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Abstract

A novel approach to the production of chiral 1,3-cyclohexadienals has been developed. The

organocatalysed asymmetric reaction of different β-disubstituted-α,β-unsaturated alde-

hydes with a chiral α,β-unsaturated aldehyde in the presence of a Jørgensen-Hayashi orga-

nocatalyst provides easy and stereocontrolled access to the cyclohexadienal backbone.

This method allows for the synthesis of potential photoprotective chiral 1,3-cyclohexadienals

and extra extended conjugation compounds in a simple manner.

Introduction

Organocatalysis is one of the fastest growing areas in organic chemistry [1–4]. The enantiose-

lective organocatalytic Diels-Alder reaction from the seminal communication of Prof. Mac-

Millan et al. [5] constitutes one of the most interesting research areas. The synthesis of

enantiomerically enriched building blocks is an important task in organic synthesis, where

cyclohexadienes [6–11] are of special interest due to their reactivity. Although the use of

monosubstituted α,β-unsaturated aldehydes is more extended, in the last few years the use of

β-disubstituted-α,β-unsaturated aldehydes has become more prevalent in this area. There are

numerous examples of asymmetric synthesis by using organocatalysis, as shown by the work

of Professor Serebryakov et al. in the synthesis of cyclohexa-1,3-dienes from prenal and unsat-

urated esters or derivatives, [12–16] Professor Hong et al. for the synthesis of aromatic alde-

hydes by organocatalytic [4+2] or [3+3] cycloaddition of α,β-unsaturated aldehydes [17–19]

and Professor Watanabe et al. in citral, 1, dimerization. [20–25] The cyclohexadienal scaffold

has been shown to be bioactive in numerous cases throughout the literature. For example, the

citral dimer shows antibiotic activity [26] and the retinal dimer could contribute to macular

degeneration. [27] As chiral aldehyde 2 has been intensively used as a synthetic building block

in the synthesis of bioactive natural products, [28–33] this study sought to obtain chiral cyclo-

hexadienals using 2 in combination with different β-methyl disubstituted-α,β-unsaturated

aldehydes in the presence of different catalysts (5–10), which avoid the dimerization of these

compounds (Fig 1).
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In the last few decades the potentially dangerous effects of UV radiation exposure have

been extensively demonstrated [34–36]. While UVC light is filtered by the upper atmospheric

layers, UVB and UVA light penetrate the upper layers of the atmosphere and reach the Earth’s

surface. Photoprotection against this radiation can prevent skin damage and deleterious

effects on DNA. However, it is important not to overdo protection against UVB as this can

reduce the biosynthesis of vitamin D[37,38]. Therefore, photoprotective agents that selectively

absorb UVB and UVA radiation are the UV-filters needed for developing effective and safe

sunscreens.

There are two groups of UV filters: inorganic and organic compounds. The inorganic filters

scatter, reflect or absorb UV radiation, however, only TiO2 and ZnO are FDA approved. The

organic UV filters consist of structurally simple aromatic molecules that absorb in UVA and

UVB. The organic UV filters used in sunscreens, and approved by the FDA (Fig 2)[39] can be

classified as cinnamates, benzophenones, PABA and salicilate derivatives and others. Despite

their use in sunscreens, there are several studies regarding the toxicity, and especially the pho-

totoxicity, of these compounds [40–46].

In this work, cyclohexadienals containing different substitutions have been synthesized as

easily accessible high-conjugated compounds with interesting UV-Vis properties, making

them suitable for use as photoprotective UV-filters.

Materials and methods

All reactions were performed in oven-dried glassware under positive Ar pressure with mag-

netic stirring, unless otherwise noted. Air and moisture-sensitive liquids and solutions were

transferred via a syringe or a stainless-steel cannula. TLC was performed on 0.25 mm E. Merck

silica gel 60 F254 plates and visualized under UV light (λ = 254 nm) or by staining with potas-

sium permanganate. Flash chromatography was performed on E. Merck 230–400 mesh silica

gel 60. All reagents were purchased from commercial suppliers, and used without further puri-

fication unless otherwise noted. Solvents were distilled from suitable drying agents (CaH2 or

Na wire) under an Ar atmosphere at 760 mmHg. All moisture- and/or oxygen-sensitive solids

were handled and stored in a glove box under N2. The NMR spectra were recorded on Bruker

AVANCE 400 MHz DRX and Varian Mercury 200 MHz using CDCl3 as solvent. NMR data is

reported as follows: chemical shift (δ) (parts per million, ppm); multiplicity: s (singlet), d (dou-

blet), t (triplet), q (quartet) and br (broad); coupling constants (J) are given in Hertz (Hz). 1H

NMR chemical shifts were calibrated with respect to residual chloroform in CDCl3 centered at

7.26 ppm, whereas for 13C NMR, the center peak for CDCl3, centered at 77.0 ppm, was used

for the calibration. The IR spectra were obtained on a Shimadzu IR Affinity-1 (film over

NaCl). All NMR and IR spectra can be found in S1 File. The HRMS spectra were obtained on

an Applied Biosystems QSTAR XL mass spectrometer. The optical rotation was performed on

a Perkin-Elmer 241 digital polarimeter using cuvette with l = 1 dm and CHCl3 as the solvent.

Absorbance measures were determined in 200–700 nm region using iPrOH as the solvent and

an UV quartz cuvette (l = 1 cm) in a Shimadzu UV-2401PC spectrophotometer with thermo-

static system at 20˚C. The UV-Vis spectra can be found in S4 File.

