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Abstract. Zircon and monazite ID-TIMS U-Pb dating of four Lower Ordovician altered ash-

fall tuff beds (K-Bentonites) in NW Iberia provided coetaneous ages of 477.5±1, 477±1.3 Ma, 

477.2±1.1 Ma and 477.3±1 Ma, with a pooled concordia age of 477.2±0.74 Ma. A conservative 

estimation of the volume and mass of the studied K-bentonite beds (using data from the 

Cantabrian Zone) returns a minimum volume for the preserved deposits of ca. 37.5 km
3
 

(Volcanic Explosivity Index - VEI = 6, Colossal). When considering other putative equivalent 

beds in other parts of Iberia and neighbouring realms the volume of ejecta associated to this 

event would make it reach the Supervolcanic-Apocalyptic status (VEI=8, >1000 km
3
). 

Contrary to most cases of this kind of gargantuan eruption events, the studied magmatic event 

took place in relation to continental margin extension and thinning and not to plate 

convergence. We speculate that a geochronologically coincident large caldera event observed 

in the geological record of NW Iberia could be ground zero of this super-eruption. 

1.  Introduction 

Volcanic supereruptions [1] are contemplated to be those that discharge magma in excess of 10
15

 kg, 

commensurate to a volume of more than 450 km
3
 [2,3] in a relatively brief period of time [4,5] with a 

Volcanic Explosivity Index (VEI) [6] commonly over 8. These singular volcanic episodes appear to 

happen prompted by melt buoyancy [7] with a worldwide prevalence ranging from 1.4 to 22 

events/My [4], which should make them ample in the geological record.  
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Still, few such eruptions are noticed in the geological record on account of: i) the odds of 

preservation are scant as the deposits they generate are easily eroded and ii) even if the deposits are 

perpetuated, they are challenging to recognize and reconstruct once they have been altered, deformed, 

metamorphosed and dismembered by ensuing geological events. For instance, the last 45 My of Earth 

history preserve deposits caused by at least 45 supereruptions [4] while in the Ordovician period, 

covering the same time span (ca. 42 My), only two supereruptions, preserved as altered volcanic ash-

fall deposits (K-bentonites), have been diagnosed so far [8, 9, 10, 11, 12]. 

In this paper we target on the Lower Ordovician ash-fall deposits found in northern Iberia and 

contribute geological and geochronological data, as well as arguments, that support the idea that the 

deposits were the result of one super-eruption that occured in the rifted and extended northern margin 

of west Gonwana during Floian times. This event took place at a passive margin while it was being 

thinned and extended during the initial phases of the Rheic Ocean opening (see [13]). 

2.  Geological setting   

The Lower Paleozoic succession in northwest Iberia is characterized by the profusion of long-lived 

magmatism, which is expressed mainly by the so called “Ollo de Sapo” plutonic and volcanic episode 

extending in age between ca. 490 and 465 My, with a maximum at ca. 477 My, Figure. 1C [14, 15]. 

Within the Cantabrian Zone (CZ), this event is represented by alkaline basalts and volcaniclastic 

rocks interbedded within Upper Cambrian and Lower Ordovician strata [16, 17, 18] together with an 

extensive K-bentonite (Pedroso-Valverdín bed) within the Lower Ordovician succession (Figure. 1A), 

[19] which is the main object of this study. Ash-tuff beds correlatable with the Pedroso-Valverdín bed 

also crop out in other parts of Iberia as the Iberian Ranges (IR) (Tranquera bed, Figure. 1A [20] and in 

the Westasturian-Leonese Zone (WALZ) [21]. 

The Lower Ordovician shallow-water siliciclastic succession hosting the studied ash beds is widely 

exposed in Western Europe (e.g. [20, 22, 23]) and its provenance established through detrital zircons 

[24]. The Pedroso-Valverdín K-bentonite bed (Figure. 1A) extends over the whole CZ (Figure. 1A) 

more than 1800 km
2
 with a thickness between 45 and 80 cm [22, 23]. It is interpreted as an altered 

ash-fall tuff ("kaolinite tonstein" [22, 23]). The upper and lower contacts are very sharp and the 

massive ash-fall apparently did not affect the population structure and the development of the benthic 

communities, which attained a rapid recovery and re-colonization of the shallow marine environment 

in a way similar to that observed in other Ordovician and modern ash-falls [9, 25]. 

The origin of the Lower Ordovician magmatism in the studied sector of the Gondwanan margin 

(Figure. 1B) is interpreted to be related to extension, linked to the undocking of Avalonia [13]. 

