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Chapter 1

Introduction, hypothesis and
objectives

1.1 General introduction

The development of robust omic technologies (genomics, transcriptomics, proteomics,
etc) to generate and understand genome-wide alterations is already having an im-
pact on health care, with a particular relevance on cancer and oncology. Within the
current context of Personalised Medicine, Precision Medicine and Genomic Medicine
(Roden and Tyndale, 2013), modern cancer research has to be done considering an
adecuate use of the large-scale data derived from these new omic technologies. Some
of these technologies, such as transcriptomic expression profiling, have been already
applied to thousands of human samples (see public database GEO (NCBI, 2019)),
and provide information about the expression status of all the known genes in the
analised individuals. In order to be useful and applicable to medical research, such
omic data should be integrated with the corresponding clinical data using adequate
computational and bioinformatic tools and methods. This is a main framework
where the current Doctoral Thesis work is proposed.

Incidence of cancer in Europe

With respect to the study in the area of cancer, the work in this PhD is done with
2 major types of cancer: Breast Cancer (BRCA) and ColoRectal Cancer (CRC).
These cancer types are nowdays the most frequent in Europe, representing together
the largest proportion of all cancers (https://ecis.jrc.ec.europa.eu/). In particular
in Europe in 2018 the most common cancer types, according to the body location,
were cancers of the female breast (523,000 cases), followed by colorectal (500,000),
lung (470,000) and prostate cancer (450,000). The global numbers for Europe in
2018 estimated 3.91 million new cases of cancer and 1.93 million deaths from cancer
(Ferlay et al., 2018). Since the European population is close to 513 millions, having
each year about 4 million new cases and about 2 million deaths, cancer represents
the second most important cause of death and morbidity in Europe.

Considering just the specific numbers for breast cancer and colorectal cancer,
the estimated incidence of these cancers in Europe in 2018 by country is presented

1
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in Figure 1.1, that shows the map of Europe coloured according to the level of such
incidences in each country. It is quite remarkable that breast cancer has a higher
impact in Holland and Belgium, and in some north countries like Sweden, Finland,
Denmark, United Kingdom and Ireland. By contrast, colorectal cancer has a quite
higher impact in some specific countries that are: Norway and Hungary.

EUROPE: Estimated incidence of cancer by country

Breast Cancer (BRCC)
Both sexes, All ages, 2018

90.0 - 112.0

ColoRectal Cancer (CRC)
Both sexes, All ages, 2018

49.0 - 61.7

112.0 - 133.9 61.7 - 74.4
133.9 - 155.9 74.4 - 87.0
1559 - 177.8 87.0 - 99.7
177.8 - 199.8 99.7 - 1124

Age standardised rate per 100.000 Age standardised rate per 100.000

Figure 1.1: FEstimated incidence of breast cancer and colorectal cancer in Europe by
country (source: European Cancer Information System, ecis.jrc.ec.europa.eu).

Cancer a genomic disease driven by mutations

As indicated above, current cancer research is very concern about the value and
power of omic technologies applied to the advance of medical and clinical oncology.
The application of genome-wide omic technologies to the study of cancer over last
20 years has generated a new understanding of this complex disease that can not
longer be called a "genetic disease", since it is more properly a "genomic disease".
In fact, over the past two decades, comprehensive sequencing efforts have revealed
the genomic landscapes of common forms of human cancer (Gerlinger et al., 2012).
These studies have revealed about 140 human genes that, when altered by intragenic
mutations, can promote or “drive” tumourigenesis and cell malignancy. A typical
tumour contains two to ten of these “driver gene” mutations; the remaining muta-
tions are passengers that confer no selective growth advantage. In common solid
tumours (such as those derived from the colon, breast, lung, brain, or pancreas), an
average of 25 to 75 genes display subtle somatic mutations that would be expected
to alter their protein products (Gerlinger et al., 2012).

Figure 1.2 presents schematically the complexity of cancer that can affect to
many different cell types, tissues types and organs in the human body from children
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to adults. This complexity is due not only to all the different types of cancers origi-
nated in different locations of the body, but also due to the large number of somatic
mutations that have been found thanks to the genome-wide scale analyses of all
the human genes in many thousands of samples of tumours (Gerlinger et al., 2012).
The results of these large-scale analyses on tumour mutations have been included
in a reference data portal called COSMIC (the Catalogue Of Somatic Mutations In
Cancer), that is the world’s largest and most comprehensive resource for exploring
the impact of somatic mutations in human cancer, and can be accessed freely at:
cancer.sanger.ac.uk /cosmic.

/

{7 Glioblastoma (14)  jopiastoma (35) _{__,
Medulloblastoma (8) ]

J

“\ %Head and neck cancer (66)
f .
Non-Hodgkin i S

Rhabdoid lymphoma (74) ———:ﬂi&
cancer (4)

LLung cancer (non-small cell)(147
s— Neuroblastoma (12) _[ gEsicer )(147)

Lung cancer (small cell)(163)
Eso hageal adenocarcinoma (57)

Esophageal sguamous
cell carcmoma (79)

Breast cancer (33)

= Hepatocellular
( cancer (39)

Gastrlc cancer (53)

\

o= Cclorectal cancer (66)

\ Pancreatic
\ Acute lymphocytic cancer/(45)
\ leukemia (11)

Ovarian cancer (42)
/

= f

*—Endometrlal cancer (49)

e Pros\:tate cancer (41)

Chronié Iym{:)hocytlc '\\ \
Vi leukemia (12)— | A\

Acute myeloid \ — Melanoma (135)

leukemia (8) \

Figure 1.2: Average number of somatic mutations in a representative collection of human
cancers, detected by genome-wide DNA sequencing studies. The genomes of a diverse group
of adult (right) and pediatric (left) cancers have been analysed. The numbers in parentheses
indicate the median number of non-synonymous mutations per tumour. (source: Vogelstein
et al. 2013 Science, www.sciencemag.org).

Cancer heterogeneity: a challenge for the genomic era

Cancer is a heterogeneous disease with unique genetic and phenotypic features
that differ between individual patients and even among individual tumour regions
(Dagogo-Jack and Shaw, 2018). The observation of individual heterogeneity in can-

3
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cer has been many times described, but a breakthrought was achieved when intra-
tumour heterogeneity and branched evolutionary tumour growth was proven using
the omic technology of whole-exome multiregion spatial DNA sequencing (Gerlinger
et al., 2012). This "intratumour heterogeneity" added a new level of complexity to
the study of cancer, which already had a complex nature due to the many possi-
ble tissue origins of the tumours (Figure 1.2). Moreover, cancer is a very dynamic
disease where tumour cells proliferate and evolve over time even within the same
location; so "temporal heterogeneity" should be added to "spatial heterogeneity"
(Dagogo-Jack and Shaw, 2018).

a Spatial heterogeneity b Temporal heterogeneity

First-line —— Second-line —— Third-line

Figure 1.3: Spatial heterogeneity (a): uneven distribution of cancer subclones across
different regions of the primary tumour or the metastatic sites. Temporal heterogeneity
(b): variations in the molecular makeup of a single lesion over time, either as a result
of natural progression of the tumour or as a result of exposure to selective pressures cre-
ated by clinical interventions. (source: Dagogo-Jack et al. 2018 Nat Rev Clin Oncol,
www.nature.com/nrclinonc).

Combination of omic data plus survival data, key way for beating cancer

All the levels of tumour complexity and heterogeneity described above make it very
difficult to identify stable biomarkers for the different types and subtypes of cancer.
It is clear that some genes (such as the top-10 genes detected as the most mutated in
COSMIC, which are: BRAF, JAK2, KRAS, TP53, EGRF, FLT3, PIK3CA, TERT,
IDH1 and KIT) are well known cancer genes, drivers of many specific tumours (Tate
et al., 2019). However, COSMIC database and the Cancer Genome Atlas (TCGA)
project revealed that about 40% of the studied tumours do not have any mutation
in any of the 576 humas genes included in the current Cancer Gene Census (Sondka
et al., 2018).

Our work in this Doctoral Thesis started addressing this research problem by
using the power of new omic technologies (mainly transcriptomic profiling of tumour

4
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samples from cancer patients), combined with useful medical data about those pa-
tients (i.e. accessible medical data that can provide information about the actual
clinical status and the evolution of patients). The most useful clinical information
directly related to patient prognosis and disease outcome is the "survival" infor-
mation (either the disease-free survival, DFS; the relapse-free survival, RFS, or the
overall survival, OS). In this way, the combination of large-scale gene expression
data from tumour samples with survival data from the same patients can be a very
powerful strategy to improve the indentification and discovery of new biomarkers
for specific cancer subtypes. This is the main approach explored and investigated in
the present work. This approach could only be adequately addressed using powerful
computational and bioinformatic tools and methods.

Oncogenic driver pathways: a change of paradigm

Biomedical cancer research and clinical oncology have been working so far on the
assumption that the biological nature of the different types and subtypes of cancer
are primarily defined by the tissue and organ origin of the tumours. This approach
have provided the main cancer classification: breast cancer, colorectal cancer, lung
cancer, liver cancer, etc.

MESO (n=82) LUSC (n=464)

Normal (n=36) LUAD (n=502)

Her2-enriched (n=78) THCA (n=480)
BRCA |Basal (n=171) \ PCPG (n=161)
LumB (n=197) ACC (n=76)
HPV- (n=415)
LumA (n=499) j HNSC

HPV+ (n=72)
UVM (n=80)
IDHmut-non-codel (n=248)

POLE (n=10)
GS (n=58)
CRC|MSI (n=63)

LGG

CIN (n=328) IDHmut-codel (n=167)
Eg\bl%n(ggg)) IDHwt (n=92)
STES| GS (n=51) Hem L GBM (n=126)
MSI (n=75) . em./Lymph,. _
ESCC (n=90) o tumors |_T :ng:gg)
CIN (n=297) DLBC (n=37)
LMS (n=83
CHOL (n=36) MFS/UPS (n=80)
DBLPS (n-d6) |SARC
LIHC (n=348) Other (n=20)
SKCM (n=363)
PAAD (n=152) UCS (n=56)
_ CN HIGH (n=163)
BLCA (n=399) CN LOW (n=147) |UCEC

KIGH (n=65) MSI (n=148)
KIRC (n=352) squaggugng;rgzz)ma ;2;59(;_49)
KIRP (n=271) Adenocarcinoma (n=43) |CESC

PRAD (n=479) Non-seminoma (n=82) |TGCT
)

Seminoma (n=62

Figure 1.4: Distribution of cancer types in The Cancer Genome Atlas cohort, including
molecular subtypes analysed. TCGA pancancer atlas contains 9,125 tumour samples.
(source: Sanchez-Vega et al. 2018 Cell, www.cell.com).

However, the results of the worldwide effort done by the application of genome-
wide omic technologies to the study of many types and subtypes of cancer (for exam-
ple in The Cancer Genome Atlas, TCGA, project) (Figure 1.4) are providing a new
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deeper molecular understanding of the cancer biology, suggesting that the nature
of tumours is best explained when they are associated with specific molecular gene
signatures and to specific biological pathways, instead of the classical association
with the "cell-of-origin" (Hoadley et al., 2018).

o Q&
| Alteration frequencies s & &
77 1786 57 | 48 | 18 | 8 6 [ 10 [ 2 119 037 43
| | 82 64 47 29 | 271 5 1 5 68 025 43
e 9 | 45 22 5 26 | 66 3 W99 50 34 021 08
19 28 15 |92 24 8 10 |92 | 21 1 60 017 08
| Eye] UM 6 6 4 2 0 1 | 2 | 10 1 65 028 04
26 | 32 60 11 | 25 | 8 | 4 8 | 11 | 1 83 032 33
45 86 39 | 82 36 16 | 20 | 42 13 | 13 108 043 46
84 4 4 1 4 13 | 2 1 2 16 003 04
22 0 | 16 | 28 | 11 | 41 | 7 5 1 146 078 1.8
32 15 6 6 | 11 10 | 1 4 1 81 033 03
14 9 4 7 5 7 1 7 3 2 26 009 06
R 74 56 3 61 21 19 23 | 23 | 10 | 15 118 048 82
» 9 | 54 13 | 21| 9 | 6 7 | 40 | 2 98 041 08
7] 54 | 79 6 6 31 18 | 12 | 28 11 | 25 158 061 7.7
S~ BRCA LumA[ 2 162 25 | 14 15 | 12 | 5 | 4 1 101 034 20
Breast BRCA LumB| 44 | 48 | 4 49 | 25 | 31 | 26 | 15 | 10 | 2 211 060 2.0
| BRCA Her2-enriched 40 60 78 18 17 29 | 10 8 1 230 053 4.3
BRCA Basal|_46 | 51 | 53 h 38 11 | 39 | 14 | 8 | 4 246 067 2.7
BRCA Normal|_ 36 6 33 31 3 6 | 19 3 53 016 1.5
50 | 89 53 |96 38 13 | 22 | 21 | 13 | 23 189 059 3.1
63 74 33 | 76 21 26 21 | 16 | 23 2 222 058 34
| 50 (100 80 | 13 |8 67 7 10 | 17 52 022 4.1
3 39 24 | 3 20 12 | 4 | 20 | 2 66 0.10 2.1
' 7 64 64 49 | 79 70 19 | 54 | 57 2 85 019 37.1
Z 9 74 6 49 | 74 5 52 | 64 55 1 45 009 56.9
88 45 5 9 | 29 | 90 | 21 | 10 | 38 | 5 55 023 29
66 36 32 [ 8 23 | 91 17 8 | 22 | 1 15 054 2.9
LIHC| 22 25 | 37 | 26 | 43 | 19 | 12 | 7 7 121 045 29
Developmentall CHOL[ 86 53 17 9 8 7 [ 19 | 17 | 3 6 100 0.58 1.8
Gl Tract PAAD 19 69W 14 12 | 14 | 7 |4 62 026 35
4 4 17 6 8 7 5 5 3 3 49 025 16
7 2 8 4 12 9 6 | 11 1 49 035 22
5 3 15 32 3 3 2 3 5 77 080 0.9
64 | 81 46 62 42 20 18 | 26 | 9 150 050 6.8
15 8 | 32 | 21 | 13 | 35 | 11 | 5 6 1 92 016 1.3
63 8 11 6 6 2 70 054 0.4
20 7 5 5 | 16 2 10 | 2 99 067 04
58 48 49 | 96 | 28 10 | 40 21 | 5 5 316 079 24
| ma 61 43 8 | 9 32 18 31 13 5 5 206 067 1.9
37 9 | 95 10 14 54 | 10 7 1 5 42 015 21
J 71 | 31 | 98 42 | 64 | 70 30 | 55 | 31 | 19 30 008 712
| /] 61 70 79 91 54 18 | 27 | 16 | 4 | 4 247 071 35
63 21 56 19 | 30 14 | 16 | 14 | 21 | 5 95 036 36
I L 32 19 59 12 35 12 | 5 | 33 | 11 | 10 101 044 52
9 77 33 28 27 23 10 | 25 7 1 131 053 22.1
SARC DDLPS| 43 20 17 15 | 7 9 7 450 036 1.1
| SARCLMS| 31 | 65 | 33 gl 14 | 11 | 4 | 4 1 4 177 069 1.8
Soft Tissue SARC MFS/UPS| 48 | 74 32 | 68 | 34 20 8 | 21 | 6 | 4 328 066 3.0
I SARC other| 25 | 30 | 15 | 5 5 5 10 104 033 1.2
24 76 8 19 7001700 14 | 35 | 14 90 029 35
N I 49 | 17 3 | 9 | 18 11| 2 3 1 1 28 005 1.1

EEIEsIsINT29 281 15 | 11 [ 10 | 7 1

9 o X il P o Q &

g S & ¢ Ity s $ $:§ s &

>
& &

Figure 1.5: Fraction of altered samples of the TCGA cohort per pathway and tumour
subtype. Pathways are ordered by decreasing median frequency of alterations. Increasing
colour intensities reflect higher percentages. Average mutation count, as well as number
of unbalanced segments and fraction genome altered (two measures of the degree of copy-
number alterations) per cancer subtype are also provided. (source: Sanchez-Vega et al.
2018 Cell, www.cell.com).

Using somatic mutations, copy-number alterations, mRNA expression changes
and DNA methylation modifications detected in 9,125 tumours (profiled by TCGA),
Nik Schultz, Chris Sander and collaborators (Sanchez-Vega et al., 2018) analysed the
mechanisms and patterns of somatic alterations, identifying ten canonical pathways
as the ones that hold the major part those alterations: (1) cell cycle, (2) Hippo
signaling, (3) MYC signaling, (4) NOTCH signaling, (5) oxidative stress respon-
se/NRF2, (6) PI-3-Kinase signaling, (7) receptor-tyrosine kinase (RTK)/RAS/MAP-
Kinase signaling, (8) TGF-/ signaling, (9) TP53 and (10) beta-catenin/WNT sig-
naling. These ten pathways contain the biological processes that can explain most
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of the malignant alterations observed in the cancer cells (Figure 1.5).

This paradigm sift in cancer has strong support by the demonstration that ge-
netic alterations in signaling pathways that control cell-cycle progression, apoptosis
and cell growth are common hallmarks of cancer. The extent, mechanisms, and co-
occurrence of these alterations in these pathways differ between individual tumours
and tumour types, but are the common molecular features that allow nowadays the
identification of similar cancer types independent of the tissue or organ of origin. In
this way, comprehensive, integrated molecular analysis of tumour samples can iden-
tify molecular relationships across a large diverse set of human cancers, suggesting
future directions for exploring clinical actionability in cancer treatment independent
of the "cell-of-origin" of the tumours (Sanchez-Vega et al., 2018).

Finding new biomarkers: robust data analysis in the era of big data

The amount of omic data generated over recent years in the study of cancer, using
patient-derived samples, is huge. This is not only due to the large-scale international
projects, like TCGA and the International Cancer Genome Consortium (ICGC); but
also due to several efforts initiated by different leading countries around the world
during the last decade (Hudson et al., 2010). Figure 1.6 presents the numbers about
the amount of data included in TCGA project.

THE CANCER GENOME ATLAS (TCGA) BY THE NUMBERS

TCGA produced over TCGA data describes ...including

PETABYTES DIFFERENT RARE

of data TUMOR TYPES CANCERS
...based on paired tumor and normal tissue sets

To put this into perspective, 1 petabyte of data collected from

is equal to M 1 1 000

21 2 ,000 PATIENTS

g DVDs ...using

) ; DIFFERENT
DATA TYPES

Figure 1.6: Information about the amount of data included in TCGA. (source: Hutter
and Zenklusen 2018 Cell, www.cell.com).

TCGA began in 2006 as a pilot project focused on 3 cancer types (lung, ovarian,
and glioblastoma), but due to the success of the initial efforts, it was reauthorised for
a full production phase in 2009. In the following decade, TCGA collected more than
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11,000 cases across 33 tumour types and generated a vast, comprehensive dataset
describing the molecular changes that occur in cancer (Figure 1.6).

In this scenario, a key challenge for modern cancer research and clinical oncology
is to use and apply smart robust bioinformatic methods to analyze the "big data"
produced, in order to find new biomarkers for many tumours that are not yet well
characterised and, in this way, create a lasting value beyond mere data.

The development and application of computaional and bioinformatic methods
applied to genomic and clinical data derived from samples of cancer patients is a
key strategy to find new "actionable molecular biomarkers". This approach is
the main one proposed and followed in this work, that has a clear "patient-centric"
scope and it is applied to the two most frequent malignant pathologies: breast cancer
and colorectal cancer (Figure 1.1). The type of clinical data that can be better
correlated with the prognosis of the disease and the outcome of the patients are the
survival data. When we say "survival", we refer not only to the time to the death of
the patients, but to the time that measures different critical clinical events, such as:
the response to treatment, the relapse in the disease, the appearence of resistance
to the drugs or the appearance of metastasis. The combination of the survival data
with omic data is not trivial, because often there are not enough samples to achieve
a solid inference of the biomolecular features (i.e. genes, gene alterations, proteins,
etc) that mark a better or worse survival. Also because the scale of omic data
(which provides information on thousands of putative markers) requires the use of
multivariate statistical analysis and robust cross-validation strategies.
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1.2 Hypothesis

The work presented in this PhD is centered in the field of Bioinformatics and
Computational Biology applied to Cancer Research, with a particular focus on
the analysis and integration of omic data and clinical data to improve the discovery
and identification of new molecular biomarkers related to the prognosis of the cancer
patients.

In particular, our main hypothesis to start and develop our research was the fol-
lowing: "We consider that a thorough and detailed analysis of the survival
data of cancer patients combined with the transcriptomic data derived
from the tumour biopses of such patients should be a very powerful and
meaningful way to discover new genetic biomarkers directly related to
the nature and prognosis of each patient’s specific cancer".

To prove and develop this hypothesis, we worked in this PhD with samples
from two major types of cancer: Breast Cancer (BRCA, i.e. invasive breast
carcinoma) and ColoRectal Cancer (CRC). These cancer types are nowdays the
most frequent in Europe (https://ecis.jrc.ec.europa.eu/), representing together the
largest proportion of all cancers.

A first critical challange to carry out this work was to collect and integrate
into uniform data sets a large number of cancer samples (i.e., more than a
thousand) that included genome-wide expression and survival data. We say
this because, most of the survival analyses that we found in the literature were
restricted to smaller data sets (that is, to hundreds of samples, or even less). Many
researchers in the field do not realize that the statistical power and significance of all
the survival algorithms and methods depend, critically, on the number of samples
studied together.

A final point with respect to the hypotesis, is that we did not propose just the
application of standard computational methods for survival analysis, but we wanted
to develop and apply new bioinformatic algorithms to do so. In particular, in order to
improve the way survival data can be integrated with genome-wide tested expression
data to discover new gene survival markers.
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1.3 Objectives

Once we have described the main hypothesis of our Doctoral Thesis, we must present
the objectives that describe in a more tangible way the particular work carried out
and the specific challenges we faced during the four years of our doctorate. The
objectives are divided into two main groups: (i) the first two objectives (1st and
2nd) correspond to work done with Breast Cancer data; and (ii) the second group
of objectives (3rd and 4th) correspond to work done with ColoRectal Cancer
data. These four objectives are presented in this disertation as four separated
chapters following this one.

The OBJECTIVES:

Objective 1.- Generation of a large homogeneous data set of Breast Cancer
(BRCA) samples that include genome-wide expression data and patient survival
data; and discovery of BRCA survival markers associated with the three currently
standard clinical markers (ER, PR and HER2) through the development and appli-
cation of robust algorithms for survival analysis based on transcriptomic profiling.

Objective 2.- Unravel and discovery of positive gene markers and regulators of
Triple Negative Breast Cancer (TNBC) using transcriptomic and gene regulatory
profiling combined with survival analysis. Study done by comparison and contrast
of TNBC with the most frequent subtype of breast cancer, that is luminal BRCA.

Objective 3.- Generation of a large homogeneous data set of ColoRectal Cancer
(CRC) samples that include genome-wide expression data and patient survival data,;
and discovery of new CRC survival marker genes derived from a robust integration
and meta-analysis of multiple transcriptomic data sets.

Objective 4.- Integrative analyses of the transcriptomic profiles of multiple
Colorectal Cancer (CRC) samples in order to identify and characterize the four
Consensus Molecular Subtypes (CMS1, 2, 3, 4); integration of this transcriptomic
data with the survival data of patients; and relative characterisation of an EMT
gene signature associated to P21 knockout (i.e. CDKN1A KO gene) obatined in a
human cell-line.

11
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Discovery of Breast Cancer (BRCA)

survival markers associated to
standard clinical markers and robust
algorithms for survival analysis based
on transcriptomic profiling

2.1 Motivation

Breast cancer treatment is determined by a standard categorisation of tumours in
four groups. The classification is carried out considering mainly, three clinical mark-
ers: ER (ESR1), PR (PGR), and, HER2 (Saini et al., 2011) (ERBB2 or NEU) ob-
tained by inmunohistochemistry (IHC). The markers define the subclases; Luminal
A, Luminal B, HER2 enriched, and triple negative (TNBC). Some complementary
markers such as AURKA or MKI67 are recently being considered to improve the
risk prediction.

However, errors in the estimation of standard clinical markers are more exten-
sive than expected (Li et al., 2010). This error may lead to the wrong treatment
of the patient. Besides, the groups obtained by only three markers are frequently
too heterogeneous (Venet et al., 2011) (Bartlett et al., 2016) (Mertins et al., 2016).
The identification of genes related to the clinical markers may help to improve the
stratification and treatment of patients providing new terapeutic targets.

Several comercial platforms that consider a multivariate gene signature have been
developed. However, the overlaping among the gene signatures and the risk groups
is low (Venet et al., 2011) (Bartlett et al., 2016) (Mertins et al., 2016). The platform
works as a black box and the decisions can not be interpreted in terms of standard
clinical markers. This prevents the application in clinical practice. Investigations
focusing on the influence of feature selection method on performance and stability
of the signature are lacking (Haury et al., 2011).

13
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Moreover, a large number of prognostic gene signatures have been proposed in
the literature. The consensus among them is quite small and frequently they are
sample dependent (Mertins et al., 2016). That is, the algorithm retrieves a different
subset of genes regarding the dataset considered. Some authors such as (Ein-Dor
et al., 2005) have studied several gene signatures, and they have concluded that the
stability, reproducibility and robustness remains a challenging problem. To over-
come this, a validation in an independent RNAseq series is another objective.

In this chapter a robust multivariate gene signature is obtained that is inter-
pretable in terms of the clinical markers. This gene signature provides alternative
targets to develop new treatments. Besides, it will allow to estimate the status of
clinical markers with smaller error and to improve the stratification of patients ac-
cording to their risk.

To achive this goal, a dataset with large number of samples is built by integra-
tion of different studies. Robust algorithms are developed in order to identify stable
markers for the whole population.

Several new robust strategies have been developed in order to improve four main
steps: normalisation, differential expression, feature selection, and univariate or
multivariate prediction models.

2.2 Material and Methods

In this section, we introduce several robust algorithms to identify survival gene
markers related to the standard clinical markers in breast cancer. Several methods
to improve the risk prediction and the patient stratification are presented. To en-
sure the generability and robustness of the biological findings, a standard method
was modified to integrate an extensive collection of samples coming from different
studies.

2.2.1 Datasets description

Breast cancer survival datasets

The first two datasets are based on microarray technology. We have considered
microarrays because it is a widely studied technology and there are a large num-
ber of datasets available that can be integrated. This chapter is devoted to the
discovery of prognostic genes associated to standard clinical markers. Therefore, all
the series considered, should contain the following meta-data: (i) Survival time. (ii)
Status (if the data is censored or not at the end of patient’s follow up). (iii)IHC
measurement if possible, for the primary markers of BRCA: ER, PR, and HER2.

These series were obtained mainly from the Gene Expression Omnibus (GEO)
(NCBI, 2019), using the GEO search tools such as the get GEO function from GEO-
query package (Davis and Meltzer, 2007) function for R.
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All the studies integrated in each dataset should comply with the following cri-
teria: (i) GeneChip: Affymetrix Human Genome U133a and hgul33plus2, Plus 2.0
Array annotation data. (ii) Both platforms (plus2 and 133a) may be used to carry
out independent studies.

The series selected and filtered from publicly available databases are defined in
the following table, Tab: 2.1.

GEO ID Orig Final Surv Type PMID Year Journal Description
N N

GSE6532 87 87  RFS, DMFS 17401012 2007 J Clin Oncol Molecular subtypes in estrogen recep-
tor positive breast carcinomas.

GSE12276 204 204 MFS 19421193 2009 Nature Genes that mediate breast cancer
metastasis to the brain

GSE19615 115 115 RFS, MFS 20098429 2010 Nat Med Chemotherapy resistance and recur-
rence of BRCA.

GSE17907 55 39  MFS 20932292 2010 BMC Cancer Genome profiling of ERBB2-amplified
breast cancers

GSE20685 327 327 OS, MFS 21501481 2011 BMC Cancer BRCA molecular subtypes and clinical
outcomes: treatment optimisation.

GSE21653 266 252  DFS 20490655 2011 BRCA Res Treat A gene expression signature identi-
fies two prognostic subgroups of basal
BRCA

TOTAL 1054 1024

Table 2.1: Compilation of BRCA microarray series, sources, number of samples and,
description.

We have a total of 1024 samples from Plus2, a subset of 380 with THC values
for ER, PR, and HER2. For the other 644 samples, the THC values are missing or
incomplete, but all have survival time and status value.

The RNAseq dataset here is in whole or part based upon data generated by
the TCGA Research Network (TCGA, 2019).

This dataset and phenodata are provided to the user by RCurl (Lang and
the CRAN team, 2019), curatedTCGAData (Ramos, 2019), and TCGAutils
(Ramos et al., 2019) R packages. The packages allow us to access the raw counts,
the FPKM or RPKM matrix and all the clinical information available. RPKM
(Reads Per Kilobase Million) and FPKM (Fragments Per Kilobase Million) are very
similar, but there are differences. RPKM was made for single-end RNA-seq, every
read corresponded to a single sequenced fragment. FPKM was made for paired-end
RNA-seq, two reads can correspond to a single fragment, or one if one of the reads
fail at mapping. So the main difference is that FPKM takes into account that two
reads may map the same fragment. We chose the one recommended by TCGA (in
each series).

Only the samples that contain the following meta-data are considered: (i) Sur-
vival time. (ii) Status (if the data is censored or not at the end of patient’s follow

up). (iii) IHC measurement in as many patients as possible for the main markers of
BRCA: ER, PR, and HER2.

Once this compilation of 879 samples was done, the normalisation process started.
This is explained in the next section.
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Ensembl (Flicek et al., 2014) have developed tools and data resources to facilitate
genomic analysis in chordate species with an emphasis on human. The Ensembl
identifiers are choosen to be used in our studies. Among the high amount of ways
to identify a gen (which is a big problem per se) Ensembl identifiers were selected,
which are the less ambiguous.

2.2.2 Normalisation methods

The integration of heterogeneous series obtained under different protocols, condi-
tions, and laboratories provides a gene expression signal not directly comparable
for different studies. In this section, a normalisation method is applied in order to
obtain a signal that is comparable for samples from different studies.

Normalisation methods for microarray gene expression data

First, the "cel" datasets downloaded from GEO are loaded in R, using the tools
provided in their web and GEQO’s Bioconductor packages in this case, the Read Affy
function from affy package (Gautier et al., 2004).

The first issue addressed is the bath problem which arises when samples come
from different series. Then, gene signals for different samples are considered similar
just because they belong to the same study /batch.

Several algorithms have been proposed in the literature to remove the batch
effect. In particular, RMA + COMBAT (from inSilicoMerging R package)
(Kupfer et al., 2012) has been widely applied with encouraging results. However,
for our problem, a personalised batch effect correction is needed. The fact that the
sample sizes differ between series, the conditions of the experiments, and the year
of the study could lead to a stronger batch effect.

In (McCall et al., 2010a) the fRMA algorithm developed by Irizarry and his
group from Johns Hopkins University is introduced. This algorithm outperforms
other approaches but should be adapted for our problem. We focused on the array
quality metrics, and in the creation of our own vector of weights to be used by
fRMA. To normalise our data, the vector will give different weights to modify the
expression values for each dataset in order to make different datasets comparable.
Irizarry’s team provide some example vectors, generated through compilation of a
high amount of data. These vectors can be used to normalise the datasets if they
meet certain requeriments. However, our dataset does not comply with the previous
requeriment.

Since the function of the normalisation vector is to provide a metric for stan-
darisation of the batches, a factor will be computed for each batch. This factor,
will be taken into account when performing the normalisation process, multiplying
the expression value in each sample by the factor. The gene signal obtained is then
comparable for the different studies integrated.
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We designed diferent approaches, changing the number of subsets for each series,
and the number of samples included in the subset provided to generate the fRMA
vector. The aim is to make the series comparables and to avoid overfitted expression
distributions which may destroy the signal in our data. We made several tests and
then selected a randomised sample size of 5 for each mini-subset in order to create
the vector. The number of mini-subsets done for each series varied depending on
the number of samples as explained in the Tab: 2.2. The resulting vector will allow
not only to normalise data but also to add individual samples later.

Series Samples Number of batches
AffyBatchEsetGSE6532 87 1
AffyBatchEsetGSE6532 204
AffyBatchEsetGSE19615 115
AffyBatchEsetGSE19615 39
AffyBatchEsetGSE20685 327
AffyBatchEsetGSE21653 252

W W~ =N

Table 2.2: The fRMA batches size and samples, 5 for each new batch.

Another algorithm that has been sucessfully applied to avoid the batch effect is
ComBat. This algorithm considers an Empirical Bayes method to adjust for poten-
tial batch effects. Empirical Bayesian ComBat is an approach that assumes that the
batch effect may affect many genes in similar ways, and thus the algorithm adjusts
for these batch biases which are standard across genes.

ComBat differs from previous methods in its ability to adjust data whose batch
sizes are small. There are two estimation methods, a parametric one which com-
putes prior probability distributions and a non-parametric one which makes no prior
assumptions. The second one is more dependent on computing time.

ComBat should be used in data that has been already preprocessed and nor-
malised gene by gene such that they have similar mean and variance. It also includes
covariates in analysis when possible. The proportion of treatment/control samples
also may derivate in the removal of the biological signal.

Quality control metrics

Normalised Unscaled Standard Errors (NUSE) can be used for assessing the quality
of the gene signal. The gNUSE function estimates the standard error for each gene
in each array using RLE (Relative Log Expression). RLE method does a log scale
estimates of expression égi for each gene g on each array i, then computes median
across arrays for each gene m, and defines the relative expression as M,; = 9gz- — my.

To account for the fact that variability differs between genes, it standarises these
estimated values so that the median of standard errors is 1 for each gene. In the
example in Fig: 2.1 the sample to filter is displayed:
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RLE

Figure 2.1: RLE plot from NUSE example. (source: bioinformatics.knowledgeblog.org)
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Figure 2.2: NUSE plot from NUSE example. (source: bioinformatics.knowledgeblog.org)
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The function represents each sample with a boxplot. The boxplots that differ
from the usual distribution represent samples that may be discarded. In this ex-
ample, only one is removed because the average variation of genes in that sample
is higher than in the rest. Conversely, if the interquantile range for a boxplot is
significantly larger than for the rest, the corresponding array is removed.

The R function gNUSE (McCall et al., 2011), was used to check the quality of
the arrays.

RN Aseq expression data normalisation

In RNAseq data, another approach is needed; the use of FPKMs or RPKMs has
been widely discussed (Conesa et al., 2016). In our case, the dataset in colon and

breast cancer was created following the guidelines provided by limma users guide
(Ritchie et al., 2015).

The protocol used was downloaded from TCGA (TCGA, 2019) using the tools
provided by the curatedTCGAData and TCGAutils R packages as previously
explained.

The phenoData matrix is obtained from a mix of sources in order to keep the
maximum amount of information.

Provided the count matrix previously downloaded, the edgeR (McCarthy et al.,
2012) package was used to remove rows that consistently have zero or very low
counts. Using the filterByExpr function, we determine which genes have suffi-
ciently large counts to be retained in a statistical analysis thus filtering the zero
values in the rows (genes) and the ones that are below a computed minimum. The
function keeps rows that have worthwhile counts in a minimum number of samples
(two samples in this case because the smallest group size is two).

The filtering is performed disregarding the group, each sample belong to such
that no bias is introduced.

Scale normalisation has been widely applied in RNA-seq read counts, and the
TMM normalisation method (Robinson and Oshlack, 2010) has been found to
perform well in comparative studies.

TMM method filters the genes by computing the trimmed mean using M-values(a
weighted trimmed mean of the log expression ratios). This strategy makes the over-
all expression levels of genes comparable under the assumption that most of them
are not differentially expressed.

TMM is the recommended scaling method for most RNA-Seq data when a lot
of not differentially expressed pairs of samples is expected (which is very usual in
RNAseq datasets). In RNAseq datasets, there are usually some genes that have
both, a low expression count and a low standard deviation. These genes usually
have not enough counts to be said that they are expressed.

19



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

2.2.3 Algorithms for status prediction and discovery of THC
markers

As explained earlier, errors in the determination of standard markers by inmunohis-
tochemistry may have a substantial impact on patient health (Venet et al., 2011).
In particular, the value of these markers allow us to classify breast cancer patients
into four groups.

To avoid this problem, a robust predictor was depeloped to reduce the errors
in the determination of IHC markers. Although several predictors have been ap-
plied to the estimation of THC markers using the gene expresion profiles (Bartlett
et al., 2016), they are not able to reduce the errors significantly in a consistent way
(Mertins et al., 2016).

Our approach is based on the idea that clinical markers are determined by a
set of pathways and coregulated genes. Therefore, a small subset of features that
are strongly associated to clinical markers is selected, removing noisy genes. This
subset of genes may provide alternative targets to standard clinical markers. Next,
an ensemble of linear classifiers is built using a bagging strategy (Mbogning and
Broet, 2016).

META-DATASET

T

SAM FILTER
. 2 R I S
i HC ) [ IHC 1 [ IHC )
ER HER2
FEATURE FEATURE FEATURE
| SELECTION | | SELECTION | | SELECTION |
ER HER2
RISK RISK RISK
PREDICTOR PREDICTOR PREDICTOR
( ]l L[ 1l L ]
LIST OF LIST OF LIST OF
ER HER2
SURVIVAL SURVIVAL SURVIVAL
MARKERS MARKERS MARKERS

Figure 2.3: Discovery of IHC marker genes, feature prediction algorithm.

The figure (Fig: 2.3) describes our approach. First, a robust SAM algorithm
is applied to remove noisy features. Next, for each marker, ER, PR, and HER2,
a robust ensemble of classifiers is trained to obtain a related list of genes and to
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improve the prediction of standard clinical markers.

Noise reduction by robust differential expression

Significance Analysis of Microarrays (SAM) (Tusher et al., 2001) from siggenes
(Schwender, 2012) package is used in order to pre-filter genes; the whole procedure
is bootstrapped (Efron and Tibshirani, 1993) with replacement.

SAM is a robust algorithm that determines if the difference between the gene
expression means for two groups of samples is statistically significant. The algo-
rithm is non-parametric and computes the null hypothesis by permutation of the
sample labels. It has two relevant parameters; The first one, A, is a threshold that
determines when the alternative hypothesis of being the difference statistically sig-
nificant is true. This threshold is set up by trial and error, larger values of A reduce
the FDR (False Discovery Rate). The second one is the FDR that determines the
rate of false positives for those genes considered differentially expressed by the test
(FDR = LF).

To improve the stability and robustness of this feature selection step, the SAM
algorithm is bootstrapped (Efron and Tibshirani, 1993). Bootstrap resamples it-
eratively the original set of patients with replacement. Thus, for each iteration a
different random sample of patients is considered. Then, the SAM algorithm is run
and the list of genes is recorded. The resulting ensemble of lists is combined using
as metric the number of resamples in which each gene is considered significant. The
final list of genes will be stable and independent of the particular sample considered.

BOOTSTRAP
SAMPLES

— l
C O
= OS=E

SAM FILTER SAMFILTER SAMFILTER
000
( I |
DIFF DIFF DIFF
‘ EXPRESSED ‘ EXPRESSED ‘ EXPRESSED
LIST LIST LIST

MERGED DIFF
EXPRESSED
LIST

Figure 2.4: Robust differential expression SAM filter. Workflow of the algorithm.
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This is the workflow of the previously described function, which will be included
in the R package (R code is described in Appendix: 6.2).

For each list, the optimal A threshold was calculated by repeating the process
using different FDR values and selecting the one that minimises the p-value. The
final list included only the genes that are present in at least 10% of the iterations.
This step improves the stability and reproducibility of the candidate genes and will
remove noise.

THC status prediction and discovery of class marker genes

Errors in the determination of IHC clinical or phenotypical status are high (Venet
et al., 2011) (Bartlett et al., 2016) (Mertins et al., 2016). The gene expression of
the corresponding markers can be considered to predict the THC status. However,
the concordance between IHC status and gene expression is low because, in THC
techniques, a doctor considers heuristic knowledge not available in microarray data.
Some authors have proposed algorithms to determine the IHC status by a subset of

genes instead of using a single one. In particular, Prosigna is frequently considered
in Breast Cancer (NANOSTRING, 2019) (Jensen et al., 2018).
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( ]
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IHC
ASSOCIATED
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Figure 2.5: THC prediction filter. Workflow of the algorithm.
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However, the identification of subsets of genes related to IHC status suffers from
a severe inestability and reproducibility problem (Mertins et al., 2016). In this
section, a robust and stable feature selection algorithm is described. The resulting
list of genes is considered to implement a predictor of THC status, reducing the errors
of standard approaches.

The procedure is done for each one of the IHC markers, and our approach using
cross-validation will provide the method with the desired robustness. Using two-
thirds of the dataset as training and the rest as validation, several predictors are
computed(100 iterations in this case) and then the lists of marker genes are merged
taking only the most robust ones. The performance of the whole process is evaluated
computing the ROC curves for each instance of the predictor and the AUC (area
under the ROC curve).

The R package glmnet (Lasso and Elastic-Net Regularised Generalised Linear
Models) (Friedman et al., 2010) is used to predict the clinical status. Functions for
the methods presented here are shown in the appendix. Method workflow is resumed
in the following figure, and R code is described in Appendix: 6.2.

Objective measures to evaluate the predictions

Once the predictor is trained, the error prediction is evaluated. We have two types
of statistical errors. Type I errors, or false positives and type I errors or a false
negative. Let define the following meassures:

e Sensitivity: It gives the probability that a sample considered positive is de-

tected by the predictor. S = —FPTETP

e Specificity: It gives the probability that a sample considered negative is cate-

. . . . TN
gorised as negative by the predictor. SP = rxo7x
True condition
Total i iti
e e e . __ £ Condition positive
population Condition positive Condition negative Prevalence = S5 population
Predicted . Positive predictive value (PPV),
- . False positive, o
condition True positive Precision =
i Type | error % True positive
PEEE Z Predicted condition positive
Predicted False negative Accuracy (ACC) =
R J : Z True positive + Z True negative
condlt‘lon Type Il error True negative I Total population
negative
. . False discovery rate (FDR) =
True positive rate (TPR), Recall, False positive rate (FPR), Fall-out, ¥ False positive
Sensitivity, probability of detection, probability of false alarm z Predicted condition positive
Power = —2ITue positive _ __Z False positive
2 Condition positive ¥ Condition negative

‘ . Specificity (SPC), Selectivity, True
False negative rate (FNR), Miss rate

¥ False negative negative rate (TNR)
— _ £ False negative .
~ Z Condition positive — __Z True negative

¥ Condition negative

Figure 2.6: Contingency table, as example, showing the different errors. Source:
"https://en.wikipedia.org/wiki/Sensitivity and specificity"
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The false positive errors give the probability that the predictor detects a sample
considered negative. Conversely, the false negative errors give the probability that
a sample considered positive is categorised as negative by the predictor. Reducing
false positive errors frequently increases false negative ones. Both false positive and
false negative have a strong impact on patient health, and both should be considered.
False positive errors are measured by 1 — SP and false negative ones by the 1 — S.
In Fig: 2.6, the table shows the different errors and metrics.

A ROC curve (Receiver Operating Characteristic) is a function that evaluates the
sensibility of detection against 1 — S P that is false positive errors. Those predictors
that achieve high sensitivity keeping a high specificity are preferred because they
minimize both types of errors. In this research, the area under the ROC curve
(AUC) as an objective measure to evaluate the predictors is considered as shown in
Fig: 2.7. Those predictors with larger area achieve the right balance between both
types of statistical errors and are preferred.

ROC

Good predictors

TPR

Poor predictors

FPR

Figure 2.7: A ROC curve example showing good and poor prediction curve areas.

Elastic net algorithm for clinical status prediction

The determination of the status by inmunohistochemistry suffers from significant
errors (Bartlett et al., 2016). In this section a robust linear predictor is considered
to estimate the clinical markers using the gene expresion profiles and to identify
alternative markers to test in the laboratory.

Linear predictors allow us to estimate the IHC status for each sample considering
a small subset of genes. Besides, the same predictor can be applied to select a small
number of genes strongly associated with the clinical markers. However, IHC status
is frequently recorded only for a small subset of samples. Therefore, even linear
predictors suffer from the small sample size problem and are prone to overfitting.
To avoid this, the elastic net algorithm, introduced in (Friedman et al., 2010) is
applied.
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The status is a categorical variable. For simplicity, let G be the response variable
that takes on values in G = {1,2}. The model can be extended easily for a more
substantial number of classes. A binary variable can be aproximated by a linear
model via a regularised logistic regression. Logistic regression assumes that:

Pr(G = 1fz) T
PG =2l ~ T (2.1)

Where Pr(G = i|z) is the a posteriori probability of class i and § is the vector
of linear coefficients associated with the predictors.
It can be easily shown that the a posteriori probability given the value of the gene
expression is given by:

log

Pr(G=1|z) = T 6(1B0+,BTI> (2.2)
Pr(G =2z) = ! (2.3)

1+ e+(50+5Tﬁﬂ)

The model is adjusted by maximizing the regularised binomial likehood. If the
predictor variables are standarised, this function is written as:

g Z{f Dlogp; + I(g; = 2)log(1 — p;) + APa(B)}  (24)

where y; = I(g; = 1) is the class label, p; = Pr(G = 1|z;) is the a posteriori
probability for sample x;.