Results and discussion

First, the synthesis of chiral cyclohexadienals (Fig 3) with citral, 1, and aldehyde, 2, obtained

from D-mannitol in the usual conditions was tested. [20–25].

The different experimental conditions of the catalyst, solvent and additives tested are

shown in Table 1.

1,3-cyclohexadienals

PLOS ONE | https://doi.org/10.1371/journal.pone.0192113 February 13, 2018 2 / 18

Leon and MCC thanks the Universidad de

Salamanca for their fellowships.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0192113


When using a non-chiral organocatalyst, such as pyrrolidine, 5, cyclohexadienal 4 was

obtained in low yields, although without diastereoselectivity (entry 1). The use of L-proline, 6

(entries 2–3), using different solvents, or no solvent at all, gave the required cyclohexadienal 4

in very low yields and the citral dimer 3, as a subproduct. Then, MacMillan´s organocatalysts

7 and 8 were tested, but no result was obtained (entries 4–5). In addition, the Jørgensen-Haya-

shi catalysts 9 and 10 were used in different solvent conditions, obtaining different results

depending on the solvent used, ranging from moderate yields of cyclohexadienal 4 (entries

6–9 and 22) to no reaction at all (entries 10–14). As can be seen in Table 1, in some cases the

reaction was carried out in presence of additives such as acids (BzOH, o-nitro-BzOH, AcOH,

TsOH, (±)-1,19-binaphthyl-2,29-diyl hydrogenphosphate[(±) BINAP-OH] or TFA) and bases

(DBU) (entries 15–21) with improved yields. The best result was obtained when the Jørgen-

sen-Hayashi catalyst 9 in CHCl3 as the solvent, was used without any additional additive

(entry 8) and produced a moderate yield and a good d.r.

Fig 1. Proposal for the synthesis of new cyclohexadienal building blocks using different catalysts.

https://doi.org/10.1371/journal.pone.0192113.g001

1,3-cyclohexadienals
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Determination of stereochemistry of stereocenter created by NMR

An extra cycle was made to introduce more conformational rigidity (Fig 4), in order to estab-

lish the stereochemistry of cyclohexadienal 4. Aldehyde 4a was oxidized using the usual condi-

tions [47] to obtain the acid 11; deprotection of the acetonide gave the desired lactone ring, 12.

After studying the NOE (Nuclear Overhauser Effect) on this compound, the configuration of

Fig 2. FDA approved UV-filters and bemotrizinol, approved only in Europe. The main UV filters structurally related to cinnamate esters,

benzophenone, p-aminobenzoic acid (PABA) and salicilate derivatives, and two additional structures that can be found in ensulizole and bemotrizinol.

https://doi.org/10.1371/journal.pone.0192113.g002

1,3-cyclohexadienals
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C-6 in compound 12 was established as S, because of NOE between H1’ and H6 did not

appear. Later on, the absolute configuration was confirmed by X-Ray of an analogue (24a).

Synthesis of chiral cyclohexadienals with different substituents

The mechanism could be understood by a Diels-Alder reaction, as suggested by Serebryakov

et al. [12–16] and Watanabe et al. [20]. Similarly, this will would explain that the stereochemistry

Fig 3. General reaction to obtain chiral cyclohexadienals.

https://doi.org/10.1371/journal.pone.0192113.g003

Table 1. Experimental optimization of synthesis of chiral cyclohexadienals (4a, 4b) from citral (1) and α,β-unsaturated aldehyde 2.

Entry Cat. Solventa Addit.c Productd d.r.e

1 5 CHCl3 - 4a,b (17) 50:50

2 6 - - 3 (8), 4a,b (3) n.d.

3 6 CHCl3 - 3 (12), 4a,b (10) 50:50

4 7 iPrOH - - -

5 8 iPrOH - - -

6 9 Hexane - 4a,b (5) 80:20

7 9 Toluene - 4a,b (20) 75:25

8 9 CHCl3
b - 4a,b (37) 85:15

9 9 DCM - 4a,b (4) n.d.

10 9 Et2O - - -

11 9 THF - - -

12 9 iPrOH - - -

13 9 EtOH - - -

14 9 MeOH - - -

15 9 CHCl3 BzOH 4a,b (19) 60:40

16 9 CHCl3 o-NO2-BzOH 4a,b (27) 80:20

17 9 CHCl3 AcOH - -

18 9 CHCl3 TFA - -

19 9 CHCl3 TsOH 4a,b (2) n.d.

20 9 CHCl3 (±) BINAP-OH 4a,b (4) n.d.

21 9 CHCl3 DBU - -

22 10 CHCl3 - 4a,b (18) 33:66

a All reactions were carried out with 0.5 equiv. of catalyst, solvent (0.2M), for 48 hours.
b 20% and 30% of the catalyst produced lower yields in the same reaction time.
c 0.2 equiv. of the additive were added and the reaction was carried out following the general procedure.
dIn parentheses, the yield of the isolated mixture in %.
eThe relation of the diastereoisomers was established by integrating 1H NMR in crude mixture.

https://doi.org/10.1371/journal.pone.0192113.t001

1,3-cyclohexadienals
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obtained in the final product does not depend on the Z or E stereochemistry of the α,β-unsatura-

tion of the aldehyde used in the reaction. The same result was obtained with E-citral or a mixture

E/Z-citral. E-citral was obtained from geraniol as described in the literature.[48] Once the condi-

tions for the synthesis of cyclohexadienals were obtained, the generality of the reaction using dif-

ferent β-disubstituted-α,β-unsaturated aldehydes and 2 as starting materials was then observed,

Fig 5 and Table 2.