The three new studied samples plus a sample from Mina Conchita (Figure. 1A) [26], were collected 

in the Cantabrian Zone. The K-bentonite samples contained mainly zircon, monazite and pyrite as 

heavy minerals, which is indicative of limited reworking in the sedimentary environment, in contrast 

to other K-bentonites with the heavy mineral association zircon-tourmaline-rutile, which is a common 

feature of highly reworked bentonites in which the proportion of remanié zircons is usually high. 
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Figure 1. (A) Paleogeographic reconstruction of Western Europe in early Mesozoic times with the sample 

locations, the known outcrops of ca. 477 My intrusive and extrusive rocks and the extension of the recognized 

ash-tuff layer studied as well as the conservatively considered extension for a more interpretative volume 

calculation. (B) Early Paleozoic reconstruction of the Rheic Ocean opening and the origin and putative extension 

of the super eruptions identified in Ordovician times. (C) Histogram, Probability Density Diagram, and Kernel 

analysis plot of the available intrusive and extrusive age data between 465 and 500 My. In Western Europe, 

which reveals a significant maximum at 477 My, coeval with the age of the identified ash-tuff layer. (D) 

Wetherill concordia plots of the studied samples. (Modified from [27]). 
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3.  Geochronology 

3.1.  U-Pb ID-TIMS analytical method 

U-Pb analytical work was conducted at the Department of Geosciences, University of Oslo, Norway. 

Isotope data and details of each analyzed fraction are given in Table 1. The analytical procedure for 

zircon and monazite analyses is also described in [27]. U-Pb data are shown as Wetherill concordia 

plots in Figure. 1D. 

3.2.  Results 

For sample AST-1 [26] we use the published age of 477.5±1 My (Concordia age of 6 concordant and 

overlapping analyses on single abraded grains, Figure. 1D.4). 

For the 3 new samples selected for this study (LBL, GRADO and TUN-194) the best U-Pb age 

estimate has been calculated as described below: 

Sample LBL: 11 zircon and 3 monazite fractions were analysed (see details in Table 1). Of the 11 

zircon analyses, 5 are discordant and are no longer considered in age calculations. The six concordant 

analyses (Table 1) yield a concordia age of 477±1.3 My (Figure. 1D.1). This age is within error of the 

weighted average of the 
207

Pb/
235

U age (chosen because of reverse discordance, see [28] of the 3 

monazite analyses (478±2.7 My) from the same sample. 

Sample GRADO: Nine zircon and one monazite fractions were analysed. Of the 9 zircon fractions 

3 are >5% discordant and were not considered for age calculation. With the remaining analyses 

(discordance between -0.2% and 3.8%, Table 1) we calculated an upper intercept age anchored at 

0±10 My (Figure. 1D.2) of 477.2±2.3 My, and a concordia age with the two top analyses (Figure. 

1D.2) of 477.2±1.1 My. This age is within error of the 
207

Pb/
235

U age of the reversely discordant 

monazite analysis (478±1 My). 

Sample TUN-194: 10 zircon and one monazite analyses were performed on fractions separated 

from this sample. Of the 10 zircon analyses, 3 were discordant and are not considered in the age 

calculation (Table 1). The remaining 7 concordant zircon analyses yield a concordia age of 477.3±1 

My (Figure. 1D.3), within error of the 
207

Pb/
235

U age of the reversely discordant monazite analysis 

(479±1 My). 

Within the precision of the U-Pb analyses in this study, it can be stated that the four samples are 

coeval and possibly belong to the same volcanic event. The best age assesment for the volcanic event 

can be gathered by the pooled 21 concordant analyses from the four samples described above (Figure. 

1), yielding a concordia age of 477.2±0.74 My which concurs with the Tremadocian-Floian boundary 

(477.7±1.4 My, [30]). This concordia age is consistent with the age obtained using the TuffZirc 

algorithm of Isoplot 3.7 [30] which provides an age of 477.5 +0.75/-1.1 My using the 
206

Pb/
238

U ages 

of the same set of 21 concordant analyses.  

All the monazite analyses show reverse discordance and their average 
207

Pb/
235

U age is 1 to 2 My 

older than the concordia age of the zircons in the same samples (Table 1). Since the closure 

temperature of monazite for the U-Pb system and its Pb retentivity can be higher than those of zircon 

(e.g. [31]), the monazite ages could represent an older pre-eruptive stage and the zircon be closer to 

the eruption stage. In any case, this observation does not challenge the inference that all the studied 

samples are coeval at the level of precision achieved in this study. 

