presume the logical truth of contradictionariness and, thus, of
inconsistency of the system. This view would abide by some sort of paradox, once Gödel’s
arguments are already a (diagonalization) proof for the case when we take universal logic truths
about the arithmetic of natural numbers in PM true but not provable, yet never provable but not
true. In a way, we call Gödel’s theorems proofs, and never are we seen calling them conjectures,
even if, by means of proof, they disprove the proving method that constitutes proof itself, and it
might be this conundrum labyrinth that Wittgenstein is referring to.
If this interpretation of Wittgenstein’s words might be right, it turns to be more remarkable not

so much Wittgenstein’s proper remarks, but instead why they are not framed in an anticipatory
mode to all the philosophical apprehending typical of Wittgenstein II (such as "meaning as
use"; "language-games and family resemblance"; "rule-following and private language" and also
"grammar and form of life"[38]) (also to consider is how "grammar and form of life"[38] is
quite exemplar of the language-equivalent of Turing’s morphogenesis in the phenomenon of life,
remembering Wittgenstein’s dictum in Norman Malcom’s book Memoir : "What I offer is the
morphology of the use of an expression." [252], attesting for Wittgenstein "the morphologist"[228,
299]). To this we add that in one such scenario, we have to consider precisely the inverse of
what Rebecca Goldstein has hypothesized[147] – Gödel having developed his logical theorems in
opposition to Wittgenstein – and consider more fundamentally the influence of Gödel’ theorems
on Wittgenstein, namely the II Wittgenstein.

157

in an (arithmetized binary) metalanguage.
The fact that a set of sentences S closed under logical consequence of the the-

ory T in a fixed logical system is decidable in first-order logic (FOL), while, both
in Gödelization and compiling, there is not an effective method for determining
whether any arbitrary formulas are included in the theory or not, is truly a very
thin frontier. Confronting with the set of physical phenomena associated with
electricity, in the same manner in an atom protons and neutrons are positively
and negatively charged, it could be said that consistency and incompleteness are
mathematics’ and logic’s natural ambivalence. Computation and diagonalization,
as interval methods between both, are very identical as a mechanism: alike the
beneath phenomenon, i.e., the electrical current as a consequence of the flow of
negatively charged electrons around a conductive material, driven by overhead pole
transformers causing the electrons to move, is recursively transformed to higher
calculation and memory powers; and alike the top phenomena, i.e., mathematics
and logic, the Boolean-driven and bitwise-commanded electrons give the calcula-
tion and memory flow abstract significance. If, aditionally, a Prolog program is
being run in this core, there is another diagonalization, in the form of an abstract-
philosophizing and type-programming tension, that is being performed, i.e., the
natural-artificial (programming) antinomy of both the declarative and procedural
paradigms.

While this is consensual, what is often forgotten is how logic programming
and Prolog – wherein logic is an expression of Relations which are all defined
by clauses, with a Query meaning that the data types terms (atoms, numbers,
variables or compound terms) engineer successive attempts to find a (resolution)
refutation of the negated Query, this action being equal, in case the negated Query
is successfully refuted, to an immediate instantiation of all the free (unbounded)
variables, thus unifying the clauses and the (negated) False Query, following from
here that this original Query, as an [Head], with the instantiated variables as
the [Tail], are all together a logical consequence of the program – sums up, in
comprehensive details, the proper diagonalization method behind the Gödelian
incompleteness theorems. Hence, elevating from Prolog programming language
terms to philosophical metalanguage terms, we can assert that logic programming
and Prolog instantiate truth as a free variable.

158

In other words, the proper truth-preserving validity (in parallel Euclidean
method) is a construction and proper place-holder, in the full topologized sense of
programming languages’ fixed-point theorem [247, 345], of both (in)completeness
ADN/OR (in)consistency unbalance (in diagonalization non-Euclidean method),
accounting for problemata related with modern philosophy of space and time (Leib-
niz’s metaphysical monadism vs. Newton’s physics absolutism), and contempora-
neous philosophy of spacetime (Einstein’s theory of relativity local and univer-
sal determinism, vs. quantum theory and Copenhagen’s interpretation local and
universal undeterminism), that are far more subtle than primary injunctions of
common foundational systems for mathematics. This is the reason behind un-
derstanding [211, 63] – in the Kantian sense of the faculty of concepts – of logic
Programming and Prolog, in the context of the Fifth Generation Computer Sys-
tems (FGCS) in Japan, being so remindful of naïve set theory.

Centrally, the proper definition of an ω-consistent theory, the name having
been coined by Kurt Gödel sequent to the incompleteness theorem proof – attest-
ing for a collection of sentences that is not only (syntactically) consistent (without
contradictions), but is also preventive towards extensively proving infinite combi-
nations of sentences that are intuitively contradictory [218] – adequates to logic
programming and Prolog, for these are also numerically segregative, truncating
higher-orders, generally forcing to preserve consistency.

If an arithmetic theory T is ř-incomplete it is necessarily the case that for
some open wff F(x), T can prove each F(m) but T fails to prove ∀xF(x), thus
enacting ř-inconsistency, i.e., if a theory can prove each of F(m) and, at the same
time, also not disprove ¬∀xF(x) is inevitably going to be contradictory within the
realm of natural numbers. Equally so, logic programming and Prolog, fundamen-
tally through Horn clauses, linger in completeness and consistency by a pattern
of collection of negated disjunction forms (preventing incompleteness) – for which
an implication form with the unnegated literal now representing the Head and
a list of conjunctions the Tail (preventing inconsistency) – attest for, translating
to meaningful machine code, a collection T of

∑0
1-sentences provable in T that

mimic (necessarily sufficiently) the structure of natural numbers with (necessarily)
addition and (sufficiently) multiplication.

159

Generally, thus, ω-consistent theory in logic programming and Prolog, is con-
structively operated through the parallel validity-defender, analytic decidable and
truth-preserving Euclidean method of necessarily disjunctive addition, and the di-
agonalization cryptographic-defender, synthetic incomplete and truth-halting non-
Euclidean method of sufficiently conjunctive multiplication.

This is also a formal explanation why logic programming and Prolog, being
ω-consistency a Cut decision procedure in the context of computation, is forcibly
also keen to Halt. Just like first-order Peano arithmetic is, nevertheless incapable
of proving its consistency, perfectly satisfiable and, therefore, consistent, so too
(computable-numerical) dynamical logic programming and Prolog cannot prove
anything contradictory from their (computable-numerical) mathematical axioms.

The proper declarative paradigm resorts to this limit and, theoretically, it is
important to refer it in relation to Horn clauses (1951), for the reason that the
clausal-form disjunction of literals (CWA) (constant-like definite clause, a priori
truthful) is made closer to (OWA) (variable-like Goal/ Query, a priori false) Horn
clause.

Horn clauses are, thus, procedurally and in (CWA) Prolog, as much a balance
towards open-world assumption (OWA), as the mechanism of (recursively enumer-
able but not recursive) Davis–Putnam algorithm and backtracking partake into the
same balance line. All in all, these observations reinforce the definition of Prolog
as a "relational language"[73, 253]. On this wise, Relation in Prolog, under the
declarative and procedural paradigms, is pairwise equivalent also according to the
intensional and extensional views, while its meaning should also be extended to
meta-theoretical expressions.

To the argument that logic programming and Prolog facets do not respond to
this core, and that this is somehow alien to its declarative semantics and procedu-
ral syntax, we respond by saying that, inasmuch as Herbrand’s theorem – which
implies that a prenex-form reduction for any formula has, thus, an unsatisfiable
ground instance, turning a formula valid if and only if its negation is unsatisfi-
able – is at the base of Davis-Putnam algorithm and the resolution-based decision
procedure for propositional logic in logic programming and Prolog, of which any
Φ Horn clause is nothing but a Fact implied to prove universally quantified 6= Φ

160

Horn clause instances, being, therefore, unsatisfiable, and being also the declara-
tive nature of logic programming and Prolog a sort of procedural product of partial
computable functions (mod ¬), we can simply and likewise, refute this judgement
programmatically in the spirit of Prolog.

If we said before that we have to be cautious not to interpret any implemen-
tation of Prolog as ethereal, once some contact with intermediate procedural and
imperative language closer to machine language is an unavoidable coercion, we say
now, but inversely, the exact opposite: we have to be cautious not to interpret
any implementation of Prolog as earthly, once some contact with intermediate
declarative and formal language closer to higher-abstract philosophy of logic is an
unavoidable coercion.

We are affirming that logic programming and Prolog hinge on, with increas-
ing non-perceptibleness as the focus on theorem-proving is highlighted, not so
much extraordinarily in the frontier of (logic) declarative vs. (imperative) proce-
dural paradigms, dragging the natural ambivalence of logic programming (with
philosophical and programming transactions with formal logic in atomic formulae
symbolic expressions, and clausal form as an axiom subset of Lisp, i.e., high-level
abstractions from machine code) vs. imperative programming (with philosophical
and programming transactions with structured control flow in numeric routines
and assignments, i.e., low-level abstractions from machine code) but more so on
the philosophical frontier that is associated with Wittgenstein I and Wittgenstein
II.

In other words, Wittgenstein I – typical of Tractatus Logico-Philosophicus
(1921) converging truth-functionalism, from what place "form is the possibility
of structure" (2.033)[418, 419], thus with (weak & modal) ♦ mathematical formal-
ism attaining for (strong & necessary) � mathematical structuralism, with geo-
metric projection via logicism of "state of affairs"(2.034;2.04)[418, 419] drawing a
picture (tendentiously mathematical) theory of language set up on "operational-
ism", with a strong delimitation of the sense in language expressions and irrestric-
tion of references –, and Wittgenstein II – (typical of Philosophical Investigations
(1953) converging mathematical anti-Platonist finitistic constructivism with "anti-
foundationalism (...) criticism of the extension-intension conflation"[118], from
what place a picture-theory of language is impossible (representing at utmost an

161

approximate reference bound), thus with a (strong & modal) ♦ "language-game"
born on (weak & necessary) � patterning "family resemblances", drawing a cine-
matic (tendentiously dynamical) theory of language set up on "rule-following" with
a strong delimitation of the reference in language expressions and irrestriction of
sense – as philosophical stands, prior to programming languages analysis, seem to
account more profoundly for the frontier between automated theorem-proving on
one side, and, on the other side, for non-deterministic knowledge representation
basis.

Again, operationalism (here as a sort of computational positivism) and the
"language-game" (here as a sort of "rule-following" non-deterministic agent-based
computational behaviorism) suitably represent, in the specific case of Prolog, a
"relational language"[73, 253], what, in essence, we can designate by its intrinsic
philosophical and programming antinomy. Indeed, it is fair to say that, at an
human-agent oracle basis, it corresponds to transcendental knowledge, insofar we
can find for each side the correct interpretation of the other side of the antinomy.
This can be shown by exemplifying what, in abstract, Wittgenstein has pointedly
singled out – "The question how a correlation of relations is possible is identical
with the problem of truth."[410] (Wittgenstein, Notebooks 1914-1916, 24.9.14) –
and, in the specific case of logic programming and Prolog, what we read in Logic
for Computer Science: Foundations of Automatic Theorem Proving – "In fact,
it is often claimed that logic programs are obviously correct, because these pro-
grams ’express’ the assertions that they should satisfy. However, this is not quite
so, because the notion of correctness is relative, and one still needs to define the
semantics of logic programs in some independent fashion."[140] – which, all to-
gether, simulate knowledge about our cognitive faculty with regard to how objects
are possible a priori in the transcendental subject.

In essence, therefore, we are radically illustrating how the transcendental possi-
bility of philosophical and programming knowledge, universally, can be best sum-
marized through the philosophical poles of Wittgenstein I, and Wittgenstein II:

162

Wittgenstein I

Congruent with the "picture theory" of language, thus functionalist and
operationalist pictoric; bound to externalism and reductionism; in atomus,
spacetime localist; widely monist and fixist; consecutive to mathematical
structuralism; necessarily sensical and overly referential; endowed with a
lawful language grammar; logicist; with prevalence of the transcendental
subject producing schemata within the unity of thought over the empir-
ical image; close to sensibility, understanding, and reason; in the line of
deduction and programming languages.

Wittgenstein II

Congruent with the "language game theory" of language, thus function-
alist and operationalist imagetic; bound to internalism and emergentism;
in continuum, spacetime non-localist; widely pluralist and conventionalist;
consecutive to mathematical formalism; modally non-sensical and overly
non-referential; endowed with a rule-following grammar; constructivist;
with prevalence of the empirical image over the transcendental subject
producing schemata; close to imagination and judgment; in the line of
induction and

⋃
-Mentalism.

There are some aspects in this proposed grid that are difficult to analyze and
demand a close inspection. Wittgenstein’s philosophy of mathematics is rarely
emphasized, even though himself stated emphatically that his "chief contribution
has been in the philosophy of mathematics" (Monk 1990; 446) [118]. Moreover, the
subject of philosophy of mathematics itself seldom finds anchorage in programming
languages theory. If semi-occasionally philosophy of mathematics topics permeate
programming languages theory, scarcely ever Wittgenstein’s philosophy of mathe-
matics forms an assembly of arguments to go with the theory. To make it worse,
Wittgenstein’s philosophy of mathematics is divergent in time, and it happens
frequently that the very same rooted arguments, are later violently uprooted. In-
evitably, the Tractatus(1922) and Philosophical Investigations (published posthu-
mously 1953) stage, respectively, Wittgenstein I and II, but the so called middle
period settled by Philosophical Remarks (1929-1930) and Philosophical Grammar

163

(1931-33), moreover betoken to increasing complexity in the manuscripts collected
in Remarks on the Foundations of Mathematics (1937-44), offer provocative in-
sights.

Probably the best example of one such aspect is the confront between mathe-
matical formalism and structuralism.

On account of the Tractatus [418, 419] the abundant insistence on the con-
tingent nature of propositions (4.022, 4.25, 4.062, 2.222) reliable by "truth-by-
correspondence" (purely syntactical and vaguely referential), and the demarcation
of "mathematical truth" from pseudo-propositions, would ratify the sense of a
"life-long formalism"[118]. On the other hand, one must hold to the assumption
that not only his intellectual shift compromised its tenets –"Wittgenstein seems to
become more aware of the unbearable conflict between his strong formalism (Philo-
sophical Grammar (1974) 334; Wittgenstein and the Vienna Circle (1979)) and his
denigration of set theory as a purely formal, non-mathematical calculus (Rodych
1997: 217–219)"[118] – as, beforehand, the case of having shifted to stances accord-
ing to extra-mathematical operative praxis and sign-operative games performing
mathematical calculi, indicates that his "justified side of formalism” (Wittgenstein
and the Vienna Circle[118]), destitute of meaning was, at the end, so "strong" as
to make an argument for prior structuralism, as Victor Rodych himself acknowl-
edges in Mathematical Sense: Wittgenstein’s Syntactical Structuralism[318]. If it
was not enough by itself, Wittgenstein alluded directly to the core of structural-
ism in many occasions, namely in making it indissoluble from the nature of the
"picture-theory" of language.

The "picture-theory" of language is, in the confront with programming lan-
guages theory, fundamental, as it is the fittest representation of – equal to Tur-
ing’s, von Neumann’s and Shannon’s representation, later objectified monolithic
integrated circuit (1958) – the (graphical) pictorially as much as (digital) signally,
fabricated idealization of the computational and informational embedded digital
circuit to which programming languages reach through code. The most simple
and uncontroversial nature of one such fact is the graphic nature of the output
device displaying information (from electrons to bits, from electricity to code) in
pictorial form, that is the computer screen or monitor. However, we need not
deal with visual programming languages and graphically specified programming

164

to understand that there is a direct bridging from text to pictorial form in the
integrated circuit precedently, neither do we need to render a graphics process-
ing unit (GPU), a digital signal processor (DSP), or indeed, an image processor
(IP) to make an argument on this point. All programming languages and com-
putation have, markedly, a Wittgenstein I "picture-theory" ontology, even if the
precepts of Wittgenstein II have never been reconnoitre into the extant pieces of
programming languages theory. Positively, we are affirming that all programming
languages in the realm of computation are subsidiary to typical of Wittgenstein
I "picture-theory" of language, in sharp contrast, therefore, with the design of⋃
-Mentalism, wherein diagrammatic form of a (pictorial) empirical image is, fur-

thermore, complexioned with, and in any form rendered imagined, a schemata
form. Maybe it is worth to evolve this statement to a stronger assurance, by
way of explanation stressing, foremost, that programming languages theory ap-
pertains, in its most profound underpinnings and, essentially, in topological form,
to the "picture-theory of language" as depicted in Wittgenstein I.

Under this guise, it is made clearer how logic programming and Prolog, as a
representative of a fifth-generation programming language (5GL), giving privilege
to problem solving using constraints given to the program, rather than recurring
to an algorithm written ahead by a programmer, in its pinnacle declarative status
– indeed, minimally, the Tractarian propositions (1 to 1.21)[418, 419] could very
well be Prolog’s ontology description – rendering an abstract distance from the
digital signal integrated circuit, however topologically and procedurally contiguous
with the integrated circuit, has permitted researchers to contemplate innovative
new approaches in computer and programming languages paradigms study. While
this is true, the prospects of computability in Wittgenstein II ontology represent,
in its turn, an open field of fact-finding and analysis.

Also to be noticed is how the passage from Wittgenstein I to Wittgenstein II
elaborates and discloses finite constructivism, finitism, mathematical views on al-
gorithmic decidability and an anti-foundationalist account of irrational numbers,
bore on real number essentialism, alongside an harsh critic of set theory, mainly
driven from both a non-dualist, strong formalist, and practical -actualist charting
of mathematics. This difficult knot also brings about non-enumerability and non-
denumerability that, inevitably, are impinged with a treatment of diagonalization

165

that is irreconcilable with Gödel’s theorems, and from which the constructivist and
actualist conflagration of intension/extension dilemmas is explored to the limit.
Under this sight, the necessary forbearance of (integral) mathematics to (differen-
tial) extra operationalist practical -actualist applications, to which mathematics is
irremediably alienated, ravages the discipline of mathematics, besides transform-
ing philosophy of mathematics itself into a sort of sub-discipline of anthropological
inventi, often with non-conformable apperception in Kantian terms.

To the aim of our investigation, we reiterate the importance of all this argu-
ments present in the prolonged but mainly ambivalent passage from Wittgenstein
I to Wittgenstein II, not only in relation to programming languages theory, but
withal in relation to logic programming and Prolog.

A clear instance of that is the Viennese philosopher’s intermediate to later
finitism. In learning that, in the context of Wittgenstein II, "Wittgenstein re-
jects quantification over an infinite mathematical domain, stating that, contra
his Tractarian view, such ‘propositions’ are not infinite conjunctions and infinite
disjunctions simply because there are no such things."[118], in comparing to the
use of both the disjunctive (DFN) and conjunctive (CNF) normal forms in logic
programming and Prolog, we can eventually imagine the typical logic chicanery,
formal trickery and hocus-pocus critic, polstliminary to previous existent passages
(Remarks on the Foundations of Mathematics, 1956 [9178]: II, §10; §22; §23). On
this edge, we have to recall that the intermediate Wittgenstein to Wittgenstein
II firmly rejected unbounded quantification in mathematics, which would permit
an extension of the critic of the (partial) idea of substitution and instantiation
in logic programming and Prolog, if it would be the case of giving support to an
exceptional (computational) ontology, as believed by the proponents of the Fifth
Generation Computer Systems (FGCS) in Japan.

One thing interesting to note, in this respect, is how the Tractarian theory of
truth-by-correspondence (or agreement), by means of soundness and world-related
topics in use and sense, would, in its natural transformation, affect the very idea of
validity. We can say that Wittgenstein II philosophy of language and mathematics,
nevertheless more bounded to "rule-following" and seemingly formal-logicized, be
that as it may, went exactly to the contrary direction to that of Alfred Tarski’s
inceptive model theory. This token is specifically problematic confronting with

166

logic programming and Prolog, once we consider that Prolog programs are nothing
but relations defined by means of clauses. Core Prolog is restricted to Horn clauses,
which is a (Turing-complete) subset of first-order predicate logic, with two types of
clauses: Facts (the embodiment of closed-world assumption) (CWA) and Rules

(the openness itself to open-world assumptions) (OWA), where from a Rule adopts
the form Head :- Body. .

What is also at stake in confronting with logic programming and Prolog, helping
the reader to delimit precisely the problemata associated with open-world (OWA)
and closed-world (CWA) assumptions, is the contra-omniscient averment by the
intermediate Wittgenstein to Wittgenstein II – (not even imaginably God’s: “ ‘Can
God know all the places of the expansion of π?’ would have been a good question
for the schoolmen to ask”, for the question is strictly ‘senseless’." (Philosophical
Remarks 128; also related at Philosophical Grammar 479)) –, suggesting a passage,
thinking with Kant and Heidegger’s expression "ontotheology", from an onto-nihil -
ontology in the Tractatus that admitted, nevertheless, by means of the naturalness
of "cases" (1-1-21; 2-2-04) of "facts" (1.1-1.2; 2.0141) and "state of affairs" (2-2.04;
4.1) a vertical structuralist hierarchical sense, that would sink in into a perpetual
shallow evanescent and weak formalism in Wittgenstein II.

We consider this altercation in the core of philosophy of mathematics the proper
frontier between closed-world (CWA) and open-world (OWA) assumptions that are
only reflected in logic programming and Prolog. Undoubtedly, in Kantian terms,
the Fifth Generation Computer Systems in Japan (FGCS), meant to work with
strong AI’s ideal of massively parallel computing – itself a natural-artificial ideal,
as if the subject-matter of rational programming was taken as the ground of the
subjectively necessary hypothesis for our reason proper, and the objective neces-
sity of such a belief, would behold a (computational) dialectical illusion –, per-
formed with concurrent logic programming, as a variant of the logic programming
paradigm with sets of extended or guarded Horn clauses, suggests not only a clear
alienation from diagonalization as computability’s own method, as it indicates a
sort of analogy with the P = NP belief, i.e., a (computational and informational)
intricate positive fideism, in view that the broadest class of computable problems
could be a priori verified, and a posteriori solved in polynomial time. In this view
it is pertinent to recall that the first Prolog system was developed in 1972 [321, 79],

167

and the first precise formulation of the P vs. NP problem was a 1971 Stephen
Cook’s paper[81].

We could not go on without mentioning, at last, the most difficult and burden-
some aspect of Wittgenstein’s philosophy of mathematics, which assumes facets
that shine on unsuspected new paradoxes, directly related with our theme of inves-
tigation. With this we are referring, mainly, to diagonalization and computability.

Wittgenstein II intermediate finitism rejects unbounded quantification, trans-
forming mathematics into a contra-axiomatic proper recursive rule, which offers
an unsuspected turn in admitting algorithmic decidability, sustaining an episte-
mological significance, in the most constricted sense of a closed-world assumption
(CWA), very much opposing an actualism to any of the former Kantian structural-
ist, Hilbertenian-formalist, or even Fregean-logicist programs in philosophy and
mathematics. Imperceptibly, what this testifies to, is probably the most original
and deep-rooted attack on transcendentalism and on the entire a priori founda-
tions of Kantian tradition.

Significantly, to start with, Wittgenstein’s theory of formal operations and
operationalism in mathematics, has, in the last decades (Frascolla 1994, 1997;
Marion 1998; Potter 2000; Floyd 2002) deserved innovative focus with a shy but
very profitable insight into the very same elements that programming languages
theory and history commenced with. This is why Victor Rodych has pointed out
that there has been an interface of "the Tractarian equational theory of arithmetic
with elements of Alonzo Church’s λ-Calculus and with R. L. Goodstein’s equational
calculus (Marion 1998; chapters 1, 2, and 4)."[118]. In this scrutiny and according
to Rodych, the following Tractarian[418, 419] propositions take relevance:

Proposition 5.2522. The general term of the formal series a, O′a, O′O′a, . . . I
write thus: "[a, x,O′x]". This expression in brackets is a variable. The first term
of the expression is the beginning of the formal series, the second the form of an
arbitrary term x of the series, and the third the form of that term of the series
which immediately follows x.

Proposition 6. The general form of truth-function is: [p, ξ,N(ξ)]. This is the
general form of proposition.

168

Proposition 6.01. The general form of the operation Ω′(η) is therefore: [ξ,N(ξ)]′(η)

(= [η, ξ, N(ξ)]). This is the most general form of transition from one proposition
to another.

Proposition 6.03. The general form of the cardinal number is: [0, ξ, ξ + 1].

Indeed, Wittgenstein combined a "theory of formal operations"[118] and the
three general forms – operation, proposition, and natural number (in order of
importance) – respond, in cascade, to the predominance of operationalism as a
base to new results, by which successive applications is what permits, in the first
place, the generation of the iterated general form that constitutes natural numbers:
"The result of a logical operation is a propositon, the result of an arithmetical one
is a number"(Wittgenstein and the Vienna Circle [381]).

Conclusively, computable numbers and computation itself (and more strin-
gently logic programming), are in between valid logical inferences (seizing the
Relation between possible facts) and sound logical inferences (seizing the Relation
between necessarily existent facts), but what decisively commands truthfulness
to both inputs is operationalism. Being logic programming and Prolog evident
mechanized first-order calculus, and a programming operational ascending order
from λ-calculus, they are an epiphenomenon, in the sense that their program-
ming operations are, all together, the heading and indentation of arithmetic (by
means of the Boolean communication intertwining programming languages in the
central processor unit), and propositions (by means of the clausal form commu-
nication intertwining sentences with truth values). This is not to say that logic
programming and Prolog are properly the vivid demonstration of "facts"[418, 419]
or "state of affairs"[418, 419], but instead that if there was a special markedness
to logic programmig and Prolog, it would be much more so in blinding the deep
stucturalist-to-formalist operationalist autonomy of language, instead of being an
unequivocal demonstration of the aforementioned. Inasmuch as logic program-
ming and Prolog best deceit and camouflage operationalism and the real essence
of language (by being operationalist themselves, and also bore on computational
cryptographic diagonalization), the prospects of a programming philosophy such
as
⋃
-Mentalism, for instance, would have to come up under the patronage of

169

philosophy of language, and hardly so under programming languages theory and
practice.