The reaction was initiated using a simple α,β-unsaturated aldehyde such as 13. When

catalysts 9 or 10 were used, both produced a good yield and diastereoselection. When cata-

lyst 10 was used, instead of 9, the yield slightly decreased but diastereoselection remained

complete. When using aromatic aldehydes, the reaction worked very well, especially with

the p-methoxyphenyl group (entries 5–6) which produced excellent yields and diastereose-

lection with both catalysts 9 and 10. When a bromophenyl group was used (entries 7–10),

the yield and diastereoselection decreased but when a p-nitrophenyl group (entries 11–12)

was used the yield increased with both catalysts and the diastereoselection was excellent,

especially with catalyst 10. When the reaction was run using an aliphatic cyclic aldehyde,

Fig 4. Synthesis of bicycle 12 from cyclohexadienal 4a. Reagents: a) NaH2PO4
.H2O (2.2 equiv.), NaClO2 (5%, 2.2

equiv.), 2-methyl-2-butene, tBuOH, r.t., 2h, 99%; b) p-TsOH, MeOH, r.t., 30%.

https://doi.org/10.1371/journal.pone.0192113.g004

Fig 5. Synthesis of different chiral cyclohexadienals aromatic and non-aromatic compounds.

https://doi.org/10.1371/journal.pone.0192113.g005

1,3-cyclohexadienals
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such as catalyst 19, the yield was very poor (entry 13) but diastereoselection was complete.

As can be seen in Table 2, the reaction proceeded quite well, especially when using aromatic

aldehydes.

Crystallographic analysis of cyclohexadienal 24a

Compound 24a was crystallized. In Fig 6, the X-ray crystal structure of compound 24a [49] is

shown and confirms the stereochemistry of compound 24a at C-6. The stereochemistry of this

compound was previously predicted by the NMR of compound 12, and by analogy, the stereo-

chemistry of compounds 20 to 26 was established.

UV-Vis absorption analysis

The UV-Vis absorbance of different photostable cyclohexadienals was measured (Table 3

and S4 File) in order to test the possible application of these compounds as photoprotective

agents.

The majority of the compounds at concentrations in the order of 10−6 absorbed UVA and

UVB. Compound 21b exhibited values suitable for photoprotection against UVA owing to the

higher area under the curve (AUC) at that particular wavelength region and its molar extinc-

tion coefficient (ε = 13200 M-1cm-1). The best results found in the UVB region were shown by

compound 23b which had an extinction coefficient of 34700 M-1cm-1 at 288nm. However, the

compound that was able to better absorb UVA and UVB was 23a, with molar extinction coeffi-

cients of 8000 M-1cm-1 in UVA and 10900 M-1cm-1 in UVB.

A global view of UV absorption of this chiral aromatic cyclohexadienal can be seen in Fig 7.

Synthesis

General procedure for the optimization of conditions for cyclohexadienals (4a,b). Cat-

alyst 5–10 (0.5 eq) were added to a solution containing 2 (0.3 mmol, 1 equiv.) and 1 (0.3

Table 2. Synthesis of chiral cyclohexadienals (20a-26) from other β-disubstituted-α,β-unsaturated aldehydes (13–

19)a.

Entryb S.M. Cat. Product Yield (%)c d.r.d

1 13 9 20a 60 85:15

2 13 10 20b 52 >95

3 14 9 21a 72 90:10

4 14 10 21b 35 >95

5 15 9 22a 99 >95

6 15 10 22b 83 >95

7 16 9 23a 48 85:15

8 16 10 23b 50 >95

9 17 9 24a 45 90:10

10 17 10 24b 45 >95

11 18 9 25a 90 90:10

12 18 10 25b 88 >95

13 19 9 26 4 >95

aGeneral procedure for the synthesis of 14–19 can be found in the S2 File.
bAll reactions were carried out in CHCl3 (0.2M), 0.5 equiv. of catalyst, for 48 hours at r.t.
c Isolated yield of major diastereomer.
d Relation of the diastereoisomers was stablished by integrating 1H NMR in crude mixture.

https://doi.org/10.1371/journal.pone.0192113.t002

1,3-cyclohexadienals
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mmol, 1 equiv.) in solvent (1.5 mL, 0.2M) at r.t. The reaction mixture was stirred at r.t. for

48h. The solution was concentrated in and the residue was purified by flash column chroma-

tography (EtAcO:hexane) to obtain cyclohexadienals 4a and 4b as a yellow oil and dimer 3 as a

colourless oil.

Fig 6. X-ray crystal structure of 24a. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms

are shown as spheres of arbitrary radius (S3 File).

https://doi.org/10.1371/journal.pone.0192113.g006

1,3-cyclohexadienals
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Table 3. The area of regions UVA (315–400 nm) and UVB (280–315 nm) and molar extinction coefficient of some cyclohexadienals (4a, 20b, 21b, 22b, 23a, 23b) dis-

solved in iPrOH.

