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Influence of the spatial 
confinement on the self-focusing 
of ultrashort pulses in hollow-core 
fibers
Aurora Crego, Enrique Conejero Jarque & Julio san Roman  

The collapse of a laser beam propagating inside a hollow-core fiber is investigated by numerically 
solving different nonlinear propagation models. We have identified that the fiber confinement favors 
the spatial collapse, especially in case of pulses with the input peak power close to the critical value. We 
have also observed that when using pulses in the femtosecond range, the temporal dynamics plays an 
important role, activating the spatial collapse even for pulses with input peak powers below the critical 
value. The complex self-focusing dynamics observed in the region below the critical power depends on 
the temporal evolution of the pulse and, also, on the interaction between the different spatial modes of 
the hollow-core fiber.

One of the first nonlinear effects that appears when a laser beam propagates through a medium is the variation 
of the refractive index with the intensity of the beam: the optical Kerr effect. The immediate consequence of this 
intensity dependent refractive index is the self-focusing of the beam towards the highest intensity regions, usually 
its central part. It is well-known that for input peak powers above a threshold value, called critical power, the 
nonlinear propagation theory predicts that the beam will undergo spatial collapse.

This self-focusing process is very relevant in many different contexts such as in the formation of the Townes 
soliton1–3, in the design of laser resonators to avoid the appearance of hot spots (local self-focusing processes)4, 
as a natural limit in the intensity up-scaling of fiber amplifiers5, as the first step of the filament formation6, as a 
limit in some post-compression schemes7 or in the material processing context8, where the self-focusing process 
triggers other higher nonlinear effects that worsen the output result.

The full understanding of the self-focusing process implies the determination of the minimum peak power 
value needed to activate the self-focusing dynamics, called the critical power. This fundamental parameter was 
identified already in the early self-focusing studies1 and, since then, its definition has been revisited many times 
due to its dependence with the spatial profile9,10, the temporal and non-paraxial dynamics11,12, the focusing geom-
etry13, the spatial impurities14, the presence of the Raman effect15, etcetera. All these dependencies are an evidence 
of the rich and complex interaction between self-focusing and other linear and nonlinear effects, which is the 
reason why it is still an active research topic. Moreover, once the critical power is defined in a particular context, 
a formula to estimate the collapse distance has often been proposed. For the case of a free propagating beam we 
have the well-known Marburger’s formula16,17 and similar formulas developed in other studies10,18,19.

The self-focusing process in guiding systems (optical fibers, photonic crystal fibers and hollow-core fibers 
(HCFs)) has been theoretically studied in the past obtaining contradictory conclusions. Tempea and Brabec20 
found that the critical power of beams propagating in HCFs is substantially higher (5 times) than if they prop-
agate in free space. Later, Fibich and Gaeta obtained basically the opposite result, a critical power slightly lower 
for the fundamental mode of the HCF than for a free Gaussian beam9. Similarly, Farrow and coworkers observed 
stationary solutions in a fiber amplifier for peak powers below the critical power of a free Gaussian beam, sug-
gesting a decrease of the real critical power in the fiber, although concluded that the critical power in a step-index 
fiber was nearly the same as in free space5. Finally, self-focusing below the critical power of a free Gaussian beam 
was also observed in photonic crystal fibers21, suggesting again a different behavior between a free and a spatially 
confined propagation.
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In this work we will study the self-focusing dynamics of a beam propagating in HCFs, which is the most usual 
technique to achieve few-cycle laser pulses in the near infrared22,23. The standard post-compression process 
requires the spectral broadening of the pulse during its nonlinear propagation inside a gas filled HCF and its 
subsequent spectral phase compensation to finally obtain the shortest possible output. The activation of high 
nonlinear effects, such as ionization, which could occur if the beam self-focuses inside the HCF, deteriorates the 
output results, being therefore a limitation to up-scale the standard post-compression set-ups7. We will try to gain 
some insight into this problem comparing the self-focusing dynamics of free beams and spatially confined beams 
(beams propagating in a HCF) using two different theoretical models based on the nonlinear Schrödinger equa-
tion. We have verified, with both models, that the collapse distance of the fundamental mode inside the HCF is 
appreciably different than in free space due to the spatial confinement, specially for peak powers slightly greater 
than the critical power of the fundamental mode of the HCF ( λ= .P 1 86225cr

2/ πn n(4 )0 2 )9, that we used as the 
reference value during the whole work. Moreover, the time-dependent model shows that the spatial collapse can 
appear also for pulses with peak power below Pcr, being the temporal pulse evolution and the interference between 
different spatial modes the two main ingredients of this complex dynamics. In the last part of this work we discuss 
how the self-focusing dynamics, accompanied by other high order nonlinear terms, would manifest in a real 
experiment, demonstrating that pure self-focusing studies help to identify the energy limit of the HCF 
post-compression scheme.

Results and Discussion
To study the collapse process in HCFs we have developed two numerical models (see the Methods section). The 
first model focuses on the spatial dynamics ((1 + 1)D model). It includes the diffraction and the self-focusing 
effects, not taking into account any temporal distortion of the pulse. This is a standard model to simulate the col-
lapse dynamics of a laser beam9,24 but, as we want to study the self-focusing process in the post-compression con-
text, we need to verify the possible influence of the evolution of the temporal structure of the pulse, which could 
be relevant for pulses in the femtosecond regime. For this reason we have developed a second model that includes 
the complete spatio-temporal dynamics of a laser pulse in a HCF ((2 + 1)D model). This second model includes 
the diffraction and self-focusing effects together with the dispersion, self-phase modulation and self-steepening. 
In the last part of this work, we add the ionization of the medium to the (2 + 1)D model in order to see how 
self-focusing affects the general dynamics in a more realistic model.

One of the main issues when numerically studying the self-focusing process is the collapse criterion, which 
determines the propagating distance at which the spatial collapse takes place. Looking into the literature, one 
finds that to visualize the self-focusing dynamics some authors use the beam spatial width evolution5,25 while 
others use the field amplitude or intensity evolution9,14, but to define a collapse criterion most of them use a 
field amplitude threshold. This type of field amplitude criterion is not adequate for our system for two reasons: 
first because we are dealing with beams propagating in HCFs, whose modes are intrinsically leaky. The relevant 
absorption losses present in HCF would affect those spatial collapses occurring at short distances differently than 
those occurring at long distances, although both beams would present similar spatial widths. The second reason 
is that we want to include the evolution of the temporal structure in this self-focusing study. We will see soon that 
there is strong self-compression dynamics during the nonlinear propagation that affects the peak intensity evolu-
tion. Therefore, to isolate the spatial dynamics from other terms (absorption or temporal dynamics), we define the 
spatial collapse, for both simulation models, when the spatial width, measured as the half width at half maximum 
(HWHM) from the peak intensity, drops below 0.1 times the initial beam waist (w0 = 110 μm for the fundamental 
mode of a 150 μm core radius HCF). Using this purely spatial collapse criterion we find similar collapse distances 
for a free Gaussian beam than those obtained with Fibich’s formula (Eq. 12 in10). A different collapse criterion 
could change the quantitative results, the collapse distances, but qualitative results, as how the spatial confinement 
induced by the HCF affects the collapse dynamics, would remain the same.