Logic programming and Prolog, as archetypal of the philosophical and pro-
gramming declarative paradigm and natural-to-artificial dialectic (5GL) program-
ming languages generation and scope would, thus, be reasoned as a synthesis of
the general form of a purely formal operation (computability), truth-functional
propositions (formal logic), and true mathematical equations (arithmetic). But,
following Wittgenstein’s attainments, we have to look closer to this disposition, in
order to fully understand how it is, very subtly, erroneous.

Henceforth, under Wittgenstein’s attainment we have to conclude that, while
it is evident one such synthesis, the principal general form of a purely formal oper-
ation is Wittgenstein I structuralism to Wittgenstein II formalism (with shares of
Broweur’s mathematical intuitionism intersected, excepting matters such as "the
role of intuition in mathematics, rule following, choice sequences, the Law of Ex-
cluded Middle, and the primacy of arithmetic over logic"[255]), to which, only
after, computability, formal logic, and arithmetic respond in the overall. It is, con-
sequently, the closest analogous relation between operationalism and computabil-
ity, in the first place, what illudes our judgment, while it is strikingly remarkable
how, out of the three different classes – computability, formal logic and arithmetic
(in ascending naturalness) – it is, precisely, computability, via operationalism, the
most identical to truthfullness of "facts"[418, 419] and "state of affairs"[418, 419].

With this it should be clear how Wittgenstein, by understanding logic as the
manifestation of the fact that a proposition is always identical to itself, even if
bivalent (assuming the truth values of truth and falsity), operating a division
between meaningful propositions and significant references, in the precise opposite
direction to that of Fregean and Russellian logicist monism, permits us to reflect
on and understand, mainly, two completions on logic programming and Prolog.

First and unavoidably, logic programming and Prolog partake in the sort of
the herein characterized Fregean and Russellian logicist ontology, and second, that
logic programming in Prolog, as adhered to natural language processing, also share,
by means, not so much of its "operational" mechanization and fabrication, but in-
stead of the inscribed philosophy of logic, science, language, and technology in its
idealization and aspiration, the very same fatal error that was disclosed in a letter

170

from Russell to Frege "in the spring of 1901 with the discovery of the paradox of
the class of all classes not members of themselves"[234]. In a sense, Wittgenstein
II lessons and the last turn of the linguistic turn ("meaning is use"; "language-
games"; family resemblance"; "rule following"; "forms of life"; "quietism", etc.)
have all been debunked, with the result of structuralism having re-endorsed logi-
cism. In a way, logic programming and Prolog were caught up in this whirpool,
having suffered from a new structuralist wave in linguistics, although much more
deflated of logicism, ever since Chomsky’s Syntactic Structures (1951). What is
most curious is how, not only Chomsky’s generative grammar idea, but also logic
programming and Prolog, astricted as they were to structuralism, contained, how-
ever, the seeds to their inversion (namely, the defeasance of the Fifth Generation
Computer Systems (FGCS) in Japan, and both the evolution of the transforma-
tional generative grammar to non-structuralist neither syntactic stances, and the
inductive and statistical revolution in natural language processing driven by ma-
chine learning), all in all determinable events that took place in mid-to-late 1980’s.

Indeed, remembering that the "Tractatus was inspired by Wittgenstein’s study
of the philosopher-physicists Heinrich Hertz and Ludwig Boltzmannz"[157] if so,
when we see Wittgenstein II rescued in relation to the interpretation problem,
is generally under the auspices of philosophy of science hard problems, or when
not, within the constructed values that permeate the mind from physics to culture
(Wittgenstein’ Nachlass approach similar to Nietzsche’s), but hardly so related
with the closest impacted problems in philosophy of language or linguistics in the
technological age. These are in demand of a sufficient treatment of language and
computability summa problemata, which, in our interpretation, is also a sign of
repetition of Kant’s philosophy criticism forgetfulness pattern towards philosophy
of language that motivated Mitteleuropa’s linguistic turn, in the first place.

Ahead, matters that connect Wittgenstein II actualist and finitistic formalism,
according to which the extension-intension conflation is just a sign of the mindful
faulty, but naturalistic necessary model, with questions of decidability and even
the envisagement of mathematical number theory classes – such as irrational num-
bers –, as "rules", instead of classes, are all aspects in philosophy of mathematics
that are worth facing up with logic programming and Prolog. Once we under-
stand that formal logic calculi with finite extensions and intensional rules, such as

171

in logic programmming and Prolog, are criticizable under the guise of Wittgenstein
II, and that, a fortiori, computability, endlessly yielding places of decimal fraction
in diagonalization, is, oddly enough, more transparent of the constructivist na-
ture of "facts"[418, 419] than mathematics’ own practicality idealization, and that
Wittgenstein II was also, other than this and non-contradictorily, very critical of
Cantor’s and Godël’s diagonal proofs, understanding the proper nature of proofs
as a rhetoric appendix, as for the rest, set theory and non-denumerability, it is,
at heart, very problematic to stage ways out of philosophy of language, compu-
tation, and mathematics new riddles. For the moment, it suffices to expose these
problemata, and, minimally, attain to some sort of a new scheme, as

⋃
-Mentalism,

either as an exitus, or a resolutio.
A Horn clause is, basically, a rule-like form (in between "formal calculus" and

the "language-game") that corresponds to a disjunction of literals (an atomic for-
mula or its negation, in line with Wittgenstein’s I logical atomism, and Wittgen-
stein II logical formalism) with at most one positive, i.e. unnegated, literal. They
are of the sort[326, 393, 188, 73] (with n > 0 and L being the only positive literal):

L1 . . . , Ln ⇒ L(≡ ¬L1 ∨ . . . ∨ ¬Ln ∨ L)

L1 . . . , Ln ⇒ L(≡ ¬L1 ∨ . . . ∨ ¬Ln)

L1, . . . Ln ⇒ L(≡ (L1 ∨ L2 ∨ L3 . . . ∨ ¬Ln)

L1, . . . Ln ≡ L(¬L1 ∨ ¬L2 ∨ ¬L3 . . . ∨ Ln)

In case it happens to have exactly one positive literal, then we name it a definite
clause. In case it has no negative literals we are at presence of a Fact. In case we
have a Horn clause without a positive literal, we are at presence of a Goal. If it
happens that the we have a disjunction of literals with at most one negated literal
it is, conversely, named a dual-Horn clause. The simplest direct example of one
such translation in Prolog’s (computational and programming) dialect is:

s :- p, q, r.

172

Anticipating that the resolution algorithm works by using the principle of proof
by contradiction, being an empty clause equivalent to a "disjunction of no dis-
juncts" [325], and, consequently, the local and atomic emergence of a literal α be-
ing the positive resolution of two complementary unit clauses, in extreme Kant’s
antinomies – there are no new clauses, and therefore our knowledge base does
not entail α; or else two clauses resolve to hold an empty clause, and therefore
our knowledge base entails α – then it is, by these means, found a fully contra-
transcendental, logic-inductive, propositional resolution making sense of the fact
that any clause in which two complementary literals are shown can be outmoded.

This is equivalent to affirming that clauses (as disjunctions of literals) are a
pivot for the logical truth beholding the conjunctive normal form (CNF), i.e., the
fact that every sentence in sentential logic corresponds to a conjunction of clauses,
making an opening for the resolution closure – in S the set of all clauses deriv-
able by repeated application of the resolution rule either in S or its derivatives (in
extreme, marrying transcendental antinomies with recursion, and divorcing tran-
scendental philosophy from sentential language, in respect to both the acumen
of Wittgenstein I silence and Wittgenstein II impossibility of a private language)
– and, at last, also an opening for the ground resolution theorem. With this we
mean, in inversion to the preliminary, understanding that if S, as a set of clauses,
is unsatisfiable, then the resolution closure all in all abridged in S, contains the
empty clause – which redirects, in extreme, Kantian transcendental dialectic anti-
nomies to non-analyticity from within the proper bounded limits of transcendental
analyticity, in paradoxical form. Something as simple as the conjunctive normal
form (CNF) and the disjunctive normal form (DNF) can illustrate the Kantian
pure logic dilemmatic use and, quite extraordinarily, in actual operative diagonal-
ization, an outcoming pure resolution.

Importantly and again, as in logic programming and Prolog, on top of this
"state of affairs"[418, 419] computation (in proper diagonalization) in Queries,
Goals, and Facts, even if within asymptotic computational complexity – O(n log n)

– has a limit in first-order calculus (FOL), being asymptotic-closed (FOL� closed)
as much as it is diagonalization-opened (FOL∦ opened), there is sort of an obvious
effect of analyticity in diagonalization (∦) with synthetic and dialectic arguments
(NP -complete, typical of logic programming, Prolog and Wittgenstein I, as for

173

the rest alienated from NP -hard problems, typical of Wittgenstein II), but more
truthfully so, also of analyticity in diagonalization (∦) towards itself, as if logic
programming and Prolog at the heart, considered their mechanism as a Cantorian
and Gödelian argument, would automatically disprove first-order logic (FOL) in
the compiler and abstract machine. But the paradoxical stand does not stop
here, and it would be correct (except for surmounting enumerable paradoxes)
to affirm that they correspond to higher-level paradoxes from those of Kantian
antinomies, resorting to O(nn) computational (time and space) complexity, ahead
still of synthetic and dialectic physics and philosophy of science natura naturans
(spacetime) complexity.

Now, this is truly prevailing, once "Stephen Cook (1971) showed that decid-
ing satisfiability of a sentence in propositional logic (the SAT problem) is NP -
complete. Since deciding entailment is equivalent to deciding unsatisfiability, it is
co-NP -complete. Many subsets of propositional logic are known for which the sat-
isfiability problem is polynomially solvable; Horn clause are one such subset."[325]
Horn clauses, in one such way, are demonstrable but controvertible, recursive com-
plete rules, in the form of conjunctions of positive literals as a premise [Body] of
a single positive literal [Head] under the broader implication form. The fact that
all this ensemble assumes, in the [Head] and [Body] implication clausal form, as
much a programming informatic as a natural biological structure contemplating
many possible forms, is also something to wonder.

With this we find that first-order logic, inasmuch as a Fact in logic program-
ming and Prolog, respond simultaneously to True→ L1,1 or L1,1 in any given case
for α as a new postulate L1,α under any new knowledge base assumption through
the use of resolution and unification – like so refraining closed-world assumption
(CWA, related with NP -completeness, and Wittgenstein I) with manifest open-
world assumption (OWA, related with NP -Hard and P vs. NP problems, and
Wittgenstein II) – finds in logic programming and Prolog the programming apex
as the proper resolution of the greatest lower bound (procedural and imperative,
congruent with the C language) with the least upper bound (declarative and logic,
congruent with Prolog) artificial-to-natural computational and programming anti-
nomy in the information age.

174

Because in the process of unification and substitution there is not but at-
tention to the atomist literals in relation to the logical truth model-theory val-
ues – True → L1,1 or False → L¬1,1 – the proper unification and substitu-
tion as examples of a "general theory of operations”[118] (Frascolla 1998: 135)
mechanism, is all too forgotten. In like manner in physics spacetime relativity
requested non-linearity and complexioned arguments with a perilous relation in
respect to cause-effect, inference with local and atomic Horn clauses is linearly
open to both forward-chaining and backward-chaining algorithms, which obscures
the natural-to-artificial logic and mathematics philosophical problemata associated
with Wittgenstein II.

In Backus-Naur form (BNF), a description for a conjunctive normal form
(CNF), triggering, thus, general Horn clauses, and the more restricted definite
clauses, is given below[325, 326, 393]:

〈CNFSentence〉 ⇒ Clause1 . . .∧ Clausen
| 〈Clause〉 ⇒ Literal1 ∨ . . .∨ Literalm
| 〈Literal〉 ⇒ Symbol | ¬Symbol
| 〈Symbol〉 ⇒ P | Q | R . . .

| 〈HornClauseForm〉 ⇒ DefiniteClauseForm | GoalClauseForm
| 〈DefiniteClauseForm〉 ⇒ (Symbol1 ∧ . . . ∧ Symboll)⇒ Symbol

| 〈GoalClauseForm〉⇒ (Symbol1 ∧ . . . ∧ Symboll)⇒ False

– and having, consequently, cleared Horn clauses (1951) modus operandi or logi-
caliter (in both Wittgenstein I and Wittgenstein II sense and meaning), it is now
pertinent to minimally understand all together the Robinson unification algorithm
(1965) – built on the Davis-Putnam resolution (1960) – and the proper SLD-
resolution (1972-1974) by Robert Kowalski – built on SL-resolution (1970-1971)
– with this closing the circle, insofar SLD-resolution (1972-1974), a programming
refinement of resolution, is nothing but the basic inference rule used in logic pro-
gramming, which is both sound and refutation complete for the specific definite
clauses {Q} or {¬P1, . . .¬Pm, Q} appertaining to Horn clauses.

Analyzing all in once SLD-resolution it is made obvious logic programming and
Prolog’s embedded core at work, and how it is fundamentally connected with a sort

175

of constricted equivalent P ≡ FOL analytic (very much in line with Wittgenstein
I, and also restrictive to both synthetic and dialectic judgements), in the sense that
"it reduces the complexity of proving the correctness of programs."[140] It is in
this very same sense that, alluding to computation and deduction, Frank Pfenning
wrote: "Philosophers, mathematicians, and computer scientists have tried to unify
the two, or at least to understand the relationship between them for centuries. For
example, George Boole succeeded in reducing a certain class of logical reasoning to
computation in so-called Boolean algebras. Since the fundamental undecidability
results of the 20th century we know that not everything we can reason about is
in fact mechanically computable, even if we follow a well-defined set of formal
rules."[298]

If any set S of clauses consists of definite clauses except for one goal or else
called negative clause, a Horn clause of the form {¬P1, . . .¬Pm} "then there
is a proof having the property that whenever a ∨ : left rule is applied to a defi-
nite clause {¬P1, . . .¬Pm, Q}, the rule splits it into {¬P1, . . .¬Pm} and {Q}, the
sequent containing { Q} is an axiom, and the sequent containing {¬P1, . . .¬Pm}
does not contain {¬Q}."[140]

Therefore, what happens is that for each ∨ : left rule, after isolating the
Goal clause, the rule is applied to split each definite clause after the selected goal,
until the final resolvent is the sentential most general unifier. A typical proof by
resolution exhausts all possible substitutions, as long as goal and clause do have,
in principle, variables in common (a substitution is a finite set {t1/v1, . . . , tn/vn}
where every vi is a variable and every ti is a term, possibly anew from the previous,
while it is not permitted that two elements in the set have the same variable after
the "/" symbol).

Moreover, all that is needed for the least Herbrand model – a Herbrand model
of a first-order (FOL) language has a Herbrand set of ground terms (containing no
variables or quantifiers) as its universe of discourse, meaning that the interpreta-
tion of terms is canonical, resounds to the following: "terms evaluate to themselves
- but there is no requirement on the interpretation of relations"[392] which lends
poignancy to the ambivalent status of logic programming and Prolog. Not only
Prolog is a programming "relational language"[73] while logic programming and
SLD-resolution consist of one only rule with exactly one head atom (structuralist,

176

Wittgenstein I), as also the aim of natural language processing in Prolog – "The
Prolog system (for PROgramming in LOGic), based upon the procedural interpre-
tation, has been used for several ambitious programming tasks (including French
language question answering, symbolic integration, plan formation, theorem prov-
ing, speech recognition, and picture interpretation"[125] – has one universe of dis-
course that is intended to reduce on and test, in extremis, for the set of elements
of which all possible variables range over (formalist, Wittgenstein II).

SLD-resolution (SL-resolution for definite clauses; Selection function with Linear
resolution for Definite clauses), whenever meeting a Program (with clauses or vari-
ants of clauses) and Goal (a finite or infinite sequence) in reunion

Program ∪ {Goal0, Goal1, . . . , Goaln}

will build in a sequence θ1, θ2, . . . of most general unifiers in line, in such way
as to unify Goali+1 as the resolvent of both Goali and Program’s clauses Pi+1

through the resolution method θi+1. At the end, if a finite SLD-resolution of
the above meets the empty clause ∅ in coincidence with the last Goaln we have
also met an SLD-refutation of length n, after each atom/Goal...+1 (Wittgenstein
I, actualist atomism and structuralism) for each step in the selection (Selection
in "SLD-resolution"[140]). As a matter of fact, what is so surprising in SLD-
resolution[140] is its adaptive, truly naturalistic imprint, and the superb artificial-
to-natural, almost synthetic plasticity, after John Alan Robinson’s study of first-
order syntactical unification (1965) as the solution approach to FOL’s resolution
procedure, unequivocally the declarative paradigm full comprehensiveness outreach
(Wittgenstein I, P -like decidability) in automated reasoning, constricting to the
utmost the combinatorial explosion in searching for instantiation of terms.

This is so to the point of easily commuting with a sort of evolutionism in logic
programming, in the sense that the syntactic unification and the solution set en-
visaged as an (adaptive) new element, likewise generalization and specialization
(genus et differentia) from simple substitution, all shape its algorithm. What is
more, resolution is applied on having found complementary literals, which is akin
to Wittgenstein I atomist and structuralist interpretation, yet also to Wittgen-
stein’s typical logical "bipolar"[144] interpretation – (p)(p∨ ∼ p) (Letters to Rus-
sell 5.9.13; Notes on Logic [1913] in Notebooks 1914-16 94-9, 104; Notes dictated to

177

G. E. Moore in Norway [1914] in Notebooks 1914-16 113) – which redirects to the
subsoil of formal logic, again a stance that is more naturalistic "morphological" –
"What I offer is the morphology of the use of an expression." [252], again attesting
for Wittgenstein "the morphologist"[228, 299] – than it is logical, little less attain-
able to logic programming or any of its nuclear procedures. Or, inversely, it would
be Wittgenstein’s focus on "theory of formal operations"[118], concomitant with
computation, and thereafter logic programming and Prolog, what would explain
the natural optimality of the unification algorithm.

What is important to retain is that a finite SLD-resolution fails in case it
does not meet an empty clause ∅ coinciding with the last Goal, once if a non-
empty Goal and the selected atom do not unify with the head of any clause of
the Program, there is neither soundness nor completeness for SLD-refutation. The
interesting thing in SLD-refutation is that soundness is made possible to refute be-
cause of refutation-incompleteness, and completeness is effectively refuted because
of refutation-unsoundness.

Originally, the clause at the root of resolution, before the selection initial se-
quence ¬L1 ∨ · · · ∨¬Li ∨ · · · ∨¬Ln, is already a sign of the atomist interpretation,
by isolating its literals, meaning also that we are ideally "denying" (Wittgenstein
I) the conjunction of subgoals L1∧· · ·∧Li∧· · ·∧Ln and constricting a conjunctive
normal form, i.e., a conjunction of disjunctions of literals (CNF), to a disjunctive
normal form, i.e., a disjunction of conjunctions of literals (DNF). This shifts the
effect (bore on the fact that a logical truth in a conjunction depends on equal truth
values for all the literals, while the logical truth in a disjunction is made secure, as
long as there is one valid element in one literal) and, therefore, we conclude that
ideal completeness – whenever S is contradictory, there exists a resolution proof –
in this shift, changes the onus of the proof to soundness – whenever a resolution
refutation is found from a set of clauses S, then S is contradictory – trying in each
selection to diminish the path to one head clause only, ideally an atom.

Expressly, we find that much of logic programming and Prolog’s signature,
namely Robert Kowalski’s work in SLD-resolution, is firmed on the constraint pas-
sage from the ideally refutation-complete NP -like problem, grammarly gerundive,
patent in the conjunctive normal form (CNF), to the practical refutation-sound P -
like problem, grammarly infinitive, patent in the disjunctive normal form (DNF).

178

On this wise, it is contradictory that logic programming and Prolog have been
used in such dialectic form as in the Fifth Generation Computer Systems (FGCS)
in Japan, against its natural analytic. But it is also fair to point out that, indeed,
computer science is, in the first place, a very ambivalent and paradoxical result of
a dialectic and programming constraints pure reason illusion: there could not be
any better example of this than the fact that the modern computer von Neumann
(brain) model and Princeton architecture, stemming from a profound naturalistic
cellular automata, DNA, and universal constructor philosophy, is, at the end, in
schemata form, the proper inversion of the mind and body.

This is not the same as confusing substantia and methodus, i.e., neither do
we say that

⋃
-Mentalism – a made available naming for the realizable inversion,

in schemata form, of the von Neumann computer model and Princeton architec-
ture – if made possible and verifiable, would, in its ulterior form, recur to typical
body-mind naturalism and not machine learning and computer’s natural opera-
tionalism, nor would we say, prior to this, that it not necessary and valid in its
proximus form, for the reason that Boolean digital logic is photon-identical to
the minimal extant idea of

⋃
-Mentalism, and, except for the decisive difference

of sensation, perception and sensitive intelligence – the exact same burden that
afflicted modern idealist philosophers such as Berkeley, Leibniz and Kant – man,
independently of the mind-body problem, is already an image and language pro-
cessing learning (informational in Shannon’s sense, cybernetics in Wiener’s sense,
and operationalist in Wittgenstein’s sense) automata.

There is also some sort of admissible inherent formalism-to-structuralism in
programming languages, insofar it is not imagined to be possible, out of soundness
limited and weak conjunctive normal form (CNF) or soundness unrestricted and
strong disjunctive normal form (DNF), the latter to be applied to different lists
of different programming languages. The topological distance between typed pro-
gramming languages partial computable functions attests, in essence, inasmuch for
local observance determinism and quanta indeterminacy, as it attests for quanta
determinism and local indeterminacy.

With this being said, it is relevant to underline that, before SLD-resolution will
try to deny the literal/Head clause/Goal to show unstatisfiability, the unifying
substitution θ , in the core of computability’s diagonalization (in proper procedural

179

terms), will, in parallel (in proper declarative terms), but essentially repeating in
procedural terms diagonalization (both actions being very nitid in SLD-Resolution
proofs), both pass the input from the selected subgoal to the body of the procedure
(by the use of ¬ or reductio ad absurdum, diagonally), and also pass the output
from the head of the procedure to the remaining unselected goals (by the use of
∨, parallelly), in tree-like (convergent and divergent, parallel and diagonal) philo-
genetic style (logic programming in Prolog works backwards from the conjecture,
building the proof-tree upwards, else called a Goal-directed or top-down approach)
for each

Premise or Conjecture
Inference, Theorem or Conclusion

Prolog Syntax as Rules of Inference [140, 298]:

Γ ` A1, . . . , Am Γ, B →
Γ, (A1 ∨B), . . . , (Am ∨B)→

The line of the equation corresponds simultaneously to the Prolog syntax and
rules of inference on one side, and, on the other, to the proper demarcation line
in science and programming philosophy as a rationale quotient, delimiting, thus,
a conjecture from the axioms. It is in this sense that Ivan Bratko wrote: "An
appropriate view of the interpretation of a Prolog program in mathematical terms
is then as follows: Prolog accepts facts and rules as a set of axioms, and the
user’s question as a conjectured theorem; then it tries to prove this theorem –
that is, to demonstrate that it can be logically derived from the axioms."[46].
Purposely, also Leon Sterling has "emphasized throughout the distinction between
logic programming and Prolog programming"[337]:

"Logic programs can be understood and studied, using two abstract,
machine-independent concepts: truth and logical deduction. One can
ask whether an axiom in a program is true, under some interpretation of
the program symbols; or whether a logical statement is a consequence
of the program. These questions can be answered independently of any
concrete execution mechanism.

On the contrary, Prolog is a programming language, borrowing its ba-
sic constructs from logic. Prolog programs have precise operational
meaning: they are instructions for execution on a computer – a Prolog

180

machine. Prolog programs in good style can almost always be read as
logical statements, thus inheriting some of the abstract properties of
logic programs. Most important, the result of a computation of such a
Prolog program is a logical consequence of the axioms in it. Effective
Prolog programming requires an understanding of the theory of logic
programming."[337]

Framing in Wittgenstein’s philosophy of mathematics, it was made obvious al-
ready how the abstract machine/interpreter is closer to a "theory of formal opera-
tions" [118], while, however reasonable it would be to isolate machine-independent
concepts, such as "truth and logical deduction" [337], correspondingly, the for-
mer should be considered equally set in and congruent with a "theory of formal
operations" [118]. Withal seemingly independent, "truth and logical deduction"
[337] are posterior to the existence of "facts" [418, 419], and nonetheless abstract
machines and computational interpreters are seemingly artificial and posterior to
"truth and logical deduction" [337], these concepts are just a result of a "theory
of formal operations" [118] as it is the former.

As for Robert Kowalski [224, 223, 125] – the main contributor, in automated
theorem proving, to the development of logic programming, precisely from the
procedural interpretation of Horn clauses[326, 393] – his view was established,
mainly, around the following conclusion:

"It is concluded that operational semantics is part of proof theory and
that fixpoint semantics is a special case of model-theoretic semantics"[125].

Robert Kowalski goes further, and defends that operational semantics – defining
the individual input-output operations evoked by the program in the machine,
"included in the syntax"[125] – and fixpoint semantics – defining the meaning of
a program as the minimal fixpoint transformation associated with the program
in the machine, "included in the semantics"[125] – besides addressing a sort of
topologically-transformational analysis to predicate logic as a programming lan-
guage, designating the proper minimal distance between an (artificial) interpreter
and a (natural) interpretation, endorses yet another idea:

181

"With this interpretation of operational semantics as syntax and fix-
point semantics as semantics, the equivalence of operational and fix-
point semantics becomes a special case of Gödel’s completeness theorem."[125]

A syntax of well-formed formulas, forming sentences as finite set of clauses
L1∨. . .∨Ln accounting for atomic formulae P (t1, . . . , tm) and where P is a predicate
symbol and tι are terms, connect, by the manifold existence of terms – a variable,
an expression f(t1, . . . , tm) where f is a function symbol and tι are terms, and
constants as 0-ary symbols – with the field of clauses {C1, . . . , Cn}. In this pivotal
point, not only is brought in the axiomatic, atomist, Wittgenstein I and Kowalski’s
operational semantics as syntax, as it is also in check the so called "procedural
interpretation"[125] – with either an empty clause, a clause consisting of no positive
literals Bι∨. . .∨Bn and n ≥ 1 literals, or a clause consisting of one exactly positive
literal A ∨Bι ∨ . . . ∨Bn where n ≥ 0 – which hinges on an almost morphogenetic
process of constitution of the "procedure declaration"[125], meaning with this that
genetically – "all questions concerning the validity or satisfiability of sentences in
predicate logic can be addressed to sentences in clausal form" [125] – ascends a
constitution of a "procedure body" operated by the negative literals, to the point
that the "procedure invocation" [125] that is resolution [140, 316] assumes almost a
genetic helical form, as each goal-oriented derivation can be regarded as successive
(computable, in diagonalization) terminating refutations, however still contained
in the same (logical) axis.