Entry Product Concentration (M/10−6) λnm (ε M-1 cm-1) AUC (UVA)a λnm (ε M-1 cm-1) AUC (UVB)

1 4a 1.8 - 0.305 - 0.318

2 20b 5.3 341.3 (3000) 1.034 - 0.510

3 21b 8.5 351.5 (13200) 7.013 283.0 (2000) 2.370

4 22b 4.2 360.3 (4300) 1.194 274.8 (8900) 0.594

5 23a 7.4 336.3 (8000) 3.708 282.3 (10900) 2.310

6 23b 1.7 341.3 (2000) 2.374 287.8 (34700) 1.838

a Area Under Curve (AUC).

https://doi.org/10.1371/journal.pone.0192113.t003

Fig 7. UV-Vis absorbance spectra at different λ of 4a, 20b, 21b, 22b, 23a, 23b. Amplification of the 200–450 nm region and the delimited UVA and UVB regions

(ISO-21348).

https://doi.org/10.1371/journal.pone.0192113.g007

1,3-cyclohexadienals
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Catalyst 9 (0.5 eq) was added to a solution containing 2 (0.15 mmol, 1 equiv.) and E-citral

(0.15 mmol, 1 equiv.) in CHCl3 (0.75 mL, 0.2M) at r.t. The reaction mixture was stirred at r.t.

for 48h. The solution was concentrated in vacuum and the residue was purified by flash col-

umn chromatography (EtAcO:hexane) to obtain a mixture of cyclohexadienals 4a and 4b as a

yellow oil (yield 37%; d.r. 85:15).

6-Methyl-4,6-bis(4-methylpent-3-en-1-yl)cyclohexa-1,3-diencarbaldehyde(3).
1H NMR (200 MHz, CDCl3): δ = 9.41 (1H, s), 6.67 (1H, d, J = 5.5 Hz), 5.92 (1H, d, J = 5.5

Hz), 5.10–5.03 (2H, m), 2.38–2.33 (1H, m), 2.19–2.18 (4H, m), 2.04–1.77 (4H, m, H-5), 1.69

(3H, s), 1.65 (3H, s), 1.62 (3H, s), 1.55 (3H, s), 1.41–1.32 (1H, m), 1.19 (3H, s).

(S)-6-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-(4-methylpent-3-en-1-yl)cyclohexa-1,3-

dien-1-carbaldehyde(4a).

[α]D
25 = -43.3 (c = 0.54, CHCl3).

IR (film): 2981, 2929, 1670, 1570, 1379, 1213, 1066, 842 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.47 (1H, s), 6.81 (1H, d, J = 5.7 Hz), 5.95–5.90 (1H, m),

5.10–5.00 (1H, m), 4.18 (1H, q, J = 6.4 Hz), 3.86 (1H, dd, J = 8.4, 6.4 Hz), 3.67 (1H, dd, J = 8.4,

6.4 Hz), 3.20–3.10 (1H, m), 2.44–2.37 (2H, m), 2.36–1.80 (4H, m), 1.68 (3H, s), 1.61 (3H, s),

1.42 (3H, s), 1.27 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.4, 151.8, 145.2, 135.1, 132.8, 123.2, 118.7, 109.0, 75.9,

66.7, 38.0, 31.7, 28.8, 26.4, 25.9 (2), 25.5, 18.0.

HRMS (ESI): Calculated for C18H26O3Na ([M+Na]+): 313.1774; found 313.1775.

(R)-6-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-(4-methylpent-3-en-1-yl)cyclohexa-1,3-dien-

1-carbaldehyde(4b).

[α]D
25 = 33.5 (c = 0.45, CHCl3).

IR (film): 2981, 2929, 1670, 1570, 1379, 1213, 1066, 842cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.46 (1H, s), 6.84 (1H, d, J = 5.7 Hz), 6.00–5.97 (1H, m),

5.13–5.08 (1H, m), 3.92 (1H, q, J = 6.7 Hz), 3.75 (1H, dd, J = 15.6, 8.0 Hz), 3.72 (1H, dd,

J = 15.6, 6.7 Hz), 2.94 (1H, t, J = 8.5 Hz), 2.66 (1H, d, J = 18.0), 2.37 (1H, dd, J = 18.0, 8.5 Hz),

2.33–2.10 (4H, m), 1.69 (3H, s), 1.62 (3H, s), 1.54 (3H, s), 1.30 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.3, 152.6, 146.5, 134.9, 132.4, 123.1, 118.6, 108.6, 74.8,

68.0, 37.9, 32.2, 29.6, 26.8, 25.8, 25.7, 25.6, 17.7.

HRMS (ESI): Calculated for C18H26O3Na ([M+Na]+): 313.1774; found 313.1775.

6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(4-methylpent-3-en-1-yl)cyclohexa-1,3-dien-

1-carboxilic acid(11).

2-methyl-2-butene (0.097 mL, 0.92 mmol), a 0.65M solution of NaH2PO4
.H2O in H2O

(0.97 mL, 0.81 mmol) and 5% NaClO2 in H2O (0.91 mL, 0.72 mmol) were added to a solution

containing 4a (105 mg, 0.36 mmol) in tBuOH (3.8 mL). The reaction mixture was stirred at r.t.

for 22h. The reaction was quenched with H2O and 1M HCl was added until acid pH was

reached. The reaction mixture was extracted with EtOAc (3x10 mL). The combined organic

layers were washed with H2O until neutral pH was reached, dried over Na2SO4, filtered and

concentrated under vacuum to obtain acid 11 (109 mg, 0.36 mmol, 99%).

[α]D
25 = -63.0, (c = 0.684, CHCl3).

