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Resumen

En la última década, los mercados eléctricos han desarrollado entornos competitivos

para sistemas eléctricos complejos. El rápido crecimiento de los recursos energéticos

distribuidos ha dificultado mantener la credibilidad y estabilidad del sistema. Sin

embargo, debido a la volatilidad de los recursos energéticos distribuidos las estrategias

convencionales de gestión de la enerǵıa son incapaces de resolver estos problemas de

forma centralizada. Además, los mercados centralizados de electricidad no son capaces

de adaptarse al comportamiento flexible de los consumidores que ocurre en los programas

de respuesta de demanda. Por lo tanto, se requieren nuevas estructuras de comercio de

electricidad que proporcionen enerǵıa a las redes de distribución de forma descentralizada

y distribuida.

Este trabajo presenta un enfoque ascendente de gestión energética basado en una

arquitectura multiagente para el comercio local de la electricidad. La estructura

propuesta consiste en una clase de organización basada en sistemas multiagente, en

la cual cada agente cumple diferentes tareas. Estos agentes están formados por recursos

energéticos distribuidos, consumidores eléctricos, prosumidores, veh́ıculos eléctricos

(Electricit Vehicles (EV)), agregadores, un operador del sistema de distribución,

coordinadores locales y los coordinadores de los EV del sistema. Además, proponemos

un enfoque ascendente para el comercio de enerǵıa desde los usuarios finales, como

agentes prosumidores capaces de proporcionar transacciones energéticas bidireccionales

a los agregadores y al gestor de la red de distribución (Distibution System Operator

(DSO)).

En este contexto, se presenta una arquitectura basada en sistemas multiagente, para

el sistema eléctrico de las casas inteligentes (como ejemplo de usuario final). A

continuación, se define el sistema de gestión de la enerǵıa en el hogar (HEMS por

sus siglas en inglés ) para modelar el comportamiento flexible de los usuarios finales

residenciales y su incertidumbre basándose en diferentes métodos de optimización (por

ejemplo, intervalo, estocástico e intervalo-estocástico). Además, presentamos un método

basado en escenarios probabiĺısticos para la gestión de la enerǵıa residencial y el comercio

de enerǵıa con el mercado local de electricidad basado en una estrategia de licitación

óptima. De acuerdo con nuestro modelo de oferta óptimo, el HEMS es capaz de realizar

transacciones de enerǵıa con otros actores en su vecindario como un agente de fijación de
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precios basado en los enfoques de intercambio de enerǵıa entre pares o enfoques basados

en la comunidad.

Conforme al enfoque ascendente propuesto en nuestro trabajo de doctorado, las

decisiones de los agentes en la capa inferior tienen prioridad en comparación con las

decisiones de los agentes en las capas superiores. De esta manera, la estrategia propuesta

gestiona la enerǵıa localmente para lograr una optimización social global. Además, en

la red de distribución se pueden comercializar localmente diferentes tipos de productos

básicos de electricidad, como la enerǵıa y la flexibilidad.

A continuación, hemos propuesto varios enfoques (por ejemplo, descentralizado,

monopoĺıstico y basado en juegos) para la gestión de la flexibilidad energética entre

los agentes de la red de distribución de enerǵıa, teniendo en cuenta el comportamiento

flexible de los usuarios finales y los agregadores. Por último, se ha estudiado el

impacto de los futuros sistemas de transporte en las redes inteligentes. Aśı, la gestión

de la flexibilidad energética de los usuarios finales y las operaciones de recarga de

los veh́ıculos eléctricos se modelan en la red de distribución. Se han presentado

tres estrategias de gestión de la enerǵıa para abordar la flexibilidad energética y el

funcionamiento de los veh́ıculos eléctricos entre los actores de la capa inferior del sistema

eléctrico. Además, la incertidumbre causada por la movilidad de los veh́ıculos eléctricos

se ha modelado mediante una programación estocástica. Aqúı, el reto es modelar

un problema multinivel basado en la función objetiva de los agentes considerando la

incertidumbre de los parámetros estocásticos del sistema. De esta forma, cada agente

puede participar en diferentes tipos de transacciones eléctricas según sus funciones

objetivas correspondientes.

Se evalúa el rendimiento del sistema propuesto de gestión de la enerǵıa en el hogar

(HEMS) comparándolo con los métodos de optimización de intervalos estocásticos

propuestos y de bandas estocásticas predichas modificadas. Evaluamos el impacto del

modelo de flexibilidad energética y su exactitud de predicción. Ademas, evaluamos

el programa de respuesta de demanda en términos de las ganancias esperadas, de la

enerǵıa eléctrica tramitada y de la credibilidad de los resultados. Para ello, proponemos

un modelo de oferta óptima para el sistema de gestión de la enerǵıa en el hogar. Aśı, el

sistema puede participar en el comercio local de electricidad. El rendimiento del modelo

de oferta óptima propuesto se evalúa en dos casos diferentes. El Caso 1 evalúa el impacto
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de los coeficientes de optimismo y flexibilidad en el HEMS, considerando la estrategia

de licitación óptima. En el caso 2, sin embargo, el rendimiento de los dos métodos

de optimización diferentes -llamados InterStoch e Hybrid- en el HEMS se evalúa sin

considerar la estrategia de licitación óptima.

Posteriormente, se evalúa el funcionamiento de nuestros enfoques descentralizados,

monopoĺısticos y basados en juegos en términos de su impacto en la incertidumbre de

la ĺınea de distribución y el comportamiento flexible de los usuarios finales. Por último,

modelamos la gestión de la flexibilidad energética de los usuarios finales y la operación

de carga de los EV en la red de distribución. Se presentan tres estrategias de gestión

de la enerǵıa para abordar la flexibilidad energética y el funcionamiento de los EV entre

los actores de la capa inferior del sistema eléctrico.
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Abstract

Over the last decade, electricity markets have created competitive environments for

complex power systems. The fast growth of distributed energy resources has made it

challenging to maintain the reliability and stability of the system. However, conventional

energy management strategies are not capable of resolving these concerns centrally due to

the volatility of distributed energy resources. Moreover, centralized electricity markets

are not complete enough to follow the flexible behavior of consumers due to demand

response programs. Therefore, new electricity trading structures are required to provide

energy to distribution networks in a decentralized and distributed manner.

This work presents a bottom-up energy management approach based on a multi-agent

architecture for local electricity trading. Our proposed structure is defined as a class

of organization-based multi-agent systems, where each agent has different tasks. These

agents consist of distributed energy resources, electrical consumers, prosumers, electric

vehicles, aggregators, a distribution system operator and local coordinators of the

system.

According to the proposed bottom-up approach in our Ph.D. work, decisions of agents

in the bottom layer have priority in comparison to agents’ decisions in the upper

layers. In this way, our proposed strategy manages energy locally to pursue global-social

optimization. Also, different types of electricity commodities- e.g. energy and flexibility-

can be traded locally in the distribution network.

In this Ph.D. work, we define different strategies such as decentralized,

partially-decentralized and centralized (community-based) for local electricity trading.

Here, the challenge is to model a multi-level problem based on the objective function

of agents considering uncertainty of the system’s stochastic parameters. In this way,

each agent can participate in different types of the electricity transactions on the basis

of their corresponding objective functions.
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Introduction

(introducción)

1.1 Description the problem

The power and energy system has been experiencing a complete change in paradigm

due to the worldwide increase in the use of renewable energy sources. The distributed

and unpredictable nature of these energy sources has posed new challenges to

the traditionally centrally operated sector [Lund, 2014]. Moreover, global energy

consumption is increasing, especially the consumption of electricity. European reports

from 2010 mention an increase in global consumption in EU-27, where the domestic

consumers represent about 29.70% of the total electricity usage [Gazafroudi et al., 2017a].

This shift in paradigm requires new perspectives and approaches capable of tackling the

new challenges. One of the most consensual solutions is the so-called Smart Grid (SG)

[Borlase, 2016], its success, however, depends on active participation from the consumer

side. The SGs improve energy efficiency in power and energy systems through intelligent

control and automation technologies. Also, the SG is accounted as an appropriate

solution to utilize intermittent energy resource. However, these energy resources create

challenges due to the uncertainty of its power generations in the system. Moreover,

the restructuring in power systems causes to appear new agents in the power system.

Different technologies have been used in the SGs to deal with these challenges e.g.

Multi-Agent Systems (MASs). The MAS is defined as a set of independent units that

can make decisions and interact with each other [Roche et al., 2010].

Multi-Agent Energy Management Systems (MAEMSs) can be classified according to

different characteristics, such as goal, scale, strategy and software utilized in the system.

Goal of the MAEMSs is one of important characteristics of Energy Management systems

(EMSs) which is defined as the main purpose of the system to present an objective

function of its corresponding energy management problem. The Goal of the MAEMS
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indicates its desired strategy. The Scale of the EMS is another characteristic that

represents the system’s level, it consists of the system-wide, micro-grid, local, and

the building. According to the scale of the system, the complexity of the energy

management problem can be changed and different tools can be used to solve it.

The strategy is another important characteristic of the EMS which is defined as a

decision-making path which allows to obtain the optimum amount of the objective

function. Centralized, decentralized, and hierarchical are the most common strategies in

the EMSs. In MASs, a platform is required to provide interaction and communication

between autonomous agents in the systems. There are different software and platforms

-e.g. JADE, MATLAB, etc.- that are chosen on the basis of the goal, scale, and strategy

of the proposed MAEMS. Hence, MASs are capable of creating an environment for

players-e.g. electrical generation, consumers, system operators and aggregators- in which

they can act autonomously and communicate with each other [Brazier et al., 2015].

In this environment, the consumer is no longer a static load to be assumed by the system,

rather, it is an active player, who can both purchase and sell the generated energy locally

[Kok et al., 2009]. Thereby, Home Energy Management (HEM) is becoming crucial, and

should include new characteristics and advanced functions, namely, the management of

Electric Vehicles (EVs), the interface with external operators. In this sense, management

systems are defined as smart home systems. The smart home represents a house

with network communication between all devices allowing for the control, monitoring

and remote access of the management system [Wi et al., 2013]. Several works view

smart home as house management systems designed to effectively manage consumption,

storage, distributed generation and participation in Demand Response (DR) programs

[Faria and Vale, 2011]. Smart homes will function as prosumers in the SGs. A smart

home electricity system includes the electrical loads that consume electricity, Distributed

Energy Resources (DERs) that produce electrical energy, and Energy Storage Systems

(ESSs) that can store electrical energy. Besides, there is an Energy Scheduler (ES) in

the Smart Home Energy System (SHES) that schedules the production/consumption of

energy in all of the system’s agents. Additionally, the SHES should be able to connect

the power grid. Hence, they will be able to sell/buy electrical energy to/from the Local

Electricity Market (LEM).

In addition, over the last decade, Electricity Markets (EMs) have created competitive

environments for complex power systems. The fast growth of DERs in the bottom-layer

of the power systems has made it challenging to maintain the reliability and stability

of the system. Unfortunately, conventional energy management strategies capable of

solving these concerns centrally due to the generation volatility of DERs. Nonetheless,

this need is percieved by the demand-side of the power systems, such as the distribution

or retail participants who want to get a real and fair price in the distribution network.
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Furthermore, current centralized EMs are not complete enough, and cannot provide

dynamic ancillary services that follow flexible consumers behavior due to Demand

Response Programs (DRPs). Also, the DERs cannot indicate their potentialities entirely

because of the rules of the EMs. As a result, centralized markets are being replaced with

decentralized and local electricity markets. In this way, the consumers and the local

market interact through price-based signals.

1.2 Literature review

Various researches have presented numerous methods for the energy management of

the power system, and following different goals, scales, strategies, and software. For

instance in [Bui et al., 2018], the scale is considered to be the power grid, and the goal

is to minimize the operating cost. Besides, the hierarchical and decentralized strategy

is presented based on MAS, and CPLEX and JADE are used to implement the problem

in a real system. Also, multi-micro grid system has been operated cooperatively in

[Bui et al., 2018]. In [Vrba et al., 2014], the authors have reviewed the agent-based

technologies of large-scale energy systems and the SG projects. A hierarchical central

approach of micro-grids has been presented in [Cintuglu et al., 2018]. The primary

control is done in level of distributed energy resources, while the secondary control

is done in the level of the micro-grid by an automatic generation control to adjust

frequency and voltage. Also, the tertiary control is applied to provide the ancillary

services for load regulation in the host-grid level. In [Miao and Fan, 2018], a new

method has been presented to solve Alternating Current (AC) optimal power flow

problem in the multi-agent decision-making framework. In [Degefa et al., 2016], the

multi-objective problem has been defined to minimize energy costs and estimate state

based on bottom-up approach. In [Loia and Vaccaro, 2014], the economic dispatch

problem has been solved by decentralized and self-organizing strategies. The proposed

strategy of [Loia and Vaccaro, 2014] was non-hierarchical, and the operation costs have

been minimized locally and then applied to the system globally. In [Pereira et al., 2015],

an energy management system has been presented based on the integration of smart

meters. The hierarchical method for the management of the energy has been proposed

in [Pereira et al., 2015]. In [Wang and Paranjape, 2017], a MAS has been demonstrated

in the scale of the distribution network, while agents consist of home agents and retailer

agents. In [Wang and Paranjape, 2017], the purpose of the authors was to minimize the

payment cost of the electricity. In [Venayagamoorthy et al., 2016], an intelligent method

has been demonstrated to manage energy dynamically in the micro-grid. The proposed

method of [Venayagamoorthy et al., 2016] has been defined to optimal or sub-optimal.

Besides, providing the critical loads continuously is the purpose of [Venayagamoorthy
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et al., 2016]. In the model of [Venayagamoorthy et al., 2016], the intelligent dynamic

energy management system is responsible to send dispatchable control signals of energy.

Moreover, forward-looking network is responsible to evaluate the dispatched control

signals. The main aims of [Venayagamoorthy et al., 2016] are to maximize the reliability,

utilization of renewable energies, and consumers’ welfare. Moreover, the operating cost

has not been considered in the decision-making problem of [Venayagamoorthy et al.,

2016]. In [Pereira et al., 2015], an energy management system has been presented based

on integration of smart meters. The authors have proposed the hierarchical method

to manage the energy in [Pereira et al., 2015]. In [Venayagamoorthy et al., 2016], an

intelligent method has been demonstrated to manage energy dynamically in the MG.

The proposed method of [Venayagamoorthy et al., 2016] has been defined as either

optimal or sub-optimal. Besides, providing the critical loads continuously is the purpose

of [Venayagamoorthy et al., 2016]. In [Hurtado et al., 2015], the agent-based approach

to optimize the operation costs of SG and HEMS has been presented. Also, the Partical

Swarm Optimization (PSO) method has been used to maximize welfare and energy

efficiency in the proposed model of [Hurtado et al., 2015]. In [Manic et al., 2016], authors

has discussed the necessities of using the Computational Intelligence (CI) in HEMSs.

The CI has been applied to three parts of the HEMS in [Manic et al., 2016]. These parts

consist of the prediction of building required power, forecasting the purchasing electrical

load from the power grid and the controllers. Minimizing the building energy cost is

the goal of the controllers. Also, PSO has been utilized for optimization problem of

HEMS. In [Li et al., 2015], the HEMS has been defined as an intelligent MAS. In [Zhang

et al., 2016], an adaptive and integrated method has been presented for the DRP and

the HEMS based on real-life conditions. In [Zhao et al., 2015], a method is proposed

to apply the local energy resources optimally through minimizing the loss of energy. In

[Ma et al., 2016], the scheduling problem of HEM has been solved considering the DRP.

The objective function of [Ma et al., 2016] was the trade-off between the purchasing

cost of electricity and dissatisfaction of the consumers. In [Kahrobaee et al., 2013], each

smart home has been considered as an autonomous agent that can buy, sell, and store

electricity. Furthermore, the uncertainty is modeled through generating the random data

and functions in [Kahrobaee et al., 2013]. In [Kahrobaee et al., 2013], the HEM problem

in connection with transactive energy nodes has been discussed. Moreover, co-simulation

of smart homes and transactive energy market has been studied in [Kahrobaee et al.,

2013].

Moreover, there are several studies in the literature to work on energy transaction

approach in distribution power grids. Ref. [Pratt et al., 2016] presented the energy

transaction nodes that connect buildings and the local electricity market. Authors

in [Jokic et al., 2009] proposed a price-based method for energy management. In
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[Sajjadi et al., 2016], [Shafie-khah and Catalão, 2015] and [Nunna and Srinivasan, 2017],

a multi agent-based transactive energy market is designed to decentralize decisions.

Ref. [Warrington et al., 2010] proposed a real-time price-based method in which agents

solve their corresponding energy management problems locally and send their optimum

decisions to the central price controller. In addition, there are several works in the

literature which address the interaction between agents in the distribution network

based on the DRP. In [Chai et al., 2014], the DRP has been performed considering

several suppliers and consumers. In [Deng et al., 2015], a distributed framework has been

presented based on a dual decomposition technique to regulate the demand of end-users.

In [Disfani et al., 2015], a distributed model is described to determine optimal power flow

in radial networks. Ref. [Bahrami et al., 2018] proposed the centralized energy trading

as a bi-level model. In [Bahrami et al., 2018], the DR framework has been presented

decentralized. The local electricity market has been defined in Mustafa et al. [2016]

that market agents transact electricity to each other independently. In [Park et al.,

2016], authors designed a trading mechanism among micro-grids. Ref. [Zhang et al.,

2018] proposed a hierarchical framework for energy trading in the distribution networks.

In [Prieto-Castrillo et al., 2018], the energy management problem has been addressed

among the players in the power distribution system where the authors introduced the

Ising-based model of energy flexibility provided by end-users. In [Gazafroudi et al.,

2019a] and [Gazafroudi et al., 2018], authors presented a decentralized approach from

the perspective of end-users and other relevant decision makers for the management of

energy flexibility according to the desired level of reliability in the distribution network.

1.3 Methodology

Systems based on multi-agents for local electricity trading and home energy management

systems allow to model different devices in houses and distribution networks through

autonomous agents. In this way, the modeling of distributed energy resources that can be

connected to the house are also considered. Through multi-agent modeling, it is possible

to solve different scenarios taking into account the optimization of the costs related to

energy consumption in General Algebraic Modeling System (GAMS) [Soroudi, 2017].

To this end, this MAS includes negotiation methods that allow various devices to reach

consensus when it is necessary to reduce the overall energy consumption of a system in

order to respond to the changes in energy prices, e.g. times of the day when the tariff

is the highest, and to variations in generation due to their variable nature because of

climatic conditions. Besides, the task of the energy scheduler, as one of the agents in the

system, is to make optimum decisions in the system. An optimum decision depends on

the objective(s) of the system. In this case, energy scheduler faces a discrete optimization
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problem under the uncertainty of the outputs that are provided by the predictor system.

This uncertainty causes some problems, such as higher operating costs of the system

and computational overload. There are different methods to model the uncertainty

in the optimization problems, such as stochastic programming, interval optimization,

robust optimization, etc. In this Ph.D. work, stochastic predicted bands, modified

stochastic predicted bands, improved stochastic bands, and hybrid stochastic-interval

bands methods are defined and used to model the uncertainty in the system.

Moreover, this work is a combination of energy management and transportation

problems. Hence, novel intelligent energy management strategies and adequate

electricity trading models will be presented in this work to enable demand response

(DR) for real-time operation of the smart grid considering EVs in the system. Although

the main task of the EV is to meet the transportation needs of users, the EV can be

modeled as an energy storage system in the home energy management system. Therefore,

modeling the EV can improve the efficiency of energy management for home systems.

One of the challenges regarding the modeling of the EV is the uncertainty caused by

EV mobility. In other words, the time that the EV leaves and returns to the home are

not deterministic, so it is a big problem for the home energy management system to

model the uncertainty of the EV. Hence, a complex problem emerges which involves

both, energy management and transportation problems.

1.4 Structure of the thesis

The rest of this thesis is organized as follows:

• Chapter 2. In this chapter, we propose a virtual organization architecture for

agents in the power distribution system to transact energy among agents of the

distribution network. Also, an organization-based multi agent architecture for the

smart home energy system is proposed in this chapter.

• Chapter 3. The home energy management problem is presented in this chapter.

We also define two novel optimization methods (an interval method and a hybrid

interval-stochastic optimization method) to model uncertainty in the domestic

system.

• Chapter 4. This chapter presents an optimal offering model to derive optimal

offering and bidding curves for the home energy management systems. In this

way, each prosumer is able to act as a price-taker agent and send its optimal

offering and bidding curves to the local market or participate in peer-to-peer energy

transactions with other agents based on the uncertainties of the system.
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• Chapter 5. We propose different strategies and structures to trade electricity in

power distribution systems based on decentralized, monopolistic, and game-based

approaches in this chapter. Besides, different types of flexible behavior of end-users

and aggregators are modelled and discussed in this chapter.

• Chapter 6. This chapter discusses the impact of stochastic EVs mobility on the

traded electricity and energy flexibility provided by the end-users in the power

distribution grid. Hence, a stochastic energy management problem is defined

which models the uncertainty of EV mobility. Furthermore, we propose different

strategies for the management of energy flexibility and operation of EVs through

end-users and the central coordinator in the distribution network.

• Chapter 7. This chapter concludes the thesis by presenting the main

contributions and findings of this research work, lessons learned and some

suggestions that can improve this line of research in the future.
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2.1 Introduction

According to infrastructure which is provided by smart grids, the DRPs actives players

in the power distribution system. Hence, end-users wish to participate as bidirectional

energy customers, prosumers, in the distribution network [Gazafroudi et al., 2017a].

Therefore, new market structures are needed to provide energy based on decentralized

approaches. Here, there are several studies in the literature to work on energy transaction

approach in power distribution grids.

In this chapter, a virtual organization architecture for agents in the power distribution

system is proposed to transact energy among agents of the distribution network

(end-users, aggregators and the Distribution System Operator (DSO)). Thus, energy is

transacted based on a bottom-up hierarchical structure from end-users to aggregators,

from aggregator to the DSO, and from the DSO to the wholesale electricity market,

respectively. Moreover, Smart Home Energy System (SHES) is defined as a class of

organization-based multi-agent system (MASHES) which includes different agents with

corresponding tasks in the system.

The rest of this chapter is organized as follows. In Section 2.2, agents and their

corresponding virtual organizations are defined. Section 2.3 describes organization of

agents for the smart home energy system. Finally, this chapter is concluded in Section

2.4.
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Fig. 2.1: Organization of end-user agents [Shokri Gazafroudi et al., 2019].

2.2 Virtual organization of agents in the power

distribution grid

After restructuring in power systems, different players emerged in the system. In

this work, the proposed agent architecture in the distribution network is described.

Thus, different organizations of agents are defined in the system which consist of

end-users, aggregators and the DSO. In the following, each of these agents and their

interconnections are described.

2.2.1 End-Users (EU)

End-users are agents in the bottom layer of the power distribution system which act as

consumers, producers, or prosumers in the system. In this work, a bottom-up approach

is presented to trade energy through end-users, aggregators, the DSO and the wholesale

market. Thus, end-users manage their energy production/consumption on the basis of

their interactions with the aggregators and the DSO. Also, the end-users have several

agents (e.g. Information Provider (IP), Prediction Engine (PE), and Decision Maker

System (DMS)) which make up an organization of agents. Each of these agents are

described below:

• Information Provider (IP) records information of all other agents as well as

the environmental conditions. Also, the IP is responsible for sending/receiving

information to/from the external agents that correspond to its organization, as

shown in Fig. 2.1.
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Fig. 2.2: Organization of aggregator agents [Shokri Gazafroudi et al., 2019].

• Prediction Engine (PE) forecasts uncertain variables (e.g. the energy generated

from distributed energy resources, electrical consumption, electricity price, etc.)

of end-users based on information provided by the IP. In this way, the values

predicted by the PE are the inputs of the DMS.

• Decision making system (DMS) is in charge of making optimum decisions for its

corresponding organization (e.g. end-user, aggregator, and the DSO). On the one

hand, the inputs of the DMS received from the IP and the PE. On the other hand,

the outputs of the DMS are sent to the IP which exchanges them with the external

agents from the corresponding organization. Fig. 2.1 shows interactions between

agents in the end-user’s organization.

2.2.2 Aggregators (AGG)

Aggregators are one type of reseller players in the restructuring power system. In this

work, aggregators are defined as agents which are in charge of trading energy with

end-users in their corresponding regions. Also, they are able to transact energy with the

DSO in this model. In the proposed agent-based architecture, aggregators have several

agents such as the IP and the EU for creating agent organizations in each region of the

distribution network. Also, according to Fig. 2.2, each aggregator transacts data with

the DSO (as an external agent of its organization) through its IP agent.
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Fig. 2.3: Organization of the DisCo agents [Shokri Gazafroudi et al., 2019].

2.2.3 Distribution System Operator (DSO)

The DSO is the only agent that trades energy with the wholesale market. Moreover,

the DSO has the IP and the DMS agents for data exchange with the aggregators and

end-users as external agents and makes optimum decisions, respectively, as shown in

Fig. 2.3.

2.3 Agents Organization for the Smart Home

The SHES consists of different organization-based agents that each of them has different

tasks in the system. In this section, all agents of the SHES will be introduced and

their task will be described. Moreover, the physical system of the organization-based

MASHES is seen in Fig. 2.4. MASHES includes two layers. First layer is the electricity

system which is displayed by black lines. However, second layer is the communication

system that is shown by blue lines.

Fig. 2.4: The MASHES physical system [Gazafroudi et al., 2017a].
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Electrical Loads (ELs)

The ELs are a group of agents that consume electrical energy in the SHES. Generally, the

ELs are classified into different types of loads such as shiftable, controllable, Must-Run

Services (MRS), etc. Therefore, the ELs can be considered as an organization basis for

different agent types in the MASHES.

Distributed Energy Resources (DERs)

The DERs are a set of agents that are responsible for the generation of electrical energy

in a smart home. The DERs are intermittent energy resources, so they inject uncertainty

in the system. However, increasing the prediction accuracy of these stochastic variables

can decrease the corresponding uncertainty in the system.

Energy Storage Systems (ESSs)

The ESSs are the agents in the MASHES that can store electrical energy such as EVs

and batteries. Batteries can help to smooth the electrical demand profile. On the other

hand, even though the main purpose of EVs is to provide clean transportation, they can

assist the MASHES as the ESSs too.

Information Provider (IP)

The IP is an agent in the SHES that is in charge of providing real-time and historical

data information. It senses and records information from all the agents as well as

environmental conditions.

Local Electricity Market (LEM)

The LEM is defined as a set of external agents of a building. In this work, external

agents consist of a retailer (the energy supplier) and a DR aggregator. Smart homes

should be able to connect to the LEM to trade electricity. Hence, electricity price and

power are two variables that are exchanged between smart homes and the LEM.

Energy Scheduler (ES)

The ES is a virtual organization of agents who plays as a system operator in the

MASHES. The proposed energy scheduling method is based on day-ahead energy



18 Chapter 2. Multi-agent architecture for local electricity trading

management approach. The ES consists of two agents: the Prediction Engine (PE)

and the Energy Management System (EMS). The tasks of both are described below:

Prediction Engine (PE)

The PE provides accurate prediction of all stochastic variables of the system (e.g. wind

speed, solar radiation, weather temperature, electricity price and electrical unshiftable

loads) for EMS. Hence, the outputs of this agent will be the inputs of the EMS. As the

DERs utilized in the SHES are non-dispatchable resources, the forecasting of its power

output will be very important for the EMS. Hence, accurate forecasting of PE can assist

the EMS to make optimum decisions.

Energy Management System (EMS)

The task of the EMS is to make optimum decisions in the MASHES. An optimum

decision depends on the objective(s) of the smart home owner. Maximizing the profit of

the SHES is the proposed Objective Function (OF) of this chapter. Therefore, after the

OF is defined in the system, this agent should make an optimum decision. In this case,

EMS faces a discrete optimization problem under uncertainty of the PE’s outputs. This

uncertainty causes some problems for the EMS, such as increasing the operating costs

of the MASHES and computational overload.

The MAS for the SHES allows to model different devices in a house through autonomous

agents discussed before. In addition to the representation of the different devices

through software agents, the modeling of possible existing generation sources that can

be connected to the house are also considered. Through this multi-agent modeling, it is

possible to simulate different scenarios taking into account the optimization of the costs

related to energy consumption. To this end, this MAS includes negotiation methods

that allow various devices to reach consensus when it is necessary to reduce the overall

energy consumption of a house in order to respond to the changes in energy prices,

e.g. times of the day when the tariff is the highest, and to variations in generation due

to their variable nature because of climatic conditions. The architecture of the agent

society can be seen in Fig. 2.5. The organization-based MAS is composed by:

• LEM : Two external agent sets the retailer-the energy supplier- and the DR

aggregator.

• IP : In our architecture, the Main Agent is created initially when the simulation

is performed. It is responsible for creating the remainder agents. Another agent
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Fig. 2.5: The MAS architecture for the SHES [Gazafroudi et al., 2017a].

in the IP is called Management Information Base (MIB) that is responsible to

interconnect agents.

• ES : The ES-agent is included in this group of agents because it is responsible for

connecting all the agents in a house. In addition, it analyses and predicts data.

Also, the energy management is done by the ES.

• DERs: This agent is responsible for renewable energy resources, e.g. as wind

micro-turbines and PhotoVoltaic (PV) panels.

• ESSs: ESSs is a set of agents, that represent the energy storage units, e.g. battery,

EVs.