4.  Volume and mass calculations 

Given the aerial extension and the thickness of the studied K-bentonite, and given the 

geochronological evidence aforementioned for its assignment to a single event, we can attempt to 

reconstruct its initial mass and volume to grade the magnitude of the volcanic event. For this scope, 

we have reconstructed the Variscan deformation by unfolding the Cantabrian Arc (Figure. 1A) and 

restoring the shortening caused by the Variscan thrusting and folding (Figure. 1A). Upon a 

conservative restoration considering the minimum shortening during the late Devonian-Carboniferous 

Variscan orogeny of the different units involved (ranging from 100% in the foreland to more than 

200% in the hinterland), the areal extent of the K-bentonite bed, based on the locations of the known 
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outcrops in the Cantabrian Zone may have exceeded ca. 15000 km
2
, and 100000 km

2
 when 

considering the correlatable beds in the proximal IR and WALZ and Central Iberian Zone (CIZ, 

Figure. 1A). The thickness of the studied tonstein shows  a steady thinning trend from the westernmost 

outcrops in the CZ, where the thickness attains up to 80 cm. In the surrounding regions, thickness 

estimations should be taken cautiously as the tuff beds have suffered internal strain and their thickness 

(from a few centimeters to several meters) should be treated as a minimum. 

A conservative evaluation of the volume and mass of the studied K-bentonite (using exclusively the 

Cantabrian Zone data, Figure. 1A) done with the Weibull fit method [32] provides a volume for the 

preserved deposits of ca. 37.5 km
3
 (Volcanic Explosivity Index - VEI = 6, Colossal) which 

corresponds to a mass of ca. 8.3·10
13

 kg using a measured mean density value of 2200 kg/m
3
. 

When considering other outcrops in northern Iberia which can be likely correlated with the dated K-

bentonites, these values increase to ca. 400 km
3
 (VEI = 7, Mega-colossal) which would correspond to 

a mass of ca. 9·10
14

 kg. These occurrences may be linked to the large magmatic event regionally 

known as "Ollo de Sapo" (i.e. [15] and references therein) whose main age (including many volcanic 

rocks and their plutonic correlatives) peaks at ca. 477 Mya (Figure. 1C). Furthermore, the studied K-

bentonites are coeval with the intrusion of a peralkaline ring complex attributed to a large caldera 

event in NW Iberia (Figure. 1A, [33, 34, 35]. Whether or not this caldera was the main source of the 

dated ash-fall beds (and their correlatives) cannot be ascertained with available geological data. 



Petrology of magmatic and metamorphic complexes

IOP Conf. Series: Earth and Environmental Science 319 (2019) 012007

IOP Publishing

doi:10.1088/1755-1315/319/1/012007

6
 

Table 1. U-Pb data from the studied samples. 
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5.  Discussion 

The data presented document the first described occurrence of a gigantic volcanic ash-fall/event in the 

Lower Ordovician. Such an event has only been recognized in the Upper Ordovician (ca. 454 My), 

(Figure. 1B) [8, 36, 12]. 

The apparent coeval nature. same U-Pb zircon age within a ca. 1My uncertainty, of the studied 

samples present in the same stratigraphic position is an argument for a large eruptive episode in 

Gondwana ca. 477 My ago. The CZ is the domain where the K-bentonite layer is better preserved but 

its areal extension should have been much larger; covering most of Iberia and adjacent realms. 

Preservation of ash-fall beds (ultimately occurring as K-bentonite layers) requires lack of sedimentary 

reworking and the existence of large basins. In Iberia, the Lower Ordovician stratigraphic record is 

interpreted to be restricted to relatively small domains due to basin fragmentation and large emerged 

areas, especially in the southern part of the CIZ [37]. Given that in northern Iberia there is a 

continuous sedimentary record for the Lower Ordovician, the best preservation occurs in it and the 

studied K-bentonite is ubiquitously recognized in areas lacking metamorphism and internal strain.  

The large amount of igneous rocks coetaneous with the studied K-bentonite layer found in Iberia 

and neighboring areas (see Figure. 1C) is consistent with the notion that the K-bentonite could have 

been much more extensive than what is preserved in the Cantabrian Zone. Because of the fragmented 

stratigraphic record, it is not possible to appraise the real size of the volcanic episode recorded in NW 

Iberia. Still, when considering other possible equivalent areas in Iberia and neighboring terranes (i.e. 

Armorica, Sardinia, etc. [38]. the volume of ejecta related to this event would make it grasp the 

Supervolcanic-Apocalyptic category (VEI=8, >1000 km
3
). 
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