IR (film): 2984, 2930, 1678, 1582, 1422, 1260, 1217, 1070, 1049 cm-1.
1H NMR (200 MHz, CDCl3): δ = 7.20 (1H, d, J = 5.8 Hz), 5.82 (1H, d, J = 5.8 Hz), 5.07 (1H,

bs), 4.27 (1H, q, J = 6,2 Hz), 3.92 (1H, dd, J = 8.4, 6.2 Hz), 3.72 (1H, dd, J = 8.4, 7.4 Hz), 3.06

(1H, t, J = 8.0 Hz), 2.45 (1H, d, J = 8.0 Hz), 2.37 (1H, bs), 2.17 (4H, bs), 1.68 (3H, s), 1.61 (3H,

s), 1.41 (3H, s), 1.31 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 172.6, 148.8, 137.6, 132.7, 132.7, 124.1, 118.3, 109.0, 76.4,

66.9, 37.7, 33.6, 28.8, 26.4, 25.9 (2), 25.5, 18.0.

HRMS (ESI): Calculated for C18H27O4 ([M+H]+): 307.1904; found 307.1908.
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(3S,3aR)-3-(Hydroxymethyl)-5-(4-methylpent-3-en-yl)-3a,4-dihydroisobenzofuran-1(3H)-

one(12).

p-TsOH (21 mg, 0.11 mmol) was added to a solution containing 11 (35mg, 0.11 mmol) and

MeOH (1.5 mL). The reaction mixture was stirred at r.t. for 14h. The reaction was quenched

with H2O. The crude mixture was extracted with EtOAc (3x10 mL). The combined organic

layers were washed with H2O, sat. NaHCO3 solution and brine, dried over Na2SO4, filtered

and concentrated under vacuum to yield 12 (8 mg, 0.033 mmol, 30%).

IR (film): 2959, 2924, 1749, 1217, 1030 cm-1.
1H NMR (400 MHz, CDCl3): δ = 6.94 (1H, dd, J = 5.4, 3.3 Hz), 6.02(1H, bs), 5.07 (1H, bs),

4.24 (1H, dt, J = 8.2, 3.9 Hz), 3.98 (1H, d, J = 12.6 Hz), 3.76 (1H, d, J = 12.6 Hz), 2.99 (1H, dtd,

J = 17.6, 8.2, 3.9 Hz), 2.36 (2H, dd, J = 17.6, 8.2 Hz), 2.28–2.14 (5H, m), 1.69 (3H, s), 1,61 (3H,

s).
13C NMR (50 MHz, CDCl3): δ = 169.3, 147.6, 132.9, 131.1, 124.3, 123.2, 120.3, 85.9, 63.0,

37.8, 35.0, 31.7, 26.3, 25.9, 18.0.

HRMS (ESI): Calculated for C15H21O3 ([M+H]+): 249.1485; found 249.1491.

General procedure for the synthesis of cyclohexadienals (20a,b-26). Catalyst 9 or 10

(0.5 equiv.) was added to a solution of 2 (1 mmol, 1 equiv.) and aldehyde (1 mmol) in CHCl3

(5 mL) at r.t. The reaction mixture was stirred at r.t. for 48h. The solution was concentrated

under vacuum and the residue was purified by flash column chromatography (EtOAc:hexane)

to obtain cyclohexadienal as a yellow oil.

(S)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-1-methylcyclohexa-4,6-dien-4-carbaldehyde

(20a).

Catalyst 9 used.

Yield: 60% (133 mg, 0.60 mmol).

[α]D
25 = -114.5 (c = 0.53, CHCl3).

IR (film): 2916, 2848, 1672, 1059 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.48 (1H, s), 6.82 (1H, d, J = 5.6 Hz), 5.92 (1H, d, J = 5.6

Hz), 4.21 (1H, q, J = 6.4 Hz), 3.87 (1H, dd, J = 8.4, 6.4 Hz), 3.68 (1H, dd, J = 8.4, 6.4 Hz), 3.17

(1H, ddd, J = 8.4, 6.4, 3.4 Hz), 2.41 (2H, d, J = 3.4 Hz), 1.91 (3H, s), 1.43 (3H, s), 1.30 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.4, 148.6, 145.5, 134.8, 119.3, 109.0, 76.1, 66.6, 31.7,

30.0, 26.4, 25.5, 24.2.

HRMS (ESI): Calculated for C13H18O3Na ([M+Na]+): 245.1148; found 245.1146.

(R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-1-methylcyclohexa-4,6-dien-4-carbaldehyde

(20b).

Catalyst 10 used.

Yield: 52% (116 mg, 0.52 mmol).

[α]D
25 = +12.7 (c = 1.65, CHCl3).

IR (film): 2985, 2933,1666, 1573, 1192, 1155, 1066, 860 cm-1

1H NMR (200 MHz, CDCl3): δ = 9.46 (1H, s), 6.83 (1H, d, J = 5.5 Hz), 6.01–5.95 (1H, m),

4.03–3.88 (1H, m), 3.85–3.65 (2H, m), 2.94 (1H, dt, J = 8.4, 1.7 Hz), 2.61 (1H, dd, J = 18.4, 1.7

Hz), 2.38 (1H, dd, J = 18.4, 8.4 Hz), 1.95 (3H, s), 1.39 (3H, s), 1.31 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.6, 149.3, 147.0, 136.5, 119.4, 108.9, 75.5, 68.0, 32.5,

31.0, 27.0, 25.9, 24.3.