• ELs: ELs is an organization of different agents that only consume electrical energy

but whose type is different. Shiftable loads are responsible for all units that may

have changeable consumption. Shiftable-controllable loads are another type of

agents that are responsible for all units which can be controlled and changed in

their turn. Controllable loads are the type of agents that are responsible for all

units in which only consumption amount can very each time, but not to change
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their consumption in another time. Non-shiftable-controllable are responsible for

all units that have not been included in any of the previously defined agents, i.e.

all units that can neither control nor vary their power consumption in time.

In the agents representing the smart home, only the Manager agent is unique for each

smart home and is responsible for the energy management of the respective house.

This proposed organization-based MAS architecture is also capable of interacting with

the Multi-Agent Smart Grid Simulation Platform (MASGriP) [Oliveira et al., 2012],

which is a simulation platform that simulates, manages and controls the most relevant

players acting in a smart grid and micro-grid environment. Moreover, the Multi-Agent

Simulator of Competitive Electricity Markets (MASCEM) is yet another MAS that

enables the simulation of electricity markets [Santos et al., 2016]. Interaction with

this system allows for the simulation of the participation of different players, even

small players like houses, in distinct types of electricity market negotiations. The

interaction between these different MAS is achieved through the use of specifically

conceived ontologies, which are used to set a communication language between agents

of the different systems, thus allowing them to understand each other and communicate

effectively [Santos et al., 2015].

2.4 Conclusion

This chapter has proposed a virtual organization architecture for energy trade between

the agents (end-users, aggregators and the DSO) of the distribution network. Also,

each of these agents and their interconnections have been described. Then, the

organization-based multi-agent system of the smart home electricity system as an

example of the end-users has been introduced. In Chapter 3, the home energy

management problem is described considering its objective function and the formulation

for different agents of the smart home energy system. Moreover, Chapter 5 presents the

formulation for end-users, aggregators and the distribution system operator in the power

distribution network.
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3.1 Introduction

Power systems face new challenges due to the increment in DERs. DERs decrease

greenhouse gas emissions and costs related to the electricity production [Abrishambaf

et al., 2016b]. However, the integration of these intermittent energy resources leads the

energy management problems which are caused by the the scale of the energy system

[Vale et al., 2013]. In the last decade, new visions and approaches have been leveraged

to deal with reliability and uncertainty due to the increment in DERs. One of the

most consensual solutions is the so-called smart grid [Borlase, 2016]. In this scope,

buildings can purchase and sell the generated energy locally [Kok et al., 2009]. Thus,

residential buildings (as one type of buildings) whose devices are linked to the smart

grid via communications channels are called smart homes [Pedrasa et al., 2009]. They

are known as prosumers– i.e. both consumers and producers– and have an important

role in the optimization of electrical energy scheduling [Shokri Gazafroudi et al., 2017].

The HEMS, which incorporates automation technologies, is necessary for economic

improvement. In this sense, smart homes can control, monitor and manage the system

through network communications [Das et al., 2002], [Wi et al., 2013]. Generally, there

are two approaches for energy management of the HEMSs. These approaches consists

of centralized and decentralized systems. Based on the approach of the system, different

structures of controlling and communicating systems are required [Abrishambaf et al.,

2016a]. However, there are challenges in the HEMSs consisting of inaccurate energy

generation forecasts and demand patterns, and heavy computational burden [Beaudin

et al., 2012] and [Fujimoto et al., 2018].
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In addition, customers are going to play a key role in the prospective power systems

[Hurtado et al., 2015]. This will be possible because power will no longer be generated

at centralized facilities, instead, different technologies will be used to generate energy

locally, this is called distributed generation. The infrastructure of the smart grid

makes this transition possible [Hurtado et al., 2015]. Thus, in the power distribution

systems’ demand-side players -e.g. smart homes- will manage their own electrical

energy according to the real and fair price [Gazafroudi et al., 2017a]. Besides, current

electricity markets are not able to satisfy the customers’ strategic behavior based on their

autonomous decision-makings [Caramanis et al., 2016]. Hence, decentralized electricity

markets are capable of adapting to the flexible behavior of electrical customers. In

this way, smart homes are active agents and play a critical role in the bottom layer of

the power systems. Hence, smart homes need energy management systems in order

to make optimum decisions related to the management of energy inside the home,

such as the choice of the best strategies when trading energy with other players (e.g.

aggregators, retailers, local market operator, other consumers) in the power distribution

network. In this way, power distribution networks are defined as complex ecosystems

consisting of machines, networks, procedures, operators, and players which are organized

hierarchically in the bottom layer of power systems in order to deliver electric power

to end-users [Mithulananthan et al., 2016]. Different studies have considered distinct

aspects of the HEMSs, e.g. residential electrical appliances [Gazafroudi et al., 2017a],

the main purposes of residential scheduling [Shokri Gazafroudi et al., 2017] and

[Gazafroudi et al., 2017b], decision-making under uncertainty [Gazafroudi et al., 2017a],

the implementation of the HEMSs [Gazafroudi et al., 2017a], and interaction between the

HEMSs and other systems in their neighborhood or up-stream grid [Gazafroudi et al.,

2017a].

In this chapter, we model the home energy management problem considering the

uncertainty of the system. In Section 3.2, a novel interval optimization method is defined

to model uncertainty in the home energy management problem. Section 3.3 proposed

a predictive dispatch model to manage energy flexibility by a hybrid interval-stochastic

method in the HEMS. Finally, this chapter is concluded in Section 3.4.

3.2 Home energy management problem using a novel

interval optimization method

In this chapter, a new interval optimization method is proposed for the management

of the uncertainty of stochastic variables in the Home Energy Management Problem

(HEMP). This new method is called Stochastic Predicted Bands (SPB) and it considers
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the uncertainty of decision-making variables without knowledge of the Probability

Density Function (PDF). Thus, the uncertainty is modelled by bands which are based on

prediction of the stochastic variables. Besides, an auxiliary parameter, which is called

Optimistic Coefficient (OC), is defined to provide flexibility to the decision-maker to be

optimistic or conservative.

3.2.1 Proposed interval optimization method

In this section, we introduce the proposed method for modeling stochastic variables

in the decision-making problem. There are similarities between the method proposed

in this section and other stochastic optimization methods. However, in this approach,

presenting the uncertainty is not done by stating the scenarios. Knowing the PDF of

decision-making variables is one of the prerequisites of most stochastic scenario-based

methods Soroudi and Amraee [2013]. It is clear that the PDFs of stochastic variables are

not always available. Besides, stochastic optimization methods are a large computational

burden to the systems. Hence, our proposed method considers the uncertainty of

the decision-making variables, taking into account the drawbacks of the stochastic

optimization methods.

3.2.1.1 Stochastic Predicted Bands (SPB) Method

In this section, the SPB method is defined to model the uncertainty. It consists of four

steps which are described below:

Step 1

This model consists of two stages and it is not a bi-level optimization problem. The

first stage is called the shadow stage because it is not actually executed. Also, the

uncertainty of variables is not considered in the first stage. The corresponding variables

in the first stage are also called shadow variables. The second stage is called the real-time

stage where the uncertainty of variables is considered, and the associated variables are

called real-time variables. The shadow variables play an important role in converging

the real-time variables to their optimum decisions when their uncertainties converge to

zero. Hence, the shadow variables should be determined in the first step.
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Step 2

In this method, the uncertainty of variables is considered based on their predicted

amounts. Hence, short-term forecasting of variables is done in the second step. Besides,

σUP and σDN are the parameters that are defined to state the amounts of upper and

lower variances of the predicted variable in comparison to its actual amount, respectively.

Step 3

In this step, the difference between the shadow amount of variables, ES
t , and their

predicted amount in each time, EP
t is determined as represented in (3.1). Also, a simple

flowchart of the SPB method is illustrated in Fig. 3.1.

Dt = ES
t − EP

t , t. (3.1)

Step 4

According to the state of Dt, the real-time decision-making variables, ERT
t , are limited

to the max and min bands. If Dt is positive, it means that the scheduling amount is more

than the predicted amount. Hence, the real-time amount should be greater than the

predicted amount to converge to the amount of the scheduling variable. If Dt is negative,

the predicted amount of the variable is more than the scheduling one. Hence, as the

real-time variable likes to converge to the amount of its scheduling variable, the real-time

variable will be limited to the predicted amount as its maximum band. Therefore, the

minimum limitation of the real-time variable will be based on the upper variance of its

prediction because the variable’s predicted amount is more than its scheduling amount.

Eq. (3.2) is defined to clarify the above explanations:{
EP

t ≤ ERT
t ≤ EP

t + σUP , Dt ≥ 0.

EP
t − σDN ≤ ERT

t ≤ EP
t , Dt < 0.

(3.2)

For instance, it is assumed that the amount of the shadow variable is determined to

be equal to 10 at t=4. Also, the predictor system forecasts that the amount of that

stochastic variable equals 11 at t=4, while the upper and lower variances are considered

to be 0.5 and 0.3, respectively. Hence, Dt is negative in this case, and the real-time
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Fig. 3.1: The simple flowchart of the SPB method [Shokri Gazafroudi et al., 2017].

variable should be limited to the bands as follows:

Dt=4 = 10− 11 = −1.

11− 0.3 ≤ ERT
t < 11.

3.2.1.2 Modified Stochastic Predicted Bands (MSPB) Method

One of the drawbacks of the SPB method is that the uncertainty of the stochastic

variables cannot be modeled completely based on the predicted bands. In other words,

the variables tend to converge to the maximum and minimum bands based on their

amounts in the shadow stage, so the results of the decision-making variables are

completely optimistic because they always adapt to the bands to optimize the objective

function of the problem. Hence, the stochastic variables stick only to the maximum or

minimum bands to optimize the problem.

Here, an auxiliary parameter is defined as a slack parameter that gives the decision-maker

the freedom to apply its knowledge regarding the stochastic behavior of the uncertain

variable. This parameter is called optimistic coefficient, α, and its amount can be

between 0 and 1. Consequently, the SPB method considering the optimistic coefficient

is called Modified Stochastic Predicted Bands (MSPB) optimization method and is

represented in (3.3). 
EP

t α+ (EP
t − σDN )(1− α) ≤ ERT

t

≤ (EP
t + σUP )α+ EP

t (1− α), Dt ≥ 0.

(EP
t − σDN )α+ EP

t (1− α) ≤ ERT
t

≤ EP
t α+ (EP

t + σUP )(1− α), Dt < 0.

(3.3)
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3.2.2 Home energy management problem

3.2.2.1 Objective function

In this section, a model of power scheduling in a building is presented. The objective

is to maximize the revenue of energy services provided in a home energy management

system. As seen in (3.4), the objective function includes four parts an d two stage, e.g.

shadow and real-time. The first part represents the revenue from selling the electricity

to the power grid. The total cost for energy consumption is presented in the second

term. The value of energy which is not served is stated in the third term. Finally, the

spillage costs of non-dispatchable energies are presented in the last term.

OF = EC =

Nt∑
t=1

(λPV BPPV B,O,S
t + λWPW,O,S

t (3.4)

− λNPN,S
t

+ λPV BPPV B,O,RT
t + λWPW,O,RT

t + λEV PEV,O,RT
t

− λNPN,RT
t

− (V OLLSHLSH,Shed
t + V OLLSWHLSWH,Shed

t

+ V OLLPPLPP,Shed
t + V OLLMRSLMRS,Shed

t )

− (V W,SPSW
t + V PV B,SPSPV B

t ))

3.2.2.2 First Stage

The uncertainty of decision-making variables is not considered in this stage. Eq. (3.5)

establishes the power balance equation of the devices in the smart home. Besides, (3.6)

represents the power flow limitation through the distribution line which ended at the

building.

PN,S
t + PPV B,I,S

t + PW,I,S
t = LSH,S

t + LSWH,S
t + LPP,S

t + LMRS,S
t , ∀t. (3.5)

− FMAX ≤ PN,S
t − (PPV B,O,S

t + PW,O,S
t ) ≤ Fmax,∀t. (3.6)

Moreover, there are some limitations corresponding to all appliances. As represented

in (3.7)-(3.14), only central prediction of energy produced/consumed by each device is

defined in this stage because the uncertainty is not considered in the shadow stage.

Also, the components of the HEMS that cause flexibility are not modeled. Hence, the

constraints of the energy storage systems and load shedding are not defined in the first
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stage. This flexibility is needed when the system faces uncertainty, so all the flexible

agents are modeled in the second stage.

PPV B,S
t = PPV B,I,S

t + PPV B,O,S
t ,∀t. (3.7)

PW,S
t = PW,I,S

t + PW,O,S
t , ∀t. (3.8)

PPV B,S
t = PPV B,P

t , ∀t. (3.9)

PW,S
t = PW,P

t ,∀t. (3.10)

LSH,S
t = LSH,P

t ,∀t. (3.11)

LSWH,S
t = LSWH,P

t , ∀t. (3.12)

LPP,S
t = LPP,P

t ,∀t. (3.13)

LMRS,S
t = LMRS,P

t , ∀t. (3.14)

3.2.2.3 Second Stage

In this stage, the uncertainties of the decision-making variables are considered. In this

section, only the uncertainty of the wind and PV power generation is considered, and

the uncertainty of the outdoor temperature and the must-run services is ignored for

simplicity. Hence, the amounts of these variables are determined on the basis of the

outputs of the first stage and the uncertainty in the real-time operation. The power

balance equation in the real-time is represented in (3.15). Besides, the power flow

limitation through the distribution line in the real-time is described in (3.16).

PN,RT
t + PPV B,I,RT

t + PW,I,RT
t + PEV,I,RT

t = LSH,RT
t + LSWH,RT

t + LPP,RT
t

+ LMRS,RT
t − (LSH,Shed

t + LSWH,Shed
t + LPP,Shed

t + LMRS,Shed
t ),∀t. (3.15)

− FMAX ≤ PN,RT
t − (PPV B,O,RT

t + PW,O,RT
t + PEV,O,RT

t ) ≤ FMAX ,∀t. (3.16)

PV-battery system

The power output of the PV-battery system in the real-time, PPV B,RT
t , is obtained

based on (3.17). According to (3.17), PPV,RT
t is the power output of the PV panels

in the real-time, PB,RT
t is the storage power of the battery in the real-time and SPV B

t

is the spillage power of the PV-battery system. Eq. (3.18) indicates that the total

power output of the PV-battery system equals its power consumed in the building and

the amount of power generation sold to the power grid. Also, minimum and maximum

constraints for the power generation of the PV are presented in (3.19).
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PPV B,RT
t = PPV,RT

t − PB,RT
t − ωt − SPV B

t , ∀t. (3.17)

PPV B,RT
t = PPV B,I,RT

t + PPV B,O,RT
t , ∀t. (3.18)

PPV,MIN
t ≤ PPV,RT

t ≤ PPV,MAX
t , ∀t. (3.19)

Eq. (3.20) states limitations related to the charge and discharged power of the battery.

The state of charge equation is defined on the basis of (3.21). As seen in (3.21), Ci is

the initial state of charge of the battery. Also, maximum and minimum limitations of

charging/discharging ramp rate of the battery are presented in (3.22).

PB,MIN
t − Ct−1 ≤ PB,RT

t ≤ PB,MAX
t − Ct−1, t ≥ 2. (3.20)

Ct = Ct−1 + ωt, t ≥ 2. (3.21)

Ct=1 = Ci + ωt=1, t = 1.

ωMIN ≤ ωt ≤ ωMAX ,∀t. (3.22)

Electric Vehicle (EV)

The EV plays as an electrical storage system that can be used economically based on the

charging strategies in the HEMS. There are different factors that should be considered

when modelling the effect that the use of an EV has on the HEMP. These factors are

EV’s mobility patterns and battery characteristics. The power generation of the EV is

represented in (3.23) and (3.24).

PEV,RT
t = −PEV,B,RT

t − ωC
t + ωD

t ,∀t. (3.23)

PEV,RT
t = PEV,I,RT

t + PEV,O,RT
t ,∀t. (3.24)

Eq. (3.25) represents the state of charge equation in the EV, and CEV,I is the initial

state of charge of the EV.

CEV
t = CEV

t−1 + ωC
t η

G2V − ωD
t /η

V 2G − ωM
t /η

V 2T , t ≥ 2. (3.25)

CEV
t=1 = CEV,I + ωC

t=1η
G2V − ωD

t=1/η
V 2G − ωM

t=1/η
V 2T , t = 1.
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Eqs. (3.26) and (3.28) represent the limitations related to discharging the ramping rate

of the EV. However, charging ramping rate’s constraints are stated in (3.27) and (3.29).

PEV,D,MINηV 2G(1− uEV
t ) ≤ ωD

t ≤ PEV,D,MAXηV 2G(1− uEV
t ), ∀t. (3.26)

PEV,C,MINηG2V uEV
t ≤ ωC

t ≤ PEV,C,MAXηG2V uEV
t ,∀t. (3.27)

0 ≤ ωD
t ≤ (CEV

t − PEV,D,MIN )ηEV ,∀t. (3.28)

0 ≤ ωC
t ≤ (PEV,C,MAX − CEV

t )ηEV , ∀t. (3.29)

Eq. (3.30) enforces power limitations of the energy storage system in the EV.

PEV,D,MAX − CEV
t−1 ≤ P

EV,B,RT
t ≤ PEV,C,max − CEV

t−1, t ≥ 2. (3.30)

Wind system

The power output of the wind micro-turbine is calculated according to (3.31). In (3.31),

PW,RT
t is the power output of the wind system, PW,PT,RT

t is the potential power output

of the wind micro-turbine based on the real-time weather conditions, and SW
t is the

spillage power of the wind system.

PW,RT
t = PW,PT,RT

t − SW
t ,∀t. (3.31)

Minimum and maximum limitations of the wind power generation are represented in

(3.32). Also, the power output of the wind micro-turbine is split into the power consumed

in the home, PW,I,RT
t , and the power sold to the power grid, PW,O,RT

t , as represented in

(3.33).

PW,MIN
t ≤ PW,PT,RT

t ≤ PW,MAX
t ,∀t. (3.32)

PW,RT
t = PW,I,RT

t + PW,O,RT
t , ∀t. (3.33)

Space heater

The space heater is responsible for maintaining the indoor temperature at the desired

level. There is a differential equation between the indoor temperature and the power

consumed by the space heater device. Eq. (3.34) represents the performance of the space

heater based on the relationship between the indoor temperature and the electrical load
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of the space heater. As seen in (3.34), θ0 is the initial indoor temperature and it

has been proposed that this amount is equal to the desired temperature. Eq. (3.35)

represents that the indoor temperature as a controllable variable which is constrained

to 1 ◦C higher or lower than the desired indoor temperature (θDES). The maximum

and minimum limitations for the power consumption of the space heater are presented

in (3.36).

θINt+1 = θINt e−1/RC + LSH,RT
t R(1− e−1/RC), ∀t. (3.34)

+ θOUT,P
t (1− e−1/RC), t ≥ 2

θINt = θ0 = θDES , t = 1

− 1 ≤ θINt − θDES ≤ 1,∀t. (3.35)

LSH,MIN
t ≤ LSH,RT

t ≤ LSH,MAX
t ,∀t. (3.36)

Storage water heater

The storage water heater is responsible for storing the heat in the water tank via

occupants. The maximum and minimum limitations of the storage water heater’s power

and consumed energy are expressed in (3.37) and (3.38), respectively.

LSWH,MIN ≤ LSWH,RT
t ≤ LSWH,MAX , ∀t. (3.37)

USWH,MIN ≤
Nt∑
t=1

LSWH,RT
t ≤ USWH,max. (3.38)

Pool pump

Running hours of the pool pump should not be more than TON hours in a day as

represented in (3.39). Eq. (3.40) expresses the maximum and minimum constraints of

the pool pump power consumed in each hour.

Nt∑
t=1

zt ≤ TON . (3.39)

LPP,MINzt ≤ LPP,RT
t ≤ LPP,MAXzt, ∀t. (3.40)

Must-run services

Must-run services include electrical loads that should be provided quickly, such as

lighting, entertainment, etc. According to (3.41), we consider that there is no uncertainty
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in the prediction of the electrical loads of the must-run services.

LMRS,RT
t = LMRS,P

t , ∀t. (3.41)

Spillage limits

The spillage amount of the wind and the PV-battery systems are expressed in (3.42)

and (3.43), respectively.

0 ≤ SW
t ≤ P

W,PT,rt
t , ∀t. (3.42)

0 ≤ SPV B,RT
t ≤ PPV B,RT

t , ∀t. (3.43)

Load shedding limits

Load shedding is the amount of the electrical load which is not served. Eqs. (3.44)-(3.47)

enforce the load shedding constraints of each electrical load.

0 ≤ LSH,Shed
t ≤ LSH,RT

t ,∀t. (3.44)

0 ≤ LSWH,Shed
t ≤ LSWH,RT

t ,∀t. (3.45)

0 ≤ LPP,Shed
ppt ≤ LPP,RT

t ,∀t. (3.46)

0 ≤ LMRS,Shed
t ≤ LMRS,RT

t ,∀t. (3.47)

3.2.2.4 Integration with the Modified Stochastic Predicted Bands (MSPB)

Method

In our proposed model, the MSPB method is utilized to model the uncertainty of

the variables in the HEMP. The uncertainty of wind and PV power generation is

considered based on (3.48)-(3.51). Noted that the outdoor temperature is considered

as a deterministic variable.

DW
t = PW,S

t − PW,P
t ,∀t. (3.48)

DPV
t = PPV B,S

t − PPV,P
t , ∀t. (3.49)


PW,P
t αw + (PW,P

t − σW,UP )(1− αW ) ≤ PW,RT
t

≤ (PW,P
t + σW,DN )αW + PW,P

t (1− αW ), DW
t ≥ 0

(PW,P
t − σW,UP )αW + PW,P

t (1− αW ) ≤ PW.RT
t

≤ PW,P
t αW + (PW,P

t + σW,DN )(1− αW ), DW
t < 0

(3.50)
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
PPV,P
t αPV + (EP

t − σPV,UP )(1− αPV ) ≤ pPV,RT
t

≤ (PPV,P
t + σPV,DN )αPV + PPV,P

t (1− αPV ), DPV
t ≥ 0

(PPV,P
t − σPV,UP )αPV + PPV,P

t (1− αPV ) ≤ PPV,RT
t

≤ PPV,P
t αpv + (PPV,P

t + σPV,UP )(1− αPV ), DPV
t < 0

(3.51)

3.2.3 Case study

3.2.3.1 Energy service system in a smart home

To assess the performance of the proposed REM model, the physical system from

shokri2017residential is used. The case study is shown in Fig. 3.2. The maximum

energy produced by the PV system is 2-kW. The battery can store between 0.48

and 2.4 kWh, and the maximum charging/discharging rates are 400 W. Besides, the

charging/discharging efficiencies are 90%. The maximum energy produced by the wind

micro-turbine is 6-kW. The EV can store between 1.77 and 5.9 kWh, and the maximum

charging/ discharging rates are 3 kW. The charging/discharging efficiencies are 90%.

Also, the EV is considered to be out of home between 6 AM and 5 PM. The maximum

heating power equals 2 kW to maintain the temperature of the house within ±1 of

the desired temperature (23◦C). The thermal resistance of the building shell is equal

to 18◦C/kW, and C equals 0.525 kWh/◦C . The energy capacity of the storage water

heater is 10.46 kWh (180 L) which has 2 kW heating element. The rated power of the

pool pump is 1.1 kW, and it can run for a maximum of 6 hours during the day. The

performance of the proposed REM model is assessed in three cases. The implemented

program is solved in GAMS 23.7 [Soroudi, 2017]. Table 5.2 presents the predicted data

of stochastic variables. Table 3.6 presents the price data of the system. Moreover, the

Value of Loss Load (VOLL), and the spillage costs of the wind and the PV-battery

power generation are presented in Table 3.7. Note that αW and αPV to equal 1 in case

1, so the SPB method considers the uncertainty in case 1.

3.2.3.2 Impact of uncertainty

This section presents the impact of uncertainty of wind and PV power output on

the EC which is presented in Table 3.8. Table 3.8 states that the uncertainty of

the wind and PV power output increases the amount of the EC. According to the

SPB method, upper/lower variance of the predicted variables equal zero. Therefore,

the decision-making variables can be higher/lower than the predicted amount of these
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Fig. 3.2: An extended sample of a smart home in [Shokri Gazafroudi et al., 2017].

Tab. 3.1: Predicted data for uncertain variables [Shokri Gazafroudi et al., 2017].

t PPV,P
t σPV,DN σPV,UP PW,P

t σW,DN σW,UP θOUT,P
t LMRS,P

t

1 0 0.03 0.01 4 0.28 0.19 5.5 0.3

2 0 0.03 0.01 3.7 0.28 0.19 5.5 0.3

3 0 0.03 0.01 3.6 0.28 0.19 5.2 0.3

4 0 0.03 0.01 3.3 0.28 0.19 5.2 0.3

5 0 0.03 0.01 3.4 0.28 0.19 4.8 0.4

6 0 0.03 0.01 3 0.28 0.19 5.5 0.6

7 0.25 0.03 0.01 2.4 0.28 0.19 6.5 0.8

8 0.75 0.03 0.01 1.8 0.28 0.19 7.5 0.8

9 1.25 0.03 0.01 2 0.28 0.19 9.8 0.7

10 1.75 0.03 0.01 1.5 0.28 0.19 10 0.55

11 1.9 0.03 0.01 1 0.28 0.19 11 0.5

12 1.9 0.03 0.01 0.8 0.28 0.19 12 0.5

13 1.9 0.03 0.01 0.7 0.28 0.19 12 0.5

14 1.75 0.03 0.01 0.6 0.28 0.19 12 0.5

15 1.25 0.03 0.01 1.3 0.28 0.19 11 0.6

16 0.75 0.03 0.01 1.7 0.28 0.19 10 0.8

17 0.25 0.03 0.01 2.1 0.28 0.19 9 1.5

18 0 0.03 0.01 2.9 0.28 0.19 8.5 1.8

19 0 0.03 0.01 3.7 0.28 0.19 8 1.7

20 0 0.03 0.01 3.5 0.28 0.19 7.5 1.1

21 0 0.03 0.01 4 0.28 0.19 7 0.9

22 0 0.03 0.01 5 0.28 0.19 6.5 0.7

23 0 0.03 0.01 5.7 0.28 0.19 6.2 0.6

24 0 0.03 0.01 5.9 0.28 0.19 6 0.4

variables based on the upper/lower variance of the prediction when there is uncertainty

in the prediction.
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Tab. 3.2: Price data of the system [Shokri Gazafroudi et al., 2017].

Price ($/MW)

Time

(h)
λPV B λEV λw λN

23-7 2.2 1 2.2 0.0814

8-14 2.2 1 2.2 0.1408

15-20 2.2 1 2.2 0.3564

21-22 2.2 1 2.2 0.1408

Tab. 3.3: VOLL and spillage costs [Shokri Gazafroudi et al., 2017].

VOLL ($/MW) Spillage Cost ($/MW)

Time

(h)
SH SWH PP MRS PVB Wind

22-7 1 1 -0.5 2.2 4 6

8-21 1 1 0.25 2.2 4 6

Tab. 3.4: Impact of uncertainty on the EC [Shokri Gazafroudi et al., 2017].

No uncer. of wind and PV Uncer. of wind Uncer. of PV

EC ($) 652.683 665.087 660.969

3.2.3.3 Impact of optimistic coefficient

In this section, the MSPB method is used to model the uncertainty of wind and PV

power generation. Also, only the impact of αW is assessed. It is considered that αPV

equals 1. As seen in Fig. 3.3, the increase in the amount of αW increments the EC.

However, this increment is not uniform.

3.2.3.4 Impact of prediction accuracy

The impact of wind power prediction accuracy is evaluated in three scenarios based

on its optimistic coefficient. Fig. 3.4 shows the influence of the Prediction Accuracy

Coefficient (PAC) on the EC and wind energy output. In this case, upper prediction

accuracy is assumed to equal 15% and the lower prediction accuracy is equal to 10%

when the PAC equals 1.

Additionally, upper prediction accuracy equals 10% and lower prediction accuracy is

equal to 6.67% when the PAC equals 0.67, and upper prediction accuracy equals 22.5%

and down prediction accuracy equals 15% when the PAC equals 1.5. As seen in Fig.
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Fig. 3.3: Impact of OC on wind energy output and system expected cost
[Shokri Gazafroudi et al., 2017].

3.4, increasing the amount of wind power’s PAC has a positive effect on the EC in all

scenarios. Note that the simulation results of the system are more realistic when αW

equals zero because increasing prediction error has negative effect on the system’s energy

output. Hence, this point is seen when αW equals zero. In this section, the home energy

management problem has been modeled to enable the smart home to trade electricity

with the power grid. Also, a novel interval optimization method has been introduced

to model the uncertainty of wind and PV power generation of the residential scale. In

Section 3.3, the impact of energy flexibility on the HEMS by a predictive dispatch model

is studied based on findings of [Gazafroudi et al., 2017b].

3.3 Energy flexibility management based on a predictive

dispatch model of the HEMS

This section proposes a predictive dispatch model for management of energy flexibility

in the HEMS. In this way, EV, battery and shiftable loads are the devices that provide

energy flexibility in the proposed residential system. Our energy management problem

consists of two stages: day-ahead and real-time. A hybrid method is defined in

[Gazafroudi et al., 2017b] to model the uncertainty of the PV power generation based
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Fig. 3.4: Impact of wind power prediction accuracy on wind energy output and system
expected cost [Shokri Gazafroudi et al., 2017].

on its power prediction. In the day-ahead stage, the uncertainty is modeled by interval

bands. However, the uncertainty of PV power generation is modeled through a stochastic

scenario-based method in the real-time stage. The performance of the proposed hybrid

interval-stochastic optimization method is compared with the MSPB method which has

been defined in Section 3.2. Moreover, the impacts of energy flexibility and the demand

response program on the expected profit and transacted electrical energy of the system

are assessed in the case study presented in this section.