P,(5) is a regularization term that plays a critical role to avoid overfitting. For
the elastic net algorithm this term is defined as:

p
1

Pa(B) =D 5 (1= )] + al;] (2.5)

j=1
The o parameter determines the type of regularisation considered and has a
strong impact on the solution. Thus, for a = 0, the model is equivalent to ridge
regression. The solution is dense and a large number of 3; will become small but
not equal to zero. For a = 1 the model reduces to Lasso. The solution is sparse
and most of the §; will become zero. The non-zero coefficients correspond to the
predictor variables strongly associated to the class status. This kind of model is able

to select a small subset of genes associated to the IHC classes.

Finally, X\ is a regularisation parameter that should be determined by nested
cross-validation to avoid overfitting.

To improve the robustness of the status prediction and the gene list obtained, a
bagging strategy is implemented. Therefore, diversity between classifiers is induced
by a bootstrap resampling technique. Then, an ensemble of predictors is built that
allow us to reduce the errors in the estimation of the status and to improve the
stability of the gene lists.
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2.2.4 Survival analysis methods

The identification of genes related to survival is probably a critical point to detect
new terapeutic targets. In this section, the discovery of stable and reproducible
survival markers that can be interpreted in terms of standard clinical markers is
considered. We have considered two approaches: The first one is univariate, and
try to retrieve individual genes strongly associated to survival. The second one is
multivariate and takes into account additive interactions between genes and their
correlation structure.

Bootstrapped univariate Cox regression to discover survival markers

The Cox regression approach is preferred against non-parametric techniques because
it is less sensitive to the small sample size problem and it does not assume a particular
distribution for data. Besides, the univariate approach is less prone to overfitting.

Let h(t|x) be the conditional hazard function given the value of the variables x.
The hazard function can be interpreted as the probability of failure at time ¢ given
that the patient is alive before ¢ and once the value of the variables is observed.
The Cox regression is a semi-parametric regression algorithm that assumes that the
logarithmic transformation of the hazard ratio for two states of the gene expression
can be aproximated by a linear model:

o (e ) =7 .

Where (3 is a coefficient that determines the change in the logarithmic hazard
ratio by each unity of increment in the expression level.
This kind of model is quite robust to overfitting because it is linear and univariate.
Univariate models are more robust to the small sample size problem. Any paramet-
ric form for the hazard (h(t|x)) is not assumed.
For each ;, the Wald statistic is computed in order to determine the probability of
being B; = 0. Those genes with a strong association with the hazard ratio will have
smaller p-value. If §; > 0 then, the overexpressed genes increment the risk of failure
while when 3; < 0 the overexpressed genes reduce the risk of failure.
The [ parameters are determined by optimisation of the partial log-likehood. The
partial log-likehood takes into account censored patients that could not be followed
until the end of the study. Once the parameters are optimised, several statistical
test evaluate the adjustment of the model to the data. Likehood ratio and log-rank
test are included.

Although Cox regression has been widely applied to gene selection and risk sur-
vival prediction in the literature, the stability and reproducibility of the list of genes
obtained should be improved. To this aim, a bootstraped version of the original
Cox algorithm is considered. In particular, the set of patients is resampled with
replacement 100 times. For each sample, a ranked list of genes is obtained. Finally,
an ensemble strategy is applied and the set of list are merged into a single one em-
ploying several metrics.
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Univariate cox regression has been implemented using the R function coxph from
survival package (Therneau, 2014). The appendix 6.2 shows the code developed for
this problem.

A non parametric strategy to improve risk prediction and patient strati-
fication

In this section, a univariate and non-parametric strategy to rank genes is considered
according to their ability to predict survival.

Let T" be the non-negative random variable that represents lifetime in a pop-
ulation. The survival function is defined S(t) = p(T > t) as the probability that
an individual survives to time ¢t. S(t) can be approximated by the non-parametric
Kaplan-Meier estimator.

Let T; be the life time for individual 7 and C; the time for which the individual
i get out of the study. The following pairs of variables (Y}, d;) are observed for each:

1 T;<CZ

2.7

Y; = min{T;, Cj} i = {
Where ¢; determines if the event is censored or not. Consider the following no-
tation:

Yy is the time for the ordered censored or uncensored observations.
n; = Ry, denotes the subset of patients at risk before y;.

d; = number of failures at time y;.

pi = P(T > yu)|T > y(i-1))-

¢ =1—pi

Then, the survival function can be estimated as:

St)=P(T>t) =[] (2.8)
Yi) <t

Considering that ¢; = % and p; = 1 — & =

can be written as:

e 4 the Kaplan Meier estimaton

i

. .
S(t) = (” ) (2.9)
y<1i>_£t i
A Kaplan-Meier curve shows the estimated survival function by plotting the
estimated survival probabilities against time. The estimated survival probability is
constant between the events. Therefore, the curve is a step-function in which each
vertical drop indicates the occurrence of one or more events. The right censored
data are represented with a vertical mark in the curve.
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We have developed a robust algorithm which have been designed to compute
Kaplan-Meier curves with a different approach. This algorithm will be a part of
a complete R Bioconductor (Huber et al., 2015) package which is actually in late
phase development.

The ability of each gene to predict survival is evaluated as follows. First, the
patients are splitted into two groups according to the gene expression level. Next, a
log-rank test is computed to evaluate the difference between the kaplan Meier curves
for each group.

This statistical test is non-parametric and makes no explicit assumptions about
the form of the survival curves. The algorithm looks for the optimal splitting that
maximises the separability between the Kaplan-Meier curves. Genes that split the
patients into groups of different prognosis with statistically significant p-value are
considered as markers of survival.

In order to improve the robustness, a variant of the logrank and the Kaplan-
Meier estimator is developed. It has been reported that Kaplan-Meier and logrank
lack reproducibility and give different results depending the dataset considered.

This observation is true even if the datasets share a significant amount of sam-
ples (Raman et al., 2019). In order to deal with this problem the following method
is developed.

Patient stratification has usually been done in the literature comparing the ex-
pression level of a given gene with the median for the entire group of individuals
(Klein and Moeschberger, 1997). This method fails for non-standard problems.

Next,the method that we have developed based on the log-rank statistics is con-
sidered:

(i) Patients are ranked according to the gene expression level for a given gene.
Let g;; denotes the gene expression for gene ¢ and patient j.

(ii) Define the threshold 6;; = g;; for gene i and patient j. Define the group
variable as:
L gijr > 0y

0 gr <t (2.10)

G(gijr) = {

This variable splits the patients in two risk groups according to the expression
level for gene 1.

(iii) For each j compute the p-value using the log-rank statistic.

(iv) Build the log-rank curve. The lowest p-value defines the optimal splitting.
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Figure 2.8: P-value distribution ordered by expression level. Relative minima in red,
candidates to absolute minimum in green.

Figure 2.8 shows that the method introduced is susceptible to local minima,
giving rise to meaningless solutions.

Logrank efficiency and optimisation

In this section, a method to improve the computational efficiency of the logrank
algorithm and to avoid local minima is developed. R code is described in Appendix:

6.2.

The new approach will compute the threshold 6,; in step (ii) considering only
patients between the 25 and 75 quantiles. This step will avoid highly umbalanced
groups that correspond to local minima of the log-rank curve. Besides, it will im-

prove the computational eficiency.

The other modification is done in order to re-calculate the group membership for
each central sample. The problem arises when a large proportion of samples around
the optimal threshold have similar value for the gene expression.

In order to better identify those patients, a bootstrapped logrank is performed
accounting for a more robust algorithm at the time of categorising a sample in a
good or bad prognosis group. The algorithm resamples iteratively the original set
of patients and classifies each individual.
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The frequency with which each patient has been assigned to each prognostic
group is computed. This will allow us to estimate a membership probability to each
group. This feature will help the medical doctors to choose the right treatment for
each patient.

In Fig: 2.9, the "group membership probability" is represented with colours in
a metric that is more representative.
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Figure 2.9: Class membership, black and red colours define the new groups as high and
low expression.

Patients in this plot are ordered by the expression level. Samples from left to
right (coloured in black) are the ones assigned with a class membership probability
higher than 0.5 (CMp > 0.5) to a low expression group. Patients coloured in red
are assigned to the high expression group.

The class membership probability is computed from the number of times that
a sample has been assigned to one or other group in all the bootstrap runs. As it
can be seen a single run of the logrank optimised method is not enough to provide
a proper classification.
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2.2.5 Multivariate approach: risk prediction and gene selec-
tion

Survival in cancer is determined by multiple genes that cooperate in carrying out
biological functions. In this section, a multivariate approach is considered with two
objectives: the first one is to improve the risk prediction and patient stratification.
The second one is to identify gene markers related to survival, considering additive
interactions and the corregulation structure of genes.

Cox-multivariate proportional hazards model

The risk prediction power is a milestone in cancer markers (Chibon, 2013). In
order to evaluate the prognostic value of the best markers, a robust version of the
multivariate Cox proportional hazards regression model with L; norm penalty is
developed. This penalty shrink to zero the coefficients which are useless to predict
the hazard of death. This algorithm will be a part of a complete R Bioconductor
(Huber et al., 2015) package which is in late phase development.

Let X1, Xs,..., X, be the expression levels of the p genes. For each sample i, let
(t;,0;) be the survival time and the censoring indicator for patient i respectively. The
hazard of death at time t given the observed values of the gene expression (\(¢|z))
can be modelled using a Cox regression:

A(t|x) = Ao(t) exp (Z Bij) = Mo(t) exp (87 X) (2.11)

Where A\o(t) is an unspecified baseline hazard function, (51, 52, ..., 3,) are the
regression coefficients and (Xi, X, ..., X,), are the gene expression levels. f(X) =
BT X is the linear risk score for the corresponding patient.

The 3; coeflicients are estimated by maximizing the partial log-likehood with L,
norm penalty:

B =2 (fckjﬁj —log exp(xmjﬁj) —A sl (212)

Jj=1 k=1 meR

Where Ry is the set of patients at risk for time ¢, and A a regularisation pa-
rameter that is estimated by ten-fold cross-validation. This parameter allows us to
shrink most of the [3; coefficients to zero.

Note that the norm penalty might not make sense if the predictors are in differ-
ent units. Therefore, all the predictors are standardised by the Fisher Information
matrix which allow us to interpret the coefficients as the predictive power of gene j.

The algorithm is explained in Fig: 2.10. First, feature selection is implemented
considering the IHC associated list of genes. Double nested cross-validation is ap-
plied. The inner loop estimates the optimal A regularisation parameter for each
predictor by ten-fold cross-validation. In the outer loop, ten-fold cross-validation
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predict the risk score considering non-overlapping training and test sets. This strat-
egy helps to avoid overfitting improving the stability and reproducibility of the
experiments. The risk score is scaled to 0-100. Next section presents an algorithm
to stratify the group of patients considering the risk curve. R code is described in
Appendix: 6.2.
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Figure 2.10: Risk prediction groups using cross validation. Workflow of the algorithm.

Improving risk stratification for medical decission making

The usual method for risk group classification is based in heuristic thresholds. This
strategy does not perform well when the groups of risk are unbalanced. The number
of patients usually asigned to the mid-risk group is almost 50%. Therefore, an
algorithm that estimates the optimal thresholds and reduce the "twilight zone" of
intermediate risk is developed.

The new contribution to the model is the way Risk Score is treated to make
different groups. Risk score output from cross-validated uniCox (Tibshirani, 2009)
R function is ordered, transformed to a 0-100 interval and stratified into regions of
risk: low, mid, and high. The algorithm classifies the mid-risk samples as follows.
(i) Patients are ranked according to the risk score.

Let R; be the predicted risk for patient j.
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ii) Define the threshold §; = R;. Let the group variable be:
J j

G(Ry) :{ 0 Bt (2.13)

This variable splits the patients in two prognostic groups acording to the predicted
risk.

(iii)For each j compute the p-value using the log-rank statistic.

(iv)Build the log-rank curve. The lowest p-value defines the optimal splitting.

We provide several plots for further understanding of the capability of the se-
lected genes to identify risk groups.
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Figure 2.11: Risk prediction output, ordered p-values by risk.

In a simple problem, Fig: 2.11(a) the logrank curve is a quadratic function
with a minimum. This minimum is the selected cutpoint to stratify risk in training
and validation sets.

The Fig: 2.11(b) shows a spiked and wide curve. It means that defining two
risk groups is not easy and a lot of relative minima in the risk groups selection nay
be present.
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Figure 2.12: Ordered risk score prediction from multivariate predictions.

Figure 2.12(a) shows the stratification of the risk score for the ideal log-rank
curve 2.11(a). Similarly, figure 2.12(b) shows the stratification for curve 2.11(b).

The Fig: 2.12 shows the ordered risk score and the regions, as previously de-
scribed. The mid region is the ambiguous one, with samples that may be classified
to both groups with almost the same probability.

While the Fig: 2.12(a) (risk curve with less sigmoid shape) shows an ideal case
in which the risk score is more clearly defined and a strong change in the slope for
the mid group samples is present. The Fig: 2.12(b) shows a less differentiated or
defined risk curve, more difficult to stratify.

2.3 Results

In this section, the biological contributions in breast cancer are presented as obtained
from the algorithms and data described in section 2.2. Discoveries in the form of
new marker genes, the compilation of series, tables and, plots are explained further
in this chapter.

2.3.1 Quality control of normalised gene expression data

We have obtained a curated meta-dataset which integrates the biggest amount of
microarrays with survival data publicly available as described in Section 2.2.1, and
more specifically in the Tab: 2.1. This meta-dataset has been normalised and stan-
dardised in a way that guarantees a batch effect free compilation.
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The quality of the signal obtained by the normalisation algorithm is analysed.
Fig: 2.13 shows the distribution of expression values for each one of the batches:

Density RMA Eset 1-6
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N = 4756725 Bandwidth = 0.09272

Figure 2.13: Esets representing each series batch (not normalised).

The Fig. 2.13, represents the expression with RMA normalisation proposed by
Irizarri. The differences between the series are too high and a study performed with
this normalization method would give meaningless biological results.

The batch effect in this case will be high, as a bias is introduced in the compilation
by each one of the esets.

By contrast, the following figure shows the method fRMA+COMBAT considered
in this thesis.
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Figure 2.14: Esets representing each series batch (normalised).

As it can be readily appreciated, the expression distribution for each one of the
batches or series is similar. The subsequent analysis within this data is guaranteed
to be batch effect free.

The second quality control test is based on a hierarchical clustering algorithm.
When the different series are not properly normalized, the samples cluster together
just because they belong to the same bath or series.

Fig. 2.15, shows a hierarchical clustering algorithm of all microarrays, using
Ward method and Manhattan distance.

36



Chapter 2

HH

I
e )

LIS L LLLARALILN RAOC  ))
OO RN ¥ D

O AN CETR - RGO O+ T A R

AL 1D LR G 5 R R LG DR GG
LLLNCLL AR | LR RARF A LIBARRAI AU LU L

RPN H 100 AR B 10 O EE ) RS T BN SRR L IFRLEHRAC (IR IR IR 1 RN R 1

U C I U O T U T O

LJLIRLEL UL LM LR LR

L it
LIRUIR | LR L
AT (T
FBEECITS 0
P
TR =i e O
R oG SN I
RO (O
EATRE T G OUR

NSRS IR LRI

Dendogram showing clustering of samples.

Figure 2.15

Samples from different batches do not cluster together, which suggest the nor-

malisation algorithm has removed the batch problem.
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NUSE representation of our samples.

Figure 2.16
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Finally, in figure 2.16, gNUSE algorithm is applied.No statistical differences
among the medians and interquantile ranges of different boxplots can be appre-
ciated.

Once a normalisation algorithm is applied, a well designed and normalised matrix
is obtained with complete clinical information and a sample size of 1024.

2.3.2 A survival gene signature related to standard clinical
markers

Several survival gene signatures of breast cancer have been proposed in the literature.
Even more, standard platform such as oncotype or prosigna have their own heuristic
signature which is applied to stratify patients according to their risk. However, as
several authors have mentioned, the overlapping of the different gene signatures is
very small and frequently, the resulting genes can not be related to the standard
clinical markers. This is a serious drawback to transfer the biological findings to the
clinical practice.

The main contribution of this section is to propose a robust and stable list of
survival markers that can be interpreted in terms of the standard clinical ones.
Moreover, some of the genes discovered may suggest alternative targets to clinical
markers easier to detect in the laboratory.

The methods developed in this chapter provide three tables of risk and class
markers for breast cancer. Each IHC marker that defines an intrinsic subtype have
a table with a ranked list of survival markers.

geneName KMpvalTrain betaCoxph p.coxph betaUniCox se.beta.uniCox

TBC1D9  (0.00000057 -0.273 0.000067 -0.0461 0.0119
SUSD3 0.00000880 -0.298 0.000080  -0.0490 0.0146
SLC39A6 0.00006319 -0.225 0.001527 -0.0374 0.0127
GFRA1 0.00000189 -0.177 0.001640 -0.0260 0.0079
SOX11 0.00000027 0.154 0.003205  0.0250 0.0097
GATA3 0.00249397 -0.154 0.012805 -0.0254 0.0100
SLC15A2 0.00831951 0.316 0.017415 0.0779 0.0416
C6orfa7 0.00029611 -0.244 0.017643 -0.0494 0.0213
NANOS1 0.001563739 0.153 0.019000 0.0264 0.0138
ZNF552 0.00003888 -0.182 0.019474 -0.0345 0.0156
ESR1 0.00057954 -0.239 0.030505 -0.0489 0.0218
NAT1 0.00459318 -0.098 0.032377 -0.0133 0.0061
NME3 0.00342702 -0.303 0.037352  -0.0799 0.0426
DNALI1 0.00320825 -0.112 0.068916 -0.0189 0.0109
AGR3 0.00628798 -0.056 0.070142 -0.0071 0.0042
CA12 0.00012777 -0.104 0.079446 -0.0167 0.0099

Table 2.3: ER survival markers table.

The following metrics and statistical tests have been computed:
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The KMpvalTrain is the p-value for the non-parametric bootstraped Kaplan
Meier method. The betaCoxph is the beta value assigned by coxph function
for univariate Cox regression. A positive value indicates that the overexpression
increment the risk of failure. A negative value suggests that overexpression reduces
the risk of failure. The p coxph is the Wald statistic p-value that indicates how
significative is the relationship between the individual gene expression and risk. The
betaUniCox is the coefficient for multivariate cox regression; in this column the
higher is the absolute value the higher is the relevance of the gene in the proposed
model. The se.beta.uniCox measures how much may vary the beta from previous
column. Sometimes a beta with high SD may be worse than a higher absolute beta.

geneName KMpvalTrain betaCoxph p.coxph betaUniCox se.beta.uniCox

PNMT 0.0155 0.140 0.049 0.0358 0.023
CWC(C25 0.1768 0.234 0.088 0.0706 0.059
C17orf37  0.0056 0.118 0.162 0.0258 0.023
SIRT3 0.0093 -0.371 0.207 -0.1940 0.133
MED1 0.3471 0.116 0.268 0.0301 0.036
ERBB2 0.0279 0.069 0.357 0.0149 0.018
KMO 0.2884 0.063 0.366 0.0152 0.017
PSMD3 0.0149 0.081 0.424 0.0167 0.033
GRB7 0.0244 0.049 0.511 0.0094 0.016
CRKRS 0.3292 0.069 0.556 0.0214 0.043
PGAP3 0.1891 0.046 0.599 0.0093 0.024
KLC4 0.1549 -0.053 0.867 -0.0399 0.203
STARD3  0.0476 0.017 0.869 0.0016 0.036
CNKSR1 0.8930 0.014 0.936 0.0037 0.074

Table 2.4: PR survival markers table.

geneName KMpvalTrain betaCoxph p.coxph betaUniCox se.beta.uniCox

SUSD3 0.0000088 -0.298 0.00008  -0.0445 0.0133
GFRA1 0.0001724 -0.177 0.00164  -0.0233 0.0071
PGR 0.0001936 -0.161 0.01368  -0.0217 0.0100
C6orfa7 0.0002847 -0.244 0.01764  -0.0456 0.0196
ESR1 0.0002989 -0.239 0.03050  -0.0452 0.0202
NAT1 0.0013054 -0.098 0.03238  -0.0119 0.0055
DNALI1 0.0023350 -0.112 0.06892  -0.0171 0.0099
AGR3 0.0011249 -0.056 0.07014  -0.0063 0.0037
CA12 0.0001278 -0.104 0.07945  -0.0151 0.0089
TFF1 0.0037668 -0.053 0.09463  -0.0064 0.0037

Table 2.5: HER2 survival markers table.

Tabs: 2.3, 2.4 and 2.5 show the list of genes related to each one of the THC
markers (ER, PR, and HER2). We remark that the genes shown in previous tables
are quite stable and independent of the particular sample considered. Besides, all
the genes have been ranked high according to several metrics.

Next section comments the relevance of the survival markers discovered.
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2.3.3 A new survival signature that outperforms Oncotype
and Prosigna

Concordance between our marker gene list and oncotype and Prosigna is low (see
table 2.6). Several questions will be answered in this section: Is the new signature
proposed better to predict the risk and to stratify the patients? Our signature is able
to reduce the uncertainty in the categorization of patients according to their risk?
The markers discovered can be validated using other technologies such as RNA-seq
and independent datasets?
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Figure 2.17: Robust p-value calculation for mid risk group. Comparison of markers.
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Our list of genes is compared with standard platforms for risk prediction such as
Oncotype and Prosigna. The list of genes considered by each platform are defined
in Tab: 2.6. To compare the risk prediction ability of each gene signature the same
multivariate predictor introduced in this chapter is applied.

The Fig: 2.17 compares the p-values distribution for central mid-risk score
group, which is portrayed in Fig: 2.18. The results can be evaluated using the
following guidelines:
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Figure 2.18: Ordered risk score curves. Comparison of markers.
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If the p-val distribution follows a quadratic like distribution, and the relative
minima and absolute minimum are in a narrow window (case Fig: 2.17(c)), a
better risk prediction is obtained. If the window is wider, and there are a lot of
relative minima across it, then we will have a poorer prediction (case Fig: 2.17(c)).
Notice that the interval using our genes is better than the others, showing a shorter
interval width. This result responds to the second question. Our gene signature
is able to reduce the uncertainty in the categorization of patients in risk groups.
Usually the shape of the ordered risk score curve follows a sigmoid-like distribution.
If this distribution is closer to a straight line, then the risk stratification will be
poorer (case Fig: 2.17(c)).
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The previous qualitative results can be corroborated with the Fig. 2.19. In this
figure, the cases (a) and (b) show a poorer curve separability between the Kaplan-
Meier curves. Instead, the (c¢) case has a better separability and a much better
p-value than the commercial chips Prosigna and Oncotype.

The hazard ratio for the survival curves obtained with the gene signature pro-
posed is significantly better than for Prosigna and Oncotype. This result gives the
answer to question one. Our gene signature is able to improve the risk prediction
and the stratificacion of patients according to their risk.

The genes used in each one of the predictors are described in the following ta-
ble. The Prosigna and OncotypeDX gene list were obtained from a previous study
(Bartlett et al., 2016). They are described in the following Table: 2.6.

Prosigna(49g) Oncotype(16g) New Markers(34g)
ACTR3B KRT17 BAG1 AGR3 SIRT3
ANLN KRT5 BCL2 AURKA  SLC15A2
BAG1 MAPT BIRC5H MIEN1 SLC39A6
BCL2 MDM2 CCNB1 CCDC170 SOX11
BIRC5) MELK CD68 CA12 STARD3
BLVRA  MIA CTSV CNKSR1 SUSD3
CCNB1 MKI67 ERBB2 CDK12 TBC1D9
CCNE1 MLPH ESR1 CWC(C25 TFF1
CDC20 MMP11 GRB7 DNALI1 ZNF552
CDC6 MYBL2 GSTM1 ERBB2

CDH3 MYC MKI67 ESR1

CENPF  NATI1 MMP11 GATA3

CEP55 ORC6L MYBL2 GFRA1

CXXC5  PGR PGR GRB7

EGFR PHGDH SCUBE2 KLC4

ERBB2 PTTG1 AURKA KMO

ESR1 RRM?2 MED1

EXO1 SFRP1 MKI67

FGFRA4 SLC39A6 NANOS1

FOXA1 TMEM45B NAT1

FOXC1 TYMS NME3

GPR160 UBE2C PGAP3

GRB7 UBE2T PGR

KIF2C PSMC4 PNMT

KRT14 PSMD3

Table 2.6: Breast cancer discovered marker genes.

43



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

2.3.4 Relation between the survival signature proposed and
the IHC markers

This section tries to answer a relevant question from a clinical point of view: Is the
survival gene signature related to the standard clinical markers 7 If this is true, the
list of genes can be consider to estimate the value of the clinical status reducing the
errors of current techniques. Besides, some genes may constitute alternative targets
to THC markers.

ER

| CLINICAL ER

T F
KM BOOTSTRAP ER | T 150 31
F 17 182

Table 2.7: Confusion Matrix ER clinical vs bootstrap.

Confusion Matrix and Statistics

Accuracy : 0.8737
95% CI : (0.836, 0.9054)

Sensitivity : 0.8545
Specificity : 0.8982

| CLINICAL ER

T F
RISK PRED ER | T 196 10
F 17 157

Table 2.8: Confusion Matrix ER clinical vs risk prediction.
Confusion Matrix and Statistics

Accuracy : 0.9289
95% CI : (0.8983, 0.9527)

Sensitivity : 0.9401
Specificity : 0.9202

ER Tab: 2.7 and 2.8 show, respectively, the confusion matrix for the risk groups
obtained using the ER expression vs the IHC marker and the multivariate predictor
considering our gene signature vs the THC marker.

Notice that the multivariate gene signature proposed is able to predict the ER sta-
tus much better than the expression of the corresponding gene. The accuracy is
improved up to a 3% and both, sensitivity and specificity are significantly bigger.
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PR

|  CLINICAL PR

T F
KM BOOTSTRAP PR | T 153 30
F 37 160

Table 2.9: Confusion Matrix PR clinical vs bootstrap.

Confusion Matrix and Statistics

Accuracy : 0.8237
95% CI : (0.7816, 0.8607)

Sensitivity : 0.8421
Specificity : 0.8053

| CLINICAL PR

T F
RISK PRED PR | T 175 28
F 15 162

Table 2.10: Confusion Matrix PR clinical vs risk prediction.

Confusion Matrix and Statistics

Accuracy : 0.8868
95% CI : (0.8506, 0.9169)

Sensitivity : 0.8526
Specificity : 0.9211

PR Tab: 2.9 and 2.10 shows the same results as the previous tables. The multi-

variate method (section: 2.2.5) performs better.
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HER?2

|  CLINICAL HER2

T F
KM BOOTSTRAP HER2 | T 221 25
F 67 67

Table 2.11: Confusion Matrix HER2 clinical vs bootstrap.

Confusion Matrix and Statistics

Accuracy : 0.7579
95% CI : (0.7116, 0.8001)

Sensitivity : 0.7283
Specificity : 0.7674

| CLINICAL HER2

T F
RISK PRED HER2 | T 244 18
F 44 4

Table 2.12: Confusion Matrix HER2 clinical vs risk prediction.

Confusion Matrix and Statistics

Accuracy : 0.8368
95% CI : (0.7958, 0.8726)

Sensitivity : 0.8043
Specificity : 0.8472

HER2 Tab: 2.11 and 2.12 shows a different distribution. In this case, the groups
are deeply unbalanced. The KM with membership probability method (section:
2.2.4) is capable to improve the classification, but the multivariate method (section:
2.2.5) performs much better.
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2.3.5 Survival genes discovered are related to relevant cancer
biological functions

Several genes discovered are related to cancer or hormone receptors. In the following
section,some of the marker genes we discovered and their effect and relation with
cancer is explained.

ER and PR markers
CA12

Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes that catalyse
the reversible hydration of carbon dioxide. They participate in a variety of biological
processes, including respiration, calcification, acid-base balance, bone resorption,
and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid.
This gene product is a type I membrane protein that is highly expressed in normal
tissues, such as kidney, colon, and pancreas.

As a membrane protein, it is a good candidate for any kind of drug targeting and
have already been reported (KKobayashi et al., 2012), but because it is overexpressed
in a bunch of other tissues high toxicity is assumed if the cell functions through this
path are altered.

CA12 also has relation with multidrug chemoresistance phenotype in cancer,
which is closely related to survival (IKopecka et al., 2015). The relation with survival
(Chien et al., 2012) (Yoo et al., 2010) and with breast cancer (Chen et al., 2018)

has been reported too.

This gene havs been found to be closely related to ER expression in our studies,
and it has been already reported (Barnett et al., 2008).

SUSD3

SUSD3 is a novel promoter of estrogen-dependent cell proliferation and regulator
of cell-cell and cell-substrate interactions and migration in breast cancer. It may
serve as a novel predictor of response to endocrine therapy and potential therapeutic
target because it is located on cell surface (Moy et al., 2015) (Zhao et al., 2015).

As reported by literature it was found closely related to ER in our analysis.

SLC15A2(PEPT2)

SLC15A2 or PEPT2 is a proton-coupled peptide transporter that is responsible
for the absorption of small peptides, as well as beta-lactam antibiotics and other
peptide-like drugs, from the tubular filtrate.

As our analysis sugest, it has the strongest relation with survival from all our
ER markers, which has been already reported (Lee et al., 2015). Also, a relationship
with a different kind of cancer has been discovered (prostate (Tai et al., 2013)).
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SLC39A6(ZIP6)

SLC39A6 or ZIP6 belongs to a subfamily of proteins that show structural charac-
teristics of zinc transporters. Zinc is an essential cofactor for hundreds of enzymes.
It is involved in protein, nucleic acid, carbohydrate, and lipid metabolism, as well
as in the control of gene transcription, growth, development, and differentiation.

In our analysis it is more related to survival than to ER, the relation of this gene
with survival has also been defined (Cheng et al., 2017), even it is trongly related
to survival in breast cancer (Matsui et al., 2017). There are reports of its relation
with cancer too (Lopez and Kelleher, 2010).

TBC1D9(MDR1, GRAMDY)

TBC1D9 is other of our best ER and risk related markers. This gene is not deeply
studied and therefore is an excellent candidate to validate its role as ER related gene
and survival marker. A study reports its relation with clinical outcome in gastric
cancer and thus making this gene more interesting (Li et al., 2011).

NME3(NDPKC)

NME3 or NDPKC is a kinase which is higly expressed across all cancer types. In
our study it shows the best capability of risk prediction in ER markers and strong
relation with the ER marker.

This gene is related with colorectal cancer (Qu et al., 2013), DNA repair (Tsao
et al., 2016) and neuroblastoma (Negroni et al., 2000). However, the relationship
with Breast Cancer has not been described yet.

C6orf97(CCDC170)

As explained in NCBI database, the function of this gene and its encoded protein
is not known. Several genome-wide association studies have implicated the region
around this gene to be involved in breast cancer and bone mineral density, but
no link to this specific gene has been found. A posible relation with the Golgi-
Microtubule Network disruption in BRCA has been reported (Jiang et al., 2017),
the same happens with survival (Hong et al., 2014) even with specifically ER positive
BRCA (Veeraraghavan et al., 2014). In the other hand, the association between this
gene and ER marker has also been described (Luo et al., 2014).

AGR3

This gene encodes a member of the disulfide isomerase (PDI) family of endoplasmic
reticulum (ER) proteins that catalyze protein folding and thiol-disulfide interchange
reactions. It is reported to be overexpressed in cancer (breast, ovarian, and pros-
trate).

In our analysis, this gene is one of the main ER-related marker, and that fact
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also resembles in literature (Fletcher et al., 2003), being cited as survival-related
(King et al., 2011) too.

HER?2 markers
PNMT

PNMT (Phenylethanolamine N-methyltransferase) is related to HER2 marker. This
gene is thought to play a key step in regulating epinephrine production. The product
of this gene catalyses the last step of the catecholamine biosynthesis pathway, which
methylates norepinephrine to form epinephrine (adrenaline).

PNMT is related with pheochromocytoma/paraganglioma (Lee et al., 2016), it
is also related as mentioned in a study of ERBB2 amplicon (Benusiglio et al., 2006)

CWC25(CCDC49)

This gene encodes a factor that is part of the multi-protein C complex involved in
pre-mRNA splicing. It is usually overexpressed in cancer and particularly in bone
marrow related cancer. In our study, it shows the strongest risk prediction power,
so it is one of the main survival related genes from our markers.

MIEN1(C170rf37, C35)

Overexpressed in all cancer types, MIENT1 is deeply related to cell viability, invasion,
and migration of breast carcinoma cells (Che et al., 2017) (Zhao et al., 2017) (Dong
et al., 2015). The relation with ERBB2 is also probed (Katz et al., 2010).

SIRT3

The encoded protein is found exclusively in mitochondria, where it can eliminate
reactive oxygen species, inhibit apoptosis, and prevent the formation of cancer cells.
SIRT3 has far-reaching effects on nuclear gene expression, cancer, cardiovascular
disease, neuroprotection, aging, and metabolic control.

SIRT3 is related to breast cancer (Pinteri¢ et al., 2018), pancreatic cancer, sur-
vival (Huang et al., 2017), and cancer in general (Yu et al., 2016)

GRB7

The product of this gene belongs to a small family of adapter proteins that are known
to interact with a number of receptor tyrosine kinases and signaling molecules. This
gene encodes a growth factor receptor-binding protein that interacts with epidermal
growth factor receptor (EGFR) and ephrin receptors.

The developed algorithms (as already seen in other genes) identify relations
between IHC markers and our markers, as described for GRB7 in this cases (Bivin
et al., 2017) (Lim et al., 2014) showing the corelation with HER2, and with survival
(Ramsey et al., 2011)

49



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

CRKRS(CDK12)

CDK12 loss in cancer cells affects DNA damage response genes through prema-
ture cleavage and polyadenylation (Krajewska et al., 2019). Tt is a potential novel
biomarker for DNA damage response targeted therapies (Naidoo et al., 2018) and
cell invasion (Tien et al., 2017) in Breast Cancer.

KLC4

Members of the kinesin-8 motor class have the remarkable ability to both walk
towards microtubule plus-ends and depolymerise these ends on arrival, thereby reg-
ulating microtubule length (Peters et al., 2010). In cancer, genes that regulate
microtubule functioning or are related with that machinery (like AURKA) have a
huge impact in the probabilities of the generation of DNA failure when a cell is
divided, which flows into more complex tumours, chemoresistance, metastasis...

2.4 Discussion

Most survival breast cancer studies rely on a small set of patients. Therefore, the
results are not generalizable to the whole population and can not be transferred to
the clinical practice.

In this chapter, we have built three gene expression datasets that integrate a
large number of samples with survival and clinical data. They are based on affymet-
rics microarray and illumina RNAseq technologies. The biological results obtained
with these datasets are robust and generalizable to the whole population.

One of the key points in breast cancer research is the discovery of survival cancer
genes that allow to predict the risk and to stratifiy the patients. New molecular tar-
gets are needed to improve the treatments. Although a large variety of survival gene
signatures have been proposed, the overlaping between them is small and they are
inestable and sample dependent. Moreover, comercial platforms work as a black box
and the decision making and the gene signatures considered can not be interpreted
in terms of standard clinical markers.

In this chapter, a list of gene markers is proposed with the following properties:
First, the experimental results have shown that the list of survival markers is ro-
bust, stable and generalizable to other groups of patients. The list of genes has
small overlaping with oncotype or prosigna signatures, but the risk prediction and
patient stratification is significantly better. The uncertainty for the classification of
patients in two risk groups is reduced. Besides, the list of genes can be interpreted
in terms of standard clinical markers managed by the clinitian and can be consid-
ered to reduce the errors in the estimation of IHC status. Finally, several survival
markers are related to biological cancer functions relevant in cancer disease. This
suggests that some markers should be tested in laboratory as alternative genes to
standard markers.

Finally, the experimental results have shown that the bioinformatics methods
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developed to predict the survival function and risk of patients are robust and stable.
The method proposed in this chapter improve the performance of two widely used
platforms such as Oncotype and Prosigna.
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Unravel positive markers and
regulators of Triple Negative Breast
Cancer (TNBC) using transcriptomic
and regulatory profiling combined
with survival analysis

3.1 Motivation

Breast Cancer (BRCA) is classified as Triple Negative (TNBC); when it does not
show significant expression of the estrogen receptor (ER) or the progesterone re-
ceptor (PR) and does not overexpress human epidermal growth factor receptor 2
(HER2). The presence of these molecular markers is done by immunohistochem-
istry (IHC) and Fluorescence In Situ Hybridisation and has been shown to have
significant inter-lab variability.

This is problematic as HER2+ or hormone receptor positive (HR+) samples
with false-negatives via these analyses are at risk of being classified as TNBC, and
corresponding patients would be given an incorrect prognosis and denied viable
treatment.

Therefore, samples designated as TNBC could be subjected to a verification step
to ensure that tumours have not been incorrectly classified as TNBC. As the “ex-
clusionary™; definition of TNBC is the source of potential misclassification, it seems
prudent that further classification of TNBC be based on an “inclusive”; criteria (i.e.
“positive”; biomarkers).

To identify potential biomarkers, the novel bioinformatics tool, DECO (Decom-
posing heterogenous Cohorts using Omic data profiling) was used to identify 24
genes whose differential upregulation best characterizes TNBC and not hormone
receptor positive (HR+) or HER2+ BRCAs. Identified biomarkers can be used for
classification and prediction purposes.
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Furthermore, Viper (Virtual Inference of Protein-activity by Enriched Regulon
Analysis) was used to determine which transcription factors (TFs) are differentially
more active in TNBC than in HR++ BRCA. Viper identified BCL11A and FOXC1
as potential drivers of TNBC. These TFs could serve as potential therapeutic targets
for TNBC.

Also, as an addition, the relationship between the discovered markers and sur-
vival and risk will be analysed. This risk and survival result will provide relevance
and importance to the markers.

3.2 Material and Methods

3.2.1 General workflow of the study

biomartRt DECO
Breast Cancer "
RNAseq & Microarray TFs filter ER++vs TN
l \ 4
[ 1544 TFs ] Diff. Expr. Genes Validation
ARACNe

TFs and targets
mutual information

Viper
protein activity Survival Analysis
TFs

ER++vs TN

Master Regulators

Figure 3.1: ER++ vs TNBC methodology and workflow.

In Fig: 3.1, the process is portrayed. First, the data from the compilation described
in Chapter 2 microarray and RNAseq series. The first step is the filter to identify
previously described TFs, it was performed using biomartRt (Durinck et al., 2005)
(Durinck et al., 2009).

The selected TFs were provided to ARACNe (Margolin et al., 2006) (He et al.,
2017) R package and the gene TFs and targets network was created. Then the
Viper (Alvarez et al., 2016) R package was used in order to obtain the TF master
regulators signature.

Furthermore, an independent DECO analysis was performed in order to select
genes equivalent to TFs.

The markers relationship with survival was checked using the tools developed in
Chapter 2.
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3.2.2 Data used in the study

The datasets used for this study are described in the previous chapter in Section:
2.2.1. A 1024 microarray series, and a 879 RNAseq series which will refer hence-
forth as microarray series and RNAseq series respectively. RNAseq data allows the
validation of the experimental results obtained with microarrays. Each technology
requires the development of diferent preprocesing and normalisation techniques.

The dataset of methylation in BRCA available in TCGA (TCGA, 2019) was also
downloaded following the same protocols and tools used for dowloading the RN Aseq
dataset. The methylation data was obtained for the same samples described in our
phenodata.

3.2.3 Gene Interaction Analysis, TF Mapping and Differen-
tial Protein Activity Profiles

ARACNe

The ARACNe algorithm is used to perform a global gene correlation based on
mutual information analysis using expression matrices (Margolin et al., 2006) (He
et al., 2017). ARACNe-AP (Adaptive Partitioning) was used for the analysis (He
et al., 2017). Tt required a list of TFs and RNA expression data as input.

Therefore, the biomaRt R package is used to obtain a list of 1,544 known TFs to
supply the algorithm (Durinck et al., 2005) (Durinck et al., 2009). We subsequently
generated a robust reverse engineered breast cancer gene network.

This interactome identified interactions between gene regulators (i.e., TFs) and
gene targets and provided scores based on mutual information analysis that repre-
sented the strength of the interactions (He et al., 2017).

Viper

Viper (Alvarez et al., 2016) algorithm allows for a network-based inference of pro-
tein activity and identification of TFs that show a significant change in activity
levels between two different phenotypes. ARACNe-AP produced gene networks was
used and corresponding RNA expression data as input for Viper analysis.

We compared TNBC ( tumours that had a clear ER-PR-HER- status determined
by ITHC) to the most common BRCA subclass, ER+PR+HER2- (HR++), in order
to identify regulators of the triple negative phenotype. The analysis was done inde-
pendently for both datasets.

For these comparisons, there were 113 TNBC samples and 148 HR+-+ samples
used in the analysis of microarray series. In the analysis of RNAseq series, 150
samples comprised the TNBC class and 470 comprised the HR++ class.
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3.2.4 Tumor Sample Categorisation and Differential Feature
Analysis

DECO

DECO (Campos-Laborie et al., 2019) (developed by our group) identifies and cat-
egorises biomarkers that are most significantly associated to specific phenotypic
conditions based on a Recurrent Differential Analysis (RDA) integrated with a Non-
Symmetrical Correspondence Analysis (NSCA).

We utilised this novel bioinformatic tool on the data set with the best gene cov-
erage (RNAseq series). Multiclass analysis was chosen and run on a total of 361
samples from the RNAseq series. The number of samples used in this analysis was
reduced concerning the original dataset due to the subclasses chosen for this analy-
sis.

However, the proportion of each tumour subtype is very similar in clinical prac-
tice. Ounly samples that were ER-PR-HER- (TN), ER-PR-HER+ (HER2+), or
ER+PR+HER- (HR++) were considered. The number of tumour samples desig-
nated for analysis included in each of these classes was: for HR++ 271 samples; for
HER2+ 22 samples; and for TNBC 68 samples.

3.3 Results

3.3.1 Finding TNBC Regulators by contrast with the Major
Subtype ER+PR+

Our analyses with ARACNe and VIPER found 10 TFs to be differentially more
active in the TNBC condition than in the HR++ condition utilising microarray
series (FDR < 0.05). In RNAseq series, 26 TFs were identified as differentially more
active in the TNBC condition (FDR < 0.05).

DATASET1 output: protein Act, gene Exp. = e
p-value Set < ]
0.000525 |y TN 5o 11A 22
0.00184 j | ! " Foxci 71
0.00289 | 4 | ‘ WY cegpB 149
0.00519 ) ! IR NFE2LS 305

Figure 3.2: VIPER, output top TFs in the TNBC samples.

Microarray series produced a bipartite network composed of 1,243 regulators and
19,954 targets with 272,967 interactions; while the network created with RNAseq
series was comprised of 1,355 regulators and 18,880 targets with 239,515 interactions.
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As shown in Fig: 3.2, each row characterises one TF that VIPER inferred to be
significantly more active in the TNBC condition in microarray series (FDR<.05).
The regulon of each TF (set of gene targets) is represented by the barcode on the
x-axis with each vertical line representing one target gene.

Genes located on the far-left end of the x-axis represent genes that were the most
downregulated in the TNBC, while genes on the far right represent the genes that
were most upregulated. Genes depicted in red reflect genes that are induced by the
TF and genes depicted in blue represent those that the TF represses.

Differential RNA expression is represented in the far-right box and is represented
by the depth of the red colouration. Inferred protein activity lies on the box directly
to the left and is also represented by depth of red colouration.