HRMS (ESI): Calculated for C13H19O3Na ([M+Na]+): 223.1328; found 223.1326.

(S)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3-dihydro-[1,1’-biphenyl]-4-carbaldehyde

(21a).

Catalyst 9 used.

Yield: 72% (205 mg, 0.72 mmol).

[α]D
25 = -34.1 (c = 0.16, CHCl3).
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IR (film): 2983, 2931, 1668, 1554, 1172, 756 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.60 (1H, s), 7.53 (2H, dd, J = 8.0, 1.6 Hz), 7.39 (2H, d,

J = 8.0 Hz), 7.41–7.37 (1H, m), 7.01 (1H, d, J = 6.0 Hz), 6.57 (1H, d, J = 6.0 Hz), 4.30 (1H, q,

J = 6.4 Hz), 3.90 (1H, dd, J = 8.4, 6.4 Hz), 3.76 (1H, dd, J = 8.4, 6.4 Hz), 3.36–3.27 (1H, m),

2.95–2.86 (2H, m), 1.29 (3H, s), 1,40 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.3, 146.4, 144.4, 139.3, 136.2, 129.4, 129.0 (2), 126.0 (2),

119.6, 109.2, 76.0, 66.8, 32.0, 27.3, 26.5, 25.6.

HRMS (ESI): Calculated for C18H20O3Na ([M+Na]+): 307.1305; found 307.1300.

(R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3-dihydro-[1,1’-biphenyl]-4-carbaldehyde

(21b).

Catalyst 10 used.

Yield: 35% (100 mg, 0.35 mmol).

[α]D
25 = -27.3 (c = 0.07, CHCl3).

IR (film): 2985, 2933, 1666, 1548, 1170, 756 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.56 (1H, s), 7.38 (2H, dd, J = 8.0 Hz, 1.6 Hz), 7.37–7.35

(1H, m), 7.20 (1H, d, J = 9.0 Hz), 7.19 (2H, dd, J = 8.0 Hz, 1.6 Hz), 6.59 (1H, dd, J = 9.0 Hz, 2.2

Hz), 4,07–3.97 (1H, m), 3.86–3.74 (2H, m), 3.25 (1H, d, J = 17.9 Hz), 3.05 (1H, dt, J = 8.4, 1.5

Hz), 2.68 (1H, ddd, J = 17.9, 8.4, 2.9 Hz, H-6), 1.36 (3H, s), 1.28 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 197.3, 192.5, 146.2, 139.7, 136.1, 129.3,128.9 (2), 126.4

(2),119.8, 109.0,75.2, 68.1, 32.8, 27.1, 25.9, 21.4.

HRMS (ESI): Calculated for C18H21O3Na ([M+Na]+):285.1461; found 285.1485.

(S)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4’-methyl-2,3-dihydro-[1,1’-biphenyl]-4-car-

baldehyde(22a).

Catalyst 9 used.

Yield: 99% (295 mg, 0.99 mmol).

[α]D
25 = - 51.2 (c = 0.16, CHCl3).

IR (film): 3030, 2985, 2873, 2720, 1675, 1170, 1061, 858, 810 cm-1

1H NMR (200 MHz, CDCl3): δ = 9.58 (1H, s), 7.44 (2H, d, J = 8.0 Hz), 7.21 (2H, d, J = 8.0

Hz), 6.99 (1H, d, J = 5.8 Hz), 6.53 (1H, dd, J = 5.8, 2.5 Hz), 4.28 (1H, q, J = 6.3 Hz), 3.89 (1H,

dd, J = 8.2, 6.3 Hz), 3.73 (1H, dd, J = 8.2, 6.3 Hz), 3.31 (1H, ddd, J = 9.2, 6.0, 2.3 Hz), 3.11–2.68

(2H, m), 2.38 (3H, s), 1.40 (2H, s), 1.29 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.0, 146.2, 144.4, 139.4, 136.1, 135.7, 129.5 (2), 125.7 (2),

118.5, 108.9, 75.8, 66.6, 31.8, 27.0, 26.3, 25.4, 21.3.

HRMS (ESI): Calculated for C19H23O3 ([M+H]+): 299.1642; found 299.1645.

(R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4’-methyl-2,3-dihydro-[1,1’-biphenyl]-4-car-

baldehyde(22b).

Catalyst 10 used.

Yield: 83% (248 mg, 0.83 mmol).

[α]D
25 = +23.1 (c = 0.08, CHCl3).

IR (film): 3030, 2984, 2873, 2717, 1668, 1170, 1067, 854, 810 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.55 (1H, s), 7.48 (2H, d, J = 8.0 Hz), 7.21 (2H, d, J = 8.0

Hz), 7.01 (1H, d, J = 5.9 Hz), 6.55 (1H, dd, J = 5.9, 2.8 Hz), 4.02 (1H, q, J = 7.5 Hz), 3.90–3.68

(2H, m), 3.28 (1H, d, J = 17.9 Hz), 3.10 (1H, dt, J = 8.2, 1.4 Hz), 2.71 (1H, ddd, J = 17.9, 8.2, 2.8

Hz), 2.38 (3H, s), 1.37 (3H, s), 1.27 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.2, 147.2, 146.2, 139.3, 136.6, 135.6, 129.4 (2), 126.1 (2),

118.8, 108.8, 75.1, 67.9, 32.7, 28.1, 26.8, 25.7, 21.3.