With this, however determined by the last in/first out rule and the mechanism
of SLD-resolution [140, 223], predicate logic is a nondeterministic programming
language, while operational semantics connects the sets of clauses with an Her-
brand universe wherein predicate symbols in n-ary relations build n-tuples input-
output Relations. And "operational semantics"[125] – indeed, a R. A. Kowalski’s
terminology that could very well be Wittgenstein’s II – assures, by means of a
unique denotation for each derivation of the n-tuple (tι, . . . , tm) in the derivation-
complete and refutation-complete Herbrand universe, substituting procedure calls
by procedure bodies, the existence of an independent interpreter and abstract
machine that is, simultaneously, an inference system, a proof procedure, and

182

computable Relations. It has to be said that constraints on the inference sys-
tem, proof procedure, and computable Relations are just as sound, in the sense
of model-theoretic fixpoint semantics mutually recursive procedure declarations
[327, 54, 223], in full monotonicity of the Herbrand universe expressions, as they
are unjust and unsound, in the sense that abduction in Prolog and the existence of
abducible predicates, is naturally limited to linear assumptions due to the proper
nature of constraint rules [70, 359].

Generally, the fact that Prolog is, declaratively, a logicist Wittgenstein I pro-
gramming language, and the fact that it is, procedurally, a fully operational Wittgen-
stein II abstract machine and interpreter [310, 91, 274, 415], veritably conducts
our synthetic understanding towards a naturalistic stance close to Von Neumann’s
towards the powers of computation, in admitting that logic programming and
Prolog mimic a double helix (operational semantics and proof theory in program-
ming languages and syntax in Prolog vs. fixpoint and model-theoretic semantics
in programming languages, and semantics in Prolog) [223, 125] of two complemen-
tary strands (the leading copy, forward-chaining and front-tracking, Facts-driven,
axioms following and CWA, Modus Ponens, and cleavage resistant vs. the lead-
ing correction, backward-chaining and back-tracking, Goal-directed, rule following
and OWA, Modus Tollens, and strands-cutting), therefore, with dominant and
recessive traits in artificial-to-natural field of partial computable functions [181].
But more importantly, because of the referred conflagration of reproductive Eu-
clidean paralleling axiomatic and methodology (systematic philosophy, contrasted
with P -like decidability) and non-Euclidean productive diagonalization (compu-
tation model, contrasted with NP -like complexity), what is mostly unnoticed is
how logic programming and Prolog offer a great insight – far-ranging wider than
Kowalski’s decipherment: "With this interpretation of operational semantics as
syntax and fixpoint semantics as semantics, the equivalence of operational and
fixpoint semantics becomes a special case of Gödel’s completeness theorem" [125]
– to the showcase that it becomes also, and more fundamentally, a special case of
Gödel’s incompleteness theorems [216, 312, 160, 161, 162, 163], inasmuch as the
original set of clauses {Cι, . . . , Cn} is observed to be universally quantified with
the variables ∀{ι, . . . , xm}C.

183

If we choose to start SWI-Prolog on Windows, what follows is the creation of a
directory folder, generally called swipl containing the executables, libraries, etc.,
of the system, with no other files installed outside this directory. The general path
obeys to <appdata>/SWI-Prolog. Any executable program swipl-win.exe, sta-
tions an interactive Prolog window. Therefore, any executable program swipl.exe

is already a sign of a version of SWI-Prolog running in a console window. The
file extension .pl is, thus, inevitably also a sign of the program swipl-win.exe.
Consequently, if we click and open a .pl file, swipl-win.exe will start, changing
directory to the directory in which the file to open is, and load it instantaneously.

In terms of initialization files associated with the user (2.2 [403]) – on MS-
Windows, it is the file swipl.ini and on Unix systems .swiplrc. – and once
we have file programs that one can consult – the predicate consult/1 gives the
same result as load_files(File, []), except for directly handling the file user,
reading clauses from the terminal17 –the program database is made reachable.
One of its built-in predicates is halt/0 under the user top-level manipulation,
which terminates any Prolog execution. Right from the start, first-order logic
decidability under query type inferences in Horn clauses, is, thus, very close with
undecidability and typical Turing-Church-Gödel-Davis halting problem, here in
trial:

1 Welcome to SWI−Prolog (threaded , 64 b i t s , v e r s i on 7 . 4 . 2)
2 SWI−Prolog comes with ABSOLUTELY NO WARRANTY. This i s f r e e so f tware .
3 Please run ?− l i c e n s e . f o r l e g a l d e t a i l s .
4

5 For on l i n e he lp and background , v i s i t http ://www. swi−pro log . org
6 For bu i l t−in help , use ?− help (Topic) . or ?− apropos (Word) .
7

8 1 ?−ha l t .

17The built-in predicate consult(:File) reads File as a Prolog source file. It constitutes,
therefore, a call to consult/1. Examples are[403]:

?- consult(load).

?- [library(lists)].

?- [user].

In any case, a file or a group of files are loaded, whether that might be a .pl file, library lists,
or even, more directly, an end-user program on the terminal.

184

Redirecting now analysis to the Prolog syntax, every first learning regards
data objects. First and foremost, "the central data structure in Prolog is that of
a term. There are terms of four kinds: atoms, numbers, variables, and compound
terms. Atoms and numbers are sometimes grouped together and called atomic
terms"(Listing 1):

elephant, b, abcXYZ, x_123, another_pint_for_me_please,

’This is also a Prolog atom.’

+, ::, <------>, ***

Listing 1: 1.2 Prolog Syntax in Lecture Notes, an Introduction to Prolog Program-
ming by Ulle Endriss

Ensuingly, numbers are integer type Prolog implementations as of the sort
(... − 3,−2,−1, 0, 1, 2, 3, 4...) [106, 387, 107, 75], optionally preceded by a – (mi-
nus), while floating is admitted. As for the case of boundedness with a low-level
implementation, regarding non-integers, "SWI-Prolog internally represents floats
using the C-language type double. On most today systems this implies using a
64-bit IEEE representation. All floating point math functions are based on the C
math-library."[403, 232] Richard A. O.’Keefe, indeed, explicits that "SWI Prolog
uses exactly the same floating point arithmetic as C. This is normally provided by
your hardware, and can be expected to conform to the IEEE 754 standard. This is
BINARY FLOATING-POINT arithmetic, not arithmetic on the mathematical real
numbers."[214, 403, 232], which, naturally, makes Prolog’s arithmetic declarative
(Listing 2):

As for variables in Prolog, they are strings of letters, digits and underscore
’(_)’ characters. They unalterably start with an uppercase letter or an underscore
(Listing 3):

Anonymous variables, written with a single underscore ’_’, can be manipulated
accordingly. While

1 has_a_child (X) :− parent (X,Y) .

185

8 is 6+2.
12 is 6*2.
4 is 6-2.
-2 is 6-8.
3 is 6/2.
3 is 7/2.
1 is mod(7,2).

Listing 2: 5.1 Arithmetic in Prolog in Learn Prolog Now! by Patrick Blackburn,
Johan Bos, and Kristina Striegnitz

X
Result
Object2
Participant_list
ShoppingList
_A
_x23
_23

Listing 3: 2.1.2 Variables in Prolog Programming for Artificial Intelligence by Ivan
Bratko

... makes explicit that the atomist and elemental X relates to the atomist and
elemental Y, i. e., whichever the specific variable X and the specific variable Y
independently might represent, what is invariably true is that being the variable
X that atomic specific X and being the variable Y that atomic specific Y (as
in a direct mapping in Wittgenstein I logicist structuralism, injective surjective
function, or else said bijective function) their relation holds and secures a valid
inference, established between parent (X, Y) and has_a _child (X). This is
different from the following:

1 has_a_child (X) :− parent (X,_) .

Here what is explicit is that whichever and any variable in place being unified
into the relation, it can also be substituted for any other it might be (as in a

186

direct mapping in Wittgenstein II non-logicist formalism, non-injective surjective
function, not a bijection), their relation will still hold a valid inference. It is
true that logically, the difference does not exist, as validity would fall to proof,
whichever parent (X, Y) or parent (X,_) might hold, but what is substantially
different are the extreme poles, that is, low-level computer-based procedures, and
high-level human-agent philosophy. Sharply, Ivan Bratko goes straight to the point,
bringing up the proper intersubjective, but only subjective position in a Cartesian
plane with x− y coordinates, for both the observer and the visible (here adapting
the original example suitable to a camera) [46]:

1 v i s i b l e (Object) :− s ee (Observer ,_,_) .

... which is logically and geometrically-topologically equivalent to:
1 v i s i b l e (Object) :− s ee (Observer ,X,Y) .

... and, however and actually, quite different from:
1 v i s i b l e (Object) :− s ee (Observer ,X,X) .

Also the author adds: "The lexical scope of variable names is one clause. This
means that, for example, if the name X15 occurs in two clauses, then it signifies
two different variables. But each occurrence of X15 whithin the same clause means
the same variable. The situation is different for constants: the same atom always
means the same object in any clause, throughout the whole program."[46]

It is possible, from the command line and the use of -dump-runtime-variables.,
to print a sequence of variables that can be used in Unix-like shell-scripts, to deal
with Prolog parameters, and it is fundamental to understand that they are not
vacuum placeholders, but instead strict numerical routines. Variables are just
bound along the way of satisfying goals and subgoals, and there is even some
economy in not reassigning value for variables, remembering Sterling & Shapiro
note that "variables are a means of summarizing many queries"[337]. Indeed,
either in the term-stack or heap (assigned to compound terms and large numbers),
in the environment-stack (assigned to choice-points), and the trail-stack (where
assignments run forwardly, and backtracking is possible)[403, 232], the general
control of stack-sizes is not even minimally affected by variables, even taking into
account that "when Prolog uses a variable, the variable can be either instantiated
or not instantiated" [73].

187

We justly apprehend from Clocksin & Melish (1981-1994) the following: "Com-
puter programming in Prolog consists of: declaring some facts about objects and
their relationships, defining some rules about objects and their relationships, and
asking questions about objects and their relationships."[73] A straightforward ex-
amples is (Listing 4):

valuable(gold). % Gold is valuable.
female(jane). % Jane is female.
owns(john,gold). % John owns gold.
father(john,mary). % John is father of Mary.
gives(john,book,mary). % John gives the book to Mary.

Listing 4: 1.1 Facts in Programming in Prolog by W. F. Clocksin & Mellish

When it comes to Prolog satisfying Goals, one thing is important: "You must
bear in mind when you write Prolog programs how Prolog searches through the
database and what variables will be instantiated when one of your rules is used."[73],
which has a mirroring explanation in Bratko: "What is unusual in Prolog, in
comparison with other languages, is that a Prolog program may be declaratively
correct, but at the same time be procedurally incorrect in that it is not able to
produce an answer to a question although the answer exists."[46]

In having absorved that Prolog programs are built from terms – constant,
variable, or a structure – and that any structure, else called a compound term,
is written in Prolog by specifying a functor and its components, we have, quite
inadvertently, found a sort of a programming base infimum and logic programming
greatest lower bound, and a programming exponentiation supremum and logic
programming least upper bound, in the sense that infinite redundancy and looping
on one side, and sharp recursion on the other side, are contained in this frontier. It
can be said that they account also for a sort of λ-closure and λ-contiguity. Another
way to put it recurring to the functor.argument expression, is saying that the
functor and λ-idempotence diverges both λ-potence and λ-impotence. In Prolog,
very simple examples, and respectively, are [46]:

1 ?− X = f (X) .

188

... which produces Prolog’s answer, in many Prolog implementations (although
not in SWI-Prolog threaded, 64 bits, version 7.4.2) [46]:

1 X = f (f (f (f (f (f (f (f (f (f (f (f (. . .

While this is a proof of redundant recursion, it sets also the proper recursion power.
An intelligent use of this principle and herein show, under membership and sublist
relations, is the following [46]:

1 ?− s u b l i s t (S , [a , b , c]) .
2 S= [] ;
3 S=[a] ;
4 S=[a , b] ;
5 S=[a , b , c] ;
6 S= [] ;
7 S=[b] ;
8 . . .

Also and correspondingly settled on an higher-abstract request in terms of recur-
sion, are the non-conflicting, and applied principles of the functor.argument ex-
pression, minimally (forwardly, one step, order-independent) and maximally (back-
tracking, various steps, order-dependent) executed, respectively, for:

1. If the list is empty then its lenght is 0

2. If the list is not empty then List=[Head | Tail]; then its length is equal to
1 plus the length of the Tail.

length([], 0).
% and ...
length([_|Tail], N):-
length(Tail, N1),
N is 1+ N1.

There are a lot of programming techniques and programs that benefit and
are presumed in the exposed, usually ISO-compliant and also present as built-in
predicates. Examples are atom_concat(?Atom1, ?Atom2, ?Atom3) [403,
232], member(?Elem, ?List) [403, 232], and append(+ListOfLists, ?List)
[403, 232], in increasing complexity. It should be noted that, precisely in terms

189

of complexity, steadfastness of SLD-resolution in depth-first search permits that
Goal-reduction in the computation search-tree, where the root node fails if its
selected literal cannot unify with the positive literal of an input clause, obliges to
consider increasing complexity with successive instantiating of variables, insofar
conjoint sub-Goals share variables.

A great deal of attention should be deposited ahead in explaining unification
in satisfying goals, which permits to treat also backtracking and the Cut.

If ambivalence was shown before in relation to functor.argument, in the same
line, either with a linear, sequential, and deterministic implementation (Prolog-II,
IC-Prolog, and MU-Prolog, e.g. [337]), or with traversal, parallel, non-deterministic
implementation (PARLOG, Concurrent Prolog, GHC, Aurora-Prolog, and Andorra-
Prolog e.g. [337]), there is an inherent bivalence in constraint satisfaction problems
due to the existence of the simple principle of commutativity, being also, in re-
condite fashion, something that happens because backtracking search consists of
a single unchangeable representation or structure, although with an instantiating
altering state or formalism, the most definite frontier on the proper chasm between
Wittgenstein I and Wittgenstein II.

Prior clarification on how unification operates is fundamental. Unification is
just a general, and because of that, very specific case of matching: "Given a goal
to evaluate, Prolog works through the clauses in the database trying to match the
goal with each clause in turn, working from top to bottom until a match is found.
If no match is found the goal fails." [45]. Variables are unbound, and the Head of
a clause and a Goal are unified. If noticed carefully, taking into account that two
terms match if they are actually identical (atomist, Wittgenstein I) or potentially
identical (factual, Wittgenstein II), what is also presumed is that the same variable
(’X’, Wittgenstein I) having to be instantiated with the same value throughout an
expression, is quite different from the anonymous variable (’_’, Wittgenstein II),
which is individually unique as much as it is general in principle running at each
program universally [126].

If both terms are constants and identical, unification succeeds, otherwise fails.
Being compound terms, if they have the same functor and arity, and if the argu-
ments unify pairwise, unification also succeeds.

190

If we think along the topic of space, in propermetric and transformational (pro-
gramming languages) factual and representational choice-points, on a par with, for
example, Bratko’s "robot task planning" [46], "blocks in boxes" [46] as an exam-
ple in constraint logic programming, and "best-first search: minimizing time and
space" [46], or, indeed, O’Keefe’s "Where Does the space go?" [214] entire chap-
ter, specially "measuring space used" [214], it is better seeable how Wittgenstein’s
original "idea of representation of negative facts by means of models (Notebooks
1914-1916 (14.11.14)) [410] and its appraisal of the structuralism vs. formalism
clash – "Let us imagine a white surface with irregular black spots on it. We now
say: Whatever the sort of picture arises in this way, I shall always be able to
approximate as close as I like to its description by covering the surface with a
suitably fine square network and saying of each square that it is white or is black.
In this way I shall have brought the description of this surface into a unitary form.
This form is arbitrary, for I could with equal success have used a triangular or
hexagonal net." [410, 412] – is, nevertheless, very different from the use of nega-
tion in programming languages theory, and indeed from the use of negation as
failure as the non-monotonic inference rule in logic programming and Prolog. In
view of the latter, the "fact" [415] that "two numbers unify if and only if they
are the same, so 7 unifies with 7, but not with 6.9" [45] and the "fact" [415] that
"two unbound variables, say X and Y always unify, with the two variables bound
to each other" [45] and also that "an unbound variable and a term that is not a
variable always unify, with the variable bound to the term" [45] are all examples of
Wittgenstein I, fully atomist, functionalist-structuralist, FOL-ω-consistent, P -like
logicist (programming) philosophy, in which non-deterministic logic programming
with multiple predicates is, however, a sign of typical conjoint complexity classes
PTIME and PSPACE of a deterministic Turing-machine, all in all an exquisite
achievement and perfectioned programming limit of all of the above. Straightfor-
wardly, this limit is as simple as the mutual coincidence of a Turing-machine and
the Warren abstract machine.

In terms of the Warren abstract machine, "it is a unification algorithm based
on the UNION/FIND method, where variable substitutions are built, applied, and
composed through dereference pointers. InM (machine) (...) this unification oper-
ation is performed on a pair of store addresses. It uses a global dynamic structure,

191

an array of store addresses, as a unification stack (called PDL, for Push-Down

List)." [15] On top we cannot forget that "method in clausal logic is proof by
refutation. If we succeed in deriving the empty clause, then we have demonstrated
that the set of clauses is inconsistent under the substitutions that are needed for
unification of literals" [131] So, principally, Prolog’s execution in forward recursion
and backtracking is common, and in a way also unifiable in logic programming,
in the sense that "Prolog’s execution mechanism is obtained from the abstract
interpreter by choosing the leftmost goal instead of an arbitrary one and replacing
the non-deterministic choice of a clause by sequential search for a unifiable clause
and backtracking." [337]

Having understood the balance between determinism and sequential order on
one side, and non-determinism choice and backtracking on the other side, we
can proceed to the presentation of the following grammar and explicitation of
algorithm, wherein CSP is the acronym for "Constraint Satisfaction Problems"
[325]:

function BACKTRACKING-SEARCH (CSP) returns a solution, or failure

return BACKTRACK({} , CSP)

function BACKTRACK(assignment, CSP) returns a solution, or failure

| if assignment is complete then return assignement

| var ← SELECT-UNASSIGNED-VARIABLE (CSP)

| for each value in ORDER-DOMAIN-VALUES (var , assignment , CSP) do

| if value is consistent with assignement then

| add {var=value} to assignement

| inferences ← INFERENCE (CSP, var , value)

| if inferences 6= failure then

| add inferences to assignment

| result ← BACKTRACK (assignment , CSP)

| if result 6= failure then

192

| return result

| remove {var = value} and inferences from assignement

| return failure

Insofar evaluating Goals in Prolog implies a search through the database or
knowledge representation base, from top to bottom, seeking for clauses that have
Heads with the same functor.arity until finding the first for which Head and
Goal unify, it has to be considered the case when for each and every attempt, they
do not succeed, advancing, thus, to backtracking, the process of going back to a
previous Goal in trying to convey logic satisfiability.

More in detail, we choose to follow the simple "family relationship example"
[45] in Max Bramer’s Logic Programming with Prolog (3.3) with forward insights
from other sources. Let us not explicit the clauses, but attent instead first to the
query

1 ?− parent (john , Child) , wr i t e (’The ch i l d i s ’) , wr i t e (Child) , n l .

What is important first to note is that when Max Bramer writes "Prolog attempts
to satisfy all the goals in the sequence (simultaneously) and in doing so will find one
or more possible values for variable Child" [45], what is meant is that there exists a
simultaneous and automatic-driven boundness between left-right anterior Goal and
Query parent(john,Child) and the left-right posterior write(Child). Another
way to put it is saying that, as there is not any anterior top-bottom, left-right
Goal before parent(john,Child), the clausal form is assumed instantaneously to
be bound to any of the future recursion-occurrence of the variable Child. In a
sense, it can be said that Prolog will try to satisfy all the Goals in the sequence and
simultaneously, once each time the value for the occurrence of the variable Child
is shown, it is, in furtherance, another occurrence of Goal also. There are in our
program several Relations and two Rules in relation to the predicate parent/2 [45]:
With [P1] and [P2] Goals do not match (Listing 5). As for [P3] it automatically
bounds X with john and the variables Y and Child. As it works so, the system
shell waits for the abstract machine also to work automatically now with the Body
of the Rule [P3]. "It successfully evaluates the goals write(’mother?’) and nl
outputting the line of text" [45]:

1 mother?

193

[P1] parent(victoria,george).
[P2] parent(victoria,edward).
[P3] parent(X,Y):-write(’mother?’),nl,mother(X,Y),write(’mother!’),nl.
[P4] parent(A,B):-write(’father?’),nl,father(A,B),write(’father!’),nl.
[P5] parent(elizabeth,charles).
[P6] parent(elizabeth,andrew).

Listing 5: 3.3 The parent Family Relationships Example in Logic Programming
with Prolog by Max Bramer

At this point, it is up to find the Goal mother(john,Y). We have at disposal the
following mother clauses [M1]− [M10] (Listing 6)

[M1] mother(ann,henry).
[M2] mother(ann,mary).
[M3] mother(jane,mark).
[M4] mother(jane,francis).
[M5] mother(annette,jonathan).
[M6] mother(mary,bill).
[M7] mother(janice,louise).
[M8] mother(lucy,janet).
[M9] mother(louise,caroline).
[M10] mother(louise,martin).

Listing 6: 3.3 The mother Family Relationships Example in Logic Programming
with Prolog by Max Bramer

The next Goal mother(john,Y), as a Predicate mother/2, does not unify with
the Head of any of the clauses M [1] to M [10]. As this Goal fails, the sys-
tem starts to backtrack. It automatically searches for the last satisfied Goal in
the Body of the proposition P [3] – now having moved right to left – but, as it
finds the built-in-predicate nl/0, one further position – again, in contrary fash-
ion, right-to-left and bottom-up – has to be evaluated in backtracking. It finds
again write(’mother?’). which fails also for the same reasons; as it had done
for nl/0 it does now for write/1. To sum up, and for the present moment, there
is no other option except the integral rejection of the Rule P [3], and the proper
re-instantiation of the Query:

194

1 ?−parent (john , Child) , wr i t e (’The ch i l d i s ’) , wr i t e (Child) , n l .

naturally with the variable Child unbound.
What is next is the clause P [3] searching for defining the parent/2 Predicate

in the sequitur top-bottom left-right expression parent(john,Child). The clause
P [4] follows, and it successfully unifies the Goal with the Head, i.e., the variable A
bounds to john and variables B and Child also bound to each other.

Next in line in the P [4] clause parent(john,B);−write(’father?’) ,nl , father(john,B),

write(’ father ! ’) ,nl ., and after father?, is the third Goal: father(john,B).
It, thus, finds, the clause F [2] (Listing 7). F [2] is the Fact father(john,mary).

As the variable B is bound to the atom mary, there is one automatic process of
instantiation of the "previous" variable Child now to be also bound to the atom
mary.

Once all the Goals in the body of P [4] have succeeded, with the lines of text
1 f a t h e r !
2 The ch i l d i s mary

it completes all the output values in the original user’s Query. In recapitulation:
1 ?−parent (john , Child) , wr i t e (’The ch i l d i s ’) , wr i t e (Child) , n l .
2 mother?
3 f a t h e r ?
4 f a t h e r !
5 The ch i l d i s mary
6 Child=mary

As Max Bramer points out, "the user can now force the system to backtrack to
find a further solution or solutions by entering a semicolon character. This works
by forcing the most recently satisfied goal, i.e. nl (the last goal in the user’s
query) to fail. The system now backtracks to the previous goal in the sequence,
i.e. write(Child). This too fails on backtracking, as does the previous goal, i.e.
write(’The child is ’). The system backtracks a further step, to the first goal in
the query, which is parent(john,Child)."[45]

In order to find an alternative, so too the P [4] clause is automatically con-
signed to the execution of backtracking (from right-to-left, bottom-up), and within
it the last Goal in the Body. Remember that the original P [4] (Listing 5) is
parent(A,B):−write(’father?’) ,nl , father(A,B),write(’ father ! ’) ,nl .

195

Consequently, the focus is on father(john,B), looking for possible unifications
for the Predicate father/2, except, most naturally, [F2]. Knowing the father
clauses to be the following (Listing 7):
... the next clause for which the head unifies is [F5] and the variable Child is

[F1] father(henry,jonathan)
[F2] father(john,mary).
[F3] father(francis,william).
[F4] father(francis,louise).
[F5] father(john,mark).
[F6] father(gavin,lucky).
[F7] father(john,francis).
[F8] father(martin,david).
[F9] father(martin,janet).

Listing 7: 3.3 The father Family Relationships Example in Logic Programming
with Prolog by Max Bramer

bound to the atom mark. If required, further backtracking will redirect to the
clause [F7] father(john, francis) . In general and recapitulating the output in the
console is:

1 ?−parent (john , Child) , wr i t e (’The ch i l d i s ’) , wr i t e (Child) , n l .
2 mother?
3 f a t h e r ?
4 f a t h e r !
5 The ch i l d i s mary
6 Child = mary ;
7 f a t h e r !
8 The ch i l d i s mark
9 Child = mark ;

10 f a t h e r !
11 The ch i l d i s f r a n c i s
12 Child = f r a n c i s

At this point, it is useful to alert that we should not confuse the rhetoric use of the
exclamation mark as a stagger mark and the exclamation mark in the use of the
Predicate Cut: "the predicate cut is represented by an exclamation point, !. The
syntax for cut is that of a goal with no arguments. Cut has several side effects:
first, when originally encountered it always succeeds, and second, if it is ’failed back

196

into’ in backtracking, it causes the entire goal in which it is contained to fail."[352].
In this fashion, the Cut can be used to prevent unwanted backtracking, and also
when used as "cut with failure", to specify one or more exceptions to general rules.