The time-independent model ((1 + 1)D model). To show how the self-focusing dynamics is affected 
by the spatial confinement induced by the fiber we have simulated the nonlinear propagation of the fundamental 
mode of a HCF, the EH11 mode, centered at 800 nm. The initial condition used to solve numerically Eq. 3 (see 
Methods) is, therefore:
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where u0 and rF are the first zero of the Bessel J0 function and the fiber core radius, respectively. We will compare 
the collapse distances of the EH11 mode propagating inside a HCF obtained numerically, with the free-space col-
lapse distances predicted by the Fibich’s formula (Eq. 12 in10). To apply the formula we use the waist of the 
Gaussian that best fits the fundamental mode of the HCF ( = .w r0 65 F0 ) and the critical power corresponding to 
the EH11 mode9. Figure 1 shows the numerical collapse distances (circles) and the prediction obtained through 
Fibich’s formula (lines) for different input pulse energies and fiber core radius. We obtain two important conclu-
sions: first, we do not observe spatial collapse for peak powers below Pcr. Second, and more important, the ten-
dency of the collapse distances in the HCF is different from those obtained from the free-space propagation, 
especially when the input peak power is close to the critical power P P( )in cr . The collapse distances are shorter in 
the HCF than in free space and, surprisingly, the collapse distances in the HCF, instead of diverging when getting 
close to the threshold value (Pcr) as occurs in the free-space propagation case, disappear abruptly at the critical 
power. This new behavior is related to the reduction of diffraction and to the losses induced by the spatial confine-
ment of the HCF. Note that at high input peak powers, where the self-focusing term dominates against the absorp-
tion and the diffraction, the difference between the collapse distances in the HCF and in free space vanishes. The 
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conclusion obtained from the (1 + 1)D model is clear: the spatial confinement of the beam favors the self-focusing 
dynamics, specially for peak powers close to the critical power.

Fitting our numerical results we can obtain a simple formula to predict the collapse inside the HCF:
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where =p Pin/Pcr, being Pcr the critical power of the fundamental mode of the HCF9, and zR is the Rayleigh length 
π=z wR 0

2/λ. We have plotted the results obtained from Eq. 2 as coloured dashed lines in Fig. 1 to show the agree-
ment between numerical and analytical results. Only values with Pin/ ≥P 1cr  have been plotted as we have not 
observed collapse for input peak powers below Pcr with this (1 + 1)D model.

The time-dependent model ((2 + 1)D). A more complete description of the pulse propagation in the 
HCF is simulated with a time-dependent model ((2 + 1)D model) that includes spatial and temporal dynamics 
(Eq. 6 of the Methods). The temporal effects included in this model are dispersion, self-phase modulation and 
self-steepening. As it is usual in any self-focusing study12,24,25, and trying to isolate this spatial nonlinear process, 
neither the effect of the plasma induced by the pulse nor the losses related to the ionization process or the pres-
ence of the plasma are included, as they would partially prevent the self-focusing process. The collapse distances 
obtained with the (2 + 1)D numerical model for different pulses, centered at 800 nm, coupled initially to the EH11 
mode of a HCF with 150 μm core radius and filled with 1 bar of Ar, are presented in Fig. 2. As a reference, we have 
also plotted the Fibich’s formula for free-space propagation10, (solid line), and our new fit (Eq. 2) with an orange 
dashed line.

Two different regions can be observed in Fig. 2: the high peak power region (HPR, >P Pin cr) and the new low 
peak power region (LPR, <P Pin cr), where the (2 + 1)D numerical model presents spatial collapses. In the HPR 
the two numerical models present basically the same tendencies, which demonstrates that in this regime the 
self-focusing process weakly depends on the input pulse duration. All the collapse distances in this regime are 
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Figure 1. We show the collapse distances of the EH11 mode at 800 nm as a function of the input peak power and 
of the core radius of the HCF. Circles represents the collapse distances obtained from the (1 + 1)D numerical 
model for HCFs of 150 μm and 200 μm core radius, dashed lines are obtained from the estimation formula 
(Eq. 2) and solid lines correspond to the prediction from the free-space Fibich’s formula10. Pcr is the critical 
power for the fundamental mode of the HCF as defined in9.
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Figure 2. We show the collapse distances of the EH11 mode at 800 nm as a function of the input power and 
duration of the pulse for a HCF with core radius 150 μm. The different markers are the collapse distances 
obtained from numerical (2 + 1)D simulations for different laser pulse duration, the solid line represents the 
collapse distances predicted by Fibich’s formula in free space, while the dashed line corresponds to the fit 
obtained from the (1 + 1)D model (Eq. 2).
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well described by the (1 + 1)D model represented by Eq. 2. For these cases self-focusing overcomes diffraction, 
absorption, and also all the temporal effects, dominating the propagation of the beam.

Role of the spatial modes in the self-focusing dynamics: a multimode self-compression. The collapse dynamics 
observed in the LPR is much more rich and complex. First we should recall that there are already several refer-
ences that present self-focusing for peak powers below the critical value5,21,25, all of them related with multimode 
guiding systems. HCFs are multimode systems and it is not surprising that their multimode nature could be 
relevant to understand the self-focusing dynamics observed. Although we assume that at the capillary entrance 
the beam is purely coupled into the fundamental mode of the HCF, the nonlinear propagation through the HCF 
induces an important energy transfer towards higher spatial modes. These modes, besides presenting a nar-
rower spatial distribution and activating the self-focusing process, have an anomalous dispersion response, which 
means that they could temporally self-compress. To understand the rich spatio-temporal dynamics that one could 
expect from this new (2 + 1)D model, we present in Table 1 the values of the group velocity and the group velocity 
dispersion (GVD) at 800 nm for the first four spatial modes of a HCF with 150 μm core radius and filled with 
argon at a pressure of 1 bar.