HRMS (ESI): Calculated for C19H23O3 ([M+H]+): 299.1642; found 299.1642.

(S)-3’-bromo-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3-dihydro-[1,1’-biphenyl]-4-carbal-

dehyde(23a).
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Catalyst 9 used.

Yield: 48% (174mg, 0.48 mmol).

[α]D
25 = -35.4 (c = 0.38, CHCl3).

IR (film): 2984, 2876, 2814, 2718, 1670, 1551, 1211, 1173, 1069, 847, 781 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.55 (1H, s), 7.61 (1H, t, J = 1.9 Hz), 7.48–7.34 (2H, m),

7.20 (1H, d, J = 7.9 Hz), 6.95 (1H, d, J = 5.9 Hz), 6.50 (1H, dd, J = 5.9, 2.4 Hz), 4.23 (1H, q,

J = 6.3 Hz), 3.86 (1H, dd, J = 8.4, 6.3 Hz), 3.68 (1H, dd, J = 8.4, 6.3 Hz), 3.25 (1H, ddd, J = 9.1,

6.0, 3.1 Hz), 2.95–2.65 (2H, m), 1.36 (3H, s), 1.24 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.2, 144.5, 143.7, 141.5, 136.7, 132.0, 130.5, 129.0, 124.5,

123.2, 120.6, 109.1, 78.1, 77.5, 76.8, 76.0, 66.7, 31.9, 27.3, 26.5, 25.5.

HRMS (ESI): Calculated for C18H19O3NaBr ([M+Na]+): 385.0410 and 387.0389; found

385.0405 and 387.0384.

(R)-3’-bromo-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3-dihydro-[1,1’-biphenyl]-4-car-

baldehyde(23b).

Catalyst 10 used.

Yield: 50% (192 mg, 0.50mmol).

[α]D
25 = -5.7 (c = 0.07, CHCl3).

IR (film): 2984, 2934, 2878, 2815, 1670, 1549, 1169, 1067, 847, 782, 515 cm-1.
1H NMR (400 MHz, CDCl3): δ = 9.56 (1H,s), 7.67 (1H, t, J = 1.9 Hz), 7.46 (1H, dd, J = 8.2,

1.9 Hz), 7.25 (1H, t, J = 8.2 Hz), 7.00 (1H, d, J = 5.8 Hz), 6.55 (1H, dd, J = 5.8, 2.9 Hz), 3.98

(1H, dt, J = 8.4, 6.4 Hz), 3.89–3.70 (2H, m), 3.19 (1H, dd, J = 17.9, 1.5 Hz), 3.08 (1H, dt, J = 8.4,

1.5 Hz), 2.70 (1H, ddd, J = 17.9, 8.4, 2.9 Hz), 1.36 (3H, s), 1.27 (3H, s).
13C NMR (100 MHz, CDCl3): δ = 192.2, 145.3, 145.1, 141.6, 136.5, 131.7, 130.1, 129.1,

124.7, 122.9, 120.5, 108.9, 74.9, 67.8, 32.5, 28.0, 26.7, 25.6.

HRMS (ESI): Calculated for C18H19O3NaBr ([M+Na]+): 385.0410 and 387.0389; found

385.0405 and 387.0386.

(S)-4’-bromo-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3-dihydro-[1,1’-biphenyl]-4-carbal-

dehyde(24a).

Catalyst 9 used.

Yield: 45% (163 mg, 0.45 mmol).

[α]D
25 = -23.1 (c = 1.10, CHCl3), this optical rotation was obtained from chromatographed

fraction.

[α]D
25 = -23.2 (c = 0.10, CHCl3), this optical rotation was obtained from a solution of

crystals.

IR (film): 2987, 2875, 2718, 1668, 1171, 1072, 853, 813 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.60 (1H, s), 7.53 (2H, d, J = 8.6 Hz), 7.39 (2H, d, J = 8.6

Hz), 6.99 (1H, d, J = 6.0 Hz), 6.54 (1H, dd, J = 6.0, 2.3 Hz), 4.28 (1H, q, J = 6.3 Hz), 3.89 (1H,

dd, J = 8.4, 6.3 Hz), 3.71 (1H, dd, J = 8.4, 6.3 Hz), 3.31 (1H, ddd, J = 9.1, 5.9, 3.2 Hz), 3.02–2.66

(2H, m), 1.39 (3H, s), 1.29 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.2, 145.0, 144.0, 138.2, 136.5, 132.2, 127.5, 123.5, 119.9,

109.2, 76.0, 66.7, 32.0, 27.2, 26.5, 25.5.

HRMS (ESI): Calculated for C18H20O3Br ([M+H]+): 363.0590 and 365.0570; found

363.0596 and 365.0581.

(R)-4’-bromo-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3-dihydro-[1,1’-biphenyl]-4-car-

baldehyde(24b).

Catalyst 10 used.

Yield: 45% (164 mg, 0.45 mmol).

[α]D
25 = -27.3 (c = 0.02, CHCl3).

IR (film): 2984, 2872, 2718, 1668, 1169, 1072, 853, 815 cm-1.
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1H NMR (200 MHz, CDCl3): δ = 9.56 (1H, s), 7.52 (2H, d, J = 8.6 Hz), 7.41 (2H, d, J = 8.6

Hz), 7.00 (1H, d, J = 5.8 Hz), 6.55 (1H, dd, J = 5.8, 2.8 Hz), 4.11–3.88 (1H, m), 3.79 (2H, dd,

J = 6.3, 2.0 Hz), 3.20 (1H, d, J = 17.9 Hz), 3.08 (1H, t, J = 8.2 Hz), 2.70 (1H, ddd, J = 17.9, 8.2,

2.8 Hz), 1.35 (3H, s), 1.27 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.5, 146.0, 145.7, 138.6, 136.5, 132.1 (2), 127.9 (2), 123.4,

120.1, 109.1, 75.2, 68.1, 32.8, 28.1, 27.0, 25.8.