With this we learn that backtracking can lead to inefficiency and time-waste in
looking for solutions. The built-in Predicate Cut is, thus, a mechanism of control
above changing the Rule and the Goal hierarchy. More in detail, "the cut commits
Prolog to any choices that were made since the parent goal was unified with the left
hand side of the rule (including, importantly, the choice of using that particular
clause)."[290]

In reminding that backtracking makes use of the bottom-top right-left strategy,
in contrary route to the top-bottom left-right pattern of unification, the Cut Predi-
cate is seen, therefore, as repeating the pattern of unification inside the mechanism
of preventing backtracking, or rather as "a nullary predicate that always succeeds
as a goal and if it is encountered on backtracking, then it causes the backtracking
to skip all clauses" [175]. Also important to note is how backtracking, as a gen-
eral retroversion of space (atomus) and time (momentum) with possible infinite
regression, installs, in principle, entropy in the logical deduction mechanism, and
how preventing backtracking through the use of Cut, is suitably called "negation
as failure" as it shelters the original philosophy desideratum of Prolog’s controlled
deduction related with the closed-world assumption (CWA). Let’s observe a simple
sumto/2 Predicate example in "Preventing Backtracking" (Listing 8):

/*sum the integers from 1 to N (the first argument) inclusive */
sumto(1,1).
sumto(N,S):- N1 is N-1,sumto(N1,S1), S is S1+N.

Listing 8: sumto in Logic Programming with Prolog by Max Bramer

Indeed, for the Query
1 ?−sumto (15000 ,_) .
2 t rue .

or for the non-anonymous variable-including Query

197

1 ?−sumto (3 , S) .
2 S=6

there is absolutely no resolution impediment and the answers are provided. Nev-
ertheless, it is a different case when resorting to backtracking. Another way of
putting it is saying that in a tree-like disposal, any node where an alternative
choice is available is now susceptible of incrementally building candidates to the
solutions, and, in inverse way, with the Cut it is truncated every time its ’!’
sign operator precedes it in the contra-original unification direction that is char-
acteristic of the backtracking constraint satisfaction problem algorithm. The Cut
literally trims away the branches, reducing exponentially derived outcomes.

Now confronting with the above code and the result S=6, this time trying
again from the Query and Goal ?−sumto(3,S). backtracking will force Prolog to try
the Goal sum(1,S). What happens is that the first clause sumto(1,1). permits
the instantaneous instantiation of the argument S to the value 1. Backtracking’s
inverse resolution targets the first clause and within it the second argument.
Consequently – with the result being so far the proper first clause sumto(1,1).

the first clause is rejected and it will try to satisfy the second clause, which
is sumto(N,S):− N1 is N−1,sumto(n1,S1),S is S1+N. As it is trying to solve originally
sumto(1,S). "it causes it to subtract one from one and then evaluate the goal
sumto(0,S). Doing this will require it to evaluate sumto(-1,S1), then sumto(-
2,S1) and so on, until eventually the system runs out of memory." [45]. A proper
rectification, not yet using the Cut Predicate would be (Listing 9)

sumto(N,S):- N>1,N1 is N-1,sumto(N1,S1),S is S1+N.

Listing 9: 7. Preventing Backtracking in Logic Programming with Prolog by Max
Bramer

Conventionally, what we find here is an effective programming melioration of a
clause in particular. As it is noticed, it suffices the short piece N>1, in the overall
clause sumto(N,S):−N>1,N1 is N−1,sumto(N1,S1),S is S1+N. to have, in resolutive way,
corrected the problem. Nevertheless, a way to make it as general as resolution
proper, is turning Cut inasmuch a Goal, as a Predicate.

198

In such way, implementing the Cut Predicate, the same example revised is here
shown (Listing 10):

sumto(1,1):-!
sumto(N,S):-N1 is N-1,sumto(N1,S1),S is S1+N.

Listing 10: 7. Preventing Backtracking (Revised) in Logic Programming with
Prolog by Max Bramer

Now, the implementation of Cut – no more than an atom – by the use of !,
involves memory in the search-tree with specific pointers: "Note that backtracking
requires that all previous resolvents are remembered for which not all alternatives
have been tried yet, together with a pointer to the most recent program clause
that has been tried at that point. Because of Prolog’s depth-first search strategy,
we can easily record all previous resolvents in a goal stack: backtracking is then
implemented by popping the upper resolvent from the stack, and searching for the
next program clause to resolve with"[131].

One important thing to note is that the use of Cut is all-inclusive in its for-
biddance procedure, meaning that not only the present (actualist, Wittgenstein
I) clause is prevented from backtracking, as any other clause for that matter
including it as a Predicate. It also resorts differently with forced backtracking,
once the fact that all possible instantiations have been already given, changes the
scenario as when the user presses the ; (semicolon) – Prolog first checks for alter-
natives to the last inclusive Goal, and it looks upon alternatives including it, as if
there had been a ! (exclamation mark) instead of a . (full stop).

Another important point to call attention to is how the pure recursive left-right
top-bottom SLD-resolution strategy, in being the opposite to pure recursive right-
left bottom-top backtracking strategy, does not quite meet Cut in the middle:
commitment to the last result obliges Cut to be more so a full stop for inverse
resolution when backtracking, than eventually it is a full stop – comprehensively
the alternate ! (exclamation mark) – for the inverse resolution that is backtrack-
ing itself, because many other clauses might still be available in the program
(as seen in the Family Relations example), explaining also the pertinence of the

199

difference with the use of ; (semicolon). All in all, backtracking is very much
like resolution itself, except for being inverse and, by order, non-deterministic and
many-directional.

A program with Cut does not quite stop the (selective linear resolution with
definite clauses) mechanism but only its reach, and in making disposal of the
bottom-top right-left backtracking to perform cancel of its operation, even for
one only momentum and atomus, is just as preventing of backtracking, as it is
of resolution itself. A proof of such is the unalterable "state-of-affairs" order and
hierarchy of the clauses in a program. Cut holds, thus, some resemblance with
the supremum use, in proper analytic terms, typical of &-Falsum in a truth-table
logic, even though preventive and not effective, which is in sharp contrast with
the infimum use, in analytic terms, of the ∨-Verum in a truth-table logic, all the
more effective than preventive. For the same reason alike, although by contrast,
this also explains why logic programming and Prolog hold an intrinsic supervening
and precedental Relation of the disjunctive normal form (DNF) over the conjunctive
normal form (CNF), and why, in the first place, the Cut mechanism is not an Horn
clause.

This is also and mainly the reason for some to have criticized Cut as being
alien to the Prolog programming philosophy and to be generally considered as "an
extra-logical control annotation that helps the Prolog programmer trim the search
space" [15]. Cut is, nevertheless, still a control mechanism, attesting still for a
general left-right top-bottom nondeterministic transitive-intransitive deterministic
linear-logic programming transitoriness. Again, its existence attests better for the
general ambivalent status of logic programming and Prolog, while its detriment
suggests a typical dialectic use of pure (practical -programming) reason.

In these terms, in a perhaps fortuitous analogy, if Cut itself was a STOP traffic
sign, it would be faced to the reverse direction that is backtracking, but in this way
it could be seen, in its special form, from the inverse path that is resolution. But
this does not happen, and SLD-resolution is totally transitive over its symbol as
if it would correspond – left-to-right top-bottom, but also right-to-left bottom-up
– to ,!, or maybe, more appropriately, ,-:.

In this way, what is presented is the clarification of the proper programming
entropy in backtracking, and how the Cut mechanism attests for a logical brain, in

200

the sense that, in similar lines with the "Boltzmann brain" [384, 369], it commands
a self-aware control – out of "Algorithm = Logic + Control" [224, 223] – arising
out of highly possible random fluctuations statistically deviated from a state of
logic programming (linear and deterministic) equilibrium. Under the same line,
but in forward syntactic unification, also the mechanism of the so called "occurs
check" [395, 46, 84] – "For reasons of efficiency, in almost all implementations of
Prolog the occur check is left out. This mechanism should protect the program
against introducing circular bindings of variables. In practice the occur check is
very expensive, however, and it is left to the skills of the user, to avoid these
circular bindings in the program" [395] – is relevant to grasp how equisatisfiability
through the use of formulas written as a string of (prefix) quantifiers followed by
a quantifier-free part (matrix) in prenex normal form, and, thereafter, in Skolem
normal form (in prenex normal form with only universal first-order quantifiers),
encounters an interpretation of a formula in conjunctive normal form (CNF) or
clausal normal form where a clause is a disjunction of literals, that is permitted
to preserve soundness by not validating alternatively valid variables in theorem
proving. Ideally, logic programming and Prolog would automatically backtrack
the whole tree for each possible unification, but this is just another example of
control manipulation and, in the case of forward unification, complexity reduction
and P -like decidability in an Herbrand universe.

Indeed, not accounting for "occurs check" [395, 46, 84], and preventing a many-
worlds universe, it is expected the worst case complexity in one such panorama to
be reduced from O(max(size(t1)) + size(t2)) to O(min(size(t1), size(t2))).

What is here presumed is that the left-right top-bottom resolution pattern it-
self is also preventive of backtracking – fixing a variable as if it was a non-Cut in
resolution and unification – and because of the possible backward mechanism for
each possible variable new instantiation, perfectly ideal occurs check would force
testing for all possible variables, including the previous ground terms that were
instantiated. In this way it is preferable one single variable multiple instantiation
within logic programming without occurs check in perfect control, than logic pro-
gramming with occurs check, with looping backtracking and resolution fail within
unification theorem proving, with pluperfect logic and algorithm.

201

Unless there was some preventive mechanism as Cut is to backtracking for all
the previous ground terms unification for each branch of the resolution applied
to occurs check, it is made preferable to control, still in the spirit of ["Algorithm
= Logic + Control"] [224, 223], or rather, by us preferred [Control = Algorithm
+ (– Logic)], the natural (CWA)-P -like-assessment of occurs check omission, to
the point that principles of automated theorem proving respond instead to normal
unification ever since Prolog’s ISO/IEC 13211-1:1995.

This is not to say that occurs check and infinite trees complexity and sound
mechanism, in play with ascendance of the conjunctive normal form (CNF) in
Horn clauses and resolution, should not be researched, and even, in accordance
with imagination, be bonded to different levels of (logical) complexity theory.
Certainly, both the rooting P -like resolution andCut, and the exponentiationNP -
like mechanism of occurs-check and backtracking, demand a study of complexity
diagonal effective implementations, and complexity parallel theoretical classes.

Having devised up until now the programming signature of logic programming
and Prolog in sufficient manner, it is time now to detail sufficiently its place in
the history of programming languages. Our strategy will be to attend, just as
minimally as theoretically, past convergent λ-Calculus, Lisp, and Algol 60-68, and
ahead divergent C/C++, Java, and Python, forasmuch as they reveal traits of logic
programming and Prolog.

2.3 Past Convergent Fragments of λ-Calculus, Lisp,
and Algol 60-68, and ahead divergent fragments
of C/C++, Java, and Python

λ-Calculi [319, 40, 254, 71, 302, 358, 11, 172, 180, ?, 194, 331, 421] are "prototype
programming languages" [21], but, at the same time, also one only powerful calcu-
lus (irrespectively of being untyped, and thus, closer to most assembly languages
and machine code itself, allowing direct operations to be performed on any data
or sequences of bits of any length, imminent to Gödelization and number theory,
or else being a typed language, in line with the "majority of modern functional
programming languages" [172], thus closer to mathematical logic and theorem

202

proving) insofar it is the proper representation and formalization of computabil-
ity theory "in terms of definability of numerals" [21]. The same could be said
in relation to the statement that "λ-calculus can be called the smallest universal
programming language in the world" [319] once, in fair logic, it could also be said
to be, for the reason above and for the sort of phylogenetic trace of programming
languages, the longest programming language in the world.

We should neither blame Gödel’s "thoroughly unsatisfactory" [40] remark on
the Kleene-Church previous work on "a formal system for the foundations of math-
ematics by having a system of functions together with a set of logical notions" [21]
– or rather its consistent subsystem –, as it would not be expected that such a sim-
ple function abstraction and variable binding application and substitution would
turn out to be, in ontogenetic symbolic terms, with exactly one single transfor-
mation rule (β-conversion) and one single function scheme, a symbolic avenue for
both natural and artificial "expressions", as paramountly, a proper computability
formalization, equivalent to the Turing machine.

Again, a research of the foundations of pure mathematics rapidly thrust out-
standing empirical application, in this case fortunately synchronous with the Tur-
ing machine, in the overall both founded on the modern Leibnizian dialectic her-
itage, recreated by Henk Barendregt and Erik Barendsen in the following straight-
forward paragraphs: "Leibniz had as ideal the following. (1) Create a ’universal
language’ in which all possible problems can be stated. (2) Find a decision method
to solve all the problems stated in the universal language." [180].

λ-Calculus – wherein the ’λ’ notation came in as an alternative, confronting
with Russell and Whitehead’s [1910-13] f(x) = 2x+1 also written as 2x̂+1, and as
"Church originally intended to use the notation x̂.2x+1" but such typesetting was
impossible, if first was shown the lambda-expression λx.2x+1 – comes to be, as a
result, "a non-extensional theory of functions as rules of computation, contrasting
with an extensional theory of functions as sets of ordered pairs. Despite its sparse
syntax, the expressiveness and flexibility of the λ-calculus make it a cornucopia of
logic and mathematics" [10]. In this outlook, The λ operator serves as a sort of
binding glue for any abstract over any variable and, consequently, for successive
applications (incrementally, imagined to pass through expressions, functions, and
applications proper). In other words, as simple as it can get, "for the alphabet of

203

the language of the λ-calculus we take the left and right parentheses, left and right
square brackets, the symbol ’λ’ and an infinite set of variables." [10] The class of
λ-terms is, therefore, cast into the inductive abstract, and also applied hierarchy
[10, 319]:

x |Variable |A character or string representing a parameter or mathematical-
logical value | Every variable is a λ-term.

(ńx.M) | Abstraction | Function definition (M is a lambda term). The variable
x becomes bound in the expression. | If M and N are λ-terms, then so is (MN)

(M N) | Application | Applying a function to an argument. M and N are
lambda terms. | If M is a λ-term and x is a variable, then (λx[M]) is a λ-term.

With this, it can be said that λ-Calculus is a convolution mechanism that binds
variables to functions, thereon functions with variables to arguments, the latter
to full expressions, and possible existent expressions with all the sort of other
different expressions. ’λ’ in λ-Calculus acts, thus, as a sort of natural-to-
artificial graph (zipper-scissors) chain-like informatic molecule (Wittgenstein
I) that, precisely due to the verge of the passage from extensional (functions
ordered pairs) to non-extensional (functions in computation), is also practically
dimensioned to computability theory, and strings of symbols – "The ’body’ of
the function specifies how the arguments are to be rearranged. The identity
function, for example, is represented by the string (λx.x) (...) In fact, anything
of interest in λ-calculus is a function. Even numbers or logical values will be
represented by functions that can act on one another in order to transform a
string of symbols into another string. There are no types in λ-calculus: any
function can act on any other. The programmer is responsible for keeping the
computations sensible." [319] – to an ideally three-dimensional extensional and
structural motif from combinatory logic to addying types. Here we portrait
its axis [319]:

〈 expression 〉 := 〈 name 〉 | 〈 function 〉 | 〈 application 〉

〈 function 〉 := λ〈 name 〉 . 〈 expression 〉

〈 application 〉 := 〈 expression 〉 〈 expression 〉

204

In this mathematical-logic processing, it has to be granted that three reductions
occur. They are, respectively, α-conversion (reduction) (changing bound vari-
ables), β-reduction (applying functions to their arguments), and η-conversion (re-
duction) (coextensive extensionality). A simple alphabetical substitution and vari-
able renaming, avoiding name collisions (λx.M [x])→ (λy.M [y]) or the equivalent
(λz.z) ≡ (λy.y) ≡ (λt.t) ≡ (λu.u) accounts for α-conversion (Wittgenstein I),
wherein "The names of the arguments in function definitions do not carry any
meaning by themselves. They are just ’place holders’, that is, they are used to
indicate how to rearrange the arguments of the function when it is evaluated."
[319]. Next comes β-reduction, as in ((λx.M)E)→ (M [x := E]). In this respect,
the difference between free and bound variables is settled by the (Wittgenstein
I) local definition logic, by which "in the function λx.x we say that x is ’bound’
since its occurrence in the body of the definition is preceded by λx. A name not
preceded by a λ is called a ’free variable’." [319] The abstraction operator λ, in
binding its variables wherever they occur in the body of the abstraction, falling
within the scope of an abstraction, enacts, crucially, one decisive property: "A
major property of functional languages is referential transparency ; the property
which allows equals to be substituted by equals." [172] This means that the λ
formal system with mathematical induction, past learning the substitution lemma
and the variable convention, along with inherent extensionality – the λ + ext or,
indeed, λη as suggested by Church, matching the convertibility relationship in re-
lation to intensional equality – and past proofs of consistency and completeness,
is opened to the treatment of reduction (the Standardisation theorem along with
the Church-Rosser theorem), which equip λ-calculus with strong determinacy typ-
ical of a categorical abstract machine. Standardisation responds to the fact that
reduction sequences which terminate in a normal form, is sufficient to attest that
all the possible sequences also terminate in normal form, while the Church-Rosser
theorem rules attests that the possible sequences are independent of reduction
rules strategy and are, therefore, confluent.

Generally, normal forms are programs of relational λ-terms, insofar "the eval-
uation of the β-normal form of a term involves removing application subterms by
applying the (β) rule." [172]

205

As for the case of Lisp [112, 153, 5, 154, 233, 159, 353, 189, 261], Lisp is a List
Processing (specified in 1958/1959) [261, 260]) programming language, created by
John McCarthy, who published its design in an ACM Communication paper [261]
(1960), although extant prior technical literature was accessible and complete [260],
at a time when the representation of S-expressions and the system of S-functions
was to be integrated. Right from the start, McCarthy elucidates that a machine-
independent system of recursive functions of symbolic expressions for the IBM
704 by the Articial Intelligence group at M.I.T., facilitated by the Advice Taker
(1958) – the antecedent of question-answering in logic programming –, had the
goal of being "instructed to handle declarative as well as imperative sentences and
could exhibit ’common sense’ in carrying out its instructions." [261]. This idea
of "programs with common sense" [259] is critical, specially because McCarthy
establishes in this paper [261] a universal S-function apply which is settled to
play the theoretic role of a universal Turing machine and the practical role of an
interpreter, while the representation of S-expressions in the memory of the IBM 704
by list structures was designed to meeet logic machine "states", as used by Newell,
Shaw and Simon S-functions by program [279] 18. In retrospective, thus, it is clear
how much Lisp has met "common sense" by what it could not have but brought in
– reinventing the calculi of lambda-conversion to higher dimensions, and in having
resolved the high-level imperative and compiled programming typical of numeric
computation of Fortran Automatic Coding System (1958) on the same IBM 704,
now in symbolic fashion – but strongly enough also to have advanced the status of
programmable functions and data under the versatile type of lists in EVAL notation
– an evaluating-function of a string or box-to-box denotation, as though it were an
expression or structured representation of code, such as an abstract syntax tree –,
as if it were, on the whole, a more complexioned and dialectic lambda-conversion.

18Lisp’s first sowing the seeds until the Lisp 1.5 Programmer’s Manual [195] by McCarthy
et al. (1962) dates back to the summer research AI meeting at Dartmouth College (1956),
where McCarthy was introduced to a very raw technique of "list processing" in the context of
Newell’s, Shaw’s, and Simon’s IPL (Information Processing Language). Curiously, there was
also a suggestion, after the slightly anterior Fortran (1958), of FLPL (Fortran List Processing
Language). Preferably to saying that McCarthy wrote the first version Lisp 1, developed for
the IBM 704, contrary to these previous endeavours, it is wiser to go along with the idea that
McCarthy "working first at Dartmouth and later at the Massachusetts Institute of Technology,
designed a new language, LISP (for LISt processor), that drew on ideas from IPL, FORTRAN,
and FLPL." [360]

206

Lisp welcomed a range of new features that are worth mentioning. Garbage
collection (1959) stands out, the inseparable characteristic of implicit types, un-
der Wittgenstein I typical logical atomism – and, iteratively, the first atom of
the minimal list (a pair) –, as if it was a natural declarative, ’what’ code tag to
proper assembly language also atomist Wittgenstein I imperative, ’how’ point-
ers and memory addresses (denotational and operational semantics being very
close). Made inseparable was also, past both assembly languages and Fortran
(1958) Wittgenstein I numeric and high-level inter-local direct feeding and link-
age, the new feature in Lisp (1959) of REPL (read-evaluate-print loop), which
permitted programming observance and implemented incremental compilation in
an interactive, truly man-machine, environment. Indeed, from Lisp 1.5 to PDP-6
Lisp (1960-65), at a time when computers were designed for Lisp, "before Unix
became widespread, (and) there was as much experimentation in the design of
operating systems as in the design of programming languages" [159], the result,
however, was one of a strong and small assembly code core and compiler: "In 1965,
virtually all of the Lisps in existence were identical or differed only in trivial ways"
[159], but in this context it has to be mentioned that one of the reasons for that to
have happened was that as early as 1962, the MIT implementation of Lisp would
compile expressions that were entered in REPL. Being so, other features, such as
closures and meta-programming, along with meta-circular evaluation, have natu-
rally come into play.

There are various aspects in the history of Lisp that deserve appraisal. Here
we outline some with importance. Lisp 1.5 – Alan Kay has gone to the point of de-
scribing Lisp as the “Maxwell’s equations of software”, reporting the reading of the
LISP 1.5 Programmer’s Manual [195] “half page of code on the bottom of page 13"
where we learn that "evalquote is defined by using two main functions, called eval
and apply. apply handles a function and its arguments, while eval handles forms."
[195] – settles far away from the PDP-6 (1964) and PDP-10 (1969), running on
36-bit words and 18-bit addresses (able to represent integers to an accuracy of ten
decimal digits and storage 6x6, of six alphanumeric characters encoded in a six-bit
character code) high power calculating machines, thus, also able to carry CAR and
CDR - Head and Tail in Prolog terminology - to CONS (Wittgenstein I, atomist) –
concatenation in Prolog terminology – cells, in very fast computation, considering

207

that time period in history. Different dialects sprang, with MIT MacLisp being the
AI LAB dialect of choice (with some notable differences in relation to the original
Lisp 1.5, such as the syntax preference of eval in relation to evalquote), which later
improved MacLisp fast arithmetic compiler "on a near par with Fortran compil-
ers" [159], showcasing LISCOM (1970-1972) as a peak achievement in compiler
calculation power, but eventually loosing the run to DEC Fortran compilers.

This suggests there is a special cybernetics-(phenonenological) and informatic-
(material) dialectic between imperative and numeric (centrifugal, radial and ef-
ferent) liableness on one side, and declarative and propositional (centripetal, cen-
tralizing and integrable) proneness on the other side, in programming philosophy,
visible in the Fortran and Lisp paramountcy with the outcome of Algol-like syntax
(1958-1968) high-level dominion, later the same with C and Prolog (1972), after the
AI winter (1984), giving forth the dominion of the web multi-paradigm language
of Java (1995), demanding object-oriented (class-based), structured, imperative,
generic, reflective, and concurrent modern programming features. Maybe in a more
profound way, it attests for a timely dialectic, of necessarily anew programming
languages design, although contained in previous experiments (take the case of
Planner, designed by Carl Hewitt at MIT in 1969, later implemented as Popler by
Julian Davies at the University of Edinburgh in the POP-2 programming language,
which directly influenced Prolog, or take the case of Scheme, "An Interpreter for
Extended Lambda Calculus", first appearing in 1970 as a dialect of Lisp, after
reflective work at the MIT AI Lab by its developers, Guy L. Steele and Gerald Jay
Sussman, by means of AI memos known as the The Lambda Papers). In philosophy
of science terms, programming philosophy and languages design is often enticed,
more than Otto Neurath’s (1882-1945) unifying science positivism, Karl Popper’s
(1902-1994) falsificationism, Thomas Khun’s (1922-1996) paradigms, Imre Lak-
tos’s (1922-1974) research programmes, Paul Feyerabend’s (1924-1994) theoretical
anarchism, or Ian Hacking’s (1936-) new experimentalism and selective realism,
by something as basic as "The Language Instinct" [300].