DATASET1: RNA-microarrays (1024 samples)

Number GeneSymbol RegulonSize NES(score) p.value FDR(adj.p.value)
1 KLF5 129 3.66 0.000249 0.00356
- ELF5 72 3.54 0.000402 0.00503
3 BCL11A 452 3.47 0.000525 0.00564
4 PAX6 58 3.45 0.000564 0.00564
5 FOXC1 444 3.11 0.001840 0.01310
6 L3MBTL4 58 3.03 0.002440 0.01430
7 CEBPB 323 2,98 0.002890 0.01430
8 ZFP69B 275 2.80 0.005100 0.02260
9 NFE2L3 217 2.79 0.005190 0.02260

10 ARNTL2 405 2.67 0.007540 0.03140
11 NFIL3 386 2.45 0.0143 0.05140
12 E2F3 546 2.34 0.0191 0.05960
13 YBX3 229 2.31 0.0208 0.06300
14 CBFB 354 2.28 0.0225 0.06330
15 SOX11 352 2.23 0.0254 0.06690
16 NFIB 157 2.13 0.0335 0.08370
17 TP53 287 2.06 0.0394 0.09160
18 KLF11 219 1.98 0.0478 0.106
19 CEBPG 497 1.94 0.0519 0.109
20 PPARA 69 1.94 0.0523 0.109
21 TEAD4 208 1.92 0.0551 0.112
22 EN1 298 1.89 0.0589 0.118
23 ZBED4 481 1.86 0.0623 0.120
24 TCF7L1 234 1.85 0.0642 0.121
25 ZIC1 92 1.79 0.0729 0.127
26 SOX10 344 1.76 0.0788 0.127
27 SOX6 121 1.68 0.0936 0.140
28 GRHL3 101 1.66 0.0960 0.140
29 ZBTB24 367 1.65 0.0981 0.140
30 SOX9 184 1.64 0.1010 0.142
31 GATAG6 63 1.59 0.1120 0.151
32 GRHL1 418 1.58 0.1150 0.153
33 TCF3 344 1.49 0.1350 0.170
34 HIVEP2 262 1.49 0.1360 0.170
35 ZNF391 62 1.46 0.1430 0.174
36 ZNF711 310 1.44 0.1490 0.179
37 POU4F1 127 1.37 0.1710 0.193

Figure 3.3: VIPER, differentially most active TFs in the TNBC samples as compared to
the HR++ samples in microarray.
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DATASET2: RNA-seq (879 samples)

No Gene Regulon NES I FDR
Symbol Size (score) p.value (adj.p.value)

1 TLX1 71 5.20 0.0000002 0.000012

2 PRDM13 30 4.78 0.0000018 0.000051

3 ZIci 52 4.75 0.0000020 0.000051

4 LIN28B 25 4.62 0.0000038 0.000060

5 SIX3 38 4.60 0.0000042 0.000060

6 ZIC4 36 4.42 0.0000097 0.000099

7 PDX1 39 4.32 0.0000153 0.000139

8 DMRT1 46 4.23 0.0000237 0.000198

9 NKX2-5 42 4.02 0.0000590 0.000421

10 RCOR2 166 3.89 0.0000987 0.000642
11 OLIG2 45 3.85 0.0001200 0.000693
12 LHX5 32 3.84 0.0001250 0.000693
13 NR2E1 62 3.45 0.0005520 0.002420
14 POU4F1 37 3.45 0.0005570 0.002420
15 ALX1 26 3.37 0.0007570 0.003030
16 TP53 311 3.29 0.0010200 0.003920
17 ATOH7?7 118 3.26 0.0011200 0.004130
18 YBX1 689 3.23 0.0012400 0.004290
19 SOX30 96 3.15 0.0016400 0.005290
20 RAX 65 2.93 0.0034300 0.010100
21 BCL11A 826 2.91 0.0036400 0.010200
22 GATAG6 30 2.91 0.0036700 0.010200
23 HOXD13 28 2.75 0.0059900 0.015400
24 ZICS5 44 2.70 0.0068500 0.016700
25 FOXC1i 1004 2.63 0.0086100 0.020000
26 POUSF1 105 2.38 0.0175000 0.036500
27 PPARD 262 1.98 0.0476 0.09160
28 OTX1 147 1.95 0.0517 0.09580
29 CTCFL 93 1.88 0.0597 0.105
30 CEBPB 269 1.70 0.0884 0.143
31 FOSL1 213 1.67 0.0948 0.144
32 CBFB 571 1.54 0.1230 0.174
33 TEAD4 207 1.51 0.1310 0.175
34 NFE2L3 292 1.48 0.1380 0.182
35 HMGA1 482 1.46 0.1440 0.187
36 E2F3 647 1.42 0.1550 0.195
37 NFIL3 190 1.41 0.1570 0.195
38 E2F4 357 1.41 0.1580 0.195

Figure 3.4: VIPER, differentially most active TFs in the TNBC samples as compared to
the HR++ samples in RNAseq.

As shown in Figs: 3.3 and 3.4 The genes included in the table are the most
significant found in microarray series 3.3 and in RN Aseq series 3.4. Genes in common
to two datasets are marked in yellow. Regulon size depicts how many genes are in
the TF regulon (how many genes it regulates). The Normalised Enrichment Scores
(NES) is a measure of differential activity. A positive NES denotes increased protein
activity seen in the TNBC condition as compared to that of the HR++ condition,
while negative denotes reduced.

B cell leukemia 11A (BCL11A) (FDR=0.0056 in microarray series, FDR=0.0102
in RNAseq series) and Forkhead Box C1 (FOXC1) (FDR=0.0131 in microarray
series, FDR=0.02 in RNAseq series) were found to be significantly more active in
the TNBC condition in both data sets.
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Both data sets also agreed that the activity level of 12 TFs was significantly
reduced in the TNBC condition as compared to that of the HR++ which is repre-
sented in the following table in Tab: 3.1. Among these TFs were ER, PR, MYB
Proto-oncogene (MYB), and the Androgen Receptor (AR).

Regulon Size NES p-value FPDR
KLF5 129 3.66 0.000249 0.00356
ELF5 72 3.54 0.000402 0.00503
BCL11A 452 3.47 0.000525 0.00564
PAX6 58 3.45 0.000564 0.00564
FOXC1 444 3.11 0.00184 0.0131
L3MBTL4 58 3.03 0.00244 0.0143
CEBPB 323 2.98 0.00289 0.0143
ZFP69B 275 2.8 0.0051 0.0226
NFE2L3 217 2.79 0.00519 0.0226
ARNTL2 405 2.67 0.00754 0.0314
ZNF484 113 -2.53 0.0114 0.044
NR4A2 66 -2.66 0.00785 0.0314
AR 363 -2.97 0.003 0.0143
ZNF844 90 -2.98 0.00285 0.0143
BHLHEA40 195 -2.99 0.00277 0.0143
TADA2B 297 3.01 0.00263 0.0143
TOX3 40 -3.02 0.00249 0.0143
MYB 280 -3.25 0.00115 0.00887
ZNF442 63 -3.27 0.00109 0.00887
PGR 370 3.42 0.000629 0.00572
XBP1 717 -3.69 0.00022 0.00356
FOXA1 585 -3.84 0.000121 0.00242
ESRI 457 —4.18 0.0000297 0.000742
GATA3 915 —4.31 0.0000165 0.000549
ZNF552 278 -4,54 0.00000551 0.000275
AFF3 460 —-4.78 0.00000178 0.000178

Table 3.1: TFs with differential activity levels, TNBC vs ER+PR-+ tissue in microarray
series.

Differential activity levels are inferred by Normalised Enrichment Scores (NES).
A positive NES denotes increased protein activity seen in the TNBC condition as
compared to that of the HR+-+ condition. A negative NES denotes increased TF
activity in the HR++ relative to the TNBC condition.

The absolute value of the NES depicts activity level, with a larger NES depicting
a very active TF. TFs that were found among both datasets are highlighted in gray,
tables in Tab: 3.1 and 3.2. There are 12 TFs that are shared among both dat sets
that show increased activity in the HR+—+ condition compared to the TNBC.
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Regulon Size NES p-value FPDR
TLX1 71 5.2 1.99E-07 0.0000121
PRDM13 30 4.78 0.00000176 0.000051
Z1C1 52 4.75 0.00000204 0.000051
LIN28B 25 4.62 0.00000378 0.0000604
SIX3 38 4.6 0.00000423 0.0000604
Z1C4 36 4.42 0.00000969 0.0000989
PDX1 39 4.32 0.0000153 0.000139
DMRT1 46 4.23 0.0000237 0.000198
NKX2-5 42 4.02 0.000059 0.000421
RCOR2 166 3.89 0.0000987 0.000642
OLIG2 45 3.85 0.00012 0.000693
LHX5 32 3.84 0.000125 0.000693
NR2E1 62 3.45 0.000552 0.00242
POU4F1 37 3.45 0.000557 0.00242
ALX1 26 3.37 0.000757 0.00303
TP53 311 3.29 0.00102 0.00392
ATOHT 118 3.26 0.00112 0.00413
YBX1 689 3.23 0.00124 0.00429
SOX30 96 3.15 0.00164 0.00529
RAX 65 2.93 0.00343 0.0101
BCL11A 826 2.91 0.00364 0.0102
GATAG6 30 2.91 0.00367 0.0102
HOXD13 28 2.75 0.00599 0.0154
Z1C5 44 27 0.00685 0.0167
FOXC1 1004 2.63 0.00861 0.02
POU5F1 105 2.38 0.0175 0.0365
ZNF563 69 -2.26 0.0241 0.0472
RORC 249 -2.27 0.0232 0.0464
AR 527 -2.35 0.0189 0.0386
SALL2 282 -2.39 0.0168 0.0358
ZNEF396 397 -2.41 0.016 0.0348
MYB 260 -2.54 0.011 0.0244
FOXP1 278 -2.59 0.00955 0.0217
AFF3 661 -2.66 0.00778 0.0185
GCM1 168 -2.72 0.00645 0.0161
S0X13 106 -2.75 0.00595 0.0154
PAX2 76 -2.83 0.00462 0.0125
TADA2B 274 -2.99 0.0028 0.00849
LMX1B 304 -3.1 0.00192 0.00599
HOXB2 55 -3.18 0.00148 0.00492
PGR 521 -3.23 0.00122 0.00429
FOXN1 78 -3.44 0.000582 0.00243
TRERF1 90 -3.46 0.000536 0.00242
EMX1 69 -3.69 0.000226 0.00113
GATA3 1121 -3.74 0.000182 0.000958
ESR1 865 -3.88 0.000103 0.000642
XBP1 482 -4.08 0.0000443 0.000341
ZNF552 219 -4,42 0.00000989 0.0000989
FOXA1 1333 -4.52 0.00000614 0.0000768
ZNF442 111 -4.65 0.00000332 0.0000604
BHLHEA40 84 -5.16 2.43E-07 0.0000121

Table 3.2: TFs with differential activity levels, TNBC vs ER+PR+ tissue in RNAseq
series.
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VIPER further interrogated all differentially active TFs to determine which TFs
synergistically regulate the TNBC gene expression signature. Thus, TFs who shared
a significant proportion of targets that were more enriched in the TNBC gene expres-
sion signature relative to their exclusive targets, were identified as “synergy pairs”;
(Aytes et al., 2014). Using microarray series, 73 synergy pairs were identified among
the 26 differentially active TFs (p-value<0.05). In RNAseq series, 160 synergy pairs
were identified among the 51 differentially active TFs (p-value<0.05) (Figure2). Of
note, 21 synergy pairs were seen in both data sets, including the following: BCL11A
with FOXC1, BCL11A with AR, BCL11A with ER, and BCL11A with ER and
GATAS.

p-value Set
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8.14a07 T ESR1--BCL11A

1.32408 FOXAT--FOXCT
204208 ZMFEE2--BCL11A
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2882405 BCL114--ZSCAN32
4022408 BCL114A--NFEZL3
4122408 FOXA1--BCL11A

4 5505 BCL11A--E2F 3
5.00208 N BCL114A--NFIL3

5 408 " BCL11A--SPDEF
.4 8e-05 " KLFE-BCL11A
70505 BCL11A--FOXC
8. 88206 " BCL11A--MEIS3
1062405 BCL11A--ARNTLE
1.08e05 | XBP1--BCL11A
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Figure 3.5: Viper output depicting the synergistic relationships among FOXC1 and
BCL11A with other significant TFs in microarray series.

The 26 significant TFs from microarray series were evaluated for possible syner-
gistic relationships amongst one another. A total of 73 pairs were found to exhibit
significant synergy. As FOXC1 and BCL11A were found to be differentially more
active in both data sets, the synergistic relationships between these TFs and other
significant TFs found in microarray series is highlighted.

Each row in Fig: 3.5 characterises one synergistic relationship with the p-value
of the relationship found on the far left. The shared gene targets that are enriched
in the TNBC gene expression signature are represented by the barcode on the x-axis
with each vertical line representing one shared target gene. Genes located on the
far-left end of the x-axis represent genes that were the most downregulated in the
TNBC, while genes on the far right represent the genes that were most upregulated.
Genes depicted in red reflect genes that are induced by the synergistic relationship
and genes depicted in blue represent those that the synergistic relationship represses.

Differential RNA expression of the shared TFs is represented in the far-right
box and is represented by the depth of the red colouration. The boxes appear gray
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as these TFs work together to show increased protein activity relative to mRNA
expression. Inferred protein activity lies on the box directly to the left and is also
represented by depth of red colouration. All boxes appear in deep read as they show
high levels of activity when working together.

3.3.2 Expression Profiling to find a Signature of Upregulated
Genes in TNBC

DECO utilised a differential expression analysis to identify genes whose expression
differed significantly between the HR++, HER2+, and TNBC subclasses. It then
quantified the association between these genes and their membership in each one of
the three subclasses. Finally, it measured the difference in expression between each
sample and the mean expression for that gene.

The results of these analyses culminated in the development of an h-statistic for
every differentially expressed gene in respects to each of the subclasses. This h-
statistic represents how well a gene’s expression level characterises a given subtype.
The sign in front of the h-statistic signifies if the relative up-regulation (+) or down-
regulation (-) of a gene marks a subclass. The larger the absolute value of the
h-statistic, the greater a gene characterises a certain subtype.

h-statistic
- 00 s ‘ 361 breast tumor samples ’—‘—‘
-10 -5 o

A: Pure IHC Classes
B: PAMS0 Classes
C: DECO found Classe

M geneﬁ
e e S e SN = S,

Figure 3.6: Heatmap clustering of 361 breast tumour samples derived from THC sub-
class(HR+-+, TNBC, HER2+).
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Since the transcriptomic omic data does not follow a normal distribution, the
strength of DECO is that it outperforms other methods of comparative analysis
when the data have minority changes (a subgroup of samples from one group is
differenced from the rest and mark a class that otherwise would not be relevant).
DECO is also capable of differentiate two groups that have changes in some of their
samples, which other methods would not notice due to the medians being equal.

DECO analysis found 271 genes to be significant in the characterisation of
HR++, HER2+, and TNBC. Hierarchical Bi-clustering of significant genes revealed
10 groups that exhibited a similar pattern of how h-statistic signal varied over all
samples Fig: 3.6. The TNBC class showed increased signal in groups 8 and 10,
while the ER+PR+ and HER2+ classes showed decreased signal.

We utilised the following input parameters for DECO analysis: RDA r = 5, com-
binations—9999, adjusted p.value < 0.01; NSCA variability explained — 90.197%,
feature threshold—20 differential events in at least 5% samples.

The heatmap represents the h-statistic parameter, provided by DECO algorithm.
The clustering identifies 10 groups of genes. The triple negative tumours (type 000)
are characterised by increased signal by the groups of genes in 8, 9 and 10. Genes
in group 8 and 10 show increased signal in TNBC and decreased signal in HR++
and HER2+ and could serve as viable “positive” biomarkers for TNBC.

Genes which showed a positive h-statistic for the TNBC subclass and a nega-
tive h-statistic for the HER2+, and HR++ subclasses were identified as potential
“positive” biomarkers for TNBC as shown in Table: 3.3. Thirty-eight genes were
identified as prospective biomarkers with 37 coming from groups 8 and 10, while 1
came from group 9.
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Gene HR++ BRCA TNBC HER2+ BRCA Group
ROPN1 -6.35 15.39 -7.22 10
HORMAD1 -6.65 14.48 -1.65 8
ZIC1 -8.20 14.46 -0.28 8
GABRP -5.81 14.35 -4.02 10
MSLN -6.68 13.27 -3.66 8
MIA -4.40 12.73 -10.23 10
ROPN1B -5.99 12.68 -2.90 10
SOX10 -4.09 12.49 -10.56 10
TTYH1 -5.47 12.04 -1.44 10
UGTS -5.21 12.03 -3.96 10
FOXC1 -3.82 11.54 -5.41 8
LEMD1 -5.49 11.53 -2.37 8
FBN3 -5.66 11.45 -1.93 8
PRSS33 -5.95 11.38 -1.32 8
MAPK4 -5.48 11.32 -2.58 10
SCRG1 -5.38 11.25 -3.51 10
ABCA13 -5.37 11.12 -2.48 10
CHODL -5.48 10.99 -1.29 8
SFRP1 -4.06 10.99 -4.30 10
SLC6A15 -5.06 10.88 -4.52 10
DLX6 -4.95 10.03 -1.94 8
OPRK1 -5.39 9.89 -0.32 8
SHC4 -4.53 9.75 -3.02 10
RASGEF1C -4.95 9.52 -1.47 8
KCNK5 -4.56 9.30 -1.90 8
GDF5 -3.79 8.91 -5.27 8
KCNQ4 -4.52 8.68 -0.73 8
RGMA -3.82 8.66 -1.95 8
CHST4 -4.20 8.66 -2.38 10
FAM171A1 -3.82 8.11 -0.33 8
PM20D2 -3.91 8.07 -2.55 10
L3MBTL4 -3.57 7.80 -2.62 10
LDHB -3.91 7.55 -0.04 9
TFCP2L1 -2.65 7.48 -14.59 10
SNX32 -3.43 7.00 -2.26 8
PRTFDC1 -2.97 6.44 -2.13 8
TAF4B -3.29 6.31 -0.68 8
ANP32E -3.19 5.95 -1.33 8

Table 3.3: “Positive” biomarkers found to characterise TNBC via DECO analysis.

These 38 genes show a positive h-statistic in TNBC and a negative h-statistic
in HER2+ BRCA and HR++ BRCA. Dendrogram group affiliation is denoted on
the far right. We then looked for genes which had a larger h-statistic in the TNBC
subclass than ER showed for the HR-+ subclass, which was h=9.39 (Fig: 3.7).
The h-statistic of ER was chosen as the threshold of interest as ER has been both
successfully targeted by therapeutics and evaluated by THC and RNA-seq. 24 genes
showed an h-statistic for TNBC greater than this landmark: ROPN1, HORMADI,
ZIC1, GABRP, MSLN, MIA, ROPN1B, SOX10, TTYH1, UGTS8, FOXC1, LEMD1,
FBN3, PRSS33, MAPK4, SCRG1, ABCA13, CHODL, SFRP1, SLC6A15, DLXG6,
OPRK1, SHC4, and RASGEF1C.
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Figure 3.7: DECO output highlighting the distribution of the h-statistic for FOXC1 in
comparison to ESR1 (ER).

Fig: 3.7 A) shows the plot of the h-statistic per sample for ESR1. The scale
below designates samples in respects to “Pure IHC” with HR++ (green), TNBC
(blue), and HER2+ (red) seen. The “PAMS50” scale depicts the molecular subtypes
with basal in red, Luminal A and B in green, and Her2 in blue. DECO found
subclasses are the basis for hierarchical gene clustering and the heatmap derived
from the h-statistic seen in Fig: 3.6. Subclass 1 coincides with HR++4-, subclass 2
with TNBC, and subclass 3 with HER2+. The bar graph in Fig: 3.7 B) pictures
the directionality of the h-statistic for ESR1 in each of the DECO found subclasses.
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Fig: 3.7 C) pictures a plot of the h-statistic per sample for FOXC1. FOXC1
is one of the 38 genes that showed a positive h-statistic in TNBC and a negative
h-statistic in HER24+ BRCA and HR++ BRCA. It is a member of dendrogram
group 8. The Fig: 3.7 D) bar graph pictures the directionality of the h-statistic
for FOXC1 in each of the DECO found subclasses.

3.3.3 Methylation in TNBC

Using the data available in TCGA (TCGA, 2019) with the series of BRCA methy-
lation, some analysis were done which started by the comparison between our two
classes, the HR++ and TNBC.
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Figure 3.8: Distribution of methylated CpG islands in TNBC(000 patients) along hg19
chromosomes.

We detected hypermethylation in 11405 CpG islands (in red) and hypomethyla-
tion in 16658 (in green).
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Figure 3.9: Hypermethylation and hypomethylation of promoters in TNBC data.

In general a higher count of hypomethylated CpG islands are found in out TNBC
subset, the distribution of the islands is represented in Fig: 3.9, and shows that in
hypermethylated regions there are more introns affected and less promoters affected
than in hypomethylated regions.
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Figure 3.10: Hypermethylation and hypomethylation of promoters in TNBC(000) pa-
tients.
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Levels in 000 patients
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Figure 3.11: Hypermethylation and hypomethylation of promoters in HR++(110) pa-
tients.

As shown in Fig: 3.10 and Fig: 3.11 global DNA methylation levels in TNBC
is slightly lower in comparison with HR++ patients. Hypermethylation is higher in
000 patients and hypomethylation variation is less significant. The level of global
methylation on CpG regions or promoter regions is very low in the TNBC patients
which might be telling us that hypermethylation events are specific of 110 patients.

The global signal is lower than the signal for TNBC, and the signal for HR+-+ is
the higher than both TNBC and global signal. The differences between both classes
may suggest that in the case of triple negative BRCA patients there are more regions
in the genome that are hypomethylated.

DNA hypomethylation in cancer has grown to be more and more important
(Ehrlich, 2009), that epigenetic abnormality was often ignored but it is getting
relevance again. DNA global methylation is reported to be lower in all tissues
of cancer patients compared to control, and in some cases high hypomethylation in
tumours (Kankava et al., 2019). Recent high-resolution genome-wide studies confirm
that DNA hypomethylation is the almost constant companion to hypermethylation
of the genome in cancer.
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Figure 3.12: Differentially expressed genes with annotated promoters.

Concordance between the DECO discovered Master Regulators in microarray
series and RNAseq series is almost total. In 3.12 the genes that dont overlap in the
comparison are shown as blue dots. The data of the overlap is represented in the
following table Tab: 3.4.

| RN Aseq

T F
Array | T 15766 2852
F 1427 4120

Table 3.4: Confusion Matrix DECO microarray vs RNAseq.
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Confusion Matrix and Statistics

Accuracy : 0.8229
95% CI : (0.8181, 0.8277)

Mcnemar’s Test P-Value : < 2.2e-16

Sensitivity : 0.9170
Specificity : 0.5909
Pos Pred Value : 0.8468
Neg Pred Value : 0.7427

The accuracy, sensitivity, and positive and negative predicted value are strongly
significative. In conclusion the capability of DECO to generate reproducible results
is quite strong even for different platforms. Following this conclusion, the robustness
of our proposed Master Regulators is guaranteed.

3.3.4 Risk and Survival analysis

This section analysis use the robust risk and survival tools developed as main part
of this thesis(described in Chapter 2).

Multivariate risk prediction using TNBC markers

In this section, an analysis is done using the multivariate risk prediction algorithm
defined in Chapter 2.

The genes discovered as TFs and TNBC marker genes are used in the multivariate
approach to predict risk.
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Figure 3.13: Risk predicion and Kaplan-Meier curves TNBC markers, microarrays.
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Figure 3.14: Risk predicion and Kaplan-Meier curves TNBC markers, RNAseq.

In Figs: 3.13 and 3.14, the analysis corresponding to microarray (A and B)

and RNAseq (C and D) is pictured. The ordered risk curve in A divide by the
green line the high and low risk patients from microarray series. These patients are
represented in high and low risk groups in Kaplan Meier curves in B.

Besides, C displays the risk ordered patients from RNAseq series. As before, D

displays the Kaplan-Meier curves for high and low risk groups.
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DATASET1 000 type 110 type
g .. | | High Risk 31.42 28.35 |59.77
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Figure 3.15: Contingency tables and Kaplan-Meier curves TNBC markers, microarrays.
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Figure 3.16: Contingency tables and Kaplan-Meier curves TNBC markers, RN Aseq.

In Figs: 3.15 and 3.16, the A and C plots represent the same curves from
previous figure to clarify the information in contingency tables. Contingency table
B and D shows the coincidences between the group defined as TNBC(or 000) and
ER++(or 110) and the risk groups computed and labeled as low or high risk. As
said before, B corresponds with microarray data and D with RNAseq. The tables
show the relationship between subtype TNBC and bad prognosis and risk, showing
also the relationship between low risk and prognosis and ER++ subtype.
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Figure 3.17: Kaplan-Meier curves in RNAseq dataset. 110 vs 000 subtypes.
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In Fig: 3.17, the difference in survival from TNBC group and ER+-+ group is
represented with a significant separability.

3.4 Discussion

BC tumour samples are currently evaluated by IHC and FISH to determine the
presence of the three most critical and well-identified BRCA molecular markers:
ER, PR, and HER2. When a sample does not show significant expression of any of
these markers it is given the label of TNBC. Thus, HER2+ or HR++ samples that
show false-negatives via these methods of analysis are at risk of being classified as
TNBC and given an incorrect prognosis and denied viable treatment. It is therefore
imperative that tissue samples be classified correctly.

We propose that samples designated as TNBC could be subjected to a verifica-
tion step to ensure that tumours have not been incorrectly classified as TNBC. As
the “exclusionary”; definition of TNBC is the source of potential misclassification,
it seems prudent that further classification of TNBC be based on an “inclusive”
criterion. The 24 genes identified to best classify TNBC could serve as potential
biomarkers for this verification step. Each of these genes was shown to have differ-
entially upregulated mRNA levels in TNBC as opposed to HER2-+ or HR++ BRCA
and each has been identified to better characterise TNBC than ER does for HR+-+
BRCA.

While RNA expression levels allow us to better categorise TNBC, RNA expres-
sion analysis does not measure protein activity and thus cannot directly tell us which
proteins are playing a dominate role in the landscape of TNBC. In order to address
this issue, Viper was used to evaluate differential protein activity in TNBC and
HR++. Viper identified 12 TFs that were differentially more active in the HR++
samples as compared to the TNBC samples. Among the 12 TFs were ER and PR,
which is to be expected based on the underlying comparison. These findings pro-
vide support to the efficacy of the methods utilised and provide justification for the
exploration of other TFs on the list. As ER and PR have been successfully targeted
with pharmaceuticals in HR++, it seems logical that TFs that were identified as
differentially more active in the TNBC could serve as potential targets for pharma-
ceutical inhibition in TNBC. Ultimately, Viper identified 34 TFs with differentially
increased activity in TNBC. BCL11A and FOXC1 were the focus because they were
identified in both data sets.

BCL11A a BRCA cancer related transcriptional repressor

BCL11A encodes for a zinc finger TF that functions as a transcriptional repres-
sor. BCL11A is also a proto-oncogene for hematologic cancers and is a proposed
biomarker for non-small cell tumours of the lung (Jiang et al., 2013) (Weniger et al.,
2006) (Nakamura et al., 2000). Its expression is essential for proper B cell and T
cell development and has been found in low levels in the thymus, bone marrow,
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and lymph nodes but in high levels in germinal center B cells and the fetal brain
(Satterwhite et al., 2001) (Liu et al., 2003). BCL11A has also recently been found
to be a regulator of normal mammary gland development and is required for the
development of both mammary stem cells and luminal progenitor cells. However,
high levels of BCL11A expression have been shown to promote tumourigenesis in
TNBC and is negatively correlated with survival (Khaled et al., 2015).

BCL11A is one of the 271 genes that DECO identified as significant in the char-
acterisation of HR++, HER2-+, and TNBC BRCAs. It is part of dendrogram group
10 and is differentially upregulated in TNBC. BCL11A effects the TNBC phenotype
not only by its increased activity but also through synergistic relationships. It takes
part in at least 4 synergistic relationships to yield greater enrichment of its shared
gene targets in the TNBC gene expression signature.

FOXC1, downregulated in both HER2+ and HR+-+ BRCA

FOXC1 was identified as the 7th greatest gene to exhibit differential expression
among HR+-+, HER2+, and TNBC. It followed ER, which showed the greatest
differential expression and ERBB2, which showed the 3rd greatest. FOXC1 is part
of dendrogram group 8 and is differentially upregulated in TNBC and differentially
downregulated in both HER2+ and HR++ BRCAs. The increased expression of
FOXCT1 is has been shown to be characteristic of TNBC, with an h-statistic of 11.54
(Fig: 3.7 C & D).

The FOX family of TFs are characterised by their Forkhead domain, a 100
amino-acid DNA-binding domain that has been conserved throughout evolution
(Hannenhalli and Kaestner, 2009). Members of the FOX family play diverse roles
in organogenesis, cell cycle regulation, and cell differentiation (Tuteja and Kaestner,
2007a) (Tuteja and Kaestner, 2007b). FOXCI specifically has been associated with
a number of cancers, including Hodgkin’s Lymphoma, non-Hodgkin’s Lymphoma,
hepatocellular carcinoma, endometrial cancer, and breast cancer (Elian et al., 2018).

In TNBC, FOXC1 promotes metastatic change at least in part by its ability to
activate chemokine receptor-4 (CXCR4), a well-known promoter of metastasis (Pan
et al., 2018). In BLBC (a molecular subtype of BRCA which is made up of roughly
60-90% by TNBC), BRCA1 and GATA3 have been found to collectively repress
FOXCI. Increased FOXC1 expression in BLBCs has also been associated with drug
resistance, the epithelial-to-mesenchymal transition, and loss of E-Cadherin. Fur-

thermore, FOXC1 has been found to have additional roles in the maintenance and
proliferation of BLBC (Tkocz et al., 2012).

The transcription factors and their potential

We have shown that FOXC1 and BCL11A exert their influence on the TNBC phe-
notype through upregulated expression, increased TF activity, and synergistic rela-
tionships. These findings have led us to postulate that FOXC1 and BCL11A may
be drivers of TNBC. The hypothesis is that these TFs could serve as viable targets
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for the treatment of TNBC. Additional studies should be conducted using murine
models and cell lines to further evaluate the role of putative drivers and their po-
tential use in the targeted therapy of TNBC.

The relationship between discovered TNBC markers and risk prediction power
and survival is a great addition to the study. The value that this relationship incor-
porates to the markers is triple. First, the possibility to compute and predict risk
for new patients in clinic while the pertenency to a subgroup is evaluated. Second,
the posibility of being used as factors that define the barely known triple negative
BRCA subgroup. Finally, the proposed markers could be investigated to define sub-
groups inside the TNBC.

In conclusion, our work has allowed us to identify positive biomarkers in TNBC.
These biomarkers could serve to confirm that samples designated as TNBC are truly
TNBC and not HER2+ of HR+-+ BRCAs that were given false-negatives via FISH
or IHC. Additionally, our work allowed for the identification of potential tumour
drivers of TNBC. These potential targets should be investigated further to deter-
mine if their increased activity is in fact driving TNBC and if targeting these TFs
would be a viable therapy in the treatment of TNBC.

75



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

76



Chapter 4

Survival marker genes of ColoRectal
Cancer (CRC) derived from
integration and meta-analysis of
multiple transcriptomic datasets

4.1 Motivation

Colorectal cancer (CRC) is one of the most frequent tumours that causes great mor-
bidity worldwide. It is the third most common cancer in men, the second most
common cancer in women and the third leading cause of global cancer mortality
(https://www.wcrf.org/).

CRC is a heterogeneous disease since from one patient to another it differs in
clinical presentation, molecular characteristics, and prognosis (Linnekamp et al.,
2015). The heterogeneity of CRC increases the complexity of this tumoural pathol-
ogy, making subtyping and stratification a difficult task for therapeutic decisions.

In this way, personalised medicine for CRC is becoming increasingly needed, es-
pecially for targeted therapies where large variations between individual’s treatment
responses exist (Linnekamp et al., 2015) (Dienstmann et al., 2017). In this context,
the need to find robust gene markers associated with specific subtypes of CRC led
us to this study.

Furthermore, the specific purpose of our work was to find consistent biomolecu-
lar targets that, together to facilitate samples stratification, could be related to the
prognosis of the disease using survival data.

The genomic and transcriptomic profiling of human cancer samples has been
demonstrated over the last decade as an excellent way to obtain a better molecular
characterisation of many tumour types and subtypes. While gene expression-based
CRC classifications has been heavily approached (Dienstmann et al., 2017), little
consensus in CRC standalone gene bio-marking has been achieved.
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In fact, several studies have identified a broad variety of gene sets as gene ex-
pression profiles for classification and categorisation of this malignant disorder (Liu
et al., 2017) (Guinney et al., 2015). Moreover, several transcriptomic-based tests
oriented towards prognosis have also been investigated.

Some examples of these are: ColoLipidGene (Vargas et al., 2015), ColoGuidePro
(Sveen et al., 2012) or ColoPrint (Kopetz et al., 2015); that include gene signatures
associated with CRC survival in some specific biological contexts. Despite these
efforts, at present there is not a clear compendium of gene markers for CRC survival
and it is quite difficult to find consistency in the literature.

In the clinic, patients are classified into four CRC stages based in the anatomo-
pathologycal characteristics of their tumours. It is common to use the TNM Staging
System (where T stands for tumour, N for lymph node, and M for metastasis). The
disease “staging” also allows grouping the patients in 4 progressive cancer stages,
indicated by roman numerals: I, IT, TII, and IV (Society, 2017).

In this way, stages I and II correspond to cases which had not shown cancer
cells beyond the tumour or blood. By contrast, stages III and IV correspond to
individuals in where the cancer had diseminate to the lymph system or other organs
in the body. This four stage categorisation represents significantly distinctive pa-
tients groups for final outcome or disease relapse, but the stages do not predict the
risk of each individual patient because they are not directly associated to survival
(Tauriello and Batlle, 2016).

Based on the described need and potential benefits to find survival marker genes
correlated with high risk and poor prognosis in CRC; global gene expression profiles
of colorectal tumours and its alteration throughout stages is investigated, to identify
genes that could be levered as biomarkers of survival and prognosis for CRC in late
stages (i.e., IIT and IV). To undertake this work we performed a deep analysis on a
large cohort of human samples derived from a robust integration of several datasets
that had transcriptomic and clinical survival data.

The integration provided a homogeneous and well-standardised meta-dataset
that includes 1273 human colorectal samples. The identification of candidate mark-
ers was performed using an initial contrast between the gene expression of the subset
of patients with CRC allocated by their clinical features to stages I and II versus
the patients with tumours corresponding to stages III and IV.

Finally, after internal and external cross-validation, the genes selected as best
survival markers were used to construct a risk predictor to allow stratification of the
patients with respect to their relative risk.
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4.2 Material and Methods

4.2.1 General workflow of the study

£

RMAseq and Batch effect and Diff. Expression
micro;:ray No;m:;ion Linear Regression ——» and
BC datasets evaluation Survival / Risk
A) RMA s N
B) RMA+ComBat
C) IRMA Normal vs Tumour <——| Validation
D) fRMA+ComBat N p

E) fRMA+centered

Survival Analysis

Figure 4.1: CRC methodology and workflow of the study.

In Fig: 4.1, the followed process is portrayed. First, the dataset is merged an
normalised using five different protocols. The choice of the best performing method
is further explained. RMA + ComBat method is selected, using this method the
batch effect was eliminated.

Differential expression analysis was performed as described in Chapter 2 using
Limma this time method. This provided a list of relevant genes which were further
analysed using the survival tools described in the same chapter. The final list of
markers is validated in two independent studies.

The first one, evaluates the multivariate relationship of the genes with risk, which
is not analysed in previous step.

The second one, compares tumour samples and versus CRC samples. Colorectal
samples from the series have higher expression than normal samples for our UP
defined marker genes.

Moreover, the DOWN defined marker genes are downregulated in CRC samples.

79



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

4.2.2 Genome-wide expression data sets

In this study, seven data sets of CRC samples were analysed and integrated (Tab:
4.1).

GEO dataset Description Inital PMID Reference Discarded Final
samples samples samples

GSE14333 primary colorectal 290 19996206 Jorissen RN et al. 64 226
(2009)

GSE17536 colorectal 177 19914252  Smith JJ et al. (2010) 0 177

GSE31595 stage Il and 111 37 Thorsteinsson M et 0 37

colorectal al. (2011)

GSE33113 stage II colorectal 90 22496204 Kemper K et al. 0 90
(2012)

GSE38832 colorectal 122 25320007 Tripathi MK et al. 0 122
(2014)

GSE39084 primary colorectal 70 25083765  Kirzin S et al. (2014) 1 69

GSE39582 colorectal 566 23700391  Marisa L et al. (2013) 14 552

Total

number 1352 1273

Table 4.1: Series summary of colorectal cancer (CRC) samples integrated in the data set.

All data sets are available at GEO repository, corresponding to 7 series with
the following accession numbers: GSE14333, GSE17536, GSE31595, GSE33113,
GSE38832, GSE39084 and GSE39582. All these series included the raw expression
signal and correspond to data obtained with the microarrays expression platform:
Affymetrix GeneChip U133 Plus 2.0 for Homo sapiens.

The phenotypic information corresponding to all these series was analysed in
order to select only the samples that included information regarding: the cancer
stage and the Overall Survival (OS).

The samples that did not have any survival information were discarded from the
study. In all cases only primary tumours samples were considered for our analysis;
in this way individuals who had received preoperative chemotherapy and/or radio-
therapy were also discarded.

For the external validation two independent datasets were used. A cohort of
276 colorectal carcinomas that had been studied using RNA-seq gene expression
profiling, and that had survival data for 269 samples (Muzny et al., 2012). A sec-
ond cohort of CRC samples from the platform SurvExpress (Aguirre-Gamboa et al.,
2013).

This second dataset selected, called “Colon-Metabase-Uniformised”, included 482
CRC samples with overall survival data and genome-wide expression determined
with Affymetrix microarrays.
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4.2.3 Expression data sets exploration and integrative nor-
malisation

Previously, to make the best use of the information obtained from the microarrays,
the importance to ascertain the quality of the data is considered. To assess the
validity of generated microarray information a wide variety of quality assessment
methods is performed, both in raw and pre-processed information. In this way, sev-
eral explanatory data analysis were applied for the detection of problematic arrays.

The R function image was used to create chip images of the raw intensities to dis-
cover spatial artefacts in the samples. The distribution of probes intensities across
all arrays were checked, using the boxplot method available for the Affybatch class.
The Normalised Unscaled Standard Error (NUSE) (McCall et al., 2011) algorithm
was applied to the samples. This quality assessment tool requires a previous PLM
fitting procedure applied on the raw expression data. The function fitPLM provided
in the affyPLM (Brettschneider et al., 2007) package was used to create the PLM-
set class object used as the input in the elaboration of the NUSE analysis. After
applying the referred quality assessment methods, 79 of the initial samples collected
were discarded and proceeded with the remaining 1273 (Tab: 4.1).

To create a table with all the phenotypic characteristics of the patients selected
which involved all samples GSM accession numbers and related clinic variables in
a consistent and homogenize way, getGEO and pData functions from GEOquery
package were used. Regular expressions and common text manipulation R functions
were used to solve the issue of formatting heterogenic data. Finally, a binary vari-
able was created to label the patients and select them in a proper way during the
hypothesis contrasts and statistical modeling.

4.2.4 Batch effect removal

Batch effect is one of the main problems when several datasets are combined to
be studied together, because different batches usually add large unwanted variabil-
ity to the data. To avoid this effect a combination of different pre-processing and
normalisation algorithms was tested: Robust Multi-array Average (RMA) algo-
rithm (Gautier et al., 2004); Combatting Batch effects (ComBat) algorithm from
inSilicoMerging package; Frozen Robust Multi-array Average (fRMA) algorithm
(McCall et al., 2010a). For the fRMA algorithm application, the frozen parameter
vector was constructed using a training dataset in where we distributed randomly
selected samples proportionally to each labelled group to obtain a balanced sample
from the 7 batches of microarrays.

Another important issue addressed was the fact that the Affymetrix probe-sets
included in the expression microarrays many times do not correspond to singular
genes and some probes inserted in the defined probe-sets are ambiguous or inaccu-
rate (Risueno et al., 2010). Affymetrix GeneChip is a popular and usefull platform
for gene ex- pression profiling, but the use of its probes and probe-sets mapping
has multiple inconveniences. In fact, the probe-sets for the Affymetrix Human
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Genome U133 Plus 2.0 Array are based on UniGene database (Build 133, April
20, 2001) and considering how rapidly human genome has evolved many probes
on the array are not correctly assigned. To avoid this problem, we used the up-
dated probe alignment and gene mapping that is provided by the Chip Definition
File (CDF): hgu133plus2hsensgcdf (downloaded from brainarray (Sandberg and
Larsson, 2007)).

4.2.5 Batch effect removal evaluation

We performed unsupervised hierarchical clustering to observe unlikely clustering
based on batches in those ex- pression value matrixes where batch effects remained
after pre-processing. We used a 30-random sampling per batch, identifying each
batch by a different colour.

The batch effect was also investigated using principal components analysis (PCA).
PCA is a useful technique for exploratory data analysis, allowing you to better visu-
alize the variation present in a dataset with many variables. It is particularly helpful
in the case of "wide" datasets, where you have many variables for each sample.

A linear regression of average gene expression on array batch per pre-processing
method was the final approach fulfilled to assure removal.

4.2.6 Differential expression analysis

For the identification of gene whose altered expression achieved statistical signifi-
cance we used the R algorithm Linear Models for Microarrays (LIMMA package).
We applied LIMMA (Ritchie et al., 2015) to the expression data matrix fixing an
adjusted p-value threshold of FDR < 0.01 to select significant genes.

The comparison was done separating the samples according to their clinical and
pathological stage (comparing CRC stages I and II versus III and IV). In this way
we found a set of 2707 candidates genes, corresponding to 2524 protein-coding genes
that were tested in the survival analysis (the rest were non-coding genes). In this
work we focus only on the genes that encode proteins because we wanted to find
CRC survival markers that later can be tested at protein level using, for example,
immunohistochemistry (IHC) analysis.

4.2.7 Linear Regression analysis

In statistics, linear regression or linear adjustment is a mathematical model used to
approximate the dependency relation between a dependent variable Y, the indepen-
dent variables X; and a random term e. This model can be expressed as:

Yi= 0o+ 5 X1+ 5eXot+ ...+ X, +¢ (4.1)
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where:

Y;: dependent variable.

X1, Xy, ..., X,: independent variable.

Bo, B1, B2, ..., Bp: regressions coefficients measuring the influence that independent
variables have over the model.

Where 3y is the intersection or "constant" term, the ;(i > 0) are the respective
coefficents for each independent variable, and p is the number of independent pa-
rameters to be taken into account in the regression.

The independent variable X; is each one of the batches or datasets, the model
measures if the batches have influence over the regression. The independent term
or [y is the coefficent that should be present if there are no batch effect. Otherwise,
if any or all the coefficents 3; are not zero, then the batch effect will be present.

4.2.8 Survival analysis

Our intention in this research was to identify genes whose relative expression level
affect survival and prognosis in CRC, once we had made a preselection in its be-
havior through stage evolution of 2524 protein-coding genes. The first step for the
survival analysis was to define for each gene two separated distributions of high
and low expression along the sample dataset investigated. This separation based in
expression level determined the explanatory variable. The Kaplan-Meier and risk
prediction techniques are the one described in the first chapter, section Sec: 2.2.4

For computing the time to event, the response variable in the models was the
Overall Survival (OS) time. All the data sets that we integrated in our analyses had
OS information. In some cases for some individuals, Disease Specific Survival (DSS)
times or Relapse Free Survival (RFS) times were also provided with the original
data, but we did not considered these time-events since we wanted to focus on OS
to achieve a homogeneous analysis.

4.3 Results

4.3.1 A large dataset of CRC samples including global ex-
pression and survival data

We first built a large cohort of CRC samples collected from individuals that had
clinical record with survival data times, as well as genome-wide expression profiles of
their colorectal primary tumours at diagnosis (i.e. before any drug treatment). Our
aim was to achieve a meta-dataset with at least 1 thousand samples and to demon-
strate a good integration of the global transcriptomic profiles of different samples
sets avoiding the typical batch-effects that can alterate any unified analysis.

Tab: 4.1 presents the datasets of CRC samples that were collected to produce
the integrated dataset analysed in this work. All the CRC samples included in this
meta-dataset were tested for global gene expression profiling using the platform of
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high-density microarrays from Affymetrix: Human Genome U133 Plus 2.0. Using
this platform, the probesets of the arrays were mapped to single genes (as indicated
in Risueno et al.) (Risueno et al., 2010) and, in this way, each microarray measured
the expression signal of 20,079 human genes (using the mapping provided by the
Chip Description File, CDF v.21 from brainarray).

As a whole, Tab: 4.1 includes 7 series that were obtained from the Gene Ex-
pression Omnibus repository(GEO (NCBI, 2019)). These datasets included a total
amount of 1352 CRC samples, but after collecting the clinical survival data and
carrying out the integration and normalisation protocols we finished with 1273 sam-
ples, since we filtered 79 samples that did not have survival data or did not show
comparable data distributions after normalisation.

4.3.2 Evaluation of normalisation procedures to integrate in-
dependent batches
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Figure 4.2: Symmetric heatmaps from different normalisation methods.

We performed the integration and combined normalisation of the CRC expression
datasets using 5 different proce- dures. The procedures applied different normali-
sation algo- rithms to provide a homogeneous signal matrix, avoiding bias due to
batch effect on the global expression profile of the CRC samples.
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The procedures applied were: (i) Robust Multi-array Average (RMA) algorithm
(Irizarry et al., 2003); (ii)) RMA plus Combatting Batch effects (ComBat) algorithm
(Stein et al., 2015); (iii) Frozen Robust Multi-array Average (fRMA) algorithm (Mec-
Call et al., 2010b); (iv) fRMA plus Combat; (v) fRMA plus scaling of the data using
mean-centered expression values.