HRMS (ESI): Calculated for C18H20O3Br ([M+H]+): 363.0590 and 365.0570; found

363.0594 and 365.0582.

(S)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4’-nitro-2,3-dihydro-[1,1’-biphenyl]-4-carbal-

dehyde(25a).

Catalyst 9 used.

Yield: 90% (296 mg, 0.90 mmol).

[α]D
25 = -19.5 (c = 0.02, CHCl3).

IR (film): 2983, 2931, 1668, 1554, 1172, 756 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.64 (1H, s), 8.25 (2H, d, J = 9.1 Hz), 7.66 (2H, d, J = 9.1

Hz), 7.03 (1H, d, J = 5.9 Hz), 6.67 (1H, d, J = 5.9 Hz), 4.33–4.24 (1H, m), 3.92 (1H, dd, J = 8.5,

6.4 Hz), 3.73 (1H, dd, J = 8.5, 6.4 Hz), 3.37–3.28 (1H, m), 2.94–2.90 (2H, m), 1.38 (3H, s), 1.28

(3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.3, 147.9, 145.7, 143.5, 143.0, 137.7, 126.6 (2), 124.3 (2),

122.8, 109.4, 76.1, 66.7, 32.0, 27.4, 26.4, 25.3.

HRMS (ESI): Calculated for C18H19NO5Na ([M+Na]+): 352.1155; found 352.1151.

(R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4’-nitro-2,3-dihydro-[1,1’-biphenyl]-4-carbal-

dehyde(25b).

Catalyst 10 used.

Yield: 88% (290 mg, 0.88 mmol).

[α]D
25 = -27.6 (c = 0.04, CHCl3).

IR (film): 2983, 2931, 1668, 1554, 1172, 756 cm-1.
1H NMR (200 MHz, CDCl3): δ = 9.61 (1H, s), 8.25 (2H, d, J = 8.8 Hz), 7.69 (2H, d, J = 8.8

Hz), 7.04 (1H, d, J = 5.8 Hz), 6.69 (1H, dd, J = 5.8, 2.9 Hz), 4.06–3.92 (1H, m), 3.90–3.72 (2H,

m), 3.25 (1H, dd, J = 17.7, 1.5 Hz), 3.12 (1H, td, J = 8.1, 1.5 Hz), 2.77 (1H, ddd, J = 17.7, 8.1, 3.0

Hz), 1.35 (3H, s), 1.27 (3H, s).
13C NMR (50 MHz, CDCl3): δ = 192.5, 147.8, 146.1, 144.7, 144.3, 137.7, 127.1 (2), 124.2 (2),

122.9, 109.2, 75.4, 68.0, 32.8, 28.0, 27.0, 25.7.

HRMS (ESI): Calculated for C18H19NO5Na ([M+Na]+): 352.1155; found 352.1150.

(1S)-1-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-1,5,6,7,8,8a-hexahydronaftalen-2-carbalde-

hyde(26).

Catalyst 9 used.

Yield: 4% (11 mg, 0.04 mmol).

[α]D
25 = -198.5 (c = 0.33, CHCl3).

IR (film): 2930, 2855, 1672, 1582, 1059 cm-1

1H NMR (200 MHz, CDCl3): δ = 9.45 (1H, s), 6.73 (1H, d, J = 5.8 Hz), 5.84 (1H, d, J = 5.8

Hz), 4.34–4.27 (1H, m), 3.83 (1H, dd, J = 8.6, 6.8 Hz), 3.67 (1H, dd, J = 8.6, 6.8 Hz), 2.95–2.85

(1H, m), 2.60–2.40 (1H, m), 2.30–1.27 (8H, m), 1,25 (6H, s).
13C NMR (50 MHz, CDCl3): δ = 193.0, 159.4, 144.9, 133.7, 114.6, 109.0, 66.3, 40.3, 38.5,

38.1, 37.1, 32.0, 29.9, 27.4, 26.4, 25.3.

HRMS (ESI): Calculated for C16H22O3Na ([M+Na]+): 285.1461; found 285.1466.
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Conclusions

A new method for the synthesis of photoprotective chiral cyclohexadienals is described. The

Jørgensen-Hayashi catalyst produced a good yield of these compounds by using a chiral α,β-

unsaturated aldehyde, 2. Further reactivity of the corresponding cyclohexadienals is under

study.

According to the UV-Vis spectra of 4a, 20b, 21b, 22b, 22a and 23b it can be concluded that

the cyclohexadienals containing systems with upper conjugation (21b, 22b, 23a and 23b) pres-

ent better absorbance properties than low conjugation cyclohexadienals 4a, 20b. In addition,

the influence of the aryl substituent provides an important tool for modulating maximum

absorbance. In this work, the influence of p-methylphenyl, m-bromophenyl and phenyl sub-

stituent on the cyclohexadienal backbone is shown, where the phenyl and m-bromophenyl

substituents prove to be the best choice for UVA-filters and UVB-filters, respectively.
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