Indeed, and independently of any of the different implementations – including
ahead examples, such as Interlisp, IBM Lisp360 and Lisp370, Scheme (1975-19080),
early Common Lisp (1980-1984), and standard development (1984-1990) produc-
ing official standards for Lisp dialects within IEEE, ANSI, and ISO – one of the

208

strongest impressions in Lisp programming is a sort of Claude Shannon’s (informa-
tional) circuitry boxes direct feeling of manipulating now ranked higher data/code
functions. We here let programming fragments, as for the case of the function
MEMBER in Lisp 1.5 [195, 159]:

DEFINE((

(MEMBER (LAMBDA (A X) (COND ((NULL X) F)

((EQ A (CAR X)) T) (T (MEMBER A (CDR X))))))

))

The following is an intermediate 1960’s coding style applying to the same func-
tion [159]:

DEFINE((

(MEMBER (LAMBDA (A X) (COND

((NULL X) F)

((EQ A (CAR X)) T)

(T (MEMBER A (CDR X))))))

))

Finally, let us confront with modern ANSI Common Lisp (1984, 1990 second edi-
tion, 1994 for ANSI Common Lisp), an ARPA-driven project, and a fully stan-
dardized and improved successor of Maclisp with many extensions, based via the
package manager QuickLisp. It is an high-level, general-purpose, object-oriented,
dynamic, functional programming language, indeed also apt to cope with partial
backwards compatibility to Maclisp and even to John McCarthy’s original Lisp
1.5 [159, 154, 360] :

1 (defun member (element l i s t)
2 (cond ((nu l l l i s t) ())
3 ((eq element (f i r s t l i s t)) t)
4 (t (member element (r e s t l i s t)))))

Listing 2.1: Member definition in Common Lisp

We here review further exemplary fragments of code, in order to minimally
showcase the antecedent lineage of Prolog. In the overall, Common Lisp may
be described as a code and data structure symbolic-expressions (s-expressions)

209

in the form of lists (function calls, macro forms and special forms). Common
Lisp’s data types involve numbers with arbitrary-precision arithmetic, but what
is more relevant is, essentially, the data (Wittgenstein I, atomist) CAR and CDR

CONS cells, working the sequence type through other data objects, such as vec-
tors, and strings, one-dimensional to multi-dimensional arrays. Eval is a first-class
function model, presuming either a special operator (against a fixed list), a macro
operator (previously defined) or the name of a function (by default), which may
be either a symbol, or a sub-form beginning with the symbol lambda, in which
case its arguments are evaluated left-to-right, and the function meets those values
as parameters. No wonder that "Lambda expressions look similar to DEFUNs,
except that the function name is missing and the word LAMBDA appears in place
of DEFUN." [360], being clear the remote connection of the anonymous variable
("_" in Prolog) and the anonymous function-lambda expressions, commonly asso-
ciating symbols as variables (global, via a defvar or setq constructs, or local, via the
setq, let, or prog constructs) to make named functions. If noticed, in opposition to
a predicate language like Prolog, this simple description is enough to attest for the
rather unnoticed, but deep similarity between symbolic (ahead of declarative) and
imperative (ahead of procedural) programming. Lisp’s optimization goes possibly
down to direct imperative machine language, and, as a matter of fact, possibly up
to symbolic optimization and programming language design, precisely influencing
a predicate language like Prolog, among others:

1 (format t "(+ 5 4) = ~d ~%" (+ 5 4))
2 (format t "(− 5 4) = ~d ~%" (− 5 4))
3 (format t " (∗ 5 4) = ~d ~%" (∗ 5 4))
4 (format t " (/ 5 4) = ~d ~%" (/ 5 4)) ; = 5/4
5 (format t " (/ 5 4 . 0) = ~d ~%" (/ 5 4 . 0)) ; = 1 .25
6 (format t " (rem 5 4) = ~d ~%" (rem 5 4)) ; = 1 Returns the remainder
7 (format t " (mod 5 4) = ~d ~%" (mod 5 4)) ; = 1 Returns the remainder

Listing 2.2: Lisp example of mathematic functions

1 (lambda (x)
2 "Return the hype rbo l i c c o s i n e o f X. "
3 (∗ 0 .5 (+ (exp x) (exp (− x)))))

Listing 2.3: Lisp example of a Lambda expression

We subscribe entirely John Foderaro’s comment on Lisp, found in Paul Graham’s
On Lisp: "Lisp is a programmable programming language" [153].

210

Thinking from here, now in terms of one "programmed programming language"
instead, we shift our focus to Algol [339, 400, 3, 4, 200, 231, 230]. Algol for
Algorithmic Language, sums up three major specifications, whose index states the
correspondent year: Algol 58 (including JOVIAL, MAD, and NELIAC), Algol 60
(including ALGOL W, ALPHA, Atlas Autocode, CPL, EULER, Formula ALGOL,
S-algol, Simula, and SMALGOL) which accounts for the peak uncontested success
momentum in the language development, and Algol 68 (including Mary and S3).

Algol 58 was based on the original proposal of IAL "International Algebraic
Language", after a preliminary report [3], which would drive later to the "Report
on the Algorithmic Language" by the ACM Committee on Programming Lan-
guages and the GAMM Commitee on Programming [4]. These laid firmly on a
solid bedrock, once the proper GAMM Subcommittee for programming languages
was born out of forum discussions about algorithmic languages linear translation
into machine code, with the realization of an international symposium on au-
tomatic computing at Darmstad, Germany, as early as 1955. Eventually AGM
joined ACM and both conjoined efforts to design a common algoritmic language.
During the year of 1958, F. L. Bauer, the artificer of the software engineering
stack method, presented the GAMM proposal to the ACM group at a meeting in
Philadelphia, USA, and, finally, the GAMM-ACM ALGOL 58 conference was held
in Zűrich, Switzerland, producing the just referred ALGOL 58 report [3].

Very rapidly, proposals for local improvements to the Algol 58 Report [3] were
given projection with publications both in the Communications of the ACM Jour-
nal [50] and in the Algol Bulletin [240], driven by the efforts of Peter Naur, who
belonged to Danish Regnecentralen, established to be the European medium for
the "spread of word" of ALGOL. Something important to remember in this context
is that ALGOL necessarily encompassed the informational and historical context of
Fortran (for Formula Translation) (IBM, 1957), the first ever general-purpose and
high-level, von Neumann, and compiled imperative programming language, which
was designed to suit numeric computation and also scientific computing. Fortran
was an invention implemented by a team whose leader and director was John W.
Backus (1924-2007), the renowned creator of the Backus-Naur form (BNF) (fur-
ther recognizing the contribution by Peter Naur from Denmark, also engaged in
Algol), itself a formalism capable of defining a formal language syntax.

211

John Backus’ work is mostly relevant not just for the topic of the Fortran
creation and Algol’s descriptive implementation (the Backus-Naur form for meta-
linguistic formulas, besides having been used to describe the Algol 58 syntax [3],
was firstly used in the Algol 60 report [200, 231, 230, 339, 400]), but also because
it was naturally permeable to Chomsky’s linguistics context-free grammars, which
crossed with natural language processing systems, as envisaged later in the 1970’s
with Prolog. John W. Backus was, therefore, determinant both in the defining of a
numeric and mathematic programming and informational analytic – the IBM first
draft of the mathematical Formula Translating System (1954), the ensuing For-
tran manual (1956), and the first optimizing compiler (1957) – as it was also in the
defining of the symbolic-semiotic and declarative programming and informational
dialectic – forbearing for the future, not only the syntax formal descriptive/gram-
matical system of programming languages, as the semantics prescriptive/opera-
tional code for each programming language families and paradigms to come. Most
notably, this wasd achieved through the use of Backus-Naur form on from Algol
60, an algorithmic language now parallel with denotational, axiomatic, and op-
erational semantics. Axiomatically, Fortran (1957) and Algol (1958) correspond
to the passage equivalent in the history and philosophy of logic, wherein Frege’s
reading by Bertrand Russell sparked the so called Russell’s paradox (1901) in the
foundations of mathematics – the self-containment expression of the Backus-Naur
formalism representing that very thing as a corrected programming Begriffsschrift
– and also Fregean reconceivement of logic by constructing a formal system consti-
tuted as the modern predicate calculus (with an analysis of quantified statements
and a proper formal notion of proof in one such dialectic discursivity), attesting
for the semantic explosion of programming languages. If Kant pursued to base
critic philosophy on synthetic, typically mathematical, a priori judgements, Frege
pursued further to demonstrate that theoretical mathematical statements origi-
nated from simpler logical notions, for that reason having exposed – admitting
logicism and its paradoxes – inasmuch a "programmable programming" symbolic-
operational philosophy, as a "programmed programming" algorithmic-imperative
philosophy. It is also very interesting that this corresponds to a sort of informa-
tional and programming natural-to-artificial antinomy between generative rules

212

of context-free grammars, and also of transformational rules of context-sensitive
grammars, a definition stipulated by Noam Chomsky, pointedly, in 1956.

Fortran (1957) has attested more for the generative a priori classes of pro-
gramming philosophy, in the sense that is has strongly pervaded – Fortran (1957),
Fortran II and Fortran III (1958), Fortran IV (1961), the first standard, officially
X3.9-1966, and known as FORTRAN 66 (1966), Fortran 77 (1977), Fortran’s two
versions ISO/IEC standard 1539:1991 (1991) and the ANSI Standard (1992), For-
tran 95, and Fortran post-millennium (2002, 2008, 2018) – while Algol, specially in
Algol 60’s facet of the descriptive Backus-Naur form, with the imprint of academic
and scientific status, historically prerogative but absent in futurity, inaugurating
the combination of imperative executions with call-by-name λ-calculus, is much
more indicative of the generative classes in programming philosophy. It is also
very prevalent a sort of natural-to-artificial antinomy in the transformation and
progress Fortran→Lisp→Prolog, as well as in the passage Fortran→Algol→C, so
as to find Prolog and an effective compiler in the C language.

Also interesting to note, and thoroughly related with the previous, although
not easily perceivable, is that John Backus defended, in a famous paper named Can
Programming Be Liberated from the von Neumann Style? A Functional Style and
Its Algebra of Programs [19] that typical assignment statements in von Neumann
programming languages caused a demarcation between a mathematically ordered
topological programming space with algebraic linear statements on one side, and on
the other side a mathematically disordered topological programming space where
different heuristic and semantic statements abound in intersection with the previ-
ous, but without clear algebraic properties. Remember that John Backus was a
mentor for functional, hierarchically constructed, structuring programming, non-
repetitive and non-recursive, non-von Neumann, but immediately applicable code.
Basically, this endeavour and critic targeted for "an algebra of programs, whose
variables range over programs and whose operations are combining forms" [19].
John Backus’ distaste for a programming tower of Babel pushed him to solomoni-
cally legislate three different models of computing systems: "some models are pure
abstractions, some are represented by hardware, and others by compiling or inter-
pretive programs" [19], which is a sort of tripartite programming contract, whose

213

last agreement he would preferably see divested rather than merged (simple foun-
dational and operational models like the Turing-machine and various automata;
applicative models such as Alonzo Church’s λ-Calculus and pure Lisp; and, at
last, von Neumann models of the so called conventional programming languages,
labelled to be "complex, bulky, not useful" [19] causing unnecessary bottleneck
"tied to a word-at-a-time thinking" [19]. This is remindful of one sort of Kripke’s
Naming and Necessity programming analytic critic (against programming descrip-
tivism, even if against a posteriori necessities), upholding a retreat from semantics
dialectic unguided explosion, which is, oddly enough, very contradictory with the
essence of the Backus-Naur form). It’s unavoidable that we look into the 1977 Tur-
ing lecture. It is really difficult to find one paper with a more caustic, although
solemn, tone in any of research areas like John Backus’ paper. Here we recollect
an extended, illustrative selection:

"Conventional programming languages are growing ever more enor-
mous, but not stronger. Inherent defects at the most basic level cause
them to be both fat and weak (...) Programming Languages appear
to be in trouble. Each successive language incorporates, with a lit-
tle cleaning up, all the features of its predecessors plus a few more
(...) But there is a desperate need for a powerful methodology to help
us think about programs, and no conventional language even begins
to meet that need. In fact, conventional languages create unneces-
sary confusion in the way we think about programs (...) Discussions
about programming languages often resemble medieval debates about
the number of angels that can dance on the head of a pin instead of
exciting contests between fundamentally differing concepts. Many cre-
ative computer scientists have retreated from inventing languages to
inventing tools for describing them. Unfortunately, they have been
largely content to apply their elegant new tools to studying the warts
and moles of existing languages (...) The purpose of this article is
twofold; first, to suggest that basic defects in the framework of conven-
tional languages make their expressive weakness and their cancerous
growth inevitable, and second, to suggest some alternate avenues of

214

exploration toward the design of new kinds of languages (...) In its
simplest form a von Neumann computer has three parts: a central pro-
cessing unit (or CPU), a store, and a connecting tube that can transmit
a single word between the CPU and the store (and sends an address to
the store). I propose to call this tube the von Neumann bottleneck (...)
Surely there must be a less primitive way of making big changes in the
store than by pushing vast numbers of words back and forth through
the von Neumann bottleneck. Not only is this tube a literal bottleneck
(...) but, more importantly, it is an intellectual bottleneck (...) Thus
programming is basically planning and detailing the enormous traffic of
words through the von Neumann bottleneck, and much of that traffic
concerns not significant data itself but where to find it."[19]

Now, diverging more properly to the track of our reflection on Fortran (1957) and
Algol (1958) conjoined momentum, combining with the encasement of Wittgen-
stein I, purely atomist and functionalist interpretation in philosophy of science,
language and logic (in our interpretation the model of all programming languages,
low or high level, von Neumann or non-von Neumann, of whichever paradigm) and
combining also with the implicit parallel assumption in

⋃
-Mentalism of a non-von

Neumann architecture – however, in the case of
⋃
-Mentalism, not even remotely

meaning a drawback to functionalist, a priori, mathematical, nor even numerical,
in truth not even to a (programming) language, but instead to a programming
media as natura naturans equivalent in the artificial-to-natural unfolding, i.e.,
in artificiosus artificialis mode – we single out the following next lines by John
Backus, still in the context of the paper Can Programming be Liberated from the
von Neumann Style? A Functional Style and Its Algebra of Programs [19]:

"Conventional programming languages are basically high level, com-
plex versions of the von Neumann computer. Our thirty year old belief
that there is only one kind of computer is the basis of our belief that
there is only one kind of programming language, the conventional –
von Neumann – language. The differences between Fortran and Algol
68, altough considerable, are less significant than the fact that both
are based on the programming style of the von Neumann computer

215

(...) von Neumann programming languages use variables to imitate
the computer’s storage cells; control statements elaborate its jump and
test instructions; and assignment statements imitate its fetching, stor-
ing, and arithmetic. The assignment statement is the von Neumann
bottleneck of programming languages and keeps us thinking in a word-
at-a-time terms in much the same way the computer’s bottleneck does."
[19]

Indeed, Fotran (1957) and Algol (1958) should be compared in various angles.
Retaining that John Backus himself, even if overtly reluctant towards high-level
implementation with the risk of poorly discontinuous, sentential redundant se-
mantic programming languages, was involved in the making of Fortran and in the
descriptive design of Algol, it is our understanding that the late 1950’s in program-
ming languages history and development, naturally driven by the forces of Fortran
and Algol, are a clear demonstration of the analytic and dialectic intricacy, very
much the opposite of what sustained John Backus, and what is more, it serves
to demonstrate, as a whole, the once and ever so unpreventable and the even
and ever more so foreordained (typically Wittgenstein I) programming philosophy,
including all programming languages that have ever lasted (supposedly non-von
Neumann also included).

Being cognizant of different evaluation criteria in comparing 1st and 2nd gen-
eration computer languages – such as readability, with simplicity, orthogonality,
control statements, and data types & structures, or writability, with abstraction
and expressivity, or reliability, with error & exception handling, and type checking,
besides things like development and maintenance cost – when comparing a strong
static and manifest language as Fortran, with a procedural, imperative, and struc-
tured language like Algol, independently of all possible features compared, what is
most remarkable, above all, is the necessary accordance of all possible judgements
of experience in programming design of these phenomenological ideas in relation
to its historical context. Sometimes, the relation is openly divergent as seen with
both Prolog and C (1972), and periodically it is fairly convergent, asserting for the
emergence of both Fortran (1957/58) and Algol (1958).

216

In comparing the ascendancy of Algol 60 to Prolog, and natural language pro-
cessing above logic programming, it cannot be unrecalled the fact that Algol was,
right up front, a metalanguage, thus introducing the seemingly natural language
ability of "speaking about itself", and onwards also capable of describe program-
ming languages, precisely due to the Backus-Naur form of syntax description. One
form of its continuity, was, of course, the Van Wijngaarden grammar (else called
W-grammar, and an example of the class of affix grammars), the technique that
was used and developed in the definition of Algol 68 (1968), and has affected the
unification algorithm in Prolog (1972).

Algol 60, in detail, is a paragon of typical Wittgenstein I philosophy, represent-
ing the ancestry of most of the actual modern (Algol-like) programming languages.
A fairly untroubled and easily visible example of such is the main quote on the Re-
vised Report on the Algorithmic Language Algol 60 (1962) [200], directly reviving
Wittgenstein I of the Tractatus Logico-Philosophicus (1922):

"What can be said at all, can be said clearly; and what you can not
talk about is something to be silent about."[418, 419]

Algol 60 centers and warrants most of the implementations of Algol [339, 400, 360,
297, 172, 189, 325, 141, 109, 247] indisputably. Algol 68 [49, 371] was criticized by
some members of its design committee such as C. A. R. Hoare and E. Dijkstra,
for abandoning the simplicity of ALGOL 60, accusing the enterprise of a great
complexity risk, while over demanding work from the compiler, but one such pro-
gramming vehicle is obviously pertinent to anticipate Prolog’s years, and not only
Prolog’s, but starting forthwith the C language also.

"Algol 60 was particularly influential in the design of later languages since it
introduced nested block structure, lexical scope, and a syntax in Backus-Naur form
(BNF). Nearly all subsequent programming languages have used a variant of BNF
to describe context-free syntax" [371], but what is superlative in importance is
that it took less than a decade to stimulate the next in importance "man-to-man
communication" [257] innovative grammar – the Van Wijngaarden grammar in
Algol 68 –, which settles Algol not only as the watermark of an epoch of (pro-
gramming) philosophy of language, having launched scientific programming and

217

compiling studies, as in continuity, besides the fact that an extant full formal defi-
nition needed not a compiler to succeed, the confluence of programming languages
design with a programming language on its own, was truly breaking new.

With this we agree with HT de Beer, author of The History of the ALGOL
Effort (2006), who wrote: "I argue that the Algol effort was a catalyst for the
transfomation of the field of compiler writing and programming languages into
a scientific field. The ALGOL 60 report was the key to this tranformation and
this explains the influence of the ALGOL 60 report; its scope was much wider
than yet another algorithmic programming language, it was about the definition
of programming languages in general." [97] If we remember that ever since Weg-
stein proposed three different levels of representation – "reference, publication, and
hardware " [3] – surviving to Algol 60 [200] and Algol 68 [49], it is understandable
how much a theory of meaning and the philosophical study of truth, in Tarski’s
sense, inviting formal correctness and material adequacy to the realm of program-
ming languages – "structure and content must be the same for all representations"
[200] – endeavoured the semantic explosion of programming languages to the exact
extent that a well-defined syntax was constructed.

For reasons of economy, we shall now exemplify code fragments of both Algol
60 and Algol 68, and relate to ahead fragments of C/C++, Java, and Python, with
this hoping to show, liminarly and graphically, the inherent isomorphism of pro-
gramming languages – program variables⇐⇒ computer storage cells (Wittgenstein
I), control statements ⇐⇒ computer instructions (Shannon), assignment state-
ments ⇐⇒ storing instructions (von Neumann), and expressions ⇐⇒ arithmetic
instructions and memory reference (Turing).

Observant as one should be, Algol 60 customarily presents the Backus-Naur
form (BNF), while what can be seen in Algol 68 is the application of the two-level
(context-free) grammar formalism of the van Wijngaarden grammar, paving the
way to the very same application on Q-systems machine translation (and there-
upon on Prolog). W-grammars and Algol 68 features, all together, have permitted
the inclusion of an expression-based syntax, with user-declared types and tagged
structures identified by its tag name and its set of field names. They have also
transported a reference model of variables and reference parameters. Extracting
strings, arrays and matrices, and partial-order execution in concurrency are far

218

more plastic features – congruent with the henceforward general characteristic of
W-grammars in being able to encode the potentially infinite universe of context-
free grammars in a finite set of rules – which bear witness of a pivotal stage in
programming languages evolution, i.e., one such of rapid speciation in apparent
contrast with "punctuated equilibrium" [150, 151] or stasis. With this we also
mean a sort of language and informatics philogenetic atavism, once Algol-like lan-
guages influence was comprehensive and long lasting, although its traits were only
identified when they reappeared in ahead developed programming languages. And
we this we also mean something very close to a morphological informatics sense,
not only because Algol [339, 400, 297] – a collaborative effort made by an interna-
tional committee of the ACM (1958-1960) – inaugurated structuring code blocks,
begin/end delimitations, and nested functions with a lexical scope, which allowed,
like Lisp, recursive programming procedures, but also because it belongs to an
era when, very fortunately, programming languages were designed without a clear
grasp if they were really an interpreter language for the compiler, a compiler report,
an actual programming language, or indeed a grammar programming language de-
sign meta-theory. In the case of Algol 68, it was established as a programming
language, as a matter of fact, before the actual implementation.

From then on, it is history, as we often hear. Algol (1958-1968), one of the first
four high-level programming languages – along with Fortran (1957), Lisp (1958)
[154, 112, 5, 233, 353, 159], and Cobol (1959) – may assume a superlative im-
portance in comparison, by virtue of its sheltered, innovative, formal grammar
evolution, a philosophy of language inner revolution in computer science (BNF to
W-Grammars), having, thus, definitely laid the foundations for the proper phe-
nomenon of heritable characteristics of programming languages (informatic) types
and paradigms – in relation to arithmetic expressions, statements, blocks, and
programs, relations and conditionals, etc. – adaptatively emerging, as a special
axis, from both the coevolution of Fortran (1957) and Lisp (1958), as, in becoming
extinct, influencing on the speciation of C [295] (1972) and Prolog [373, 352, 131,
39, 85, 175, 290, 126, 284, 348, 340, 142, 324, 361, 23, 171, 47, 246, 192, 270, 388]
(1972).

Conclusively, and in comparison, a genetic (informational) programming syn-
thesis significantly impacts on coding (programming languages), decoding (inter-

219

preters and compilers), and more rarely so, as it is the case of Algol, on expressions
(formal grammar). Often unseen and maybe even disregarded, is, what is more,
regulation (the programming language’s message with the messenger) that Algol
has induced. This is so to the point of, insofar recursive subprogram-procedures
were part of Lisp (1957) and Algol (1958), both C and Prolog (1972), as Python
[372] (1990) and Java [76] (1995), share a natural-to-artificial isomorphism:

1 BEGIN
2

3 COMMENT de f i n e the s i e v e data s t r u c tu r e ;
4 INTEGER ARRAY cand idate s [0 : 1 0 0 0] ;
5 INTEGER i , j , k ;
6 COMMENT 1000 to pro t e c t aga in s t s t r i c t eva lua t i on o f AND ;
7 FOR i := 0 STEP 1 UNTIL 1000 DO
8 BEGIN
9 COMMENT everyth ing i s p o t e n t i a l l y prime un t i l proven otherwi se ;

10 cand idate s [i] := 1 ;
11 END;
12 COMMENT Neither 1 nor 0 i s prime , so f l a g them o f f ;
13 cand idate s [0] := 0 ;
14 cand idate s [1] := 0 ;
15 COMMENT s t a r t the s i e v e with the i n t e g e r 0 ;
16 i := 0 ;
17 FOR i := i WHILE i <1000 DO
18 BEGIN
19 COMMENT advance to the next un−c ro s s ed out number . ;
20 COMMENT th i s number must be a prime ;
21 FOR i := i WHILE i <1000 AND cand idate s [i] = 0 DO
22 BEGIN
23 i := i +1;
24 END;
25 COMMENT in su r e aga in s t running o f f the end o f the data s t r u c tu r e ;
26 IF i <1000 THEN
27 BEGIN
28 COMMENT cro s s out a l l mu l t i p l e s o f the prime , s t a r t i n g with 2∗p . ;
29 j := 2 ;
30 k := j ∗ i ;
31 FOR k := k WHILE k < 1000 DO
32 BEGIN
33 cand idate s [k] := 0 ;
34 j := j + 1 ;
35 k := j ∗ i ;
36 END;
37 COMMENT advance to the next candidate ;
38 i := i +1;
39 END
40 END;

220

41 COMMENT a l l uncrossed−out numbers are prime (and only those numbers)
;

42 COMMENT pr in t a l l primes ;
43 FOR i := 0 STEP 1 UNTIL 999 DO
44 BEGIN
45 IF cand idates [i] # 0 THEN
46 BEGIN
47 wr i t e (1 , i) ;
48 t ex t (1 ," i s prime∗N")
49 END
50 END;
51 END
52 FINISH

Listing 2.4: Algol 60 programming example of the sieve of Eratosthenes

Now follows the sieve of Erastothenes programmed in ahead different fragments
of the programming languages C/C++, Java, and Python:

1 // C++ program to p r in t a l l primes sma l l e r than or equal to
2 // n us ing S ieve o f Eratosthenes
3 #inc lude <b i t s / s tdc++.h>
4 us ing namespace std ;
5

6 void S ieveOfEratosthenes (i n t n)
7 {
8 // Create a boolean array "prime [0 . . n] " and i n i t i a l i z e
9 // a l l e n t r i e s i t as t rue . A value in prime [i] w i l l

10 // f i n a l l y be f a l s e i f i i s Not a prime , e l s e t rue .
11 bool prime [n+1] ;
12 memset (prime , true , s i z e o f (prime)) ;
13

14 f o r (i n t p=2; p∗p<=n ; p++)
15 {
16 // I f prime [p] i s not changed , then i t i s a prime
17 i f (prime [p] == true)
18 {
19 // Update a l l mu l t i p l e s o f p
20 f o r (i n t i=p ∗2 ; i<=n ; i += p)
21 prime [i] = f a l s e ;
22 }
23 }
24

25 // Pr int a l l prime numbers
26 f o r (i n t p=2; p<=n ; p++)
27 i f (prime [p])
28 cout << p << " " ;
29 }
30

221

31 // Driver Program to t e s t above func t i on
32 i n t main ()
33 {
34 i n t n = 30 ;
35 cout << "Fol lowing are the prime numbers sma l l e r "
36 << " than or equal to " << n << endl ;
37 SieveOfEratosthenes (n) ;
38 re turn 0 ;
39 }

Listing 2.5: C/C++ programming example of the sieve of Eratosthenes

1 // Java program to pr in t a l l primes sma l l e r than or equal to
2 // n us ing S ieve o f Eratosthenes
3

4 c l a s s S ieveOfEratosthenes
5 {
6 void s i eveOfEratos thenes (i n t n)
7 {
8 // Create a boolean array "prime [0 . . n] " and i n i t i a l i z e
9 // a l l e n t r i e s i t as t rue . A value in prime [i] w i l l

10 // f i n a l l y be f a l s e i f i i s Not a prime , e l s e t rue .
11 boolean prime [] = new boolean [n+1] ;
12 f o r (i n t i =0; i<n ; i++)
13 prime [i] = true ;
14

15 f o r (i n t p = 2 ; p∗p <=n ; p++)
16 {
17 // I f prime [p] i s not changed , then i t i s a prime
18 i f (prime [p] == true)
19 {
20 // Update a l l mu l t i p l e s o f p
21 f o r (i n t i = p ∗2 ; i <= n ; i += p)
22 prime [i] = f a l s e ;
23 }
24 }
25

26 // Pr int a l l prime numbers
27 f o r (i n t i = 2 ; i <= n ; i++)
28 {
29 i f (prime [i] == true)
30 System . out . p r i n t (i + " ") ;
31 }
32 }
33

34 // Driver Program to t e s t above func t i on
35 pub l i c s t a t i c void main (S t r ing args [])
36 {
37 i n t n = 30 ;

222

38 System . out . p r i n t ("Fol lowing are the prime numbers ") ;
39 System . out . p r i n t l n (" sma l l e r than or equal to " + n) ;
40 SieveOfEratosthenes g = new SieveOfEratosthenes () ;
41 g . s i eveOfEratos thenes (n) ;
42 }
43 }
44 // This code has been cont r ibuted by Amit Khandelwal .