To evaluate and compare the results provided by each one of these 5 procedures
we carried out several analyses. Fig: 4.2 presents the heatmaps derived from an
unsupervised clustering of the samples using in each case the expression data matrix
derived from each one of the 5 procedures applied.

Due to the fact that each series has a different number of samples (one with
more than 500 and several other with less than 100), we did a random selection of
an even number of samples for each dataset to be included in the cluster analysis:
30 samples from each one. In this way, each heatmap is composed of 210 samples
(30 x 7): 30 samples from each one of the 7 datasets (identified by the ID number,
GSE, from GEO).

Symmetric heatmaps representing the similarity between the overall gene expres-
sion signal of the samples compared with each other. Each heatmap is composed of
210 samples (30 x 7, 30 samples random selected from each batch, i.e. from each
one of the 7 GSE datasets). The samples of each batch are identified by a colour in
the top bar below the top dendrograms (following the colours legend).

Each heatmap represents a different preprocessing and normalisation method
performed to merge the datasets in one batch. The methods applied were: A RMA;
B RMA plus ComBat, C fRMA, D fRMA plus ComBat, E fRMA plus scaling of

the data using mean-centered expression values.

In Fig: 4.2 the samples of each batch are identified by a colour that is indicated
in the horizontal bar below the dendrograms. Each heatmap represents a different
preprocessing and normalisation method performed to merge the datasets in one
meta-dataset. The results shown in these clustering analyses indicate that in the
case of methods that gave the heatmaps A, C and E, several samples of the same
colour are grouped together showing that they have a common correlation profile
within the global expression signature.

By contrast, in the case of methods that gave the heatmaps B and D, there is
a clearer shuffling of all the colours, which reflects a homogenous mix of the overall
expression signal coming from different datasets.

The clustering analysis presented in the symmetric heatmaps of Fig: 4.2 was
done using, for each sample, a vector including the expression signals along all genes
and calculating with these vectors the pair-wise Pearson correlations between sam-
ples and the pair-wise distance matrix derived from such correlations. This approach
can reveal major effects associated to the global expression signal of the samples,
but it is not very sensitive to detect minor changes in a small number of genes.
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For this reason we applied a second approach to compare the results provided
by the 5 normalisation procedures in order to select the one that produces the best
unification of the 7 CRC datasets, preserving a good signal to noise ratio in the
expression distributions.

Algorithms of dimensionality reduction, such as PCA (Principal Component
Analysis), allow exploring large datasets in an accurate way to identify factors that
are relevant for the variance of studied variables (in our case the expression of the
genes in the unified meta-dataset of 1273 samples).
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Figure 4.3: PCA representation of normalisation mehtods.

Plots presenting the distribution of the 1273 samples from 7 datasets (GSEs)
obtained by Principal Component Analysis (PCA) of the global gene expression
profile of each sample; that converts the signal of each sample using an orthogonal
transformation in linearly uncorrelated variables called principal components or di-
mensions.

Each plot presents the values of the two main dimensions (dim 1 versus dim 2)
and corresponds to the PCA results obtained using the expression data calculated
with different preprocessing and normalisation methods. The methods applied were:
A RMA; B RMA plus ComBat, C fRMA, D fRMA plus ComBat, E fRMA plus
scaling of the data using mean-centered expression values. The samples of each
batch are identified by colour dots following the colours legend.

Fig: 4.3 presents the plots derived from the PCA done over the 5 expression
matrices (i.e. the signal of 20,079 genes in 1273 samples) obtained with 5 different
normalisation approaches. These results show very clearly that the RMA method
(Fig: 4.3 A) is not good to provide a proper normalisation of different batches,
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since the samples keep a very strong signal associated to each batch.

The fRMA method (Fig: 4.3 C) neither is good, since some samples (specially
the ones from the largest batch GSE39582) still keep a strong signal associated to
their batch. By contrast, the analysis of the data provided by the other 3 procedures
(RMA plus Combat, fRMA plus Combat and fRMA plus mean-centered scaling.

Fig: 4.3 B, D and E, respectively) showed an adequate mix of all the samples
from different batches. Within these 3 procedures, the normalisation is very similar
keeping a good signal to noise ratio along the genes and a small signal reduction.

We finally select option Fig: 4.3 B, RMA plus Combat, because the heatmap
in Fig: 4.2 B showed the best mix between series and a better similarity between
the samples (compared to options D or E).

As a final testing to identify the best integration and normalisation procedure of
the 7 CRC expression datasets, we carried out a linear regression analyses (as de-
scribed in equation: 4.1) on the global expression matrix considering as predictors
7 independent dummy variables or factors.

These variables correspond to the series from which each sample comes from. In
this way, if these factors have a significant influence in the expression signal distri-
butions, the linear regression analysis will show a significant p-value and correlation.

The results of this analysis are presented in Tab: 4.2 | that reveals again that
only the data matrices produced by the methods B and D (RMA plus Combat and
fRMA plus Combat, respectively) do not show a significant effect attributed to be-
longing to one of the series.

Finally, we choose B versus D as the final procedure applied because, despite
being very similar, the application of RMA plus Combat provoked less dramatic
changes with respect to the raw signal expression.
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Factors considered Est. coefficients Std. p-value Coefficients effect
error
(A) RMA
Intercept 6.925 0.014 <2e-16 -
(GSE14333+) GSE17536 0.387 20.230 <2e-16 yes
GSE31595 -1.212 0.019 <2e-16 yes
GSE33113 - 0.577 0.019 <2e-16 yes
GSE38832 - 0.355 0.019 <2e-16 yes
GSE39084 -0.978 0.019 <2e-16 yes
GSE39582 - 1.375 0.019 <2e-16 yes
(B) RMA plus ComBat
Intercept 6.219 0.013 <2e-16
(GSE14333+) GSE17536 0.000 0.001 0.999 no
GSE31595 0.002 0.019 0.903 no
GSE33113 0.001 0.019 0.959 no
GSE38832 - 0.001 0.019 0.973 no
GSE39084 0.002 0.019 0.927 no
GSE39582 0.001 0.019 0.977 no
(C) fRMA
Intercept 6.535 0.015 <2e-16 -
(GSE14333+) GSE17536 -0.011 - 0.553 0.580 no so much
GSE31595 0.089 0.021 0.000 yes
GSE33113 0.071 0.021 0.001 yes
GSE38832 0.054 0.021 0.008 yes
GSE39084 0.096 0.021 0.000 yes
GSE39582 0.089 0.021 0.000 yes
(D) fRMA plus ComBat
Intercept 6.590 0.014 <2e-16 -
(GSE14333+) GSE17536 0.000 0.001 1.000 no
GSE31595 0.002 0.020 0.926 no
GSE33113 0.001 0.020 0.942 no
GSE38832 0.000 0.020 0.985 no
GSE39084 0.002 0.020 0.929 no
GSE39582 0.000 0.020 0.994 no
(E) fRMA plus centered
Intercept 0.000 0.000 0.101 -
(GSE14333+) GSE17536 0.000 1.264 0.206 yes
GSE31595 0.000 0.000 0.773 no so much
GSE33113 0.000 0.000 0.108 yes
GSE38832 0.000 0.000 0.147 yes
GSE39084 0.000 0.000 0.940 no
GSE39582 0.000 0.000 0.163 yes

Table 4.2: Linear regression analysis depicting the coefficients(batches) relevance in the
model.

Results of the linear regression analyses on the global expression matrix cal-
culated for the 1273 samples from 7 datasets (GSEs) combined using 5 different
preprocessing and normalisation methods.
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4.3.3 Identification of genes associated to advanced CRC that
mark survival differences

Once we produced a large and well-integrated metadataset of CRC samples, having
global expression profiles and clinical survival data for all cases, we proceed to the
identification of the subset of genes that suffer significant changes with colorectal
tumour progression.

To do this, we explored the overall expression matrix to detect the genes that
showed a significant expression change when comparing CRC tumours in early stages
(stages I and II) versus CRC tumours in late or advanced stages (stages I1I and IV).
This comparison was done applying LIMMA, differential expression algorithm, and
retrieving all genes that gave a significant p-value (adjusted p < 0.05) in either
direction (i.e., genes up-regulated with the progression of the disease, in late versus
early CRC stages; or genes down-regulated with the progression of the disease).

Such differential expression analysis gave a subset of 2707 human genes: 2524
corresponding to protein-coding genes and the rest to non-coding genes (in this work
we focused only in the protein-coding genes).
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Figure 4.4: DCBLD2, EPHB2 survival plots.
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Once we had the subset of genes that can be associated to advanced or progres-
sion of CRC, we perform a second analysis on these gene candidates to find out
which ones can be correlated with the survival of the corresponding patient samples
based on their expression signals.

To do this, we carried out Kaplan-Meier (KM) analysis of the survival times of
the set of 1273 colorectal cancer samples for each one of the 2524 genes found in the
previous exploration. In this analysis, the genes were ranked considering the non-
parametric log-rank test that evaluates the separation between the two KM curves
for two prognostic groups: one with good survival and another with poor survival.

To do this, our algorithm performs for each gene multiple splits of the sample
cohort in two groups, and looks for the splitting that provides the best separation
between groups (i.e. the best p-value). Then, a stringent cut-off value (adjusted p
< 0.0003) was used to select the genes that are considered significant.

This allowed the identification of 429 significant genes in which the overexpres-
sion correlated with low survival, plus 336 significant genes where the repression
correlated with low survival. These analyses were done in a univariate mode, con-
sidering each gene as an independent factor.
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Kaplan-Meier plots of the survival analysis of the set of 1273 samples from col-
orectal cancer (CRC) patients, Figs: 4.4 and 4.5. The patients are separated in
two groups (high in red and low in green) according to the expression profiles of
4 genes: DCBLD2, PTPN14, EPHB2, and DUS1L. These genes provided the best
split between patients of high and low risk based in their expression levels.

In the case of genes DCBLD2 and PTPN14 (labelled in red) the over-expression
is correlated with poor survival; and in the case of genes EPHB2 and DUSIL (la-
belled in green) the over-expression is correlated with good survival. In all cases the
adjusted p.values of the analyses are very significant (as indicated inside each plot),
indicating that the two populations represented by the two curves have a very clear
difference in their overall survival.

Figs: 4.4 and 4.5 show the Kaplan-Meier plots corresponding to the survival
profiles of the two populations of individuals that were segregated according to the
expression values of the gene tested. The 4 plots correspond to the top genes:
DCBLD2 and PTPN14 with overexpression correlated to low survival; and EPHB2
and DUSIL with repression correlated to low survival.

The separation of the two populations in both cases is very significant, with KM
p-values < 1.0e-10 and Hazard Ratios (HR) around 2.0 for overexpression cases and
around 0.45 for repression cases. These parameters were calculated using all the
1273 samples; however it was necessary to do an internal cross-validation of these
results to assess how stable and reliable was the signal for each one of the selected
genes.

We carried out a cross-validation of the top-200 genes selected in any of the
two conditions (i.e. selected as survival markers when they were up-regulated for
the cases of poor survival or when they were up-regulated for the cases of better
survival). This internal cross-validation was done using for each gene a resampling
strategy that randomly selected 80% of the sample 100 times (i.e. doing 100 itera-
tions).

A short view of these data is shown in Tab: 4.3 that presents the 50 genes se-
lected as best survival markers of CRC: the first part of the table corresponds to
the top 25 genes, where up-regulation corresponds to shorter survival and higher
risk (HR > 1); the second part of the table corresponds to the top 25 genes, where
up-regulation corresponds to longer survival and lower risk (HR < 1).

The genes were ranked by their KM p-values and the HR values calculated for
the whole dataset (i.e. for all the 1273 samples, all-dt). As indicated, the stability
and robustness of the gene survival markers was assessed via a resampling strategy
using the robust bootstrap strategy described in Chapter 1. For the final ranking
of the genes included in these tables we also considered that they had to give a
significant adjusted p-value in more than 80 out of 100 bootstrap iterations (i.e.
N-sinf-in-100i > 80).
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Symbol KM.p.value N-in-100i HR(in-100i) Gene description

DCBLD2 0.0000000000 99 2.106 discoidin; CUB and LCCL domain containing 2
PTPN14 0.0000000000 99 2.082 protein tyrosine phosphatase; non-receptor type 14
LAMPS5 0.0000000000 93 2.046 lysosomal associated membrane prot.member 5
TM4SF1 0.0000000001 93 2.031 transmembrane 4 L six family member 1

NPR3 0.0000000002 97 2.136 natriuretic peptide receptor 3

LEMD1 0.0000000003 85 1.937 LEM domain containing 1

LCA5 0.0000000003 97 2.021 LCAS5; lebercilin

CSGALNACT2 0.0000000008 92 1.974 chondroitin sulfate N-acetylgalactosaminyltransferase 2
SLC2A3 0.0000000014 89 1.993 solute carrier family 2 member 3

GADD45B 0.0000000018 97 2.074 growth arrest and DNA damage inducible beta
SCEL 0.0000000018 87 1.928 sciellin

SIX4 0.0000000019 91 1.951 SIX homeobox 4

AKAP12 0.0000000028 95 2.092 A-kinase anchoring protein 12

COLEC12 0.0000000028 92 1.941 collectin subfamily member 12

PDLIM3 0.0000000047 91 1.985 PDZ and LIM domain 3

1TGB5 0.0000000049 88 1.911 integrin subunit beta 5

GULP1 0.0000000050 88 1.911 engulfment adaptor PTB domain containing 1
SCG2 0.0000000051 93 2.034 secretogranin 1T

AHNAK?2 0.0000000066 87 1.896 AHNAK nucleoprotein 2

CYP1B1 0.0000000075 85 1.884 cytochrome P450 family 1 subfamily B member 1
PRKD1 0.0000000451 87 1.872 protein kinase D1

SPARCL1 0.0000000471 85 1.863 SPARC like 1

CDKN2B 0.0000000717 84 1.847 cyclin dependent kinase inhibitor 2B

MLLT11 0.0000001989 84 1.813 myeloid /lymphoid or mixed-lineage leukemia; t to 11
CD36 0.0000002751 85 1.891 CD36 molecule

EPHB2 0.0000000000 100 0.426 EPH receptor B2

DUSIL 0.0000000000 98 0.481 dihydrouridine synthase 1 like

NUAK2 0.0000000001 96 0.495 NUAK family kinase 2

FANCC 0.0000000002 95 0.498 Fanconi anemia complementation group C
CISD3 0.0000000002 87 0.511 CDGSH iron sulfur domain 3

TIMM13 0.0000000003 95 0.511 translocase of inner mitochondrial membrane 13
AGMAT 0.0000000005 95 0.515 agmatinase

MYB 0.0000000006 93 0.508 MYB proto-oncogene. Transcription factor
CHDH 0.0000000006 90 0.520 choline dehydrogenase

FHDC1 0.0000000008 96 0.505 FH2 domain containing 1

ZBED3 0.0000000009 88 0.522 zinc finger BED-type containing 3

NOL9 0.0000000015 92 0.527 nucleolar protein 9

GARI1 0.0000000017 99 0.479 GARI ribonucleoprotein

FAMS3F 0.0000000019 93 0.518 family with sequence similarity 83 member F
TXN2 0.0000000036 88 0.527 thioredoxin 2

GALK1 0.0000000036 88 0.525 galactokinase 1

MLEC 0.0000000045 96 0.476 malectin

MAPKAPKS3 0.0000000048 92 0.520 mitogen-activated protein kinase-activated 3
CASP1 0.0000000180 87 0.523 caspase 1

MCCC2 0.0000000183 93 0.516 methylcrotonoyl-CoA carboxylase 2

BEND3 0.0000000193 88 0.529 BEN domain containing 3

CISH 0.0000000216 87 0.508 cytokine inducible SH2 containing protein
LARS2 0.0000000239 91 0.528 leucyl-tRNA synthetase 2; mitochondrial
CDC25A 0.0000000481 90 0.539 cell division cycle 25A

L3MBTL4 0.0000000606 90 0.506 1(3)mbt-like 4 (Drosophila)

Table 4.3: Genes selected as top-50 best survival markers of colorectal cancer (CRC).
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4.3.4 External validation of prognostic markers with a CRC
cohort studied using RNA-seq

The analyses done so far provided a ranked collection of genes found as robust
markers of survival in CRC. The consistency of the results obtained with the inter-
nal cross-validation gives strong support to the top genes found (presented in Tab:
4.3) , but we had to consider the value of using other external independent CRC
cohorts to corroborate these findings.

As far as we could investigate we did not find other large CRC datasets (i.e., sets
with more than one thousand samples) that included global gene expression data
plus survival as part of the clinical characterisation of samples.

Despite this limitation, we look for independent datasets and found in The Can-
cer Genome Atlas (TCGA (TCGA, 2019)) a well-characterised cohort of 276 col-
orectal carcinomas that had been studied with several genome-scale technologies
(including RNA-seq gene expression profiling) and that had survival data for 269
samples (Muzny et al., 2012).

We used these data to validate the top genes found as best survival markers in
our previous analysis. The results indicated a good performance in more than two
thirds of the genes tested. 7 genes of the top 10 for the case of up-regulation as-
sociated with poor survival (PTPN14, LAMP5, TM4SF1, LCA5, CSGALNACT?2,
SLC2A3 and GADD45B) and 6 genes of the top 10 previously found for the case
of up-regulation associated with good survival (EPHB2, DUS1L, NUAK2, FANCC,
MYB and CHDH).

4.3.5 External validation of prognostic markers using multi-
variate survival analysis

Up to now the search to find gene survival markers associated to the prognosis of
CRC have been done using univariate analysis that look for the value and influence
of each singular gene. The results presented provided multiple parameters to allow
a proper statistical assessment and ranking of each gene survival markers proposed
(Tab: 4.3).

To provide extra support to these results we did another external validation us-
ing a second independent cohort of CRC samples from the platform SurvExpress
(Aguirre-Gamboa et al., 2013).

The CRC dataset selected was called “Colon-Metabase-Uniformised” and it in-
cluded 482 samples with overall survival data and genome-wide expression deter-
mined with Affymetrix microarrays. We performed several multivariate survival
analyses (OS, overall survival) on this dataset using combinations of the top genes
proposed in Tab: 4.3.
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Figure 4.6: KM multivariate survival analysis. Top 5 genes.

As an example of these analyses we present the KM plot Fig: 4.6 corresponding
to the multivariate survival study done using the top 5 genes found up-regulated for
poor survival (DCBLD2, PTPN14, LAMP5, TM4SF1 and NPR3).
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It can be seen that the combination of these genes provides a very good separation
of two CRC populations: one group of high-risk, associated to the overexpression (or
up-regulation) of the genes; and another group of low-risk, associated to the lower
expression (or down-regulation) of these genes.

This analysis was repeated with several other combinations of the top up-regulated
genes associated with poor survival (present in Tab: 4.3), resulting in similar re-
sults. For example, combining DCBLD2, LAMP5, TM4SF1, NPR3 and GADD45B
the separation of the high and low-risk groups improved a bit: KM p-value = 2.21e-
07 and HR = 2.23 (95% confidence interval, CI: 1.65-3.02). Another combination
that provided very good separation was using genes DCBLD2, LAMP5, TM4SF1,
NPR3 and AKAP12: KM p-value = 2.51e-10 and HR = 2.74 (95% CI: 2.00-3.74).

4.3.6 Gene expression profiles of CRC tumour samples versus
normal colorectal samples
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Figure 4.7: Gene markers up-regulated in CRC tumours vs normal.
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All the integrated datasets, so far presented in this study corresponded to CRC
samples, because we want to provide genes that are disease markers present in the
transformed tumour cells of the intestinal epithelium, and genes that mark the pro-
gression and aggravation of this type of cancer.

In addition, we can only have survival information about patients since in healthy
individuals survival time cannot be related to disease and there are not disease-
associated events.

Despite this obvious consideration, it is interesting to explore what would be the
level of expression of the genes, that we identified as survival markers, when they
are analysed in normal colorectal tissue.

Exploring back on the experimental series used to create our meta-dataset of
1273 CRC samples, we found in series GSE33113 and GSE39582 a collection of 25
samples that corresponded to normal colorectal tissue. We took these samples and
included then with our CRC dataset using the same normalisation protocol.

After this integration, we could explore the expression level of the top up-
regulated genes (identified as markers of poor survival), comparing the expression
distribution on a set of cancer samples versus a set of normal tissue samples.

In both cases the number of samples compared were 25, since this is the number
of normal samples that we had. We did this comparison 20 times, random selecting
each time a different subset of 25 cancer samples. The results were always very
similar and the boxplots of the expression distributions for the top 10 genes are
presented in Fig: 4.7.

These results indicate that the gene markers, identified in our survival studies,
are most of the times also up-regulated in CRC tumours with respect to normal
colorectal tissue.

4.3.7 Risk predictor score based in the multivariate analysis
of candidate survival markers

Finally, to obtain a more accurate evaluation of the prognostic value of all the genes
selected as best candidates, we performed another analysis of the candidate markers
using a regularised multivariate Cox proportional-hazards regression with L1 norm
penalty (Gui and Li, 2005), with the scope of building a multigenic “risk predictor”.

This analysis was done on the cohort of 1273 samples of CRC patients, using
for the multivariate analysis the top 100 genes that showed up-regulation correlated
with poor prognosis (i.e. overexpressed in low survival cases).
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Figure 4.8: Risk and Survival analysis, top 100 UP and DOWN genes.

Risk prediction done for the cohort of 1273 patients of CRC based in the mul-
tivariate analysis using the top 100 genes that showed upregulation correlated with
poor prognosis (i.e. overexpressed in low survival cases).

A Plot presenting the patients according to their risk score, from Low (blue)
to High (red) risk. A recursive algorithm using 10-fold crossvalidation(algorithm
described in Chapter 1) finds the value of risk score (marked with a vertical black
line) that allows the best splitting of the cohort in two groups. B Kaplan-Meier
plot showing the separation of these two groups: a high-risk group including 425
individuals (in red) and a low-risk group including 848 individuals (in blue).

The analysis has been done using a multivariate Cox proportional-hazards re-
gression. As shown, the division is very significant (p-value = 8.25e-14) and allows
an optimal separation of individuals according to their survival. The analysis of the
beta factors assigned by the regression to each of the top 100 genes (i.e. to each
variable within the multivariate vector) allows the identification of the genes that
are the most influential factors in this risk analysis and therefore it helps in the
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selection of the best “gene survival markers”

The results are presented in Fig: 4.8 that shows a graph ordering the patients
according to their risk score, from low-risk (blue) to high-risk (red), including also
an intermediate region (grey) (Fig: 4.8 A). A recursive algorithm using 10-fold
cross-validation was applied to find the value of risk score. The threshold (marked
with a vertical black line) is obtained by maximizing the separability between the
survival curves for the resulting groups. Therefore, it allows the best splitting of the
cohort in two groups.

A Kaplan-Meier plot showing the separation of these two groups is also pre-
sented (Fig: 4.8 B); dividing the population into a high risk group including 425
individuals and a low risk group including 848 individuals. As shown, the division is
significant (p-value = 8.25e-14) and allows an optimal separation of individuals ac-
cording to their survival. The analysis of the beta factors assigned by the regression
to each of the top 100 genes, i.e. to each variable within the multivariate vector, al-
lows the identification of the genes that were the most influential factors in this risk
analysis and therefore it facilitated the selection of the best “gene survival markers”.
As indicated in previous sections, the top 100 genes included in the construction of
this multigenic risk predictor score were selected from the list of best markers found
during the survival test with single genes.

4.4 Discussion

CRC is a complex disease composed of biologically and clinically diverse subtypes,
which can originate in differ- ent ways provoking multiple clinical scenarios (Lin-
nekamp et al., 2015) (Dienstmann et al., 2017). This complexity causes the molec-
ular characterisation of CRC to remain deficient, with a lack of clear gene markers
associated to specific CRC subtypes and to the prognosis of the disease (Sameer,
2013) (Fessler and Medema, 2016) (Bijlsma et al., 2017). In fact, current molecular
phenotyping of colorectal tumours is usually linked to the traditional determination
of somatic mutations in well- known oncogenes such as KRAS and BRAF (Kocarnik
et al., 2015).

The recent advance of genomic and transcriptomic technologies applied to the
study of clinical samples did open the way to obtain genome-wide expression profiles
of multiple patient cohorts and correlate the expression of certain genes with differ-
ent disease subtypes, disease stages and progression (Aibar et al., 2015) (Moreno and
Sanz-Pamplona, 2015). This approach had been widely applied in cancer research
in the last decade and is very powerful when the identification of marker genes is
associated with survival time. The correlation between gene expression and survival
is an excellent tool to investigate prognosis of the disease and to build risk predictors
that will be applicable to individual patients.

The identification of molecular biomarkers with prognostic value in CRC has
been a challenging task (Sanz-Pamplona et al., 2012) (George and Kopetz, 2011a)
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(George and Kopetz, 2011b) (Das et al., 2017). Molecular prognosis of colorectal
tumour samples by transcriptional profiling started about 15 years ago (see review
(George and Kopetz, 2011a)), and in more recent years several specific gene signa-
tures associated with CRC survival have been published (Vargas et al., 2015) (Sveen
et al., 2012) (Kopetz et al., 2015) and (Salazar et al., 2011) (Nguyen et al., 2015)
(Chen et al., 2017) (Tian et al., 2017) (Xu et al., 2017). Despite these efforts, at
present there is not a clear compendium of gene markers for CRC survival and it is
quite difficult to find consistency in the literature (George and Kopetz, 2011a). A
clear limitation comes from the fact that, in most of previous studies, the number
of tumour samples used to select the genes that enter into the construction of the
prognostic predictors is small (i.e., the size of the patient cohorts rarely it is greater
than a few hundred individuals).

For example, ColoPrint is a 18-gene signature for prognosis prediction of stage
IT and III CRC, that was identified using as training set tumour samples from 188
patients (Kopetz et al.; 2015) (Salazar et al., 2011); a 113-gene expression signa-
ture for predicting prognosis in patients with CRC was built using 145 samples as
dicovery set (Nguyen et al., 2015); a 7-gene signature to predict overall survival of
CRC patients was based in an initial training set of 67 samples (Chen et al., 2017);
a recurrence-associated CRC signature of 13 genes was developed using a screening
set of 145 samples (Tian et al., 2017); a 15-gene signature for prediction of CRC
recurrence and prognosis was elaborated using for the gene selection a set of 55
patients (Xu et al., 2017). In conclusion, we can say that as far as it is reflected in
the current literature, the size of the initial training sets used to identify candidate
gene markers for CRC survival is small and the overlap between the published gene
signatures is very reduced and inconsistent. To address these critical problems, we
constructed a large, well-standardised, integrated data set of 1273 tumour samples
with survival information, which was used to identify genes that had a clear change
in expression in the middle and late stages of CRC and were consistent markers of
the disease-outcome and patient-risk.

With respect to the specific genes proposed as CRC survival markers, we want
to underline that our study does not pretend to provide a fixed gene signature for
prognosis and risk prediction, like the reported signatures of 7-genes, 15-genes or
113-genes (Nguyen et al., 2015) (Chen et al., 2017) (Xu et al., 2017) but instead
we propose a robust set of genes ranked according to their predictive power of CRC
survival. In this way, an ordered list of 200 genes including the best survival mark-
ers is presented: 100 genes for which up-regulation marks “poor survival” and 100
genes for which up-regulation marks “good survival”. We think that this approach
is more useful, since it allows an open selection of different number of genes for
further purposes or investigations (for example, for additional tests with other CRC
clinical cohorts). In fact, we used the 100 most significant genes, up-regulated with
the progression of CRC, to build the risk predictor (presented in Fig:4.7); and we
used the top 5 or top 10 genes of this list for the external validations with different
independent datasets.

Another relevant comment is that, as reminded above, we constructed the risk
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predictor using the genes that showed up-regulation correlated with poor prognosis.
This was done because in the selection of biomarkers it is better to use the ones that
provide a positive signal (i.e. “gain-of-function” factors) than the ones that provide
a negative signal. Therefore, all the gene survival markers that we proposed were
detectable as overexpressed in the CRC patients with high risk. The fact that they
give a positive signal will also make easier their detection by standard biomolecular
protocols (PCR, ELISA, immunohistochemistry, etc).

Finally, we are investigating the biological meaning of the genes found as best
predictive and prognostic markers. We are focusing our efforts in the top 10 for which
up-regulation marked poor survival: DCBLD2, PTPN14, LAMP5, TM4SF1, NPR3,
LEMD1, LCA5, CSGALNACT2, SLC2A3, GADD45B. The analysis of the litera-
ture reveals some relevant observations. For example, the transmembrane protein
DCBLD2 (ESDN), member of a family of neuropilin-like proteins, is a novel regula-
tor of mitotic and metabolic effects of insulin, and it modulates signal transduction
through regulation of the insulin receptor interaction with its adaptor proteins (Li
et al., 2016). The importance of insulin regulation in the function of our digestive
system is clear, and this adds extra value to the proposal of DCBLD2 as a CRC
survival marker.

Other genes within the top rank have been recently involved in cancer progres-
sion, like the case of SLC2A3 (GLUT3) a glucose transporter that mediates glucose
utilisation and glycogenolysis, which is induced during epithelial-mesenchymal tran-
sition and promotes tumour cell proliferation (Masin et al., 2014). Recent publica-
tions have also proposed the role of some other genes found as prognostic markers,
like the case of LAMP5 that has been included in a multigenic assay to predict
recurrence for gastric cancer patients after surgery (Lee et al., 2014). As a final
example, GADD45B (growth arrest and DNA-damage-inducible 45 beta) is a gene
that responds to environmental stresses, associated with cell growth control, apopto-
sis and DNA damage repair response. GADD45B overexpression has been recently
correlated with shorter overall survival in colorectal carcinoma (Wang et al., 2012).
Moreover, a recent integrative analysis of multiple colon cancer gene-expression-
based subtype classifiers reported that one of the three highest scoring genes in-
cluded in several classifiers was GADD45B (Sztupinszki and Gyérify, 2016).

Despite all these positive findings that correspond to the biological value and the
support of the genes identified as most significant markers of CRC survival, there
are some possible limitations of the results, beginning with the general observation
about the frequent heterogeneity of the colorectal tumours (Linnekamp et al., 2015)
(Sameer, 2013). In fact, it is clear from the anatomical pathology that CRC can
affect quite different regions of the digestive tract: ascending colon, transverse colon,
descending colon, sigmoid colon and rectum. The causal genes that drive tumours
in these different regions may not be the same, and most CRC studies do not enter
into a detailed separation of these regions (Bijlsma et al., 2017).

The variability due to the different staging of the tumours is another factor
that can bring limitations to any CRC study; but in this case we clearly indicated
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that our work searched for genes that were candidate prognostic markers for CRC
in stages III and IV. A final reason for the limitations of the results may be an
over-adjustment to the tested data sets. To avoid this kind of limitations, we built
a large well-normalised data set with more than a thousand samples, performed
a cross-validation analysis on that set, and also explored the validity of the gene
markers in two other independent sets.

In conclusion, we consider that the results presented in this work provide strong
support and a solid rationale for the prognostic value of a new set of genes in CRC
and for their potential to predict colorectal tumour progression and evolution to-
wards stages III and IV. The final proposed set of gene survival markers includes
an open list of one hundred up-regulated genes, with a robust statistical estimation
of the value of each one. In this way the set of genes is clearly ranked, being the
top in the list the ones that provide best prognostic strength and the ones that
can be introduced to build smaller predictors. In fact, our results showed that a
selection of the top 5 genes applied to independent external cohorts provided very
good separation of CRC samples in two distinct groups of high and low risk.
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Integrative transcriptomic profiling
of Colorectal Cancer (CRC)
Consensus Molecular Subtypes
(CMS) with survival data and
relative characterisation of a EMT

gene signature associated to P21
knockout, CDKN1A (-/-)

5.1 Motivation

Metastasis formation is based on a multi-step process also known as the invasion-
metastatic cascade. It starts with the dissemination of cancer cells from the primary
tumour site, their survival in the circulatory system, extravasation, and eventually
recolonisation at a distant organ site, thus eventually generating a secondary tu-
mour.

All of the individual steps require specific features of tumour cells, which are
largely connected to the epithelial-mesenchymal transition (EMT) and cancer stem
cell phenotype. The progression of the healthy colon epithelium to invasive and
metastatic carcinoma is strongly associated with the process of EMT, and the abil-
ity of tumour cells to survive under non-adherent conditions is well known.

However, the elucidation of the detailed mechanisms and regulators driving
metastatic spread in patients remains a significant focus of translational CRC re-
search.

The cyclin-dependent kinase inhibitor p21 represents a negative regulator of both
cell cycle progression and gene expression, as reported in literature in (Abbas and
Dutta, 2009).
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An unregulated passage of the cell through the G1/S checkpoint by downregu-
lation or loss of p21 might induce aberrant proliferation and thus trigger tumour
transformation.

In CRC downregulation of p21, the expression has been reported to correlate
with the development of metastases and poor patient survival (Abbas and Dutta,
2009). Thus, silencing of p21 seems to be of outstanding importance for the unre-
stricted proliferation of cancer cells.

Previous studies have reported that there is a direct relationship between cell
lines HCT116 and isogenic HCT116 p21 KO with Colorectal Cancer (CRC) sub-
types defined as Consensus Molecular Subtypes, CMS1 and CMS4, respectively. It
has also been reported that some genes like VIM and p21 are related to Epithelial to
Mesenchymal Transition (EMT), which is the main hallmark of CMS4. A difference
in the gene expression between the subclasses is expected.

Thus, the central objective is to demonstrate whether there is a relationship be-
tween HCT116 and isogenic HCT116 p21 KO cellular lines and the subtypes CMS1
and CMS4, respectively. To corroborate our hypothesis, we use the microarray and
RNAseq datasets described in Chapter 4 as validation for the results obtained from
the analysis of differential expression.

We classify the samples in CMS subtypes using already developed classifiers.
This allows us to verify if the biological observations in cell lines correspond with
data obtained from human patients. Marker genes will be validated measuring if
the genetic pattern found in HTC166 and HTC166 KO cell lines are similar to the
one obtained in CMS1 and CMS4 subtypes, respectively.

At the same time, the relation of the discovered marker genes with risk and sur-
vival is evaluated. The already proposed difference in the survival outcome between
CMS4 and the rest of the subtypes will be investigated as another validation point.

According to (Guinney et al., 2015) the CMS4 subtype reflects the gene signa-
ture of mesenchymal cells together with TGF-£ signalling and matrix remodelling.
Interestingly, CMS4 subtype was also majorly correlated with drug resistance and
increased tumour budding (Trinh et al., 2018). In the consensus molecular subtype
classification of colorectal adenoma, there was not CMS4 subtype since an invasion-
associated stroma does not exist (Komor et al., 2018).

So far, the full gene signature of HCT116 p21 KO cells has not been determined.
For a better understanding of the p21 KO model particularly as a preclinical model
for the analysis of therapeutic response, we aimed to evaluate if the p21 KO is
strong enough to switch the molecular subtype of the microsatellite unstable muta-

tor HCT116 cell line.
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5.2 Materials and Methods

5.2.1 General workflow of the study
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Figure 5.1: CRC methodology and workflow.

In Fig: 5.1, the process we followed is portrayed. First, we have the data from
the comparison between cell lines and the microarray and RNAseq CRC series. The
first step obtains the top genes that show differential expression between the WT
cell line and the knock out.

This gave us 67 candidate markers which were related to CMS1 or CMS4 sub-
types. If the expression of the gene is higher for the CMSI1 like cell line, it is defined
as a CMS1 positive marker. Otherwise, if the expression is higher for CMS4 like cell
line (the p21 KO), then it is defined as a CMS4 positive marker.

The study involving microarray and RNAseq data is done in order to validate.
For patient classification in CMS subtypes we used the consensus between two class
predictors, CMSclssifier and CMSCaller which are described in the next sections.

5.2.2 Cell lines and biological study

HCT116 WT and isogenic HCT116 p21 KO cell lines were used for this study.
HCT116 cells were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA), while the HCT116 p21 KO cells were obtained from Bert Vo-
gelstein (The Johns Hopkins University School of Medicine, Baltimore, MD, USA).
Mycoplasma-free status of the cell lines was confirmed and their genotypes were au-
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thenticated using Multiplex Cell Authentication by Multiplexion (Heidelberg, Ger-
many).

NanoString gene expression analysis

In this study, we will analyze the gene signature that characterizes HCT116 against
HCT-116 p21 KO cell lines. The results complement the previous work which relate
the HCT116 WT cell line with CMST1 colorectal cancer subtype and HCT-116 p21
KO cell line with CMS4 due to the metastasic capabilities of this modified cell line.

The genes discovered from the analysis of differential expression considering

nanostring tools will provide a expression pattern that characterizes CMS1 against
CMS4 cell lines.

Gene expression analyses were performed using the NanoString PanCancer Pro-
gression panel gene expression assay with 100 ng of total RNA as input according to
the manufacturer’s instructions. Raw data (counts per analysed gene) as obtained
by the nCounter® FLEX Analysis System were then processed according to the
following description.

Expression values were normalised to human B2M expression. Gene expression of
HCT116 p21 KO cells is shown as the relative fold expression compared to HCT116
controls.

5.2.3 CMSclassifier

CMSclassifier is a multi-class classifier developed to predict cancer molecular sub-
types (CMS) (Breiman, 2001). Two baseline models can be considered: Random
Forest (RF) where data is row-centered and Single Sample Prediction (SSP) based
on Pearson correlation similarity (Guinney et al., 2015).

The RF algorithm builds an ensemble of weak trees. For each tree, only a subset
of random variables is allowed to split the branches of the tree. Besides, a bagging
strategy is implemented by resampling the pattients with replacement. In this way,
diversity among the classifiers is induced and the combinarion is expected to reduce
the error prediction and the variance of the classifier (Chen and Ishwaran, 2012).

The generalisation error converges to a limit as the number of trees grows
(Breiman, 2001). This type of classifiers have been widely applied to genomic prob-
lems, and performs well with high dimensional and correlated data.

CMSclassifier is able to work with unbalanced classes. This is a requirement for
our problem because the proportion of CMS classes is unequal. This problem is
overcome in Random Forest by resampling each class (Guinney et al., 2015).
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5.2.4 CMSCaller

CMScaller is a CMS classifier optimised for pre-clinical models systems of colorectal
cancer (CRC) (Eide et al., 2017). It was developed to make robust classification
across gene expression platforms.

CMScaller exploits the evidence that the gene expression profiles are highly coreg-
ulated. Therefore, the dimensionality can be reduced removing redundant and noisy
features. Erroneous or missing measurements can be estimated considering the ob-
served value for co-regulated genes. To this aim, the nearest template prediction
algorithm (NTP) is applied (Eide et al., 2017).

NTP algorithm is a flexible prediction method, less sensitive to difference in ex-
perimental or analytical conditions, applicable to single patient’s gene expression,
that provides measure of prediction confidence. It makes class prediction using only
a list of signature genes and a test dataset, for each single patient’s gene expression
data. The method can be flexibly applied to cross-platform, cross-species, and mul-
ticlass predictions without any optimisation of analysis parameters (Hoshida, 2010).

Both algorithms provide a p-value for each sample measuring the confidence in
the classification. If the p-value is above a certain threshold, the classification is
rejected.

5.2.5 geNetClassifier

geNetClassifier is a network-oriented and data-driven bioinformatic tool implemented
in an R package, named geNetClassifier. This library gives complementary informa-
tion to the classification. Particularly, it allow us to search for association of genes
and diseases based on the analysis of genome-wide expression data derived from
next generation sequencing (NGS) technologies (microarrays or RNA-Seq). The
algorithm proceeds as follows:

Find genesets associated to a given pathological state.

Identify minimal subsets of genes within these genesets that unequivocally
differentiates and classifies the disease subtypes

Provide a measurement of the discriminant power of these genes.

Build a gene network that characterises each of the disease subtypes

The estimation of the gene networks related to specific disease subtypes that
include parameters such as gene-to-gene association, gene disease specificity and gene
discriminant power can be considered to draw gene-disease maps and to unravel the
molecular features that characterize specific pathological states (Aibar et al., 2015).
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5.2.6 Cox regression to detect epistatic interactions

This kind of algorithms are able to model the correlation structure among genes
removing redundant features. However, it has been shown that the gene regula-
tory pathways of cancer involves complex non-linear interactions between genes.
Although models based on linear combinations of genes may perform well for most
complex interactions, the effect of non-linear interactions on survival should be stud-
ied in depth.

From a biological point of view, the study of epistatic interactions helps to de-
velop efficient anticancer therapy. In particular, the current therapies have limited
efficacy due to toxicity and to the development of drug resistance. Recently, some
therapies have exploited the lethal interaction between certain pairs of genes. Syn-
thetic lethality is a negative interaction between genes where the co-inactivation of
two genes simultaneously results in celular death. This can be considered to kill
selectively cancer cells.

The main challenge of this section is to discover relevant interactions composed
of genes that do not have a significant association to survival by themshelves.

Non-linear interactions between genes may be modeled with a multivariate cox
regression algorithm. To this aim, the product of individual variables is included as
a new covariate. To avoid overfitting, the algorithm is run iteratively on a random
subset of the input using a bootstrap strategy. Besides, the candidate genes that
can be considered to detect interactions have been reduced using the additive mod-
els introduced in chapter 2. This preprocessing step will help to improve also the
computational efficiency of the algorithm. Finally, the non-linear interactions are
ordered considering the p-value for the coefficient in the Cox regression.

Let h(t | x) be the hazard function at time ¢ conditioned to the observed covari-
ates x. As we are looking for pair of variables, we have to adjust a model for each
posible combination of two variables. The hazard function can be written as:

h(t ‘ X) = hg(t)e:cp(ﬂlxl + ﬁgl’z + ﬁgl’ll’g) (51)

where each (; determines the increment in the hazard ratio (log scale) if the
expression of the gene x; changes one unity. (3 is the coefficient for the non-linear
interaction term. If B3 > 0 then, as the non-linear interaction term increases the
risk grows. Conversely, if 3 < 0 then the risk decreases with the interaction term.

The B; parameters are determined by optimisation of the partial log-likehood
as has been explained in chapter 2. The Cox regression will provide a risk score,
that will allow us to stratify the patients according to their risk. A statistical test
is computed for each [; parameters that will determine if the interaction term is
associated to the patient risk. Finally, a likehood ratio test will help to determine
if the non-linear model considering interactions helps to explain better the risk of
patients than the additive linear model.

The implementation of this method is based on the coxph function from sur-
vival R package (Therneau, 2014).
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5.3 Results

5.3.1 Nanostring: differentially expressed genes

In this section, a list of genes is obtained that characterise colorectal cancer cell lines
(HTC116 WT) against p21 KO (HTC116 p21 KO). The genes presented in Tab: 5.1
for the up-regulated genes and 5.2 for the down-regulated genes are the basis for our
later analysis.

Symbol DE DE DE CA CA Assignment
logFC statistic adj.p.value statistic p-value

VIM 7,8488 1642,29 0 -14,38531  3,66E-35 CMS4
SPARC 8,2699 1506,55 0 -16,85454  3,35E-45 CMS4
NRP1 3,3402 409,97 0 456500  6,68E-06 CMS4
SNAI2 27,3859 333,53 0 9,20921  1,88E-18 CMS4
THBS1 2,2342 281,48 0 11,19640  2,88E-25 CMS4
TNC 32,2267 251,40 0 6,66385  8,60E-11 CMS4
PLEKHO1  1,4848 140,07 0 6,97527  1,36E-11 CMS4
FGF2 1,5965 124,21 0 -3,96364  9,13E-05 CMS4
FERMT?2 1,3288 113,17 0 -19,35596  6,07E-58 CMS4
SPHK?2 1,7297 103,01 0 401767 7,11E-05 CMS4
PDGFA 1,4772 97,27 0 410453 5,09E-05 CMS4
MMP13 29,2676 85,20 0 -3,75387  0,000199241  CMS4
NRP2 2,0484 75,50 0 -12,63576  5,39E-31 CMS4
CD24 1,0741 72,44 0 -3,53611  0,000463411  CMS4
FGF18 1,9665 69,92 7.08E-16  -8,42034  6,43E-16 CMS4
FST 33,0730 69,83 7,086-16  -9,78526  1,95E-20 CMS4
CREBBP 0,9871 64,87 4,79E-15  -6,56140  1,76E-10 CMS4
PIK3CA 0,9651 59,67 6,75E-14  -7,47992  4,67E-13 CMS4
ZEB1 1,4050 52,43 2,51E-12  -17,30530  1,04E-50 CMS4
P3H1 0,8713 50,98 511E-12  -7,76292  7,27E-14 CMS4
FHL1 1,2050 50,10 78IE-12  -17,49613  1,26E-51 CMS4
OLFML2B  1,6033 48,00 2,25E-11  -13,44126  8,70E-34 CMS4
LAMC1 0,8418 47,21 3,33E-11  -15,85795  1,57E-42 CMS4
PLCG1 0,8340 47,14 344F-11  -12,75009  1,76E-31 CMS4
CYP1B1 5,4332 42,84 297E-10  -10,25702  4,30E-22 CMS4

Table 5.1: UP regulated genes associated to CMS4 subtype.