Figure 3 shows the pulse intensity distribution of a 30 fs pulse with = .P P0 93in cr at 800 nm (right column) and 
the intensity distribution of the first seven spatial modes (left column), at three propagation distances. At the 
beginning only the fundamental mode contributes (Fig. 3 top left), but as the pulse propagates through the HCF 
there is an energy transfer to higher spatial modes that mainly occurs in the most intense part of the pulse (Fig. 3 
middle left). The new generated spatial modes send energy back to the fundamental mode during their propaga-
tion, inducing an interference in the fundamental mode (Fig. 3 bottom left). Close to the collapse distances 
(72 mm for this case), almost all the modes contribute in the trailing part of the pulse simultaneously generating 
a high interference peak, as can be seen in the evolution of the on-axis temporal intensity distribution of the pulse 

λ = 800 nm EH11 EH12 EH13 EH14

vg (nm/fs) 299.916 299.913 299.908 299.901

GVD (fs2/m) 34.56 −9.40 −35.86 −101.23

Table 1. Group velocity and GVD values for the fundamental and first three excited modes at 800 nm in a HCF 
with 150 μm core radius and filled with argon at 1 bar.

Figure 3. Left column corresponds to the on-axis temporal intensity distribution of different modes and right 
column corresponds to the on-axis temporal intensity distribution of a 30 fs pulse at 800 nm with = .P P0 93in cr, 
propagating in a 150 μm core radius HCF filled with 1 bar of Ar for three propagation distances. The left column 
includes the intensity distribution of the fundamental mode at z = 0 with a dashed line for comparison.
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(Fig. 3 bottom right). This figure demonstrates how the particular nonlinear mixture of the different spatial 
modes distorts the temporal intensity distribution in such a way that it shows an unexpected self-compression 
process, and a subsequent increase of the peak intensity.

Self-focusing dynamics in the low power and high power regimes. Regarding the spatial dynamics, the presence of 
higher spatial modes also induces oscillations in the beam spatial width, as shown in25, that could eventually pro-
duce the spatial collapse of the beam. This complex spatio-temporal nonlinear evolution explains the collapses in 
the LPR shown in Fig. 2 and the influence of the temporal pulse duration. Moreover, the tendency of the collapse 
distance in the LPR is completely different than in the HPR. While in the HPR we have obtained a quite smooth 
tendency, increasing the collapse distance continuously when getting close to the critical power, the LPR pre-
sents a discrete tendency (specially visible for the shortest pulses), showing collapses for some particular distance 
regions noted as shadowed rectangles in Fig. 2.

To unveil the origin of these collapse tendencies in the LPR we show in Fig. 4 a complete set of plots for two 
different collapses that summarizes the observed phenomenology. Each column of Fig. 4 corresponds to the 
propagation of a 30 fs pulse at 800 nm, with 150 μJ ( = .P P0 86in cr , left) and 162 μJ ( = .P P0 93in cr , right) of input 
energy, propagating in a 150 μm core radius HCF filled with 1 bar of Ar. Each column shows the evolution of the 
percentage contribution of the first four spatial modes (a), the evolution of the peak power and the pulse energy 
(b), of the on-axis pulse duration (c), of the spatial width (d) and of the on-axis spectrum (in log scale) (e), with 
the propagation distance. The vertical dashed lines indicate the collapse distance for each case (137 mm (left), 
72 m (right)). Figure 4(a) only shows the contribution of the first four spatial modes for clarity, although we use 
30 spatial modes in the simulations.

The first important thing to note is the self-compression process commented before, and shown in Fig. 4(c), 
which induces an increase of the peak power (shown in Fig. 4(b)). In fact, the collapse distance always occurs 
after the peak power has surpassed Pcr during the propagation inside the HCF, as one would expect. The 
self-compression dynamics presents some features of a standard solitonic self-compression (see26,27), although the 
process here is more complicated. As in a solitonic process, the self-compression is accompanied by a dispersive 
wave generation (DWG) (see Fig. 4(c,e)), that occurs simultaneously with the spatial collapse, as can be seen in 
Fig. 4(d,e). The complex nonlinear coupling between the spatial and the temporal dynamics is also corroborated 

Figure 4. Left (right) column corresponds to the propagation of a 30 fs pulse at 800 nm, with 150 μJ input 
energy and = .P P0 86in cr (162 μJ input energy and = .P P0 93in cr), propagating in a 150 μm core radius HCF filled 
with 1 bar of Ar. Each column shows the evolution of the percentage mode contribution (M.C.) of the first four 
spatial modes (a), the evolution of the peak power and the pulse energy, indicating the Pcr threshold with an 
horizontal dashed line, (b), the evolution of the on-axis pulse duration (c), the evolution of the spatial width (d) 
and the evolution of the on-axis spectrum (log scale) (e) with the propagation distance. A vertical dashed line 
indicates the collapse distance for each case 137 mm (72 mm). The minimal pulse duration obtained would be 
2.7 fs (left) and 1.5 fs (right). Note the different length of the z-coordinate for each case.
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by the evolution of the population of the different spatial modes forming the pulse (see Fig. 4(a)). The last impor-
tant thing to note is the oscillatory nature of the spatial collapse (Fig. 4(c)) in contrast with the free-space monot-
onous catastrophic collapse, in agreement with other self-focusing studies in multimode confined media25.

Regarding the oscillatory nature of the collapse, it is well-known that the transfer of energy between two spa-
tial modes shows an oscillatory behavior related to a characteristic coherence length, π=Lcoh / β β−( )1 2 , where 
β1 and β2 represent the propagation coefficient of each mode20. In our case the pulse is composed by a mixture of 
several modes, each of them with its own propagation coefficient, which makes this oscillatory behavior more 
difficult to identify. Nevertheless, we can use these coherence lengths to remark once more the multimode nature 
of the self-focusing dynamics in the LPR. In the HCF one can define the coherence length between the fundamen-
tal and the EH1m mode as π=Lcoh

m( ) / β ω β ω−( ( ) ( ))m(1)
0

( )
0 , where β ω( )n( )

0  represents the propagation coefficient 
of the nth-spatial mode in the HCF ( =n 1 representing the fundamental mode) at the central frequency ω0. At 
Lcoh

(2), which in the parameters of Fig. 4(a) is 45 mm, the energy transferred from the fundamental to the 2nd-mode 
should be maximum, for a pure two-mode system. Figure 4(a) shows that we are not exactly in this pure case 
because the maximum transfer of energy to the second spatial mode appears at slightly longer distances.

Assuming Lcoh
(2) as a good estimation, one can expect that from that distance on, a decrease of the spatial width 

of the beam should start to happen, as is obtained (see Fig. 4(d)). From Lcoh
(2) two different scenarios could appear 

depending on the input peak power: one in which the self-focusing process is arrested by other terms (diffraction, 
absorption and dispersion), as occurs in Fig. 4 (left). In this case the pulse reaches L2 coh

(2), where the energy trans-
ferred to the second spatial mode is returned back to the fundamental and, therefore, the spatial collapse cannot 
occur yet. The other scenario happens when the self-focusing dominates the evolution before reaching L2 coh

(2), and 
the spatial collapse takes place between Lcoh

(2) and L2 coh
(2). This spatial collapse, shown in Fig. 4 (right), is accompa-

nied by an important self-compression process and the subsequent generation of a dispersive wave (DWG), all 
these effects occurring almost simultaneously.