Listing 2.6: Java programming example of the sieve of Eratosthenes

1 # Python program to p r i n t a l l primes sma l l e r than or equal to
2 # n us ing S ieve o f Eratosthenes
3

4 de f S ieveOfEratosthenes (n) :
5

6 # Create a boolean array "prime [0 . . n] " and i n i t i a l i z e
7 # a l l e n t r i e s i t as t rue . A value in prime [i] w i l l
8 # f i n a l l y be f a l s e i f i i s Not a prime , e l s e t rue .
9 prime = [True f o r i in range (n+1)]

10 p = 2
11 whi le (p ∗ p <= n) :
12

13 # I f prime [p] i s not changed , then i t i s a prime
14 i f (prime [p] == True) :
15

16 # Update a l l mu l t i p l e s o f p
17 f o r i in range (p ∗ 2 , n+1, p) :
18 prime [i] = Fal se
19 p += 1
20

21 # Print a l l prime numbers
22 f o r p in range (2 , n) :
23 i f prime [p] :
24 pr in t p ,
25

26 # dr i v e r program
27 i f __name__==’__main__ ’ :
28 n = 30
29 pr in t "Fol lowing are the prime numbers sma l l e r " ,
30 pr in t " than or equal to " , n
31 SieveOfEratosthenes (n)

Listing 2.7: Python programming example of the sieve of Eratosthenes

223

Bibliography

[1] A Teoria Matemática da Comunicação de Shannon (Portuguese). (Univer-
sidade Federal do Paraná).

[2] "Nets and filters (are better than sequences).".(English). (Wichita State Uni-
versity).

[3] "Preliminary report – International Algebraic Language".(English). Comm.
Assoc. Comp. Mach, 1(12), 1958.

[4] "Report on the Algorithmic Language Algol by the ACM Committee
on Programming Languages and the GAMM Committee on Program-
ming".(English). (Edited by A. J. Perlis and K. Samuelson) Numerische
Mathematik Bd., 1(41-60), 1959.

[5] Learn Lisp List Processing. (English). (Tutorials Point Simple Easy Learn-
ing). 2014.

[6] "Borel measures". (English). (North Dakota State University) Math 752,
2015.

[7] I. A. Abramowitz, M. ; Stegun. "Miscellaneous Functions". (English). Hand-
book of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, Tenth Printing, with corrections, Chapter 1-27:9–226, 1972.

[8] Kim Thakkar Yeddanapudi Aftab, Cheung. "Information Theory & the Dig-
ital Revolution".(English). 6.933 Project History, Massachusetts Institute of
Technology.

[9] Agostinho. O Mestre (Portuguese). (Porto Editora, Filosofia Textos).

224

[10] Jeese Alama. "The Lambda Calculus", The Stanford Encyclopedia
of Philosophy (Fall 2017 Edition), Edward N. Zalta (ed.), URL =
<https://plato.stanford.edu/archives/fall2017/entries/lambda-calculus/>..
(English).

[11] Enrique Alonso and Maria Manzano. "Diagonalisation and Church’s The-
sis: Kleene’s Homework". (English). (Universidad Autónoma de Madrid;
Universidad de Salamanca) History and Philosophy of Logic, 2005.

[12] Jörg Arndt. "Matters Computational, Ideas, Algorithms, Source Code" (En-
glish).(Springer). 2011.

[13] Augustine. De Doctrina Christiana (English). (R. P. H. Green Editor, Uni-
versity of Glasgow). 1996.

[14] Augustine. "De Musica". (English). (translated by Jean-François Thénard
and Marc Citoleux, with a preface by Anne-Isabelle Bouton-Touboulic, Paris:
Éditions du Sandre) Journal of Plainsong and Medieval Music, 16(1), 2006.

[15] Hassan Aït-Kaci. "Warren’s Abstract Machine, a Tutorial Reconstruction".
(English).((Repreinted from MIT version; Intelligent Software Group, School
of Computing Science, Sinon Fraser University, British Columbia, Canada.).
1999.

[16] Carl J. Posy B. Jack Copeland and Oron Shagrir (Editors). Computability,
Turing, Gödel, Church, and Beyond (English). (The MIT Press, Cambridge,
Massachusetts, London, England). 2015.

[17] H. P. Babbage. "The Analytical Babbage".(English). (Bath) Proceedings of
the British Association, 1888.

[18] Babette Babich. "Mousike techne: The Philosophical Practice of Music
in Plato, Nietzsche, and Heidegger". (English). Articles and Chapters in
Academic Book Collections, Paper 23, 2005.

225

[19] John Backus. "Can Programming be Liberated from the von Neumann
Style? a Functional Style and Its Algebra of Programs". (English). (IBM
Research Laboratory, San Jose) Communications of the ACM, 21(8), 1978.

[20] Sanjeev Arora; Boaz Barak. "Computational Complexity: A Modern Ap-
proach." (English).(Princeton University). January 2007.

[21] Henk Barendregt. "The impact of the lambda calculus in logic and computer
science" (English). (Computing Science Institute, Nijmegen University, The
Netherlands). 1997.

[22] Avron Barr and Edward A. Feigenbaum (Editors). The Handbook of Artificial
Intelligence (English)., volume 2 (5). 2014.

[23] Roman Barták. "Guide to Prolog Programming." (English).(Faculty of Math-
ematics and Physics, Charles University, Prague). 1998.

[24] Dave Barker-Plummer; Jon Barwise, Michael Murray John Etchemendy, in
collaboration with Albert Liu, and Emma Pease. "Language, Proof and
Logic." (English). (Second Edition, CSLI Publications Center for the Study
of Language and Information Leland Stanford Junior University). 2000
(1999).

[25] J. Barwise. "Completeness and Deduction Theorem for Classical Predicate
Logic" (English). (Chapter 9, Handbook of Mathematical Logic). 1990 (1977).

[26] F.L. Bauer and H. Wössner. "The ’Plankalkul’ of Konrad Zuse: A Forerunner
of Today’s Programming Languages.".(English). (Mathematisches Institut
der Technischen Universität München) Communicatins of the ACM, 15(7),
1972.

[27] David Beach. Aspects of Schenkerian Theory (English). (New Haven: Yale
University Press). 1983.

[28] Claude Berge. "Topological Spaces." (English).(Dover Publications, Inc. Mi-
neola New York). Translated by E. M. Patterson. 1962, 1963.

226

[29] Henry Bergson. Matter and Memory (English). (Translated by Nancy Mar-
garet Paul and W. Scott Palmer, Dover Publications, Mineola, New York).
(1912) 2004.

[30] Henry Bergson. A Evolução Criadora (Portuguese). (Tradução de Pedro Elói
Duarte, Edições 70). 1941.

[31] Henry Bergson. The Creative Mind, an Introduction to Metaphysics (En-
glish). (Translated by Mabelle L. Andison, Dover Publications, Mineola, New
York). 1946.

[32] Henry Bergson. A Intuição Filosófica (Portuguese). (Tradução, introdução
e notas de Maria do Céu Patrão Neves, Edições Colibri, Universalia). 1994.

[33] Henry Bergson. Time and Free Will, An Essay on the Immediate Data of
Consciousness (English). (Authorized Translation by F. L. Pogson, M.A.,
Dover Publications, Mineola, New York). 2001.

[34] George Berkeley. A Treatise Concerning the Principles of Human Knowledge
to which are added Three Dialogues Between Hylas and Philonous. (English).
(London, Printed for Jacob Tonson, First Printed in the year 1713). 1734.

[35] George Berkeley. "The Analyst, or a Discourse Addressed to an Infidel Math-
ematician." (English).(Edited by David R. Wilkins). 2002.

[36] Chris Bernhardt. "Turing’s Vision, The Birth of Computer Science." (En-
glish).(The MIT Press; Cambridge, Massachusetts; London, England). 2016-
17.

[37] David Carson Berry. A Topical Guide to Schenkerian Literature: An Anno-
tated Bibliography with Indices (English). (Hillsdale, NY: Pendragon Press).
2004.

[38] Anat Biletzki and Anat Matar; Edward N. Zalta (ed.). "Ludwig Wittgen-
stein". (English). The Stanford Encyclopedia of Philosophy, 2016.

[39] Patrick Blackburn and Kristina Striegnitz. "Natural Language Processing
Techniques." (English).(Version 1.2.4 20020829.).

227

[40] Andreas Blass and Yuri Gurevich. "Algorithms: a Quest for Absolute Defi-
nitions". (English). (Mathematics Department, University of Michigan, Ann
Arbor, MI 48109-1109), pages 1–30.

[41] Ernst Bloch. The Principle of Hope. (English). (Translated by Neville
Plaice, Stephen Plaice and Paul Knight, The MIT Press, Cambridge, Mas-
sachusetts), volume I, II, III. 1986.

[42] Boethius. De Institutione Musica (Latin, Italian). (Istituto italiano per la
storia della musica in Roma). 1990.

[43] George Boole. "An Investigation of the Laws of Thought on Which are
Founded the Mathematical Theories of Logic and Probabilities". (English).
(London, Walton and Maberly, Cambridge, Macmillan and Co.). 1854.

[44] Bordas-Demoulin. "Le Cartésianisme ou La Véritable Rénovation Des Sci-
ences suivi de La Théorie de la Substance et de celle de l’Infini précédé d’un
Discours sur la Reformation de la Philosophie au Dix-Neuvième siècle: Tome
Premier I, Paris: J. Hetzel, Libraire-Éditeur." (French). 1843.

[45] Max Bramer. Logic Programming with Prolog. (English). (Springer). 2005.

[46] Ivan Bratko. Prolog Programming for Artificial Intelligence. (English). (Ad-
dison Wesley, an imprint of Pearson, Fourth Edition). 1986, 1990, 2001
(2012).

[47] Paul Brna. "Prolog Programming: A First Course." (English). (School of
Informatics, The University of Edinburgh). 1999.

[48] Mario Bunge. "A General Black Box Theory". (English). (The Philosophy of
Science Association) The University of Chicago Press Journals, 30(4), 1963.

[49] Edited by A. van Wijngaarden; B.J. Mailloux; J.E.L. Peck; C.H.A. Koster;
M. Sintzoff; C.H. Lindsey; L.G.T. Meertens and R.G.Fisker. "Revised Report
on the Algorithmic Language Algol 68 ". (English) (mathematisch centrum
amsterdam). Mathematical Centre Tracts, 50, 1976.

228

[50] Edited by Alan J. Perlis. "Communications of the ACM". (English).
(Carnegie Institute of Technology, Pittsburgh, PA) CACM Communications
of the ACM, 2(12), 1959.

[51] Edited by Charles Jones. Historical Linguistics Problems and Perspectives
(English). (Longman Linguistics Library). 1993.

[52] Edited by ICOT. "Proceedings of the International Conference on Fifth
Generation Computer Systems 1984" (English). (Edited by Institute for New
Generation Computer Technology (ICOT), North-Holland), 1984.

[53] Edited by Luciano Floridi. "Philosophy of Computing and Information"
(English). (Blackwell Publishing, Blackwell Philosophy Guides). 2004.

[54] María Manzano (Translated by Ruy De Queiroz). "Model Theory." (En-
glish). (Oxford Logic Guides). 29 April, 1999.

[55] Edited by Stewart Shapiro. "The Oxford Handbook of Philosophy of Mathe-
matics and Logic" (English). (Oxford University Press). 2005.

[56] Oliver Byrne. "The First Six Books of The Elements of Euclid" (English).
(Taschen Books.). 1847 (2017).

[57] Giovanni Camardi. "Charles Lyell and the Uniformity Principle". (English).
Biology and Philosophy, 14(4):537–560, October, 1999.

[58] Luca Cardelli. "Typeful Programming". (English) (Digital Equipment Corpo-
ration, Systems Research Center 130 Lytton Avenue, Palo Alto, CA 94301).
1991 (Revised 1993).

[59] Rudolf Carnap. "The Logical Syntax of Language." (English). (International
Library of Psychology, Philosophy, and Scientific Method. Translated from
the German by Amethe Smeaton; New York, Harcourt, Brace). 1937.

[60] Frank Carter. "Colossus and the Breaking of the Lorenz Cipher". (English).
(Bletchley Park Trust; Milton Keynes, United Kingdom).

229

[61] Ernst Cassirer. An Essay on Man, an Introduction to a Philosophy of Human
Culture (English). (Doubleday & Company Inc., Garden City, New York, and
Yale University Press). 1944.

[62] Augustin Louis Cauchy. "Résumé des Leçons données à l’École Royale Poly-
technique sur le calcul infinitésimal." (French). (Paris, Ouvres, séries 2),
volume 4. 1823.

[63] Howard Caygill. A Kant Dictionary. (English). (Blackwell Philosopher Dic-
tionaries). 1995.

[64] Waldemar Celes, Renato Cequeira, and José Lucas Rangel. "Introdução a
Estruturas de Dados com Técnicas de Programação em C." (Portuguese).
(Elsevier, Série Editora Campus, SBC). 2004.

[65] Zhenjie Chen. "History on the implementation and compilation of Prolog".
(English). pages 1–10, December 4, 2012.

[66] Adam Chlipala. "Certified Programming with Dependent Types." (English).
(MIT Press). July 12, 2017.

[67] Noam Chomsky. "Three Models for the Description of Language". (English).
IRE Transactions on Information Theory, vol. 2; issue 3: pp. 113–124, 1956.

[68] Noam Chomsky. "The Architecture of Language" (English). (Edited by Nir-
malangshu Mukkherji, Bibudhendra Narayan Patnaik, Rama Kant Agnihotri,
Oxford India Paperbacks). 2000 (2006).

[69] Noam Chomsky and M. P. Schützenberger. "The Algebraic Theory of
Context-Free Languages". (English). (Elsevier) Studies in Logic and the
Foundations of Mathematics, 35:118–161, 1963.

[70] Henning Christiansen and Veronica Dahl. "Assumptions and Abduction in
Prolog". (English) (Roskilde University, Computer Science Dept.; Dept. of
Computer Science, Simon Fraser University, Burnaby, Canada).

230

[71] Alonzo Church. "An Unsolvable Problem of Elementary Number Theory".
(English). (The Johns Hopkins University Press) American Journal of Math-
ematics, 58(2):345–363, 1936.

[72] Alonzo Church. "Introduction to Mathematical Logic" (English). (Princeton,
New Jersey, Princeton University Press), volume I. 1956.

[73] C.F. Clocksin and C.S. Mellish. Programming in Prolog, Fourth Edition.
(English) Springer. 1994.

[74] Alan Cobham. "The intrinsic computational difficulty of functions". (En-
glish). (North-Holland) Proc. Logic, Methodology, and Philosophy of Science,
II, 1965.

[75] Philippe Codognet and Daniel Diaz. "wamcc: Compiling Prolog to C".
(English). (INRIA-Rocquencort, Domaine de Voluceau 78153 Le Chesnay,
France).

[76] Pedro Coelho. Programação em Java, Curso Completo. (Portuguese). (5a

edição actualizada, FCA). 2016.

[77] Alain Colmerauer. "Les systèmes Q ou un formalisme pour analyser et syn-
thétiser des phrases sur ordinateur." (French). (Mimeo, Montréal). 1969.

[78] Alain Colmerauer. "From Natural Language Processing to Prolog". (En-
glish). (http://alain.colmerauer.free.fr). Beijing, April 8, 2011.

[79] Alain Colmerauer and Philippe Roussel. "The Birth of Prolog". (English).
(Groupe Intelligence Artificielle, Unité de Resherche Associée au CNRS 816,
Faculté des Sciences de Luminy). Communications of the ACM, pages 2–27,
November 1992.

[80] Stephen Cook. "The P VERSUS NP Problem". (English). (Clay Mathemat-
ics Institute), pages pp. 1–11.

[81] Stephen A. Cook. "The Complexity of Theorem-Proving Procedures". (En-
glish). (University of Toronto) Proceedings of the third annual ACM sympo-
sium on theory of computing, pages 151–158, 1971.

231

[82] William R. Cook. "Anatomy of Programming Languages." (English). (UT
Computer Science). 2013.

[83] Nicholaus Copernicus. "On The Revolutions of the Heavenly Spheres." (En-
glish). (Translated by Charles Glenn Wallis, Great Mind Series, Prometheus
Books). 1995 (1453).

[84] Bruno Courcelle. "Fundamental Properties of Infinite Trees". (English).
(UER de Mathématiques et Informatique, Université Bordeaux-I, 33405, Tal-
ence, France) Theoretical Computer Science, 25:pp. 95–169, 1983.

[85] Michael Covington. "Natural Language Processing for Prolog Programmers."
(English). (Prentice-Hall). 1994.

[86] Carol Critchlow and David Eck. "Foundations of Computation." (English).
(Department of Mathematics and Computer Science Hobart and William
Smith Colleges, Geneva, New York). Summer 2011.

[87] Adrian Crăciun. "Computer Architecture". (English). 2017.

[88] Thomas Crump. Science, As Seen Through The Developments of Scientific
Instruments. (English). Constable & Robinson. 2002.

[89] L. Byrd; F. C. N. Pereira; L. M. Pereira; D. H. D. Warren D. L. Bowen (ed-
itor). "DECsystem-10 PROLOG USER’S MANUAL. Prolog Version 3.47"
(English). (University of Edinburgh, Department of Artificial Intelligence),
1982.

[90] António M. Amorim da Costa. Introdução à História e Filosofia das Ciên-
cias. (Portuguese). Publicações Europa-América. 1986.

[91] João Esteves da Silva. Cinco ensaios sobre Wittgenstein. (Portuguese).
(Cadernos de Filosofia das Ciências, CFCUL). 2010.

[92] Ashish Dalela. "Gödel’s Mistake, The Role of Meaning in Mathematics."
(English). (Shabda Press). 2014.

232

[93] Charles Darwin. The Complete Work of Charles Darwin Online.
(http://darwin-online.org.uk/). (English). John van Wyhe, Editor. 2002.

[94] Charles Darwin. The Origins of Species by Means of Natural Selection.
(English). Chapter I. London, Murray: Second Edition. 1859; 1860.

[95] Charles H. Lineweaver; Paul C. W. Davies and Michael Ruse (ed.). "Com-
plexity and the Arrow of Time." (English).(Cambridge University Press).
2013.

[96] Martin Davis. "The Univesal Computer. The Road from Leibniz to Turing"
(English). (CRC Press Taylor & Francis Group). 1968-1994.

[97] HT de Beer. "ALGOL, More than just ALGOL". (English). (Eindhoven),
2008.

[98] Philippe de La Cotardière (Direction). Histoire des Sciences: Editions Tal-
landier (French). 2004.

[99] Ferdinand de Saussure. Course in General Linguistics. (English) Duckworth.
p. 67. 1983.

[100] Gilles Deleuze. "Difference and Repetition." (English).(Translated by Paul
Patton; Columbia University Press). 1968 - 1994.

[101] Gilles Deleuze. "Cinema 1 The Movement-image" (English). (Translated
by Hugh Tomlison and Barbara Habberjam, University of Minnesota Press).
1997 (1983).

[102] Gilles Deleuze. "Cinema 2 The Time-image" (English). (Translated by Hugh
Tomlison and Robert Galeta, University of Minnesota Press). 1997 (1985).

[103] Gilles Deleuze. "Cinema 2 A Imagem-Tempo" (Portuguese). (tradução de
Sousa Dias, Sistema Solar (Documenta)). 2015 (1985).

[104] Gilles Deleuze. "Cinema 1 A Imagem-Movimento" (Portuguese). (tradução
de Sousa Dias, Sistema Solar (Documenta)). 2016 (1983).

233

[105] Daniel Diaz. "A Native Prolog Compiler with Constraint Solving over Finite
Domains". (English). (Edition 1.44, for GNU Prolog version 1.4.4). April
23, 2013.

[106] Daniel Diaz and Philippe Codognet. "A minimal extension of the WAM
for clp(FC)". (English). (INRIA-Rocquencort, Domaine de Voluceau 78153
Chesnay, France).

[107] Daniel Diaz and Philippe Codognet. "GNU Prolog: beyond compiling Prolog
to C.". (English). (University of Paris 1, CRI, bureau C1407, 90 rue de
Tolbiac, 75013, Paris, France).

[108] Pierre Wagner (Direction). Les Philosophes et la science (French). Galli-
mard. 2002.

[109] Pedro Domingos. "The Master Algorithm, How the Quest for the Ultimate
Learning Machine will Remake our World." (English). (Penguin Books).
2015.

[110] Oswald Ducrot and Tzvetan Todorov. Dicionário das Ciências da Linguagem
(Portuguese). (Edição orientada por Eduardo Prado Coelho, Dom Quixote).
2004 (1973).

[111] David Sands; Jeremy Dunnig-Daves. "Reinterpreting Boltzmann’s H-
Theorem in the light of Information Theory.". (English). (Department of
Physics and Mathematics, University of Hull, UK; Institute for Theoretical
Physics and Advanced Mathematics Einstein-Galilei, Prato, Italy), 2013.

[112] Vsevolod Dyomkin. Lisp Hackers Interviews with 100x More Productive Pro-
grammers conducted by Vsevolod Dyomkin in 2012-2013. (English). (Lean-
pub Book). 2013.

[113] Alfred Tarski (ed.). "The Concept of Truth in Formalized Languages",
Logic, Semantics, Metamathematics. (English). Oxford University Press,
322: pp.152–278, 1936.

234

[114] Lawrence Pasternack; Philip Rossi (Edward N. Zalta ed.). "Kant’s Philoso-
phy of Religion". (English). The Stanford Encyclopedia of Philosophy, (Fall
2014 Edition).

[115] L.E.J. Brouwer. E.W. Beth. A. Heyting (ed.). "The Algebraic Theory of
Context-Free Languages in Computer Programming and Formal Systems".
(English). North-Holland Publishing Company, Amesterdam, pages 181–161,
1963.

[116] Richard Amesbury (Edward N. Zalta ed.). "Fideism". (English). The Stan-
ford Encyclopedia of Philosophy, (Fall 2017 Edition).

[117] Thierry Coquand; Edward N. Zalta (ed.). "Type Theory". (English). The
Stanford Encyclopedia of Philosophy, (Summer 2015 Edition).

[118] Victor Rodych Edward N. Zalta (ed.). "Wittgenstein’s Philosophy of Math-
ematics". (English). (The Stanford Encyclopedia of Philosophy), pages 347–
352, 2018.

[119] William B. Ewald (ed.). "From Immanuel Kant to David Hilbert: A Source
Book in the Foundations of Mathematics." (English). (Oxford University
Press)., volume Volume 2. 1996.

[120] Robert A. Kowalski (J.J. Horing Editor). "Algorithm = Logic + Con-
trol". (Imperial College, London). (English). Communications of the ACM,
22(7):424–436, July 1979.

[121] Thomas S. Khun (editor-in-chief Otto Neurath). "The Structure of Scien-
tific Revolutions." (English). (International Encyclopedia of Unified Science,
Second Edition enlarged by the University of Chicago), volume II. 1962-1970.

[122] Yasuh Suzuki; Toshiyuki Nakagaki (editors). "Natural Computing and Be-
yond ." (English). (Winter School Hakodate 2011, Hakodate, Japan, March
2011 and 6th International Workshop on Natural Computing, Tokyo, Japan,
March 2012). 2011, 2012.

[123] Enciclopedia Einaudi. 16 volumi; 1977-1984. (Italian).

235

[124] Albert Einstein. "Volume 3: The Swiss Years: Writings 1909-1911." (En-
glish). (URL:http://einsteinpapers.press.princeton.edu/). 1910.

[125] Robert A. Kowalski; M. H. Emden. "The Semantics of Predicate Logic as
a Programming Language". (University of Edinburgh, Scotland). (English).
Journal of the Association for Computing Machinery, 23(4):733–742, Octo-
ber 1976.

[126] Ulle Endriss. "Lecture Notes An Introduction to Prolog Programming." (En-
glish). (University of Amsterdam, Institute for Logic, Language and Compu-
tation). 2006.

[127] David Evans. "Introduction to Computing, Explorations in Language, Logic,
and Machines." (English). (University of Virginia, Creative Commons). Au-
gust19, 2011.

[128] Howard Eves. An Introduction to the History of Mathematics The Saunders
Series (

∮
-Felix Klein and the Erlanger Program) (English). Sixth Edition.

1990.

[129] Bernard Feltz. La Science et le vivant. Philosophie des sciences et modernité
critique (French). (de Boeck). ISBN 978-2-8041-7144-5. 2014.

[130] Richard Feynamn. "Caltech’s Division of Physics, Mathemat-
ics and Astronomy and The Feynman Lectures Website" (English).
(URL:http://www.feynmanlectures.caltech.edu/). CopyrightR© 1963, 2006,
2013 by the California Institute of Technology.

[131] Peter Flach. "Simply Logical, Intelligent Reasoning by Example." (English).
(University of Bristol, United Kingdom). 1994-2007.

[132] H. Graham Flegg. "From Geometry to Topology." (English). (Dover Publi-
cations, Inc. Mineola New York). 1974.

[133] Antony Flew. A Dictionary of Philosophy. (English). (New York: St Martin’s
Press, Revised 2ndEdition). 1984.

236

[134] Gottlob Frege. "Begriffsschrift a formula language, modeled upon that of
arithmetic, for pure thought." (English). 1879.

[135] Gottlob Frege. "On Sense and Reference". (English). (translation by Max
Kölbel, London: Routledge). 2009.

[136] Daniel P. Friedman, Mitchell Wand, and Cristopher T. Haynes. "Essentials
of Programming Languages." (English). (The MIT Press). 2001.