Table: 5.1 shows the list of genes differentially expressed and up regulated
obtained through Nanostring tool.

DE logFC is the fold change in logarithmic scale, DE statistic is the value
of the statistic for the diferential expression (DE) analysis of nanostring, and DE
adj.p.value is the p-value, adjusted for multiple tests.

CA statistic and CA p.value correspond to the statistic computed for the
classification of each sample and p-value of the statistical test.
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Symbol DE DE DE CA CA Assignment
logFC statistic adj.p.value statistic p.value

ID2 -4,6551 972,56 0 3,40259  0,000754208  CMS1
TP53 -4,0625 804,76 0 5,09264 5,66E-07 CMS1
IL18 -4,7962 734,54 0 8,07327 9,92E-15 CMS1
RAMP1 -32,1818 667,64 0 3,52531 0,000485142  CMS1
CDH1 -3,3914 617,59 0 -1,01830  0,309246382 NA
CDKNIA -3,6018 552,81 0 3,53396  0,000474390 CMS1
ITGA3 -3,0876 352,34 0 5,35542 1,65E-07 CMS1
TJP3 -3,2495 350,49 0 7,29310 2,30E-12 CMS1
S100A14 -3,2206 294,47 0 11,67354 1,10E-26 CMS1
GRHL2 -3,8916 291,45 0 4,57220 6,43E-06 CMS1
AP1M2 -2,0948 275,11 0 7,59930 2,04E-13 CMS1
TMC6 -3,1659 232,26 0 5,20052 3,31E-07 CMS1
HKDC1 -7,4257 211,12 0 3,69186  0,000253606  CMS1
TOMI1L1 -1,5895 160,92 0 8,63937 1,54E-16 CMS1
CD44 -1,6368 157,63 0 6,24127 1,31E-09 CMS1
GDF15 -4,4624 148,17 0 2,67067  0,007888663 CMS1
MET -1,5415 143,88 0 3,41445  0,000712745  CMS1
RAB25 -2,0369 143,43 0 5,24247 2,57E-07 CMS1
PRSS22 -3,0175 137,87 0 2,63069  0,008901344  CMS1
EIF4EBP1 -1,4701 134,55 0 8,53346 3,18E-16 CMS1
UTS2 -5,5983 131,46 0 288800  0,004193874  CMS1
EPS8L1 -1,9951 117,66 0 5,65831 3,82E-08 CMS1
PDGFC -1,2773 111,44 0 -17,91141 4,43E-49 CMS4
SLC12A6 -1,3482 111,10 0 275854  0,006134769  CMS1
ADAP1 -1,2536 96,11 0 4,60927 5,568 E-06 CMS1
PTK2B -1,3964 93,79 0 5,55089 5,57TE-08 CMS1
ANXA2P2 -1,3230 87,76 0 8,67459 1,39E-16 CMS1
TSPAN1 -2,0643 87,18 0 8,39079 9,52E-16 CMS1
ICAM1 -8,8530 86,79 0 5,15507 4,62E-07 CMS1
IRF6 -1,1005 84,27 0 3,09659  0,002095301  CMS1
CXCL8 -2,6455 82,36 0 7,15129 4 11E-12 CMS1
ITGA2 -1,0669 79,92 0 3,68571 0,000261304  CMS1
CDS1 -1,0436 75,07 0 6,67325 1,02E-10 CMS1
ITGB4 -1,3160 69,67 7,08E-16 6,66385 1,11E-10 CMS1
DSC2 -0,9811 67,80 1,40E-15 7,64402 1,99E-13 CMS1
ADAM15 -0,9488 56,97 2,62E-13 275734  0,006115982  CMS1
SH2D3A -0,9293 52,79 2,12E-12 6,75447 5,91E-11 CMS1
EGLN3 -2,6701 50,90 5,29E-12 9,87423 2,70E-20 CMS1
SLPI -3,2923 50,06 7,90E-12 4,31395 2,11E-05 CMS1
FRAS1 -1,0718 43,20 2,50E-10 4,52480 8,60E-06 CMS1
TYMP -0,9639 42,90 2,90E-10 7,81649 1,10E-13 CMS1
PRF1 -2,1367 42,56 3,38E-10 10,41441 5,82K-22 CMS1

Table 5.2: Nanostring genes defined as DOWN regulated.

Table: 5.2 corresponds to the list of genes down regulated obtained through

Nanostring tool.

The association between the CMS subtypes and the previous list genes is studied.
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The list of genes will be validated considering the gene expression patterns in the
colorectal cancer series described in Chapter 3. The amount of data that these
series have will provide an excellent workspace for analysing the diferences between
subtypes and the capability of these genes to describe differences.

5.3.2 Validation of gene markers

In order to study the difference between both cell lines, a differential expression
analysis was done for each class. The hypothesis is that CMS4 subtype is strongly
related to p21 KO cell line.

HCT116
kDa WT p214-
135 T— CDH1 (E-caherin)
1 0.1 CDH1/ GAPDH
21 | CDKN1A (p21)
1 0 21/ GAPDH

37 | " s | GAPDH

57 Qg | VIM (Vimentin)

0 1 VIM/ GAPDH
200 S | ZEB1
1 2.3 ZEB1/ GAPDH
37 .| GAPDH

Figure 5.2: Comparison of colon cancer HTC116 cells wild type (WT) versus p21ko (
KO), standard markers.

Colon cancer HCT116 W'T cells versus p21 KO cells

In Fig: 5.2. fepresentative western blot of HCT116 WT and HCT116 p21 KO
cells for genetic background and 3 EMT markers (ECadherin, Vimentin, ZEB1); n
> 3. Fold expression is represented relative to GAPDH loading control; n > 3. The
EMT markers are usually used to define cells associated to CMS4.

In this case, ECadherin is more present in WT cells, the function of this gene is
related with membrane adhesion. The the lower expression level of this gene in p21
KO contribute to cancer progression by increasing proliferation, invasion, and/or
metastasis. p21 is not present in KO as expected.

Vimentin overexpression is expected. It is an organizer of a number of other
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critical proteins involved in cell attachment, migration, and signaling.

Scatter plot of the gene expression signal
(rom NanoString): 740 genes

N
o

—_
(6)}

log2([Median Expression Signal]+1) of p21-/- samples
o =)

0
Dots density

0 5 10 15 20
log2([Median Expression Signal]+1) of WT samples

0.05 0.10 0.15

Figure 5.3: Comparison of colon cancer HTC116 cells wild type (WT) versus p2lko (
KO), scatter plot of the global expression signal.

Fig: 5.3. Scatter blot of the global expression signal. The graph shows a linear
relation between the WT and p21 KO. The red and blue dots are the up regulated
and down regulated gene markers described in previous tables. The blue dots are

genes overexpressed in wild type cell line. The red dots are genes overexpressed in
p 21 KO cell line.

The dots in values x=0 or y=0 are typical in distributions of this kind of plat-
forms, meaning a lack of lectures for that genes in one or another cell line.
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Figure 5.4: Comparison of colon cancer HTC116 cells wild type (WT) versus p2lko (
KO), heatmap with the expression profile of 67 genes selected as most significant .

Colon cancer HCT116 WT cells versus p21 KO cells

Fig: 5.4 shows a heatmap with the expression profile of 67 genes selected as
most significant. VIM and p21 are highlighted. In the heatmap we can see the
differences between one cell line (WT) and another (KO). Next experiments will
show that UP and DW genes represent the subtypes CMS1 and CMS4.

The genes marked as blue in WT cell line and as red in KO are the defined in
the tables as KO and CMS4 positive markers.

The genes marked as red in W'T cell line and as blue in KO are the defined in
the tables as WT and CMS1 positive markers.
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General Genes Query Reference Enrichment . . . Functional Terms assigned
function List List p.value v (concurrent enrichment)
Fibroblast PIK3CA, PLCG1, GO:000854.13:fib_robIast growth factor

phenotype, FGF18. FGF2 5 50 1.79E-10  0.7500 receptor signaling pathway (BP);
cytoskeleton, PDGFA, ’ (23) (34208) ’ Kegg:04810:Regulation of actin

Cancer cytoskeleton; Kegg:05218:Melanoma

Extracellular THBS1, SPARC, 5 45 G0:0031012:extracellular matrix (CC);
matrix  TNC, OLFML2B, (23) (34208) 3.08E-10 0.9129 5.0005576 extracellular region (CC)
changes LAMC1, MMP13
Cell THBS1, TNC, 5 197
dhesion LAMC1, PDGFA, 23) (34208 1.86E-07 0.8944 Kegg:04510:Focal adhesion
adhesion  pik3ca (23) ( )
G0:0009986:cell surface (CC);
CD44, ITGA3, GO0:0007160:cell-matrix adhesion (BP);
Cell contact ITGB4, ITGA2, 8 93 1.57E-13  0.7335 Kegg:04512:ECM-receptor interaction;
regulation ADAM15, PTK2B, (40) (34208) ' GO0:0007229:integrin-mediated signaling
RAMP1, DSC2 pathway (BP); Kegg:05412:Arrhythmogenic
right ventricular cardiomyopathy (ARVC)
CDKN1A(p21),
Cancer 6 63 Kegg:05218:Melanoma;
TP53, CDH1, MET, 1.12E-10 0.7717 . .
genes PDGFC, TYMP (40) (34208) Kegg:05219:Bladder cancer
Cell ITGAS3, ITGB4, 5 111 Kegg:04510:Focal adhesion;
adhesion, ITGA2, MET, 40) (34208 1.97E-07 0.7500 Kegg:04810:Regulation of actin
cytoskeleton PDGFC (40) ( ) cytoskeleton

Figure 5.5: Comparison of colon cancer HTC116 cells wild type (WT) versus p2lko (
KO), functional enrichment analysis of the selected genes using concurrent annotation.

Colon cancer HCT116 W'T cells versus p21 KO cells

Fig: 5.5. Functional enrichment analysis of the selected genes using concurrent
annotation. The image shows the relationship between genes selected from WT cell
line and CMSI1 cell functions. Moreover, the KO genes are associated with CMS4
cell functions.

Both the red an blue genes define cell functions related with cancer. The table
shows a high amount of functions related with cell adhesion, cytoskeleton, cell ma-
trix, cell contact...

This kind of functions are strongly related with our hypothesis, indicating that
the diferences in this cell lines are the same as described between CMS1 and CMS4.
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Figure 5.6: Comparative analysis of the expression profiles and CMS subtypes. Heatmap
of a cohort of 1273 CRC patients according to the Consensus Molecular Subtypes (CMSs)

Fig: 5.6. CMScaller (Eide et al., 2017) and CMSclassifier have been considered
to classify samples in four groups corresponding to each one of the Consensus Molec-
ular Subtypes (CMSs). The list of genes recommended by the authors are considered
by the classifiers. Both classifiers are combined to predict the CMS classes.

The heatmap shows the gene expression profiles for the genes considered by the
classifiers. Each CMS subtype is characterised by the expression level of a group of
genes. The numbers referenced in the class labels are:

First number is the number of samples classified by both predictors as the same
class.

Second number is the samples assigned by CMScaller alone.
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Expression Signal (log2)

Expression Signal (log2)

Figure 5.7: Comparative analysis of the expression profiles and CMS subtypes. Associa-
tion with the gene signature identified in the analysis of HTC116-WT versus HTC116-p21ko
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Fig: 5.7 shows the expression level for the top three genes UP and DOWN
regulated genes from tables Tab: 5.1 and 5.2. The p-value determines if the differ-
ence betweeen the median expression levels for both boxplot (CMS1 and CMS4) is
statistically significant. UP genes (name in red) are upregulated in p21 KO vs WT.
DOWN genes (name in blue), the down regulated genes, like p21 are down in KO

Genes found that mark difference CVIS1 versus CMS4

VIM (Vimentin)
p=3.66e35

Sigban

s

| [f<¥
i
7

©

SNAI2
p=1.88e-18

p=8.60e-11

[ Jemst

e [jCMs4

el
\ 4
_— . l:..-
\ A
|
. Ca

it
[ 1.
7 1 s 2ol

i i 3 -f.
I of 1= ——
CMS1n=166)  CMS4(n=246) CMS1n=166)  CMS4{n=246) CMS1(n=166) CMS4(n=246)

CDKNAA (p21) TIP3 APIM2
- J.s e
8 1] FI 25

~

p=230e12 .

:;J|L

p=204e13 .

CMS1(n=166)  CMS4(n=246)

vs WT.

Therefore, the experiments suggest that genes upregulated in p21 KO are related

CMS1(n=166) CMS4(n=246)

CMS1(n=166) CMS4({n=246)

with CMS4 and genes upregulated in WT are related with CMSI1.
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5.3.3 Survival analysis of CMS subtypes

Relapse-Free Survival (RFS) analysis (Kaplan-Meier
plots) of CRC patients divided in the ones assigned
to class CMS4 (246) versus the other assigned (607).
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All other — 607 540 465 373 291 197 151 106 65 36 20
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Figure 5.8: Analysis of the survival of 246 CRC samples identified as CMS4 vs the rest.

Fig: 5.8. The ensamble of CMS classifiers has been applied to categorize patients
in two groups, CMS1 and CMS4. Next, the survival curves for both groups are
built. The logrank test is computed to check if the difference is statistically signifi-
cant. CRC samples identified as CMS4 versus the ones assigned to other CMSs (i.e.
CMS1,2,3)

The Kaplan-Meier plot shows that the curves corresponding to CMS4 and the
other CMS subtypes have differences as previously reported. This result has been
obtained by other authors in the literature (Dienstmann et al., 2017) (Guinney et al.,
2015).
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(b) SNAI2 in 246 CMS4

Figure 5.9: Analysis of the survival of 246 CRC samples, gene by gene.

Survival of two representative markers from our list is studied. Fig: 5.9 shows
the survival curves for the two groups obtained stratifying the patients by VIM
expression level. This method is explained in detail in section 2.2.4. Red curve cor-
responds to high gene expression level and green with low. The higher the expression
level they have, the worst is the prognosis for VIM and SNAI2 gene.

118



Chapter 5

5.3.4 Functional enrichment analysis of CMS predicted sub-
types

[ cwsT(210s)
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Figure 5.10: Gene-set functional enrichment analysis of CMS1 versus CMS4 based on
the gene expression profile of the patients assigned to these two subtypes

CMS1 versus CMS4 classes showing the strong relationship of our genes with cancer-
related celular functions. The figure shows that the relationship of CMS4 and Ep-
ithelial to Mesenchymal Transition (EMT) is high. As expected, the replication
speed is slower in CMS4.

The CMS classes used are the predicted in microarray series using the consensus
between both predictors, CMScaller and CMSclassifier.
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5.3.5 Risk prediction considering synergistic interactions

In order to measure the capability of risk prediction and the relation with survival in
cancer of our marker genes, an analysis was performed considering combinations of
two genes. As explained in the previous section, a Cox regression with an interaction
term was used.

We generated all possible combinations of elements taken two by two with our
markers. For each combination, the resulting p-value of the cox model was compared
with the individual value of each gen in the pair. If the model’s value performed
better than the individual one, we stored the p-value as a metric of how strong was
this interaction, and the genes involved.

The final result (as an interactions table) was represented as a network in which
the interactions between the top related markers may be easily observed, we filtered
the p-values by the usual threshold (p val < 0.05) and fold change > 0.5.

VIM

,_l

NRP1

\

SNAI2

\

FST FERMT2

|

CREBBP ITGA3 PLCG1

1

EPS8L1 ADAP1 TMC6

l

THBS1

LAMC1 SPHK2

PRF1

Figure 5.11: Interactions network
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Symbol Interactions
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Table 5.3: Filtered interactions showing the relations of each node.

The genes shown in Fig: 5.11 are represented with a darker colour which is
proportional to the number of genes related with each one of them. The width and
colour of the line that links each pair defines the p-value, the darker and wider is
the line, the more significant is the p-value.

For further interpretation of this result, the table Tab: 5.3 show the number of
interactions for each one of the nodes in the network. As can be seen, the most
interactive genes are IRF6, VIM, SNAI2, TNC...

5.4 Discussion

CMS markers and their relationship with risk

Several authors have suggested in the literature that the HTC116-WT and HTC116-
p21ko cell lines are strongly related to the colon cancer subtypes CMS1 and CMS4.
However, the relation between the expression patterns of the cellular cell lines and
the CMS subtypes is not well understood. This relation is relevant to the devel-
opment of preclinical models in cancer colon. In this chapter we have studied the
relation between the expression patterns of CMS1 vs. HTC116-W'T and CMS4 vs.
HTC116-p21ko.
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The experimental results show that there is a strong relation between the expres-
sion patterns of the p21 KO (EMT like) cell lines and CMS4. The proposed markers
from these cell lines are strongly differentiated in predicted CMS groups from two
validation cohorts of microarray and RN Aseq, which confirms the hypothesis. More-
over, the relationship between the markers and EMT characteristics is also proven.
In particular, genes that characterize the cellular cell lines are annotated with cell
functions that are described as related to CMS1 and CMS4 subtypes.

We have discovered that there are several pairs of genes that synergistically in-
teract and have strong association with patient risk. Considering those interactions
helps to improve the risk prediction in cancer colon.

These synergistic interactions are candidates to be tested in the laboratory.

Finally, survival analysis of CMS subtypes confirms that CMS4 has poorer sur-
vival than other groups. This can be explained by the relation between the expres-
sion pattern of CMS4 and metastatic cell lines.
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Conclusions

Along the four chapters of this PhD dissertation, multiple bioinformatic methods
and algorithms have been applied and also developed to address and solve specific
problems in the management, analysis and interpretation of complex omic data
(mainly genomic and transcriptomic) from human samples derived from cancer pa-
tients. The work has been focused in two major types of cancer: Breast Cancer
(BRCA) and ColoRectal Cancer (CRC); and the omic data have been integrated
and analyzed together with clinical information, mostly data about the survival and
outcome of the patients. We think that our research effort has been quite successful
thanks to the close collaboration of the bioinformatics and computational biology
team, with several research groups, cancer biology experts, as well as with medical
groups that provided direct access to the human samples and a deeper understanding
of the biomedical questions that we wanted to address in each part of the work.

6.1 General Conclusions

The general conclusions of this Doctoral Thesis, are the following:

1. The proposed methods for dataset normalization and batch effect reduction
should be used in order to reduce the bias when merging different sources of data.
The importance of these methods is demonstrated in the study performed in Chap-
ter /. The lack of a proper normalization and standardization when merging the
data from different sources is something that usually led to failure in reproducibility.
The use of these methods, allowed the advance and fulfillment of the first and third
objectives of this thesis. Large and homogeneous datasets of breast cancer (1024
samples) and colorectal cancer (1273 samples) with survival information were suc-
cessfully generated and analyzed.

2. The methods and algorithms developed have made possible the characterisa-
tion of a group of proposed marker genes that identify the "Triple Negative" subtype
of breast cancer (TNBC) in a "positive" way and that further relate them with risk
and prognosis value. The success in the compilation and comparison of several large
BRCA datasets with survival allowed us to do this analysis and to affirm that the
second objective of this thesis is accomplished.
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3. In the study of colorectal cancer (CRC) the relationship found between the
p21 KO of HCT116 with the CMS4 subtype and HCT116 W'T with the CMS1
subtype, made possible to identify genes that define these subtypes of CRC. The
proposed genes were further evaluated and the relationship between these markers
and survival was discovered. In the same study, a method capable of identifying
genes that strongly define risk when taking into account the binary interaction be-
tween genes, was used. The relevant genes obtained will be tested n vivo in order
to define them as reliable markers. All this study was made possible thanks to the
compilation of a large colorectal integrated dataset including transcriptomic data
and survival data, as well as to the use of several classifiers and predidtors that
apply robust machine learning methods.

4. The proposed bioinformatic methods and strategies to discover "survival
marker genes" have been applied successfully to different cancer cohorts, addressing
different biological problems. Some of them have been published in JRC journals
and others will be submitted soon. In particular, the methods developed and ap-
plied to transcriptomic data combined with survival data have demonstrated the
capability to discover groups of genes that outperform the already proposed mark-
ers for risk prediction and patient stratification, while keeping the relationship with
the most relevant clinical features.

5. The importance of robustness, every time a biostatistical analysis of omic data
is done, can be one of the main conclusions of this Thesis. This has been taken into
account for every algorithm designed and applied. Validation of the results presented
in this dissertation was achieved using independent cohorts and datasets, distinct
platforms, multiple data integration and computational cross-validation techniques.

6.2 Future work

It is clear from the results and the described above conclusions, that the first ur-
gent work to be done as a product of this Doctoral Thesis will be to achieve the
publication in good scientific journals of the three research articles that we have in
preparation. These articles are presented in an Appendix below, including the title
and the authors that worked in each one of them. As a whole, we think that this
PhD provides a good demonstration that cooperative work is essential in current
biomedical studies. We will continue in this effort by bringing our bioinformatics
and computational expertise close to cancer biologists and medical oncologists.

Another, near future product that we are preparing as a direct result of our
bioinformatics work in this Doctoral Thesis is the implementation of the compu-
tational methods and functions in an integrated software package written in R for
Bioconductor (https://www.bioconductor.org/). This R software will be Open Ac-
cess and freely available for anyone to use it.

Finally, an specific research point that we would like to achieve in the near fu-
ture is the biochemical validation of the top new "survival markers" that we have
discovered and proposed in this work, in particular for CRC and TNBC.
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Abstract

Background: Identification of biomarkers associated with the prognosis of different cancer subtypes is critical to
achieve better therapeutic assistance. In colorectal cancer (CRC) the discovery of stable and consistent survival
markers remains a challenge due to the high heterogeneity of this class of tumors. In this work, we identified a
new set of gene markers for CRC associated to prognosis and risk using a large unified cohort of patients with
transcriptomic profiles and survival information.

Results: We built an integrated dataset with 1273 human colorectal samples, which provides a homogeneous
robust framework to analyse genome-wide expression and survival data. Using this dataset we identified two sets
of genes that are candidate prognostic markers for CRC in stages Ill and IV, showing either up-regulation correlated
with poor prognosis or up-regulation correlated with good prognosis. The top 10 up-regulated genes found as
survival markers of poor prognosis (i.e. low survival) were: DCBLD2, PTPN14, LAMP5, TM4SF1, NPR3, LEMD1, LCAS5,
CSGALNACT2, SLC2A3 and GADDA458. The stability and robustness of the gene survival markers was assessed by
cross-validation, and the best-ranked genes were also validated with two external independent cohorts: one of
microarrays with 482 samples; another of RNA-seq with 269 samples. Up-regulation of the top genes was also proved
in a comparison with normal colorectal tissue samples. Finally, the set of top 100 genes that showed overexpression
correlated with low survival was used to build a CRC risk predictor applying a multivariate Cox proportional hazards
regression analysis. This risk predictor yielded an optimal separation of the individual patients of the cohort according
to their survival, with a p-value of 825e-14 and Hazard Ratio 2.14 (95% Cl: 1.75-2.61).
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with other CRC clinical cohorts.

Transcriptomics, Gene Expression

Conclusions: The results presented in this work provide a solid rationale for the prognostic utility of a new set of
genes in CRC, demonstrating their potential to predict colorectal tumor progression and evolution towards poor
survival stages. Our study does not provide a fixed gene signature for prognosis and risk prediction, but instead
proposes a robust set of genes ranked according to their predictive power that can be selected for additional tests

Keywords: Cancer, Colorectal cancer, Colon, Survival, Kaplan-Meier analysis, Gene marker, Bioinformatics,

Background

Colorectal cancer (CRC) is one of the most frequent
tumors that causes great morbidity worldwide. It is the
third most common cancer in men, the second most
common cancer in women and the third leading cause
of global cancer mortality (https://www.wcrf.org/). CRC
is a heterogeneous disease since from one patient to an-
other it differs in clinical presentation, molecular charac-
teristics, and prognosis [1]. The heterogeneity of CRC
increases the complexity of this tumoral pathology,
making subtyping and stratification a difficult task for
therapeutic decisions. In this way, personalized medicine
for CRC is becoming increasingly needed, especially for
targeted therapies where large variations between indi-
vidual’s treatment responses exist [1, 2]. In this context,
the need to find robust gene markers associated with
specific subtypes of CRC led us to this study. Further-
more, the specific purpose of our work was to find con-
sistent biomolecular targets that, together to facilitate
samples stratification, could be related to the prognosis
of the disease using survival data.

The genomic and transcriptomic profiling of human
cancer samples has been demonstrated over the last de-
cade as an excellent way to obtain a better molecular
characterization of many tumor types and subtypes.
While gene expression-based CRC classifications has
been heavily approached [2], little consensus in CRC
standalone gene bio-marking has been achieved. In fact,
several studies have identified a broad variety of gene
sets as gene expression profiles for classification and
categorization of this malignant disorder [3, 4]. More-
over, several transcriptomic-based tests oriented towards
prognosis have also been investigated. Some examples of
these are: ColoLipidGene [5], ColoGuidePro [6] or
ColoPrint [7]; that include gene signatures associated
with CRC survival in some specific biological contexts.
Despite these efforts, at present there is not a clear com-
pendium of gene markers for CRC survival and it is
quite difficult to find consistency in the literature.

In the clinic, patients are classified into four CRC
stages based in the anatomo-pathologycal characteristics
of their tumors. It is common to use the TNM Staging
System (where T stands for tumor, N for lymph node,

and M for metastasis). The disease “staging” also allows
grouping the patients in 4 progressive cancer stages, in-
dicated by roman numerals: I, II, III, and IV [8]. In this
way, stages I and II correspond to cases which had not
shown cancer cells beyond the tumor or blood. By
contrast, stages III and IV correspond to individuals in
where the cancer had diseminate to the lymph system or
other organs in the body. This four stage categorization
represents significantly distinctive patients groups for
final outcome or disease relapse, but the stages do not
predict the risk of each individual patient because they
are not directly associated to survival [9].

Based on the described need and potential benefits to
find survival marker genes correlated with high risk and
poor prognosis in CRC; we investigated global gene ex-
pression profiles of colorectal tumors and its alteration
throughout stages, to identify genes that could be
levered as biomarkers of survival and prognosis for CRC
in late stages (i.e., III and IV). To undertake this work
we performed a deep analysis on a large cohort of
human samples derived from a robust integration of se-
veral datasets that had transcriptomic and clinical
survival data. The integration provided a homogeneous
and well-standardized meta-dataset that includes 1273
human colorectal samples. The identification of candi-
date markers was performed using an initial contrast
between the gene expression of the subset of patients
with CRC allocated by their clinical features to stages I
and II versus the patients with tumors corresponding to
stages III and IV. Finally, after internal and external
cross-validation, the genes selected as best survival markers
were used to construct a risk predictor to allow stratifica-
tion of the patients with respect to their relative risk.

Results

A large dataset of CRC samples including global
expression and survival data

We first built a large cohort of CRC samples collected
from individuals that had clinical record with survival
data times, as well as genome-wide expression profiles
of their colorectal primary tumors at diagnosis (i.e.
before any drug treatment). Our aim was to achieve a
meta-dataset with at least 1 thousand samples and to
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demonstrate a good integration of the global transcrip-
tomic profiles of different samples sets avoiding the ty-
pical batch-effects that can alterate any unified analysis.
Table 1 presents the datasets of CRC samples that
were collected to produce the integrated dataset
analysed in this work. All the CRC samples included in
this meta-dataset were tested for global gene expression
profiling using the platform of high-density microarrays
from Affymetrix: Human Genome U133 Plus 2.0. Using
this platform, the probesets of the arrays were mapped
to single genes (as indicated in Risueno et al.) [10] and,
in this way, each microarray measured the expression
signal of 20,079 human genes (using the mapping provided
by the Chip Description File, CDF v.21 from: http://brainar-
ray.mbni.med.umich.edu/Brainarray/Database/CustomCDEF/).
As a whole, Table 1 includes 7 series that were ob-
tained from the Gene Expression Omnibus repository
(GEO, https://www.ncbi.nlm.nih.gov/geo/). These data-
sets included a total amount of 1352 CRC samples, but
after collecting the clinical survival data and carrying
out the integration and normalization protocols we fi-
nished with 1273 samples, since we filtered 79 samples
that did not have survival data or did not show

comparable data distributions after normalization. The
phenotypic and clinical information about the final
collection of 1273 samples, i.e., the available data about
age, gender, survival time, location of the tumor, degree
and TNM staging, presence of mutation in some cancer
genes (TP53, KRAS, BRAF), etc; is included in
Additional file 1: Table S1. When information was not
available for a given sample the table includes not
assigned values (NA).

Evaluation of normalization procedures to integrate
independent batches

We performed the integration and combined normalization
of the CRC expression datasets using 5 different proce-
dures. The procedures applied different normalization algo-
rithms to provide a homogeneous signal matrix, avoiding
bias due to batch effect on the global expression profile of
the CRC samples. The procedures applied were: (i) Robust
Multi-array Average (RMA) algorithm [11]; (ii) RMA plus
Combatting Batch effects (ComBat) algorithm [12]; (iii)
Frozen Robust Multi-array Average (fRMA) algorithm [13];
(iv) fRMA plus Combat; (v) fRMA plus scaling of the data
using mean-centered expression values.

Table 1 Summary information about the series of colorectal cancer (CRC) samples that were collected to produce the integrated

data set analyzed in this work

GEO Sample Source Sample Description  Total PubMed PMID  Authors and Samples  Samples
dataset samples Year discarded  processed
in dataset
GSE14333  Royal Melbourne Hospital, Western Hospital  primary colorectal 290 19996206 Jorissen RN 64 226
and Peter MacCallum Cancer Center, cancers et al. (2009)
AUSTRALIA. H Lee Moffitt Cancer
Center, USA
GSE17536  Moffitt Cancer Center, USA colorectal cancer 177 19914252 Smith JJ et al. 0 177
patients (2010)
GSE31595  Roskilde Hospital, DENMARK patients with stage 37 - Thorsteinsson M 0 37
II'and Il colorectal etal. (2011)
cancer
GSE33113  Academic Medical Center in Amsterdam, primary tumor 20 22496204 Kemper Ketal. 0 20
NETHERLANDS resections from stage (2012)
Il colorectal patients
GSE38832 Vandervilt University Medical Center, USA tumor samples 122 25320007 Tripathi MK 0 122
collected from et al. (2014)
colorectal patients
GSE39084 Toulouse Hospital, FRANCE sporadic early onset 70 25083765 Kirzin S et al. 1 69
primary colorectal (2014)
carcinomas
GSE39582 Institut G. Roussy (Villejuif), Hosp. Saint colorectal cancer 566 23700391 Marisa L et al. 14 552
Antoine (Paris), Hosp. G.Pompidou (Paris), samples (2013)
Hosp. Hautepierre (Strasbourg), Hosp.
Purpan (Toulouse), Institut P. Calmettes
(Marseille), Centre Antoine Lacassagne
(Nice), FRANCE
Total 1352 1273
number

All the CRC samples were tested for global gene expression profiling using high-density microarrays Human Genome U133 Plus 2.0 from Affymetrix (that measure
the signal of 20,141 human genes). The total collection included 1352 samples, but only 1273 were finally used. A group of 79 samples were discarded because
they did not have survival data or they presented anomalous data distributions with respect to the other samples of the same series
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To evaluate and compare the results provided by each
one of these 5 procedures we carried out several ana-
lyses. Figure 1 presents the heatmaps derived from an
unsupervised clustering of the samples using in each
case the expression data matrix derived from each one
of the 5 procedures applied. Due to the fact that each
series has a different number of samples (one with more
than 500 and several other with less than 100), we did a
random selection of an even number of samples for each
dataset to be included in the cluster analysis: 30 samples
from each one. In this way, each heatmap is composed
of 210 samples (30 x 7): 30 samples from each one of the
7 datasets (identified by the ID number, GSE, from
GEO). In Fig. 1 the samples of each batch are identi-
fied by a color that is indicated in the horizontal bar
below the dendrograms. Each heatmap represents a
different preprocessing and normalization method
performed to merge the datasets in one meta-dataset.
The results shown in these clustering analyses indi-
cate that in the case of methods that gave the heat-
maps A, C and E, several samples of the same color
are grouped together showing that they have a com-
mon correlation profile within the global expression
signature. By contrast, in the case of methods that
gave the heatmaps B and D, there is a clearer shuf-
fling of all the colors, which reflects a homogenous

mix of the overall expression signal coming from
different datasets.

The clustering analysis presented in the symmetric
heatmaps of Fig. 1 was done using, for each sample, a
vector including the expression signals along all genes
and calculating with these vectors the pair-wise Pearson
correlations between samples and the pair-wise distance
matrix derived from such correlations. This approach
can reveal major effects associated to the global expres-
sion signal of the samples, but it is not very sensitive to
detect minor changes in a small number of genes. For
this reason we applied a second approach to compare
the results provided by the 5 normalization procedures
in order to select the one that produces the best unifica-
tion of the 7 CRC datasets, preserving a good signal to
noise ratio in the expression distributions. Algorithms of
dimensionality reduction, such as PCA (Principal
Component Analysis), allow exploring large datasets in
an accurate way to identify factors that are relevant for
the variance of studied variables (in our case the expres-
sion of the genes in the unified meta-dataset of 1273
samples). Figure 2 presents the plots derived from the
PCA done over the 5 expression matrices (i.e. the signal
of 20,079 genes in 1273 samples) obtained with 5 differ-
ent normalization approaches. These results show very
clearly that the RMA method (Fig. 2a) is not good to

Fig. 1 Symmetric heatmaps representing the similarity between the overall gene expression signal of the samples compared with each other.
Each heatmap is composed of 210 samples (30 x 7, 30 samples random selected from each batch, i.e. from each one of the 7 GSE datasets). The
samples of each batch are identified by a color in the top bar below the top dendrograms (following the colors legend). Each heatmap
represents a different preprocessing and normalization method performed to merge the datasets in one batch. The methods applied were: a
RMA; b RMA plus ComBat; ¢ fRMA; d fRMA plus ComBat; e fRMA plus scaling of the data using mean-centered expression values

GSE14333
GSE17536
GSE31595
GSE33113
GSE38832
GSE39084
GSE39582
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Fig. 2 Plots presenting the distribution of the 1273 samples from 7 datasets (GSEs) obtained by Principal Component Analysis (PCA) of the global
gene expression profile of each sample; that converts the signal of each sample using an orthogonal transformation in linearly uncorrelated
variables called principal components or dimensions. Each plot presents the values of the two main dimensions (dim 1 versus dim 2) and
corresponds to the PCA results obtained using the expression data calculated with different preprocessing and normalization methods. The
methods applied were: a RMA; b RMA plus ComBat; ¢ fRMA; d fRMA plus ComBat; e fRMA plus scaling of the data using mean-centered
expression values. The samples of each batch are identified by color dots following the colors legend

provide a proper normalization of different batches,
since the samples keep a very strong signal associated to
each batch. The fRMA method (Fig. 2¢) neither is good,
since some samples (specially the ones from the largest
batch GSE39582) still keep a strong signal associated to
their batch. By contrast, the analysis of the data provided
by the other 3 procedures (RMA plus Combat, fRMA
plus Combat and fRMA plus mean-centered scaling, Fig.
2b, d and e, respectively) showed an adequate mix of all
the samples from different batches. Within these 3
procedures, the normalization is very similar keeping a
good signal to noise ratio along the genes and a small
signal reduction. We finally select option B, RMA plus
Combat, because the heatmap in Fig. 1b showed the best
mix between series and a better similarity between the
samples (compared to options D or E).

As a final testing to identify the best integration and
normalization procedure of the 7 CRC expression data-
sets, we carried out a linear regression analyses on the
global expression matrix considering as predictors 7 in-
dependent dummy variables or factors. These variables
correspond to the series from which each sample comes
from. In this way, if these factors have a significant influ-
ence in the expression signal distributions, the linear re-
gression analysis will show a significant p-value and
correlation. The results of this analysis are presented in
Table 2, that reveals again that only the data matrices
produced by the methods B and D (RMA plus Combat
and fRMA plus Combat, respectively) do not show a
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significant effect attributed to belonging to one of the
series. Finally, we choose B versus D as the final proce-
dure applied because, despite being very similar, the ap-
plication of RMA plus Combat provoked less dramatic
changes with respect to the raw signal expression.

Identification of genes associated to advanced CRC that
mark survival differences

Once we produced a large and well-integrated meta-
dataset of CRC samples, having global expression pro-
files and clinical survival data for all cases, we proceed
to the identification of the subset of genes that suffer
significant changes with colorectal tumor progression.
To do this, we explored the overall expression matrix to
detect the genes that showed a significant expression
change when comparing CRC tumors in early stages
(stages I and II) versus CRC tumors in late or advanced
stages (stages III and IV). This comparison was done ap-
plying LIMMA, differential expression algorithm, and
retrieving all genes that gave a significant p-value (ad-
justed p <0.05) in either direction (i.e, genes
up-regulated with the progression of the disease, in late
versus early CRC stages; or genes down-regulated with
the progression of the disease). Such differential expres-
sion analysis gave a subset of 2707 human genes: 2524
corresponding to protein-coding genes and the rest to
non-coding genes (in this work we focused only in the
protein-coding genes).
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Table 2 Results of the linear regression analyses on the global expression matrix calculated for the 1273 samples from 7 datasets
(GSEs) combined using 5 different preprocessing and normalization methods

FACTORS considered Estimated coefficients std. error t value p.value Factor effect
(A) RMA

Intercept 6925 0014 512610 <2e-16 -
(GSE14333+) GSE17536 0387 0019 20.230 <2e-16 yes
GSE31595 -1.212 0019 —63440 <2e-16 yes
GSE33113 -0.577 0019 —-30.210 <2e-16 yes
GSE38832 —0.355 0019 —18570 <2e-16 yes
GSE39084 -0.978 0019 —51.180 <2e-16 yes
GSE39582 —-1.375 0019 —-71970 <2e-16 yes
(B) RMA plus Combat

Intercept 6.219 0013 473,582 <2e-16 -
(GSE14333+) GSE17536 0.000 0019 0.001 0.999 no
GSE31595 0.002 0019 0.122 0.903 no
GSE33113 0.001 0019 0.051 0959 no
GSE38832 —0.001 0019 —0.033 0973 no
GSE39084 0.002 0019 0.092 0927 no
GSE39582 0.001 0019 0.029 0977 no
(©) fRMA

Intercept 6.535 0015 450434 <2e-16 -
(GSE14333+) GSE17536 —0.011 0.021 —0553 0.580 no so much
GSE31595 0.089 0.021 4329 0.000 yes
GSE33113 0.071 0.021 3455 0.001 yes
GSE38832 0.054 0.021 2641 0.008 yes
GSE39084 0.096 0.021 4.695 0.000 yes
GSE39582 0.089 0.021 4336 0.000 yes
(D) fRMA plus Combat

Intercept 6.590 0014 457.338 <2e-16 -
(GSE14333+) GSE17536 0.000 0.020 0.001 1.000 no
GSE31595 0.002 0.020 0.093 0.926 no
GSE33113 0.001 0020 0.072 0942 no
GSE38832 0.000 0.020 0019 0.985 no
GSE39084 0.002 0.020 0.089 0929 no
GSE39582 0.000 0.020 0.007 0.994 no
(E) fRMA plus mean centered

Intercept 0.000 0.000 —1.638 0.101 -
(GSE14333+) GSE17536 0.000 0.000 1.264 0.206 yes
GSE31595 0.000 0.000 0.288 0.773 no so much
GSE33113 0.000 0.000 1.605 0.108 yes
(GSE38832 0.000 0.000 1449 0.147 yes
GSE39084 0.000 0.000 —0076 0.940 no
GSE39582 0.000 0.000 1395 0.163 yes

The methods applied were: (A) RMA; (B) RMA plus ComBat; (C) fRMA; (D) fRMA plus ComBat; (E) fRMA plus scaling of the data using mean-centered expression

values. The linear regression is done to evaluate the “batch effect” (i.e. considering that the tested factors are the fact of “belonging” to a given dataset). Thus,
when the p-value of the factors are significant (< 0.05), the “batch effect” remains on the overall expression signal. A marginal low significance was considered
when p-values were < 0.20 in the case E
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Once we had the subset of genes that can be associ-
ated to advanced or progression of CRC, we perform a
second analysis on these gene candidates to find out
which ones can be correlated with the survival of the
corresponding patient samples based on their expression
signals. To do this, we carried out Kaplan-Meier (KM)
analysis of the survival times of the set of 1273 colorec-
tal cancer samples for each one of the 2524 genes found
in the previous exploration. In this analysis, the genes
were ranked considering the non-parametric log-rank
test that evaluates the separation between the two KM
curves for two prognostic groups: one with good survival
and another with poor survival. To do this, our
algorithm performs for each gene multiple splits of the
sample cohort in two groups, and looks for the splitting
that provides the best separation between groups (ie.
the best p-value). Then, a stringent cut-off value
(adjusted p <0.0003) was used to select the genes that
are considered significant. This allowed the identification
of 429 significant genes in which the overexpression cor-
related with low survival, plus 336 significant genes
where the repression correlated with low survival. These
analyses were done in a univariate mode, considering
each gene as an independent factor.

Figure 3 shows the Kaplan-Meier plots corresponding
to the survival profiles of the two populations of

individuals that were segregated according to the ex-
pression values of the gene tested. The 4 plots corres-
pond to the top genes: DCBLD2 and PTPN14 with
overexpression correlated to low survival; and EPHB2
and DUSIL with repression correlated to low survival.
The separation of the two populations in both cases
is very significant, with KM p-values <1.0e-10 and
Hazard Ratios (HR) around 2.0 for overexpression
cases and around 0.45 for repression cases. These
parameters were calculated wusing all the 1273
samples; however it was necessary to do an internal
cross-validation of these results to assess how stable
and reliable was the signal for each one of the
selected genes.

We carried out a cross-validation of the top-200 genes
selected in any of the two conditions (i.e. selected as sur-
vival markers when they were up-regulated for the cases
of poor survival or when they were up-regulated for the
cases of better survival). This internal cross-validation
was done using for each gene a resampling strategy that
randomly selected 80% of the sample 100 times (ie.
doing 100 iterations). The results corresponding to the
top 100 genes are included in Additional file 2: Table S2,
for the case of up-regulation for poor survival, and the
other top 100 genes in Additional file 3: Table S3, for
the case up-regulation for better survival.
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Fig. 3 Kaplan-Meier plots of the survival analysis of the set of 1273 samples from colorectal cancer (CRC) patients. The patients are separated in
two groups (high in red and low in green) according to the expression profiles of 4 genes: a DCBLD2, b PTPN14, ¢ EPHB2, d DUSTL. These genes
provided the best split between patients of high and low risk based in their expression levels. In the case of genes DCBLD2 and PTPN14 (labelled
in red) the over-expression is correlated with poor survival; and in the case of genes EPHB2 and DUSTL (labelled in green) the over-expression is
correlated with good survival. In all cases the adjusted p.values of the analyses are very significant (as indicated inside each plot), indicating that
the two populations represented by the two curves have a very clear difference in their overall survival
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A short view of these data is shown in Table 3 that
presents the 50 genes selected as best survival markers of
CRC: the first part of the table corresponds to the top 25
genes, where up-regulation corresponds to shorter sur-
vival and higher risk (HR > 1); the second part of the table
corresponds to the top 25 genes, where up-regulation cor-
responds to longer survival and lower risk (HR < 1). The
genes were ranked by their KM p-values and the HR
values calculated for the whole dataset (i.e. for all the 1273
samples, all-dt). As indicated, the stability and robustness
of the gene survival markers was assessed via a resampling
strategy with random selection of 80% of the dataset 100
times. For the final ranking of the genes included in these
tables we also considered that they had to give a signifi-
cant adjusted p-value in more than 80 out of 100 boot-
strap iterations (i.e. N-sinf-in-100i > 80).

External validation of prognostic markers with a CRC
cohort studied using RNA-seq

The analyses done so far provided a ranked collection of
genes found as robust markers of survival in CRC. The
consistency of the results obtained with the internal
cross-validation gives strong support to the top genes
found (presented in Table 3), but we had to consider the
value of using other external independent CRC cohorts
to corroborate these findings. As far as we could investi-
gate we did not find other large CRC datasets (i.e., sets
with more than one thousand samples) that included
global gene expression data plus survival as part of the
clinical characterization of samples. Despite this limita-
tion, we look for independent datasets and found in The
Cancer Genome Atlas (TCGA, http://tcga-data.nci.nih.
gov/docs/publications/coadread_2012/) a
well-characterized cohort of 276 colorectal carcinomas
that had been studied with several genome-scale tech-
nologies (including RNA-seq gene expression profiling)
and that had survival data for 269 samples [14]. We used
these data to validate the top genes found as best
survival markers in our previous analysis. The results in-
dicated a good performance in more than two thirds of
the genes tested. In Additional file 4: Table S4 we
present the KM p-values and HR of the genes that were
validated from the top 10 previously found: 7 genes of
the top 10 for the case of up-regulation associated with
poor survival (PTPN14, LAMP5, TMA4SF1, LCAS5,
CSGALNACT?2, SLC2A3 and GADD45B) and 6 genes of
the top 10 previously found for the case of up-regulation
associated with good survival (EPHB2, DUS1L, NUAK2,
FANCC, MYB and CHDH).