The first scenario commented above, which does not show a spatial collapse between Lcoh
(2) and L2 coh

(2), could 
show it in a second coherence cycle when the energy transfer goes again from the fundamental to the second 
spatial mode. This second collapse process should occur between L3 coh

(2) and L4 coh
(2) (135 mm and 180 mm). A spatial 

collapse in a second period is exactly what occurs in Fig. 4 (left), linked again to a second DWG process, but the 
collapse distance does not coincide well with the estimation obtained from the coherence length Lcoh

(2). To obtain a 
better estimation we have to take into account not only the second mode, but also the third mode. In that case, 
following the same reasoning used before, one estimates that the pulse would have a second chance to collapse 
between + +L L L2 ( )coh coh coh

(2) (2) (3) /2 and + +L L L2 ( )coh coh coh
(2) (2) (3) , which in our case is between the propagation distances 

121 and 152 mm, as observed in Fig. 4 (left). This oscillatory dynamics, related to the periodic energy transfer 
between the different spatial modes, demonstrates the multimode nature of the self-focusing process and is the 
reason why we observe discrete collapse distance regions.

To better visualize this discrete behavior we have indicated in Fig. 2 these two regions in which the spatial 
collapse could take place: the grey and pink shadowed rectangles, are defined as the regions between Lcoh

(2) and L2 coh
(2) 

(grey area), and between + +L L L2 ( )coh coh coh
(2) (2) (3) /2 and + +L L L2 ( )coh coh coh

(2) (2) (3)  (pink area). Although the spatial beam 
collapse is driven by more than three spatial modes, as suggested by the limits commented above, these regions 
estimate quite well the collapse distance limits, specially for the shortest pulses.

The behaviour in the HPR region is less rich in the sense that the self-focusing dominates the rest of 
spatio-temporal effects that are included in the (2 + 1)D model. We have observed, for all the different pulse 
durations that we used, a very similar dynamics to that presented in the right column of Fig. 4 (the higher input 
peak power case). Indeed, the higher input peak power cases show such a strong self-focusing process, leading to 
a short collapse distance, that the spectral broadening is not strong enough to activate the DWG and, as a conse-
quence, the minimal pulse duration is longer than those obtained in the LPR. This is the main difference between 
the self-focusing dynamics in the LPR and in the HPR.

Influence of the parameters of the input laser pulse and the filling gas on the self-focusing dynamics. It is interesting 
to analyze how the properties of the laser pulse and the gas inside the HCF affect the self-focusing dynamics we 
have presented. Regarding the effect of longer input pulses, we show in Fig. 5 (left) the dynamics of a 100-fs pulse 
with Pin/ = .P 0 93cr  (which can be compared with the same input peak power case for a 30-fs pulse shown in Fig. 4 
(right)). As observed, the main difference here is that the spatial collapse takes place at a longer distance for the 
100-fs pulse, but showing very similar spatio-temporal dynamics.

Another important parameter is the central wavelength of the laser used. For instance, ultrashort 
ytterbium-based laser systems have gained a lot of interest in recent years due to their high average power levels 
which make them useful in scientific as well as industrial applications, and the compression of Yb-based pulses is 
a current hot topic in the field (see, for instance28–33). We have performed simulations for the wavelength of an 
Yb-doped source, 1030 nm. In particular, we have studied the propagation of a 30 fs laser pulse, centered at 
1030 nm, with Pin/ = .P 0 93cr  through a HCF with 150 μm core radius HCF filled with 1 bar of Ar (we have used 
the nonlinear refractive index n2 value given in29).

Taking into account that the anomalous dispersion response of the gas increases with the wavelength34, as 
shown in Table 2, one expects to observe a stronger self-compression process for the Yb-doped than for the Ti:Sa 
laser and, therefore, an earlier spatial collapse. This is exactly what can be observed when comparing Fig. 5 (right) 
and 4 (right). Except for the spatial collapse position, the general self-focusing dynamics is very similar for both 
wavelengths. Indeed we have done a series of calculations for the Yb-doped fiber laser to see if we find the same 
collapse distance trend obtained for the Ti:Sa laser. Figure 6 shows again that the self-focusing dynamics are very 
similar and, moreover, our fit equation (Eq. 2), adapting the Pcr for this case, provides an excellent agreement. We 
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Figure 5. Left column corresponds to the propagation of a 100 fs pulse at 800 nm with = .P P0 93in cr, 
propagating in a 150 μm core radius HCF filled with 1 bar of Ar. Right column corresponds to the propagation 
of a 30 fs pulse at 1030 nm with = .P P0 93in cr, propagating in the same HCF filled with 1 bar of Ar. Each column 
shows the evolution of the percentage mode contribution (M.C.) of the first four spatial modes (a), the evolution 
of the peak power and the pulse energy, indicating the Pcr threshold with an horizontal dashed line, (b), the 
evolution of the on-axis pulse duration (c), the evolution of the spatial width (d) and the evolution of the on-axis 
spectrum (log scale) (e) with the propagation distance. A vertical dashed line indicates the collapse distance for 
each case: 87 mm for the 100-fs pulse at 800 nm and 53 mm for the 30-fs pulse at 1030 nm. The minimal pulse 
duration would be 1.9 fs (left) and 1.2 fs (right). Note the different length of the z-coordinate for each case.

λ = 1030 nm EH11 EH12 EH13 EH14

vg (nm/fs) 299.918 299.913 299.906 299.894

GVD (fs2/m) 16.4 −37.3 −133.9 −273.4

Table 2. Group velocity and GVD values for the fundamental and first three excited modes at 1030 nm in a 
HCF with 150 μm core radius and filled with argon at 1 bar.
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Figure 6. We represent the collapse distances of the EH11 mode as a function of the input power for a HCF 
with core radius 150 μm. The markers are the collapse distances obtained from (2 + 1)D simulations for a 30-fs 
pulse at 1030 nm, the solid line shows the collapse distances predicted by Fibich’s formula in free space and the 
dashed line corresponds to the fit obtained from the (1 + 1)D model (Eq. 2). The gray and pink areas for these 
parameters go from 35 to 70 mm and from 94 to 117 mm, respectively.
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have also plotted the gray and pink areas obtained from the coherent length estimation for this situation, recover-
ing again a good prediction for the collapse distances. These demonstrate the consistency of the dynamics of the 
spatial collapse in a HCF detailed before.

