From the cloud to the Edge computing using AI, IoT and Blockchain

Juan M. Corchado
University of Salamanca (spain)
corchado@usal.es

Edge Computing is a highly relevant technology for Industry 4.0. It streamlines the traffic coming from IoT devices and provides real-time local data analysis. Instead of a centralized data-processing system, the EC paradigm processes the data at the edge, that is, as close to the source of data as possible. Thus, the sensors and smart applications/devices deployed in a factory can process the data in real time; as soon as they are generated. Thus, Edge computing accelerates data-streaming and eliminates latency. Moreover, it reduces Internet bandwidth usage, eliminating costs and ensuring that applications operate correctly in remote locations; this is an important aspect for factories. The ability to process data without ever storing it in a public cloud is another layer of security, nevertheless, the edge must also be protected against cyber-attacks.

With the fourth industrial revolution, the need for manpower in factories will become lower, while industrial processes will become more efficient. Industry 4.0 is a revolutionary concept that is helping to change the industry by digitizing its production processes and increasing its productivity. Internet connectivity lies in the very core of Industry 4.0; it enables us to connect all the devices within a factory, creating a fully connected system that collects data and employs artificial intelligence algorithms to analyze them. Artificial Intelligence (AI) is the driving force behind global development and it is therefore an extremely topical subject. The ever-greater developments in the field of artificial intelligence have sparked many debates about its role in different sectors (society, business, government, etc). AI began as a fantasy about the future but now we truly have everything we need to make it a reality; computing power, storage capacity, communications technology and qualified manpower. We can optimize our industry by incorporating AI into its production processes. However, it is important to bring Blockchain into Industry 4.0, due to its countless advantages. Blockchain is essentially a form of ledger keeping that makes data unalterable and indestructible. Although it is commonly thought of as the technology behind different cryptocurrencies, such as bitcoin and ether, Blockchain can be used to secure anything, including manufacturing processes; by preserving the integrity of data, it prevents cyber-attacks and increases security. To sum up, AI, blockchain and edge computing must all be encompassed within the Industry 4.0 concept. These three technologies are allies and complement each other. AI models and blockchain-based distributed systems should be adapted to satisfy the needs of Industrial IoT; this will provide some alternatives for the merging of these three technologies. Security, reliability, rigorous time response and smart solutions are the elements that characterize our modern factories and production centers. To build more efficient and productive systems, it is necessary to integrate those technologies and actively counteract potential cyber-security risks.

References
7. Ana Silva, Tiago Oliveira, José Neves, Paulo Novais (2016). Treating Colon Cancer Survivability Prediction as a Classification Problem. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 1
42. Corchado, J. (1998). Real time forecast with intelligent systems. In CONFERENCE ON KNOWLEDGE DISCOVERY. IEE, SAVOY PLACE, LONDON.

82. David Griol, Jose M. Molina (2016). A proposal to manage multi-task dialogs in conversational interfaces. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 2

84. David Griol, Jose Manuel Molina (2016). Simulating heterogeneous user behaviors to interact with conversational interfaces. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 4

85. David Griol, Jose Manuel Molina, Araceli Sanchís De Miguel (2014). Developing multimodal conversational agents for an enhanced e-learning experience. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 3, n. 1

89. Eduardo Facchin, Eduardo Mario Dias, Alexandre Pelegi Abreu, Maria Lídia Rebelo Pinho Dias (2016). Brazil in Search of Transparency E-Gov. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 1

91. Eduardo Munera, Jose-Luis Poza-Lujan, Juan-Luis Posadas-Yagüe, Jose-Enrique Simó-Ten, Francisco Blanes (2017). Integrating Smart Resources in ROS-based systems to distribute services. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 1

94. Emmanuel Adam, Emmanuelle Grislin-Le Strugeon, René Mandiau (2012). MAS architecture and knowledge model for vehicles data communication. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 1, n. 1

120. Guillaume Desquesnes, Guillaume Lozenguez, Arnaud Doniec, Éric Duiwella (2016). Planning large systems with MDPs: case study of inland waterways supervision. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 4

125. Jaime Rincón, Jose Luis Poza, Juan Luis Posadas, Vicente Julián, Carlos Carrascosa (2016). Adding real data to detect emotions by means of smart resource artifacts in MAS. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 4

147. Lucas Fernando Souza De Castro, Gleifer Vaz Alves, André Pinz Borges (2017). Using trust degree for agents in order to assign spots in a Smart Parking. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 2

181. Rafaelh Cunha, Cleo Billia, Diana Adamatti (2017). Development of a Graphical Tool to integrate the Prometheus AEOlus methodology and Jason Platform. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 2

185. Rodolfo Salazar, José Carlos Rangel, Cristian Pinzón, Abel Rodríguez (2013). Irrigation System through Intelligent Agents Implemented with Arduino Technology. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 2, n. 3

194. Saadi Bin Ahmad Kamaruddin, Nor Azura Md Ghanib, Choong-Yeun Liong, Abdul Aziz Jemain (2012). Firearm Classification using Neural Networks on Ring of Firing Pin Impression Images. ADCAIJ: *Advances in Distributed Computing and Artificial Intelligence Journal* (ISSN: 2255-2863), Salamanca, v. 1, n. 3

207. Vincenza Cofini, Fernando De La Prieta, Tania Di Mascio, Rosella Gennari, Pierpaolo Vittorini (2012). Design Smart Games with requirements, generate them with a Click, and revise them with a GUIs. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 1, n. 3