External validation of prognostic markers using
multivariate survival analysis

Up to now the search to find gene survival markers as-
sociated to the prognosis of CRC have been done using

univariate analysis that look for the value and influence
of each singular gene. The results presented provided
multiple parameters to allow a proper statistical assess-
ment and ranking of each gene survival markers
proposed (Table 3). To provide extra support to these
results we did another external validation using a second
independent cohort of CRC samples from the platform
SurvExpress [15]. The CRC dataset selected was called
“Colon-Metabase-Uniformized” and it included 482
samples with overall survival data and genome-wide ex-
pression determined with Affymetrix microarrays. We
performed several multivariate survival analyses (OS,
overall survival) on this dataset using combinations of
the top genes proposed in Table 3. As an example of
these analyses we present the KM plot (Additional file 5:
Figure S1) corresponding to the multivariate survival
study done using the top 5 genes found up-regulated for
poor survival (DCBLD2, PTPN14, LAMP5, TM4SF1 and
NPR3). It can be seen that the combination of these genes
provides a very good separation of two CRC populations:
one group of high-risk, associated to the overexpression (or
up-regulation) of the genes; and another group of low-risk,
associated to the lower expression (or down-regulation) of
these genes (Additional file 5: Figure S1). This analysis was
repeated with several other combinations of the top
up-regulated genes associated with poor survival (present
in Table 3), resulting in similar results. For example, com-
bining DCBLD2, LAMP5, TM4SF1, NPR3 and GADD45B
the separation of the high and low-risk groups improved a
bit: KM p-value = 2.21e-07 and HR =2.23 (95% confidence
interval, C: 1.65-3.02). Another combination that provided
very good separation was using genes DCBLD2, LAMPS5,
TMA4SF1, NPR3 and AKAP12: KM p-value = 2.51e-10 and
HR =2.74 (95% CI: 2.00-3.74).

Gene expression profiles of CRC tumor samples versus
normal colorectal samples

All the integrated datasets, so far presented in this study
corresponded to CRC samples, because we want to
provide genes that are disease markers present in the
transformed tumor cells of the intestinal epithelium, and
genes that mark the progression and aggravation of this
type of cancer. In addition, we can only have survival in-
formation about patients since in healthy individuals sur-
vival time cannot be related to disease and there are not
disease-associated events. Despite this obvious consider-
ation, it is interesting to explore what would be the level of
expression of the genes, that we identified as survival
markers, when they are analysed in normal colorectal
tissue. Exploring back on the experimental series used to
create our meta-dataset of 1273 CRC samples, we found in
series GSE33113 and GSE39582 a collection of 25 samples
that corresponded to normal colorectal tissue. We took
these samples and included then with our CRC dataset
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Table 3 Genes selected as top-50 best survival markers of colorectal cancer (CRC)

Number GENE GENE KM.p.value HR @all-  N-signf-in-100i HR GENE GENE DESCRIPTION
ENSEMBL_ID Symbol (all-dt) dt) (KMpwvalue)  (mean-in-100i)) HGNC_ID

1 ENSG00000057019 DCBLD2 0.0000000000 2.02 99 2.106 24627 discoidin; CUB and LCCL domain
containing 2 [HGNC:24627]

2 ENSG00000152104 PTPN14 0.0000000000 1.99 99 2082 9647 protein tyrosine phosphatase;
non-receptor type 14

3 ENSG00000125869 LAMP5 0.0000000000 1.99 93 2.046 16097 lysosomal associated membrane
protmember 5 [HGNC:16097]

4 ENSG00000169908 TMA4SF1 0.0000000001 1.96 93 2.031 11853 transmembrane 4 L six family
member 1 [HGNC:11853]

5 ENSG00000113389 NPR3 0.0000000002 1.95 97 2.136 7945 natriuretic peptide receptor 3
[HGNC:7945]

6 ENSG00000186007 LEMD1 0.0000000003 1.95 85 1.937 18,725 LEM domain containing 1
[HGNC:18725]

7 ENSG00000135338 LCAS 0.0000000003 1.89 97 2021 31,923 LCAS; lebercilin [HGNC:31923]

8 ENSG00000169826 CSGALNACT2 0.0000000008 191 92 1974 24,292 chondroitin sulfate
N-acetylgalactosaminyltransferase 2

9 ENSG00000059804 SLC2A3 0.0000000014 1.93 89 1.993 11,007 solute carrier family 2 member 3
[HGNC:11007]

10 ENSG00000099860 GADD45B 0.0000000018 1.92 97 2074 4096 growth arrest and DNA damage
inducible beta [HGNC:4096]

I ENSG00000136155 SCEL 0.0000000018 1.88 87 1.928 10,573 sciellin [HGNC:10573]

12 ENSG00000100625 SIX4 0.0000000019 1.89 91 1.951 10,890 SIX homeobox 4 [HGNC:10890]

13 ENSG00000131016 AKAP12 0.0000000028 1.85 95 2092 370 A-kinase anchoring protein 12
[HGNC:370]

14 ENSG00000158270 COLEC12 0.0000000028 1.84 92 1.941 16,016 collectin subfamily member 12
[HGNC:16016]

15 ENSG00000154553 PDLIM3 0.0000000047 1.84 91 1.985 20,767 PDZ and LIM domain 3
[HGNC:20767]

16 ENSG00000082781 ITGB5 0.0000000049 1.82 88 1911 6160 integrin subunit beta 5
[HGNC:6160]

17 ENSG00000144366 GULP1 0.0000000050 1.81 88 1911 18,649 engulfment adaptor PTB domain
containing 1 [HGNC:18649]

18 ENSG00000171951 SCG2 0.0000000051 1.81 93 2034 10,575 secretogranin Il [HGNC:10575]

19 ENSG00000185567 AHNAK2 0.0000000066 1.80 87 1.896 20,125 AHNAK nucleoprotein 2
[HGNC:20125]

20 ENSG00000138061 CYP1B1 0.0000000075 1.84 85 1.884 2597 cytochrome P450 family 1
subfamily B member 1
[HGNC:2597]

21 ENSG00000184304 PRKD1 0.0000000451 1.74 87 1872 9407 protein kinase D1 [HGNC:9407]

22 ENSG00000152583 SPARCL1 0.0000000471 1.74 85 1.863 11,220 SPARC like 1 [HGNC:11220]

23 ENSG00000147883 CDKN2B 0.0000000717 1.73 84 1.847 1788 cyclin dependent kinase inhibitor
2B [HGNC:1788]

24 ENSG00000213190 MLLT11 0.0000001989 1.70 84 1813 16,997 myeloid/lymphoid or mixed-lineage
leukemia; translocated to 11

25 ENSG00000135218 CD36 0.0000002751 1.69 85 1.891 1663 CD36 molecule [HGNC:1663]

1 ENSG00000133216 EPHB2 0.0000000000 043 100 0426 3393 EPH receptor B2 [HGNC:3393]

2 ENSG00000169718 DUSTL 0.0000000000 049 98 0481 30,086 dihydrouridine synthase 1 like
[HGNC:30086]

3 ENSG00000163545 NUAK2 0.0000000001 0.51 96 0495 29,558 NUAK family kinase 2 [HGNC:29558]

4 ENSG00000158169 FANCC 0.0000000002 0.51 95 0498 3584 Fanconi anemia complementation
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Table 3 Genes selected as top-50 best survival markers of colorectal cancer (CRC) (Continued)

Number GENE GENE KMp.value HR (all-  N-signf-in-100i HR GENE GENE DESCRIPTION
ENSEMBL_ID Symbol (all-dt) dt) (KM.p.value) (mean-in-100i) HGNC_ID

5 ENSG00000277972 CISD3 0.0000000002 0.51 87 0.511 27578 CDGSH iron sulfur domain 3
[HGNC:27578]

6 ENSG00000099800 TIMM13 0.0000000003 0.53 95 051 11,816 translocase of inner mitochondrial
membrane 13 [HGNC:11816]

7 ENSG00000116771 AGMAT 0.0000000005 0.52 95 0515 18,407 agmatinase [HGNC:18407]

8 ENSG00000118513 MYB 0.0000000006 0.52 93 0.508 7545 MYB proto-oncogene. Transcription
factor [HGNC:7545]

9 ENSG00000016391 CHDH 0.0000000006 0.53 90 0520 24,288 choline dehydrogenase
[HGNC:24288]

10 ENSG00000137460 FHDC1 0.0000000008 0.52 96 0.505 29,363 FH2 domain containing 1
[HGNC:29363]

1 ENSG00000132846 ZBED3 0.0000000009 0.52 88 0.522 20,711 zinc finger BED-type containing
3 [HGNC:20711]

12 ENSG00000162408 NOL9 0.0000000015 0.54 92 0527 26,265 nucleolar protein 9 [HGNC:26265]

13 ENSG00000109534 GAR1 0.0000000017 0.50 99 0479 14,264 GART ribonucleoprotein
[HGNC:14264]

14 ENSG00000133477 FAMB83F 0.0000000019 0.54 93 0.518 25,148 family with sequence similarity
83 member F [HGNC:25148]

15 ENSG00000100348 TXN2 0.0000000036 0.53 88 0.527 17,772 thioredoxin 2 [HGNC:17772]

16 ENSG00000108479  GALK1 0.0000000036  0.55 88 0.525 4118 galactokinase 1 [HGNC4118]

17 ENSG00000110917 MLEC 0.0000000045 0.55 96 0476 28973 malectin [HGNC:28973]

18 ENSG00000114738 MAPKAPK3  0.0000000048 0.55 92 0520 6888 mitogen-activated protein
kinase-activated 3 [HGNC:6888]

19 ENSG00000137752 CASP1 0.0000000180 0.56 87 0523 1499 caspase 1 [HGNC:1499]

20 ENSG00000131844 MCCC2 0.0000000183 0.57 93 0516 6937 methylcrotonoyl-CoA carboxylase
2 [HGNC6937]

21 ENSG00000178409 BEND3 0.0000000193 0.55 88 0.529 23,040 BEN domain containing 3
[HGNC:23040]

22 ENSG00000114737 CISH 0.0000000216  0.55 87 0.508 1984 cytokine inducible SH2 containing
protein [HGNC:1984]

23 ENSG00000011376 LARS2 0.0000000239  0.55 91 0528 17,095 leucyl-tRNA synthetase 2;
mitochondrial [HGNC:17095]

24 ENSG00000164045 CDC25A 0.0000000481 0.57 90 0.539 1725 cell division cycle 25A
[HGNC:1725]

25 ENSG00000154655 L3MBTL4 0.0000000606 0.54 90 0.506 26,677 I(3)mbt-like 4 (Drosophila)
[HGNC:26677]

The first part of the table corresponds to the top-25 genes where up-regulation corresponds to shorter survival and higher risk (i.e., HR > 1); the second part of the
table corresponds to the top-25 genes where UP-regulation corresponds to longer survival and lower risk (HR < 1). The genes were ranked by their KM adjusted p
values and the Hazard Ratio values calculated for the whole dataset, i.e. for all the 1273 samples (all-dt). The stability and robustness of the gene survival markers
was assessed by cross-validation, applying to each gene a resampling strategy with random selection of 80% of the samples 100 times (i.e. doing 100 iterations).
For the ranking we also considered that the genes had to give a significant adjusted p-value in more than 80 iterations (N-sinf-in-100i > 80)

using the same normalization protocol. After this integra-
tion, we could explore the expression level of the top
up-regulated genes (identified as markers of poor survival),
comparing the expression distribution on a set of cancer
samples versus a set of normal tissue samples. In both cases
the number of samples compared were 25, since this is the
number of normal samples that we had. We did this com-
parison 20 times, random selecting each time a different
subset of 25 cancer samples. The results were always very
similar and the boxplots of the expression distributions for

the top 10 genes are presented in Additional file 6: Figure
S2. These results indicate that the gene markers, identified
in our survival studies, are most of the times also
up-regulated in CRC tumors with respect to normal colo-
rectal tissue.

Risk predictor score based in the multivariate analysis of
candidate survival markers

Finally, to obtain a more accurate evaluation of the prog-
nostic value of all the genes selected as best candidates
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(reported in Additional files 2 and 3, Table S2 and
Table S3), we performed another analysis of the can-
didate markers using a regularized multivariate Cox
proportional-hazards regression with L1 norm penalty
[16], with the scope of building a multigenic “risk
predictor”. This analysis was done on the cohort of
1273 samples of CRC patients, using for the multi-
variate analysis the top 100 genes that showed
up-regulation correlated with poor prognosis (ie.
overexpressed in low survival cases). The results are
presented in Fig. 4 that shows a graph ordering the
patients according to their risk score, from low-risk
(blue) to high-risk (red), including also an intermedi-
ate region (grey) (Fig. 4a). A recursive algorithm
using 10-fold cross-validation was applied to find the
value of risk score. The threshold (marked with a ver-
tical black line) is obtained by maximizing the separ-
ability between the survival curves for the resulting
groups. Therefore, it allows the best splitting of the
cohort in two groups. A Kaplan-Meier plot showing
the separation of these two groups is also presented
(Fig. 4b); dividing the population into a high risk
group including 425 individuals and a low risk group
including 848 individuals. As shown, the division is

significant (p-value = 8.25e-14) and allows an optimal
separation of individuals according to their survival.
The analysis of the beta factors assigned by the re-
gression to each of the top 100 genes, i.e. to each
variable within the multivariate vector (data included
in Additional file 7: Table S5), allows the identifi-
cation of the genes that were the most influential fac-
tors in this risk analysis and therefore it facilitated
the selection of the best “gene survival markers”. As
indicated in previous sections, the top 100 genes
included in the construction of this multigenic risk
predictor score were selected from the list of best
markers found during the survival test with single
genes.

Discussion

CRC is a complex disease composed of biologically and
clinically diverse subtypes, which can originate in differ-
ent ways provoking multiple clinical scenarios [1, 2].
This complexity causes the molecular characterization of
CRC to remain deficient, with a lack of clear gene markers
associated to specific CRC subtypes and to the prognosis
of the disease [17-19]. In fact, current molecular pheno-
typing of colorectal tumors is usually linked to the
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from Low (blue) to High (red) risk. A recursive algorithm using 10-fold cross-validation finds the value of risk score (marked with a vertical black
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traditional determination of somatic mutations in well-
known oncogenes such as KRAS and BRAF [20].

The recent advance of genomic and transcriptomic
technologies applied to the study of clinical samples did
open the way to obtain genome-wide expression profiles
of multiple patient cohorts and correlate the expression
of certain genes with different disease subtypes, disease
stages and progression [21, 22]. This approach had been
widely applied in cancer research in the last decade and
is very powerful when the identification of marker genes
is associated with survival time. The correlation between
gene expression and survival is an excellent tool to
investigate prognosis of the disease and to build risk pre-
dictors that will be applicable to individual patients.

The identification of molecular biomarkers with prog-
nostic value in CRC has been a challenging task [23-26].
Molecular prognosis of colorectal tumor samples by
transcriptional profiling started about 15 years ago (see
review [24]), and in more recent years several specific
gene signatures associated with CRC survival have been
published [5-7, 27-31]. Despite these efforts, at present
there is not a clear compendium of gene markers for
CRC survival and it is quite difficult to find consistency
in the literature [24]. A clear limitation comes from the
fact that, in most of previous studies, the number of
tumor samples used to select the genes that enter into
the construction of the prognostic predictors is small
(ie., the size of the patient cohorts rarely it is greater
than a few hundred individuals). For example, ColoPrint
is a 18-gene signature for prognosis prediction of stage
II and III CRC, that was identified using as training set
tumor samples from 188 patients [7, 27]; a 113-gene ex-
pression signature for predicting prognosis in patients
with CRC was built using 145 samples as dicovery set
[28]; a 7-gene signature to predict overall survival of
CRC patients was based in an initial training set of 67
samples [29]; a recurrence-associated CRC signature of
13 genes was developed using a screening set of 145
samples [30]; a 15-gene signature for prediction of CRC
recurrence and prognosis was elaborated using for the
gene selection a set of 55 patients [31]. In conclusion,
we can say that as far as it is reflected in the current litera-
ture, the size of the initial training sets used to identify
candidate gene markers for CRC survival is small and the
overlap between the published gene signatures is very re-
duced and inconsistent. To address these critical prob-
lems, we constructed a large, well-standardized, integrated
data set of 1273 tumor samples with survival information,
which was used to identify genes that had a clear change
in expression in the middle and late stages of CRC and
were consistent markers of the disease-outcome and
patient-risk.

With respect to the specific genes proposed as CRC
survival markers, we want to underline that our study

does not pretend to provide a fixed gene signature for
prognosis and risk prediction, like the reported signa-
tures of 7-genes, 15-genes or 113-genes [28, 29, 31]; but
instead we propose a robust set of genes ranked accor-
ding to their predictive power of CRC survival. In this
way, an ordered list of 200 genes including the best
survival markers is presented: 100 genes for which
up-regulation marks “poor survival” and 100 genes for
which up-regulation marks “good survival”. We think
that this approach is more useful, since it allows an open
selection of different number of genes for further
purposes or investigations (for example, for additional
tests with other CRC clinical cohorts). In fact, we used
the 100 most significant genes, up-regulated with the
progression of CRC, to build the risk predictor (pre-
sented in Fig. 4); and we used the top 5 or top 10 genes
of this list for the external validations with different
independent datasets.

Another relevant comment is that, as reminded above,
we constructed the risk predictor using the genes that
showed up-regulation correlated with poor prognosis.
This was done because in the selection of biomarkers it
is better to use the ones that provide a positive signal
(i.e. “gain-of-function” factors) than the ones that pro-
vide a negative signal. Therefore, all the gene survival
markers that we proposed were detectable as overex-
pressed in the CRC patients with high risk. The fact that
they give a positive signal will also make easier their
detection by standard biomolecular protocols (PCR,
ELISA, immunohistochemistry, etc).

Finally, we are investigating the biological meaning of
the genes found as best predictive and prognostic
markers. We are focusing our efforts in the top 10 for
which up-regulation marked poor survival: DCBLD2,
PTPN14, LAMP5, TMA4SF1, NPR3, LEMDI1, LCAS5,
CSGALNACT?2, SLC2A3, GADD45B. The analysis of
the literature reveals some relevant observations. For ex-
ample, the transmembrane protein DCBLD2 (ESDN),
member of a family of neuropilin-like proteins, is a novel
regulator of mitotic and metabolic effects of insulin, and
it modulates signal transduction through regulation of
the insulin receptor interaction with its adaptor proteins
[32]. The importance of insulin regulation in the func-
tion of our digestive system is clear, and this adds extra
value to the proposal of DCBLD2 as a CRC survival
marker. Other genes within the top rank have been
recently involved in cancer progression, like the case of
SLC2A3 (GLUT3) a glucose transporter that mediates
glucose utilization and glycogenolysis, which is induced
during epithelial-mesenchymal transition and promotes
tumor cell proliferation [33]. Recent publications have
also proposed the role of some other genes found as
prognostic markers, like the case of LAMP5 that has
been included in a multigenic assay to predict
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recurrence for gastric cancer patients after surgery [34].
As a final example, GADD45B (growth arrest and
DNA-damage-inducible 45 beta) is a gene that responds
to environmental stresses, associated with cell growth
control, apoptosis and DNA damage repair response.
GADD45B overexpression has been recently correlated
with shorter overall survival in colorectal carcinoma
[35]. Moreover, a recent integrative analysis of multiple
colon cancer gene-expression-based subtype classifiers
reported that one of the three highest scoring genes in-
cluded in several classifiers was GADD45B [36].

Despite all these positive findings that correspond to the
biological value and the support of the genes identified as
most significant markers of CRC survival, there are some
possible limitations of the results, beginning with the
general observation about the frequent heterogeneity of the
colorectal tumors [1, 17]. In fact, it is clear from the anatom-
ical pathology that CRC can affect quite different regions of
the digestive tract: ascending colon, transverse colon, de-
scending colon, sigmoid colon and rectum. The causal genes
that drive tumors in these different regions may not be the
same, and most CRC studies do not enter into a detailed
separation of these regions [19]. The variability due to the
different staging of the tumors is another factor that can
bring limitations to any CRC study; but in this case we
clearly indicated that our work searched for genes that were
candidate prognostic markers for CRC in stages III and IV.
A final reason for the limitations of the results may be an
over-adjustment to the tested data sets. To avoid this kind
of limitations, we built a large well-normalized data set with
more than a thousand samples, performed a cross-validation
analysis on that set, and also explored the validity of the
gene markers in two other independent sets.

Conclusions

In conclusion, we consider that the results presented in this
work provide strong support and a solid rationale for the
prognostic value of a new set of genes in CRC and for their
potential to predict colorectal tumor progression and evo-
lution towards stages III and IV. The final proposed set of
gene survival markers includes an open list of one hundred
up-regulated genes, with a robust statistical estimation of
the value of each one. In this way the set of genes is clearly
ranked, being the top in the list the ones that provide best
prognostic strength and the ones that can be introduced to
build smaller predictors. In fact, our results showed that a
selection of the top 5 genes applied to independent external
cohorts provided very good separation of CRC samples in
two distinct groups of high and low risk.

Methods

Genome-wide expression data sets

In this study, we have analysed and integrated seven data
sets of CRC samples (Table 1). All data sets are available
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at GEO repository, corresponding to 7 series with the
following accession numbers: GSE14333, GSE17536,
GSE31595, GSE33113, GSE38832, GSE39084 and GSE
39582. All these series included the raw expression sig-
nal and correspond to data obtained with the microar-
rays expression platform: Affymetrix GeneChip U133
Plus 2.0 for Homo sapiens. The phenotypic information
corresponding to all these series was analysed in order
to select only the samples that included information re-
garding: the cancer stage and the Overall Survival (OS).
The samples that did not have any survival information
were discarded from the study. In all cases only primary
tumors samples were considered for our analysis; in this
way individuals who had received preoperative chemo-
therapy and/or radiotherapy were also discarded.

For the external validation we used two independent
datasets. A cohort of 276 colorectal carcinomas that had
been studied using RNA-seq gene expression profiling,
and that had survival data for 269 samples [14] (which
can be found in http://tcga-data.nci.nih.gov/docs/publi-
cations/coadread_2012/). A second cohort of CRC sam-
ples from the platform SurvExpress [15]. This second
dataset selected, called “Colon-Metabase-Uniformized”,
included 482 CRC samples with overall survival data
and genome-wide expression determined with Affyme-
trix microarrays (see the website http://bioinformati-
ca.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp).

Expression data sets exploration and integrative
normalization
Previously, to make the best use of the information
obtained from the microarrays, we have considered the
importance to ascertain the quality of the data. To assess
the validity of generated microarray information we have
performed a wide variety of quality assessment methods,
both in raw and pre-processed information. In this way,
several explanatory data analysis were applied for the de-
tection of problematic arrays. We used the R function
image to create chip images of the raw intensities to dis-
cover spatial artefacts in the samples. We have also look
at the distribution of probes intensities across all arrays,
using the boxplot method available for the Affybatch
class. We also applied to the samples the Normalized
Unscaled Standard Error (NUSE) algorithm. This quality
assessment tool requires a previous PLM fitting proced-
ure applied on the raw expression data. We have used
the function fitPLM provided in the AffyPLM package to
create the PLMset class object used as the input in the
elaboration of the NUSE analysis. After applying the re-
ferred quality assessment methods, we discarded 79 of
the initial samples collected and proceed with the
remaining 1273 (Table 1).

To create a table with all the phenotypic characteris-
tics of the patients selected which involved all samples
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GSM accession numbers and related clinic variables in a
consistent and homogenize way, we used getGEO and
pData functions from GEOquery package (this table is
provided as Additional file 1: Table S1). We made use of
regular expressions and common text manipulation R
functions to solve the issue of formatting heterogenic
data. Finally, we created a binary variable to label the
patients and select them in a proper way during the
hypothesis contrasts and statistical modeling.

Batch effect removal

Batch effect is one of the main problems when several
datasets are combined to be studied together, because
different batches usually add large unwanted variability to
the data. To avoid this effect we tested a combination of
different pre-processing and normalization algorithms:
Robust Multi-array Average (RMA) algorithm [11];
Combatting Batch effects (ComBat) algorithm [12]; Fro-
zen Robust Multi-array Average (fRMA) algorithm [13].
For the fRMA algorithm application, we constructed the
frozen parameter vector using a training dataset in where
we distributed randomly selected samples proportionally
to each labelled group to obtain a balanced sample from
the 7 batches of microarrays.

Another important issue addressed was the fact that
the Affymetrix probe-sets included in the expression
microarrays many times do not correspond to singular
genes and some probes inserted in the defined
probe-sets are ambiguous or inaccurate [10]. Affymetrix
GeneChip is a popular and usefull platform for gene ex-
pression profiling, but the use of its probes and
probe-sets mapping has multiple inconveniences. In fact,
the probe-sets for the Affymetrix Human Genome U133
Plus 2.0 Array are based on UniGene database (Build 133,
April 20, 2001) and considering how rapidly human genome
has evolved many probes on the array are not correctly
assigned. To avoid this problem, we used the updated probe
alignment and gene mapping that is provided by the Chip
Definition File (CDF): hgul33plus2hsensgedf (downloaded
from http://brainarray.mbni.med.umich.edu/).

Batch effect removal evaluation

We performed unsupervised hierarchical clustering to
observe unlikely clustering based on batches in those ex-
pression value matrixes where batch effects remained
after pre-processing. We used a 30-random sampling
per batch, identifying each batch by a different color
(Fig. 1). The batch effect was also investigated using
principal components analysis (PCA) (Fig. 2). A linear
regression of average gene expression on array batch per
pre-processing method was the final approach fulfilled
to assure removal (Table 2).

Differential expression analysis

For the identification of gene whose altered expression
achieved statistical significance we used the R algorithm
Linear Models for Microarrays (LIMMA package). We
applied LIMMA to the expression data matrix fixing an
adjusted p-value threshold of FDR<0.01 to select sig-
nificant genes. The comparison was done separating the
samples according to their clinical and pathological stage
(comparing CRC stages I and II versus III and IV). In
this way we found a set of 2707 candidates genes, corre-
sponding to 2524 protein-coding genes that were tested
in the survival analysis (the rest were non-coding genes).
In this work we focus only on the genes that encode
proteins because we wanted to find CRC survival
markers that later can be tested at protein level using,
for example, immunohistochemistry (IHC) analysis.

Survival analysis
Our intention in this research was to identify genes whose
relative expression level affect survival and prognosis in
CRC, once we had made a preselection in its behavior
through stage evolution of 2524 protein-coding genes.
The first step for the survival analysis was to define for
each gene two separated distributions of high and low
expression along the sample dataset investigated. This separ-
ation based in expression level determined the explanatory
variable. We used the Surdiff function in the Survival pack-
age to address the issue. By sorting all the samples in ascend-
ing order, we performed Surdiff hypothesis testing, splitting
the group of samples for each gene and every sample be-
tween quantile 25% and 75% to obtain its Chi-square associ-
ated p-value. Then we selected minimum p-value to perform
final group assignation of high and low expression. Once we
had the two groups clearly defined, we used the Coxph
model to obtain each associated p-value and hazard ratio
(HR) from every candidate gene. In this way, the survival
analysis along the two groups also allowed estimating hazard
ratios (HR) or, what is the same, tried to measure how the
expression, in terms of high and low relative expression for
each candidate gene, altered the hazard function. Finally, for
computing the time to event, the response variable in the
models was the Overall Survival (OS) time. All the data sets
that we integrated in our analyses had OS information. In
some cases for some individuals, Disease Specific Survival
(DSS) times or Relapse Free Survival (RFS) times were also
provided with the original data, but we did not considered
these time-events since we wanted to focus on OS to achieve
a homogeneous analysis.

Additional files

Additional file 1: Table S1. Phenotypic and clinical information about
the collection of 1273 colorectal cancer samples that has been integrated
in this work. The table includes the IDs of the samples in GEO and all the
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available data about age, gender, survival time, location of the tumor,
degree and TNM staging, presence of mutation in some cancer genes
(TP53, KRAS, BRAF), etc. When information was not available for a given
sample the table includes NA (not available values). (XLSX 272 kb)

Additional file 2: Table S2. Top-100 best survival marker genes for
colorectal cancer (CRC) that are up-regulated when survival is poor and
the risk is higher (i.e, HR > 1). This table is an expension of the data in
Table 3. The genes were ranked by their KM adjusted p-values and the
HR values calculated for the whole dataset (i.e. for all the 1273 samples
=all-dt). The stability of each survival marker gene was assessed by
cross-validation (100 iterations). The table also includes the number of
times that a survival marker was significant in the iterations (N-sinf-in-
100i). (XLSX 73 kb)

Additional file 3: Table S3. Top-100 best survival marker genes for
colorectal cancer (CRC) that are down-regulated when survival is poor
and the risk is higher (i.e, HR < 1). This table is an expension of the data
in Table 3. The genes were ranked by their KM adjusted p-values and the
HR values calculated for the whole dataset (i.e. 1273 samples = all-dt).
The stability of each survival marker gene was assessed by cross-
validation (100 iterations). The table also includes the number of times
that a survival marker was significant in the iterations (N-sinf-in-100i).
(XLSX 70 kb)

Additional file 4: Table S4. Validation of the survival data done in an
independent set of samples taken from The Cancer Genome Atlas
(TCGA), that included 269 colorectal carcinomas with survival information
and RNA-seq global expression profiling. The table includes the KM p-
values and HR of the genes that were validated from the top-10 survival
marker genes previously found presented in Table 3. Of the top-10 for
the case of up-regulation associated with poor survival, 7 were validated
(PTPN14, LAMPS5, TM4SF1, LCA5, CSGALNACT2, SLC2A3 and GADDA45B). Of
the top-10 found for down-regulation associated with poor survival, 6
genes were validated (EPHB2, DUS1L, NUAK2, FANCC, MYB and CHDH).
(XLSX 51 kb)

Additional file 5: Figure S1. Survival multivariate analysis of an
independent set of 482 samples of CRC patients carried out considering
the expression profiles of 5 genes: DCBLD2, PTPN14, LAMPS, TM4SF1 and
NPR3. (A) Kaplan-Meier plot presenting the patients divided in two
groups according their risk score: High risk (red) and Low risk (green). (B)
Box plots showing the distributions of global expression corresponding
to these 5 genes. For each gene, the dataset of 482 samples was divided
in the two groups of patients indentified as High risk (red) and Low risk
(green). (PDF 356 kb)

Additional file 6: Figure S2. Comparison of the distributions of the
expression signal corresponding to ten genes in 25 samples from normal
colorectal epithelium (green boxplots) versus 25 samples from CRC (red
boxplots). The genes selected for this analysis were the top-10 best sur-
vival marker genes found up-regulated for poor prognosis (i.e. markers
up-regulated when there is low CRC survival): DCBLD2, PTPN14, LAMPS,
TMA4SF1, NPR3, LEMD1, LCAS5, CSGALNACT2, SLC2A3 and GADD45B. The
tumor samples were not selected by stage (ie. they were selected from
any CRC stage: |, II, Il or IV) and this comparison was done 20 times with
different subsets of 25 CRC samples to check the stability of the signal.
The plots of all the other comparisons were very similar to the plot here
presented. (PDF 46 kb)

Additional file 7: Table S5. Beta factors assigned by regression analysis
to each of the top-100 survival marker genes. These genes are taken as
variables within the multivariate Kaplan-Meier survival analysis included in
Fig. 4b. The factors allowed the identification of the genes that were the
most influential variables in this risk analysis (i.e. the higher the better)
and therefore facilitate an additional evaluation of each survival marker
gene. (XLSX 62 kb)

Abbreviations

CDF: Chip definition file; CRC: Colorectal cancer; DSS: Disease specific survival;
GEO: Gene expression omnibus database; GSE: GEO Series (set of sample files
that together form a single experiment); HR: Hazard ratio;

IHC: Immunohistochemistry; KM: Kaplan-Meier hazard ratio; LIMMA: Linear
models for microarray data analysis; OS: Overall survival; PCA: Principal
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age algorithm; TCGA: The cancer genome atlas

Acknowledgements

We acknowledge the funding provided to JDLR research group by the
Spanish Government with grants of the ISCiii co-funded by FEDER (refer-
ences PI15/00328 and AC14/00024). We also acknowledge a PhD research
grant to SBF (from the Program “Ayudas a la Contratacién de Personal Inves-
tigador”) provided by the “Junta de Castilla y Leon” (JCyL) with the support
of the “Fondo Social Europeo” (FSE). The funding boards had no role in the
study design, data collection and analysis, decision to publish or preparation
of the manuscript.

Funding

The publication costs for this article were funded by the research grants
AC14/00024 and PI115/00328, from the Instituto de Salud Carlos Il (ISCiii) co-
funded by the “Fondo Europeo de Desarrollo Regional” (FEDER).

Availability of data and materials

All the data presented in this study is provided free and open to be used,
included in the Supplementary Files that are quoted and described along
the manuscript.

About this supplement

This article has been published as part of BMC Genomics Volume 19
Supplement 8, 2018: Selected articles from the IV Colombian Congress on
Bioinformatics and Computational Biology & VIl International Conference on
Bioinformatics SolBio 2017. The full contents of the supplement are available
online at https://bmcgenomics.biomedcentral.com/articles/supplements/
volume-19-supplement-8.

Authors’ contributions

JMR carried out the data collection, the databases construction and together
with SBF the R progamming developments, the computational analyses and
the datasets comparisons. They also contributed to write the manuscript.
JDLR designed the study with the support of ARM and MMM. JDLR devised
and designed the study, identified the experimental data sets used in the
tests and validations, supervised the R programming, wrote the manuscript
and managed the authors’ collaboration. ARM and MMM also contributed to
the design of the work and help in the preparation of the manuscript. All
authors read and approved the final manuscript.

Ethics approval and consent to participate

Ethics approval and consent to participate is “not applicable’, because this
work does not include samples from new patients or donors. All the
information and data of human samples used in this work come from data
sets already public in open repositories and corresponded to Anonymized
Patient Level Data (APLD). Moreover, the Ethical Committees of our Research
Centers (CGiC-IBMCC and IMDEA-Food) supervised the adequate use of the
data corresponding to human samples.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Bioinformatics and Functional Genomics Group, Cancer Research Center
(CICIBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones
Cientificas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.
“Molecular Oncology and Nutritional Genomics of Cancer Group, Precision
Nutrition and Cancer Program, IMDEA Food Institute (CEI, UAM/CSIC),
Madrid, Spain. *Department of Computer Science, Universidad Pontificia de
Salamanca (UPSA), Salamanca, Spain.



Chapter 6

Published: 11 December 2018

References

1.

20.

21.

22.

23.

Linnekamp JF, Wang X, Medema JP, Vermeulen L. Colorectal cancer
heterogeneity and targeted therapy: a case for molecular disease subtypes.
Cancer Res. 2015;75:245-9.

Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J.
Consensus molecular subtypes and the evolution of precision medicine in
colorectal cancer. Nat Rev Cancer. 2017;17:79-92.

Liu R, Zhang W, Liu ZQ, Zhou HH. Associating transcriptional modules with
colon cancer survival through weighted gene co-expression network
analysis. BMC Genomics. 2017;18:361.

Guinney J, Dienstmann R, Wang X, de Reyniés A, Schlicker A, Soneson C, et
al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;
21:1350-6.

Vargas T, Moreno-Rubio J, Herranz J, Cejas P, Molina S, Gonzélez-Vallinas M,
et al. ColoLipidGene: signature of lipid metabolism-related genes to predict
prognosis in stage-Il colon cancer patients. Oncotarget. 2015;6:7348-63.
Sveen A, Agesen TH, Nesbakken A, Meling GI, TO R, Liestal K, et al.
ColoGuidePro: a prognostic 7-gene expression signature for stage |ll
colorectal cancer patients. Clin Cancer Res. 2012;18:6001-10.

Kopetz S, Tabernero J, Rosenberg R, Jiang ZQ, Moreno V, Bachleitner-
Hofmann T, et al. Genomic classifier ColoPrint predicts recurrence in stage Il
colorectal cancer patients more accurately than clinical factors. Oncologist.
2015;20:127-33.

The American Cancer Society medical and editorial content team.
Colorectal Cancer Stages. https://www.cancer.org/cancer/colon-rectal-
cancer/detection-diagnosis-staging/staged.html. Accessed 06 Oct 2017.
Tauriello DVF, Batlle E. Targeting the microenvironment in advanced
colorectal Cancer. Trends Cancer. 2016;2:495-504.

Risueno A, Fontanillo C, Dinger ME, De Las Rivas J. GATExplorer: genomic
and transcriptomic explorer; mapping expression probes to gene loci,
transcripts, exons and ncRNAs. BMC Bioinformatics. 2010;11:221.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.
Exploration, normalization, and summaries of high density oligonucleotide
array probe-level data. Biostatistics. 2003;4:249-64.

Stein CK, Qu P, Epstein J, Buros A, Rosenthal A, Crowley J, et al. Removing
batch effects from purified plasma cell gene expression microarrays with
modified ComBat. BVIC Bioinformatics. 2015;16:63.

McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fFRMA).
Biostatistics. 2010;11:242-53.

Cancer Genome Atlas Network. Comprehensive molecular characterization
of human colon and rectal cancer. Nature. 2012;487:330-7.
Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya
A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online
biomarker validation tool and database for cancer gene expression data
using survival analysis. PLoS One. 2013;8:e74250.

Gui J, Li H. Penalized cox regression analysis in the high-dimensional and
low-sample size settings, with applications to microarray gene expression
data. Bioinformatics. 2005;21:3001-8.

Sameer AS. Colorectal cancer: molecular mutations and polymorphisms.
Front Oncol. 2013;3:114.

Fessler E, Medema JP. Colorectal Cancer subtypes: developmental origin
and microenvironmental regulation. Trends Cancer. 2016;2(9):505-18.
Bijlsma MF, Sadanandam A, Tan P, Vermeulen L. Molecular subtypes in
cancers of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2017;
14(6):333-42.

Kocarnik JM, Shiovitz S, Phipps Al. Molecular phenotypes of colorectal cancer
and potential clinical applications. Gastroenterol Rep. 2015;3(4):269-76.

Aibar S, Fontanillo C, Droste C, Roson-Burgo B, Campos-Laborie FJ,
Hernandez-Rivas JM, et al. Analyse multiple disease subtypes and build
associated gene networks using genome-wide expression profiles. BMC
Genomics. 2015;16(Suppl 5):S3.

Aibar S, Abaigar M, Campos-Laborie FJ, Sdnchez-Santos JM, Hernandez-Rivas
JM, De Las Rivas J. Identification of expression patterns in the progression
of disease stages by integration of transcriptomic data. BMC Bioinformatics.
2016;17(Suppl 15)432.

Moreno V, Sanz-Pamplona R. Altered pathways and colorectal cancer
prognosis. BMC Med. 2015;13:76.

24.

25.

26.

27.

28.

29.

30.

32

33

34.

35.

36.

Sanz-Pamplona R, Berenguer A, Cordero D, Riccadonna S, Solé X, Crous-Bou
M, et al. Clinical value of prognosis gene expression signatures in colorectal
cancer: a systematic review. PLoS One. 2012,7(11):e48877.

George B, Kopetz S. Predictive and prognostic markers in colorectal cancer.
Curr Oncol Rep. 2011;13(3):206-15.

Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal
cancer: a systematic review of recent advances and challenges. Biomed
Pharmacother. 2017;87:8-19.

Salazar R, Roepman P, Capella G, Moreno V, Simon |, Dreezen C, et al. Gene
expression signature to improve prognosis prediction of stage Il and Ill
colorectal cancer. J Clin Oncol. 2011;29(1):17-24.

Nguyen MN, Choi TG, Nguyen DT, Kim JH, Jo YH, Shahid M, et al. CRC-113
gene expression signature for predicting prognosis in patients with
colorectal cancer. Oncotarget. 2015,6(31):31674-92.

Chen H, Sun X, Ge W, Qian Y, Bai R, Zheng S. A seven-gene signature
predicts overall survival of patients with colorectal cancer. Oncotarget. 2016;
8(56):95054-65.

Tian X, Zhu X, Yan T, Yu C, Shen C, Hu Y, et al. Recurrence-associated gene
signature optimizes recurrence-free survival prediction of colorectal cancer.
Mol Oncol. 2017;11(11):1544-60.

Xu G, Zhang M, Zhu H, Xu J. A 15-gene signature for prediction of colon
cancer recurrence and prognosis based on SYM. Gene. 2017;604:33-40.

Li X, Jung JJ, Nie L, Razavian M, Zhang J, Samuel V, et al. The neuropilin-like
protein ESDN regulates insulin signaling and sensitivity. Am J Physiol Heart
Circ Physiol. 2016;310:H1184-93.

Masin M, Vazquez J, Rossi S, Groeneveld S, Samson N, Schwalie PC, et al.
GLUT3 is induced during epithelial-mesenchymal transition and promotes
tumor cell proliferation in non-small cell lung cancer. Cancer Metab. 2014;2:11.
Lee J, Sohn |, Do IG, Kim KM, Park SH, Park JO, et al. Nanostring-based
multigene assay to predict recurrence for gastric cancer patients after
surgery. PLoS One. 2014;9:e90133.

Wang L, Xiao X, Li D, Chi Y, Wei P, Wang Y, Ni S, Tan C, Zhou X, Du X.
Abnormal expression of GADD45B in human colorectal carcinoma. J Transl
Med. 2012;10:215.

Sztupinszki Z, Gyérffy B. Colon cancer subtypes: concordance, effect on
survival and selection of the most representative preclinical models. Sci Rep.
2016,6:37169.

Ready to submit your research? Choose BMC and benefit from:

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

e fast, convenient online submission

e thorough peer review by experienced researchers in your field

* rapid publication on acceptance

* support for research data, including large and complex data types

o gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

157



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

158



Appendix: R functions and code

Title
Risk, Survival and Marker Gene selection
Version
1.0
Author
Santiago Bueno-Fortes
Description
Risk prediction and marker gene selection for survival analysis using the Cox
and Glmr models Especially useful for high-dimensional data, including microarray
data, RNAseq data...
Maintainer
Santiago Bueno-Fortes
<sjbuenofortes@usal.es™>
Depends
survival, rbsurv, survcomp, uniCox, scales

Functions documented:
function _km_bootstrap
function _km _groups
function riskTenfold
function sam

function PredGlmnet
function _km_groups plot
function kmplot

159



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

function km bootstrap

Description

Function to compute the Kaplan-Meier curves with probability of classification for
microarray or RNAseq.

Usage

funcion_km_bootstrap (geneExpr, time, status, geneName)

Arguments

geneExpr: vector containing gene expression (normalised), including the sample
name in names(geneExpr).

time: vector containing the survival time for each patient/sample, including the
sample name in names(time).

status: vector containing the survival status(censored or not values 0 or 1’repasar
cual es cada’) for each patient/sample, including the sample name in names(status).
geneName: string containing the name of the gene (string).

Details

This function computes the Kaplan-Meier curves with probability of classification
using vectors for expression, time and status, generating a pdf file with the plots in
Workspace Directory.