Gas pressure is another parameter which has an important role in nonlinear propagation in HCFs7,31 because 
it affects both linear dispersion and nonlinear coupling. In order to study the possible use of the pressure as a 
control parameter to locate the collapse at a desired distance, we have performed a pressure scan for a 30 fs Ti:Sa 
laser pulse with fixed input energy propagating inside a HCF with core radius 150 μm filled with Ar. The results 
shown in Fig. 7 (left) demonstrate that gas pressure is indeed an excellent parameter to tune the spatial collapse 
position. As the pressure increases the critical power decreases so the beam collapses at shorter distances. For gas 
pressures below 1 bar we do not observe collapse since we enter in the P Pin cr region. Moreover, to have an idea 
of how the temporal dynamics changes during this pressure scan we show the shortest pulse obtained for each 
case in Fig. 7 (right). One can observe that the lower the pressure, i.e. the lower the nonlinearity, the more neces-
sary is the temporal self-compression effect to achieve the nonlinear spatial collapse.

The trace of the self-focusing process in a real experiment: the time-dependent model ((2 + 1)
D) including ionization. All the results presented before have been obtained with models which do not 
include the effects of the generated plasma in the HCF, in order to isolate the spatial dynamics of the self-focusing 
process. Therefore, one cannot compare directly those results with experiments, where other high nonlinear 
effects such as the gas ionization eventually prevent the spatial collapse. In this section we will add the gas ion-
ization, the losses due to the ionization process and due to the plasma absorption to the (2 + 1)D model (see 
Methods) in order to prove that the collapse dynamics shown before is an useful tool to find out the energy limit 
of a standard HCF post-compression setup.

Figure 8 shows the complete dynamics, including the ionization effects, for the same conditions shown in 
Fig. 4 (right). It is clear that the beam collapse does not occur for this particular input power, although according 
to the spatial width, the beam still presents clear self-focusing dynamics which is not able to achieve the collapse 
due to the appearance of the plasma (see the peak plasma density shown in Fig. 8(d)). As a consequence of the 
arrest of the spatial dynamics, the temporal self-compression slows down, preventing the peak power increase 
obtained in the pure self-focusing case and, as a consequence, showing a narrower spectral broadening. Although 
these new simulations bring more nonlinear terms into play, they mutually counteract, making difficult to iden-
tify them by simply observing the energy or spatial structure of the output pulse.

The best way to realize that this propagation presents strong nonlinear dynamics is through the phase of the 
pulse, that retains most of this information. For example, one could use the d-scan35, which is a technique to 
compress and perform a complete measurement of the pulse, including the phase information. It is well-known 
that the d-scan trace is a perfect tool to optimize a standard HCF post-compression setup7. To achieve the opti-
mum stable and shortest output pulse the d-scan trace must present a long and smooth structure, in many cases 
slightly tilted due to the third order dispersion acquired during the nonlinear propagation. Figure 9 shows the 
d-scan trace of the output field after the propagation (including ionization) inside a 20 cm long and 150 μm core 
radius HCF filled with 1 bar of argon of an input 30-fs pulse at 800 nm with an initial EH11 mode spatial structure. 
The values of the input powers are Pin/ = .P 0 8cr  (left), Pin/ = .P 0 93cr  (middle) and Pin/ = .P 1 1cr  (right). The two 
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Figure 7. We show the collapse distance (left) and the shortest achieved temporal duration (right) of a 30-fs 
pulses with fixed input energy (162 μJ, which corresponds to Pin/ = .P 0 93cr  at 1 bar (blue circles), and 204 μJ, 
which corresponds to Pin/ = .P 1 17cr  at 1 bar (orange diamonds)) at 800 nm propagating in the EH11 mode as a 
function of the pressure in a HCF with 150 μm core radius, filled with argon.
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cases with the higher input powers show spatial collapse, according to the pure self-focusing simulation (without 
ionization), and they also show structured d-scan traces, useless for post-compression applications. Only the 
Pin/ = .P 0 8cr  case, which does not undergo collapse according to the pure self-focusing simulations, shows a nice 
d-scan trace, close to the optimum7. Figure 9 demonstrates that the isolated self-compression study is a solid tool 
to identify the energy limits of the standard HCF self-compression setup, which are those that do not present 
spatial collapse.

Conclusion
We have demonstrated that the confinement of the fundamental spatial mode EH11 in a HCF plays a key role 
in the self-focusing process, minimizing the diffraction and enhancing self-focusing. We have identified two 
different regions related to the self-focusing process in the HCF. For input peak powers slightly greater than Pcr 
the collapse appears at shorter distances than in the free case and independently of the pulse duration. For input 
peak powers below Pcr we have obtained spatial collapses induced mainly by the energy transfer process between 
spatial modes. The interplay between the spatial modes explains the discrete collapse distance regions that we 
have numerically observed. In this low peak power region the spatial collapse is more complex and depends not 
only on the peak power but also on the pulse duration. The spatial collapse dynamics explained here can be used 
to identify the energy limits when up-scaling the standard post-compression schemes based on HCFs.

Methods
To study the collapse process in HCFs we have developed two numerical models based on the standard nonlinear 
envelope propagation equation.

The time-independent model ((1 + 1)D model). The early numerical studies of self-focusing dynam-
ics solved a propagation equation including the diffraction and self-focusing effects, and neglecting any 
time-dependent term24. To study the spatial dynamics of the laser pulse inside the HCF, we have first used a simi-
lar time-independent model ((1 + 1)D model) based on the nonlinear Schrödinger equation (NLSE)36:

∂
∂

= +ˆ ˆE r z
z

L N E r z( , ) ( ) ( , )
(3)

where E(r, z) is the spatial envelope of the laser beam. Assuming cylindrical symmetry, the two terms that govern 
the beam propagation, L̂ and N̂ , are written as follows:

α
=






∂
∂

+
∂
∂

+ −





−L̂ i
k r r r

k n r
2

1 ( ( ) 1)
2 (4)0

2
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Figure 8. Propagation of a 30 fs pulse at 800 nm with = .P P0 93in cr, propagating in a 150 μm core radius HCF 
filled with 1 bar of Ar including ionization. We show the evolution of the percentage mode contribution (M.C.) 
of the first four spatial modes (a), the evolution of the peak power, indicating the Pcr threshold with an 
horizontal dashed line, and the pulse energy (b), the evolution of the on-axis pulse duration (c), the evolution of 
the spatial width and the plasma density (d) and the evolution of the on-axis spectrum (log scale) (e) with the 
propagation distance. A vertical dashed line indicates the collapse distance (72 mm) obtained with the pure self-
focusing model (without ionization).
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=N̂ ik n r n r E r z( ) ( ) ( , ) (5)0 0 2
2

The linear part of the propagation equation, L̂, represents the diffraction and the absorption of the fundamen-
tal mode in the HCF. The nonlinear part, N̂ , represents the self-focusing process induced by the Optical Kerr 
effect37. π=k 20 /λ0, λ0 being 800 nm, and α is the absorption of the fundamental mode EH11

38. In our case we 
simulate a HCF filled with argon at 1 bar, so = .n 1 00030  and = . ⋅ −n 1 74 10 m2

23 2/W in the core39, and = .n 1 450  
and = . ⋅ −n 3 2 10 m2

20 2/W in the fused silica cladding18. For the case of the Yb-based pulses we use a 
= . ⋅ −n 0 93 10 m2

23 2/W29 for the argon in the core. Note that there are different values of the n2 parameter in the 
literature, for instance = . ⋅ −n 0 97 10 m2

23 2/W for λ = 800 nm40, but since we present the results as a function of 
the ratio Pin/Pcr, they do not depend on the particular value of n2.