[137] Felice Cardone; J. Roger Hindley (Eds. D. M. Gabbay and J. Woods).
"Lambda-Calculus and Combinators in the XXth Century". (English). (El-
sevier Co. North-Holland, Amsterdam) Handbook of the History of Logic
Chapter 14, 5:pp. 723–817, 2009.

[138] Haim Gaifman. "Naming and Diagonalization, from Cantor to Gödel to
Kleene". (English). Logic Journal of the IGPL, Volume 14(Issue 5):709–728,
1 October 2006. DOI: https://doi.org/10.1093/jigpal/jzl006.

[139] Brian R. Gaines. "Perspectives on Fifth Generation Computing". (English).
(Department of Computer Science, York University; Department of Indus-
trial Engineering, University of Toronto; Department of Computer Science,
University of Calgary).

[140] Jean Gallier. "Logic for Computer Science: Foundations of Automatic The-
orem Proving." (English). (Originally printed by Wiley.). 1986.

[141] J. G. Ganascia. "A Inteligência Artificial." (Portuguese). (Biblioteca Básica
de Ciência e Cultura, Instituto Piaget). 1993.

[142] Gerald Gazar and Chris Mellish. "Natural Language Processing in PROLOG:
An Introduction to Computational Linguistics." (English). (Addison Wesley
Publishing Company.). 1989.

[143] Ernst Gellner. Linguagem e Solidão. (Portuguese). (Título original: Lan-
guage and Solitud Wittgenstein, Malinowski and the Habsburg Dilemna;
Edições 70). (1998) 2001.

237

[144] Hans-Johann Glock. Dicionário Wittgenstein. (Portuguese). (Jorge Zahar
Editor; Título original: A Wittgenstein Dictionary, Blackwell Publishers
1996). 1997.

[145] Oded Goldreich. "P, NP, and NP-Completeness: The Basics of Complexity
Theory." (English). (Cambridge University Press). August 2010.

[146] Oded Goldreich. "Computational Complexity: A Conceptual Perspective."
(English). (Cambridge University Press). May 2008.

[147] Rebecca Goldstein. "Gödel And The Nature Of Mathematical Truth". (En-
glish). (Edge), 2005.

[148] Rebecca Goldstein. "Incompletude, A demonstração e o Paradoxo de Kurt
Gödel." (Portuguese). (Gradiva). 2009 (2005).

[149] Herman H. Goldstine. "The Computer from Pascal to von Neumann." (En-
glish). Princeton University Press. 1972.

[150] Stephen Jay Gould. "Ontogeny and Phylogeny". (English). (Cambridge
Mass.: Belknap Press of Harvard University Press), 1997.

[151] Stephen Jay Gould. Punctuated Equilibrium. (English). (The Belknap Press
of Harvard University Press). 2007.

[152] Judith V. Grabiner. "Who Gave You the Epsilon? Cauchy and the Origins of
Rigorous Calculus.". (English). (424 West 7th Street, Claremont California
91711.). The American Mathematical Monthly., 90(3):185–194, 1983.

[153] Paul Graham. On Lisp, Advanced Techniques for Common Lisp. (English).
(Prentice Hall). 1993.

[154] Paul Graham. Ansi Common Lisp. (English). (Prentice Hall Series in Arti-
ficial Intelligence). 1996.

[155] Brian Greene. "The Fabric of the Cosmos: Space, Time, and the Texture of
Reality." (English). (Alfred A. Knopf). 2004.

238

[156] Theodore W. Gamelin; Robert Everist Greene. "Introduction to Topology."
(English). (Dover Publications, Inc. Mineola New York). Second Edition.
1983, 1999.

[157] Hans Herlof Grelland. "Wittgenstein’s Picture Theory of Language as a Key
to Modern Physics".(English). (Norway).

[158] John Gribbin. Science - A History 1543-2001. (English). (Allen Lane, First
Edition). 2002 (1962).

[159] Richard P. Gabriel Guy Lewis Steele Jr. The Evolution of Lisp. (English).
(Proceeding HOPL-II, The second ACM SIGPLAN conference on History of
programming languages). 1993.

[160] Kurt Gödel. "Kurt Gödel Obras Completas ." (Spanish). (Edición de Jesús
Mosterín. Alianza Editorial). (1968 by Princeton University Press) Alianza
Editorial (1981, 1989, 2006).

[161] Kurt Gödel. "Kurt Gödel Collected Works." (English). (Oxford University
Press · New York Clarendon Press). Edited by Solomon Feferman (Editor-
in-chief) John W. Dawson, Jr. Stephen C. Kleene Gregory H. Moore Robert
M. Solovay Jean van Heijenoort., volume I Publications 1929-1936. (1986).

[162] Kurt Gödel. "Kurt Gödel Collected Works." (English). (Oxford University
Press · New York Clarendon Press). Edited by Solomon Feferman (Editor-
in-chief) John W. Dawson, Jr. Stephen C. Kleene Gregory H. Moore Robert
M. Solovay Jean van Heijenoort., volume II Publications 1938-1974. (1990).

[163] Kurt Gödel. "Kurt Gödel Collected Works." (English).(Oxford University
Press · New York Clarendon Press). Edited by Solomon Feferman (Editor-in-
chief) John W. Dawson, Jr. Stephen C. Kleene Gregory H. Moore Robert M.
Solovay Jean van Heijenoort., volume III Unpublished Essays and Lectures.
(1995).

[164] Kurt Gödel. "An Example of a New Type of Cosmological Solutions of
Einstein’s Field Equations of Gravitation", Review of Modern Physics. (En-
glish). 21(3):447–450, July 1949.

239

[165] Ernst Haeckel. "Kunstformen der Natur." (German). (HTML-Version her-
ausgegeben von Kurt Stüber, 1999). 1899-1904.

[166] Stefan Hagel. Ancient Greek Music, a New Technical History. (English).
Cambridge University Press, 2010.

[167] John Haigh. "Probability, A Very Short Introduction." (English). (Edited by
Oxford University Press). 2012.

[168] A. Rupert Hall. The Revolution in Science, 1500-1750. 3rd Edition. (En-
glish). Boston Beacon Press. 1996.

[169] P. R. Halmos. "The Legend of John von Neumann". (English). Enciclopaedia
Britannica (Editor).

[170] Paul R. Halmos. "von Neumann on Measure and Ergodic Theory". (En-
glish). University of Chicago and Institute for Advaned Study, pages 86–94,
Received by the editors October 28, 1957.

[171] Peter Hancox. "Prolog and Logic Programming." (English). (School of Com-
puter Science, University of Birmingham). 2007.

[172] Chris Hankin. "An Introduction to Lambda Calculi for Computer Scientists."
(English). (Texts in Computing Series Editor, Imperial College London),
volume 2. 2004.

[173] Robert Harper. "Practical Foundations for Programming Languages." (En-
glish). ([Version 1.32.] Carnegie Mellon University). 05.15.2012.

[174] Richard Hartley and Andrew Zisserman. Multiple View Geometry. (English).
(Second Edition, Cambridge University Press). 2003.

[175] James L. Hein. "Prolog Experiments in Discrete Mathematics, Logic, and
Computability." (English). (Portland State University). 2009.

[176] Maurice Heins. Complex function theory: Academic Press; J. Hetzel. (En-
glish). 1968.

240

[177] Whitfield Diffie & Martin E. Hellman. "New Directions in Cryptography".
(English). (Invited Paper) IEEE Transactions on Information Theory, IT-
22(6):pp. 644–654, 1976.

[178] Tim Henderson. "Cryptography and Complexity". (English). (Department
of Electrical Engineering and Computer Science, Case Western Reserve Uni-
versity), pages 1–17, 1976.

[179] M. D. Godfrey; D. F. Hendry. "The Computer as von Neumann Planned It.".
(English). IEEE Annals of the History of Computing, Vol. 15, N◦ 1:11–21,
1995.

[180] Erik Barendsen Henk Barendregt. "Introduction to Lambda Calculus". (En-
glish) (Revised Edition). December 1998, March 2000.

[181] Knut Hinkelmann. "Forward Chaining vs. Backward Chaining". (English).
(University of Applied Sciences, Northwestern Switzerland School of Busi-
ness).

[182] Jaakko Hintikka. "On Gödel" (English). (Wadsworth, a division of Thomson
Learning). 2000.

[183] Wilfrin Hodges. A Shorter Model Theory. (English). (Elsevier 3rd Edition).
1997.

[184] J.P.E. Hodgson. The INRIA ISO Prolog Web (English). (Saint Joseph’s
University Philadelphia). 1999.

[185] Carsten Heirz; Brook Moses; Jobst Hoffmann. "SWI-Prolog 5.6 Refer-
ence Manual" (English). (maintainer: Jobst hoffmann* <j.hoffmann(at)fh-
aachen.de>). 2015 (Version 1.6).

[186] Andreas Hohmann. "Programming Languages at Glance." (English).
(http://www.minimalprogramming.org/html/index.html). 2003.

[187] Reijer Hooyykaas. Catastrophism in Geology, its scientific character in rela-
tion to actualism and uniformitarianism (English). North-Holland Publish-
ing Company. Amsterdam · London. 1970.

241

[188] Alfred Horn. "On sentences which are true of direct unions of algebras"
(English). Association for Symbolic Logic, 16(Issue 1):14–21, (March) 1951.
DOI : 10.2307/2268661.

[189] Dough Hoyte. Let Over Lambda, 50 years of Lisp (English). Butterworth-
Heinemann. An HCSW and Hoytech production. 2008.

[190] David Hume. An Enquiry Concerning Human Understanding, and Selection
from A Treatise of Human Nature. (English). (Chicago, The Open Court
Publishing Company). 1921.

[191] David Hume. Treatise of Human Nature. (English). Reprint: L.A. Selby-
Bigge, M.A. (Oxford: Clarendon Press). pp. 9; 51; 52; 55; 72; 77; 79; 93-95;
131-133. (1738-1740) Reprint: 1896.

[192] Amzi! inc. "Adventure in Prolog, a Tutorial Introduction." (English). (ePub
Books.). 1995-2016.

[193] Akira Ishikawa. "A Retrospective and Prospects of the Fifth Generation
Computer Project". (English). (Working Paper, The University of Texas at
Austin), 1983.

[194] Jonathan P. Seldin J. Roger Hindley. "Lambda-Calculus and Combinators
in the XXth Century". (English). (Eds. D. M. Gabbay and J. Woods, Elsevier
Co. (North-Holland), Amsterdam) Handbook of the History of Logic Chapter
14, 5:pp. 723–817, 2009.

[195] Daniel J. Edwards Timothy P. Hart Michael I. Levin John McCarthy, Paul
W. Abrahams. Lisp 1.5 Programmers Manual. (English). (The M.I.T. Press,
Massachusetts Institute of Technology). Fifteenth printing 1985 (1962).

[196] Neil Deaton Jones. "Computability and Complexity: From a Programming
Perspective." (English). (The MIT Press). January 15, 1997.

[197] Simon L. Peyton Jones. "Implementing Functional Languages: a tutorial."
(English). (Department of Computer Science, University of Glasgow). March
23, 2000.

242

[198] Jr. J.P. Eckert and J.W. Mauchly. "Automatic High-Speed Computing: a
Progress Report on the EDVAC". (English). (Report of Work under Contract
No. W-670-ORD-4926, Supplement No. 4, Moore School Library) University
of Pennsylvania, Philadelphia, September 30, 1945.

[199] Daniel Jurafsky and James H. Martin. Speech and Language Processing
(English). (Prentice Hall Series in Artificial Intelligence, Prentice Hall, En-
glewood Cliffs, New Jersey). 1999.

[200] J.Green C. Katz J. McCarthy P. Naur A.J. Perlis H. Rutishauser K.
Samelson B. Vauquois J.H. Wegstein A. van Wijngaarden M. Woodger
J.W. Backus, F.L. Bauer. "Report on the Algorithmic Language Algol by
the ACM Committee on Programming Languages and the GAMM Commit-
tee on Programming". (English). (edited by Peter Naur, Dedicated to the
memory of William Turanski), 1962.

[201] Erich Grädel Jörg Flum and Thomas Wilke. "Logic and Automata, History
and Perspectives." (English). (TLG, Texts in Logic and Games, Amsterdam
University Press), volume 2. 2008.

[202] Immanuel Kant. "What does it mean to orient oneself in thinking?" (En-
glish). (Edited and translated by Allen W. Wood, Yale University, Connecti-
cut, George di Giovanni, McGill University, Montréal). 1786.

[203] Immanuel Kant. A Religião nos Limites da Simples Razão. (Portuguese).
(Textos Filosóficos, Edições 70). 1992.

[204] Immanuel Kant. O Conflito das Faculdades. (Portuguese). (Textos Filosófi-
cos, Edições 70). 1993.

[205] Immanuel Kant. Crítica da Razão Prática. (Portuguese). (Textos Filosóficos,
Edições 70). 1994.

[206] Immanuel Kant. A Paz Perpétua e outros Opúsculos. (Portuguese). (Textos
Filosóficos, Edições 70). 1995.

243

[207] Immanuel Kant. Fundamentação da Metafísica dos Costumes. (Portuguese).
(Textos Filosóficos, Edições 70). 1995.

[208] Immanuel Kant. Os Progressos da Metafísica. (Portuguese). (Textos Filosó-
ficos, Edições 70). 1995.

[209] Immanuel Kant. Crítica da Razão Pura. (Portuguese). (Fundação Calouste
Gulbenkian). 1997.

[210] Immanuel Kant. A Crítica da Faculdade do Juízo. (Portuguese). (Imprensa
Nacional-Casa da Moeda, Estudos Gerais, Série Universitária, Clássicos de
Filosofia). 1998.

[211] Immanuel Kant. Kant’s Critiques. (English). (Wilder Publications). 2008.

[212] KapilKapoor. Dimensions of Pān. ini Grammar, The Indian Grammatical
System (English). (D. K. Printworld Ltd, New Delhi). 2005 (2010).

[213] Jonah Katz and David Pesetzky. "The Identity Thesis for Language and
Music". (English). (Institut Jean Nicod, Paris), 2011.

[214] Richard A. O’ Keefe. The Craft of Prolog. (English) The MIT Press, Cam-
bridge, Massachusetts; London, England. p. 9. 1990.

[215] Chen Chung Chang; H. Jerome Keisler. Model Theory. Studies in Logic and
the Foundations of Mathematics. (English). (Elsevier 3rd Edition). 1973.

[216] Juliette Kennedy. "Kurt Gödel" And Supllements.(English). edward n. zalta
(ed.). The Stanford Encyclopedia of Philosophy, (Spring 2015 Edition). URL:
<https://plato.stanford.edu/archives/win2016/entries/goedel/>.

[217] Thomas S. Khun. "A Estrutura das Revoluções Científicas." (Portuguese).
(Guerra & Paz 2009). 1962, 1970, 1996.

[218] S.C. Kleene. Introduction to metamathematics. (English). (North-Holland).
1951.

244

[219] Stephen C. Kleene. "Kurt Gödel, A Biographical Memoir by Stephen C.
Kleene". (English). National Academy of Sciences Washington D.C. (ed.),
(1987).

[220] Stephen Cole Kleene. "Mathematical Logic." (English). (Dover Publications,
Inc. Mineola, New York). 1967.

[221] Felix Klein. "A Comparative Review of Recent Researches in Geometry."
(Translated by M. W. Haskell). (Programme on entering the Philosophical
Faculty and the Senate of the University of Erlangen in 1872)". (English).
Bull. New York Math. Soc., Vol. 2:pp. 215–249, (1892-1893).

[222] Donald Knuth. "The Art of Computer Programming" (English). (Addison-
Wesley.). 1968.

[223] Robert A. Kowalski. "Predicate Logic as Programming Language". (North-
Holland Publishing Company). (English). Information Processing, 1974.

[224] Robert A. Kowalski. "The Early Years of Logic Programming". (ACM).
(English). Communications of the ACM, 31(1):38–42, January 1988.

[225] Tomasz Kowaltowski. "von Neumann: suas contribuições à Computação".
(Portuguese). Estudos Avançados 10(26), pages 237–260, 1996.

[226] Shriram Krishnamurthi. "Programming Languages: Application and Inter-
pretation." (English). (Version Second Edition, Self-published). April 14,
2017 (2003).

[227] Christopher C. Leary; Lars Kristiansen. "A Friendly Introduction to Math-
ematical Logic" (English). (Milne Library). August 10, 2015.

[228] Josip Lukin Kristijan Krkač. "Wittgenstein the Morphologist I". (English).
(Original Paper, UDC 801/L. Wittgenstein) Synthesis Philosophica, 46:pp.
427–438, 2008.

[229] Raúl Rojas; Cüneyt Göktekin; Gerald Friedland; Mike Krüger. "PlanKalkül:
The First High-Level Programming Language". (English). (Freie Universität
Berlin, Institut für Informatik), 2000.

245

[230] P. Laeur. "A Course of Algol 60 Programming, with special reference to the
DASK ALGOL system" (English). (Regnecentralen, Copenhagen). 1961.

[231] P. Laeur. "Technical Report, Formal Definition of Algol 60" (English). (TR
25.088). 1968.

[232] Jan Wielemaker; Tom Schrijvers; Markus Triska; Torbjörn Lager. "SWI-
Prolog". (English). (arxiv:1011.5332v1 [cs.pl] 24 nov 2010). Theory and
Practice of Logic Programming, 2010.

[233] David B. Lamkins. Successful Lisp: How to Understand and Use Common
Lisp. (English). (Paperback Edition). 2004.

[234] Gregoy Landini. "Russell to Frege". (English). (McMasrer University Li-
brary Press, Philosophy/University of Iowa Iowa City, IA52242, USA) The
Journal of the Bertrand Russell Archives, (12):pp. 160–185, 1992-93.

[235] Richard L. Lanigan. Speaking and Semiology: Maurice Merleau-Ponty’s
Phenomenological Theory of Existential Communication: Walter de Gruyter
(English). 1991.

[236] Ambrus Kaposi Leran Cai and Thorsten Altenkirch. "Formalising the Com-
pleteness Theorem of Classical Propositional Logic in Agda (Proof Pearl)".
(English). (University of Nottingham).

[237] Fred Lerdahl. "Genesis and Architecture of the GTTM Project". (English).
Music Perception, 23(3):187–194, 2009. DOI: 10.1525/MP.2009.26.3.187.

[238] Fred Lerdahl and Ray S. Jackendoff. "A Generative Theory of Tonal Music"
(English). (MIT Press), 1985.

[239] David. K. Lewis. On the Plurality of Worlds. (English) Oxford: Blackwell.
1986.

[240] Peter Naur; F. G. Duncan; C. H. Lindsey. "Algol Bulletin". (English). (AL-
GOL Bulletin. Issue 1 (March 1959) through Issue 52 (August 1988). Peter
Naur, editor. Issue 1 (March 1959) through Issue 15 (June 1962)) CACM
Communications of the ACM, (1, 15, 52), 1959.

246

[241] Bernard Linsky. "The Notation in Principia Mathematica ". (English). The
Stanford Encyclopedia of Philosophy (Fall 2016 Edition).Edward N. Zalta
(ed.)., URL = <https://plato.stanford.edu/archives/fall2016/entries/pm-
notation/>.

[242] Lennart Ljung. "Black-box Models from Input-output Measurements". (En-
glish). (Department of Electrical Engineering, Linköping University, SE-581
83 Linköping, Sweden), 2001.

[243] John Locke. "An Essay Concerning Human Understanding by John Locke."
(English). (The Pennsylvania State University). (First published 1690) 1999.

[244] Frederico Lourenço. Grécia Revisitada, Ensaios sobre Cultura Grega. (Por-
tuguese) Cotovia. 2004.

[245] M. S. Lourenço. "Um filósofo da evidência. (Portuguese). (Universidade de
Lisboa). Boletim da Sociedade Portuguesa de Matemática 55.

[246] James Lu and Jerud J. Mead. "Prolog, a Tutorial Introduction." (English).
(Computer Science Department Bucknell University). 2012.

[247] Gilles Dowek; Jean-Jacques Lévy. "Introduction to the Theory of Program-
ming Languages" (English). (Springer UTICS). 2011.

[248] W. S. MacCulloch and W. Pitts. "A Logical Calculus of Ideas Imannent
in Nervous Activity". (English). The Stanford Encyclopedia of Philosophy
(Winter 2017 Edition), Edward N. Zalta (ed.). Bulletin of Mathematical
Biophysics, 5:115–133, 1943.

[249] Saunders MacLane. "Carnap on Logical Syntax.". (English). Bull. Amer.
Math. Soc., 44(3):171–176, 1938.

[250] Sanjoy Mahajan. "The Art of Insight in Science and Engineering" (English).
(The MIT Press, Cambridge, Massachusets; London, England). 2014.

[251] Michael S. Mahoney. "The History of Computing in the History of Tech-
nology". (English). (Princeton University, Princeton, NJ) Annals of the
History of Computing 10, pages 113–125, 1988.

247

[252] Norman Malcolm. "Ludwig Wittgenstein, a Memoir". (English). (Clarendon
Press), 1958 (2001).

[253] John Malpas. "PROLOG: A Relational Language and Its Applications" (En-
glish). (Prentice Hall). 1987.

[254] María Manzano. "Alonzo Church: His Life, His Work and Some of His
Miracles". (English). pages 3–33, December, 1996.

[255] Mathieu Marion. "Wittgenstein and Brouwer ". (English). (History of Logic,
Springer) Synthese, 137(1/2):pp. 103–127, 2003.

[256] João Pavão Martins and Maria dos Remédios Cravo. "Fundamentos da Pro-
gramação Utilizando Múltiplos Paradigmas." (Portuguese). (Instituto Supe-
rior Técnico Press, Colecção Ensino da Ciência e da Tecnologia). 2011.

[257] F. P. Mathur. "A Brief Description and Comparison of Programming Lan-
guages FORTRAN, ALGOL, COBOL, PL/I, and LISP 1.5 From a Critical
Standpoint". (English). (Technical Memorandum 33-566, National Aeronau-
tics and Space Administration, Jet Propulsion Laboratory California Institute
of Technology, Pasadena, California), 1972.

[258] Ernst Mayr. "Recapitulation Reinterpreted: The Somatic Program.". (En-
glish). (Cambridge Mass.: Belknap Press of Harvard University Press) The
Quarterly Review of Biology, 69(2):pp. 223–232, 1994.

[259] John McCarthy. "Programs with common sense". (English). (Paper pre-
sented at the Symposium on the Mechanization of Thought Processes, Na-
tional Physical Laboratory, Teddington, England) Proceedings of the Sympo-
sium by H. M. Stationery Oce, 1958.

[260] John McCarthy. "Recursive functions of symbolic expressions and their com-
putation by machine". (English). (Artificial Intelligence Project – RLE and
MIT Computation Center Memo 8), pages 1–19, 1959.

248

[261] John McCarthy. "Recursive functions of symbolic expressions and their com-
putation by machine, Part I". (English). (Massachusetts Institute of Tech-
nology, Cambridge) Communications of the ACM, 13(4):pp. 184–195, 1960.

[262] Donald J. Collins (In memoriamWilliamW. Boone). "A Simple Presentation
of a Group with Unsolvable Word Problem". (English). (Department of
Mathematics, Monash University, Clayton, Victoria 3168 Australia) Illinois
Journal o Mathematics, 30(2):230–234, 1986.

[263] Luigi Menabrea. "Notions sur la machine analytique de M. Charles Bab-
bage". (French). (Mathematisch Centrum Amsterdam) Bibliothèque uni-
verselle de Genève, 41(352):76, 1842.

[264] Bert Mendelson. "Introduction to Topology." (English). (Dover Publications,
Inc. New York). Third Edition. 1962, 1968, 1975, 1990.

[265] Merleau-Ponty. Phenomenology of Perception (English). (translated by Colin
Smith, Routledge Classics, London and New York). 1962 (1945).

[266] Merleau-Ponty. The Visible and the Invisible (English). (edited by Claude
Lefort, translated by Alphonso Lingis, Northwestern University). 1968.

[267] Merleau-Ponty. Fenomenologia da Percepção (Portuguese). (tradução Carlos
Alberto Ribeiro de Moura, Matins Fontes, São Paulo 1999). 1994 (1945).

[268] Merleau-Ponty. A Natureza (Portuguese). (tradução Álvaro Cabral, Martins
Fontes, São Paulo 2000). 2000 (1945).

[269] Merleau-Ponty. The Visible and the Invisible: The Intertwining—The Chi-
asm (English). (Maurice Merleau-Ponty: Basic Writings, ed. Thomas Bald-
win, Routledge). 2004.

[270] Dennis Merritt. "Building Expert Systems in Prolog". (English). (2000 by
Amzi! inc; 1989 by Springer-Verlag). 1989-2000.

[271] MiklósRédei. "John von Neumann 1903-1957". (English). Loránd Eötvös
University (Forthcoming in European Mathematical Society Newsletter).

249

[272] MiklósRédei. "Unsolved Problems in Mathematics. J. von Neumann’s ad-
dress to the International Congress of Mathematicians". (English). (Ams-
terdam 1954) The Mathematical Intelligence 21, pages 7–12, 1999.

[273] Félix Bou Moliner. "Gödel y la Incompletud de las Matemáticas". (Spanish).
http://www.iiia.csic.es/ fbou/publications/files/Bo00c.pdf., pages 1–9.

[274] Michael Morris. "El ’Tractatus’ de Wittgenstein, Guía de Lectura" (Spanish).
(Traducción de Rodrigo Neira Castaño; Cátedra, Teorema, 1a edición). 2015.

[275] E. N. Mutch and S. Gill. "Conversion Routines". (English). (Nat. Phys.
Lab) Proc. Symp. Automat. Digital Comput., pages 74–80, 1953-1954.

[276] Andreas Krall; Ulrich Neumerkel. "The Vienna Abstract Machine". (En-
glish). Institut für Praktische Informatik. Technische Universität Wien.

[277] Jan Wielemaker; Ulrich Neumerkel. "Precise Garbage Collection in Pro-
log". (English). (Universiteit van Amsterdam, The Netherlands; Technische
Universität Wien, Austria) Proceedings of CICLOPS, 2008.

[278] Ulrich Neumerkel. "The binary WAM, a simplified Prolog engine". (English).
(Institut für Computersprachen, Technische Universität Wien), 1993.