The rest of this section is organized as follows. Section 3.3.1 introduces the proposed

hybrid interval-stochastic method. Then, the home energy management problem is

described in Section 3.3.4. Finally, Section 3.3.5 provides the simulation results.

3.3.1 Interval-stochastic optimization method

3.3.1.1 Data

Here, the data predicted in [Gazafroudi et al., 2017a] and [Gazafroudi et al., 2017b]

has been used. As shown in Table 3.5, the predicted data in each time step consists

of the central forecasting, and up/down deviation. Hence, the predicted data is limited
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to upper/lower band based on the central forecasting and up/down deviation. It is

noticeable that this section concentrates only on modelling the uncertainty caused by

PV power prediction in the system. Hence, the forecasting system is not explained in

this section. The data presented in Table 3.5 are inputs of the HEMS. Therefore, the

energy management system makes optimum decisions through the interval-stochastic

optimization method.

Tab. 3.5: Predicted data of uncertain variables [Gazafroudi et al., 2017b].

t PPV,P
t (kW ) σPV,DN (kW ) σPV,UP (kW ) θOUT,P

t (◦C) LMRS,P
t (kW )

1 0 0.00 0.00 5.5 0.005

2 0 0.00 0.00 5.5 0.005

3 0 0.00 0.00 5.2 0.005

4 0 0.00 0.00 5.2 0.005

5 0 0.00 0.00 4.8 0.005

6 0 0.00 0.00 5.5 0.005

7 0.10 0.01 0.02 6.5 0.005

8 0.20 0.02 0.04 7.5 0.005

9 0.42 0.03 0.07 9.8 0.005

10 0.76 0.08 0.26 10 0.005

11 1.1 0.12 0.23 11 0.005

12 1.32 0.13 0.26 12 0.005

13 1.91 0.10 0.19 12 0.005

14 0.85 0.02 0.04 12 0.005

15 0.29 0.02 0.04 11 0.005

16 0.31 0.02 0.03 10 0.005

17 0.06 0.01 0.01 9 0.005

18 0 0.00 0.00 8.5 0.005

19 0 0.00 0.00 8 0.005

20 0 0.00 0.00 7.5 1.218

21 0 0.00 0.00 7 0.262

22 0 0.00 0.00 6.5 0.14

23 0 0.00 0.00 6.2 0.127

24 0 0.00 0.00 6 0.005

3.3.2 Interval Model

In the day-ahead stage, PV system power generation is limited to the bands according

to the forecasting deviations. The minimum band represents the deviation below the
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central forecasting, and the maximum band represents the deviation above the central

forecasting. P da
pvt intends to converge to the maximum/minimum band in the best/worst

case. Therefore, Eq. (3.52) can be divided into Eqs. (3.53) and (3.54) in the best and

worst cases, respectively. This way, an auxiliary parameter is added to these equations

as a slack parameter for the decision-maker. This parameter is denoted as Optimistic

Coefficient, α, which has been defined in Section 3.2. Hence, P da
pvt converges to the

best/worst case when the decision-maker has the pessimistic/conservative perspective

by adding α to (3.53) and (3.54), and sum over them, as seen in (3.55). Then, Eqs.

(3.55) and (3.56) are obtained through the simplification of (3.52)-(3.54).

P pred
pvt − σ

down
pvt ≤ P da

pvt ≤ P
pred
pvt + σuppvt ,∀t. (3.52)

P pred
pvt ≤ P

da
pvt ≤ P

pred
pvt + σuppvt : OC = 1,∀t. (3.53)

P pred
pvt − σ

down
pvt ≤ P da

pvt ≤ P
pred
pvt : OC = 0, ∀t. (3.54)

P pred
pvt αpv − (P pred

pvt − σ
down
pvt )(1− αpv) ≤ P da

pvt (3.55)

≤ (P pred
pvt + σuppvt)αpv + P pred

pvt (1− αpv), ∀t.

P pred
pvt − σ

down
pvt (1− αpv) ≤ P da

pvt ≤ P
pred
pvt + σuppvtαpv,∀t. (3.56)

3.3.3 Stochastic Model

In the real-time stage, stochastic programming is used to model the uncertainty of PV

power. Therefore, the scenarios and their corresponding probabilities are defined in this

section. Thus, the prediction mean and deviation are defined as metric parameters by

(3.57) and (3.58), respectively. These are used to generate scenarios of the PV power in

the real-time stage. In this step, three scenarios are defined to model the uncertainty of

the PV system’s power generation. First scenario, up scenario, describes data that has

a deviate above the central forecasting. Second scenario, down scenario, represents

data that has a deviation below the central forecasting. Then, the third scenario

describes the central forecasting data. The amounts of these scenarios are determined

through (3.59)-(3.61). Moreover, the corresponding probabilities are obtained according

to (3.62)-(3.64).
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Pmean
pvt = P pred

pvt +
σuppvt − σdown

pvt

2
,∀t. (3.57)

∆pvt =
σuppvt + σdown

pvt

2
,∀t. (3.58)

P rt
pvt(ω = ω1) = P pred

pvt + σuppvt ,∀t. (3.59)

P rt
pvt(ω = ω2) = P pred

pvt − σ
down
pvt , ∀t. (3.60)

P rt
pvt(ω = ω3) = P pred

pvt , ∀t. (3.61)

π(ω = ω1) = Prob(P pred
pvt + σuppvt > Pmean

pvt + ∆pvt) (3.62)

π(ω = ω2) = Prob(P pred
pvt − σ

down
pvt < Pmean

pvt −∆pvt) (3.63)

π(ω = ω3) = 1− π(ω = ω1)− π(ω = ω2) (3.64)

3.3.4 Home Energy Management Problem

We consider that each smart home can participate in two different types of LEM

[Gazafroudi et al., 2017a], [Gazafroudi et al., 2017b]. These LEMs are called day-ahead

and real-time markets. In practice, the proposed LEMs can be operated by the

distribution system operator or the retailers. Hence, the distribution system operator

or the retailers are responsible for providing their agents in the region with the local

electricity market framework to transact energy with them. Besides, smart homes

are considered price-takers in the LEM, and they can buy electricity from the local

electricity market on the basis of the Time of Use (ToU) tariff. Also, it is assumed

that the sold/bought electricity price to/from the local electricity market are different.

The domestic energy management problem is modeled as a two-stage problem. The

first stage is called the day-ahead stage, and the second stage is called the real-time

stage. Here, the Expected Profit (EP) is defined by an Objective Function (OF) which

maximizes the profit of energy services. In 3.65, EP is a summation of the day-ahead

EP, EP da, and the real-time EP, EP rt, which are OFs of the day-ahead and real-time

stages, respectively.

EP = EP da + EP rt. (3.65)

3.3.4.1 Day-Ahead Stage

The objective function of the HEMS in the day-ahead local electricity market is defined

in the Day-Ahead (DA) stage. The purpose of this function is to make the best decisions
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in each of the time periods during the day d. However, the DA stage obtains optimum

decisions for the system in day d− 1. Hence, the objective function for the DA stage is

represented in (3.66):

EP da =

Nt∑
t=1

(λ
′
tP

da
pv,outt +

∑
k

γkλ
′
tP

da
dis,outt(k)− λtP da

nett) (3.66)

EP da consists of three parts. The first and second parts represent the revenue of selling

the electrical energy produced by the PV and the Energy Storage Systems (ESSs) to the

local market. The third part states the costs of buying the electrical energy from the

local market. Noted that participation factor, γk, is a binary parameter that is defined

for the first time in [Gazafroudi et al., 2017b] in order to consider the participation of

the ESSs in the DA stage. If the participation factor is equal to zero, ESSs are used to

trade energy only in the real-time LEM. In other words, the HEMS can utilize the full

capacity of the ESSs in the day-ahead market if the participation factor equals 1.

As represented in Section 3.3.1, new optimization is used to model the uncertainty in

the HEMP. In this way, all the equations stated in Section 3.2 are redefined in this

section. Eq. (3.67) establishes the power balance equation due to the power outputs of

the PV, P da
pv,int

, and the ESSs, P da
dis,int

(k), injected into the home, the grid power input,

P da
nett , the electrical loads, Lda

jt
, and the charged power of the ESSs, P da

cht
(k). In this

section, power loss is not considered for simplicity. Eq. (3.68) represents the power flow

limitation through the distribution line which ends at the building. Smax expresses the

maximum power capacity of the distribution line that links the smart home with the

power distribution network.

P da
nett + P da

pv,int
+
∑
k

γkP
da
dis,int

(k) =

Nj∑
j=1

Lda
jt + γkP

da
cht

(k),∀t. (3.67)

− Smax ≤ P da
nett − P

da
pv,outt −

∑
k

γkP
da
dis,outt(k) ≤ Smax,∀t. (3.68)

Besides, some limitations correspond to all appliances. According to (3.69)-(3.72), only

the maximum and minimum limitations of the produced/consumed energy are defined in

each device at this stage because the uncertainty is not considered in the DA stage. The

total power generation of the PV is stated in (3.69). Eq. (3.70) represents the interval
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limitations of the PV power generation. Besides, Eqs. (3.71) and (3.72) represents the

total electric power consumption.

P da
pvt = P da

pv,int
+ P da

pv,outt ,∀t. (3.69)

P pred
pvt − σ

down
pvt (1− αpv) ≤ P da

pvt ≤ P
pred
pvt + σuppvtαpv,∀t. (3.70)

Lda
jt = Lpred

jt
,∀t. (3.71)

Nj∑
j=1

Lda
jt = Lda

sht
+ Lda

swht
+ Lda

ppt + Lda
mrst , ∀t. (3.72)

ESSs can be utilized economically on the basis of the charging/discharging strategies

in the HEMP. The mobility patterns and the storage characteristics of the ESSs are

different factors that should be considered in modeling the ESSs. However, the mobility

pattern is only related to the EVs.

Cda
t (k) = Cda

t−1(k) + P da
cht

(k)ηB2V − P da
dist(ω)/ηV 2B, t ≥ 2∀k. (3.73)

Cda
t=1(ω) = Ci + P da

ch,t=1(k)ηB2V − P da
dis,t=1(ω)/ηV 2B, t = 1,∀k.

Pmin
ev ≤ Cda

t (k) ≤ Pmax
ev ,∀t, k. (3.74)

− wmin ≤ Cda
t (k)− Cda

t−1(k) ≤ wmax, t ≥ 2,∀k. (3.75)

− wmin ≤ Cda
t (k)− Ci(k) ≤ wmax, t = 1.

0 ≤ P da
dist(k) ≤ wmaxudat ,∀t, k. (3.76)

0 ≤ P da
cht

(k) ≤ wmin(1− udat ), ∀t, k. (3.77)

P da
dist(k) = P da

dis,int
(k) + P da

dis,outt(k), ∀t, k. (3.78)

3.3.4.2 Real-Time Stage

In this stage, the objective function of the HEMP is defined due to participating in

the RTLEM. Also, the uncertainty is modeled by a stochastic scenario-based method.

Decisions in the real-time stage are made on the basis of the outputs of the first stage and

the prediction engine. The energy traded between the home and the real-time market

is noticeably different to the energy traded in the day-ahead market because of the PV

power generation uncertainty. In other words, the energy traded in the real-time stage

can be positive or negative due to the prediction error of PV power generation. The

expected profit of the real-time stage, EP rt, is represented as:
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EP rt =

Nt∑
t=1

NΩ∑
ω=1

π(ω)(λt(P
rt
pv,outt(ω)− P da

pv,outt) (3.79)

+
∑
k

(λt(P
rt
dis,outt(k, ω)− γkP da

dis,outt(k))− λt(P rt
cht

(ω)− γkP da
cht

(k))),∀t.

−
Nj∑
j=1

V OLLjL
shed
jt (ω)− V s

pvSpvt(ω)).

EP rt consists of five parts. The first part represents the revenue for selling energy

produced by PV to the real-time local electricity market. The total cost of electrical

energy that is bought from the RTLEM is represented in the second part. The third

part expresses the profit due to selling the stored electrical energy of ESSs to the local

market. The Value of Loss Load (VOLL) cost, V OLLj , is stated in the fourth part.

Finally, the spillage cost of the PV system is represented in the last part. As seen in

(3.79), it is proposed that if the PV power generation in the real-time stage, P rt
pv,outt(ω),

is more than the PV power generation in the DA stage, the HEMS can only sell its extra

power at the net price, λt, that is less than the price that is established for the purchase

of the power generated by the PV on the day-ahead local market, λ
′
t. Hence, the HEMS

can increase its expected revenue if it has better day-ahead prediction accuracy of its

PV power generation. In the real-time stage, Eq. (3.80) is the power balance equation,

and Eq. (3.81) shows the power flow limitations in the distribution line.

P rt
nett(ω) + P rt

pv,int
(ω) +

∑
k

P rt
dis,int

(k, ω) =

Nj∑
j=1

(Lrt
jt (ω)− Lshed

jt (ω)) (3.80)

+
∑
k

P rt
cht

(k, ω),∀t, ω.

− Smax ≤ P rt
nett(ω)− (P rt

pv,outt(ω) +
∑
k

P rt
dis,outt(k, ω)) ≤ Smax,∀t, ω. (3.81)

The power output of PV in the real-time stage, P rt
pvt , is obtained based on (3.82). Here,

P rt
pv,pt(ω) is the potential power generation of the PV in the real-time, and Spvt(ω) is the

spillage power of the PV system. Eq. (3.83) represents that the total power output of

the PV equals its power output consumed in the home, P rt
pv,int

(ω), and the amount of

power generation that is sold to the real-time local market, P rt
pv,outt(ω). The PV spillage

is the amount of power that is spilled in period t. This amount is positive or equal to

zero, and is limited to the actual power generation of the PV as represented in (3.84).
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P rt
pvt(ω) = P rt

pv,pt(ω)− Spvt(ω), ∀t, ω. (3.82)

P rt
pvt(ω) = P rt

pv,int
(ω) + P rt

pv,outt(ω),∀t, ω. (3.83)

0 ≤ Spvt(ω) ≤ P rt
pv,pt(ω),∀t, ω. (3.84)

The power generation of the ESSs, P rt
dist

(ω), is expressed in (3.85). Eq. (3.86) represents

the balance equation of the state of charge in an ESS, where Ci is the initial state of

charge in the ESS. The maximum and minimum limitations of the ESSs’ state of charge

and are represented in (3.87). The ramping constraints of the ESSs are represented in

(3.88). Moreover, Eqs. (3.89) and (3.90) express constraints of the ESS in the discharge

and charge states, respectively.

P rt
dist(k, ω) = P rt

dis,int
(k, ω) + P rt

dis,outt(k, ω),∀t, k, ω. (3.85)

Crt
t (k, ω) = Crt

t−1(k, ω) + P rt
cht

(k, ω)ηB2V − P rt
dist(k, ω)/ηV 2B, t ≥ 2,∀k, ω. (3.86)

Crt
t=1(k, ω) = Ci + P rt

ch,t=1(k, ω)ηB2V − P rt
dis,t=1(k, ω)/ηV 2B, t = 1, ∀k, ω.

Pmin
ev ≤ Crt

t (k, ω) ≤ Pmax
ev , ∀t, k, ω. (3.87)

− wmin ≤ Crt
t (k, ω)− Crt

t−1(k, ω) ≤ wmax, t ≥ 2, ∀k, ω. (3.88)

− wmin ≤ Crt
t (k, ω)− Ci ≤ wmax, t = 1,∀k, ω.

0 ≤ P rt
dist(k, ω) ≤ wmaxurtt ,∀t, k, ω. (3.89)

0 ≤ P rt
cht

(k, ω) ≤ wmin(1− urtt ), ∀t, k, ω. (3.90)

Electrical loads include controllable and/or shiftable loads. In this section, three types

of loads are modelled. The space heater, Lsht , which is a controllable load, the storage

water heater, Lswht , which is a shiftable load, and must-run services, Lmrst , which are

non-controllable-shiftable loads. Eqs. (3.91) and (3.92) define total electrical load and

total load shedding, respectively. These loads are described in the following.

Nj∑
j=1

Lrt
jt (ω) = Lrt

sht
(ω) + Lrt

swht
(ω) + Lrt

ppt(ω) + Lrt
mrst(ω),∀t, ω. (3.91)

Nj∑
j=1

Lshed
jt (ω) = Lshed

sht
(ω) + Lshed

swht
(ω) + Lshed

ppt (ω) + Lshed
mrst(ω), ∀t, ω. (3.92)

The space heater provides the indoor temperature at the desired temperature. Eq. (3.93)

represents the relation between the indoor temperature and its power consumption. In
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Eq. (3.93), θ0 is the initial indoor temperature which is assumed to be equal to the

desired temperature. Eq. (3.94) limits the variations in the desired indoor temperature

to 1◦C above or below it. Also, the maximum and minimum bands of the space heater

load are represented in (3.95). Also, the load shedding constraint of the space heater is

represented in (3.96).

θint+1(ω) = θint(ω)e−1/RC + Lrt
sht

(ω)R(1− e−1/RC) (3.93)

+ θpredoutt (1− e−1/RC), t ≥ 2,∀ω.

θrtint
(ω) = θ0 = θdes, t = 1, ,∀ω.

− 1 ≤ θrtint
(ω)− θdes ≤ 1,∀t, ω. (3.94)

Lmin
sh ≤ Lrt

sht
(ω) ≤ Lmax

sh ,∀t, ω. (3.95)

0 ≤ Lshed
sht

(ω) ≤ Lrt
sht

(ω), ∀t, ω. (3.96)

Storage water heater stores the heat in the water tank. The maximum and minimum

limitations of the storage water heater’s load and energy consumption are represented in

(3.97) and (3.98), respectively. The load shedding constraint of the storage water heater

is expressed in (3.99).

Lmin
swh ≤ Lrt

swht
(ω) ≤ Lmax

swh ,∀t, ω. (3.97)

Nt∑
t=1

Lrt
swht

(ω) = Uswh, ∀t, ω. (3.98)

0 ≤ Lshed
swht

(ω) ≤ Lrt
swht

(ω), ∀t, ω. (3.99)

Maximum running hours of the pool pump equals than Ton hours per day. Eq. (3.100)

represents the limitations of the pool pump power consumption in each hour. Eq. (3.101)

represents the maximum-hour constraint that pool pump can be turn on. Moreover, the

load shedding constraint related to the pool pump is represented in (3.102).

Lmin
pp zt(ω) ≤ Lrt

pp(ω) ≤ Lmax
ppt zt(ω),∀t, ω. (3.100)

Nt∑
t=1

zt(ω) ≤ Ton, ∀t, ω. (3.101)

0 ≤ Lshed
ppt (ω) ≤ Lrt

ppt(ω), ∀t, ω. (3.102)

Must-run services are defined as loads that should be provided quickly. In this section,

it is assumed that there is no uncertainty due to the prediction of must-run services as
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represented in Eq. (3.103). Also, the load shedding constraint is represented by (3.104).

Lrt
mrst(ω) = Lpred

mrst (3.103)

0 ≤ Lshed
mrst(ω) ≤ Lrt

mrst(ω) (3.104)

3.3.5 Simulation Results

3.3.5.1 Case Study

To evaluate the performance of the proposed HEMS, the home energy system shown in

Fig. 3.2 is used. The wind micro-turbine has been omitted from the test system in this

section. The maximum power produced by the PV system is 2-kW. The battery can

store between 0.48 and 2.4 kWh, and the maximum charging/discharging rates are 400

W. Besides, the charging and discharging efficiencies are 90%. The maximum heating

power of the Space Heater (SH) equals 2 kW to maintain the temperature of the house

within ±1 of the desired temperature (23◦C). The thermal resistance of the building

shell equals 18◦C/kW, and C equals 0.525 kWh/◦C . The energy capacity of the Storage

Water Heater (SWH) is 10.46 kWh which has a 2 kW heating element. The rated power

of the Pool Pump (PP) is 1.1 kW, and it can run for a maximum of 6 hours during the

day. Table 3.6 gives the price data of the system. Moreover, VOLL, and the spillage

costs of PV-battery power generation are shown in Table 3.7.

Tab. 3.6: ToU price data of the system [Gazafroudi et al., 2017b].

Price ($/MW)

Time

(h)
λ

′
t λt

23-7 2.2 0.0814

8-14 2.2 0.1408

15-20 2.2 0.3564

21-22 2.2 0.1408

Tab. 3.7: The VOLL and spillage costs [Gazafroudi et al., 2017b].

VOLL ($/MW) Spillage Cost ($/MW)

Time

(hour)
SH SWH PP MRS PV

22-7 1 1 -0.5 2.2 4

8-21 1 1 0.25 2.2 4
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3.3.5.2 Impact of Energy Flexibility

In this section, the energy flexibility of the proposed HEMS is assessed. Hence, four

scenarios are defined to analyze the performance of the system. In Scenario 1, neither the

battery nor the EV are defined in the day-ahead stage of the energy management problem

(γbattery = γEV = 0). In Scenario 2, only the battery is considered in the day-ahead

stage (γbattery = 1, γEV = 0). However, only the EV is considered in day-ahead stage

in Scenario 3 (γbattery = 0, γEV = 1). In Scenario 4, both (the battery and the EV) are

modeled in the day-ahead stage (γbattery = γEV = 1).

The impact of the ESSs on the total, day-ahead and real-time expected profits of the

system is shown in Fig. 3.5. Also, the influence of the optimistic coefficient, α, is

evaluated in Fig. 3.5. From this figure it is clear that an increment in α increases the

total and day-ahead expected profits because α affects the PV system power production

directly through the interval bands in the day-ahead stage. Hence, α increases the PV

panel power generation in the day-ahead stage and day-ahead expected profit. However,

α has a negative impact on the amounts of the real-time expected profit. Moreover,

the expected profit of the system is maximum in scenario 4. In other words, increasing

the energy flexibility of the system increases the total, day-ahead and real-time expected

profits of the system. Hence, the maximum and minimum amounts of the expected profit

are obtained in scenarios 4 and 1, respectively. Also, the expected profit in scenario 3

is higher than that in scenario 2 because the ramping rate of EV is higher than that of

the battery. Therefore, the EV can provide more energy flexibility than the battery in

this proposed system.

Fig. 3.5: Impact of energy flexibility on the amounts of total, day-ahead and real-time
expected profits [Gazafroudi et al., 2017b].
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Fig. 3.6: Impact of prediction accuracy on the total expected profit of the system
[Gazafroudi et al., 2017b].

3.3.5.3 Impact of Prediction Accuracy

The prediction accuracy of PV power generation and its influence on the total expected

profit is analyzed in this section. To simplify the model, in this section, the prediction

accuracy of the outdoor temperature of the home and the must-run services is considered

to be 100%. Besides, it is considered that the battery and the EV are modeled in the

day-ahead stage in this case. As mentioned before, α increases the amount of total

expected profit of the system.

Fig. 3.6 evaluates the impact of the prediction accuracy on the total expected profit

is evaluated on the basis of the optimistic coefficient. Furthermore, an increase in the

prediction accuracy has a smooth negative effect on the expected profit. In other words,

in the proposed HEMS, an increment in the prediction accuracy causes to decrease the

managed power of the PV. Hence, this decreases the expected profit of the system.

According to this assessment, the maximum amount of the total expected profit of the

system is where α and prediction accuracy equal 1 and 0, respectively.

3.3.5.4 Impact of Demand Response

In this section, the effect of the DRP on the EPs and the home’s electrical energy that is

sold/bought to/from the local electricity market is assessed in four scenarios: with the

DRP, with flexible VOLL only, with the ToU price only, and without the DRP. Here,

the DRP consists of the flexible VOLL and the ToU price.
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As seen in Table 3.8, the DRP has a positive effect on the amount of total expected profit

of the HEMS. In other words, while EP da increases when the DRP is not considered in

the system, EP rt decreases because electrical loads are not flexible when the DRP is not

considered in the HEMS. Furthermore, The sold/bought electrical energy of the HEMS

considering DRP is more/less than without considering DRP because it makes HEMS

able to shift the electrical load in the time horizon of the energy management problem

and reduce the loads under some conditions. However, the impacts of the flexible VOLL

and the ToU price are not the same. Although both of them increase the sold electrical

energy, the total expected profit is higher when only flexible VOLL is considered than

when only the ToU price is considered. This is because of the positive effect that the

flexible VOLL program has on the real-time stage of the HEMP.

Tab. 3.8: Impact of demand response program on the amount of expected profit
of the system and sold/bought electrical energy to/from the local electricity market

[Gazafroudi et al., 2017b].

α = 1

EPtotal EPda EPrt Esold Ebought

With the DRP (Flexible VOLL+ToU) 47.571 40.003 7.568 18.605 43.033

With Only Flexible VOLL 47.775 42.409 5.365 14.406 37.995

With Only ToU price 42.071 40.003 2.068 15.236 49.432

Without the DRP 42.275 40.409 -0.135 13.847 47.842

3.3.5.5 Impact of Uncertainty Modeling

In this section, the modeling of uncertainty is evaluated through comparison of the

interval-stochastic and the MSPB methods. For simplicity, only the battery has been

considered and γbattery is equal to 0 in this section. The amounts of total, day-ahead and

real-time expected profits are compared in optimistic and conservative cases based on the

interval-stochastic and MSPB methods. As seen in Table 3.9, the optimistic case of both

methods is where α equals 1. However, the pessimistic case of the interval-stochastic

and the MSPB methods is where α equals 0 and 0.4, respectively as seen in Table

3.10. Tables 3.9 and 3.10 show that the difference between the amounts of the expected

profits in the optimistic and conservative cases of the interval-stochastic method are

less than the profits of the MSPB method. Besides, Fig. 3.7 shows the impact of α

on the total expected profit in both methods. Fig. 3.7 also illustrates that the worst

case of the HEMS based on the interval-stochastic method is where α equals 0 and

there is a linear pattern between increment in the optimistic coefficient and the total

expected profit when uncertainty is modeled by the interval-stochastic method. This

point makes the system more reliable and easier to analyze, as it is able to further
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mitigate the uncertainty, dealing with it in such way that its impact on the expected

results is highly reduced. Moreover, the amount of the total expected profit in the worst

case of the interval-stochastic method is less than its amount in the worst case of the

MSPB method. Hence, the interval-stochastic method is more robust than the MSPB

method to model the uncertainty in the proposed domestic energy management problem.

Fig. 3.7: Impact of uncertainty modeling on total expected profit of the system
[Gazafroudi et al., 2017b].

Tab. 3.9: Impact of uncertainty modeling on day-ahead, real-time, and total expected
profits under optimistic case [Gazafroudi et al., 2017b].

Interval-stochastic (α=1) MSPB (α=1)

With Uncertainty Without Uncertainty With Uncertainty Without Uncertainty

EPtotal 12.798 10.549 51.707 51.618

EPda 7.234 4.836 49.232 49.232

EPrt 5.564 5.713 2.475 2.386

Tab. 3.10: Impact of uncertainty modeling on day-ahead, real-time, and total expected
profits under conservative case [Gazafroudi et al., 2017b].

Interval-stochastic (α=0) MSPB (α=0.4)

With Uncertainty Without Uncertainty With Uncertainty Without Uncertainty

EPtotal 10.569 10.549 11.449 51.618

EPda 4.836 4.836 4.836 49.232

EPrt 5.733 5.713 6.613 2.386
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3.4 Conclusions

In this chapter, the HEMS has been defined to model flexible behavior of residential

end-users and their uncertainty based on different types of optimization methods (e.g.

interval, stochastic, and interval-stochastic). In this way, Stochastic Predicted Bands

(SPB) method has been defined as a novel interval method and utilized to model the

uncertainty of the decision-making variables in the home energy management problem.

The performance of the proposed model has been evaluated based on the influences of

the uncertainty of wind and PV power generation. Additionally, the performance of

the MSPB has been assessed by analyzing the effects of the optimistic and prediction

accuracy coefficients on the system simulation results. According to the simulation

results, increasing the amount of the OC can make the optimistic impacts on the system

outputs and increase the system EC and the power generation output of the uncertain

energy resources.

In addition, the energy flexibility management of the HEMS based on the predictive

dispatch model has been introduced. In the first stage, day-ahead domestic energy

management problem has been modeled by an interval method to consider the

uncertainty due to the prediction error of PV power generation. However, a

real-time problem has been represented based on the stochastic method to consider

the uncertainty. In this chapter, the HEMS has been modeled as an agent to transact

its energy system independently. However, in Chapter 4, we present an optimal offering

model for home energy management systems that is going to empower buildings and

consumers to participate directly in the local electricity market.
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4.1 Introduction

In chapter 3, the HEMS has been defined to model the flexible behavior of residential

end-users and their uncertainty based on different types of optimization methods (e.g.

interval, stochastic, and interval-stochastic). However, the HEMS has been modeled as

an agent to transact its energy system independently. In this chapter, an optimal offering

model is presented for residential energy management systems that would empower

buildings and consumers to participate directly as autonomous players in the local

electricity market based on the findings of [Gazafroudi et al., 2019c]. This is a significant

gap in the literature that should be promptly addressed because local energy markets

are quickly becoming a reality, and small consumers and prosumers are not prepared to

deal with this paradigm change. This may cause significant problems to the successful

implementation and execution of local markets, since the consumer is the central player.

Therefore, this chapter presents a probabilistic scenario-based method for the

autonomous management of the production and consumption of residential energy and

for deriving optimal offering and bidding curves as a price-taker prosumer in a local

electricity market. The proposed residential energy management problem consists of

two stages: day-ahead and real-time stages. In the day-ahead stage, uncertainty in
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the electricity price and PV energy generation is modeled by interval-based scenarios.