Value

A list with components:
e vector of group classification 2=high expression, 1=low expression
e vector of probability of classification
e p.value of logrank test

Examples

library(survival)
library(rbsurv)
library (survcomp)

data(gliomaSet)
mExpr <- exprs(gliomaSet)
mExpr <- log2(mExpr)
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# take into account that the order of time AND status MUST be
the same in expression matrix’s COLUMNS

# the TIME value must be transformed to YEARS

gene<-mExpr[1,]

time <- gliomaSet$Time/365

names (time)<-colnames (mExpr)

status <- gliomaSet$Status

names (status)<-colnames (mExpr)

# the gene expression vector must be provided with the NAMES
of each sample, which match with the NAMES of the time and
status vectors

# km curves from expression
# we need: the expression vector, the time and status vectors,
also the name of the gene to display it in the plots and
pdf name
funcion_km_bootstrap(gene, time, status, "Gene Name")

Function

function_km_bootstrap <- function( genExpr, time.import,
status.import, genName)
{
# error control
if (length (genExpr) !=1length(time.import)){message ("ERROR: the
expr values and time vector must have the same length")}
if (length (genExpr) !=1length(status.import)){message ("ERROR:
the expr values and status vector must have the same
length")}
# gene name in vectors time status
if (tidentical (names (genExpr), names(time.import))){message ("
ERROR: expr values names must match time vector names")}
if (tidentical (names (genExpr), names(status.import))){message
("ERROR: expr values names must match status vector names

Il)}

mSurv<-cbind (time.import, status.import)
colnames (mSurv)<-c("time","status")
mSurv<-as.data.frame (mSurv)

rownames (mSurv) <-names (time.import)
iter<-100

library ("survcomp")
mSurv$status [mSurv$time>10]<-1
mSurv$time [mSurvPtime>10]<-10.1
n.samples <- length(genExpr)

for25<-round(n.samples*0.25)
for75<-round (n.samples*0.75)
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vector.exprs <- as.numeric(genExpr)
order .vector.exprs <- order( vector.exprs )

muestra<-NULL
for(i in 1:iter){
m<-sample( 1l:n.samples, size=round(n.samples), replace=
TRUE)
muestral[[i]] <- m
}
muestral[[1]]<-head(1l:n.samples, round(n.samples))
muestral[[2]]<-tail(l:n.samples, round(n.samples))

matrixgr<- matrix(0, nrow = n.samples, ncol = iter)
rownames (matrixgr)<-names (genExpr)

for(i in 1:iter){
if (1%%50==0){(print (1))
print (Sys.time (D))}
genExpr2<-genExpr [muestral[[i]]]
mSurv2<-mSurv [muestral[[il],]

# funcion is the funcion_km_groups.txt

g<-funcion_km_groups (genExpr2,mSurv2, genName)

g<-gll[1]]

names (g) <-names (genExpr2)

matrixgr [match(names(g), rownames (matrixgr) ) ,i]<- as.
vector (g)

}

group.assignation.vector<-NULL

group .assignation.vector [[1]] <-apply(matrixgr, 1, function(

x) round( mean(x[x'!'=0]1) ))

group .assignation.vector [[2]] <-group.assignation.vector[[1

1]

for (k in 1:n.samples) {

group.assignation.vector [[2]][k]<-sum(matrixgr[k,]==group.

assignation.vector [[1]][k])/sum(matrixgr[k,]!=0)
}
p.val <- NULL
print (table(is.na(group.assignation.vector [[2]])) )
print (vector.exprs[group.assignation.vector [[1]]==1])
print (vector.exprs[group.assignation.vector [[1]]==2])

log.rank.groups.surv <- survdiff( Surv( time, status)
group.assignation.vector [[1]], data= mSurv )

p.val <- 1 - pchisq(log.rank.groups.surv$chisq, length(log.

rank.groups.surv$n) - 1)
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fitsl <- survfit( Surv( time, status) ~ group.assignation.
vector [[1]], data= mSurv )

jj<-genName

# library hazardR

pdf ( paste(jj,".pdf"))

kmplot( fitsl ,xaxis.at=c(0:10), col.surv=c(3,2), group.
names=c(’low.exp’,’high.exp’), xlab=paste(’Survival (years
) and p.value: ’,format(p.val,3) ) , ylab=paste(’Survival

Probability’,’\n Hazard Ratio:’,format(l1/hazardR$hazard.

ratio,3),’ (’,format(l/hazardR$lower,3),’, ’,format(1l/
hazardR$upper,3), ’)’), legend=TRUE, loc.legend=’
bottomleft’, lty.ci=2, lwd.ci=1, col.ci=c(2,3), xlim=c(0,
10) )

Ttest<-wilcox.test(vector.exprs[group.assignation.vector[[1
11==1]1,vector.exprs[group.assignation.vector[[1]1]==2])

boxplot (vector.exprs[group.assignation.vector[[1]]==1],
vector.exprs [group.assignation.vector [[1]]==2], col=c(3,2
), ylab="expression level", xlab="wilcox-test p.value for
groups:", sub=format( Ttest$p.value ))

legend ("bottomright", title=jj, c(as.character(sum(group.
assignation.vector[[1]]==1)) ,as.character(sum(group.
assignation.vector[[1]]==2))), fill=c(3,2), horiz=TRUE)

dev.off ()

group.assignation.vector [[3]]<-p.val
group.assignation.vector
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function km _groups

Description

Function to compute the Kaplan-Meier logrank value and groups to be used in the
call of funcion km bootstrap for microarray or RNAseq.

Usage

funcion_km_grupos (geneExpr, mClin, geneName)
Arguments

geneExpr: vector containing gene expression (normalised), including the sample

name in names(geneExpr).

mClin: data frame created with time and status vectors provided to funcion km bootstrap.
geneName: string containing the name of the gene (string).

Details

This function computes the Kaplan-Meier logrank value and groups to be used in
the call of funcion km bootstrap using vectors for expression and the clinical data
matrix.

Value

A list with two elements:
e a vector defining the groups of high expression and low expression
e the p.value obtained by maximizing the separability of the KM curves

Examples

library(survival)
library (rbsurv)
library (survcomp)
library(uniCox)
library(scales)

data(gliomaSet)
mExpr <- exprs(gliomaSet)
mExpr <- log2(mExpr)
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gene<-mExpr[1,]

time <- gliomaSet$Time/365

names (time)<-colnames (mExpr)

status <- gliomaSet$Status

names (status)<-colnames (mExpr)

# the gene expression vector must be provided with the NAMES
of each sample, which match with the NAMES of the time and
status vectors

matrix.surv<-cbind(time, status)

colnames (matrix.surv)<-c("time","status")
matrix.surv<-as.data.frame(matrix.surv)
rownames (matrix.surv)<-names (time)

# 1: km curves from expression
# we need: the expression vector, the time and status vectors,
also the name of the gene to display it in the plots and

pdf name
funcion_km_grupos(gene, matrix.surv, "Gene Name2")
Function
funcion_km_groups <- function( genExpr, mSurv , list.genes)

{
matrix.groups<-NULL
n.samples <- length(genExpr)
for25<-round(n.samples*0.25)
for75<-round(n.samples*0.75)
p.value.genes.ordering <-0

for( j in list.genes )

{
vector.exprs <- as.numeric(genExpr)
order.vector.exprs <- order( vector.exprs )

group.assignation.vector <- rep(0,n.samples)
p-val <- rep(l,n.samples)
for( i in for25:for75 )
{
groupl <- order.vector.exprs([1:1i ]
group2 <- order.vector.exprs[ (i+1):n.samples ]
group .assignation.vector[ groupl ] <- 1
group .assignation.vector [ group2 ] <- 2
log.rank.groups.surv <- survdiff( Surv( time, status)
group .assignation.vector, data= mSurv )
p.vall[i] <- 1 - pchisq(log.rank.groups.surv$chisqg,
length(log.rank.groups.surv$n) - 1)
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ordered.pval.indexes <- order(p.val)

lowest .pvalue.index <- ordered.pval.indexes([1]

groupl <- order.vector.exprs[l:lowest.pvalue.index ]

group2 <- order.vector.exprs[ (lowest.pvalue.index+1l):n.
samples ]

group.assignation.vector[ groupl ] <- 1

group.assignation.vector [ group2 ] <- 2

p-value.genes.ordering[j] <- p.vall lowest.pvalue.index ]

if(j ==1){
matrix.groups<-group.assignation.vector
telse{
matrix.groups<-rbind(matrix.groups, group.assignation.
vector)
+

fitsl <- survfit( Surv( time, status)
vector , data= mSurv )

group.assignation.

}

list( as.vector(matrix.groups), p.val[ lowest.pvalue.index ])

b
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funcion_riskTenfold

Description

Function to compute the multivariate ten fold crossvalidated calculation of risk score
given a group of candidate marker genes for microarray or RNAseq, the train and
validation groups may be the same but it’s not recommended.

Usage

function_riskTenfold (mExprTrain, time, status, lambda,
mExprValid)

Arguments

mExprTrain matrix containing by rows the gene expression (normalised) for each
candidate, including the sample (columns) names in colnames(mExprTrain) and
gene names in rownames(mExprTrain) for training.

time vector containing the survival time for each patient/sample, including the
sample name in names(time).

status vector containing the survival status(censored or not) for each patient/sam-
ple, including the sample name in names(status).

mExprValid matrix containing gene expression (normalised), including the sample
names in colnames(mExprValid) and gene names in rownames(mExprValid).
lambda lambda value, 0 (include all candidates) by default, with higher lambdas
some of the worst candidate genes will be removed.

Detalils

This function computes the multivariate ten fold crossvalidated calculation of risk
score.
This function generates two pdf plots:
1) risk ANDpval.pdf
e page 1: the p.values, showing the local minima, and the global minimum in
the ordered training risk scores, used to get the cutpoint for predicted risk
scores.
e page 2: ordered TRAIN risk score groups calculated from previous analysis.
e page 3: ordered VALIDATION risk score groups calculated from previous
analysis.
2) RiskTrain.pdf
e page 1: Kaplan Meier plot with two groups, the high and low risk. Training
dataset.
e page 2: ordered TRAIN risk score groups calculated from previous analysis.

Examples
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library(survival)
library (survcomp)
library(uniCox)
library (scales)

# extracting mExpr, TIME and STATUS from rbsurv

# take into account that the order of time AND status MUST be
the same in expression matrix’s COLUMNS

# the TIME value must be transformed to YEARS

time <- mSurv380$time

names (time)<-rownames (mSurv380)

status <- mSurv380$censurado

names (status)<-rownames (mSurv380)

timeValid <- mSurv644$time

names (timeValid)<-rownames (mSurv644)

statusValid <- mSurvé644$censurado

names (statusValid)<-rownames (mSurvé644)

# the gene expression vector must be provided with the NAMES
of each sample, which match with the NAMES of the time and
status vectors

genelist<-rownames (mExpr32ER)
# we need: the expression vector, the time and status vectors,
also the name of the gemne to display it in the plots and

pdf name

mExprTrain<-mExpr380[match(genelist, rownames(mExpr380)),]

mExprValid<-mExpr644 [match(genelist, rownames(mExpr644)),]

x<-funcion_riskTenfold (mExprTrain, time, status, mExprValid,
timeValid, statusValid)

Function

funcion_riskTenfold <- function(mExpr, time.import, status.
import, mExprValid, timeValid, statusValid, lambda=0){
library (survcomp)
library (scales)
library (uniCox)
# error control
if (dim(mExpr) [2] '=1length(time.import)){message ("ERROR: the
matrix samples and time vector must have the same length"
)}
if (dim(mExpr) [2] !=1ength(status.import)){message ("ERROR: the
matrix samples and status vector must have the same
length")?}
if (dim(mExprValid) [2]!'=1length(timeValid)){message ("ERROR:
the matrixValid samples and time vector must have the
same length")Z}
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if (dim(mExprValid) [2] !'=1ength(statusValid)){message ("ERROR:
the matrixValid samples and status vector must have the
same length")}

# gene name in vectors time status

if (tidentical (colnames (mExpr), names(time.import))){message(
"ERROR: mExpr colnames must match time vector names")}

if(!identical (colnames (mExpr), names (status.import))){
message ("ERROR: mExpr colnames must match status vector
names")?

#defining pData matrix
mSurv<-cbind(time.import ,status.import)
rownames (mSurv) <-names (time.import)
colnames (mSurv)<-c("time","status")
mSurv<-as.data.frame (mSurv)

#defining pData matrix validation
mSurvValid<-cbind (timeValid ,statusValid)
rownames (mSurvValid)<-names (timeValid)
colnames (mSurvValid)<-c("time","status")
mSurvValid<-as.data.frame (mSurvValid)

folds <- cut(seq(1l,length(mExpr[1,])),breaks=10,labels=FALSE
)

# Perform 10 fold cross validation

betasMatrix<-NULL

riskValidMatrix<-NULL

riskValidDefinitive<-rep(0,length(mExprvalid[1,]))
names (riskValidDefinitive)<-names (mExprValid[1,])
riskDefinitive<-rep(0,length(mExpr[1,]))
names (riskDefinitive)<-names (mExpr[1,])
for(i in 1:10){
# Segement your data by fold using the which() function
testIndexes <- which(folds==i,arr.ind=TRUE)
testData <- mExpr[,testIndexes ]
trainData <- mExpr[,-testIndexes ]
mSurvUniCox<-mSurv[1:dim(mExpr) [2],]
fit<-uniCox (t(trainData), mSurvUniCox[-testIndexes ,1],
mSurvUniCox [-testIndexes ,2], lamlist=lambda, del.thres
=.01, max.iter=5) #########incluir explicacion
parametro lambda y porque lo dejamos en O, en 1los
details de la funcion
betasMatrix<-cbind(betasMatrix, fit$beta)
riskScore<-predict.uniCox (fit,t(testData))
riskDefinitive [testIndexes]<-riskScore
riskScore<-predict.uniCox (fit ,t(mExprValid))
riskValidMatrix<-cbind(riskValidMatrix ,riskScore)
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order .riskDefinitive<-riskDefinitive[order (riskDefinitive)]
#50% central trainData logrank
group.assignation.vector<-rep(0,length(riskDefinitive))
p.-val<-rep(1l, length(riskDefinitive))
for (j in round(0.25*length(riskDefinitive)) :round(0.75%
length(riskDefinitive))) {
group.assignation.vector [riskDefinitive<order.
riskDefinitive[j]]<-1
group.assignation.vector [riskDefinitive >=order.
riskDefinitive [j]]<-2
log.rank.groups.surv <- survdiff( Surv( time, status)
group.assignation.vector, data= mSurv[match(names (
riskDefinitive), rownames (mSurv)),] )
p.val[j]l] <- 1 - pchisq(log.rank.groups.surv$chisq, length(
log.rank.groups.surv$n) - 1)

p.val30a70<-rep(l, length(riskDefinitive))

p.val30a70[round(0.3*1length(riskDefinitive)) :round (0.7*
length(riskDefinitive))]<-p.val[round(0.3*length (
riskDefinitive)) :round(0.7*length(riskDefinitive))]

pvalue.ordered.indexes <- order(p.val30a70)

lowest .p.value.index <- pvalue.ordered.indexes[1]

cutPoint<-order.riskDefinitive[lowest.p.value.index]

# group association

definitiveGroups<-rep(0,length(riskDefinitive))

definitiveGroups [riskDefinitive<as.numeric(cutPoint)]<-1

definitiveGroups [riskDefinitive >=as.numeric (cutPoint)]<-2

# computing beta mean

betas<-NULL

for(i in 1:dim(mExpr)[1]1){
betas[i]<-sum(betasMatrix[i,])/10

}

# validation risk score

for(i in 1:length(riskValidMatrix[,1])){
riskValidDefinitive[i]<-mean(riskValidMatrix[i,])

}

# risk score derivated plots:

# lines of ordered p.values, it shows how well distinguished

is the central part of the risk curve

HEAHHHSH R HRR R RSB RSB AR S SR #E PLOT

pdf ("riskANDpval.pdf")

HHdHtutndHA R R AR S SSRGS S GRS HEY

plot(p.val, type="1", col="red", ylim=c(0, summary(p.val3Oa
70[round (0.3*1length(riskDefinitive)) :round(0.7*length(
riskDefinitive))]) [3]), xlab="Patients ordered by Risk\n
(green line: 2 groups cutpoint)", ylab="p.value")

abline (h=(0.01-min(p.val))*0.1, col=2)

minp.val<-min(which(p.val<min(p.val)+(0.5-min(p.val))*0.5))
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# dinamic p.value computing
maxp.val<-max (which(p.val<min(p.val)+(0.5-min(p.val))*0.5))
abline (v=minp.val,col=2)
abline (v=maxp.val,col=2)
abline(v=table(definitiveGroups) [1],c0l=3)

risk plot cutpoints

1) central redline

2) left(p.acum>1) blue

# 3) right(p.acum>1) red

colores<-rep(0,length(p.val))

colores[1:minp.val]<-4

colores [maxp.val:length(p.val)l<-2

colores[minp.val:maxp.val]<-8

cutPointLow<-as.numeric (order.riskDefinitive) [min(which (
colores==8))]

cutPointHigh<-as.numeric(order.riskDefinitive) [min (which (

colores==2))]

H B H

plot (rescale (as.numeric(order.riskDefinitive), to = c(0, 100
)), col=colores, xlab="Patients ordered by Risk\n (green
line: 2 groups cutpoint)", ylab="Risk Score")

abline (v=minp.val,col=2)

abline (v=maxp.val,col=2)

abline(v=table(definitiveGroups) [1],c0l=3)

legend ("bottomright", title="Risk Groups", c(as.character(
sum(colores==4)) ,as.character (sum(colores==8)),as.
character (sum(colores==2))), fill=c(4,8,2), horiz=FALSE)

colores<-rep(1.5,length(p.val))

colores[riskDefinitive<cutPointLow]<-1

colores[riskDefinitive >=cutPointHigh]<-2

groups3train<-colores

HiHHHAAHH B SH B A H RS SH BB R ERHS validation samples

colores<-rep(8,length(riskValidDefinitive))

order.riskValidDefinitive<-riskValidDefinitive [order (
riskValidDefinitive)]

minp.valVal<-min{(which(order.riskValidDefinitive >order.
rigskDefinitive [minp.vall))

maxp.valVal<-min{which(order.riskValidDefinitive >order.
riskDefinitive [maxp.vall))

colores[1:minp.valVal]l<-4

colores[maxp.valVal:length(riskValidDefinitive)]<-2

plot (rescale(as.numeric(riskValidDefinitive), to = c(0, 100)
) [order (rescale(as.numeric(riskValidDefinitive), to = c(0
, 100)))], col=colores, xlab="Patients ordered by Risk\n
(green line: 2 groups cutpoint)", ylab="Risk Score")

abline (v=minp.valVal,col=2)

abline (v=maxp.valVal,col=2)
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legend ("bottomright", title="Risk Groups", c(as.character(
sum(colores==4)) ,as.character (sum(colores==8)),as.
character (sum(colores==2))), fill=c(4,8,2), horiz=FALSE)

colores<-rep(1.5,length(riskValidDefinitive))

colores[riskValidDefinitive<cutPointLow]<-1

colores[riskValidDefinitive >=cutPointHigh]<-2

groups3valid<-colores

groupsValid<-rep(0O,length(riskValidDefinitive))

groupsValid [riskValidDefinitive >=cutPoint]<-2

groupsValid[riskValidDefinitive<cutPoint]<-1

abline (v=table (groupsValid) [1],co0l=3)

# END PLOT

dev.off ()

#

hazardR<-hazard.ratio(x=definitiveGroups, surv.time=timel[
match(colnames (mExpr) ,names(time))], surv.event=statusl/[
match(colnames (mExpr) ,names (status))])

funcion_km_groups_plot_risk(mExpr ,mSurv[match(colnames (mExpr
) ,rownames (mSurv)),], "RiskTrain", definitiveGroups,
hazardR$hazard.ratio ,hazardR)

hazardR<-hazard.ratio(x=groupsValid, surv.time=time [match (
colnames (mExprValid) ,names(time))], surv.event=statusl[
match(colnames (mExprValid) ,names (status))])

funcion_km_groups_plot_risk(mExprValid ,mSurvValid [match(
colnames (mExprValid) ,rownames (mSurvValid)) ,], "
RiskValidation", groupsValid, hazardR$hazard.ratio,
hazardR)

rList<-1list("cut"=c(cutPoint ,minp.val ,maxp.val,minp.valVal,
maxp.valVal) ,"risk"=rescale(as.numeric(riskDefinitive),
to = ¢c(0, 100)),"betas"=betas,"riskValid"=rescale(as.
numeric(riskValidDefinitive), to = c(0, 100)),"
groupsTrain'"=definitiveGroups ,"groupsValid"=groupsValid,"
groupsTrain3"=groups3train,"groupsValid3"=groups3valid)
return(rList)
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function sam

Description

Function to pre-filter the dataset, obtaining the most relevant genes for a group
for microarray or RNAseq provided as a frequency table, this will be used later for
further analysis with glmnet function.

Usage

function_sam( mExpr, groups_vector, sam_lambda )

Arguments

mExpr matrix containing by rows the gene expression (normalised) for each can-
didate, including the sample (columns) names in colnames(mExpr) and gene names
in rownames(mExpr) .

groups__ vector vector containing the group etiquette from the phenodata that we
want to use, it must be provided as a 0 and 1 vector.

sam_lambda the lambda value to be used, it depends on the FDR computed by
sam, 4 by default, but can be checked with a simple iteration in order to modify
and obtain more or less robust and relevant genes.

Details

This function makes by differential expression a list that filter genes separated by
the provided grouping. The ideal way to evaluate the best lambda is to check the
output and look if the FDR is near the desired value.

Value

A table is provided with the incidence of the data in order to filter the most robust
genes related with the phenodata grouping.

Examples

library("siggenes")

sam_sER<-function_sam(mExpr380, mSurv380%er, 4)

Function
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function_sam <- function( mExpr, groups_vector, sam_lambda )
{
library ("siggenes")
# error control
if (dim(mExpr) [2] !'=1ength(groups_vector)){message ("ERROR:
matrix samples and group vector must have the same
length")?}
## bootstrap 100 samples
n.genes <- dim( mExpr ) [1]
n.samples <- dim(mExpr) [2]
iter<-100

sampl<-NULL
list.genes<-NULL

for(i in 1l:iter){
m<-sample( 1l:n.samples, size=round(n.samples), replace=
TRUE) #sample generation
sampl [[i]] <- m
}
print ("samples ok")
print (Sys.time ())
lista<-NULL
#
for(i in 1:iter){
if(i%%10==0) {(print (i))
print (Sys.time () )3}
#checking iterations
#list of 500 vectors with relevant names
#using a restrictive lambda
mExpr2<-mExpr [,sampl [[i]]]
groups_vector2<-groups_vector [sampl [[i]]]

samR<-sam(mExpr2, groups_vector2, method=d.stat, var.equal

=FALSE)
#extracting best genes by p.val

list.genes<-c(list.genes, list.siggenes(samR, sam_lambda))

#incidence as number of times it shows as significative
value, is what it’s retourned as a table

resultado<-table(list.genes)

+
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funcion PredGlmnet

Description

Function to predict phenodata and etiquettes for microarray or RNAseq, it is de-
signed to be used provided a list of most relevant genes obtained when we filter the
table from function sam.

Usage

funcion_PredGlmnet (mExpr, vectorGroups, vectorSampleID )

Arguments

mExpr: matrix containing by rows the gene expression (normalised) for each can-
didate, including the sample (columns) names in colnames(mExpr) and gene names
in rownames(mExpr) filtered by rows with function sam output.

vectorGroups: vector containing the group etiquette from the phenodata that we
want to use, it must be provided as a 0 and 1 vector.

vectorSampleID: vector containing the sample identifiers as colnames(mExpr).

Details

This function compute predictions measuring the predictive power of each gene, in
order to discover how each gene correlates and is able to predict a pheno-etiquette
provided to make the groups.

Value

A list is provided with information about each gene, the bootstraped iterations al-
lows to provide a beta matrix to measure the eficiency of each gene, and also the
AUC roc to measure the prediction power the beta values must be observed as: the
closest to 1 in absolute value, the better.

Examples

library(glmnet)
library (ROCR)

Pred _ER<-funcion_PredGlmnet (t (mExpr34), mSurv380$er, as.
character (colnames (mExpr34)))
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Function

funcion_PredGlmnet <- function( mExpr, vectorGroups,
vectorSampleID )
{
# expression matrix t, with pre-selected genes
# error control
if (dim(mExpr) [2] !=1ength(vectorGroups)){message ("ERROR: the
matrix samples and group vector must have the same length
")}
if (dim (mExpr) [2] !'=1length (vectorSampleID)){message ("ERROR:
the matrix samples and vectorSampleID vector must have
the same length")}

library (glmnet)
library (ROCR)

iterations<-100

n.genes <- dim( mExpr ) [2]

n.samples <- dim(mExpr) [1]

n.train<-round(n.samples*2/3)

# 2/3 sample as training set

sampl<-NULL

# randomised samples

for(i in 1l:iterations){
m<-sample( 1l:n.samples, size=n.samples, replace=FALSE)
sampl [[i]] <- m

}

print ("samples ok")

print (Sys.time ())

list<-NULL

for(i in 1l:iterations){
if (i%%10==0){(print (i))

print (Sys.time ())}

# printing iterations

# for each time a sample is taken
mExpr_i<-mExpr [sampl[[i]],]
vectorGroups_i<-vectorGroups [sampl [[1i]] ]
vectorSampleID_i<-vectorSampleID[sampl [[i]] 1]

# calling predictor: training, 1:n.train with 2/3

object_cv_glmnet_train<-cv.glmnet (x=mExpr_i[l:n.train,], ¥y
=vectorGroups_i[l:n.train],nfolds=5, type.measure="auc"
, alpha=0.75, family="binomial")

# calling predictor: predicting, (n.train+1l):n.samples the
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restant 1/3

object_cv_glmnet_coeff<-predict(object=object_cv_glmnet_
train, newmat=mExpr_i[(n.train+l):n.samples,],type="
coeff", s=object_cv_glmnet_train$lambda.lse)

# AUC measuring predictive power

object_cv_glmnet _response<-predict(object=object_cv_glmnet
_train, newx=mExpr_i[(n.train+1l):n.samples,],type="
response'", s=object_cv_glmnet_train$lambda.lse)

x<-NULL

# cumulative matrix of beta values picturing each probeset
predictive power. AUC value is also stored

x$coeff<-object_cv_glmnet_coeff[object_cv_glmnet_coeff[,1]
1=0,]

x$coeff<-x$coeff[2:1length(x$coeff)]

auc_prediction<-prediction(as.double(object_cv_glmnet_
response[,1]), vectorGroups [pmatch(rownames (object_cv_
glmnet_response), as.character(vectorSampleID))])

x$auc<-as.numeric ((performance (auc_prediction,"auc'"))Qy.
values)
list [[i]]<-x
}
list
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function km groups plot
Description

Function to plot predefined group as KM curves for microarray or RNAseq, provid-
ing gene expression and group.

Usage

funcion_km_groups_plot( genExpr, time.import, status.import ,
genName , group.assignation.vector, hazardR)

Arguments

genExpr: expression vector.

time.import: vector containing the survival time in years.

status.import: vector containing the survival status in 0 and 1.

genName: string containing the gene name.

group.assignation.vector: vector containing the 0 or 1 group for each sample.
hazardR: a hazard.ratio object computed using the package from library survcomp.

Details

This function compute KM curves as the ones used in our functions using a provided
vector with phenodata group.

Value

A Kaplan-Meier pdf plotting the groups as survival curves.

Examples

library ("survcomp")

hazardR<-hazard.ratio(x=(mSurv380$er), surv.time=(mSurv380$
time), surv.event=(mSurv380$censurado))

funcion_km_groups_plot (mExpr32ER[1,], mSurv380$time, mSurv380$
censurado, "ENSG0O0000074410", mSurv380$er, hazardR

Function

funcion_km_groups_plot <- function( genExpr, time.import,
status.import , genName, group.assignation.vector, hazardR)
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if (length (genExpr) !=1length(time.import)){message ("ERROR: the
expr values and time vector must have the same length")}

if (length (genExpr)!=length(status.import)){message ("ERROR:
the expr values and status vector must have the same
length")}

# gene name in vectors time status

if (tidentical (names (genExpr), names(time.import))){message ("
ERROR: expr values names must match time vector names")}

if (tidentical (names (genExpr), names(status.import))){message
("ERROR: expr values names must match status vector names

Il)}

mSurv<-cbind (time.import, status.import)
colnames (mSurv)<-c("time","status")
mSurv<-as.data.frame (mSurv)

rownames (mSurv) <-names (time.import)
mSurv$status [mSurv$time>10]<-0

mSurv$time [mSurv$time>10]<-10.1

n.genes <- 1

n.samples <- length(genExpr)
probesets.names <- names( genExpr)

# grant at least 25 7 range to avoid relative minima
for15<-round (n.samples*0.15)
for85<-round(n.samples*0.85)

# future pvals

p.value.genes.ordering <- rep(0, n.genes)

for( j in genName )
{
# for each row # OUTDATED
vector.exprs <- as.numeric(genExpr)
# ordered expresion
order.vector.exprs <- order( vector.exprs )
# making groups
# selecting minimum pval (optimising separability between
curves)

fitsl <- survfit( Surv( time, status) ~ group.assignation.
vector , data= mSurv )

log.rank.groups.surv <- survdiff( Surv( time, status) ~
group.assignation.vector, data= mSurv )

p.val <- 1 - pchisq(log.rank.groups.surv$chisq, length(log
.rank.groups.surv$n) - 1)

jj<-genName
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}

pdf ( paste(jj,".pdf"))

kmplot ( fitsl ,xaxis.at=c(0:10), col.surv=c("brown",6"#4
DAF4A"), group.names=c(’ALL’,’CMS4’), xlab=paste(’
Survival (years) and p.value: ’,format(p.val,3) ) , ylab
=paste(’Survival Probability’,’\n Hazard Ratio:’,format
(hazardR$hazard.ratio,3),’ (’,format(hazardR$lower,3),’
, ’,format (hazardR$upper,3), ’)’), legend=TRUE, loc.
legend=’bottomleft’, lty.ci=2, lwd.ci=1, col.ci=c("
brown","#4DAF4A"), xlim=c(0,10) )

# expression and t test

Ttest<-wilcox.test(vector.exprs[group.assignation.vector==
0] ,vector.exprs[group.assignation.vector==1])

boxplot (vector .exprs[group.assignation.vector==0],vector.
exprs [group.assignation.vector==1], col=c(4,2), ylab="
expression level", xlab="wilcox-test p.value for groups
:", sub=format( Ttest$p.value ))

legend ("bottomright", title=jj, c(as.character(sum(group.
assignation.vector==0)),as.character (sum(group.
assignation.vector==1))), fill=c(4,2), horiz=TRUE)

dev.off ()

print (p.val)
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function kmplot

Description

Sub-function to be called in order to compute plot and options for all other KM plot
function.

Usage

kmplot ( fitsl ,xaxis.at=c(0:10), col.surv=c("brown",6 "#4DAF4A")
, group.names=c(’ALL’,’CMS4’), xlab=paste(’Survival(years)
and p.value: ’,format(p.val,3) ) , ylab=paste(’Survival
Probability’,’\n Hazard Ratio:’,format(hazardR$hazard.ratio
,3),? (’,format (hazardR$lower,3),’, ’,format(hazardR$upper,
3), ?)?), legend=TRUE, loc.legend=’bottomleft’, lty.ci=2,
lwd.ci=1, col.ci=c("brown","#4DAF4A"), xlim=c(0,10) )

Arguments

fits1: expression vector.
group.names: vector containing the survival time in years.
...: fixed parameters.

Details

This function is a sub-function that computes the KM curve plot object in order to
be plotted by others KM plot function.

Function

kmplot <- function(km, mark=3, simple=FALSE,

xaxis.at=pretty(km$time), xaxis.lab=xaxis.
at ,

lty.surv=1, lwd.surv=1, col.surv=1,

lty.ci=0, lwd.ci=1, col.ci=col.surv, #By
default (1lty.ci=0), confidence intervals
are not plotted.

group.names=NULL, group.order=seq(length (km
$n)), extra.left.margin=4,

label.n.at.risk=FALSE, draw.lines=TRUE, cex
.axis=1,

xlab=’’, ylab=’’, main=’’, xlim=c(0,max (km$
time)), ylim=c(0,1),

grid=TRUE, 1lty.grid=1, 1lwd.grid=1, col.grid
=grey(.9),
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legend=!is.null (km$strata), loc.legend="
topright’, add=FALSE,
# ... is passed to par()
DRI
# Version 2.5.5: 2014/5/19

# km is the output from survfit() function in survival
package . ###H#HHAAHHH U BB HHH AR B H B HARHHHHH

# xaxis.at specifies where ’n at risk’ will be computed and
printed.

# xaxis.lab specifies what will be printed at xaixs.at. (
see example)

# If group names are long, add extra left margin by setting
extra.left .margin to something greater than O.

# line specifications (lty.surv, lwd.surv, col.surv) will be
FRECWEILEE]
# Set 1lty.ci to 1 if confidence intervals are needed.
# group.names will overwrite whatever 1is specified in
survfit () output.
# group.order specifies the order of groups from top in ’n
at risk?’. 1 is at top, 2 next, and so on.

# if add=TRUE, then par() is not refreshed. allows multiple
panels by
# using, e.g., par(mfrow=c(2,2)).

# op <- par(mo.readonly = TRUE)

ng0 <- length( km$strata ) ; ng <- max(ng0,1)

# When only one group...

if (ng0==0){ km$strata <- length(km$time) ; names (km$strata)
<- ?A11° ; legend <- draw.lines <- FALSE }

lty.surv <- rep(lty.surv, ng) ; lwd.surv <- rep(lwd.surv, ng
) ; col.surv <- rep(col.surv, ng)
lty.ci <- rep(lty.ci, ng) ; lwd.ci <- rep(lwd.ci, ng)
; col.ci <- rep(col.ci, ng)

## group names and error checking

gr <- c(km$strata)

if( is.null(group.names) ){ group.names <- names(km$strata)
}

if ( length(unique(group.names)) !'= ng ){ stop(’\n’,’length(
unique (group.names)) != number of groups.’) 1}
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if ( suppressWarnings (any( sort(group.order) != 1l:ng)) )
{ stop(’\n’, ’Something wrong with group.order.’,’\n’,’sort(
group.order) must equal 1:’, ng, ’.7%) }
group.names <- gsub(’ *$’, ’’, group.names) #to remove
unwanted white spaces in group.names.
if (ng==1 & (group.names[1]==’group.names’) ){ group.names <-
’N at risk’ ; label.n.at.risk = FALSE }

## graphic parameters
if (tadd){
par(list(oma=c(1,1,1,1), mar=c(4+ng,4+extra.left.margin, 4,
2)+.1))
if (simple) par( mar=c(3,4,2,1)+.1 )
par( list(...) )
¥

## reformat survival estimates
dat <- data.frame(time=km$time, n.risk=km$n.risk, n.event=km
$n.event, survival=km$surv, std.err=km$std.err,
lower=km$lower, upper=km$upper, group=rep(
group.names, gr) )
dat.list <- split(dat, f=dat$group)

## plot (but not survival curves)
plot (0,type=’n’, xlim=xlim, ylim=ylim, xaxt=’n’, yaxt=’n’,
xlab=’7, ylab=’’ )

if (grid){
par (?’xpd>=FALSE)
abline (v=xaxis.at, lty=1ty.grid, lwd=1lwd.grid, col=
col.grid )
abline (h=pretty(c(0,1)), lty=lty.grid, lwd=lwd.grid, col=
col.grid )
}

axis( side=2, at=pretty(c(0,1)), cex.axis=cex.axis )
axis( side=1, at=xaxis.at, label=xaxis.lab, line=-0.5, tick=
FALSE, cex.axis=cex.axis )
axis( side=1, at=xaxis.at, label=rep(’’,length(xaxis.at)),
line=0, tick=TRUE )
title(xlab=xlab, line=1.5, adj=.5, ...) ; title(ylab=ylab,
)

if ('simple){
## write group names
group.name .pos <- (par ()$usr[2]-par () $usr[1]) / -8 ;
padding <- abs( group.name.pos / 8 )
line.pos <- (1l:ng)lorder(group.order)] + 2
mtext ( group.names, side=1, line=line.pos, at=group.name.
pos, adj=1, col=1, las=1, cex=cex.axis )
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## draw matching lines for n at risk.
if (draw.lines){
par (>xpd>=TRUE)
for(i in 1:ng){
axis(side=1, at=c(group.name.pos+padding ,0-2*padding),
labels=FALSE, line=line.pos[i]+0.6, lwd.ticks=0,
col=col.surv[i], 1lty=1lty.surv[i], lwd=1lwd.surv[i]

)}
}
## numbers at risk
kms <- summary(km, times=xaxis.at) ; if(is.null(kms$strata
)) kms$strata <- rep(l,length(kms$time) )
dl <- data.frame(time = kms$time, n.risk = kms$n.risk,

strata = c(kms$strata))
d2 <- split(dil, f=di$strata)

## Right-justifying the numbers
ndigits <- lapply(d2, function(x) nchar(x[,2]) )
max.len <- max{( sapply(ndigits, length) )
L <- do.call(’rbind’, lapply(ndigits, function(z){ length(
z) <- max.len ; z} ) )
nd <- apply( L, 2, max, na.rm=T )
for( i in seq(mng) ){
this <- d2[[i]]
w.adj <- strwidth(’0’, cex=cex.axis, font=par(’font’)) /
2 * nd[1:nrow(this)]
mtext ( side=1, at=this$time+w.adj, text=this$n.risk,
line=1line.pos[i], cex=cex.axis, adj=1, col=1, las=1)
+
if(label . .n.at.risk) mtext( side=1, text=’N at risk’, at=
group.name.pos, line=1.5, adj=1, col=1, las=1, cex=cex.
axis )
} ## End of if(!simple)

# Legend
rlp <- group.order
if (legend){
bgc <- ifelse( par(’bg’)==’transparent’, ’white’, par(’bg’
) )
legend(x=loc.legend, legend=group.names[rlp]l, col=col.surv
[rlp]l, lty=lty.surv[rlpl, lwd=lwd.surv[rlp],
bty=’0’, cex=cex.axis, bg=bgc, box.col=’transparent
>, inset=.01 )

## draw confidence intervals
for(i in 1:ng){
this <- dat.list[[i]]
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x <- this$time ; L <- this$lower ; U <- this$upper ; S <-
this$survival
nal <- which( is.na(L) ) ; L[nalL] <- L[nalL-1] ; U[nalL] <-
UlnaL-1]
lines( x, L, type=’s’, col=col.ci[i], lty=lty.cilil, lwd=
lwd.ci[i] )
lines( x, U, type=’s’, col=col.ci[i], lty=lty.cili], lwd=
lwd.ci[i] )
+
# draw curves
lines(km, conf.int=FALSE, col=col.surv, lty=lty.surv, lwd=
lwd.surv, mark=mark, xmax=xlim[2], ymin=ylim[1])

box (bty=par(’bty?’))

# par (op)
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Appendix: Resumen en castellano

Introduccidén

El desarrollo de tecnologias 6micas robustas (genémica, transcriptémica, protedémica,
etc.) para generar y comprender las alteraciones del genoma tiene cada vez mayor
impacto en la atencién médica, con particular relevancia en el cancer y la oncologia.
En el contexto actual de Medicina Personalizada, Medicina de Precision y Medicina
Genomica (Roden and Tyndale, 2013), la investigacion moderna del cancer debe
realizarse considerando el uso adecuado de datos a gran escala, derivados de estas
nuevas tecnologias. Algunas de estas tecnologias, como el perfil de expresién tran-
scriptomico, ya se han aplicado a miles de muestras humanas (consultar la base
de datos ptblica GEO (NCBI, 2019)), y proporcionan informacion sobre el nivel
de expresion de todos los genes conocidos para cada individuo. Para ser 1til y
aplicable a la investigacién médica, estos datos 6micos deben integrarse con los
datos clinicos correspondientes utilizando herramientas y métodos computacionales
y bioinforméaticos. Lo anteriormente descrito compone el marco principal de esta
tesis doctoral.

Incidencia del cancer en Europa

Respecto al estudio en el &rea del cancer, el trabajo en la presente tesis se basa
en dos tipos de cancer: el cancer de mama (BRCA) y el cancer colorrectal (CRC).
Estos tipos de cancer son, hoy en dia, los méas frecuentes en Europa, representando la
mayor proporcion de todos los tipos de cancer (ecis.jrc.ec.europa.eu/). En particular,
en Europa en 2018, los tipos de cdncer mas comunes fueron los del seno femenino
(523,000 casos), seguidos del cancer colorrectal (500,000), el de pulmén (470,000)
y el de prostata (450,000). Las cifras globales para Europa en 2018 se estimaron
en 3,91 millones de nuevos casos de céncer y 1,93 millones de muertes por cancer
(Ferlay et al., 2018). Dado que la poblacion europea esta cerca de 513 millones,
teniendo cada ano alrededor de 4 millones de nuevos casos y alrededor de 2 millones
de muertes, el cancer representa la segunda causa mas importante de muerte en
Europa. Teniendo en cuenta los ntimeros especificos para el cancer de mama y el

cancer colorrectal, la incidencia de estos tipos de cancer en Europa se presenta en
la Figura 6.1, que muestra el mapa coloreado segtin las incidencias por pais.
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EUROPE: Estimated incidence of cancer by country

Breast Cancer (BRCC) ColoRectal Cancer (CRC)
Both sexes, All ages, 2018 Both sexes, All ages, 2018
90.0 - 112.0 49.0 - 61.7
112.0 - 133.9 61.7 - 744
133.9 - 155.9 74.4 - 87.0
155.9 - 177.8 87.0 - 99.7
177.8 - 199.8 Age standardised rate per 100.000 (M 99.7 - 1124 Age standardised rate per 100.000

Figure 6.1: Incidencia estimada del cdncer de mama y del cancer colorrectal en Eu-
ropa por pais (fuente: Sistema Europeo de Informacion sobre el Cancer,European Cancer
Information System, ecis.jrc.ec.europa.eu).

Cancer: una enfermedad gendémica provocada por mutaciones

Como se indico anteriormente, la investigacion actual sobre el cancer estd muy afec-
tada por el valor y el poder de las tecnologias 6micas aplicadas al avance de la
oncologia médica y clinica. La aplicacion de tecnologias 6micas en todo el genoma
para el estudio del cancer en los tltimos 20 anos ha generado una nueva comprension
de esta compleja enfermedad que ya no puede llamarse "enfermedad genética", ya
que es mas propiamente una "enfermedad genémica". De hecho, en las dltimas dos
décadas, los esfuerzos de secuenciacion integral han revelado los datos gendémicos
de formas comunes de cancer humano (Kankava et al., 2019). Estos estudios han
revelado alrededor de 140 genes humanos que, cuando son alterados por mutaciones
intragénicas, pueden promover o "conducir" la génesis del tumor y la malignidad
celular. Un tumor tipico contiene de dos a diez de estas mutaciones de algin "gen
conductor"; Las mutaciones restantes no confieren una ventaja de crecimiento se-
lectivo. En tumores solidos comunes (como los derivados del colon, la mama, el
pulmoén, el cerebro o el pancreas), un promedio de 25 a 75 genes muestran muta-

ciones somaticas sutiles que podrian alterar sus productos proteicos (Gerlinger et al.,
2012).

La Figura 6.2 presenta la complejidad del cancer, que puede afectar a muchos
tipos diferentes de células, tipos de tejidos y 6rganos en el cuerpo humano, desde
ninos hasta adultos. Esta complejidad se debe no solo a todos los diferentes tipos
de cancer originados en diferentes ubicaciones del cuerpo, sino también a la gran
cantidad de mutaciones somaticas que se han encontrado gracias a los anélisis a
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escala genomica de todos los genes humanos en muchos Miles de muestras de tumores
(Gerlinger et al., 2012).

,__EGIiobIastoma (14) Glioblastoma (35)
Medulloblastoma (8) /

\ : °/—Head and neck cancer (66)

_ Non-Hodgkin (t‘\_
Rhabdoid  jymphoma (74) ——=&.

\ c;allncter (4)(12) _[ Lung cancer (non-small cell)(147)
&— Neuroblastoma

' 4 Lung cancer (small cell)(163)
Breast cancer (33) Eso hageal adenocarcinoma (57)
= Hepatocellular Es<|>|phageal squz;rgous
; cancer (39) ce carcmoma( )
; Gastrlc cancer (53)
Pancreatic
Acute lymphocytic cancer/(45)
\ leukemia (11)

/

,/’
Ovarian cancer (42)

o= Colorectal cancer (66)

°——En ometnal cancer (49)

_//. @—— Prostate cancer (41)\
Chronlc Iymphocytlc \ { \ \
Ieukemla (125 || \\\
Acute myeloid —Melanoma (135)
leukemia (8)

Figure 6.2: Numero promedio de mutaciones sométicas en una coleccién representa-
tiva de casos humanos de cancer, detectados por estudios de secuenciacion de ADN en
todo el genoma. Se han analizado los genomas de un grupo diverso de cancer en adul-
tos (derecha) y pediatricos (izquierda). Los ntmeros entre paréntesis indican el nimero

medio de mutaciones no repetidas por tumor. (fuente: Vogelstein et al. 2013 Science,
www.sciencemag.org).
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La heterogeneidad del cancer: un desafio para la era genémica

El cancer es una enfermedad heterogénea con caracteristicas genéticas y fenotipicas
tnicas que difieren entre pacientes e incluso entre regiones tumorales (Martinez-
Outschoorn et al., 2017). La observacion de la heterogeneidad individual en el cancer
se ha descrito muchas veces, pero se logré un gran avance cuando se comprobd la
heterogeneidad intratumoral y el crecimiento de tumores evolutivos ramificados uti-
lizando la tecnologia 6mica de la secuenciacion de ADN espacial de todo el exoma
(Gerlinger et al., 2012). Esta "heterogeneidad intratumoral" agregd un nuevo nivel
de complejidad al estudio del cancer, que ya tenia una naturaleza compleja debido a
los muchos posibles origenes tisulares de los tumores (Figura 6.3). Ademas, el cancer
es una enfermedad muy dinamica en la que las células tumorales proliferan y evolu-
cionan con el tiempo, incluso en el mismo lugar; por lo que debe agregarse "hetero-
geneidad temporal" a "heterogeneidad espacial" (Martinez-Outschoorn et al., 2017).

a Spatial heterogeneity b Temporal heterogeneity

First-line — > Second-line —— Third-line

Figure 6.3: Heterogeneidad espacial (a): distribucion desigual de los subclones de cancer
en diferentes regiones del tumor primario o de sus metastisis. Heterogeneidad temporal
(b): variaciones en la composicion molecular de una lesion tnica a lo largo del tiempo, ya
sea como resultado de la progresiéon natural del tumor o como resultado de la exposiciéon a
presiones selectivas creadas por intervenciones clinicas. (fuente: Dagogo-Jack et al. 2018
Nat Rev Clin Oncol, www.nature.com/nrclinonc).
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Los "pathways" del conductor oncogénico: un cambio de paradigma

MESO (n=82) LUSC (n=464)
LUAD (n=502)

THCA (n=480)

PCPG (n=161)

Normal (n=36)
Her2-enriched (n=78)
BRCA [Basal (n=171)

LumB (n=197) ACC (n=76)
LumA (n=499) j HHP;/\;(n=4172) HNSC
+(n=
POLE (=10 VM (ne20)
CRC|MSI (n=63) IDHmut-non-codel (n=248)

CIN (n=328) IDHmut-codel (n=167) LGG
Eg\b%n(ggg)) IDHwWt (n=92)
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PRAD (n=479) Non-seminoma (n=82) |TGCT
Seminoma (n=62)

Figure 6.4: Distribucion de los tipos de cancer en TCGA, incluidos los subtipos molec-
ulares analizados. TCGA pancancer atlas contiene 9,125 muestras de tumores. (fuente:
Sanchez-Vega et al. 2018 textit Cell, www.cell.com).