Equation 3 is solved using a standard split-step method, solving the linear operator with a Crank-Nicolson 
scheme and the nonlinear part is solved as an intensity-dependent phase factor. We use an uniform grid for both 
coordinates, with transversal and longitudinal step sizes Δr = 2 μm and Δz = 5 μm, respectively. These step sizes 
fulfill the stability condition Δz/ Δ <k r( ) 10

2 /4, which is a strong restriction on the propagation step size37.

The time-dependent model ((2 + 1)D). A more complete description of the pulse propagation is simu-
lated with a time-dependent model ((2 + 1)D model) that includes the spatial and temporal dynamics of the pulse 
in the core of the fiber. The propagation equation for the temporal envelope of the pulse, E r z T( , , ), is

∂
∂

= +ˆ ˆE r z T
z

L N E r z T( , , ) ( ) ( , , )
(6)

The equation is solved again with a split-step method, the linear part is solved decomposing the input pulse in 
the EH1m spatial modes of the HCF, and the nonlinear part is solved by means of a fourth-order Runge-Kutta 
algorithm in the time domain (see7 for more details). We use thirty modes for the modal decomposition, which 
are enough to model the beam dynamics (we have checked that the energy transferred to the highest modes is 
almost negligible). The first part of the equation, L̂, represents the linear propagation effects that we solve using 
the complex propagation coefficient of each mode, β ω( )m .

∑ω ω β ω+ Δ = Δ
=

∞
A r z z c z EH r exp i z( , , ) ( , ) ( ) ( ( ) ))

(7)m
m m m

1
1

The nonlinear part, N̂ , includes self-focusing, self-phase modulation and self-steepening.

ω
=






+
∂

∂






N̂E r z T ik n n i
T

E r z T E r z T( , , ) 1 ( ( , , ) ( , , )),
(8)

0 0 2
0

2

where now n0 and n2 represents the linear and nonlinear refractive index of the gas filling the HCF, respectively, 
and ω0 is the central frequency. We use a local time frame, defined as = −T t z/vg, being vg the group velocity of 
the fundamental spatial mode of the HCF (EH11).

To better identify the collapse dynamics, gas ionization inside the HCF, that would inhibit it, has not been 
taken into account, as done in many other self-focusing studies12,24,25. Obviously the self-focusing process will 
eventually activate ionization, changing the spatio-temporal evolution of the beam since then. Such an intense 
nonlinear propagation introduces a very complex spectral phase that makes the output pulse not useful for 
post-compression. In other words, we are interested in the dynamics of the approach to blow up instead of in 
blow up itself25.

Figure 9. D-scan traces of the output field after the propagation (including ionization) inside a 20 cm long and 
150 μm core radius HCF filled with 1 bar of argon of an input 30-fs pulse at 800 nm with an initial EH11 mode 
spatial structure. The values of the input powers are Pin/ = .P 0 8cr  (left), Pin/ = .P 0 93cr  (middle) and Pin/ = .P 1 1cr  
(right).
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The time-dependent model ((2 + 1)D) including ionization. To be able to compare our results with 
experiments we have also used a time-dependent model ((2 + 1)D model) including, in addition to all the terms 
explained in the previous model, the ionization and all the losses related to that process. We have added the fol-
lowing two new terms into the nonlinear part of the propagation equation detailed above:

σω τ
ω

ρ= −





+
∂

∂






−

N̂ E r z T i i
T

r T E r z T( ( , , ))
2

1 [ ( , ) ( , , )],
(9)
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r T E r z T
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2
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2
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(10)

abs
i

at

2

2

0

1

where σ is the cross section for the inverse Bremsstrahlung calculated as41 σ ω τ= k C0 0 / ρ ω τ+n( (1 ))C C0 0
2 2 , π=k 20

/λ0, ω0 is the central frequency, n0 the linear index of refraction of the gas filling the HCF, ρ = . ⋅ −cm7 403 10C
20 3 

is the critical density, τ = 350 fsC  represents the collision time and ρ is the ionized electron density. The ionization 
dynamics are obtained from ρ ρ ρ∂ ∂ = | | −T W E/ ( ) ( )at

2 , where | |W E( )2  are the PPT ionization rates42 and 
ρ = . ⋅ ⋅ −p cm2 7 10at

19 3 (being p the gas pressure in bar) is the atomic density of the medium. In Eq. 10, that 
includes the losses due to the ionization process (first term) and the losses due to the plasma absorption (second 
term), = .U 15 76 eVi  represents the ionization potencial of the gas.

References
 1. Chiao, R. Y., Garmire, E. & Townes, C. Self-trapping of optical beams. Phys. Rev. Lett 13, 479–482, https://doi.org/10.1103/

PhysRevLett.13.479 (1964).
 2. Moll, K. D., Gaeta, A. L. & Fibich, G. Self-similar optical wave collapse: Observation of the townes profile. Phys. Rev. Lett. 90, 203902, 

https://doi.org/10.1103/PhysRevLett.90.203902 (2003).
 3. Ruiz, C. et al. Observation of spontaneous self-channeling of light in air below the collapse threshold. Phys. Rev. Lett. 95, 053905, 

https://doi.org/10.1103/PhysRevLett.95.053905 (2005).
 4. Gobbi, P. & Reali, G. A novel unstable resonator configuration with a self filtering aperture. Optics Communications 52, 195–198, 

https://doi.org/10.1016/0030-4018(84)90357-2 (1984).
 5. Farrow, R. L., Kliner, D. A. V., Hadley, G. R. & Smith, A. V. Peak-power limits on fiber amplifiers imposed by self-focusing. Opt. Lett. 

31, 3423–3425, https://doi.org/10.1364/OL.31.003423 (2006).
 6. Braun, A. et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75, https://doi.org/10.1364/

OL.20.000073 (1995).
 7. Conejero Jarque, E. et al. Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors. Sci. 