However, uncertainty in the HEMS is modeled through scenarios in the real-time stage,

to determine optimal transactions between the smart home and the local electricity

market. In our proposed HEMS, the battery is considered to provide the energy

flexibility in the domestic system. According to our proposed model, the HEMS can send

its optimal offering and bidding curves to the local market based on the uncertainties

of the system a price-taker agent in the local market. On the other hand, our proposed

HEMS without optimal bidding strategy is able to participate in peer-to-peer energy

transactions with other small consumers, producers, and prosumers in its neighborhood

through its optimum decisions in the management of the smart home.

The rest of this chapter is organized as follows. Section 4.2 represents uncertainty

modelling. Our two-stage probabilistic scenario-based residential energy management

problem is defined in Section 4.3 for which optimal offering and bidding strategies are

derived. Finally, Section 4.4 studies the effectiveness of our proposed methodology.

4.2 Uncertainty representation

It is not easy to obtain an accurate market price forecast, due to the main characteristics

of market prices. The main features of electricity prices are non-stationary mean and

variance, multiple seasonality and the calendar effect. Uncertainty is associated with the

predicted values. Although the electricity market prices are highly volatile, the market

agents need to obtain an estimation from the price to make optimal decisions in the

market [Conejo et al., 2010]. This section discusses the uncertainty modeling for power

generation of the PV solar panels and market prices.

The modeling of uncertainty is one of the main concerns of the energy management

systems. In [Soroudi and Amraee, 2013], authors studied energy systems from the

perspective of decision making under uncertainty. In this way, in [Soroudi and

Amraee, 2013], authors classified uncertainty modelling methods into probabilistic,

interval, robust, possibilistic, hybrid probabilistic-possibilistic optimization approaches,

and information gap decision theory. In [Chen et al., 2016b] and [Chen et al.,

2016a], authors presented a combined forecasting technique using time-varying weights

to model uncertainty of distributed energy resources in electric power systems. In

this way, uncertainties have been modeled by interval bands and stochastic scenarios

to be considered in interval linear programming, mixed-integer linear programming,

and chance-constrained programming in a general structure. In addition, in [Chen

et al., 2016a], bi-level programming has been presented to control air pollution and

plan renewable energy resources in an inexact bi-level optimization model. In [Chen
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et al., 2016a], authors proposed a multi-level algorithm for decision making problems.

According to the proposed model of [Chen et al., 2017], authors did not concentrate

on interval bands of uncertain parameters as inputs of the system. Hence, solutions of

the decision-makers have been represented by interval bands, and authors proposed how

optimal solutions could be achieved if the solutions desired by the decision-makers are

conflicting.

Among the uncertainties that influence the operation of the residential energy

management systems, the solar irradiation and the electricity market prices have the

highest impact [Farmani et al., 2018]. Hence, the uncertainties associated with these

inputs are considered in the proposed model and the scheduling problem is developed

as a stochastic scenario-based optimization model [Soares et al., 2017].

In stochastic models, a set of realizations should be considered, and therefore the

foremost problem is to produce a set of scenarios for random variables, which can

effectively characterize the probabilistic features of the data [Conejo et al., 2010]

and[Ghazvini et al., 2015]. The initial set of scenarios is a large data set generated by the

Monte Carlo Simulation (MCS) technique for representing power system uncertainties.

The MCS parameters are the probability distribution functions of the forecast errors,

which are obtained from the historical data [Ghazvini et al., 2015] and [Wu et al., 2015].

An additional term which can be positive or negative is added to the forecasted profile

(xforecasted(t)) to include the impact of uncertainty.

xs(t) = xforecasted(t) + xerror,s(t),∀t, s. (4.1)

According to (4.1), the error term, xs(t), is a zero-mean noise with standard deviation σ

[Ghazvini et al., 2015] and [Bakirtzis et al., 2014]. Scenarios are represented with xs(t).

In this model, the forecast errors are all assumed normally distributed. It is noticeable

that electricity prices present very high spikes. However, it depends on the structure of

the markets and the behavior of the participants. Some studies, e.g. [Ghalelou et al.,

2016], Ref. [Ghalelou et al., 2016] adopts normal distribution to model market price

uncertainty. Thus, the scenario tree concept can clearly explain how the discrete outcome

for each stochastic input can be combined to construct the larger set of scenarios.

A scenario tree consists of nodes that represent the states of the random variable at

particular time points, branches to show different realizations of the variable and the

root which shows the beginning point where the first stage decisions are made [Ghazvini

et al., 2015]. Fig. 4.1 shows the scenario tree model for the proposed scenario-based

stochastic programming model [Ghazvini et al., 2015]. xsn(t) refers to the nth random
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Fig. 4.1: Scenario tree representation [Ghazvini et al., 2015] and [Gazafroudi et al.,
2019c].

variable. Variables can be of different nature. In this way, xs1(t) may represent PV

power generation and xs2(t) can denote local market prices. The number of the nodes at

the second stage is equal to the total number of scenarios. The occurrence probability

of each scenario is equal to the product of the branches’ probabilities [Ghazvini et al.,

2015] and [Soares et al., 2016].

Using the initial set of generated realizations in the optimization problem will lead

to a large-scale optimization model [Ghazvini et al., 2015]. It is essential to obtain

a trade-off between model accuracy and the computation speed [Wu et al., 2016] and

[Nasri et al., 2016]. In order to handle the computational tractability of the problem,

the standard scenario reduction techniques developed in [Growe-Kuska et al., 2003]

is implemented. The scenario reduction algorithms exclude the scenarios with low

probabilities of occurrence and combines the scenarios that are close to each other in

terms of statistic metrics [Growe-Kuska et al., 2003]. They determine a scenario subset

of the prescribed cardinality and probability which is closest to the initial distribution in

terms of a probability metric [Wu et al., 2015]. The main purpose of scenario reduction

is to reduce the dimension of the problem through decreasing the number of variables

and equations.
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Thus, it would be possible to obtain the solutions more efficiently, without losing

the main statistical characteristics of the initial dataset [Momber et al., 2015]. The

drawback of applying these approaches is introducing imprecision in the final solution

[Nasri et al., 2016]. The reduction algorithms proposed in [Growe-Kuska et al., 2003]

incorporate algorithms with different computational performance and accuracy, namely

fast backward method, fast backward/forward method and fast backward/backward

method. The selection of the algorithms depends on the problem size and the expected

solution accuracy [Wu et al., 2015] and [Growe-Kuska et al., 2003]. For instance,

the best computational performance with the worst accuracy can be provided by the

fast-backward method for large scenario trees. Furthermore, the forward method

provides the best accuracy and the highest computational time. Thus, it is usually

used where the size of reduced subset is small [Wu et al., 2015].

4.3 Problem Formulation

This section addresses a two-stage probabilistic residential energy problem in which it is

necessary to determine optimal offering and bidding curves in the Day-Ahead (DA) and

Real-Time (RT) Local Electricity Markets (LEMs). Energy is defined to be the only

electrical commodity that is exchanged with the DA and RT local electricity markets.

In the DA stage, the uncertainty of the PV energy generation and electricity price

is modeled through interval-based scenarios, but the scenarios are used to model the

corresponding uncertainty of the PV generation and electrical price in the RT stage. In

this way, the two-stage interval-stochastic optimization method to solve the residential

energy management problem is described. Then, our proposed problem is modeled by

a two-stage stochastic programming. The difference between these two methods is to

model the DA stage. While the uncertainties in the DA stage are modeled by interval

bands in interval-optimization method, the stochastic interval-based scenarios are used

to model the DA stage’s uncertainty in the two-stage stochastic programming.

4.3.1 Two-stage Interval-Stochastic model

4.3.1.1 Objective function

In the context of this section, smart home- as a prosumer- is defined as an active player

that can trade energy with the LEM in the DA and RT stages. Fig. 4.2 shows a

schematic of our proposed residential energy management system. Thus, the objective

is to maximize the expected profit of the energy served in the home and the energy

transacted with the market. In this section, the PV system is considered as the
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Fig. 4.2: A generic layout of our residential energy management system [Gazafroudi
et al., 2019c].

distributed energy resource in the domestic energy system. The battery system acts

as an energy storage system. Also, electrical loads consist of Space Heater (SH), storage

water heater, pool pump, and must-run services.

maxEP =
∑

t[λ
da(t)(P da

sold(t)− P da
net(t))] (4.2)

+
∑

ω πω[
∑

t(λ
rt
sold(t, ω)∆P rt

sold(t, ω)− λrtnet(t, ω)∆P rt
net(t, ω)

−V S
PV S

PV (t, ω)−
∑

j V OLLj(t)ES
rt
j (t, ω))].

As seen in (4.2), the EP is represented as an objective function of the two-stage

interval-stochastic residential energy management problem. The EP consists of two

parts. The first part represents the profit of the day-ahead stage and the second part

expresses the real-time expected profit. In the DA part, the revenue of selling the

electrical energy to local market is stated as a first term, and the second term states

the costs of buying the electrical energy from the market. In the RT part, they are

presented in the following order: the revenue of extra energy sold in real-time, the cost

of extra energy bought in real-time, PV’s spillage cost, and the cost of loads’ shedding.

The constraints related to the DA and RT stages are represented in the following.
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4.3.1.2 Day-ahead stage

As discussed further on, we account that the smart home can transact electrical energy

in both day-ahead and real-time local electricity markets. Eqs. (4.3) and (4.4) represent

the power flow limitation through the distribution line which ends at the home building.

In this way, Smax expresses the maximum power capacity of the distribution line that

links the smart home and the power grid (hereinafter, authors refer to the Smart HomE

as “SHE” for short, note that the abbreviation does not intend to make any association

with gender). Also, vda(t) is a binary variable which states the transacted energy status.

In other words, SHE purchases energy from the local market when vda(t) is equal to 1,

and SHE sells energy to the local market when vda(t) equals 0. Eqs. (4.3) and (4.4)

guarantee that the SHE cannot act as a producer and a consumer, simultaneously. In

this model, the smart home provides for its demand first and then SHE sells its extra

energy to the local market.

0 ≤ P da
net(t) ≤ Smaxv

da(t), ∀t. (4.3)

0 ≤ P da
sold(t) ≤ Smax(1− vda(t)),∀t. (4.4)

Moreover, Eq. (4.5) expresses that the energy sold to the local market consists of two

terms: the energy produced by the PV system, P da
pv,out(t), and the discharged energy,

P da
dis,out(t), of the battery system; these are injected into the power grid in the day-ahead

stage. Besides, the flexibility coefficient, γ, is multiplied by the discharged and charged

energy of the battery in the day-ahead stage, obtaining a value between 0 and 1. If γ

equals 0 it means that the battery is not considered in the day-ahead residential energy

management problem. On the other hand, the battery is considered to have full capacity

in the day-ahead stage of the problem when γ equals 1. Also, only the corresponding

portion of the battery’s capacity will be considered in the day-ahead stage when γ gets

an amount between 0 and 1.

P da
sold(t) = P da

pv,out(t) + γP da
dis,out(t),∀t. (4.5)

Eq. (4.6) establishes the power balance equation due to the energy output of the PV

system and the discharged energy of the battery injected into the home (P da
pv,in(t) and

P da
dis,in(t), respectively), the electrical energy bought from the local market, P da

net(t), total
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energy consumption of the domestic loads, ELda(t), and charged energy of the battery

system, P da
ch (t).

P da
net(t) + P da

pv,in(t) + γP da
dis,in(t) = ELda(t) + γP da

ch (t),∀t. (4.6)

As discussed further in this section, the DA stage’s uncertainty is modeled by interval

bands in the two-stage interval-stochastic model. Eq. (4.7) presents the maximum

and minimum bands of the price in the day-ahead local market. Hence, λpred(t) and

σupprice(t)/σ
dn
price(t) are predicted price and upper/lower predicted price error, respectively.

Also, price is the corresponding Optimistic Coefficient (OC) of the electricity price. The

OC is a slack parameter for the decision-maker which can take amounts between 0 and

1. If αprice equals 0/1 the uncertainty of price is modeled as conservative/optimistic.

λpred(t)− σdnprice(t)(1− αprice) ≤ λda(t) ≤ λpred(t) + σupprice(t)αprice, ∀t. (4.7)

Moreover, the following constraints correspond to all devices in the smart home. The

total potential energy generated by the PV system in each time period, P da
pv,p(t), is the

sum of the produced PV’s energy that is injected into the home, P da
pv,in(t), and the power

grid, P da
pv,out(t) as represented in Eq. (4.8). Also, k(t) is a binary variable which states

the dispatched status of the PV system.

P da
pv,p(t)k(t) = P da

pv,in(t) + P da
pv,out(t), ∀t. (4.8)

Furthermore, our uncertainty modeling relies on confidence intervals for energy

generation of the PV as well as price. Hence, Eq. (4.9) deals with the possibility

of point forecasting error. This way, P pred
PV (t) and +σuppv (t)/σdnpv (t) are predicted PV

energy generation and upper/lower predicted energy error, respectively. Also, αpv is

the corresponded Optimistic Coefficient (OC) of the PV energy produced that can be

between 0 and 1.

P pred
PV (t)− σdnpv (t)(1− αpv) ≤ P da

pv,p(t) ≤ P
pred
PV (t) + σuppv (t)αpv, ∀t. (4.9)
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The battery is used based on the charging and discharging strategies in the residential

energy management problem. Eq. (4.10) represents the state-of-charge (SOC) balance

equation of the battery, where Ci is the initial state of charge in the battery.

Cda(t) = Cda(t− 1) + P da
ch (t)ηH2B −

P da
dis(t)

ηB2H
, ∀t ≥ 2. (4.10)

Cda(t) = Ci + P da
ch (t)ηH2B −

P da
dis(t)

ηB2H
,∀t = 1.

Eq. (4.11) presents the maximum and minimum limitations of the battery’s SOC.

Pmin
b ≤ Cda(t) ≤ Pmax

b ,∀t. (4.11)

The ramping upper and lower constraints related to the SOC are expressed in (4.12).

−wmin ≤ Cda(t)− Cda(t− 1) ≤ wmax, ∀t ≥ 2. (4.12)

−wmin ≤ Cda(t)− Ci ≤ wmax,∀t = 1.

Maximum and minimum limitations of the discharged and charged energy of the battery

are stated in (4.13) and (4.14), respectively.

0 ≤ P da
dis(t) ≤ wmaxuda(t), ∀t. (4.13)

0 ≤ P da
ch (t) ≤ wmin(1− uda(t)),∀t. (4.14)

Eq. (4.15) represents that the total discharged energy of the battery system, P da
dis(t), is

the sum of discharged energies that are injected into the home, P da
dis,in(t), and the power

grid, P da
dis,out(t), in the day-ahead stage.

P da
dis(t) = P da

dis,in(t) + P da
dis,out(t),∀t. (4.15)

In our proposed model, it is considered that the day-ahead electrical loads are equal

to the predicted load as seen in (4.16), and their corresponding equations are defined

only in the real-time stage. Moreover, for the sake of simplicity, the uncertainty of the

electrical loads is not considered in this section.
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ELda(t) = ELpred(t),∀t. (4.16)

4.3.1.3 Real-time stage

In the DA stage the smart home can exchange energy with the LEM. However, in

contrast to the DA stage, stochastic programming is used to model the uncertainty of

the electricity price and PV energy generation in the RT stage, and the prices of sold

and bought electricity can be different in the RT stage. The power balance equation in

the RT is expressed in Eq. (4.17) to represent the mismatch between the DA transacted

energy and RT expected exchanged energy. According to Eq. (4.17), the sum of energy

bought in the DA and RT markets, P da
net(t) and ∆P rt

net(t, ω), produced energy of the PV

system in the RT, P rt
pv(t, ω), and discharged energy of the battery in the RT, P rt

dis(t, ω),

equal total electrical energy consumption in the RT, ELrt(t, ), charged energy of the

battery in the RT, P rt
ch(t, ω), the energy sold to the local market in the DA and RT,

P da
sold(t) and ∆P rt

sold(t, ω), minus total energy loss, ESrt(t, ω).

P da
net(t) + P rt

pv(t, ω) + P rt
dis(t, ω) + ∆P rt

net(t, ω) = ELrt(t, ω)− ESrt(t, ω) (4.17)

P rt
ch(t, ω) + P da

sold(t) + ∆P rt
sold(t, ω),∀t, ω.

Eq. (4.18) presents the power flow limitation in a distribution line that ends at the

smart home. It is noticeable that both, Eqs. (4.17) and (4.18), are coupling constraints

that cause the DA and RT problems to be solved simultaneously.

Smax ≤ P da
net(t) + ∆P rt

net(t, ω)− P da
sold(t)−∆P rt

sold(t, ω) ≤ Smax, ∀t, ω. (4.18)

In addition, Eqs. (4.19) and (4.20) ensure that the smart home cannot be a producer

and a consumer in the same scenario in the real-time stage.

0 ≤ ∆P rt
net(t, ω) ≤ Smaxv

rt(t, ω),∀t, ω. (4.19)

0 ≤ ∆P rt
sold(t, ω) ≤ Smax(1− vrt(t, ω)),∀t, ω. (4.20)
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Eq. (4.21) represents the energy output equation of PV in the real-time stage. According

to (4.21), P scen
pv (t, ω) presents the stochastic potential PV energy generation, and

Spv(t, ω) is the spilled energy of the PV system.

P rt
pv(t, ω) = P scen

pv (t, ω)− Spv(t, ω), ∀t, ω. (4.21)

As well as Eq. (4.8), Eq. (4.22) presents the total energy generated by the PV system

in the RT stage that is the sum of energy produced by the PV which is injected into the

home, P rt
pv,in(t, ω), and the energy grid, P rt

pv,out(t, ω).

P rt
pv(t, ω) = P rt

pv,in(t, ω) + P rt
pv,out(t, ω),∀t, ω. (4.22)

The maximum and minimum bands of spilled PV energy produced are represented in

(4.23).

0 ≤ Spv(t, ω) ≤ P scen
pv (t, ω), ∀t, ω. (4.23)

In the following, the battery system’s constraints in the RT stage are stated in

(4.24)-(4.29).

Crt(t, ω) = Crt(t− 1, ω) + P rt
ch(t, ω)ηH2B −

P rt
dis(t, ω)

ηB2H
, ∀t ≥ 2, ω. (4.24)

Crt(t = 1, ω) = Ci + P rt
ch(t = 1, ω)ηH2B −

P rt
dis(t = 1, ω)

ηB2H
, t = 1,∀ω.

Pmin
b ≤ Crt(t, ω) ≤ Pmax

b ,∀t, ω. (4.25)

−wmin ≤ Crt(t, ω)− Crt(t− 1, ω) ≤ wmax, ∀t ≥ 2, ω. (4.26)

−wmin ≤ Crt(t, ω)− Ci ≤ wmax, t = 1, ∀ω.

0 ≤ P rt
dis(t, ω) ≤ wmaxurt(t, ω), ∀t, ω. (4.27)

0 ≤ P rt
ch(t, ω) ≤ wmin(1− urt(t, ω)), ∀t, ω. (4.28)

PP
disrt(t, ω) = P rt

dis,in(t, ω) + P rt
dis,out(t, ω),∀t, ω. (4.29)
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In the context of this section, electrical loads consist of loads that can be controllable

and/or shiftable, or not. In this section, Space Heater (SH) is a controllable load,

Storage Water Heater (SWH) and Pool Pump (PP) are modeled as shiftable loads, and

Must-Run Services (MRSs) are defined as a class of loads that are non-controllable and

non-shiftable. Eqs. (4.30) and (4.31) represent the total electrical energy consumption

and energy shedding in the RT stage.

Ert(t, ω) =j EL
rt
j (t, ω) = ELrt

sh(t, ω) + ELrt
swh(t, ω) (4.30)

+ELrt
pp(t, ω) + ELrt

mrs(t, ω), ∀t, ω.

ESrt(t, ω) =
∑

j ES
rt
j (t, ω) = ESrt

sh(t, ω) + ESrt
swh(t, ω) (4.31)

+ESrt
pp(t, ω) + ESrt

mrs(t, ω), ∀t, ω.

Space heater controls the indoor temperature at the desired temperature band. Eq.

(4.32) states the linear equation between the indoor and outdoor temperature and the

electrical consumption of the space heater. Here, θini is the initial indoor temperature

which, in this model is assumed to equal the desired temperature, θindes.

θin(t+ 1, ω) = e

−1

RC θin(t, ω) +R(1− e
−1

RC )Lrt
sh(t, ω) (4.32)

+(1− e
−1

RC )θout,pred(t, ω),∀t ≥ 2, ω.

θin(t, ω) = θini = θindes, t = 1, ∀ω.

Eq. (4.33) represents that the indoor temperature is limited to 1 degree above and below

the desired temperature.

−1 ≤ θin(t, ω)− θindes ≤ 1,∀t, ω. (4.33)

Besides, the corresponding maximum and minimum bands of the space heater’s load

consumption in (4.34).

0 ≤ Lrt
sh(t, ω) ≤ Lmax

sh , ∀t, ω. (4.34)
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Eq. (4.35) presents how energy consumption of the SH is determined based on its power

consumption.

ELrt
sh(t, ω) =

Lrt
sh(t, ω)− Lrt

sh(t− 1, ω)

2
,∀t, ω. (4.35)

ELrt
sh(t, ω) =

Lrt
sh(t, ω)− Lsh

i

2
, t = 1,∀ω.

Energy shedding constraint of the SH is expressed in (4.36).

0 ≤ ESrt
sh(t, ω) ≤ ELrt

sh(t, ω),∀t, ω. (4.36)

The SWH is in charge of storing the heat in the water tank. The maximum and minimum

constraints of the storage water heater’s load consumption are stated in Eq. (4.37).

0 ≤ Lrt
swh(t, ω) ≤ Lmax

swh ,∀t, ω. (4.37)

Besides, Eq. (4.38) represents that the total energy consumption of the SWH should

be equal to its maximum energy capacity, and it guarantees that the SWH is only a

shiftable load, not a shavable load.

∑NT
t=1 L

rt
swh(t, ω) = Umax

swh ,∀ω. (4.38)

Also, Eq. (4.39) represents that relation between energy and load consumption of the

SWH.

ELrt
swh(t, ω) =

Lrt
swh(t, ω)− Lrt

swh(t− 1, ω)

2
,∀t ≥ 2, ω. (4.39)

ELrt
swh(t, ω) =

Lrt
swh(t, ω)− Lswh

i

2
, t = 1,∀ω.

Eq. (4.40) states the energy shedding constraint related to the SWH.

0 ≤ ESrt
swh(t, ω) ≤ ELrt

swh(t, ω), ∀t, ω. (4.40)

The PP should not run more than TON hours in a day as represented in (4.41).
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Lrt
pp(t, ω) = Lmax

pp ,∀t, ω. (4.41)

Besides, Eq. (4.42) represents when the PP is “ON” it consumes its maximum load

capacity. In (4.41) and (4.42), z(t, ω) is a binary variable that represents the “ON”/

“OFF” status of the PP. This way, z(t, ω) is equal to 1 when the PP is “ON”, and z(t, ω)

equals 0 when the PP is “OFF”.

sumNT
t=1z(t, ω) ≤ TON ,∀ω. (4.42)

The relation between the energy and power consumption of the PP is stated in (4.43).

ELrt
pp(t, ω) =

Lrt
pp(t, ω)− Lrt

pp(t− 1, ω)

2
,∀t ≥ 2, ω. (4.43)

ELrt
pp(t, ω) =

Lrt
pp(t, ω)− Lpp

i

2
, t = 1, ∀ω.

Also, the limitations regarding the shedded energy of the PP is expressed in (4.44).

0 ≤ ESrt
pp(t, ω) ≤ ELrt

pp(t, ω), ∀t, ω. (4.44)

The MRSs include the loads that should be provided quickly - e.g. lighting,

entertainment, etc. Hence, MRS are not dispatchable, and the quantity of them are

determined based on the prediction as seen in (4.45).

0 ≤ Lrt
mrs(t, ω) ≤ Lpred

mrs (t), ∀t, ω. (4.45)

The relation between the energy and power consumption and energy shedding of the

MRSs are obtained the same as SH, SWH and PP as represented in (4.46) and (4.47),

respectively.

ELrt
mrs(t, ω) =

Lrt
mrs(t, ω)− Lrt

mrs(t− 1, ω)

2
,∀t ≥ 2, ω. (4.46)

ELrt
mrs(t, ω) =

Lrt
mrs(t, ω)− Lmrs

i

2
, t = 1, ∀ω.

0 ≤ ESrt
mrs(t, ω) ≤ ELrt

mrs(t, ω), ∀t, ω. (4.47)
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All equations- which are represented above- described physical home system’s objective

and constraints, and our proposed model for optimal bidding strategy has not been

represented up to now. In the following, we present an optimal bidding strategy for our

proposed residential energy management system.

4.3.2 Optimal bidding strategy

The equations presented in this section derive optimal offering (when SHE is a producer)

and biding (when SHE is a consumer) curves of the smart home for each decision-making

time period in the DA and RT local electricity markets. In the context of this work, the

offering curves should be ascending. However, the bidding curves should be descending.

Eqs. (4.48) and (4.49) represent the offering model of the smart home in the RT stage.

∆P rt
net(t, ω) ≥ ∆P rt

net(t, ω
′
),∀ω > ω

′
&λrtnet(t, ω) < λrtnet(t, ω

′
),∀t. (4.48)

∆P rt
sold(t, ω) ≥ ∆P rt

sold(t, ω
′
),∀ω > ω

′
&λrtsold(t, ω) > λrtsold(t, ω

′
), ∀t. (4.49)

As seen in the above constraints, Eq. (4.48) makes the descending bidding curves. On

the other hand, Eq. (4.49) guarantees that the offering curves should be ascending.

However, the above equations are not practical in an offering model of the smart home

in the day-ahead stage because the uncertainty of PV energy generation and day-ahead

electricity price is modeled through interval bands. In this situation, one solution is to

use an iterative algorithm according to [Baringo and Conejo, 2011] to derive offering

and bidding curves for the smart home in the day-ahead stage. However, the PV energy

generation/electricity price will get its maximum/minimum amount in each iteration

interval. Hence, using the iterative algorithm is not an appropriate solution for an

offering model in the DA stage. This way, a new method for bidding strategy via

interval-based scenarios is presented in this section as described in next subsection.

4.3.3 Two-stage Stochastic model

According to our proposed method, the scenarios for the day-ahead stage are come from

the interval bands. This way, interval bands of the day-ahead PV energy generation and

electricity price are divided into two scenarios that consist of: minimum and maximum

bands (however, these scenarios can be extended). In this case, total day-ahead

scenarios, Nϕ, equals N
Np

ib . In this way, Nib and Np represent number of number of

scenarios in each interval band in each time period, and number of uncertain parameters.
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Therefore, in this section, Nϕ equals 4, Nib equals 2 as mentioned above, and Np is equal

to 2 because only the uncertainty of the PV energy generation and electricity price is

considered in this section. Also, the corresponding probability, , for all scenarios equal
1

Nϕ
which are equal to 0.25 (=

1

4
) in this section.

Therefore, new scenarios are added to the variables of the DA stage instead of interval

bands of the PV energy generation and electricity price. The scenarios in the DA stage

will be represented by . In this way, the expected profit based on the two-stage stochastic

model of the HEMS is represented in (4.50).

maxEP =
∑

ϕ[
∑

t[λ
da(t, ϕ)(P da

sold(t, ϕ)− P da
net(t, ))]] (4.50)

+
∑

ω πω[
∑

t(λ
rt
sold(t, ω)∆P rt

sold(t, ω)− λrtnet(t, ω)∆P rt
net(t, ω)

−V S
PV S

PV (t, ω)−
∑

j V OLLj(t)ES
rt
j (t, ω))].

As seen in (4.50), only variables and parameters of the day-ahead stage depend on ϕ

in comparison to (4.2). In the following, Eqs. (4.3) -(4.18) will be redefined in (4.51)

-(4.66), respectively. In this way, Eqs. (4.51) and (4.52) express the power flow limitation

for the distribution line which ends at the building.

0 ≤ P da
net(t, ϕ) ≤ Smaxv

da(t, ϕ),∀t, ϕ. (4.51)

0 ≤ P da
sold(t, ϕ) ≤ Smax(1− vda(t, ϕ)), ∀t, ϕ. (4.52)

Eq. (4.53) represents that the energy sold to the local market consists of energy produced

by the PV system discharged energy of the battery system.

P da
sold(t, ϕ) = P da

pv,out(t, ϕ) + γP da
dis,out(t, ϕ),∀t, ϕ. (4.53)

Eq. (4.54) states the power balance equation in the building.

P da
net(t, ϕ) + P da

pv,in(t, ϕ) + γP da
dis,in(t, ϕ) = ELda(t, ϕ) + γP da

ch (t, ϕ), ∀t, ϕ. (4.54)
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Eq. (4.55) presents the scenarios for the day-ahead electricity price which are come from

its interval bands.

λda(t, ϕ1) = λda(t, ϕ2) = λpred(t)− σdnprice(t)(1− αprice),∀t. (4.55)

λda(t, ϕ3) = λda(t, ϕ4) = λpred(t) + σupprice(t)αprice, ∀t.

Eq. (4.56) represents the potential energy generated by the PV system.

P da
pv,p(t, ϕ)k(t, ϕ) = P da

pv,in(t, ϕ) + P da
pv,out(t, ϕ),∀t, ϕ. (4.56)

The scenarios for the day-ahead PV energy generation based on its interval bands are

represented in (4.57).

P da
pv,p(t, ϕ1) = P da

pv,p(t, ϕ3) = P pred
PV (t)− σdnpv (t)(1− αpv), ∀t. (4.57)

P da
pv,p(t, ϕ2) = P da

pv,p(t, ϕ4) = P pred
PV (t) + σuppv (t)αpv, ∀t.

