Agile Artificial Intelligence development for Real World Solutions
Juan M. Corchado
University of Salamanca (Spain)
corchado@usal.es

Artificial Intelligence revived in the last decade. The need for progress, the growing processing capacity and the low cost of the Cloud have facilitated the development of new, powerful algorithms. The efficiency of these algorithms in Big Data processing, Deep Learning and Convolutional Networks is transforming the way we work and is opening new horizons. Thanks to them, we can now analyse data and obtain unimaginable solutions to today’s problems. Nevertheless, our success is not entirely based on algorithms, it also comes from our ability to follow our “gut” when choosing the best combination of algorithms for an intelligent artefact. Their development involves the use of both connectionist and symbolic systems, that is to say data and knowledge. Moreover, it is necessary to work with both historical and real-time data. It is also important to consider development time, costs and the ability to create systems that will interact with their environment, will connect with the objects that surround them and will manage the data they obtain in a reliable manner.

This is where the role of tools such as Deep Intelligence comes into play, they are essential because they allow us to capture all types of data, from sensors, databases, internet, social networks and other sources. Such tools then visualize the data they have captured, complete them or normalize them if necessary and finally use them to create highly sophisticated models. In the case of Deep Intelligence, dashboards can also be created so as to fully adapt to the nature of each problem [1-121]. Moreover, tools of this type help us choose the best algorithm and optimize it so that it meets the needs of the problem to be solved. Deep Intelligence brings Machine Learning closer to society and socializes AI.

In this keynote, the evolution of intelligent computer systems will be examined. The need for human capital will be discussed, as well as the need to follow one’s “gut instinct” in problem-solving.

This keynote will analyse the importance of IoT, Blockchain and Edge Computing as contributors to the development of “deep tech” distributed intelligent systems that have the capacity to interact with the environment. "Smart“ infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens [122-218]. The combination of AI, IoT and Blockchain in an Edge Computing model or elsewhere, offers a world of possibilities and opportunities.

Smart cities, bioinformatics, smart grids, industry 4.0, etc. will experience major improvements if AI is used in a wise and sustainable manner. As part of this keynote several use cases of intelligent systems will be presented and it will be analysed how
the processes of implementation and use have been optimized by means of different tools [219-221].

References:
5. Ana Silva, Tiago Oliveira, José Neves, Paulo Novais (2016). Treating Colon Cancer Survivability Prediction as a Classification Problem. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 1


Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 2, n. 1


https://doi.org/10.1007/978-3-319-61578-3_18


82. Cristian Peñaranda, Jorge Agüero, Carlos Carrascosa, Miguel Rebollo, Vicente Julián (2016). An Agent-Based Approach for a Smart Transport System. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 2
86. David Griol, Jose M. Molina (2016). A proposal to manage multi-task dialogs in conversational interfaces. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 2
88. David Griol, Jose Manuel Molina (2016). Simulating heterogeneous user behaviors to interact with conversational interfaces. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 4
89. David Griol, Jose Manuel Molina, Araceli Sanchís De Miguel (2014). Developing multimodal conversational agents for an enhanced e-learning experience. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 3, n. 1
94. Eduardo Mario Dias, Eduardo Facchini, Antônio Carlos De Moraes, Maurício Lima Ferreira, Willian Reginato Este, Maria Lídia Rebello, Pinho Dias (2014). A
95. Eduardo Munera, Jose-Luis Poza-Lujan, Juan-Luis Posadas-Yagüe, Jose-Enrique Simó-Ten, Francisco Blanes (2017). Integrating Smart Resources in ROS-based systems to distribute services. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 1


98. Emmanuel Adam, Emmanuelle Grislin-Le Strugeon, René Mandiau (2012). MAS architecture and knowledge model for vehicles data communication. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 1


125. Guillaume Desquesnes, Guillaume Lozenguez, Arnaud Doniec, Éric Duviella (2016), Planning large systems with MDPs: case study of inland waterways supervision. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 4


131. Jaime Rincón, Jose Luis Poza, Juan Luis Posadas, Vicente Julián, Carlos Carrascosa (2016). Adding real data to detect emotions by means of smart resource artifacts in MAS. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 5, n. 4


153. Lucas Fernando Souza De Castro, Gleyfer Vaz Alves, André Pinz Borges (2017). Using trust degree for agents in order to assign spots in a Smart Parking. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 2


165. Miki Ueno, Toshinori Suenaga, Hitoshi Isahara (2017). Classification of Two Comic Books based on Convolutional Neural Networks. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 1


problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowledge-Based Systems, 137, 54-64.


189. Rafael Cunha, Cleo Billa, Diana Adamatti (2017). Development of a Graphical Tool to integrate the Prometheus AEOLus methodology and Jason Platform. *ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 6, n. 2*


193. Ricardo Silveira, Guilherme Klein Da Silva Bitencourt, Thiago Ângelo Gelaim, Jerusa Marchi, Fernando De La Prieta (2015). Towards a Model of Open and
Reliable Cognitive Multiagent Systems: Dealing with Trust and Emotions.
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 4, n. 3


203. Saadi Bin Ahmad Kamaruddin, Nor Azura Md Ghanib, Choong-Yeun Liong, Abdul Aziz Jemain (2012). Firearm Classification using Neural Networks on Ring of Firing Pin Impression Images. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 1, n. 3


205. Sérgio Matos, Hugo Araújo, José Luís Oliveira (2013). Biomedical Literature Exploration through Latent Semantics. ADCAIJ: Advances in Distributed


218. Vincenza Cofini, Fernando De La Prieta, Tania Di Mascio, Rosella Gennari, Pierpaolo Vittorini (2012). Design Smart Games with requirements, generate
them with a Click, and revise them with a GUIs. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal (ISSN: 2255-2863), Salamanca, v. 1, n. 3