Reports 8, 2256, https://doi.org/10.1038/s41598-018-20580-1 (2018).
 8. Lapointe, J. & Kashyap, R. A simple technique to overcome self-focusing, filamentation, supercontinuum generation, aberrations, 

depth dependence and waveguide interface roughness using fs laser processing. Sci. Reports 7, 499, https://doi.org/10.1038/s41598-
017-00589-8 (2017).

 9. Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow core waveguides. Opt. Lett. 23, 762–764, 
https://doi.org/10.1364/OL.25.000335 (2000).

 10. Fibich, G. & Ilan, B. Self-focusing of elliptic beams: an example of the failure of the aberrationless approximation. J. Opt. Soc. Am. B 
17, 1749–1758, https://doi.org/10.1364/JOSAB.17.001749 (2000).

 11. McAllister, G. L., Marburger, J. H. & DeShazer, L. G. Observation of optical pulse shaping by the self-focusing effects. Phys. Rev. Lett. 
21, 1648–1649, https://doi.org/10.1103/PhysRevLett.21.1648 (1968).

 12. Fibich, G. & Papanicolaou, G. C. Self-focusing in the presence of small time dispersion and nonparaxiality. Opt. Lett. 22, 1379–1381, 
https://doi.org/10.1364/OL.22.001379 (1997).

 13. Cheng, Y. et al. Onset of nonlinear self-focusing of femtosecond laser pulses in air: Conventional vs spatiotemporal focusing. Phys. 
Rev. A 92, 023854, https://doi.org/10.1103/PhysRevA.92.023854 (2015).

 14. Fibich, G. et al. Self-focusing distance of very high power laser pulses. Opt. Express 13, 5897–5903, https://doi.org/10.1364/
OPEX.13.005897 (2005).

 15. Chen, X., Polynkin, P. & Kolesik, M. Raman effect in self-focusing of few-cycle laser pulses in air. Opt. Lett. 38, 2017–2019, https://
doi.org/10.1364/OL.38.002017 (2013).

 16. Dawes, E. L. & Marburger, J. H. Computer studies in self-focusing. Phys. Rev. 179, 862–868, https://doi.org/10.1103/PhysRev.179.862 
(1968).

 17. Marburger, J. H. Self-focusing: Theory. Prog. Quant. Electr. 4, 35–110, https://doi.org/10.1016/0079-6727(75)90003-8 (1975).
 18. Boyd, R. Nonlinear optics. Acad. Press (2008).
 19. Chiao, R. Y., Gustafson, T. K. & Kelley, P. L. Self-focusing of optical beams. Series in Self-focusing:Past and Present, Springer, https://

doi.org/10.1007/978-0-387-34727-14 (2009).
 20. Tempea, G. & Brabec, T. Theory of self-focusing in a hollow waveguide. Opt. Lett. 23, 762–764, https://doi.org/10.1364/

OL.23.000762 (1998).
 21. Köttig, F., Tani, F., Travers, J. C. & Russell, P. S. J. Self-focusing below the critical power in gas-filled hollow-core photonic crystal 

fibers. In 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), 
1–1, https://doi.org/10.1109/CLEOE-EQEC.2017.8087497 (2017).

 22. Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Applied Physics 
Letters 68, 2793–2795, https://doi.org/10.1063/1.116609 (1996).

 23. Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett. 43, 337–340, 
https://doi.org/10.1364/OL.43.000337 (2018).

 24. Kelley, P. L. Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008, https://doi.org/10.1103/PhysRevLett.15.1005 (1965).
 25. Hesketh, G. D., Poletti, F. & Horak, P. Spatio-temporal self-focusing in femtosecond pulse transmission through multimode optical 

fibers. Journal of Lightwave Technology 30, 2764–2769, https://doi.org/10.1109/JLT.2012.2206796 (2012).
 26. Travers, J. C., Chang, W., Nold, J., Joly, N. Y. & Russell, P. S. J. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal 

fibers. J. Opt. Soc. Am. B 28, A11–A26, https://doi.org/10.1364/JOSAB.28.000A11 (2011).

https://doi.org/10.1038/s41598-019-45940-3
https://doi.org/10.1103/PhysRevLett.13.479
https://doi.org/10.1103/PhysRevLett.13.479
https://doi.org/10.1103/PhysRevLett.90.203902
https://doi.org/10.1103/PhysRevLett.95.053905
https://doi.org/10.1016/0030-4018(84)90357-2
https://doi.org/10.1364/OL.31.003423
https://doi.org/10.1364/OL.20.000073
https://doi.org/10.1364/OL.20.000073
https://doi.org/10.1038/s41598-018-20580-1
https://doi.org/10.1038/s41598-017-00589-8
https://doi.org/10.1038/s41598-017-00589-8
https://doi.org/10.1364/OL.25.000335
https://doi.org/10.1364/JOSAB.17.001749
https://doi.org/10.1103/PhysRevLett.21.1648
https://doi.org/10.1364/OL.22.001379
https://doi.org/10.1103/PhysRevA.92.023854
https://doi.org/10.1364/OPEX.13.005897
https://doi.org/10.1364/OPEX.13.005897
https://doi.org/10.1364/OL.38.002017
https://doi.org/10.1364/OL.38.002017
https://doi.org/10.1103/PhysRev.179.862
https://doi.org/10.1016/0079-6727(75)90003-8
https://doi.org/10.1007/978-0-387-34727-14
https://doi.org/10.1007/978-0-387-34727-14
https://doi.org/10.1364/OL.23.000762
https://doi.org/10.1364/OL.23.000762
https://doi.org/10.1109/CLEOE-EQEC.2017.8087497
https://doi.org/10.1063/1.116609
https://doi.org/10.1364/OL.43.000337
https://doi.org/10.1103/PhysRevLett.15.1005
https://doi.org/10.1109/JLT.2012.2206796
https://doi.org/10.1364/JOSAB.28.000A11


1 2Scientific RepoRts |          (2019) 9:9546  | https://doi.org/10.1038/s41598-019-45940-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

 27. López-Zubieta, B. A., Conejero Jarque, E., Sola, I. J. & San Roman, J. Spatiotemporal-dressed optical solitons in hollow-core 
capillaries. OSA Continuum 1, 930–938, https://doi.org/10.1364/OSAC.1.000930 (2018).

 28. Lavenu, L. et al. High-energy few-cycle yb-doped fiber amplifier source based on a single nonlinear compression stage. Opt. Express 
25, 7530–7537, https://doi.org/10.1364/OE.25.007530 (2017).

 29. Lavenu, L. et al. Nonlinear pulse compression based on a gas-filled multipass cell. Opt. Lett. 43, 2252–2255, https://doi.org/10.1364/
OL.43.002252 (2018).

 30. Beetar, J. E., Gholam-Mirzaei, S. & Chini, M. Spectral broadening and pulse compression of a 400 μj, 20 w yb:kgw laser using a 
multi-plate medium. Applied Physics Letters 112, 051102, https://doi.org/10.1063/1.5018758 (2018).