Eq. (4.58) expresses the state-of-charge (SOC) equation of the battery in the day-ahead

stage.

Cda(t, ϕ) = Cda(t− 1, ϕ) + P da
ch (t, ϕ)ηH2B −

P da
dis(t, ϕ)

ηB2H
, ∀t ≥ 2, ϕ. (4.58)

Cda(t, ϕ) = Ci + P da
ch (t, ϕ)ηH2B −

P da
dis(t, ϕ)

ηB2H
,∀t = 1, ϕ.

Eq. (4.59) represents the maximum and minimum bands of the battery’s SOC.

Pmin
b ≤ Cda(t, ϕ) ≤ Pmax

b ,∀t, ϕ. (4.59)

The ramping upper and lower limitations related to the SOC are stated in (4.60).
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−wmin ≤ Cda(t, ϕ)− Cda(t− 1, ϕ) ≤ wmax, ∀t ≥ 2, ϕ. (4.60)

−wmin ≤ Cda(t, ϕ)− Ci ≤ wmax,∀t = 1, ϕ.

Eqs. (4.61) and (4.62) represent maximum and minimum constraints of the discharged

and charged energy of the battery, respectively.

0 ≤ P da
dis(t, ϕ) ≤ wmaxuda(t, ϕ),∀t, ϕ. (4.61)

0 ≤ P da
ch (t, ϕ) ≤ wmin(1− uda(t, ϕ)), ∀t, ϕ. (4.62)

Eq. (4.63) presents that the total discharged energy of the battery system.

P da
dis(t, ϕ) = P da

dis,in(t, ϕ) + P da
dis,out(t, ϕ), ∀t, ϕ. (4.63)

As highlighted before, in this section, the uncertainty of the electrical loads is not seen

in the day-ahead stage, and the day-ahead electrical loads are considered to be equal to

their point forecasting as seen in (4.64).

ELda(t, ϕ) = ELpred(t),∀t, ϕ. (4.64)

Eq. (4.65) represents the power balance equation in the real-time stage.

P da
net(t, ϕ) + P rt

pv(t, ω) + P rt
dis(t, ω) + ∆P rt

net(t, ω) = ELrt(t, ω)− ESrt(t, ω) (4.65)

+P rt
ch(t, ω) + P da

sold(t, ϕ) + ∆P rt
sold(t, ω),∀t, ω, ϕ.

Eq. (4.66) states the power flow constraints a distribution line which end at the building.

−SmaxP
da
net(t, ϕ) + ∆P rt

net(t, ω)− P da
sold(t, ϕ)−∆P rt

sold(t, ω)Smax, ∀t, ω, ϕ. (4.66)
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Hence, the offering model for deriving the offering and bidding curves of the smart home

presented according to (4.67) and (4.68):

P da
net(t, ϕ) ≥ P da

net(t, ϕ
′
), ∀ϕ > ϕ

′
&λda(t, ϕ) < λda(t, ϕ

′
), ∀t. (4.67)

P da
sold(t, ϕ) ≥ P da

sold(t, ϕ
′
), ∀ϕ > ϕ

′
&λda(t, ϕ) > λda(t, ϕ

′
),∀t.

This way, according to the reformulated equations, the decision-making problem is

represented below:

max(4.50)

s.t. : (4.19)− (4.49), (4.51)− (4.68).

The above model expressed our proposed optimal bidding strategy for the HEMS via

two-stage stochastic programming.

4.4 Case studies

4.4.1 Cases

The residential system that has been used in [Gazafroudi et al., 2019c] is utilized as a

test system in this section. The proposed Mixed Integer Linear Programming (MILP)

is solved in GAMS 24.2.3 [Soroudi, 2017]. Also, Table 2 presents data of the proposed

domestic system. In addition to data presented in Tables 4.1-4.4, Smax is considered to

equal 10 kW, Lmrs
i equals 0 kW, and V S

PV 1 $/kWh.

Prediction, interval bands, and scenarios data are presented in Appendix Section.The

loads prediction data is stated in Table 4.5. Table 4.6 presents the predicted day-ahead

central forecasting and interval errors of price and PV energy generation. As it can

be seen in Table 4.6, upper and lower forecasting errors are considered to be equal in

this paper. Moreover, the real-time electricity price and PV energy generation scenarios

are reduced to ten scenarios for each time period as presented in Tables 4.7 and 4.8,

respectively. The corresponding probabilities of the real-time scenarios are stated in

Table 4.9. It should be highlighted that the sold and bought electricity price in the

real-time are considered to be equal in this case study. Hence, λrt(t, ω) is defined in

Table 5 instead of λrtnet(t, ω) and λrtsold(t, ω).
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Tab. 4.1: Data of the battery [Gazafroudi et al., 2019c].

Battery

ηH2B Charging efficiency 0.90

ηB2H Discharging efficiency 0.9

Ci Initial state of the charge 0.48kWh

Pmax
b Maximum storage level 2.40 kWh

Pmin
b Minimum storage level 0.48 kWh

wmax Maximum ramping rate 0.40 kWh

wmin Minimum ramping rate 0.40 kWh

Tab. 4.2: Data of the space heater [Gazafroudi et al., 2019c].

Space heater

Lsh
i Initial load consumption 1.00 kW

θini Initial indoor temperature 23◦C

C Thermal energy capacity 0.525 kWh/◦C

R Thermal resistance of the building 18 ◦C/kWh

Lmax
sh Maximum electrical consumption 5.525 kWh

Tab. 4.3: Data of the storage water heater [Gazafroudi et al., 2019c].

Storage water heater

Lswh
i Initial load consumption 0.00 kW

Lmax
swh Maximum electrical consumption 3.00 kW

Umax
swh Daily energy consumption 10.46 kWh

Tab. 4.4: Data of the pool pump [Gazafroudi et al., 2019c].

Pool pump

Lpp
i Initial load consumption 0.00 kW

Lmax
pp Maximum electrical consumption 1.10 kW

TON Maximum daily-hours 1.00 h

As mentioned before, the predicted day-ahead home’s energy consumption and load of

must-run services in the real-time do not depend on the scenarios in our proposed model,

only their point forecasting is modeled in this section. Characteristics of the residential

system are described in the following:

• Battery can store between 0.48 kWh and 2.4 kWh, and its maximum charging and

discharging rates are 400 W. Charging and discharging rates represent maximum

amount of power of the battery that can be charged or discharged in each
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Tab. 4.5: Day-ahead predicted energy consumption of the home and predicted load of
the must-run services in real-time [Gazafroudi et al., 2019c].

Time (h) ELpred(t)(kWh) Lpred
mrs (t)(kW )

1 4.605 0.005

2 4.605 0.005

3 4.605 0.005

4 4.605 0.005

5 3.065 0.005

6 2.605 0.005

7 2.435 0.005

8 2.245 0.005

9 2.055 0.005

10 1.865 0.005

11 1.675 0.005

12 1.675 0.005

13 1.675 0.005

14 1.675 0.005

15 1.675 0.005

16 1.675 0.005

17 1.85 0.005

18 1.935 0.005

19 2.278 1.218

20 2.452 0.262

21 2.582 0.262

22 2.59 0.14

23 2.727 0.127

24 2.605 0.005

decision-making time step. Also, the charging and discharging efficiencies of the

battery are 90%.

• Maximum load capacity of the space heater in each time period is equal to 5.525

kW.

• Daily energy capacity of the storage water heater is 10.46 kWh (180 lt). Also, it

has a 3 kW heating element.

• The desired temperature of the building is assumed to equal 23◦C. Furthermore,

the thermal resistance of the building shell and C are equal to 18◦C/kW and 0.525

kWh/◦C, respectively.
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Tab. 4.6: Central forecasting and interval forecasting error of the market price and
the PV energy output in the day-ahead stage [Gazafroudi et al., 2019c].

Time (h) λpred(t) σdnprice(t) = σupprice(t) Ppred
pv (t) σdnpv (t) = σuppv (t)

1 39.13 13.11 0 0

2 35.51 12.77 0 0

3 33.13 12.59 0 0

4 31.91 12.37 0 0

5 31.62 12.32 0 0

6 33.25 12.34 0 0

7 38.04 13.03 0.042 0.042

8 43.30 13.81 11.78 11.78

9 45.95 13.58 91.47 75.02

10 46.61 12.75 271.1 147.7

11 46.31 12.82 494.1 215.7

12 45.39 12.83 698.7 275.8

13 44.88 12.84 853.2 312.8

14 44.73 13.00 973.7 328.2

15 43.52 13.31 1066.1 312.7

16 42.42 13.74 1071.8 285.7

17 42.40 14.11 972.6 285.0

18 43.73 14.47 800.8 259.4

19 45.19 14.86 589.6 230.5

20 46.75 14.13 370.1 169.7

21 47.44 13.42 146.3 105.3

22 47.18 12.12 25.06 25.06

23 44.43 11.63 0.680 0.680

24 40.84 11.86 0 0

The assessment of the performance of the proposed residential energy management

problem is done in two cases that are described as follows:

• Case 1: The residential energy management problem is solved by Mixed-Integer

Linear Programming (MILP) through a two-stage stochastic optimal bidding

strategy which. In this way, scenarios of the first stage come from interval bands,

while stochastic scenarios are used in the second stage. In this case, influences

of the optimistic and flexibility coefficients are assessed in the performance of the

proposed residential energy management system based on the optimal bidding

strategy.
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Tab. 4.7: Scenarios of the market price in the real-time stage [Gazafroudi et al., 2019c].

Time (h) λrt(t, ω1) λrt(t, ω2) λrt(t, ω3) λrt(t, ω4) λrt(t, ω5) λrt(t, ω6) λrt(t, ω7) λrt(t, ω8) λrt(t, ω9) λrt(t, ω10)

1 11.96 22.42 30.48 31.56 34.23 41.23 47.42 48.90 52.85 59.20

2 29.05 34.35 19.32 31.38 27.70 33.83 32.40 50.91 21.01 34.40

3 41.22 17.40 25.82 29.68 41.83 22.75 32.09 30.28 24.66 34.18

4 24.20 30.15 28.56 39.21 29.80 31.45 34.78 40.37 39.17 29.35

5 13.49 33.30 39.75 37.96 26.81 30.57 20.85 38.17 41.58 53.09

6 36.62 23.10 43.12 21.33 32.85 37.74 27.52 33.01 32.80 35.33

7 40.18 46.20 37.62 41.97 32.70 43.00 35.64 47.69 32.14 30.76

8 46.71 38.62 47.66 43.39 49.46 33.96 49.51 46.68 47.04 48.18

9 49.29 42.51 47.84 36.27 43.07 41.45 58.31 44.12 41.82 48.57

10 40.14 61.71 64.09 36.72 39.46 52.21 43.75 36.02 35.13 40.04

11 37.05 39.08 29.24 43.01 55.78 47.82 47.79 53.98 54.90 55.20

12 34.53 39.80 55.38 32.61 37.76 64.35 44.50 54.37 34.39 42.58

13 37.50 48.56 43.54 39.54 50.76 45.38 67.95 23.15 46.28 45.44

14 43.32 42.59 52.83 33.82 39.99 40.04 49.73 52.87 34.58 50.54

15 42.47 42.89 32.35 47.86 51.53 41.00 47.19 27.01 35.75 43.31

16 26.11 30.76 49.69 23.35 46.66 36.85 27.31 57.41 32.81 45.03

17 45.90 30.30 47.90 16.84 39.27 24.37 72.74 34.35 41.71 67.24

18 28.00 49.67 35.27 31.16 29.82 40.23 44.97 40.25 31.91 38.66

19 53.04 40.93 47.06 49.15 40.53 61.46 54.31 53.95 54.42 57.43

20 28.17 58.00 27.05 49.46 58.08 28.05 48.24 40.36 55.23 48.96

21 41.61 51.30 51.10 47.98 60.90 42.25 45.62 51.61 39.05 45.47

22 27.68 53.03 41.27 51.70 37.96 47.51 31.93 48.34 45.07 53.13

23 56.34 48.24 49.41 46.56 51.08 43.00 38.23 52.57 47.93 36.63

24 46.38 29.20 50.56 22.86 33.41 33.68 27.80 43.71 50.39 38.75

Tab. 4.8: Scenarios of the PV energy output in the real-time stage [Gazafroudi et al.,
2019c].

Time (h) Pscen
pv (t, ω1) Pscen

pv (t, ω2) Pscen
pv (t, ω3) Pscen

pv (t, ω4) Pscen
pv (t, ω5) Pscen

pv (t, ω6) Pscen
pv (t, ω7) Pscen

pv (t, ω8) Pscen
pv (t, ω9) Pscen

pv (t, ω10)

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 7.22 26.69 0 0.37 20.80 22.48 17.71 6.50 9.91 13.30

9 80.52 140.6 125.7 99.96 34.55 69.55 107.6 84.43 97.65 63.73

10 203.5 206.9 287.6 195.2 307.8 278.8 320.7 210.3 275.2 160.0

11 531.6 607.5 526.4 452.9 585.5 530.4 476.0 507.5 554.5 513.9

12 895.5 666.1 654.8 864.2 747.0 832.3 586.4 676.5 725.1 610.2

13 745.8 792.3 405.0 994.4 1007.4 1015 805.3 791.6 788.1 1082

14 1165 637.2 899.8 994 1336.9 1138.9 825.7 810.4 1106.2 1049.4

15 916.0 1267.8 1024.5 1282.8 1003.9 1211.2 1074.9 1292.2 923.7 874.7

16 870.9 1306.8 1068.9 988.1 1077.7 1120 1246.6 861.8 903.7 1092.7

17 1152.4 938.9 1061.8 882.2 1072.9 1065.6 1083.8 1058.5 895 925.4

18 773.8 777.5 795.2 738.9 881.5 814.09 950.9 725 868.1 714.9

19 434.8 540.2 582.4 523.9 654.2 493.3 443.9 612.2 615.3 561.4

20 314.3 313.2 305.5 415.3 282.9 379.4 332.7 378.09 360.7 346

21 160.8 150.9 148.1 261.9 98.10 120.1 149.7 87.45 106.8 163

22 24 35.40 19.70 13.29 8.640 48.21 17.18 22.75 0 21.75

23 0.465 0 1.783 0.435 0.851 0 0.694 0.330 0.553 0.054

24 0 0 0 0 0 0 0 0 0 0

In this way, the stochastic optimal bidding strategy for the HEMS will be:
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Tab. 4.9: Scenario Probabilities in the real-time stage [Gazafroudi et al., 2019c].

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

φω 0.07 0.10 0.10 0.09 0.08 0.11 0.12 0.08 0.11 0.13

max(4.50)

s.t. : (4.19)− (4.49), (4.51)− (4.68).

• Case 2: The residential energy management problem is solved without considering

the bidding strategy. In this case, the uncertainty of price and PV energy output

in the day-ahead stage is modeled by both methods: Interval-based scenarios and

interval bands. In this way, the performance of the system is evaluated according

to the impacts of optimistic coefficients on both methods.

In the two-stage stochastic scenario-based method (hereinafter, this method is called

InterStoch), the proposed residential energy management problem without the optimal

bidding strategy will be:

max(4.50)

s.t. : (4.19)− (4.47), (4.51)− (4.66).

However, for the two-stage interval-stochastic optimization method (hereinafter, this

method is called Hybrid), the residential energy management problem without the

optimal bidding strategy is represented in the following:

max(4.2)

s.t. : (4.3)− (4.47).

Although InterStoch method optimizes the residential energy management problem

by MILP, uncertainty modeling based on Hybrid method in our proposed energy

management problem is solved by Mixed-Integer Non-Linear Programming (MINLP).
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4.4.2 Results

4.4.2.1 Case 1: with optimal offering model

In this section, the performance of the proposed two-stage stochastic residential energy

management problem is assessed taking into account optimal bidding strategy. In this

way the performance of the proposed problem is evaluated based on the impacts of

the optimistic coefficients of the PV energy output and electricity price, and flexibility

coefficient on the expected profit of the system and transacted energy between the smart

home and the local market.

a. Impact of αpv, αprice, and γ

In this section, impacts of αpv and price on total, day-ahead and real-time expected

profits of the smart home are studied. Moreover, their influences on the exchanged

energy through smart home and the local market is evaluated. In Fig. 4.3, impact

of the αpv on the expected profits of the system is studied considering αprice and γ

equal 1. As seen in Fig. 4.4, increment of αpv increases total expected profit, and the

maximum amount of the total expected profit is where αpv is equal to 1. However, the

worst case is where αpv equals 0, and the total expected profit of the system gets its

minimum amount. Thus, modeling a residential energy management system considering

αpv equals 0 increases the robustness of the system. On the hand, the increment of price

has a negative effect on the total expected profit of the system where αpv and γ equal

0 and 1, respectively. This way, worst and robust case of the system is when αpv equals

0 and αprice equals 1. Fig.4.5 demonstrates the impact of the flexibility coefficient on

the expected costs in the worst case of the system when αpv and αprice equal 0 and

1, respectively. As shown in Fig. 4.5, increment of the flexibility coefficient increases

the total expected profit of the system. Hence, the maximum amount of the expected

profit is where γ equals 1. In this case, the best case is more interested to model energy

flexibility of the smart home since the best case to manage energy flexibility in the

domestic energy management problem is where γ equals 1.

b. Optimal offering and bidding curves

In this section, optimal offering and bidding curves of the residential energy management

problem through the two-stage stochastic model are represented. As in the day-ahead

stage, the home energy management system only offers and bids one quantity for all

price scenarios, since the optimal bought/sold energy curve of the smart home from/to
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Fig. 4.3: Impact of αpv on total, day-ahead and real-time expected profits of the
residential energy management problem considering αprice and γ equal 1 [Gazafroudi

et al., 2019c].

Fig. 4.4: Impact of αprice on total, day-ahead and real-time expected profits of
the residential energy management problem considering αpv equals 0 and γ equals

1 [Gazafroudi et al., 2019c].

the local market is shown in Fig. 4.6. As seen in Fig. 4.6, the offering set-points of the

home in all scenarios and time steps in the day-ahead stage equal 0. It means that the

proposed home is eager to participate only as a consumer in the day-ahead local market.

However, Fig. 4.7 represents that the smart home acts as a prosumer, and SHE submits

both its optimal and bidding curves to the real-time local market in all time steps. In

Fig. 4.7, optimal offering and bidding curves are demonstrated at t=1, t=3, and t=6.

As it has been explained in Section 4.3, three types of electrical loads- controllable,

shiftable and non-dispatchable- are defined in this section. In this way, the space heater

is modeled as controllable load based on (4.32)-(4.34). Fig. 4.8 shows real-time expected
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Fig. 4.5: Impact of γ on total, day-ahead and real-time expected profits of the
residential energy management problem considering αpv equals 0 and αprice equals

1 [Gazafroudi et al., 2019c].

Fig. 4.6: The optimal scheduled transacted energy for the smart home in the day-ahead
stage [Gazafroudi et al., 2019c].

electrical consumption of the space and indoor temperature. In the case study, it is

considered that the desired indoor temperature of the home equals 23 . Hence, the

real-time expected indoor temperature is constrained to 22 and 24 according to 4.33

as it is shown in Fig. 4.8. On the other hand, the Storage Water Heater (SWH) and

Pool Pump (PP) are defined as shiftable loads in this system. Hence, shiftable loads

are switched off in the time periods of higher electricity price. As shown in Table 4.7,

electricity price is the highest amount in the time period from t=6 to t=15. Hence,

both SWH and PP are not committed by the HEMS from t=6 to t=15 as shown in

Fig. 4.9. Although the maximum daily operational time period of the PP has been

assumed to be 1 hour ( TON = 1), Fig. 4.9(b) shows the amount of real-time expected
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Fig. 4.7: The optimal bidding and offering curves for the smart home in t equals 1, 3,
and 6 in the real-time stage [Gazafroudi et al., 2019c].

Fig. 4.8: Real-time expected electrical consumption of the space heater (a), real-time
expected indoor temperature (b) in the optimal offering model of the HEMS [Gazafroudi

et al., 2019c].

electrical consumption is nonzero in four time steps. For this reason, Fig. 4.9(b) presents

expected electrical consumption of the PP in each time period of the residential energy

management problem. In this way, real-time operation status on the PP (z(t, ω)) is

shown in Fig. 4.9(c). As it is seen in Fig. 4.9(c), z(t, ω) is only committed to one time

period of each scenario. However, z(t, ω) is committed to six scenarios (ω2, ω3, ω5, ω6,

ω7, ω10) in t=24, so real-time expected electrical consumption of the PP is the highest

at t=24.

Fig. 4.10 shows the real-time expected state of charge of the battery. In this section, it is

considered the battery’ SOC is in the minimum storage level in the initial state (Ci=0.48

kWh). As it is shown in Fig. 4.10, the SOC of battery is at its minimum level of charge
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Fig. 4.9: Real-time expected electrical consumption of the storage water heater (a),
real-time expected electrical consumption of the pool pump (b), real-time operation
status of the pool pump (c) in optimal offering model of the HEMS [Gazafroudi et al.,

2019c].

Fig. 4.10: Real-time expected state of charge of the battery in the optimal offering
model of the HEMS [Gazafroudi et al., 2019c].

at t=24. Fig. 11 shows real-time SOC, charged energy, and energy discharged from the

battery at t=1 (a), t=3 (b), and t=6 (c). By comparing Figs. 4.10 and 4.11, it can be

deduced that there is not fixed incremental or decreasing relationship between the SOC

of the battery and electricity price. Thus, the use of a battery as an energy storage

system can provide energy flexibility to make optimal offering and bidding curves for

the HEMS.
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Fig. 4.11: Real-time state of charge, charged energy, and discharged energy of the
battery at t=1 (a), t=3 (b), t=6 (c) [Gazafroudi et al., 2019c].

4.4.2.2 Case 2: without optimal offering model

In this section, performance of the proposed residential energy management problem

is studied while constraints related to the optimal bidding strategy are not seen in the

problem, and both proposed methods are used to model uncertainty of the PV energy

generation and electricity price. In the following, the results of the system based on

InterStoch and Hybrid methods are demonstrated and compared.

a. Results of the InterStoch method

In this section, the uncertainty of the system is modeled by the InterStoch method.

Hence, effectiveness of the optimal bidding strategy that consists of constraints (4.48),

(4.49), (4.67) and (4.68) is evaluated in this section.

As seen in Figs. 4.12 and 4.13, increment of the optimal coefficients of the PV energy

generation and electricity price has positive and negative influence on the expected profit

of the system. In other words, the worst case of the system is to consider that pv and

price equal 0 and 1, respectively. In this way, in Fig. 4.14, the real-time offering and

bidding curves of the domestic energy management system are assessed in the worst

case without the optimal bidding strategy. Fig. 4.7 demonstrates the real-time bidding

and offering curves in t=1, t=3, and t=6. As mentioned before, optimal offering and

bidding curves must be ascending and descending, respectively. In Fig. 4.14, red circles

indicate offering and bidding transacted energy steps that are descending and ascending,

respectively, and they cause the offering and bidding curves to not be optimal. Hence,

in non-optimal offering model, SHE is not able to submit its offering and bidding curves
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Fig. 4.12: Without offering model (InterStoch model): impact of αpv on total,
day-ahead and real-time expected profit of the residential energy management problem

considering αprice and γ equal 1 [Gazafroudi et al., 2019c].

Fig. 4.13: Without offering model (InterStoch model): impact of αprice on total,
day-ahead and real-time expected profit of the residential energy management problem

considering αpv equals 0 and γ equals 1 [Gazafroudi et al., 2019c].

to the local market so as to maximize its expected profit. This is because offering and

bidding curves are not optimal in this Case. Hence, an appropriate strategy for SHE

is to transact energy with other local market players- e.g. small consumers, producers,

and prosumers- according to its optimum decisions in home energy management.

b. Results of the Hybrid method

In this section, the Hybrid method is used to model uncertainty of the PV’s energy

generation and electricity price in the residential energy management problem. In this
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Fig. 4.14: Without offering model (InterStoch model): the bidding and offering curves
for the smart home in t equals 1, 3, and 6 in the real-time stage [Gazafroudi et al.,

2019c].

Fig. 4.15: Without offering model (Hybrid model): impact of αpv on total, day-ahead
and real-time expected profit of the residential energy management problem considering

αprice and γ equal 1 [Gazafroudi et al., 2019c].

case, interval bands are defined to consider uncertainty in the day-ahead stage of our

proposed energy management problem. Moreover, as it has been highlighted before, the

optimization problem will be MINLP.

Fig. 4.15 demonstrates that increment of the optimistic coefficient of the PV energy

generation increases the total expected profit of the system. However, increasing the

price decreases the total expected profit as it is shown in Fig. 4.16. Hence, these facts

state that impact patterns of the optimistic coefficients on the expected profit of the

system are the same in both methods. Moreover, Fig. 4.17 proves that bidding and

offering curves are not optimal in this case. By comparing between Tables 4 and 6, it
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Tab. 4.10: Total expected profit of the residential energy management problem
considering optimal and non-optimal strategies in the worst scenario (αpv equals 0

and αprice equals 1) [Gazafroudi et al., 2019c].

Non-optimal offering Non-optimal offering Optimal offering

(hybrid method) (InterStoch method)

Day-ahead EP (e) -2.684 -3.130 -3.130

Real-time EP (e) 1.965 1.971 1.945

Total EP (e) -0.719 -1.159 -1.185

Fig. 4.16: Without offering model (Hybrid model): impact of αprice on total,
day-ahead and real-time expected profit of the residential energy management problem

considering αpv equals 0 and γ equals 1 [Gazafroudi et al., 2019c].

Fig. 4.17: Without offering model (Hybrid model): the bidding and offering curves for
the smart home in t equals 1, 3, and 6 in the real-time stage [Gazafroudi et al., 2019c].

can be observed that the smart home is eager to act as a consumer in the model based

on the hybrid method as opposed to the model based on the InterStoch method. The
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results of this eagerness can be seen in Table 5. In this way, although total and day-ahead

expected profits of the system in the hybrid method is less than the InterStoch method,

the real-time expected profit of the system in the InterStoch method is higher. For this

reason, SHE prefers to play as a consumer in more scenarios in the hybrid method in

comparison to the InterStoch one. Besides, Table 5 compares expected profits of the

HEMS in non-optimal and optimal offering models in the worst scenario where PV equals

0 and price equals 1. As seen in Table 5, total EP of the HEMS is the highest when

the non-optimal model is solved by hybrid method. Moreover, total EP of the system

is lowest in optimal offering model of the HEMS. In other words, Table 5 shows that

the InterStoch optimization method is more robust than the hybrid method because it

provides a lower total expected profit of the system in this case study. Also, the optimal

offering model is more robust than the non-optimal offering one.

4.5 Conclusions

In this chapter, a probabilistic scenario-based method was presented for the management

of residential energy and energy trading with the local electricity market based on an

optimal bidding strategy. Our residential energy management problem includes two

stages: day-ahead and real-time. In the day-ahead stage, two methods have been

proposed to model the uncertainty of electricity price and PV energy generation. Their

uncertainty is modeled by interval bands and interval-based scenarios. In the real-time

stage, stochastic scenarios have been used to consider the uncertainty affecting the

system. In addition, energy flexibility is provided by a battery system. In our next

chapter, we will model different energy management strategies in the power distribution

systems based on a community of end-users (e.g. smart buildings) in order to look at

how end-users can impact on local energy trading as price-maker agents.
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5.1 Introduction

Power distribution systems are more active than their conventional structures due

to demand response strategies and increment of distributed energy resources’ power

generation. Thus, centralized electricity markets cannot follow flexible behavior of

end-users in the bottom layer of the distribution systems [Borlase, 2016]. Therefore,

new market structures are required to provide energy flexibility based on decentralized

manners. In this chapter, different strategies and structures are proposed to trade

electricity in power distribution systems based on flexible behaviors of end-users.

The rest of this chapter is organized as follows. Section 5.2 describes a decentralized

approach to manage energy flexibility by end-users in the distribution network. In

Section 5.3, a monopolistic approach for the energy flexibility management problem

is presented. Sections 5.4 and 5.5 propose iterative algorithm for trading electricity

between the aggregators and the DSO, and between the end-users and the DSO,

respectively. Finally, this chapter is concluded in Section 5.6.

5.2 Decentralized energy flexibility management

The appearance of end-users’ flexible behavior based on DRPs has made the distribution

layer of the power systems more active. In this way, energy transaction management

through a decentralized manner could be an appropriate solution to improve the

efficiency of energy trading in the power distribution networks. This section proposes a



92 Chapter 5. Local electricity trading structure

Fig. 5.1: Real-time energy transaction framework of the power distribution system
[Zhang et al., 2018], [Prieto-Castrillo et al., 2018] and [Gazafroudi et al., 2018].

decentralized method to manage energy flexibility by end-users based on a bottom-up

approach in distributed power systems. The results and discussions in this section are

based on [Gazafroudi et al., 2018].

5.2.1 Energy flexibility management problem

In this section, real-time decentralized energy management problem is defined based on

a bottom-up structure. Three types of players are introduced in the power distribution

systems (e.g. end-users, aggregators, and the Distribution System Operator (DSO)).

In this structure, the DSO is the only agent which is able to transact energy with the

Real-Time Electricity Market (RTEM), PRT
tω . Fig.5.1 describes the energy transaction

problem schematically. According to the proposed approach, end-users trade energy

flexibility with both aggregator (end-users can only transact energy flexibility with

the aggregator from whom they bought their scheduled energy), PL2A
jtω , and the DSO,

PDSO2L
jtω , at prices λL2Akt and λDSO2L, respectively. In the next step, aggregators trade

flexibility provided by end-users, PA2DSO
ktω . Although the real-time flexibility transactions

between end-users and aggregators, and aggregators and the DSO are two-way, end-users

can only buy real-time energy from the DSO.