Los resultados del esfuerzo mundial realizado por la aplicacion de tecnologias 6micas
de todo el genoma al estudio de muchos tipos y subtipos de cancer (por ejemplo, en
el Proyecto del Atlas del Genoma del Cancer, TCGA) (Figura 6.4 ) proporcionan
una nueva comprensiéon molecular mas profunda de la biologia del cancer, lo que
sugiere que la naturaleza de los tumores se explica mejor cuando se asocian con
firmas de genes moleculares especificos y con vias biologicas especificas, en lugar de
la asociacion clésica con la "célula de origen". (Hoadley et al., 2018).
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Figure 6.5: Fraccién de muestras alteradas de la cohorte TCGA por via y subtipo de
tumor. Las vias se ordenan disminuyendo la frecuencia media de las alteraciones. Las
intensidades de color crecientes reflejan porcentajes mas altos. También se proporciona el
recuento promedio de mutaciones, asi como el nimero de segmentos no equilibrados y el
genoma de la fraccion alterado (dos medidas del grado de alteracion del nimero de copias)
por subtipo de céncer. (fuente: Sanchez-Vega et al. 2018 textit Cell, www.cell.com).

Mediante el uso de mutaciones sométicas, alteraciones en el nimero de copias,
cambios en la expresion del ARNm y modificaciones de la metilacion del ADN
detectadas en 9.125 tumores (perfilados por TCGA), Nik Schultz, Chris Sander y
colaboradores (Sanchez-Vega et al., 2018) analizaron los mecanismos y patrones de
las alteraciones somaticas, identificando diez pathways como los que tienen la mayor
parte de esas alteraciones.
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Hipotesis

El trabajo presentado en este doctorado se centra en el campo de la Bioinforméatica
y biologia computacional aplicado a la investigacién en cancer, con un enfoque
particular en el anélisis e integracion de datos 6micos y datos clinicos para mejorar el
descubrimiento y la identificacién de nuevos biomarcadores moleculares relacionados
con el pronostico de los pacientes con cancer.

En particular, nuestra principal hipotesis para comenzar y desarrollar nuestra
investigacion fue la siguiente: "Consideramos que se debe realizar un anali-
sis detallado de los datos de supervivencia de los pacientes con cancer
combinados con los datos transcriptémicos derivados de las biopsias de
tumores de dichos pacientes. una forma muy poderosa y significativa de
descubrir nuevos biomarcadores genéticos directamente relacionados con
la naturaleza y el prondéstico del cincer especifico de cada paciente".

Para probar y desarrollar esta hipétesis, trabajamos en este doctorado con mues-
tras de los dos tipos principales de cancer: Cancer de mama (BRCA, es decir,
carcinoma de mama invasivo) y Cancer coloRectal (CRC). Estos tipos de cancer
son hoy en dia los mas frecuentes en Europa (https://ecis.jrc.ec.europa.eu/), repre-
sentando en conjunto la mayor proporciéon de todos los tipos de cancer.

Un primer desafio critico para llevar a cabo este trabajo fue recopilar e integrar
en conjuntos de datos uniformes una gran cantidad de muestras de cancer
(es decir, méas de mil) que incluia expresién de genoma completo y datos de
supervivencia. Decimos esto porque, la mayoria de los analisis de supervivencia
que encontramos en la literatura se restringieron a conjuntos de datos mas pequenos
(es decir, a cientos de muestras, o incluso menos). Muchos investigadores en el
campo no se dan cuenta de que el poder estadistico y la importancia de todos los
algoritmos y métodos de supervivencia dependen, de manera critica, del nimero de
muestras estudiadas juntas.

Un punto final con respecto a la hipotesis es que no propusimos solo la apli-
cacion de métodos computacionales estandar para el analisis de supervivencia, sino
que deseamos desarrollar y aplicar nuevos algoritmos bioinformaticos para hacerlo.
En particular, para mejorar la forma en que los datos de supervivencia se pueden in-
tegrar con los datos de expresion probados de todo el genoma para descubrir nuevos
marcadores de supervivencia.
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Objetivos

Una vez que hemos descrito la hipotesis principal de nuestra Tesis doctoral, debe-
mos presentar los objetivos que describen de una manera mas tangible el trabajo
particular realizado y los desafios especificos que enfrentamos durante los cinco anos
de nuestro doctorado. Los objetivos se dividen en dos grupos principales: (i) los
primeros dos objetivos (1° y 2°) corresponden al trabajo realizado con datos de
cancer de mama; y (ii) el segundo grupo de objetivos (3° y 4°) corresponde al
trabajo realizado con los datos de ColoRectal Cancer. Estos cuatro objetivos
se presentan en esta disertaciéon como cuatro capitulos separados después de
este.

Los objetivos:

Objetivo 1.- Generaciéon de un gran conjunto de datos homogéneos de muestras
de cancer de mama (BRCA) que incluyen datos de expresion de genoma completo
y datos de supervivencia de pacientes; y el descubrimiento de marcadores de su-
pervivencia BRCA asociados con los tres marcadores clinicos actualmente estandar
(ER, PRy HER2) a través del desarrollo y la aplicacion de algoritmos robustos para
analisis de supervivencia basados en perfiles transcriptémicos.

Objetivo 2.- Desentranar y descubrir marcadores genéticos positivos y regu-
ladores del Cancer de Mama Triple Negativo (TNBC) utilizando perfiles transcrip-
tomicos y reguladores de genes combinados con anélisis de supervivencia. Estudio
realizado por comparacion y contraste de TNBC con el subtipo méas frecuente de
cancer de mama, el BRCA luminal.

Objetivo 3.- Generacién de un gran conjunto de datos homogéneos de muestras
de cancer coloRectal (CRC) que incluyen datos de expresion de genoma completo y
datos de supervivencia del paciente; y el descubrimiento de nuevos genes marcadores
de supervivencia de CRC derivados de una integraciéon robusta y un metanélisis de
multiples conjuntos de datos transcriptémicos.

Objetivo 4.- Analisis integrativo de los perfiles transcriptémicos de multiples
muestras de cancer colorrectal (CRC) para identificar y caracterizar los cuatro sub-
tipos moleculares de consenso (CMS1, 2, 3 y 4); la integracion de estos datos tran-

scriptomicos con los datos de supervivencia de los pacientes; y la caracterizacion
relativa de una firma EMT asociada al KO de P21 (es decir, el gen CDKN1A KO).
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Marcadores de supervivencia del ciAncer de mama
(BRCA) asociados a marcadores clinicos estandar y
algoritmos robustos para el analisis de supervivencia
basado en perfiles transcriptémicos

Motivacion

El tratamiento del cAncer de mama esté determinado por una clasificacion estandar
de tumores en cuatro grupos. La clasificacion se lleva a cabo considerando princi-
palmente tres marcadores clinicos: ER (ESR1), PR (PGR) y HER2 (Saini et al.,
2011) (ERBB2 o NEU) obtenidos por inmunohistoquimica (IHC). Los marcadores
definen las subclases; Luminal A, Luminal B, HER2 enriquecido y triple negativo
(TNBC). Algunos marcadores complementarios, como AURKA o MKI67, se estan
considerando recientemente para mejorar la prediccion del riesgo.

Sin embargo, los errores en la estimaciéon de marcadores clinicos estandar son
mayores que lo esperado (I et al., 2010). Esto puede conducir a un tratamiento
incorrecto del paciente. Ademas, los grupos obtenidos por solo tres marcadores sue-
len ser demasiado heterogéneos (Venet et al., 2011) (Bartlett et al., 2016) (Mertins
et al., 2016). La identificacion de genes relacionados con los marcadores clinicos
puede ayudar a mejorar la estratificacion y el tratamiento de los pacientes que pro-
porcionan nuevos objetivos terapéuticos.

Se han desarrollado varias plataformas comerciales que consideran una firma
genética multivariable. Sin embargo, la superposicién entre las firmas genéticas y
los grupos de riesgo es pequena (Venet et al., 2011) (Bartlett et al., 2016) (Mertins
et al., 2016). La plataforma funciona como una caja negra y las decisiones no se
pueden interpretar en términos de marcadores clinicos estandar. Esto evita la apli-
cacion en la practica clinica. Hay una falta de investigaciones que se centren en la
influencia del método de seleccion de caracteristicas en el rendimiento y la estabili-
dad de la firma (Haury et al., 2011).

Ademas, se ha propuesto un gran nimero de firmas genéticas prondsticas en la
literatura. FEl consenso entre ellos es bastante pequeno y con frecuencia son de-
pendientes de la muestra (Mertins et al., 2016). Es decir, el algoritmo recupera
un subconjunto diferente de genes con respecto al conjunto de datos considerado.
Algunos autores (Ein-Dor et al., 2005), han estudiado varias firmas de genes y han
llegado a la conclusion de que la estabilidad, la reproducibilidad y la solidez siguen
siendo un problema dificil. Para superar esto, una validacién en una serie indepen-
diente de RNAseq es otro objetivo.

En este capitulo se obtiene una firma genética multivariable robusta que se in-
terpreta en términos de los marcadores clinicos. Esta firma genética proporciona
una alternativa para desarrollar nuevos tratamientos.

Se desarrollaran varias estrategias solidas nuevas en este capitulo, con el fin de
mejorar cuatro de los analisis mas comunes en bioinformética: normalizacion, expre-
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sion diferencial, seleccion de caracteristicas y modelos de prediccion multivariante y
univariante.

Materiales y métodos

GEO ID Orig Final Surv Type PMID Year Journal Description
N N

GSE6532 87 87  RFS, DMFS 17401012 2007 J Clin Oncol Molecular subtypes in estrogen recep-
tor positive breast carcinomas.

GSE12276 204 204 MFS 19421193 2009 Nature Genes that mediate breast cancer
metastasis to the brain

GSE19615 115 115 RFS, MFS 20098429 2010 Nat Med Chemotherapy resistance and recur-
rence of BRCA.

GSE17907 55 39  MFS 20932292 2010 BMC Cancer Genome profiling of ERBB2-amplified
breast cancers

GSE20685 327 327 OS, MFS 21501481 2011 BMC Cancer BRCA molecular subtypes and clinical
outcomes: treatment optimisation.

GSE21653 266 252  DFS 20490655 2011 BRCA Res Treat A gene expression signature identi-
fies two prognostic subgroups of basal
BRCA

TOTAL 1054 1024

Table 6.1: Recopilacion de series y fuentes de microarrays BRCA.

Todas las series consideradas, deben contener los siguientes metadatos: (i) Tiempo
de supervivencia. (ii) Estado (silos datos estan censurados o no al final del seguimiento

del paciente). (iii) Medicion de THC, si es posible, para los marcadores primarios de
BRCA: ER, PR y HER2.

Estas series se obtuvieron principalmente de Gene Expression Omnibus (GEO)
(NCBI, 2019), utilizando las herramientas de biisqueda GEO como la funcion get-
GEO de GEOquery (Davis and Meltzer, 2007) para R.

Tenemos un total de 1024 muestras de Plus2, un subconjunto de 380 con valores
de THC para ER, PR y HER2. Para las otras 644 muestras, los valores de THC faltan
o estan incompletos, pero todos tienen tiempo de supervivencia y valor de estado.

El conjunto de datos RNAseq se basa total o parcialmente en los datos gener-
ados por la red de investigacion TCGA (TCGA, 2019). Este conjunto de datos y
phenodata son proporcionados al usuario por RCurl (Lang and the CRAN team,
2019), curatedTCGAData (Ramos, 2019), y TCGAutils (Ramos et al., 2019)
paquetes de R. Los paquetes nos permiten acceder a los recuentos sin procesar, a
la matriz FPKM o RPKM ya toda la informacion clinica disponible. Elegimos los
RPKM recomendados por TCGA.

Varios algoritmos han sido propuestos en la literatura para eliminar el efecto
batch. efecto. En (Kupfer et al., 2012) RMA + COMBAT (inSilicoMerging
paquete de R) se propone un método que hemo modificado para obtener nuestra
normalizacion. Para nuestro problema se necesita una correcciéon personalizada del
efecto batch. El hecho de que los tamanos de muestra difieran entre series, las condi-
ciones de los experimentos y el ano del estudio podria llevar a un efecto de batch
mas fuerte asi que este apartado se desarrolla en profundidad en otro capitulo.
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Descubrimiento de marcadores IHC y predicciéon de estado y riesgo

Como se explico anteriormente, los errores en la determinacion de marcadores es-
tandar por inmunohistoquimica pueden tener un impacto sustancial en la salud del
paciente (Venet et al., 2011). En particular, el valor de estos marcadores nos permite
clasificar a los pacientes con cancer de mama en cuatro grupos.

Para evitar este problema, se desarroll6 un predictor robusto para reducir los
errores en la determinacion de los marcadores IHC. Aunque se han aplicado varios
predictores a la estimacion de marcadores IHC utilizando los perfiles de expresion

génica (Bartlett et al., 2016), no son capaces de reducir los errores significativamente
(Mertins et al., 2016).

T

SAM FILTER
. ¥ . . v . I
[ IHC 1 [ HC 1 [ IHC 1
ER HER2
FEATURE FEATURE FEATURE
SELECTION | | SELECTION | | SELECTION |
ER HER2
RISK RISK RISK
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( 1l ( 1l [ ]
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ER HER2
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Figure 6.6: Descubrimiento de los genes marcadores THC, algoritmo de prediccion de
caracteristicas y riesgo.

Nuestro enfoque se basa en la idea de que los marcadores clinicos estan determi-
nados por un conjunto de pathways y genes. Por lo tanto, se selecciona un pequeno
subconjunto de caracteristicas que estan fuertemente asociadas a marcadores clini-
cos. Este subconjunto de genes puede proporcionar dianas alternativas a los mar-
cadores clinicos estandar. A continuacién, se construye un conjunto de clasificadores
lineales utilizando una estrategia de bagging. (Mbogning and Broet, 2016).

La figura (Fig: 6.6) describe el proceso. Primero, se aplica un algoritmo robusto
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de SAM para filtrar genes no expresados. Luego, para cada marcador, ER, PR y
HERZ2, un conjunto de clasificadores obtiene una lista relacionada de genes y mejora
la prediccidon de marcadores clinicos estandar. El procedimiento incluye remuestreo
y validacion por AUC. A continuacion, se entrenan predictores de riesgo que son
capaces de evaluar de forma multivariante la capacidad de cada gen de influir en el
mismo. Por ultimo se obtienen las listas de genes marcadores. Estos genes tienen
la capacidad tanto de predecir clases como riesgo. Estén fuertemente relacionados
con los tres marcadores clinicos.

Discusién y resultados

Las funciones desarrolladas para la seleccién robusta de caracteristicas mediante
marcadores I[HC y el algoritmo redefinido de red elastica han demostrado la capaci-
dad de predecir subclases. Las predicciones de THC son robustas cuando se enfrentan
a variaciones de muestra. Los valores altos de AUC demuestran el alto rendimiento
del predictor.

El método multivariante que utiliza un grupo de genes para predecir las curvas
de riesgo es capaz de reducir la "zona de incertidumbre" o la zona de riesgo medio
con nuestro enfoque. La diferencia con otros métodos al evaluar los intervalos para
definir alto y bajo riesgo permite buscar un minimo que maximice la separabilidad
de las curvas de Kaplan Meier. La utilidad de los minimos relativos cuando se mide
el ancho de la zona de riesgo medio es clave cuando el método crea el punto de corte
para los riesgos altos y bajos predichos. Por lo tanto, la estratificacion del paciente
estd garantizada y los pacientes asignados a un grupo no concluyente o incorrecto
disminuyen.

El método logrank desarrollado para redefinir la estratificacion en expresion alta
o baja con la maximizacién de la separabilidad de las curvas pronésticas utiliza una
nueva "probabilidad de pertenencia". Esta probabilidad de ser asignado a un grupo
es una estrategia que elimina la dependencia de la muestra para mejorar la robustez.
Por lo tanto, la posibilidad de que un paciente cambie de alto a bajo o viceversa se
reduce al minimo si se agregan o si se restan nuevas muestras.

El poder de prediccion de riesgo de los genes marcadores propuestos se evalia
en comparacion con dos de las listas de genes mas famosas, Prosigna y Oncotype.
En ambos casos, los genes marcadores propuestos son capaces de superar a las otras
listas.

Por lo tanto, los genes marcadores propuestos son objetivos prometedores para
la validaciéon in vivo.

Para finalizar, hay una fuerte relacion entre los marcadores propuestos y las fun-
ciones celulares relacionadas con el cancer. Se ha descubierto que todos los genes
tienen relacion con la proliferacion celular, la inestabilidad del ADN, la diferenciaciéon
y todo tipo de factores fuertemente asociados con el cancer.
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Marcadores positivos y los reguladores del cancer
de mama triple negativo (TNBC) utilizando perfiles
transcriptomicos combinados con analisis de super-
vivencia

Motivacion

El cancer de mama (BRCA) se clasifica como Triple Negativo (TNBC); cuando
no muestra una expresion significativa del receptor de estrogeno (ER) o del recep-
tor de progesterona (PR) y no sobreexpresa el receptor 2 del factor de crecimiento
epidérmico humano (HER2). La presencia de estos marcadores moleculares se real-
iza mediante inmunohistoquimica (IHC) e hibridacién in situ con fluorescencia y se
ha demostrado que tiene una variabilidad significativa entre laboratorios. Esto es
problematico, ya que las muestras de HER2 + o de receptores hormonales positivos
(HR++) con falsos negativos a través de estos andlisis corren el riesgo de ser clasi-
ficadas como TNBC.

Por lo tanto, las muestras designadas como TNBC podrian someterse a un paso
de verificacion para garantizar que los tumores no se hayan clasificado incorrecta-
mente como TNBC. La definicion de TNBC es la fuente de una posible clasificacion
erronea, parece prudente que una clasificacion adicional de TNBC se base en criterios
inclusivos (es decir, usando biomarcadores positivos). Para identificar biomarcadores
potenciales, se utilizo DECO (Decomposing heterogenous Cohorts using Omic data
profiling) para identificar 24 genes cuya regulacion al positiva caracteriza mejor los
casos de TNBC. Los biomarcadores identificados se pueden usar para propositos de
clasificacion y prediccion.

Ademas, se utilizo Viper (Virtual Inference of Protein-activity by Enriched Reg-
ulon Analysis) para determinar qué factores de transcripcion (TF) son diferencial-
mente més activos en TNBC que en HR++. Viper identific6 a BCL11A y FOXC1
como conductores potenciales de TNBC. Estos TF podrian servir como objetivos
potenciales para terapias dirigidas a TNBC.

Ademas, se analizara la relacién entre los marcadores descubiertos y la super-
vivencia y el riesgo. Este anéalisis de riesgo y supervivencia proporcionara relevancia
a los marcadores.

199



S. Bueno PhD 2019, Analyzing genome-wide expression & survival data from cancer patients

Materiales y métodos

General workflow of the study

biomartRt DECO
Breast Cancer n
RNAseq & Microarray TFs filter ER++vs TN
N
l \ 4
[ 1544 TFs ] Diff. Expr. Genes Validation
ARACNe
TFs and targets Master Regulators

mutual information

Viper
protein activity Survival Analysis
TFs

ER++vs TN

Figure 6.7: ER++ vs TNBC metodologia y algoritmos aplicados.

En la Fig: 6.7, se describe el proceso. Primero, se usan los datos de la recopi-
lacion de microarray y series RNAseq. El primer paso es el filtro para identificar los
TF descritos anteriormente, se realizé utilizando biomartRt (Durinck et al., 2005)
(Durinck et al., 2009).

Se analizaron los TFs(factores de transcripcion) usando el paquete de R ARACNe
(Margolin et al., 2006) (He et al., 2017) y se cre6 una red de TFs y sus targets. A
continuacion. se utilizé el paquete de R Viper (Alvarez et al., 2016) para obtener
la firma de los "master regulators".

Ademas, se realiz6 un analisis independiente de DECO para seleccionar genes
equivalentes a TFs.

La relacion de los marcadores con la supervivencia se verifico utilizando las her-
ramientas desarrolladas en esta tesis.

Discusién y resultados

Las muestras de tumores BRCA son evaluadas actualmente por THC y FISH para
determinar la presencia de los tres marcadores moleculares de BRCA: ER, PR y
HER2. Cuando una muestra no tiene una expresion significativa en ninguno de
estos marcadores, se le asigna la etiqueta de TNBC. Por lo tanto, las muestras
de HER2 + o HR++ que muestran falsos negativos a través de estos métodos de
anélisis estan en riesgo de ser clasificadas como TNBC.

Viper se utilizé para evaluar la diferencia en la actividad de las proteinas en
TNBC y HR++. Viper identific6 12 TFs como més activos en las muestras de HR++
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en comparacion con las muestras de TNBC. Entre los 12 TFs se encontraban ER y
PR, como era de esperar para esta comparacion. Estos hallazgos refuerzan la eficacia
de los métodos utilizados y justifican la exploracion de otros FTs obtenidos. Dado
que los subtipos derivados de ER y PR se han tratado exitosamente con farmacos
en HR-++, parece logico que los FTs que se identificaron como més activos en el
TNBC pudieran servir como posibles objetivos para la inhibicion en el TNBC. Por
altimo, Viper identifico6 34 TFs con mayor actividad en TNBC. BCL11A y FOXC1
se identificaron en ambos conjuntos de datos como los mas relevantes.

BCL11A un represor transcripcional relacionado con el BRCA

BCL11A codifica un TF de dedos de zinc que funciona como un represor transcrip-
cional. BCL11A también es un protooncogén para los canceres hematologicos y
es un biomarcador propuesto para los tumores de células no pequenas del pulmoén
(Jiang et al., 2013) (Weniger et al., 2006) (Nakamura et al., 2000). Su expresion
es esencial para el desarrollo adecuado de las células B y T, y se ha encontrado en
niveles bajos en el timo, la médula ésea y los ganglios linfaticos, asi como en niveles
altos en las células B del centro germinal y del cerebro fetal (Satterwhite et al.,
2001) (Liu et al., 2003). También se ha descubierto recientemente que BCL11A
es un regulador del desarrollo normal de las glandulas mamarias, necesario para el
desarrollo de células madre en la mama. Sin embargo, se ha demostrado que los
altos niveles de expresion de BCL11A promueven la tumorigénesis en TNBC y se
correlacionan negativamente con la supervivencia (Khaled et al., 2015).

FOXCI1, infraexpresado tanto en HER2 4+ como HR++

FOXCT1 fue identificado como marcador de expresion diferencial entre HR++, HER2
+ yv TNBC siendo superado tan solo por ER y ERBB2. FOXC1 esta definido por
el aumento de su expresion en TNBC y por su disminucion tanto en HER2 + como
en HR++.

Los miembros de la familia FOX desempenan diversos roles en la organogénesis,
la regulacion del ciclo celular y la diferenciacion celular (Tuteja and Kaestner, 2007a)
(Tuteja and Kaestner, 2007b). FOXCI1 se ha asociado especificamente con varios
tipos de cancer, incluido el linfoma de Hodgkin, el linfoma no Hodgkin, el carcinoma
hepatocelular, el cancer de endometrio y el cancer de mama. (Elian et al., 2018).

Los factores de transcripcién como potenciales marcadores

Hemos demostrado que FOXC1 y BCL11A ejercen su influencia en el fenotipo TNBC
a través de la sobreexpresion, el aumento de la actividad de otros TFs y otras rela-
ciones sinérgicas. Estos hallazgos nos han llevado a postular que FOXC1 y BCL11A
pueden ser genes que definen positivamente el TNBC. La hipotesis es que estos TFs
podrian servir como objetivos viables para el tratamiento de este subtipo de cancer.
Se recomiendan como marcadores para estudios adicionales utilizando modelos muri-
nos y lineas celulares para evaluar su papel y su uso potencial en la terapia dirigida
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de TNBC.

La relacion entre los marcadores TNBC descubiertos y el poder de prediccion
de riesgo y supervivencia es una gran adicion al estudio. El valor que esta relacion
incorpora a los marcadores es triple. Primero, la posibilidad de calcular y prede-
cir el riesgo para nuevos pacientes en la clinica mientras se evalia la pertenencia
a un subgrupo. Segundo, la posibilidad de ser usados como factores que definen
el subgrupo BRCA triple negativo apenas conocido. Finalmente, los marcadores
propuestos podrian investigarse para definir subgrupos dentro del TNBC.

En conclusion, nuestro trabajo nos ha permitido identificar biomarcadores pos-
itivos en TNBC. Estos biomarcadores podrian servir para confirmar que las mues-
tras designadas como TNBC son verdaderamente TNBC y no HER2 + de HR++
definidos como falsos negativos a través de FISH o IHC. Ademaés, nuestro trabajo
permitio la identificacion de potenciales marcadores de TNBC. Estos marcadores
potenciales deben investigarse mas a fondo para determinar si su actividad es, de
hecho, el motor de TNBC y si estos TFs serian claros objetivos a considerar en una
terapia viable en el tratamiento de TNBC.
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Genes marcadores de supervivencia del cancer de
colon (CRC) derivados de la integracion y el metanali-
sis de multiples conjuntos de datos transcriptémicos

Motivacion

El CCR (cancer colorectal) es una enfermedad heterogénea, ya que de un paciente a
otro difiere en la presentacion clinica, las caracteristicas moleculares y el pronostico
(Linnekamp et al., 2015). La heterogeneidad de los CCRs aumenta la complejidad
de esta patologia tumoral, lo que hace que los subtipos y la estratificacién sean una
tarea dificil.

De esta manera, la medicina personalizada para el CCR es cada vez mas nece-
saria, especialmente en terapias dirigidas donde existen grandes variaciones entre
las respuestas al tratamiento del individuo (Linnekamp et al., 2015) (Dienstmann
et al., 2017). En este contexto, la necesidad de encontrar marcadores genéticos ro-
bustos asociados con subtipos especificos de CCR es lo que nos llevo a este estudio.
Ademas, el proposito especifico de nuestro trabajo fue encontrar objetivos biomolec-
ulares consistentes para facilitar la estratificacion de las muestras y que pudieran
relacionarse con el pronostico de la enfermedad utilizando datos de supervivencia.

En la clinica, los pacientes se clasifican en cuatro estadios de CCR segtn las
caracteristicas anatomopatologicas de sus tumores. Es comiun usar el Sistema de
estadificacion TNM (donde T significa tumor, N para ganglios linfaticos y M para
metastasis). Esta categorizacion de cuatro etapas representa grupos de pacientes
significativamente distintos para la recaida de la enfermedad, pero las etapas no
predicen el riesgo de cada paciente individual porque no estan directamente asoci-
adas a la supervivencia (Tauriello and Batlle, 2016).

Se investigaran los perfiles globales de expresion génica de los tumores colorrec-
tales y su alteracion a lo largo de las etapas. Asi se espera identificar los genes que
podrian aprovecharse como biomarcadores de supervivencia y pronostico de CCR
en las tltimas etapas (es decir, IIT y IV). Para llevar a cabo este trabajo, realizamos
un analisis profundo en una gran cohorte de muestras humanas derivadas de una
solida integracion de varios conjuntos de datos que tenian datos de supervivencia
clinica y transcriptomica. La integracion proporcioné un meta-conjunto de datos
homogéneo y bien estandarizado que incluye 1273 muestras colorrectales humanas.
La identificacion de marcadores candidatos se realiz6 mediante un contraste inicial
entre la expresion génica del subconjunto de pacientes con CCR asignados por sus
caracteristicas clinicas a los estadios I y II frente a los pacientes con tumores cor-
respondientes a los estadios IIT y IV. Finalmente, después de la validacion cruzada
interna y externa, los genes seleccionados como mejores marcadores de supervivencia
se utilizaron para construir un predictor de riesgo para permitir la estratificacion de
los pacientes con respecto a su riesgo relativo.
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Materiales y métodos

General workflow of the study
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Figure 6.8: CRC metodologia y algoritmos aplicados.

En la Fig: 6.8, se resume el proceso que se ha seguido. Primero, el conjunto de
datos se fusiona y se normaliza utilizando cinco protocolos diferentes. La elecciéon del
mejor método de ejecucion se explica con méas detalle en el capitulo, pero depende
de su capacidad para eliminar el efecto "batch". Se selecciona el método RMA +
ComBat, utilizando este método dada su eficiencia para paliar el "batch effect".

El anélisis de la expresion diferencial se realizé usando Limma. Este anélisis
proporciond una lista de genes relevantes que se analizaron més a fondo utilizando
las herramientas de supervivencia desarrolladas en esta tesis. La lista final de mar-
cadores se valida en dos estudios independientes.

El primero, evalia la relacion multivariante de los genes con el riesgo, que no se
analiza en el paso anterior. El segundo, compara muestras normales sin enfermedad
y muestras de CRC. Las muestras colorrectales de la serie tienen una expresion mas
alta que las muestras normales para nuestros genes marcadores definidos por la so-
breexpresion. Ademaés, los genes marcadores definidos por la infraexpresion estan
regulados a la baja en las muestras de CRC.

Discusiéon y resultados

Con respecto a los genes especificos propuestos como marcadores de supervivencia
de CRC, queremos subrayar que nuestro estudio no pretende proporcionar una firma
genética fija para el prondstico y la predicciéon de riesgo, como las firmas reportadas
de 7 genes, 15 genes o 113 genes. (Nguyen et al., 2015) (Chen et al., 2017) (Xu
et al., 2017) pero, en cambio, proponemos un conjunto solido de genes clasifica-
dos de acuerdo con su poder predictivo de supervivencia CRC. De esta manera,
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se presenta una lista ordenada de 200 genes que incluyen los mejores marcadores
de supervivencia: 100 genes para los que la sobreexpresion estd relacionada con
supervivencia y 100 genes para los que la sobreexpresion no esta relacionada con
supervivencia. Creemos que este enfoque es més util, ya que permite una seleccion
abierta de diferentes nimeros de genes para propoésitos o investigaciones adicionales
(por ejemplo, para pruebas adicionales con otras cohortes clinicas de CCR). De he-
cho, utilizamos los 100 genes mas significativos, sobreexpresados en relaciéon con la
progresion en CRC, para construir el predictor de riesgo y utilizamos los 5 genes
principales o los 10 principales de esta lista para las validaciones externas con difer-
entes conjuntos de datos independientes.

Otro comentario relevante es, que como se recordd anteriormente, construimos el
predictor de riesgo utilizando los genes que mostraron sobreexpresion correlacionada
con un pronostico desfavorable. Esto se hizo porque en la seleccion de biomarcadores
es mejor usar los que indican una senal positiva (es decir, factores que proporcionan
una "ganancia de funci6n") que los que indican una senal negativa. Por lo tanto,
todos los marcadores de supervivencia de genes fueron definidos como sobreexpre-
sados en pacientes de CRC de alto riesgo. El hecho de que estén sobreexpresados
facilitara su deteccion mediante protocolos biomoleculares estandar (PCR, ELISA,
inmunohistoquimica, etc.).

Finalmente, estamos investigando el significado biolégico de los genes que eti-
quetados como marcadores de prediccion y prondstico. Nuestros esfuerzos se cen-
tran en los 10 principales para los cuales la sobreexpresion se relacionaba con mala
supervivencia: DCBLD2, PTPN14, LAMP5, TM4SF1, NPR3, LEMD1, LCA5, CS-
GALNACT2, SLC2A3, GADD45B. El analisis de la literatura revela algunas obser-
vaciones interesantes. Por ejemplo, la proteina transmembrana DCBLD2 (ESDN),
miembro de la familia de proteinas de tipo neuropilina, es un nuevo regulador de los
efectos mitoticos y metabolicos de la insulina y modula la transduccion de senales
a través de la regulacion de la interaccion del receptor de insulina con sus proteinas
adaptadoras. (Li et al., 2016). La importancia de la regulacion de la insulina en la
funcion de nuestro sistema digestivo es clara, y agrega un valor extra a la propuesta
de DCBLD2 como marcador de supervivencia de CCR.

En conclusion, consideramos que los resultados presentados en este trabajo brin-
dan un fuerte respaldo y una solida justificacion para el valor pronostico de un nuevo
conjunto de genes en CCR y su potencial para predecir la progresion del tumor col-
orrectal y la evolucion hacia los estadios III y TV. El conjunto final de marcadores
de supervivencia incluye una lista abierta de cien genes regulados al alza, con una
estimacion estadistica solida del valor de cada uno. De esta manera, el conjunto de
genes se clasifica claramente, siendo los primeros en la lista los que brindan la mejor
fortaleza pronostica y los que se pueden introducir para construir predictores con
menor nimero de genes. De hecho, nuestros resultados mostraron que una selecciéon
de los 5 mejores genes aplicados a cohortes externas independientes proporcioné una
muy buena separaciéon de muestras de CCR en dos grupos distintos de alto y bajo
riesgo.
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Perfil transcriptémico integrativo de los subtipos molec-
ulares de consenso del cancer colorrectal (CRC, por
sus siglas en inglés) con datos de supervivencia y car-

acterizacion de una firma de genes EMT asociada al
KO de P21, CDKNI1A (- / -)

Motivacion

La formaciéon de metastasis se basa en un proceso de varios pasos conocido como la
cascada invasion-metastasica. Comienza con la diseminacion de células cancerosas
desde el tumor primario, su supervivencia en el sistema circulatorio, la extravasacion
y, eventualmente, la recolonizacion de un érgano distante, generando asi un tumor
secundario. Todos los pasos individuales requieren caracteristicas especificas de célu-
las tumorales, que estan conectadas en gran medida a la transicion epitelio mesen-
quimal (EMT) y al fenotipo de las células madre de cancer. Aunque es bien sabido
que la progresion epitelio mesenquimal de colon normal a un carcinoma invasivo y
metastasico esta fuertemente asociada con el proceso de la EMT y la capacidad de
las células tumorales para sobrevivir en condiciones no adherentes. Definir la disem-
inacién metastasica en pacientes sigue siendo un foco importante de la investigacion

de CCR.

El inhibidor de la quinasa dependiente de ciclina (p21) es un regulador negativo
tanto de la progresion del ciclo celular como de la expresion génica (Abbas and
Dutta, 2009). Un paso no regulado de células a través del punto de control G1/S
por infraregulacion o pérdida de funcion de p21 podria inducir a una proliferacion
aberrante y, por lo tanto, a desencadenar la transformacion del tumor. En CRC, se
ha reportado que la regulacion a la baja de la expresion de p21 se correlaciona con
el desarrollo de metéstasis y la escasa supervivencia del paciente (Abbas and Dutta,
2009). Por lo tanto, el silenciamiento de p21 parece ser de gran importancia para la
proliferacion sin restricciones de células cancerosas.

Estudios previos han reportado que existe una relaciéon directa entre las lineas
celulares HCT116 y HCT116 p21 KO en subtipos de cancer colorrectal (CCR)
definidos como subtipos de consenso molecular, CMS1 y CMS4, respectivamente.
También se ha informado de que algunos genes como VIM y p21 estan relacionados
con la transicion epitelio mesenquimal (EMT), que es el sello principal de CMS4.
La diferencia en la expresion de estos genes en una linea y en la otra es la medida
de la diferencia entre las subclases.

Por lo tanto, el objetivo central es demostrar si existe una relacién entre las
lineas celulares HCT116 y HCT116 p21 KO y los subtipos CMS1 y CMS4, respec-
tivamente.

Para corroborar nuestra hipotesis, utilizamos los conjuntos de datos de microar-
rays y RNAseq de CRC para validar los resultados obtenidos del anéilisis de la
expresion diferencial. Clasificamos las muestras en los subtipos de CMS utilizando
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clasificadores ya desarrollados. Esto nos permite verificar si las observaciones bi-
ologicas en lineas celulares se corresponden con los datos obtenidos en pacientes
humanos. Los genes marcadores se validaran midiendo si el patréon genético encon-
trado en las lineas celulares HTC166 y HTC166 KO es similar al obtenido en los
subtipos CMS1 y CMS4, respectivamente.

Al mismo tiempo, se evalta la interaccion de los genes marcadores con el riesgo
y la supervivencia. La diferencia ya propuesta en el resultado del analisis de super-
vivencia entre CMS4 y el resto de subtipos se investigard como validacion.

Segtin (Guinney et al., 2015), el subtipo CMS4 refleja la firma del génica de las
células mesenquimales junto con la senalizacion de TGF-S y la remodelacion de la
matriz. Curiosamente, el subtipo CMS4 también se correlacion6 con la resistencia a
farmacos y el aumento de los brotes tumorales (Trinh et al., 2018). En la clasificacion
por consenso de subtipo molecular de adenoma colorrectal no hubo subtipo CMS4
ya que no existe un estroma asociado a la invasion (Komor et al., 2018). Hasta ahora
no se ha determinado la firma genética detallada de las células HCT116 p21 KO.
Para una mejor comprension del modelo p21 KO particularmente como un modelo
preclinico para el analisis de la respuesta terapéutica, nos propusimos evaluar si el
p21 KO es lo suficientemente fuerte como para cambiar el subtipo molecular de la
linea celular HCT116.

Materiales y métodos
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Figure 6.9: CRC metodologia y algoritmos aplicados.

En la Fig: 6.9, se resume procedimiento. Primero, tenemos los datos de la com-
paracion entre las lineas celulares y la serie de microarrays y RNAseq de CRC. El
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primer paso fue obtener los genes principales que mostraban una expresion diferen-
cial entre la linea celular original y el knock out (KO).

Esto nos dio 67 marcadores candidatos que estaban relacionados con los subti-
pos CMS1 o CMS4. Si la expresion del gen es mayor para la linea celular similar a
CMS1, se define como un marcador positivo de CMS1. Al contrario, si la expresion
es méas alta para CMS4 en la linea celular KO ( p21 KO), entonces se define como
un marcador positivo de CMS4.

El estudio con datos de microarrays y RNAseq se realiza para validar estas
hipotesis. Para la clasificacion de pacientes en los subtipos de CMS, utilizamos el
consenso entre dos predictores de clase, CMSclssifier y CMSCaller. Las herramien-
tas desarrolladas en esta tesis se aplicaron para el posterior analisis relacionado con
la supervivencia.

Discusién y resultados

Los experimentos y andlisis realizados en este capitulo demuestran la relaciéon en-
tre el tipo WT y las lineas celulares p21 KO CMS4 (tipo EMT). Los marcadores
propuestos de estas lineas celulares estan fuertemente diferenciados en los grupos
de CMS predichos en las dos cohortes de validacion, microarrays y RNAseq, lo que
confirma la hipotesis. Por otra parte, la relaciéon entre los marcadores y las carac-
teristicas EMT también se ha probado.

La utilidad del conjunto de herramientas, las funciones y el paquete desarrollados
en esta tesis adquiere relevancia dados los resultados obtenidos. Como validacion
adicional, la relacion ya descrita entre el grupo de CMS4 y el resto de pacientes con
cancer colorrectal se confirma mediante el anélisis de supervivencia.

Finalmente, el estudio sobre como los pares de genes son capaces de mejorar
su capacidad para definir el riesgo cuando se incluye la interacciéon entre ellos es
un resultado considerable. Generalmente, la mayoria de los estudios que incluyen
regresiones de Cox, lineales o de otro tipo no tienen en cuenta esta relacién como
una variable o coeficiente adicional que deberia de incluirse en el modelo. Como
se describe, esto puede llevar a peores resultados o interacciones no descubiertas.
Esta lista de marcadores seria un objetivo ideal para futuros estudios y desarrollo
de herramientas.

La relacion del p21 KO con el subtipo CMS4 se valida de varias maneras, uti-
lizando dos conjuntos de datos diferentes de CRC. La relaciéon de los marcadores
propuestos con las funciones celulares que se describen relacionadas con los subtipos
CMS1 y CMS4 demuestra que los genes tienen la capacidad de identificar ambas
subclases.

La validacion in vivo de los marcadores mas prometedores ya se ha propuesto
como un trabajo futuro.

La aplicacion de una version modificada de la regresion multivariante de Cox,
incluidas las interacciones entre términos, ha proporcionado una nueva métrica para
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evaluar los marcadores. La importancia de las interacciones entre pares de genes
queda demostrada al mostrar como se redefine la red y como las interacciones entre
los genes son atin mas prometedoras. La evaluacion in vivo de estos genes tiene el
potencial de conducir a nuevos descubrimientos debido a la relacion entre ellos.
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Conclusiones finales

A lo largo de los cuatro capitulos de este Ph.D. Se han propuesto algoritmos y
métodos bioinforméaticos para abordar los principales problemas en el anélisis y la
integracion de datos. Las conclusiones generales de este Ph.D., se enumeran a con-
tinuacion:

1. Los métodos propuestos para la normalizacion del conjunto de datos y la
reduccion del efecto de "batch" deben utilizarse para reducir el sesgo al fusionar
diferentes fuentes de datos. La importancia de estos métodos se demuestra en el
estudio realizado en Capitulo 4. La falta de una normalizacion y estandarizacion
adecuadas al fusionar los datos de diferentes fuentes es algo que generalmente con-
duce a la falta de reproducibilidad. Usando estos métodos, se consiguen cumplir
el primero y el tercero de los objetivos de esta tesis. Se generaron conjuntos de
datos grandes (1024 muestras) y (1273 muestras) y homogéneos de cancer de mama
y cancer colorrectal con datos de supervivencia.

2. Los métodos y algoritmos desarrollados han hecho posible la caracterizacion
de un grupo de genes marcadores propuestos que identificaron el subtipo TNBC de
cancer de mama y que se relacionan con el riesgo y el valor pronostico. El éxito en
la compilacion de un gran conjunto de datos BRCA con supervivencia nos permitio
realizar este andlisis y afirmar que se ha logrado el segundo objetivo de esta tesis.

3. Ademas, la relacion entre el p21 KO del HCT116 con el subtipo CMS4 y el
HCT116 WT con el CMS1 ha permitido identificar genes que definen este subtipo de
cancer colorrectal. Los genes propuestos se evaluaron mas a fondo y se descubrio la
relacion entre los marcadores y la supervivencia. En el mismo estudio, se prob6é un
método capaz de identificar genes que definen fuertemente el riesgo cuando se tiene
en cuenta la interacciéon binaria. Los resultados relevantes obtenidos se probaran in
wwo para definirlos como marcadores. Esto fue posible gracias a la compilacion de
un gran conjunto de datos integrado de cancer colorrectal desarrollado previamente
y que se utilizo para este estudio. Con esta contribucién, se cumple el cuarto y
altimo objetivo de esta tesis.

4. La importancia de la robustez, cada vez que se realiza un anélisis bioestadis-
tico, es uno de los temas principales de esta tesis. Esto se ha tenido en cuenta para
cada algoritmo disenado y aplicado. Por lo tanto, la validacion mediante cohortes
y conjuntos de datos independientes, incluso utilizando distintas plataformas, se ha
realizado en cada paso y estudio realizado.

5. El método propuesto para descubrir genes marcadores se ha aplicado con
éxito, demostrando su capacidad para descubrir grupos de genes que superan a los
ya propuestos para la prediccion del riesgo y la estratificacion de pacientes, man-
teniendo la relacién con caracteristicas clinicas importantes. Del mismo modo, la
variacion robusta de Kaplan-Meier con la optimizaciéon de la probabilidad de perte-
nencia a grupos es capaz de superar los problemas 6micos habituales que pueden
llevar a un sobreajuste.
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Trabajo futuro

Los descubrimientos de varios capitulos de esta tesis ya se han publicado, pero el
objetivo es terminar pronto una o dos publicaciones.

Los marcadores positivos obtenidos en el Capitulo 5 son candidatos para ser
evaluados in vivo.

El desarrollo de un paquete de bioconductores R que incluye todas las herramien-
tas utilizadas para realizar los estudios en esta tesis se encuentra en fase tardia.
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