 31. Jeong, Y.-G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Reports 8, 11794, 
https://doi.org/10.1038/s41598-018-30198-y (2018).

 32. Beetar, J. E., Rivas, F., Gholam-Mirzaei, S., Liu, Y. & Chini, M. Hollow-core fiber compression of a commercial yb:kgw laser amplifier. 
J. Opt. Soc. Am. B 36, A33–A37, https://doi.org/10.1364/JOSAB.36.000A33 (2019).

 33. Lavenu, L. et al. High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt. Express 27, 1958–1967, https://
doi.org/10.1364/OE.27.001958 (2019).

 34. López-Zubieta, B. A., Conejero Jarque, E., Sola, I. J. & San Roman, J. Theoretical analysis of single-cycle self-compression of near 
infrared pulses using high-spatial modes in capillary fibers. Opt. Express 26, 6345–6350, https://doi.org/10.1364/OE.26.006345 
(2018).

 35. Miranda, M., Fordell, T., Arnold, C., L’Huillier, A. & Crespo, H. Simultaneous compression and characterization of ultrashort laser 
pulses using chirped mirrors and glass wedges. Opt. Express 20, 688–697, https://doi.org/10.1364/OE.20.000688 (2012).

 36. Agrawal, G. P. Nonlinear fiber optics (fifth edition). Acad. Press (2013).
 37. Couairon, A. et al. Practitioner’s guide to laser pulse propagation models and simulation. Eur. Phys. J. Special Topics 199, 5–76, 

https://doi.org/10.1140/epjst/e2011-01503-3 (2011).
 38. Marcatili, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers. 

Bell Labs Technical Journal 43, 1783, https://doi.org/10.1002/j.1538-7305.1964.tb04108.x (1964).
 39. Couairon, A., Chakraborty, H. S. & Gaarde, M. B. From single-cycle self-compressed filaments to isolated attosecond pulses in noble 

gases. Phys. Rev. A 77, 053814, https://doi.org/10.1103/PhysRevA.77.053814 (2008).
 40. Wahlstrand, J. K., C., Y.-H. & Milchberg, H. M. High field optical nonlinearity and the kramers-kronig relations. Phys. Rev. Lett. 109, 

113904, https://doi.org/10.1103/PhysRevLett.109.113904 (2012).
 41. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Physics Reports 441, 47–189, https://doi.

org/10.1016/j.physrep.2006.12.005 (2007).
 42. Perelomov, A., Popov, V. & Terentev, M. Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924 (1966).

Acknowledgements
The authors thank support from Spanish Ministerio de Economía y Competitividad (FIS2016-75652-P) and from 
Junta de Castilla y León (SA287P18). A.C. is funded by the FPI grant program of Spanish Ministerio de Economía 
y Competitividad and European Social Fund (BES-2017-080280).

Author Contributions
A.C. performed the simulations. All authors analyzed the results and reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-45940-3
https://doi.org/10.1364/OSAC.1.000930
https://doi.org/10.1364/OE.25.007530
https://doi.org/10.1364/OL.43.002252
https://doi.org/10.1364/OL.43.002252
https://doi.org/10.1063/1.5018758
https://doi.org/10.1038/s41598-018-30198-y
https://doi.org/10.1364/JOSAB.36.000A33
https://doi.org/10.1364/OE.27.001958
https://doi.org/10.1364/OE.27.001958
https://doi.org/10.1364/OE.26.006345
https://doi.org/10.1364/OE.20.000688
https://doi.org/10.1140/epjst/e2011-01503-3
https://doi.org/10.1002/j.1538-7305.1964.tb04108.x
https://doi.org/10.1103/PhysRevA.77.053814
https://doi.org/10.1103/PhysRevLett.109.113904
https://doi.org/10.1016/j.physrep.2006.12.005
https://doi.org/10.1016/j.physrep.2006.12.005
http://creativecommons.org/licenses/by/4.0/

	Influence of the spatial confinement on the self-focusing of ultrashort pulses in hollow-core fibers
	Results and Discussion
	The time-independent model ((1 + 1)D model). 
	The time-dependent model ((2 + 1)D). 
	Role of the spatial modes in the self-focusing dynamics: a multimode self-compression. 
	Self-focusing dynamics in the low power and high power regimes. 
	Influence of the parameters of the input laser pulse and the filling gas on the self-focusing dynamics. 

	The trace of the self-focusing process in a real experiment: the time-dependent model ((2 + 1)D) including ionization. 

	Conclusion
	Methods
	The time-independent model ((1 + 1)D model). 
	The time-dependent model ((2 + 1)D). 
	The time-dependent model ((2 + 1)D) including ionization. 

	Acknowledgements
	Figure 1 We show the collapse distances of the EH11 mode at 800 nm as a function of the input peak power and of the core radius of the HCF.
	Figure 2 We show the collapse distances of the EH11 mode at 800 nm as a function of the input power and duration of the pulse for a HCF with core radius 150 μm.
	Figure 3 Left column corresponds to the on-axis temporal intensity distribution of different modes and right column corresponds to the on-axis temporal intensity distribution of a 30 fs pulse at 800 nm with , propagating in a 150 μm core radius HCF filled
	Figure 4 Left (right) column corresponds to the propagation of a 30 fs pulse at 800 nm, with 150 μJ input energy and (162 μJ input energy and ), propagating in a 150 μm core radius HCF filled with 1 bar of Ar.
	Figure 5 Left column corresponds to the propagation of a 100 fs pulse at 800 nm with , propagating in a 150 μm core radius HCF filled with 1 bar of Ar.
	Figure 6 We represent the collapse distances of the EH11 mode as a function of the input power for a HCF with core radius 150 μm.
	Figure 7 We show the collapse distance (left) and the shortest achieved temporal duration (right) of a 30-fs pulses with fixed input energy (162 μJ, which corresponds to Pin/ at 1 bar (blue circles), and 204 μJ, which corresponds to Pin/ at 1 bar (orange 
	Figure 8 Propagation of a 30 fs pulse at 800 nm with , propagating in a 150 μm core radius HCF filled with 1 bar of Ar including ionization.
	Figure 9 D-scan traces of the output field after the propagation (including ionization) inside a 20 cm long and 150 μm core radius HCF filled with 1 bar of argon of an input 30-fs pulse at 800 nm with an initial EH11 mode spatial structure.
	Table 1 Group velocity and GVD values for the fundamental and first three excited modes at 800 nm in a HCF with 150 μm core radius and filled with argon at 1 bar.
	Table 2 Group velocity and GVD values for the fundamental and first three excited modes at 1030 nm in a HCF with 150 μm core radius and filled with argon at 1 bar.