Hence, each end-user can either behave as upward or downward flexible load or not as

represented in (5.1). A positive flexibility, LF
jtω > 0, tends to reduce the scheduled load,

whereas the end-user would increase its scheduled demand in a negative flexibility, LF
jtω <
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0. In other words, if LF
jtω > 0, the corresponding customer decreases its day-ahead

scheduled electrical demand in real-time. However, if LF
jtω < 0, its real-time electrical

demand is more than its day-ahead scheduled demand. Also, LShed
jtω is the amount of

load shedded by each end-user. Moreover, Eq. (5.2) represents that the real-time load

of end-user j is not provided when all distribution lines (that are ended at end-user j)

are not connected. Here, MLjiω is defined to express the status of lines between buses

j and i. In this way, MLjiω equals 0 where the line between j and i is off. Thus, we

find that:

Ljtω = LC
jt − LF

jtω − LShed
jtω , ∀j, t, ω. (5.1)

Ljtω ≤ (LC
jt − LF

jtω)
∑

j 6=iMLjiω, ∀j, t, ω. (5.2)

Eq. (5.3) states load shedding constraints. Eq. (5.4) represents minimum and maximum

limitations of energy flexibility. Flexibility splits itself into real-time traded energy with

both the aggregator (PL2A
jtω ) and the DSO (PDSO2L

jtω ) as represented in (5.5).

0 ≤ LShed
jtω ≤ LC

jt , ∀j, t, ω. (5.3)

−γjLC
jt ≤ LF

jtω ≤ γjLC
jt ,∀j, t, ω. (5.4)

LF
jtω = PL2A

jtω − PDSO2L
jtω , ∀j, t, ω. (5.5)

As highlighted before, while the energy transacted through end-users and aggregators is

bi-directional, end-users can only buy real-time energy from the DSO as seen in (5.6).

PDSO2L
jtω ≥ 0, ∀j, t, ω. (5.6)

In this section, it is considered that end-users can play as shiftable loads to provide

flexibility as represented in (5.7). Also, end-users can be constrained over all end-users

that are aggregated by the same aggregator, Ak, in each time step as seen in (5.8). In

this way, Eq. (5.8) increases the sustainability of electrical loads in the each region of the

distributed power system. Here, costumers that are limited to (5.7) are called economic

followers. However, costumers who are limited to (5.8) are known as reliability followers

in this section.

∑
t L

F
jtω = 0 , ∀j, ω. (5.7)∑

j∈Ak
LF
jtω = 0 ,∀t, ω. (5.8)
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Eqs. (5.9) and (5.10) represent power flow and balancing equations in each bus of the

distribution network, respectively.

Pjitω = Bji(θjtω − θitω), ∀j 6= i, t, ω. (5.9)

PL2A
jtω − PDSO2L

jtω =
∑

j 6=i P
Flow
jitω MLjiω,∀j, t, ω. (5.10)

Moreover, not only the exchanged energy must be balanced in all bus nodes, but also

the transacted energy should be balanced in each layer of the power distribution grid.

Hence, the total flexibility traded between the end-users and the aggregators should

be transacted through aggregators and the DSO as represented in (5.11). Thus, the

balancing equation in the layer of the DSO for energy exchange between the DSO and

the RTEM, aggregators, and end-users is presented in (5.12).

PA2DSO
ktω =

∑
j∈Ak

PL2A
jtω , ∀k, t, ω. (5.11)

PRT
tω =

∑
j P

DSO2L
jtω −

∑
k P

A2DSO
ktω ,∀t, ω. (5.12)

As highlighted before, end-users are classified as economic and reliability followers in

this section. In this way, customers are able to express their desired reliability level

to guarantee their desired electrical demand considering the uncertainty of the power

distribution grid. The Demand Factor (DF)- which which has been introduced in

[Gazafroudi et al., 2015], [Pinto et al., 2017], [Gazafroudi et al., 2017c] and [Gazafroudi

et al., 2019b]- is modified in this work as represented in (5.13). Eqs. (5.13) and (5.14)

representDFj as a positive variable that is limited to 1. On the one hand, whenDFj = 1,

end-user j has the highest reliability level. On the other hand, end-user j has the lowest

reliability level if DFj = 0. Besides, a flexible function for Value of Lost Load (VOLL)

is needed to consider the desired reliability level of each end-user. Therefore, end-users

who have higher amounts of V OLL, have higher amounts of the DF as represented in

(5.15).

DFj =
∑

t,ω πω(
LC
jt−LShed

jtω

LC
jt

),∀j (5.13)

DFDes
j ≤ DFj ≤ 1,∀j (5.14)

V OLLjt = (
DFDes

j∑
j DFDes

j
+ 1)V OLLBase

t ,∀j, t (5.15)

Here, the objective function of end-users is defined as their Expected Cost (EC) which

should be minimized. The proposed objective function, Eq. (5.16), derives from trade-off

between energy bought from the DSO at price λDSO2L and flexibility trade with the
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corresponding aggregator k at price λL2Akt integrated over time.

OFj∈Ak
=

∑
ω

πω(λDSO2L
∑
t

PDSO2L
jtω (5.16)

−
∑
t

λL2Akt PL2A
jtω +

∑
t

V OLLjtL
Shed
jtω )

5.2.2 Simulation results

5.2.2.1 Case study

In this section, a 33-bus test system is used from [Zhang et al., 2018], [Prieto-Castrillo

et al., 2018], [Mithulananthan et al., 2016] and [Gazafroudi et al., 2018] as seen in

Fig. 5.2. Three regions have been introduced that are operated by their corresponding

aggregators. In this way, the energy price is different in each region as shown in Table

5.1. The basic cost of V OLL is presented in Table 5.2. Here, it is considered that

λDSO2L = 0.6 [e/kWh] according to [Zhang et al., 2018], [Prieto-Castrillo et al., 2018]

and [Gazafroudi et al., 2018]. The proposed energy management approach is evaluated

based on impacts of distribution lines’ uncertainty, and flexibility strategies. Also, the

proposed Linear Programming (LP) model is solved in GAMS 24.0.2 [?].

Fig. 5.2: The 33-bus test system and aggregators [Zhang et al., 2018], [Prieto-Castrillo
et al., 2018], [Mithulananthan et al., 2016] and [Gazafroudi et al., 2018].
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Tab. 5.1: Price of energy traded between end-users and aggregators [Zhang et al.,
2018], [Prieto-Castrillo et al., 2018] and [Gazafroudi et al., 2018].

Time [h] λL2Ak=1,t [e/kWh] λL2Ak=2,t [e/kWh] λL2Ak=3,t [e/kWh]

1 0,05 0,08 0,06

2 0,05 0,08 0,07

3 0,05 0,09 0,07

4 0,04 0,07 0,05

5 0,11 0,18 0,15

6 0,12 0,20 0,16

7 0,13 0,22 0,17

8 0,15 0,24 0,19

9 0,16 0,25 0,20

10 0,24 0,41 0,33

11 0,26 0,42 0,36

12 0,28 0,43 0,37

13 0,25 0,40 0,32

14 0,18 0,26 0,21

15 0,15 0,24 0,20

16 0,14 0,22 0,18

17 0,15 0,25 0,19

18 0,20 0,36 0,30

19 0,21 0,36 0,29

20 0,22 0,41 0,30

21 0,24 0,42 0,33

22 0,12 0,22 0,16

23 0,11 0,19 0,15

24 0,06 0,09 0,07

5.2.2.2 Impact of lines uncertainty

In this section, the impact of distribution lines uncertainty on the total EC of all

end-users is studied as seen in Eq. (5.17).

EC =
∑
j

OFj (5.17)
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Tab. 5.2: The basic V OLL [Gazafroudi et al., 2018].

Time (h) V OLLBase
t [e/kWh]

1 8

2 8

3 9

4 7

5 16

6 17

7 18

8 20

9 21

10 35

11 36

12 37

13 34

14 22

15 20

16 20

17 20

18 31

19 32

20 33

21 35

22 17

23 16

24 8

Hence, three scenarios are considered which consist of C1 (there is no uncertainty in

the distribution lines), C2 (uncertainty of the distribution lines is considered without

load-shedding cost), and C3 (line uncertainty and load-shedding cost are considered). It

is noticeable that only Eq. (5.7) is considered as a flexible behavior of end-users in this

section. In this way, end-users only act as shiftable loads, and their optimum decisions

are made autonomously to manage flexibility.

As it is shown in Table 5.3, the EC is negative in both C1 and C2. In other words,
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Tab. 5.3: The impact of line uncertainty [Gazafroudi et al., 2018].

C1 C2 C3

EC [e] -714.291 -171.02 1,851,328.747

Tab. 5.4: Impact of the end-users’ flexible behavior [Gazafroudi et al., 2018].

F3 S3 FS3

EC [e] 1,851,328.747 1,851,409.376 1,851,469.455

the proposed energy flexibility management approach brings a profit for all end-users in

C1 and C2. However, the total expected costs of the end-users in C2 is less than C1

that it expresses the uncertainty of lines impacts negatively on the EC. In other words,

the uncertainty of distribution lines causes load shedding in each end-user. Hence, this

uncertainty increases the end-users’ expected cost due to load shedding. Also, Table

5.3 represents the real effect of line uncertainty on the EC. However, the comparison

between the ECs of C2 and C3 proves that the high amount of this cost is due to the

load-shedding cost. This causes the importance of decreasing the line uncertainty where

the distribution system operator are in charge of it.

5.2.2.3 The impact of flexible behavior

In this section, the impact of energy flexibility provided by end-users is assessed. To

this end, another three scenarios are defined to evaluate shiftable and self-consumption

flexible behaviors of the end-users. Moreover, this study is assessed considering

assumptions in scenario C3 (the lines uncertainty and load-shedding cost are considered).

Hence, the scenarios in this section include F3 (only shiftable constraint, Eq. (5.7), is

considered), S3 (only self-consumption constraint, Eq. (5.8), is considered), and FS3

(both shiftable and self-consumption constraints, Eqs. (5.7) and (5.8), are considered).

In scenario F3, energy flexibility is managed independently by end-users in the bottom

layer of the system. However, there is a need for coalition between end-users in S3 and

FS3 to provide flexibility according to (5.8). Table 5.4 shows the flexible behavior of

the end-users on relation to the EC. As it is shown in Table 5.4, Scenario F3 has the

minimum amount of the total expected costs for the end-users. In other words, shiftable

flexibility is more profitable than self-consumption flexibility for end-users. In addition,

it would be concluded that the complete decentralized flexibility management system is

more profitable for end-users than the scenario that flexibility provided by a coalition

of end-users. However, scenarios S3 and FS3 improves the sustainability of the power

distribution network.



Multi-agent architecture for local electricity trading in power distribution systems 99

Fig. 5.3: Impact of flexibility behavior on the expected energy traded between the
DSO and the RTEM [Gazafroudi et al., 2018].

As it is shown in Fig. 5.3, the expected traded energy through the DSO and the RTEM

equals zero in scenarios S3 and FS3. However, in F3, the expected energy exchanged

between the DSO and the RTEM is both positive and negative in different time periods

in which it presents two-way energy transaction between the distribution network and

the up-stream power grid. In other words, Fig. 5.3 shows that there is no energy

transaction between the DSO and the RTEM considering self-consumption constraint,

and it makes the power distribution system as a sustainable system which does not

depend on the up-stream grid to provide its required energy.

In this section, the flexible behavior of end-users has been modelled to minimize the

total expected cost for end-users considering uncertainty of distribution lines. However,

the interaction between aggregators and the DSO and their expected costs have not

been modelled in this section that will be discussed in Section ??.

5.3 Monopolistic approach to manage energy flexibility

In this section, a monopolistic approach based on a hierarchical structure is presented

to manage energy flexibility in the distribution grid. According to our proposed

monopolistic approach, all end-users and aggregators are able to manage their energy

flexibility independently through a bottom-up approach considering the effects of

interactions between players in the bottom layer of the power system.
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5.3.1 Problem formulation

In this section, we remodel a real-time energy management problem to transact flexibility

among three types of agents (e.g., end-users, aggregators, and the DSO). However, in

Section ??, it has been mentioned that there are three types of players in the system.

Agents are one type of players which can make decisions independently with regard to

energy flexibility management. Also, energy cost transaction is modelled in this section.

Thus, aggregators transact energy flexibility, PA2DSO
kt , with the DSO at price λA2DSO

kt .

In the following, corresponding equations of each agent are described.

Fig. 5.4: Agents and real-time energy transaction framework of the distribution
network [Zhang et al., 2018] and [Prieto-Castrillo et al., 2018].

For simplicity, uncertainty of distribution lines and load shedding cost are not considered

in this section. Consequently, all equations are modified in this section. Each end-user

can decrease or increase its scheduled load in real-time to provide either upward or

downward flexible load, respectively, as represented in (5.18). Eq. (5.19) represents

minimum and maximum limitations of energy flexibility. Here, γj is defined as a

flexibility factor which can be set between 0 and 1. The flexible energy splits itself into

the real-time exchanged energy with corresponding aggregator (PL2A
jt ) and the DSO

(PDSO2L
jt ) as represented in (5.20). Moreover, Eq. (5.21) presents that the real-time

energy transaction between the end-users and the DSO is one-way (from the DSO to

end-users). In this section, four types of flexibility are defined that are provided by

end-users or aggregators. Here, end-users are considered shiftable loads that provide

energy flexibility as represented in (5.22). Besides, each end-user can be limited over

all end-users that are aggregated by the same aggregator in each time step as seen in

(5.23).
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Ljt = LC
jt − LF

jt, ∀j, t. (5.18)

−γjLC
jt ≤ LF

jt ≤ γjLC
jt , ∀j, t. (5.19)

LF
jt = PL2A

jt − PDSO2L
jt , ∀j, t. (5.20)

PDSO2L
jt ≥ 0, ∀j, t. (5.21)∑

t L
F
jt = 0 ,∀j. (5.22)∑

j∈Ak
LF
jt = 0 , ∀t. (5.23)

According to our hierarchical structure, the total flexibility transacted through end-users

and aggregators should be exchanged through aggregators and the DSO as represented

in (6.21). Moreover, Eqs. (5.25) and (5.26) are defined in the aggregators’ layer to

provide shiftable and self-sustainable traded real-time energy between aggregators and

end-users as well as (5.22) and (5.23) which have been represented in the bottom layer

of the system.

PA2DSO
kt =

∑
j∈Ak

PL2A
jt , ∀k, t. (5.24)∑

t P
L2A
jt = 0 , ∀j. (5.25)∑

j∈Ak
PL2A
jt = 0 ,∀t. (5.26)

The maximum and minimum constraints of price of energy traded between aggregators

and the DSO, λA2DSO
kt , are represented in (5.27). Besides, the balancing equation in the

layer of the DSO to trade flexibility through the DSO and the RTEM, and rest of the

agents is presented in (5.28).

δktλ
L2A
kt ≤ λA2DSO

kt ≤ λRT
t , ∀t, k. (5.27)

PRT
t =

∑
j P

DSO2L
jt −

∑
k P

A2DSO
kt ,∀t. (5.28)

In this way, the objective functions of end-users, aggregators, and the DSO are

represented in (5.29), (5.30), and (5.31), respectively. In (5.29), the objective function of

each end-user expresses its expected cost that should be minimized. Objective function

of the end-user j consists of two terms. The first term represents the expected cost due to

buy real-time energy from the DSO, and the second term states the expected profit due to

sell energy flexibility to the aggregator. As represented in (5.30), the objective function
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consists of two terms which consists of the expected cost due to trading energy flexibility

with the end-users, and the expected profit due to energy transaction with the DSO,

(however, λA2DSO
kt PA2DSO

kt makes the problem non-linear). In (5.31), OFDSO includes

three terms consisting of the expected cost of energy transaction with aggregators, the

expected cost of energy exchanged with the RTEM, and the expected profit due to selling

energy to end-users.

OFEU
j∈Ak

= λDSO2L
∑
t

PDSO2L
jt −

∑
t

λL2Akt PL2A
jt . (5.29)

OFAG
k =

∑
t

∑
j∈Ak

λL2Akt PL2A
jt (5.30)

−
∑
t

λA2DSO
kt PA2DSO

kt .∀k

OFDSO =
∑
t

λA2DSO
kt PA2DSO

kt +
∑
t

λRT
t PRT

t (5.31)

− λDSO2L
∑
t

∑
j

PDSO2L
jt .

5.3.2 The MILP model

As mentioned in Section 5.3.1, λA2DSO
kt PA2DSO

kt makes non-linear the objective functions

of the aggregators and of the DSO as represented in (5.30), and (5.31). In this section, we

propose a model in which the DSO is in charge of determining the price of energy traded

between aggregators and the DSO, λA2DSO
kt , to minimize its objective function, OFDSO.

Also, λA2DSO
kt is limited to maximum and minimum bands according to (5.27). In this

way, if energy exchanged between aggregators and the DSO is positive, PA2DSO
kt ≥ 0,

then the DSO sets the minimum band of price limitations. However, the DSO determines

the maximum band of price limitation where the energy traded between the aggregators

and the DSO is negative, PA2DSO
kt < 0. Hence, we have:

IF PA2DSO
kt ≥ 0 →

λA2DSO
kt =Min.{δktλL2Akt , λRT

t }→ zkt = 0.

ELSE PA2DSO
kt < 0 →

λA2DSO
kt =Max.{δktλL2Akt , λRT

t }→ zkt = 1.

Here, zkt is defined as a binary variable which is determined by the DSO to represent

states of electricity price. In the following, the nonlinear term is restated as seen in

(5.32).
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λA2DSO
kt PA2DSO

kt = {δktλL2Akt (1− zkt) (5.32)

+ λRT
t zkt}PA2DSO

kt = PPkt,∀t, k.

PPkt = PP−kt + PP+
kt , ∀t, k. (5.33)

PP−kt = δktλ
L2A
kt (1− zkt)PA2DSO

kt , ∀t, k. (5.34)

PP+
kt = λRT

t zktP
A2DSO
kt ,∀t, k. (5.35)

As represented in (5.33), PPkt is split into PP−kt and PP+
kt . In this way, each of

these nonlinear constraints, (5.34) and (5.35), can be redefined as mixed integer linear

constraints according to Refs. [Garcés et al., 2009] and [Gazafroudi et al., 2017c]. Hence,

Eq. (5.32) is redefined as presented in (5.36)-(5.40).

− zktM ≤ PP−kt − δktλ
L2A
kt PA2DSO

kt ≤ zktM, ∀t, k. (5.36)

− γjδktλL2Akt (1− zkt)
∑
j∈Ak

LC
jt ≤ PP−kt (5.37)

≤ γjδktλL2Akt (1− zkt)
∑
j∈Ak

LC
jt, ∀t, k.

− (1− zkt)M ≤ PP+
kt − λ

RT
t PA2DSO

kt (5.38)

≤ (1− zkt)M,∀t, k.

− γjλRT
t zkt

∑
j∈Ak

LC
jt ≤ PP+

kt (5.39)

≤ γjλRT
t zkt

∑
j∈Ak

LC
jt,∀t, k.

− γjzkt
∑
j∈Ak

LC
jt ≤ PPA2DSO

kt (5.40)

≤ γj(1− zkt)
∑
j∈Ak

LC
jt,∀t, k.

Thus, Eqs. (5.36) and (5.37) represent Eq. (5.34). Also, Eqs. (5.38) and (5.39)

express Eq. (5.35). Moreover, the relationship between the energy transacted through

aggregators and the DSO, PPA2DSO
kt , and its corresponding electricity price, λA2DSO

kt ,

is represented in (5.40). In 5.36 and 5.38, M represents a large positive parameter that

gives enough freedom for variables between inequalities to be feasible. According to

(5.40), zkt equals 0 when PPA2DSO
kt is positive. Besides, zkt as a binary variable is equal

to 1 when PPA2DSO
kt is negative. Therefore, the objective functions of aggregators and

the DSO should be redefined as they are represented in (5.41) and (5.42), respectively.
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Hence, the respective energy management problems should be presented considering

(5.33), and (5.36)-(5.40).

OFAG′
k =

∑
t

∑
j∈Ak

λL2Akt PL2A
jt −

∑
t

PPkt,∀k. (5.41)

OFDSO′
=

∑
t

PPkt +
∑
t

λrtt P
rt
t (5.42)

− λDSO2L
∑
t

∑
j

PDSO2L
jt .

5.3.2.1 Aggregators-based energy trading problem

Here, the decentralized energy management problem is modeled from the aggregators’

perspective as seen in the following (Problem M1):

minECAG′
=

∑
k OF

AG′
k

s.t. : (5.18)− (5.26), (5.28), (5.33), (5.36)− (5.40)

Each aggregator transacts energy flexibility with the consumers that are in its region,

and with the DSO. However, aggregators are not able to exchange energy with other

aggregators and their corresponding end-users. Moreover, all four types of definitions of

flexibility can be considered in this approach.

5.3.2.2 Consumers-based energy trading problem

In this section, the energy flexibility management problem is modeled decentralize which

is solved by consumers. Thus, end-users manage their energy flexibility autonomously.

Also, consumers can only provide shiftable loads and energy transaction with the

aggregator, Eq. (5.22) and (5.25), respectively. Hence, Eqs. (5.23) and (5.26) are

not provided in this approach as they require a coalition of the consumers in the

aggregators’ layer. Each end-user transacts energy flexibility with its corresponding

aggregator. Besides, end-users are able to buy real-time energy from the DSO. Therefore,

the consumers-based decentralized energy flexibility management problem is modeled in

the following (Problem M2):
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minECEU =
∑

j OF
EU
j

s.t. : (5.18)− (5.22), (5.24)− (5.25), (5.28), (5.33), (5.36)− (5.40)

Hence, this problem is decomposed into j independent problems in which each end-user

manages its own energy flexibility without being in a coalition with other end-users.

However, in M1, the flexibility management problem is decomposed into k independent

problems from the perspective of aggregators. In this way, end-users are able to provide

only shiftable loads, because Eqs. (5.23) and (5.26) are not considered in this approach

which requires cooperation between end-users to improve sustainability of the power

distribution grid.

5.3.3 Evaluation of the Monopolistic Approach

In this section, a 33-bus test system- which has been demonstrated in Fig. 5.2- is used

to assess the proposed monopolistic approach to manage energy flexibility. The energy

price in the real-time electricity market and energy price which is traded in aggregators’

regions are shown in Table 5.5. Also, we assume that γj = 0.1 and δkt = 1.1 according

to Ref. [Prieto-Castrillo et al., 2018].

In the monopolistic approach, the energy management problem is modeled from the

perspective of one group of agents- e.g. end-users (consumers) or aggregators. In

this way, for the consumer-based (Problem M2), three scenarios are defined to study

the impact of flexibility constraints on the energy management problem. Additionally,

for the aggregator-based (Problem M1), impact of energy flexibility is assessed in five

scenarios. These scenarios are presented in Table 5.6.

Table 5.7 shows the impact of flexibility on total expected costs for end-users,

aggregators, and the DSO in the monopolistic approach. As presented in Table 5.7,

ECEU , ECAG′
, and ECDSO′

are negative in C1. In other words, energy flexibility

transaction brings profit to all end-users, aggregators and the DSO. It is because of

the bottom-up energy flexibility flow from end-users to aggregators, from aggregators to

the DSO, and from the DSO to the RTEM. In C2 and C3, the total expected cost for

aggregators is positive. In these scenarios, there are bidirectional energy transactions

between end-users and aggregators, aggregators and the DSO, and the DSO and the

RTEM as seen in Fig. 5.5. Also, end-users has no desire to buy real-time energy from

the DSO.
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Tab. 5.5: Prices of energy traded between consumers and aggregators and real-time
energy price [Zhang et al., 2018] and [Prieto-Castrillo et al., 2018].

Time λL2Ak=1,t λL2Ak=2,t λL2Ak=3,t λRT
t h¿h

[e/kWh] [e/kWh] [e/kWh] [e/kWh]

1 0.05 0.08 0.06 0.13

2 0.05 0.08 0.07 0.12

3 0.05 0.09 0.07 0.15

4 0.04 0.07 0.05 0.11

5 0.11 0.18 0.15 0.30

6 0.12 0.20 0.16 0.32

7 0.13 0.22 0.17 0.35

8 0.15 0.24 0.19 0.40

9 0.16 0.25 0.20 0.42

10 0.24 0.41 0.33 0.66

11 0.26 0.42 0.36 0.71

12 0.28 0.43 0.37 0.74

13 0.25 0.40 0.32 0.69

14 0.18 0.26 0.21 0.50

15 0.15 0.24 0.20 0.41

16 0.14 0.22 0.18 0.40

17 0.15 0.25 0.19 0.42

18 0.20 0.36 0.30 0.60

19 0.21 0.36 0.29 0.65

20 0.22 0.41 0.30 0.67

21 0.24 0.42 0.33 0.70

22 0.12 0.22 0.16 0.35

23 0.11 0.19 0.15 0.28

24 0.06 0.09 0.07 0.15

Tab. 5.6: Flexibility scenarios.

Scenario Min. s.t.

C1 ECEU (5.18)-(5.21), (5.24), (5.28), (5.33) and (5.36)-(5.40).
C2 ECEU (5.18)-(5.22), (5.24), (5.28), (5.33) and (5.36)-(5.40).
C3 ECEU (5.18)-(5.21), (5.24)-(5.25), (5.28), (5.33) and (5.36)-(5.40).

A1 ECAG′
(5.18)-(5.21), (5.24), (5.28), (5.33) and (5.36)-(5.40).

A2 ECAG′
(5.18)-(5.21), (5.23)-(5.24), (5.28), (5.33) and (5.36)-(5.40).

A3 ECAG′
(5.18)-(5.22), (5.24), (5.28), (5.33) and (5.36)-(5.40).

A4 ECAG′
(5.18)-(5.21), (5.24), (5.26), (5.28), (5.33) and (5.36)-(5.40).

A5 ECAG′
(5.18)-(5.21), (5.24)-(5.25), (5.28), (5.33) and (5.36)-(5.40).

Fig. 5.6 shows the energy traded between aggregator 2 and the DSO, their corresponding

electricity price, and z(k=2)t. As seen in Fig.5.6(c), z(k=2)t is equal to 1 when PA2DSO
(k=2)t
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Tab. 5.7: Total expected costs for end-users, aggregators, and the DSO in the
monopolistic approach.

C1 C2 C3

ECEU [e] -2394.438 -714.291 -714.291

ECAG′
[e] -239.444 733.548 749.681

ECDSO′
[e] -2273.819 -1461.078 -1489.181

A1 A2 & A3 A4 A5

ECEU [e] 870.642 3178.062 -30.991 1917.450

ECAG′
[e] -239.444 -239.444 -0.262 0

ECDSO′
[e] -2869.32 -2938.618 -23.309 -30.217

Fig. 5.5: Real-time energy flexibility transaction flows through end-users, aggregators,
the DSO, and the RTEM in the monopolistic approach from perspective of end-users.

Fig. 5.6: Traded energy (a) electricity price (b), and zkt (c) between aggregator 2 and
the DSO in C2 and C3 in monopolistic approach.
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Fig. 5.7: Real-time energy flexibility transaction flows through end-users, aggregators,
the DSO, and the RTEM in the monopolistic approach from perspective of aggregators.

is negative. Furthermore, z(k=2)t equals 0 when PA2DSO
(k=2)t ≥ 0. In this way, optimal

scenarios (instead of C1) for aggregators and the DSO are C2 and C3, respectively. Thus,

the DSO allows end-users for decentralized management of their own energy flexibility

because this approach is profitable for them in all scenarios. However, if aggregators are

players who are in charge of making policies for their corresponding end-users, C2 and

C3 are not profitable for aggregators. In this way, aggregators do not allow end-users

for decentralized management of energy flexibility.

Moreover, Table 5.7 presents that ECAG′
equals zero, and there is no energy exchanged

between aggregators and the DSO in A5. Therefore, A5 cannot encourage aggregators

as decision-makers in Problem M1. On the one hand, in A4, total expected costs for all

agents are negative. In other words, A4 is profitable for all agents. On the other hand,

the power distribution network is more sustainable and does not depend to the upstream

grid in A2 and A3 as shown in Fig. 5.7. However, the DSO bought real-time energy

from the RTEM in A5. Thus, A5 is the worst scenario in the monopolistic approach

from the perspective of aggregators.

Although interaction between the aggregators and the DSO has been modelled in this

section, an interplay model has not been addressed for energy trade management between

end-users, aggregators and the DSO.
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5.4 Iterative algorithm for trading electricity between

aggregators and the DSO

In this section, an iterative algorithm is presented to manage the trade of energy

among aggregators and the DSO, considering energy flexibility which is provided by

the end-users. Thus, energy is transacted on the basis of a hierarchical structure among

the real-time electricity market and the distribution network’s players.

5.4.1 The proposed iterative algorithm

Here, an iterative algorithm is proposed to transact energy between aggregators and the

DSO based on an MILP model of the energy trading problem which has been introduced

in Section 5.3.2. In our proposed iterative algorithm, aggregators are in charge of

determining the quantity of energy flexibility traded between aggregators and the DSO,

PA2DSO
kt . However, the DSO determines the electricity price of energy transaction among

them, λA2DSO
kt . Thus, the DSO sets zkt to represent states of the electricity price in the

MILP model of the energy management problem. Algorithm 1 represents our proposed

algorithm to trade flexibility through aggregators and the DSO as seen in Fig. 5.8.