[279] A. Newell and J. C. Shaw. "Programming the logic theory machine". (En-
glish). (Proc. Western Joint Computer Conference), 1957.

[280] Ernest Nagel; James R. Newman. "Gödel’s Proof". (English). (New York
University Press, New York and London, Revised Edition). 2001.

[281] Isaac Newton. "The Principia". (English). (Translated by Andrew Motte;
Great Mind Series). 1687 (1995).

[282] Isaac Newton. Optiks or a Treatise of the Reflexions, Refractions, Inflexions
and Colours of Light. (English). Third Book, Query 31. 1704.

[283] Friedrich Nietzsche. The Complete Works of Friedrich Nietzsche (English).
(The First Complete and Authorised English Translation, Edited by Dr. Os-
car Levy, The Library of Victoria University, Toronto). 1910, 1915, 1924
(2015).

250

[284] Ulf Nilsson and Jan Maluszynski. "Logic, Programming and Prolog"- (En-
glish). (Second Edition, John Wiley & Sons Ltd.). 1995-2000.

[285] David Summers; Ruth O’Rourke-Jones. Music The Definitive Visual History
(English). (DK). 2013.

[286] Dov Ospovat. The Development of Darwin’s Theory, Natural History, Nat-
ural Theology and Natural Selection, 1838-1859 (English). Preface & Intro-
duction. Cambridge University Press. 1981.

[287] Malcom Oster. Science in Europe, 1500-1800 A Primary Sources Reader;
A Secondary Sources Reader. (English). Palmgrave in association with the
Open University. 2002.

[288] Christos H. Papadimitriou. "Computational Complexity" (English). (Uni-
versity of California, San Diego; Addison Wesley Longman). 1994.

[289] Ian Parberry. "Parallel Complexity Theory". (English). (Whitmore Labora-
tory, Pennsylvania State University, USA; Pitman Publihing). 1987.

[290] Johan Bos Patrick Blackburn and Kristina Striegnitz. "Learn Prolog Now!"
(English). 2006-2012.

[291] Roger Penrose. "The Emperor’s New Mind." (English).(Oxford University
Press). 1989.

[292] Roger Penrose. "Cycles of Time: An Extraordinary New View of the Uni-
verse". (English). (The Bodley Head). 2010.

[293] Roger Penrose. "Ciclos de Tempo: Uma Visão Nova e Extraordinário do
Universo". (Portuguese). (Gradiva). 2013 (2010).

[294] Roger Penrose. "La Nueva Mente del Emperador" (Spanish). (DEBOLS!LLO
Ensayo). 2015,-16 (1989).

[295] Alexandre Pereira. "C e Algoritmos"- (Portuguese). (2a Edição, Edições
Sílabo). 2013-2017.

251

[296] L. M. Pereira. "Philosophical Incidence of Logical Programming ". (English).
Handbook of the Logic of Argument and Inference, D. Gabbay et al. (eds.),
Studies in Logic and Practical Reasoning series, Volume 1, pp. 425-448. 2002.

[297] Charles Petzold. "Code, The Hidden Language of Computer Hardware and
Software." (English). (Microsoft Press). 2000.

[298] Frank Pfenning. Logic Programming. (English). (Carnegie Mellon Univer-
sity). 2006-2007.

[299] Michał Piekarski. "Analysis—Phenomenology—Morphology: Some Re-
marks on Ludwig Wittgenstein’s Philosophical Method". (English). (David
Publishing) Philosophy Study, 5(4):pp. 206–212, 2015.

[300] Steven Pinker. The Language Instinct, How the Mind Creates Language.
(English). (Penguin Random House UK). 2007 (1994).

[301] Fred Piper and Sean Murphy. "Cryptography, a Very Short Introduction"
(English). (Oxford University Press). 2002.

[302] G. D. Plotkin. "Call-by-name, call-by-value and the λ-Calculus". (English).
(North-Holland Publishing Company) Theoretical Computer Science, 1:125–
129, 1975.

[303] Vilnis Detlovs; Karlis Podnieks. "Introduction to Mathematical Logic" (En-
glish). (University of Latvia). 2017-05-24.

[304] Karl Popper. The Logic of Scientific Discovery. (English). (Routledge Clas-
sics, London. 1935 (2005).

[305] Karl Popper. "Busca Inacabada, Autobiografia Intelectual" (Portuguese).
(Esfera do Caos, Prefácio de João Carlos Espada). Fevereiro de 2008.

[306] Karl Popper. "Conjecturas e Refutações, O desenvolvimento do conheci-
mento científico" (Portuguese). (Almedina, Notas e Apresentação de João
Carlos Espada). Novembro 2006.

252

[307] Emil L. Post. "Recursive Unsolvability of a Problem of Thue". (English).
The Journal of Symbolic Logic, Vol. 12(No. 1):pp. 1–11, (Mar., 1947).

[308] Emil L. Post. "Finite Combinatory Processes-Formulation 1". (English).
The Journal of Symbolic Logic, Vol. 1(No. 3):pp. 103–105, (Sep., 1936).

[309] Simon J. D. Prince. Computer Vision, Models, Learning, and Inference.
(English). (Cambridge University Press). 2012.

[310] Nuno Miguel Proença. "Wittgenstein, a prova e a actividade matemática: um
introdução". (Portuguese). (Cadernos de Filosofia das Ciências, CFCUL).
2008.

[311] Juliet Floyd; Hilary Putnam. "A Note on Wittgenstein’s ’Notorious Para-
graph’ about the Gödel Theorem". (English). The Journal of Philosophy,
97(11):pp. 642–32, 2000.

[312] Panu Raatikainen. "Gödel’s Incompleteness Theorems And
Supllements". (English). Edward N. Zalta (ed.). The Stan-
ford Encyclopedia of Philosophy, (Spring 2015 Edition). URL:
<https://plato.stanford.edu/archives/spr2015/entries/goedel-
incompleteness/>.

[313] Aarne Ranta. "Implementing Programming Languages, an Introduction to
Compilers and Interpreters" (English). (College Publications). February 6,
2012.

[314] G. Revesz. Lambda-Calculus, Combinators, and Functional Programming
(English). Cambridge Tracts in Theoretical Computer Science 4. 1988.

[315] Marcelo B. Ribeiro and António A. P. Videira. "Boltzmann’s Concept of
Reality". (English). (Physics Institute, University of Brazil - UFRJ; De-
partment of Philosophy, State University of Rio de Janeiro - UERJ), 2007.

[316] J. L. Robinson. "A Machine-Oriented Logic Based on the Resolution Prin-
ciple". (English). J.A.C.M., vol. 12:23–41, 1965.

253

[317] Adriano Duarte Rodrigues. "Linguística e Comunicação, a Partitura In-
visível, Para a abordagem interactiva da linguagem" (Portuguese). (Cader-
nos Universitários Colibri). 2001 (1a edição), 2005 (2a edição).

[318] Viktor Rodych. "Mathematical Sense: Wittgenstein’s Syntactical Struc-
turalism". (English). (From ontos verlag: Publications of the Austrian Lud-
wig Wittgenstein Society) New Series, (1-18).

[319] Raúl Rojas. "A Tutorial Introduction to the λ-Calculus". (English). FU
Berlin, WS-97/98, 97/98.

[320] Thomas Haigh; Mark Priestley; Crispin Rope. "Reconsidering the Stored-
Program Concept". (English). (Published by the IEEE Computer Society)
IEEE Annals of the History of Computing, January-March 2014.

[321] Phillippe Rouchy. "Aspects of PROLOG History: Logic Programming and
Professional Dyanmics". (Blekinge Institute of Technology, Sweden). (En-
glish). TeamEthno-Online Issue 2, pages 85–100, 2 June 2006.

[322] Philippe Roussel. "Prolog Manuel de référence et d’utilisation". (French).
Groupe de recherche en Intelligence Artificielle. Marseille, 1975.

[323] Philippe Roussel, Alain Colmerauer. Henry Kanoui, and Robert Pasero.
"Un système de communication homme-machine en Français, rapport de
recherche, Groupe de recherche en Intelligence Artificielle de Marseille".
(French). 1973.

[324] Neil C. Rowe. "Artificial Intelligence Through Prolog" (English). (Pren-
tice–Hall International.). 1998.

[325] Stuart Russell and Peter Norvig. "Artificial Intelligence, a Modern Ap-
proach." (English). (Third Edition, Pearson). 2010.

[326] Alex Sakharov. "Horn Clause". (English). (MathWorld–A
Wolfram Web Resource, created by Eric W. Weisstein. URL=
http://mathworld.wolfram.com/HornClause.html).

254

[327] John E. Savage. "Models of Computation, Exploring the Power of Com-
puting". (English). (Brown University, Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA). 1997.

[328] Charles Sayward. "Steiner versus Wittgenstein: Remarks on Differing Views
of Mathematical Truth". (English). Theoria, 54:347–352, 2005.

[329] Randall Scott. "A Guide to Artificial Intelligence with Visual Prolog" (En-
glish). (Outskirt’s Press, Inc.). 2010.

[330] Roger Scruton. "Understanding Music, Philosophy and Interpretation"
(Bloomsbury). (English). 2009.

[331] Peter Selinger. "Lecture Notes on Lambda Calculus". (English). (Department
of Mathematics and Statistics Dalhousie University, Halifax, Canada). 2005.

[332] R. Vijay Shankar. "Shannon’s Theory of Cryptography". (English). (CS702
Seminar; Instructor: Prof. C. Pandu Rangan), pages 1–13, 1997.

[333] Claude Shannon. "A Mathematial Theory of Cryptography". (Declassified).
(English). (memorandum mm 45-110-02). Bell Laboratories, 1945 (declassi-
fied version 1949).

[334] Claude Shannon. "Communication Theory of Secrecy Systems" (English).
(Bell System Technical Journal), 28(4):pp 656–715, October 1949.

[335] Claude E. Shannon. "A Symbolic Analysis. (English). Bulletin of Mathe-
matical Biophysics, 5:pp. 115–133, 1943.

[336] Claude E. Shannon. "A Mathematical Theory of Communication". (En-
glish). The Board of Trustees of the University of Illinois., 1949.

[337] Leon Sterling; Ehud Shapiro. The Art of Prolog. (English) The MIT Press,
Cambridge, Massachusetts; London, England. p. xxix. 1994.

[338] Stewart Shapiro. "Filosofia da Matemática" (Portuguese).(Tradução e nota
de Augusto J. Franco d Oliveira; Edições 70). 2000 (2015).

255

[339] R. F. Shepherd. "Algol 60 Programming" (English). (McGRAW-Hill Pub-
lishing Company Limited, Maidenhead ·Berkshire · England). 1972.

[340] Fernando C.N. Pereira; Stuart M. Shieber. Prolog and Natural-Language
Analysis. (English) Microtone Publishing. 1987, 2012.

[341] Georgi E. Shilov. "Linear Algebra" (English). (Dover Publications, Inc. Mi-
neola New York). Second Edition. 1971, 1977.

[342] Alex Simpson. "Logic Programming Lecture 7: The Closed World Assump-
tion". (English). (School of Informatics) Springer-Verlag, 2012.

[343] Rebecca Elizabeth Skinner. "Building the Second Mind: 1956 and the Ori-
gins of Artificial Intelligence Computing." (English). (UC Berkeley Previ-
ously Published Works). 05-01-2012.

[344] W. B. Vasantha Kandasamy; Florentin Smarandache. "Set Theoretic Ap-
proach to Algebraic Structures in Mathematics, A revelation". (English).
(Educational Publisher Inc.). 2013.

[345] Anil Maheshwari; Michiel Smid. "Introduction to Theory of Computa-
tion." (English). (School of Computer Science, Carleton University, Ottawa,
Canada). March 23, 2017.

[346] Peter Smith. "An Introduction to Gödel’s Theorems" (English). (Cambridge
University Press, Second Edition). First Published 2007, Second Edition
2013.

[347] Michael Spivak. "Calculus" (English). (Edited by Publish or Perish, Houston,
Texas). 2008.

[348] J.M. Spivey. "An introduction to logic programming through Prolog" (En-
glish). (Prentice–Hall International.). 1996.

[349] Deirdre Haskell; Anand Pillay; Charles Steinhorn. "Model Theory, Algebra,
and Geometry". (English). (Cambridge University Press). June 10, 2010.

256

[350] J. V. Tucker; K. Stephenson. "Data, Syntax and Semantics, An Introduction
to Modelling Programming Languages" (English). (Department of Computer
Science University of Wales Swansea, QinetiQ). 2006.

[351] John Stillwell. "The Word Problem and the Isomorphism Problem for
Groups". (English). (Department of Mathematics, Monash University, Clay-
ton, Victoria 3168 Australia) Bulletin AMS, 6(1):33–56, 1982.

[352] George F. Luger; William A. Stubblefield. "AI Algorithms, Data Structures,
and Idioms in Prolog, Lisp, and Java". (English). (Pearson Education Inc.).
2009.

[353] Guy Lewis Steele Jr.; Gerald Jay Sussman. "The Art of the Interpreter, or
the Modularity Complex". (English). (Massachusets Institute of Technology,
Artificial Intelligence Laboratory). (AI Memo). Number 453. 1978.

[354] Coordenação Bernhard Sylla. "Historical Linguistics Problems and Perspec-
tives" (Portuguese). (Universidade do Minho, Centro de Estudos Humanís-
ticos). 2017.

[355] Matthew Szudzik and Eric W. Weisstein. "Continuum Hy-
pothesis", From MathWorld–A Wolfram Web Resource, URL =
http://mathworld.wolfram.com/ContinuumHypothesis.html. (English).

[356] Neil Tennant. "Logicism and Neologicism". (English). The Stanford Ency-
clopedia of Philosophy (Winter 2017 Edition), Edward N. Zalta (ed.)., URL
= <https://plato.stanford.edu/archives/win2017/entries/logicism/>.

[357] D’Arcy Wentworth Thompson. On Growth and Form. (English). Cambridge
University Press. 1917.

[358] Richard M. Timoney. "Eigenvalues, diagonalisation and some applications".
(English). LSE Maths (Chapter 3), pages 37–51, March 13, 2014.

[359] Fernando Soler Toscano. "Modelos Formales de Explicación en Lógica e
Inteligencia Artificial". (Spanish). (Tesis presentada por Fernando Soler
Toscano para optar al grado de Doctor por la Universidad de Sevilla). 2005.

257

[360] David S. Touretzky. "Common Lisp, a Gentle Introduction to Symbolic Com-
putation". (English). (Dover Publications, Inc. Mineola, New York). 2013.

[361] Bart Demoen; Phuong-Lan Nguyen; Tom Schrijvers; Remko Tronçon. "The
First 10 Prolog Programming Contests" (English).(Bart Demoen). 2005.

[362] A. M. Turing. [Delivered to the Society November 1936] "On Computable
Numbers, with an Application to the Entscheidungsproblem: A correction"
(1937, 1938). (English). Proceedings of the London Mathematical Society, 2.
42 pp. 230-265 & 2.43 pp. 544-546.

[363] Alan Turing. Collected Works of A. M. Turing. Mathematical Logic (En-
glish). (R. O. Gandy & C.E.M. Yates Editors). North-Holland. Amsterdam
· London · New York · Tokyo. 1992.

[364] Alan Turing. Collected Works of A. M. Turing. Mechanical Intelligence (En-
glish). (D. C. Ince editor). North-Holland. Amsterdam · London · New York
· Tokyo. 1992.

[365] Alan Turing. Collected Works of A. M. Turing. Morphogenesis (English).
(P. T. Saunders editor) North-Holland. Amsterdam · London · New York ·
Tokyo. 1992.

[366] Alan Turing. Collected Works of A. M. Turing. Pure Mathematics (English).
(J. L. Britton editor). North-Holland. Amsterdam · London · New York ·
Tokyo. 1992.

[367] Alan Turing. Alan Turing’s Systems of Logic (English). (The Princeton
Thesis, Edited and introduced by Andrew W. Appel, Princeton University
Press, Princeton and Oxford). 2012.

[368] A.M. Turing. Computing Machinery and Intelligence. (English). Mind, A
Quarterly Review of Psychology and Philosophy, vol. LIX. No. 236: pp. 433–
460, 1950.

[369] Jos Uffink. "Boltzmann’s Work in Statistical Physics". (English). The Stan-
ford Encyclopedia of Philosophy; Edward N. Zalta ed., 2007.

258

[370] S. Ulam. "John von Neumann 1903-1957". (English). (The Neumamn Com-
pendium edited by Muraskin Murray, Brody F, Vamos Tibor) Los Alamos
Scientific Laboratory, pages 1–49, Received by the editors February 8, 1958.

[371] Marcel van der Veer. "Algol 68 Genie, an Algol 68 implementation". (En-
glish). (Mathematisch Centrum Amsterdam), 2001-2015.

[372] José Braga Vasconcelos. "C e Alg." (Portuguese). (FCA - Editora de Infor-
mática, Lda). 2015.

[373] Michael A. Covington; Donald Nute; André Vellino. "Prolog Programming in
Depth". (English). (Artificial Intelligence Programs The University of Geor-
gia). September 1995.

[374] Cédric Villani. "H-Theorem and beyond: Boltzamnn’s entropy in today’s
mathematics.". (English). (ENS Lyon (UMR CNRS 5669) & Institut Uni-
versitaire de France).

[375] Cédric Villani. "Entropy and H-Theorem, The Mathematical Legacy of
Ludwig Boltzmann". (English). (ENS Lyon (UMR CNRS 5669) & Institut
Universitaire de France), 2011.

[376] Eva Volná. "Introduction to Soft Computing" (English). (Bookboon.com).
2013.

[377] Herman H. Goldstine; John von Neumann. "Planning and Coding of Prob-
lems for an Electronic Computing Instrument". (English). (Report on the
Mathematical and Logical Aspects of an Electronic Computing Instrument,
The Institute for Advanced Study Princeton, New Jersey) Bull. New York
Math. Soc., Part II, Vol. 1-3:pp. 1–194, 1947,1948.

[378] John von Neumann. Theory of Self-Reproducing Automata. (English). By the
Board of Trustees of the University of Illinois. Manufactured in the United
States of America. Library of Congress Card No. 63-7246. 1966.

259

[379] John von Neumann. The Computer & the Brain, Foreword by Ray Kurzweil
(English). Third Edition. Yale University Press, New Haven & London. First
Edition 1958.

[380] John von Neumann. " First Draft of a Report on the EDVAC" (English).
Contract No. W–670–ORD–4926., Moore School of Electrical Engineering
University of Pennsylvania, June 30, 1945.

[381] Roger Waismann. Wittgenstein and the Vienna Circle: Conversations
Recorded by Friedrich Waismann, transcribed by J. Schulte and B. McGuin-
ness, New York: Barnes and Noble. (English). 1979.

[382] Krzysztof R. Apt; Mark Wallace. "Constraint Logic Programming using
Eclipse" (English). (Cambridge University Press; 1 edition). January 15,
2007.

[383] Francesca Rossi; Peter Van Beek; Toby Walsh. "Constraint Satisfaction:
An Emerging Paradigm". (English). (Foundations of Artificial Intelligence,
Amsterdam Elsevier) Handbook of Constraint Programming, 2006.

[384] Wang. "Information & Entropy". (English). (Comp 595 DM).

[385] Hao Wang. "Time in Philosophy and in Physics: From Kant and Einstein
to Gödel". (English). Synthese, 2(102):215–234, 1995.

[386] Willis H. Ware. "RAND and the Information Evolution A History in Essays
and Vignettes" (English). (RAND Corporation), volume 2. 2008.

[387] D. H. D. Warren. "Higher-order extensions to PROLOG: are they needed?".
(English). (Department of Artificial Intelligence, University of Edinburgh).

[388] David S. Warren. "Programming in Tabled Prolog". (Source: CiteSeer).
(English). 2:215–234, 1997.

260

[389] Fernando C.N. Pereira; David H.D. Warren. "Definite Clause Grammars for
Language Analysis–A Survey of the Formalism and a Comparison with Aug-
mented Transition Networks", Department of Artificial Intelligence, Univer-
sity of Edinburgh. North-Holland Publishing Company (English). Artificial
Intelligence, (13):231–278, 1980.

[390] Terrance Swift; David S. Warren. "The XSB System Version 3.3x". (En-
glish). (Volume 1, Programmer’s Manual). July 4, 2013.

[391] Watson and Crick. "Molecular Structure of Nucleic Acids". (English). Na-
ture, April 25, 1953.

[392] Barry Watson. Computational Logical Notes. (English). 2014-2016.

[393] Stephen M. Watt. "Programming with Logic Supplementary Lecture". (En-
glish). (University of Waterloo, Canada).

[394] Alexander Waugh. Musica Clássica Outra Forma de Ouvir (Portuguese).
(Editorial Estampa). 2000.

[395] W. P. Weijland. "Semantics for logic programs without occur check". (En-
glish). (Centre for Mathematics and Computer Science, Kruislaan 413, 1098
SJ Amsterdam, The Netherlands) Theoretical Computer Science, 71(1):pp.
155–174, 1990.

[396] Steven Weinberg. To Explain the World: The Discovery of Modern Science.
(English). ISBN-13: 978-0062346667. Reprint Edition 2005.

[397] William A. R. Weiss. "Introduction to Set Theory". (English).(CreateSpace
Independent Publishing Platform). November 21, 2014.

[398] Graham White. "The Philosophy of Computer Languages". (English). The
Blackwell Guide to the Philosophy of Computing and Information, Edited by
Luciano Floridi, Chapter 18: pp. 237–247, 2004.

[399] Alfred North Whitehead and Bertrand Russell. "Principia Mathematica".
(English). (Merchant Books), volume I, II, III. 1910, 1912, 1913.

261

[400] B. A. Wichmann. "Algol 60 Compilation and Assessment". (English). (Aca-
demic Press · London and New York). 1973.

[401] Jan Wielemaker. "XPCE/Prolog Notes" (English).(VU University Amster-
dam De Boelelaan The Netherlands, University of Amsterdam Kruislaan The
Netherlands).

[402] Jan Wielemaker. "SWI-Prolog5.6 ReferenceManual" (English).(University
of Amsterdam, Human-Computer Studies (HCS, formerly SWI), Kruislaan,
The Netherlands). 2007.

[403] Jan Wielemaker. "SWI Prolog Reference Manual. Uptaded for version 6.2.6"
(English). (VU University Amsterdam, The Netherlands). January, 2013.

[404] Norbert Wiener. "Cybernetics or, Control and Communication in the Animal
and the Machine". (English). (Martino Publishing Mansfiled Centre, CT,
second edition). (1948, 1951) 2013.

[405] Norbert Wiener. "The Human Use of Human Beings, Cybernetics and Soci-
ety" (English). (The Da Capo Series in Science, Da Capo Press). 1950-1954.

[406] Herbert S. Wilf. "Algorithms and Complexity". (English). (University of
Pennsylvania). Internet Edition, Summer, 1994.

[407] Brian J. Gough (with a foreword by Richard M. Stallman). "An Introduc-
tion to GCC - for the GNU compilers gcc and g++.". (English). (Network
Theory). 2004.

[408] Edited with an Introduction and Notes by Peter Pesic. Beyond Geometry,
Classic Papers from Riemann to Einstein (English). (Dover books on Math-
ematics, Dover Publications, Inc. Mineola, New York). 2016.

[409] C. Gordon Bell; John Grason; Allen Newell (with the assistance of
Daniel Siewiorek and Ross Scroggs. "Designing Computers and Digital Sys-
tems". (English). (Digital Press, Carnegie-Mellon University). 4-3-2002.

[410] Ludwig Wittgenstein. Notebooks, 1914-1916. (English). (New York, Harper).
1961.

262

[411] Ludwig Wittgenstein. Grammaire Philosophique. (French). (Titre origi-
nal: Philosophische Grammatik), Blackwell, Oxford; folio essais, Gallimard.
(1969) 1980.

[412] Ludwig Wittgenstein. Cadernos 1914-1916. (Portuguese). (Edições 70, Bib-
lioteca de Filosofia Contemporânea). (1977) 2004.

[413] Ludwig Wittgenstein. Anotações sobre as cores. (Portuguese; German).
(Edição Bilingue; Edições 70, Biblioteca de Filosofia Contemporânea).
(1977) 2018.

[414] Ludwig Wittgenstein. "Remarks on the Foundations of Mathematics". (En-
glish). (Second Edition, MIT Press). (von Wright, Georg Henrik; Rhees,
Rush; Anscombe, Gertrude Elizabeth Margaret eds.). 1983.

[415] Ludwig Wittgenstein. "Tratado Lógico-Filosófico * Investigações Filosóficas"
(Portuguese). (Fundação Calouste Gulbenkian, 2a Edição). 1995.

[416] Ludwig Wittgenstein. "Da Certeza" (Über Gewissheit). (Portuguese). (Bil-
ioteca de Filosofia Contemporânea, Edições 70). 1998 (1969).

[417] Ludwig Wittgenstein. "Últimos Escritos sobre a Filosofia da Psicologia"
(Portuguese). (Fundação Calouste Gulbenkian, Lisboa, 2a Edição). 2014.

[418] Ludwig Wittgenstein. "Tractatus Logico-Philosophicus". (Translated from
the German by C.K. Ogden with an Introduction by Bertrand Russell). (Ger-
man; English). 4.063 .1922.

[419] Ludwig Wittgenstein. Tractatus Logico-Philosophicus (Translated from the
German by D. F. Pears & B. F. Mcguinnesswith an Introduction by Bertrand
Russell). (German; English). 4.063 .1963.

[420] Ben H. Yandell. The Honors Class; Hilbert’s Problems and Their Solvers.
(English). A K Peters Ltd. Natick, Massachussets. p. 21. 2001.

[421] Jean Yves-Girard. "Proofs and Types". (English). (Translated and with ap-
pendices by Paul Taylor and Yves Lafont, Cambridge University Press).
1989, 1990, 2003.

263

[422] Alexander Zelitchenko. "Is ’Mind-Body Environment’ Closed or Open Sys-
tem?". (English). Academia.edu.

[423] Konrad Zuse. "Translation of: "Rechnender Raum." (English). (MIT Tech-
nical Translation; Freidr. Vieweg & Sohn, Braunschweig)., volume 1. 1969.

264