According to Algorithm 1, aggregator k and the DSO make decisions regarding their

own autonomous energy management problem considering interaction signals among

aggregators and the DSO. In the following, the energy management problems of

aggregators and the DSO are presented:

• Aggregators’ problem (Problem A):

minECAG′
=

∑
k OF

AG′
k

s.t. : (5.18)− (5.20), (5.22)− (5.26), (5.33), (5.36)− (5.40)

• DSO’s problem (Problem D):

minECDSO′
= OFDSO′

s.t. : (5.21), (5.28), (5.33), (5.36)− (5.40)
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Fig. 5.8: Game-based interaction to transact energy between aggregators and the
DSO.

In this structure, the energy flexibility provided by the bottom-layer of the power system

is managed only by aggregators. The advantage of this model is that it directly manages

the quantity of energy traded between aggregators and the DSO, PA2DSO
kt . However, the

drawlack of this approach is to not consider the expected profits and costs for end-users

in decision-making where end-users are agents which are in charge of providing flexibility

to the distribution network.

5.4.2 Assessment of the performance of the iterative algorithm

In this section, the impact of the proposed iterative algorithm on the expected cost for

the aggregators and the DSO is studied. In this way, A1-A3 are considered to assess

the performance of the energy management system. In A1, end-users are modelled as

interruptible loads, shiftable loads- Eq. (5.22)- are modelled in A2, and self-consumption

constraint- Eq. (5.23)- is considered to model the aggregation of end-users in A3. Table

5.8 shows total expected costs for aggregators and the DSO based on the proposed

energy trading algorithm.
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Tab. 5.8: Total expected costs for aggregators and the DSO based on the iterative
algorithm.

ECAG′
[e] ECDSO′

[e]

A1 -239.444 -3339.466
A2 -143.924 -2413.909
A3 -72.618 -1753.407

Fig. 5.9: Impact of flexibility scenarios on real-time energy transaction flows through
end-users, aggregators, the DSO, and the RTEM based on the proposed iterative

algorithm.

Instead of A1 which is an optimal scenario of the system in which all end-users play as

interruptible loads, total expected costs of aggregators and the DSO are less in A2 in

comparison with A3. In other words, A2 is a more profitable scenario for all players

in the power distribution system in comparison with A3. However, the distribution

network acts more sustainable in A3, because end-users, aggregators and the DSO make

a closed-loop energy trading system as shown in Fig. 5.9. Thus, the power distribution

network is more sustainable and does not depend on the upstream grid in A3, as shown

in Figs. 5.9 and 5.10. Moreover, Fig. 5.11 shows flexible behavior of end-users j3,

j15 and j29 as samples of end-users in regions of aggregators 1 to 3, respectively. As

illustrated in Fig. 5.11, sample end-users present more dynamic and flexible behavior in

A2 which increases the profit of end-users.
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Fig. 5.10: Real-time energy exchanged between the DSO and the RTEM in A2 and
A3.

Fig. 5.11: Energy flexibility (kWh) of end-users j3 (in region of aggregator 1), j15 (in
region of aggregator 2), and j29 (in region of aggregator 3) in A2 and A3. Red and

green colours represent negative and positive flexibilities, respectively.
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5.5 Iterative algorithm for trading electricity between

end-users and the DSO

Although the iterative algorithm proposed by us for transaction of energy between

aggregators and the DSO directly manages the quantity of energy traded between

aggregators and the DSO, the expected costs for end-users are not considered in the

system’s decision-making.

5.5.1 The proposed iterative algorithm

In the algorithm proposed by us, end-users and the DSO are agents who manage energy

flexibility, and aggregators are considered as actors- who just follow decisions which

are made by agents- in the power distribution network. Here, the energy management

problem of the DSO is identical to the respective one in Section 5.4.1 (Problem D).

Thus, the energy management problem of the end-users is:

• End-users’ problem (Problem E):

minECEU ′

s.t. : (5.18)− (5.22), (5.24)− (5.26), (5.33), (5.36)− (5.40)

In Problem E, end-users manage their own energy flexibility independently and control

the energy traded through the aggregators and the DSO. Furthermore, the DSO sets

the electricity price of energy transaction between aggregators and the DSO based on

Algorithm 2 which has been presented in Fig. 5.12.

5.5.2 Evaluation of iterative algorithms

In this section, the proposed energy flexibility management problem is evaluated based

one a game between the end-users and the DSO, and a game between the aggregators

and the DSO. Thus, the performance of the proposed iterative algorithms which we have

defined to transact energy flexibility in the power distribution networks are assessed in

this section.

In Algorithm 1, it has been defined that there is a game-based interaction between the

aggregators and the DSO. Here, scenarios A1-A5 which have been presented in Table

5.6 are considered to assess the performance of the energy management system. As seen
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Fig. 5.12: Game-based interaction to transact energy between aggregators and the
DSO.

Tab. 5.9: Total expected costs for end-users, aggregators, and the DSO in the
game-based approach.

ECeu [e] ECag′ [e] ECdso′ [e]

A1 157.767 -239.444 -3339.466
A2 1112.969 -143.909 -2413.909
A3 1826.025 -72.618 -1753.407
A4 2552.205 0 -1065.648
A5 2552.205 0 -1065.648

C1 159.767 -239.444 -8607.231
C2 1111.734 -100.082 -5612.034
C3 2552.205 0 -1065.648

in Table 5.9, ECEU is positive in all scenarios which means that game-based interaction

between the aggregators and the DSO is not profitable for end-users. Moreover, ECAG′

equals zero in A4 and A5 because the aggregators do not transact any energy to the

DSO as shown in Fig. 5.13. Thus, A4 and A5 cannot motivate aggregators to trade

flexibility with the DSO. Instead of A1 which is an optimal scenario of the system that

all end-users play as interruptible loads, total expected costs for all agents are less in A2

in comparison with A3. In other words, A2 is a more profitable scenario for all agents

in the power distribution system in comparison with A3. However, the distribution
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Fig. 5.13: Real-time energy flexibility transaction flows through end-users,
aggregators, the DSO, and the RTEM in the game-based interaction between

aggregators and aggregators and the DSO.

Fig. 5.14: Real-time energy flexibility transaction flows through end-users,
aggregators, the DSO, and the RTEM in the game-based interaction between

aggregators and end-users and the DSO.

network acts as a sustainable energy system in A3, because the DSO does not exchange

energy with the real-time electricity market as seen in Fig. 5.15(a).

Algorithm 2 defines a game-based energy flexibility transaction between the end-users

and the DSO. Hence, the aggregators are not decision-makers in the exchange of energy

in Algorithm 2. The interaction between end-users and the DSO is studied in three

scenarios, C1-C3, which have been presented in Table 5.6. As presented in Table 5.9,



116 Chapter 5. Local electricity trading structure

Fig. 5.15: Real-time energy exchanged between the DSO and the RTEM in A2 and
A3 (a), in C1 and C3 (b) in game-based iterative algorithms.

C1 is an optimal scenario for all agents in this game. However, C3 is the worst scenario

in which ECEU is maximum, and the expected profit of the DSO is minimum. Also,

ECAG′
is equal to zero. In addition, in C3, the energy transaction between the DSO

and the RTEM is one-way (from the RTEM to the DSO) which is not sufficient for the

power distribution network as seen in Figs. 5.14 and 5.15(b).

5.6 Conclusions

In this chapter, we have presented decentralized, monopolistic and game-based

approaches to manage energy flexibility among distribution network’s agents. Also, the

performance of the proposed approaches to manage energy flexibility has been assessed

based on the impacts of flexible behaviors of the end-users and aggregators.

According to our decentralized approach, end-users manage their energy flexibility

autonomously. Besides, two types of flexible behavior is defined- shiftable and

self-consumption flexibility- for the end-users to provide the required energy flexibility

in a cooperation with their corresponding aggregators. In this way, while end-users

manage their own flexibility independently to provide the shiftable flexibility, the

coalition of end-users is required to provide the self-consumption flexibility. Finally,

it should be mentioned that this chapter has not modeled the impact of EVs on energy

trading problem in the distribution network. In Chapter 6, we will discuss how energy

management system can be modeled considering uncertainty of EV mobility in the

distribution grid.
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6.1 Introduction

The urbanization brings several challenges e.g. environmental, economical, energy, traffic

for the future cities and in global overview for the planet earth [Shahidehpour et al.,

2018]. In this way, smart cities have been introduced to build cites’ infrastructure

based on the cutting-edge technologies to support optimal multi-objective decisions

[Arasteh et al., 2016]. In this way, smart cities make complex systems according to

interconnected between subsystems which have been designed for different specific aims.

For instance, smart transportation systems have been defined to manage transportation

of public vehicles, monitor traffic based on mobility of vehicles consisting of EVs. On the

other hand, the decision-making in energy management systems of distribution networks

of smart cities plays an important role based on socioeconomic and energy reliability

concerns in cities. Also, SGs have been defined as one of the most collective solutions

in order to provide a solution for these concerns [Borlase, 2016]. Also, SGs provide

two-way communication data transaction between system operators and customers in

the bottom layers of the power systems. Moreover, SGs enable distribution grids

to overcome uncertain impact of EVs’ mobility. The DRP is one of the results of

this restructuring to adjust the electrical demand in distribution networks based on

price-based or incentive-based DRPs [Siano, 2014]. Thus, the end-users are able to

behave more flexible in the restructured environment of the power system [Gazafroudi

et al., 2017a], [Siano and Sarno, 2016] and [Graditi et al., 2018]. In other words, the

end-users can behave as active customers in the SGs to play as a consumer or a virtual

producer by decreasing their scheduled electrical demand in local energy management
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systems [Kok et al., 2009]. In this chapter, a stochastic energy management problem is

defined to model expected energy flexibility provided by end-users based on uncertainty

of EV’s mobility in power distribution grids. Three strategies are presented to manage

energy flexibility and operation of EVs through the end-users and the central coordinator

in the power distribution system. In this way, the uncertainty of EVs’ mobility is

modeled by a stochastic energy management problem. Also, end-users are modeled as

shiftable and interruptible loads to provide energy flexibility. According to the proposed

strategies, energy flexibility and charging operation of EVs are managed by end-users

decentralize, centralize, and partial centralize through a bottom-up approach.

The rest of this chapter is organized as follows. Section 6.2 introduces the proposed

formulation for the energy management problem. The proposed strategies to manage

energy flexibility and charging operation of EVs are described in Section 6.3. In Section

6.4, the results of simulation studies are illustrated. Finally, the findings are concluded

in Section 6.5.

6.2 Problem formulation

In this section, a real-time energy flexibility management problem decentralized in the

bottom layer of the distribution network is defined. Fig. 6.1 displays a schematic

overview of this section. In this model, two types of players have been defined as further

discussed in this chapter. The first type of players is called agent which can make

the decision independently to manage energy flexibility. The Second type of player is

called actor which follows the decisions of the agents. In this way, the agents consist

of end-users and aggregators. However, only one of the end-users or aggregators can be

agents that it depends on the chosen strategies for managing the flexibility in the system.

On the other hand, EVs are defined as the actors who are considered in the flexibility

management problem but are not decision-makers. In this way, the real-time energy

flexibility is traded through a decentralized, bottom-up approach. The end-users can

transact the energy flexibility only with their corresponding aggregators in a bilateral

energy transaction. However, the aggregators can exchange energy with the RTEM. It

should be noted that the aggregators are considered as the price-takers in the RTEM

in this model. Fig. 6.2 shows the proposed bottom-up structure to manage energy

flexibility in distribution grids. Moreover, in Fig. 6.2, corresponding structure for energy

transaction between end-users, aggregators, and EVs are introduced. Each end-user (as

an independent agent) can manage its real-time energy considering constraints related

to its scheduled load. Thus, decrements/increments of the scheduled load can provide

upward/downward flexible energy. Besides, charging and discharging of EVs increases
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Fig. 6.1: Schematic overview of proposed energy flexibility management model
[Gazafroudi et al., 2019a].

Fig. 6.2: General structure for real-time energy transaction considering EVs mobility
in the distribution network [Gazafroudi et al., 2019a].

and decreases the real-time demand of end-users as represented in (6.1). Here, βj is

defined as a coefficient to consider the charging operation of EVs in energy flexibility

management problem. The utilization of EV is not considered in the energy management

problem if βj equals zero. Eq. (6.2) represents the minimum and maximum limitations

of the energy flexibility which is defined as a portion of the scheduled load. In this

section, the end-users are considered only as shiftable loads to provide energy flexibility

(6.3). Thus, the transacted energy between end-user j and its corresponding aggregator
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is expressed in (6.4).

Ljtω = LC
jt − LF

jtω + βjP
CH,C
jtω − βjPDIS,C

jtω ,∀j, ω, t. (6.1)

− σjtLC
jt ≤ LF

jtω ≤ σjtLC
jt, ∀j, ω, t. (6.2)∑

t

LF
jtω = 0 ,∀j, ω. (6.3)

LF
jtω + βjP

DIS,C
jtω − βjPCH,C

jtω = PL2A
jtω , ∀j, ω, t. (6.4)

In this way, EVs can be utilized according to the energy management strategies by

end-users or aggregators in the distribution network. The SOC balancing equation of

EV i is represented in (6.5) and (6.6). Here, EAitω is a binary parameter, representing

the availability of EV i at all buses of the network to be charged or discharged. If EAitω

equals 0, the EV is in streets, then Mobitω presents amount of discharged power due to

mobility of EV i. In other words, Mobitω equals 0 when EAitω is equal to 1. Also, C0
i

presents the initial SOC of EV i.

Citω = Ci,t−1,ω + EAitωP
CH
itω ηB2V − EAitωP

DIS
itω /ηV 2B (6.5)

−Mobitω, ∀i, ω, t ≥ 2.

Ci,t=1,ω = C0
i + EAitωP

CH
itω ηB2V − EAitωP

DIS
itω /ηV 2B (6.6)

−Mobitω, ∀i, ω, t = 1.

Maximum and minimum limitations of EVs’ SOC are presented in (6.7). Also, the ramp

constraints of EVs’ SOC are stated in (6.8) and (6.9).

Cmin
i ≤ Citω ≤ Cmax

i ,∀i, ω, t. (6.7)

− rmin ≤ Citω − Ci,t−1,ω ≤ rmax, ∀i, ω, t ≥ 2. (6.8)

− rmin ≤ Citω − C0
i ≤ rmax,∀i, ω, t = 1. (6.9)

The discharging and charging limitations are represented in (6.10) and (6.11),

respectively. Here, uitω is a binary variable which represents state of the EV to be

in charged or discharged mode. The EV is discharged if uitω equals 1.

0 ≤ PDIS
itω ≤ rmaxuitω,∀i, ω, t. (6.10)

0 ≤ PCH
itω ≤ rmin(1− uitω),∀i, ω, t. (6.11)

In this section, it is considered that each EV is utilized by each end-user. This means

that each end-user can utilize more than one EV, but each EV is only utilized by one
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specific end-user. In this way, (6.12)-(6.14) represent equations to map EV i to end-user

j. Here, MEVjitω is defined to indicate that EV i is located at end-user j at time t, and

scenario ω.

Cm
jitω = MEVjitωCitω,∀j, i, ω, t. (6.12)

P dis,m
jitω = MEVjitωP

dis
itω , ∀j, i, ω, t. (6.13)

P ch,m
jitω = MEVjitωP

ch
itω,∀j, i, ω, t. (6.14)

As mentioned in the previous paragraph, each end-user can utilize more than one EV.

Eqs. (6.15)-(6.17) state total amount of the SOC, discharged power, and charged power,

respectively, that are managed by end-user j.

CC
jtω =

∑
i

CM
jitω,∀j, ω, t. (6.15)

PDIS,C
jtω =

∑
i

PDIS,M
jitω ,∀j, ω, t. (6.16)

PCH,C
jtω =

∑
i

PCH,M
jitω ,∀j, ω, t. (6.17)

Moreover, the SOC of each EV, when it leaves the charging station of each end-user

should be greater than or equal 110% of its SOC when it enters the charging station

(6.18). Thus, IEVjitω represents the binary status that EV i enters to charging station

of end-user j as defined in (6.19). In other words, EV i enters to charging station of

end-user j, if IEVjitω equals 1. On the other hand, OEVjitω expresses the state of EV

i when it leaves the charging station of end-user j as represented in (6.20).

1.1CM,IN
jitω ≤ CM,OUT

jitω ,∀j, i, ω. (6.18)

CM,IN
jitω =

∑
t

IEVjitωC
M
jitω,∀j, i, ω. (6.19)

CM,OUT
jitω =

∑
t

OEVjitωC
M
jitω,∀j, i, ω. (6.20)

According to the bottom-up structure, the total flexibility transacted through end-users

and aggregators should be traded between aggregators and the RTEM as represented in

(6.21).

PA2RT
ktω =

∑
j∈Ak

PL2A
jtω , ∀k, t, ω. (6.21)
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In the next section, the proposed strategies to manage energy flexibility and EVs

utilization are introduced.

6.3 Strategies to manage energy flexibility

Here, three strategies are defined to manage energy flexibility in distribution networks.

In strategy-I, the end-users manage energy flexibility and charging operation of EVs in a

decentralized approach. In the strategy-II, the end-users manage the energy flexibility in

a decentralized way. However, the charging operation of EVs is managed centrally by a

virtual agent called EVs coordinator. In strategy-III, both energy flexibility of end-users

and charging operation of EVs are managed centrally by a virtual agent which is called

local coordinator. These strategies are described in the following:

6.3.1 Strategy-I

In strategy-I, S1, the charging operation of EVs is managed only by EV-owners. Thus,

the corresponding expected cost of the EV is only considered in the objective function of

the end-user (EV owner). In this way, the impact of the EV on its owner’s expected cost

is observed when the EV is available at its owner’s building, and βj is considered to be

equal to 1. Here, the objective functions of end-users and aggregators are represented

in (6.22) and (6.23), respectively. Eq. (6.22) states the expected cost of end-user j

based on real-time energy flexibility transaction with its corresponding aggregator that

should be minimized. In (6.23), the expected cost of aggregator k is represented which

consists of the expected cost due to trading energy flexibility with its end-users, and the

expected profit due to energy exchanging with the RTEM.

OFEU ′′
j∈Ak

= −
∑
t

λL2Akt PL2A
jtω ,∀j. (6.22)

OFAG′′
k =

∑
t

∑
j∈Ak

λL2Akt PL2A
jtω −

∑
t

λrtt P
A2RT
ktω ,∀k. (6.23)

In this way, the energy management problem of S1 to operate energy flexibility of

end-users and charging of EVs is modeled decentralized as formulated in the following

problem (P1):

minECeu =
∑

j OF
eu
j

s.t. : (6.1)− (6.21)



Multi-agent architecture for local electricity trading in power distribution systems 125

Fig. 6.3: Decentralized decision-making framework for energy flexibility management
problem by end-users in Strategy-I [Gazafroudi et al., 2019a].

Fig. 6.3 shows real-time energy problem is managed decentralize by end-users to operate

energy flexibility of charging of EVs in strategy one.

6.3.2 Strategy-II

In strategy-II, S2, a sequential two-stage energy management problem is proposed. In

stage-I, energy flexibility is managed autonomously by end-users without considering

the EVs’ constraints. However, in stage-II, charging mode of EVs is operated centralize

by the EV Coordinator (EVC) while energy flexibility decisions were made by end-users

in stage one. In energy management problem of stage one, βj equals 0 to avoid the EVs

utilization in decentralize decision-making of end-users. The proposed energy flexibility

problem of stage one is presented in the following problem (P2):

minECEU ′′
=

∑
j OF

EU ′′
j

s.t. : (6.1)− (6.4)

In the second stage, the EVC manages centralized charging of the EVs. Hence, the

energy flexibility (which is the output of P2) is considered as an input in the energy

management problem of stage two (Problem P3). Also, βj equals 1 in the second

stage. The objective function of the EVC, ECEV C , is defined in (6.24). Here, ∆PL2A
jt

represents the change of traded energy between end-user j and aggregator k in stage-II

compared to stage-I. The second term in (6.24) represents the expected cost of charging

operation of EVs by end-users which are not their owners. Eqs. (6.25) and (6.26) state

discharging and charging operation of EV i by end-users which are not the EV owner.

Thus, NEVjitω is defined to map EV i to end-users who are not its owner. Also, OEji

equals 1, if end-user j is the owner of EVi.
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Fig. 6.4: Two-stage sequential decision-making framework to manage energy flexibility
and charging state of EVs in Strategy-II [Gazafroudi et al., 2019a].

ECEV C =
∑
j

OFEU ′′
j −

∑
jt

(λL2Akt ∆PL2A
jt (6.24)

+
∑
i

OEji

∑
k

λL2Akt (PCH−
jitω − PDIS−

jitω )).

PDIS−
jitω = NEVjitωP

DIS
itω , ∀j, i, ω, t. (6.25)

PCH−
jitω = NEVjitωP

CH
itω ,∀j, i, ω, t. (6.26)

Fig. 6.4 presents two-stage sequential energy management problem in strategy-II. In

this way, P3 is:

minECEV C

s.t. : (6.1)− (6.21), (6.25), (6.26)

6.3.3 Strategy-III

In strategy-III, S3, charging operation of EVs and scheduling energy flexibility of

end-users are managed in a centralized way by Local Coordinator (LC). The objective

function of the LC, ECLC , is represented in (6.27).
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Fig. 6.5: Centralized decision-making framework to manage energy flexibility and
charging state of EVs in Strategy-III [Gazafroudi et al., 2019a].

ECLC =
∑
jt

(OFEU ′′
j (6.27)

+
∑
i

OEji

∑
k

λL2Akt (PCH−
jitω − PDIS−

jitω ))

As it is seen in (6.27), energy flexibility of end-users and charging operation of EVs

are managed centralize by the LC. Fig.6.5 demonstrates centralized energy management

problem in S3. In the following, the energy management problem in strategy 3, P4, is

represented:

minECLC

s.t. : (6.1)− (6.21), (6.25), (6.26)
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Fig. 6.6: A modified 33-bus test system with corresponding aggregators and PEVs
owners [Gazafroudi et al., 2019a].

6.4 Simulation results

6.4.1 Case study

Here, a 33-bus test system which has been shown in Chapter 5 and has been modified in

[Gazafroudi et al., 2019a] is used to evaluate the proposed strategies to manage energy

flexibility and charging/discharging states of EVs as shown in Fig.6.6. Three regions are

defined which aggregators have bilateral contracts with their corresponding end-users

in the bottom layer of the system. Thus, the price of energy traded in each of these

regions is different as shown in Table 6.1. Moreover, it is assumed there are three types

of end-users consisting of residential buildings, industrial buildings (IB) and Shopping

Centers (SC). In this way, for the sake of simplicity, EV owners are only allocated to

residential buildings as seen in Fig. 6.6.

Table 6.2 presents EVs and their corresponding owners. In the stochastic problem,

uncertain mobility of EVs is modeled by two probabilistic scenarios. In scenario one, it

is assumed that EV i goes from its owner’s residential building to an industrial building

and comes back directly from that industrial building to the home. On the other hand,

in scenario two, it is assumed that EV i stops at shopping in return path from industrial

building to the home. In this way, corresponding probabilities of Scenarios one and

two are considered 0.8 and 0.2, respectively. Mobility scenarios of EVs are presented
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Tab. 6.1: Prices of traded energy between end-users and aggregators [Zhang et al.,
2018], [Prieto-Castrillo et al., 2018] and [Gazafroudi et al., 2019a].

Time λL2Ak=1,t λL2Ak=2,t λL2Ak=3,t λRT
t

(h) [e/kWh] [e/kWh] [e/kWh] [e/kWh]

1 0.05 0.08 0.06 0.13
2 0.05 0.08 0.07 0.12
3 0.05 0.09 0.07 0.15
4 0.04 0.07 0.05 0.11
5 0.11 0.18 0.15 0.30
6 0.12 0.20 0.16 0.32
7 0.13 0.22 0.17 0.35
8 0.15 0.24 0.19 0.40
9 0.16 0.25 0.20 0.42
10 0.24 0.41 0.33 0.66
11 0.26 0.42 0.36 0.71
12 0.28 0.43 0.37 0.74
13 0.25 0.40 0.32 0.69
14 0.18 0.26 0.21 0.50
15 0.15 0.24 0.20 0.41
16 0.14 0.22 0.18 0.40
17 0.15 0.25 0.19 0.42
18 0.20 0.36 0.30 0.60
19 0.21 0.36 0.29 0.65
20 0.22 0.41 0.30 0.67
21 0.24 0.42 0.33 0.70
22 0.12 0.22 0.16 0.35
23 0.11 0.19 0.15 0.28
24 0.06 0.09 0.07 0.15

Tab. 6.2: PEVs and their corresponding owners [Gazafroudi et al., 2019a].

EV EV owner EV EV owner

i1 j1 i11 j15
i2 j2 i12 j16
i3 j4 i13 j18
i4 j5 i14 j20
i5 j8 i15 j21
i6 j9 i16 j22
i7 j10 i17 j25
i8 j11 i18 j26
i9 j12 i19 j27
i10 j14 i20 j32

in Table 6.3. Also, Fig. 6.7 shows the corresponding location of EVs in different time

steps after scenario reduction. Moreover, for the sake of simplicity, it is assumed that

the characteristics of all EVs are the same. Minimum and maximum state of charge of

EV i is between 1.77 and 5.9kWh, and its charging and discharging efficiencies are 90%.
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Fig. 6.7: 24-hour location of PEVs in the 33-bus test system based on their expected
mobility patterns after scenario reduction [Gazafroudi et al., 2019a].

It is noticeable that battery degradation cost of EVs are not considered in the proposed

model because the problem is operated for 24 hours [Ahmadian et al., 2018]. Besides,

EV’s maximum charging and discharging rates are 3kW [Gazafroudi et al., 2017b].
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Tab. 6.3: PEVs and their corresponding mobility path scenarios [Gazafroudi et al.,
2019a].

EV Mobility path in Scenario I Mobility path in Scenario II

i1 j1-j6-j1 j1-j6-j3-j1
i2 j2-j31-j2 j2-j29-j28-j2
i3 j4-j23-j4 j4-j23-j19-j4
i4 j5-j24-j5 j5-j24-j19-j5
i5 j8-j29-j8 j8-j29-j28-j8
i6 j9-j24-j9 j9-j24-j3-j9
i7 j10-j30-j10 j10-j30-j28-j10
i8 j11-j7-j11 j11-j7-j13-j11
i9 j12-j6-j12 j12-j6-j13-j12
i10 j14-j7-j14 j14-j7-j13-j14
i11 j15-j6-j15 j15-j6-j17-j15
i12 j16-j7-j16 j16-j7-j17-j16
i13 j18-j23-j18 j18-j23-j3-j18
i14 j20-j24-j20 j20-j24-j19-j20
i15 j21-j23-j21 j21-j23-j19-j21
i16 j22-j6-j22 j22-j6-j3-j22
i17 j25-j23-j25 j25-j23-j3-j25
i18 j26-j30-j26 j26-j30-j28-j26
i19 j27-j31-j27 j27-j31-j28-j27
i20 j32-j7-j32 j32-j7-j28-j32

Tab. 6.4: Total expected costs of decision-makers in proposed strategies [Gazafroudi
et al., 2019a].

ECeu [e] ECevc [e] EC lc [e]

-745.514 -746.005 -746.005

Tab. 6.5: Total expected costs of aggregators in proposed strategies [Gazafroudi et al.,
2019a].

S1 S2 S3

ECag [e] -771.899 -774.388 -771.514

6.4.2 Economic evaluation of strategies

Here, the impacts of the proposed strategies to manage energy flexibility and operate

charging mode of EVs are investigated. For this purpose, the total expected costs

of end-users and aggregators are evaluated. Table 6.4 presents the expected costs of

decision-makers in strategy-I (end-users), strategy-II (EV coordinator) and strategy-III

(local coordinator). On the other hand, total expected cost of aggregator, ECAG′′
=∑

k OF
AG′′
k , is shown in Table 6.5. Moreover, the expected costs of all end-users and

aggregators are presented in Table 6.6. As it is seen in Tables 6.4, the total expected cost

of end-users is more profitable in S2 and S3, because the profit due to charging operation
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Tab. 6.6: Expected costs of aggregators and end-users in proposed strategies
[Gazafroudi et al., 2019a].

OF eu
j S1 [e] S2 [e] S3 [e]

j0 0.000 0.000 0.000
j1 -14.591 -14.594 -14.594
j2 -13.290 -13.287 -13.287
j3 -16.188 -16.203 -16.203
j4 -9.326 -9.347 -9.347
j5 -9.250 -9.262 -9.262
j6 -26.952 -27.047 -27.047
j7 -38.675 -38.688 -38.688
j8 -13.140 -13.141 -13.141
j9 -16.039 -16.037 -16.037
j10 -12.469 -12.464 -12.464
j11 -16.035 -16.041 -16.041
j12 -15.964 -15.917 -15.917
j13 -27.955 -27.965 -27.965
j14 -15.964 -15.984 -15.984
j15 -15.978 -15.960 -15.960
j16 -15.930 -15.945 -15.945
j17 -20.962 -20.973 -20.973
j18 -13.301 -20.973 -13.395
j19 -12.142 -12.154 -12.154
j20 -13.342 -19.001 -13.342
j21 -18.919 -13.273 -19.001
j22 -13.283 -98.060 -13.273
j23 -98.060 -97.885 -98.060
j24 -97.866 -9.248 -97.885
j25 -9.229 -9.248 -9.248
j26 -13.097 -13.104 -13.104
j27 -13.062 -13.068 -13.068
j28 -23.173 -23.212 -23.212
j29 -38.626 -38.630 -38.630
j30 -29.001 -29.032 -29.032
j31 -40.571 -40.605 -40.605
j32 -13.137 -13.141 -13.141

OF ag
k S1 [e] S2 [e] S3 [e]

k1 -289.923 -289.908 -289.853
k2 -242.261 -244.755 -241.935
k3 -239.716 -239.726 -239.726

of EVs outside of their owner’s home is considered in the objective function of their

end-users. However, Table 6.5 shows that the total expected cost of aggregators in S2 is

higher than S3. In this way, decentralized energy flexibility management by end-users

is more profitable for end-users and aggregators in comparison with centralized energy

flexibility management by the LC.
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Tab. 6.7: Impact of energy flexibility on the total expected cost of aggregators
[Gazafroudi et al., 2019a].

ECAG′′
[e] S1 S2 S3

C1 -34.98 -34.90 -34.90
C2 -771.899 -774.388 -771.514
C3 -2548.243 -2548.163 -2548.163

Fig. 6.8: Total Energy traded between real-time electricity market and aggregators
with and without flexibility of end-users [Gazafroudi et al., 2019a].

Also, Table 6.6 represents that although S2 is more profitable than S3 for the majority

of end-users and aggregators. For instance, the expected cost of aggregator k3 is the

same in strategies two and three. On the other hand, although S2 is more profitable

strategy for the majority of end-users, but the expected profit of some end-users-e.g.

j21, j23, j24- in S3 is higher than S2.

6.4.3 Energy flexibility evaluation

Here, the impact of energy flexibility on the expected cost of aggregators and total

real-time energy transacted between the RTEM and aggregators is assessed. Table

6.7 shows the total expected cost of aggregators in the proposed energy management

strategies in three cases. These cases includes considering: no energy flexibility (LF
jtω =

0, C1), shiftable flexibility (C2), and interruptible load to provide energy flexibility (Eq.

(6.3) is not considered, C3). Also, Fig. 6.8 demonstrates the total energy traded through

the RTEM and aggregators in C1 and C2.

As it is seen in Table 6.7, C3 is the most profitable case to provide energy flexibility,

since all end-users join as virtual energy producers to provide positive energy flexibility.

Thus, the traded energy between end-users and their corresponding aggregators, and
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Tab. 6.8: Impact of energy flexibility on expected costs of aggregators and end-users
in Strategy-I based on aggregators’ independent decisions [Gazafroudi et al., 2019a].

Shiftable load constraint SCA-based constraint

OF ag
k1

[e] -290.510 -29.545

OF ag
k2

[e] -244.921 -17.720

OF ag
k3

[e] -255.409 -9.502

ECeu[e] -731.352 -8.872

Tab. 6.9: Impact of agent-based decision-making on total expected costs of end-users
and aggregators considering shiftable constraint in Strategy-I [Gazafroudi et al., 2019a].

end-users-based Aggregators-based

ECEU ′′
[e] -745.514 -731.352

ECAG′′
[e] -771.899 -790.840

aggregators and the RTEM is based on a one-way bottom-up real-time energy transacted.

Besides, the total expected cost of aggregators in C1 is less than other cases which energy

flexibility of end-users is not considered. In other words, the expected profit due to the

operation of EVs is seen in C1 which is maximum in S1. As it is shown in Fig. 6.8,

total energy traded with the RTEM is less in C1 because only charging operating of

EVs is seen in C1. In other words, while C2 is more profitable case for aggregators, the

distribution network depends less to the RTEM in C1. Hence, the power distribution

grid is more sustainable in C1.

6.4.4 Agent-based Decision-making Evaluation

In this section, the performance of the proposed energy management system is assessed

based decisions which are made end-users or aggregators who are defined as agents in

the system. Here, the impact of agent-based decision-making is studied in Strategy-I. In

other words, the energy management problem is solved decentralized where end-users

or aggregators are decision-makers based on Strategy-I. Moreover, another type of

end-users’ energy flexibility which is based on the coalition can be defined if aggregators

are chosen as agents in the distribution grid. Eq. (6.28) represents Self-Consumption

Aggregated (SCA)-based constraint.

∑
j∈Ak

LF
jtω = 0 , ∀t, ω. (6.28)

According to (6.28), total energy flexibility which is traded between end-users and their

corresponding aggregators in their region equals 0 in each time t and scenario ω. In other
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Fig. 6.9: Real-time energy flexibility provided by end-users in aggregators-based
decision-making in Strategy-I considering shiftable load constraint [Gazafroudi et al.,

2019a].

words, SCA loads increase the sustainability of the power distribution grids. Table 6.8

presents expected costs of aggregators and total expected cost of end-users considering

SCA-based or shiftable load constraints when aggregators are agents in Strategy-I. As

seen in Table 6.8, shiftable constraint is more profitable for aggregators and end-users.

Besides, Table 6.9 shows the impact of agent-based decision-making on total expected

costs of end-user and aggregators considering shiftable constraint in Strategy-I. it is

concluded from Table 6.9 that aggregators-based decision-making is more profitable for

aggregators. However, ECEU ′′
is higher in end-users- based decision-making.

In addition, Figs. 6.9 and 6.10 demonstrate flexibility behavior of end-users where

aggregators are agents in the system. As seen in Figs. 6.9 and 6.10, flexibility behavior

of end-users is more dynamic under SCA-based constraint. In this way, it is seen

that end-users represent different flexibility behavior in same time step. However,

the flexibility behavior of end-users is the same under shiftable load constraint. All

end-users provide positive energy flexibility as virtual energy producers in time steps

10, 11, 12, 13, 19, 20 and 21 when they are peak hours of the system according

to Table 6.1. Moreover, Fig. 6.11 shows flexibility behavior of end-users under

shiftable load constraint where end-users are decision-makers of the system. Although

of the behavior of end-users constrained to shiftable loads are similar in end-user-based

and aggregators-based decision-making, end-users have more dynamic behavior in

end-user-based case, because they manage their corresponding flexibility autonomously
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Fig. 6.10: Real-time energy flexibility provided by end-users in aggregators-based
decision-making in Strategy-I considering CA-based constraint [Gazafroudi et al.,

2019a].

Fig. 6.11: Real-time energy flexibility provided by end-users in end-users-based
decision-making in Strategy-I considering shiftable load constraint [Gazafroudi et al.,

2019a].
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Fig. 6.12: Total Energy traded between real-time electricity market and aggregators
in aggregators-based decision-making in Strategy-I considering shiftable load and

SCA-based constraints [Gazafroudi et al., 2019a].

in this case; however, end-users follow decisions which are made by aggregators in the

aggregators-based case.

In general, according to the simulation results, it is concluded that shiftable load

constraint is more profitable for all agents in the system. On the other hand,

flexibility behavior of end-users is more dynamic under SCA-based constraint. Fig.

6.12 demonstrates total transacted energy through the RTEM and aggregators under

shiftable load and SCA-based constraints where aggregators play as agents in Strategy-I.

According to Fig. 6.12, exchanged energy between aggregators and the RTEM is

less under SCA-based constraint. In other words, SCA-based constraint increases the

sustainability of the distribution network.

6.5 Conclusions

Smart cities have been defined to overcome urbanization’s challenges, e.g., economic,

energy and traffic. Smart cities consist of several subsystems to support optimal

multi-objective decisions. Thus, interactions between these subsystems make smart

cities as complex systems. In this chapter, the impact of future transportation systems

on smart grids has been studied. This way, energy flexibility management of end-users

and charging operation of EVs are modeled in the distribution grid. Three energy

management strategies have been presented to deal with energy flexibility and operate

EVs among players of the bottom-layer of the power system.
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Also, EVs’ mobility uncertainty has been modelled by stochastic programming. The

proposed strategies are assessed based on the impact of flexibility behavior of end-users

on expected costs of aggregators and traded energy between aggregators and electricity

market. Moreover, the proposed strategies have been compared based on their impacts

on the expected costs of distribution network’s agents, energy flexibility provided by

end-users and transacted energy between aggregators and real-time electricity market.
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7.1 Introduction

This chapter summaries the main contributions of our Ph.D. work in Section 7.2. Also,

the major results obtained from the case studies described in Chapters 3 to 6 and the

findings in Section 7.7. Additionally, suggestions for future research works on the local

electricity trading problems are described in Section 7.4.

7.2 Main contributions

This Ph.D. thesis has proposed a virtual organization architecture for energy trade

between the agents (end-users, aggregators and the DSO) of the distribution network.

Also, each of these agents and their interconnections have been described. In this work,

a bottom-up approach has been proposed to trade energy from end-users, as prosumer

agents which are able to provide two-way energy transaction, to aggregators and the

DSO.

Thus, the organization-based multi-agent system of the smart home electricity system (as

an example of the end-users) has been introduced. Then, the Home Energy Management

System (HEMS) has been defined to model the flexible behavior of residential end-users

and their uncertainty based on different types of optimization methods (e.g. interval,

stochastic, and interval-stochastic). Furthermore, a probabilistic scenario-based method

has been presented for the management of residential energy and energy trading with

the local electricity market on the basis of an optimal bidding strategy. According to our

optimal offering model, the HEMS is able to transact energy with other players in its
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neighborhood as a price-maker agent based on the peer-to-peer or the community-based

energy trading approaches.

Then, we have proposed several approaches (e.g. decentralized, monopolistic and

game-based) for the management of energy flexibility among the agents of the power

distribution grid considering the flexible behavior of the end-users and the aggregators.

Finally, the impact of future transportation systems on the smart grids has been studied.

Thus, the management of the energy flexibility of end-users and the charging operations

of EVs are modeled in the distribution grid. Three energy management strategies have

been presented to deal with the energy flexibility and operation of EVs among players in

the bottom-layer of the power system. Also, EV mobility uncertainty has been modelled

by stochastic programming.

7.3 Research findings and conclusions

In this Ph.D. work, different case studies and problems have been presented. In this

section, we classified our findings in four categories based on simulation results obtained

in Chapters 3 to 6, respectively.

7.3.1 Home energy management system

The performance of the proposed home energy management problem has been evaluated

by comparing it with the proposed interval-stochastic and the modified stochastic

predicted bands optimization methods. Furthermore, we assessed the impact of the

proposed energy flexibility model, of its prediction accuracy, and of the demand response

program on the expected profit and transacted electrical energy of the system and on

the reliability of the results. From the simulation, it is concluded that:

• Increasing the energy flexibility increases the total, day-ahead and real-time

expected profits of the system.

• Increment of α increases the PV power produced in the day-ahead stage and

day-ahead expected profit. However, α has a negative impact on the amounts of

the real-time expected profit.

• Increment of the prediction accuracy has a smooth negative impact on the expected

profit.

• The amount of the total expected profit in the worst case of the interval-stochastic

method is less than its amount in the worst case of the modified stochastic
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predicted bands method. Hence, the interval-stochastic method is more robust

than the modified stochastic predicted bands method in modeling uncertainty in

the proposed home energy management problem.

7.3.2 Optimal offering model for the HEMS

The proposed optimal offering model for the HEMS has been assessed in two different

cases. Case 1 assessed the impacts of optimistic and flexibility coefficients on the HEMS

considering the optimal bidding strategy. However, in case 2, the performance of the two

different optimization methods- called InterStoch and Hybrid- in the HEMS has been

evaluated without considering the optimal bidding strategy. According to the simulation

results in our case study:

• The robustness of our proposed residential energy management system is increased

where αpv and αprice- the optimistic coefficients of PV power generation and

electricity price- equal 0 and 1, respectively. In other words, increment in αpv is in

line with increment in the expected profit of the system. However, the increment

in αprice has a negative impact on the HEMS’ expected profit. In this way, the

worst and robust case of the system is where αpv equals 0 and αprice equals 1.

• Optimistic coefficients have the same pattern of impact on the system’s expected

profit in both InterStoch and Hybrid methods.

• The robustness of the InterStoch optimization method is higher than that of the

Hybrid method because the total expected profit of the system is lower in the case

study that is solved by the InterStoch optimization method. Besides, the Hybrid

optimization method obtains suboptimal results because it is solved by MINLP,

and it is not as efficient as the InterStoch optimization method.

• Our proposed optimal offering model for the residential energy management system

is more robust than its non-optimal offering model because the optimal offering

model brings lower expected profit to the system in the worst scenario where αpv

equals 0 and αprice equals 1.

• The increment in the flexibility coefficient is in line with the total expected profit of

the system. Therefore, the best case of the system is where the flexibility coefficient

equals 1.

• The proposed residential energy management system only offers and bids one

quantity for all price scenarios in the day-ahead stage. In other words, modeling the

domestic system with or without a bidding strategy demonstrates that it cannot
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influence the smart home’s behavior (as a consumer or producer) in the day-ahead

local electricity market.

7.3.3 Local electricity trading structure

In this Ph.D. work, we have presented decentralized, monopolistic and game-based

approaches for the management of energy flexibility among the agents of the distribution

network.

The performance of the proposed decentralized approach has been evaluated in terms of

its impact on the distribution line uncertainty and the flexible behavior of the end-users.

On the basis of the simulations, it has been concluded that:

• The proposed energy flexibility management approach profitable for all consumers

without considering the load-shedding cost.

• The distribution line uncertainty has a negative impact on the total expected costs

for the end-users.

• End-users are able to manage their energy flexibility as independent agents

considering only the shiftable flexibility constraint.

• The coalition of end-users is required to provide energy flexibility on the basis of

the self-consumption flexibility constraint.

• End-users who only have shiftable flexibility behavior (economic followers) gain

more profit than the ones who are limited to the self-consumption flexibility

constraint (reliability followers).

• The self-consumption flexibility constraint increases the sustainability and

reliability of the power distribution system. Thus, the distribution network does

not depend on the up-stream grid to meet its energy needs.

According to the simulation results of the monopolistic and game-based approaches for

energy flexibility management among the agents of the distribution network, it is found

that:

• The monopolistic approach is profitable for all agents in the distribution network,

if all end-users participate as interruptible loads.
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• Aggregators have no desire to participate in DR programs to provide the energy

flexibility exchanged between the end-users and the aggregators, because their

expected costs is equal to zero.

• The power distribution system works as a sustainable energy system and does

not depend on the upstream grid in scenarios considering the shiftable and the

self-consumption flexibility constraints of the end-users.

• Game-based approach is costly for all end-users because the DSO is in charge of

determining the price of energy transacted between the DSO and end-users in our

proposed approach.

• In the game-based interaction between the aggregators and the DSO, the scenario

considering the shiftable demand constraint is more profitable than the scenario

considering the self-consumption demand constraint.

• The distribution network acts as a sustainable energy system considering the

self-consumption demand constraint in the game-based interaction among the

aggregators and the DSO.

7.3.4 Local electricity trading for EVs

We have modelled the energy flexibility management of end-users and the charging

operation of the EVs in the distribution grid. Three energy management strategies have

been presented to deal with the energy flexibility and operate EVs among players in the

bottom-layer of the power system. In this way, main findings are concluded that:

• Decentralized energy flexibility management by end-users is the most profitable

strategy for both end-users and aggregators.

• Two-stage stochastic sequential decision-making is the most profitable strategy

for the majority of end-users since the profit from charging EVs outside of their

owner’s home is considered in their objective function.

• End-user’s flexibility behavior is more profitable as an interruptible load than as

a shiftable load.

• The expected profits due to the operation of EVs for aggregators are maximum in

decentralized strategy.

• Shiftable load constraint is more profitable for all agents in the system.

• The sustainability of the distribution grid is increased considering the

self-consumption aggregation-based constraint.
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7.4 Recommendations for future works

Research regarding local electricity trading is a topic of broad and current interests whose

development requires multi-disciplinary knowledge. Below, we present the possible

objectives of future works:

• In this Ph.D. work, we presented different structures for local electricity trading

(e.g. decentralized, centralized, game-based and partially-decentralized) among

agents in the distribution network. However, the peer-to-peer (P2P) approach for

the energy trade between end-users has not been discussed in this Ph.D. work

because P2P energy trading is not practical in power systems based on the current

infrastructure of the distribution networks.

• Pricing mechanisms is another direction in which this Ph.D. thesis can be improved

in future works. The pricing mechanism is needed to provide a fair nodal electricity

price for the end-users in the distribution network.

• The improvement the resiliency and security of digitalized energy systems is

another research topic which is suggested for future works.

• The study of the applications of the Blockchain Technology (BT) is another future

line of research. BT allows autonomous agents to negotiate and transact together

with digitalized real assets e.g. energy and cryptocurrencies in power distribution

system.

• Fog Computing is another suggested line of research in local electricity trading in

power distribution grids. It makes it possible to operate on edge-to-edge devices

e.g. smart meters. The edge fog collectors process the data generated by the

sensors and network devices, and issue control commands to the actuators. They

also filter the data to be consumed locally, and send the rest to the higher levels

for visualization, real-time reporting and transaction analytics.
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7.5 Introducción

Este caṕıtulo resume las principales contribuciones de esta tesis en la Sección 7.6.

Además, los principales resultados obtenidos de los estudios de caso descritos en los

Caṕıtulos 3 a 6 en la Sección ??. Además, en la Sección 7.8 se proponen posibles ĺıneas

de investigación futuras relacionadas con el comercio local de electricidad.

7.6 Contribuciones principales

Esta tesis doctoral ha propuesto una arquitectura de organización virtual para el

comercio de enerǵıa entre los agentes (usuarios finales, agregadores y el gestor de la

red de distribución) de la red de distribución. Asimismo, se ha descrito cada uno de

estos agentes y las interconexiones entre ellos. En este trabajo, se ha propuesto un

enfoque ascendente para el comercio de enerǵıa desde los usuarios finales, como agentes

prosumidores capaces de proporcionar transacciones energéticas bidireccionales, hasta

los agregadores y el gestor de la red de distribución.

Aśı, se ha introducido una organización basada en sistemas multiagente del sistema

eléctrico de hogares inteligentes (como ejemplo de los usuarios finales). A continuación,

se ha definido el sistema de gestión de la enerǵıa en el hogar (HEMS) para modelar

el comportamiento flexible de los usuarios finales residenciales y su incertidumbre

basándose en diferentes tipos de métodos de optimización (por ejemplo, intervalo,

estocástico e intervalo-estocástico). Además, se ha presentado un método basado en

escenarios probabiĺısticos para la gestión de la enerǵıa residencial y el comercio de enerǵıa

con el mercado local de electricidad basado en una estrategia de licitación óptima. De

acuerdo con nuestro modelo de oferta óptimo, el HEMS es capaz de realizar transacciones

de enerǵıa con otros actores en su vecindario como un agente de fijación de precios de

acuerdo con los enfoques de intercambio de enerǵıa entre pares o con la comunidad.

A continuación, hemos propuesto varios enfoques (por ejemplo, descentralizado,

monopoĺıstico y basado en juegos) para la gestión de la flexibilidad energética entre

los agentes de la red de distribución de enerǵıa, teniendo en cuenta el comportamiento

flexible de los usuarios finales y los agregadores. Por último, se ha estudiado el impacto

de los futuros sistemas de transporte en las redes inteligentes. Aśı, la gestión de la

flexibilidad energética de los usuarios finales y las operaciones de recarga de los veh́ıculos

eléctricos se modelan en la red de distribución. Se han presentado tres estrategias de

gestión de la enerǵıa para gestionar la flexibilidad energética y el funcionamiento de

los veh́ıculos eléctricos entre los participantes de la capa inferior del sistema eléctrico.
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Además, la incertidumbre provocada por la movilidad de los veh́ıculos eléctricos se ha

modelado mediante una programación estocástica.

7.7 Resultados y conclusiones de la investigación

En este trabajo doctoral, se han presentado casos de estudio y problemas diferentes.

En esta sección, clasificamos nuestros resultados en cuatro categoŕıas basadas en los

resultados de la simulación obtenidos en los Caṕıtulos 3 a 6

7.7.1 Sistema de gestión de enerǵıa en la hogar

El rendimiento del problema de gestión de la enerǵıa doméstica propuesto se ha evaluado

comparándolo con los métodos de optimización de intervalos estocásticos propuestos y

con los métodos de optimización de bandas estocásticas predichas modificadas. Se evaluó

el impacto del modelo de flexibilidad energética y su exactitud de predicción. También,

se evaluó el programa de respuesta de demanda en cuanto a las ganancias estimadas, la

enerǵıa eléctrica tramitada y la confiabilidad de los resultados. A partir de la simulación,

se concluye que:

• El aumento de la flexibilidad energética aumenta las ganancias totales esperadas

del d́ıa siguiente y en tiempo real del sistema.

• El aumento de α incrementa la potencia fotovoltaica producida en la etapa del d́ıa

siguiente y la ganancia esperada para esta etapa. Sin embargo, tiene un impacto

negativo en la cuant́ıa de la ganancia esperada en tiempo real.

• El aumento de la precisión de la predicción tiene un impacto negativo sobre las

ganancias esperadas.

• La cuant́ıa de la ganancia total esperada en el peor de los casos del intervalo

estocástico es inferior a la cuant́ıa de la ganancia en el peor de los casos del

método de las bandas estocásticas predichas modificadas. Por lo tanto, el método

estocástico por intervalos es más robusto que el método de bandas estocásticas

predichas modificadas en la modelación de la incertidumbre en el problema de la

gestión de la enerǵıa doméstica propuesto.
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7.7.2 Modelo óptimo de oferta para el HEMS

El modelo de oferta óptimo propuesto para el HEMS se ha evaluado en dos casos

diferentes. El Caso 1 evaluó el impacto de los coeficientes de optimismo y flexibilidad

en el HEMS considerando la estrategia óptima de licitación. Sin embargo, en el caso

2, el rendimiento de los dos métodos de optimización diferentes -llamados InterStoch e

Hybrid- en el HEMS se ha evaluado sin considerar la estrategia de licitación óptima.

Según los resultados de la simulación de nuestro estudio de caso:

• Aumenta la robustez del sistema de gestión de la enerǵıa residencial propuesto,

donde αpv y αprice -los coeficientes de optimismo de la generación de enerǵıa

fotovoltaica y el precio de la electricidad- son iguales a 0 y 1, respectivamente.

En otras palabras, el incremento en αpv está en ĺınea con el incremento en la

ganancia esperada del sistema. Sin embargo, el incremento del αprice tiene un

impacto negativo en las ganancias esperadas del HEMS. De esta manera, el peor

y más robusto caso del sistema es cuando αpv es igual a 0 y el αprice es igual a 1.

• Los coeficientes de optimismo tienen el mismo patrón de impacto en las ganancias

esperadas del sistema, tanto en el método InterStoch como en el método Hybrid.

• La robustez del método de optimización InterStoch es mayor que la del método

Hybrid porque la ganancia total esperada del sistema es menor en el estudio de caso

que se resuelve con el método de optimización InterStoch. Además, el método de

optimización h́ıbrido obtiene resultados subóptimos porque es resuelto por MINLP,

y no es tan eficiente como el método de optimización InterStoch.

• El modelo de oferta óptimo que proponemos para el sistema de gestión de enerǵıa

residencial es más robusto que el modelo de oferta no óptimo porque el modelo de

oferta óptimo trae menores ganancias esperadas al sistema en el peor de los casos,

donde αpv es igual a 0 y el αprice es igual a 1.

• El incremento en el coeficiente de flexibilidad está en ĺınea con la ganancia total

esperada del sistema. Por lo tanto, el mejor caso del sistema es cuando el coeficiente

de flexibilidad es igual a 1.

• El sistema de gestión de enerǵıa residencial propuesto sólo ofrece y licita una

cantidad para todos los escenarios de precios en la etapa del d́ıa siguiente.

En otras palabras, modelar el sistema doméstico con o sin una estrategia de

licitación demuestra que no puede influir en el comportamiento de la vivienda

inteligente (como consumidor o productor) en el mercado local de electricidad del

d́ıa siguiente.
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7.7.3 Estructura local del comercio de electricidad

En este trabajo de doctorado, hemos presentado enfoques descentralizados,

monopoĺısticos y basados en juegos para la gestión de la flexibilidad energética entre

los agentes de la distribución red.

El rendimiento del enfoque descentralizado propuesto se ha evaluado en términos de su

impacto en la incertidumbre de la ĺınea de distribución y el comportamiento flexible

de los usuarios finales. Basándose en las simulaciones, se ha llegado a las siguientes

conclusiones:

• El enfoque de gestión de la flexibilidad energética propuesto es viable para todos

los consumidores sin tener en cuenta el coste de la reducción de la carga.

• La incertidumbre de la ĺınea de distribución tiene un impacto negativo en los costes

totales esperados para los usuarios finales.

• Los usuarios finales son capaces de gestionar su flexibilidad energética como agentes

independientes teniendo en cuenta sólo la restricción de la flexibilidad cambiante.

• La coalición de usuarios finales debe proporcionar flexibilidad energética sobre la

base de la restricción de la flexibilidad del autoconsumo.

• Los usuarios finales que sólo tienen un comportamiento de flexibilidad variable

(seguidores económicos) obtienen más beneficios que los que se limitan a la

restricción de flexibilidad de autoconsumo (seguidores de fiabilidad).

• La limitación de la flexibilidad del autoconsumo aumenta la sostenibilidad y la

confiabilidad del sistema de distribución de enerǵıa. De este modo, la red de

distribución no depende de la red de suministro para satisfacer sus necesidades

energéticas.

De acuerdo con los resultados de la simulación de los enfoques monopoĺısticos y basados

en juegos para gestión de la flexibilidad energética entre los agentes de la red de

distribución, se descubre que:

• El enfoque monopoĺıstico es viable para todos los agentes de la red de distribución,

si todos los usuarios finales participan como cargas interrumpibles.

• Los agregadores no desean participar en programas de respuesta de demanda para

proporcionar la flexibilidad energética intercambiable entre los usuarios finales y

los agregadores, porque sus costos esperados son iguales a cero.
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• El sistema de distribución de enerǵıa eléctrica funciona como un sistema energético

sostenible y no depende de la red de suministro en los escenarios que consideran

las limitaciones de flexibilidad de los usuarios finales, tanto en lo que se refiere a

la capacidad de desplazamiento como al autoconsumo.

• El enfoque basado en juegos que proponemos, es costoso para todos los usuarios

finales, ya que el gestor de la red de distribución se encarga de determinar el precio

de la enerǵıa que se transfiere entre el gestor de la red de distribución y los usuarios

finales.

• La red de distribución actúa como un sistema de enerǵıa sostenible teniendo en

cuenta la restricción de la demanda de autoconsumo en la interacción basada en

el juego entre los agregadores y el DSO.

• The distribution network acts as a sustainable energy system considering the

self-consumption demand constraint in the game-based interaction among the

aggregators and the DSO.

7.7.4 Comercio local de electricidad para EVs

Hemos modelado la gestión de la flexibilidad energética de los usuarios finales y la

operación de carga de los veh́ıculos eléctricos en la red de distribución. Se han presentado

tres estrategias de gestión de la enerǵıa para abordar la flexibilidad energética y el

funcionamiento de los EVs entre los actores de la capa inferior del sistema de enerǵıa.

Se extraen las siguientes conclusiones de los hallazgos:

• La gestión descentralizada de la flexibilidad energética por parte de los usuarios

finales es la estrategia más rentable tanto para los usuarios finales como para los

agregadores.

• La toma de decisiones secuencial estocástica en dos etapas es la estrategia más

rentable para la mayoŕıa de los usuarios finales, ya que la ganancia que se obtiene

al cobrar a los veh́ıculos eléctricos fuera del hogar de sus propietarios se considera

en su función objetiva.

• El comportamiento flexible del usuario final es más rentable como carga

interrumpible que como carga desplazable.

• Las ganancias esperadas para los agregadores, producidas por la operación de los

EV son máximas en la estrategia descentralizada.
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• La restricción de carga desplazable es más rentable para todos los agentes del

sistema.

• La sostenibilidad de la red de distribución se ve incrementada si se tiene en cuenta

la restricción basada en la agregación de autoconsumo.

7.8 Recomendaciones para trabajos futuros

La investigación sobre el comercio local de electricidad es un tema de interés amplio

y actual cuyo desarrollo requiere un conocimiento multidisciplinar. A continuación,

presentamos los posibles objetivos de los trabajos futuros:

• En este trabajo de doctorado, presentamos diferentes estructuras para el comercio

local de electricidad (por ejemplo, descentralizado, centralizado, basado en juegos

y parcialmente descentralizado) entre los agentes de la red de distribución. Sin

embargo, el enfoque P2P (peer-to-peer) para el comercio de enerǵıa entre usuarios

finales no ha sido abordado en este trabajo de doctorado porque el comercio de

enerǵıa P2P no es práctico en los sistemas de enerǵıa debido a la infraestructura

actual de las redes de distribución.

• Los mecanismos de fijación de precios son también otro aspecto en el que se puede

mejorar esta tesis doctoral en trabajos futuros. El mecanismo de fijación de precios

debe proporcionar un precio nodal justo para los usuarios finales de la red de

distribución.

• Mejorar la resistencia y la seguridad de los sistemas de enerǵıa digitalizados es

otro tema de investigación que se planteará en trabajos futuros.

• El estudio de las aplicaciones de la Tecnoloǵıa Blockchain (Blochchain Technology)

es otra de las ĺıneas de investigación futuras. BT permite a los agentes autónomos

negociar y realizar transacciones junto con activos reales digitalizados, por ejemplo,

enerǵıa y criptodivisas en el sistema de distribución de enerǵıa.

• El estudio de las aplicaciones de la Tecnoloǵıa Blockchain (Blochchain Technology)

es otra de las ĺıneas de investigación futuras. BT permite a los agentes autónomos

negociar y realizar transacciones junto con activos reales digitalizados, por ejemplo,

enerǵıa y criptodivisas en el sistema de distribución de enerǵıa.
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