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ABSTRACT 

Haematopoiesis is a very relevant differentiation process in adult humans where a 

multipotent cell, the haematopoietic stem cell (HSC), generates a widely varied, fully 

differentiated progeny, with immune defence, nutrient exchange and volume 

homeostasis functions. The regulatory cues governing the biology of HSCs must be 

tightly regulated in order to ensure their own self-renewal, as well as the proper turnover 

of differentiated cells. These signals are provided by the surrounding environment, 

known as niche, integrated by both haematopoietic and non-haematopoietic cells. The 

disruption of this fine equilibrium by alteration of either the external signals or their 

intracellular transduction in haematopoietic stem and progenitor cells (HSPCs) leads to 

the development of haematologic malignancies, including leukaemia. 

An important blood disorder affecting the myeloid lineage is acute myeloid 

leukaemia (AML). It is especially recurrent among the elderly, with a median age at 

diagnosis of 70 years, a fact to be considered due to the increasing life expectancy in 

Western countries. AML is a highly heterogeneous and aggressive disease with poor 

prognosis and, in general, no significant therapeutic improvements beyond 

chemotherapy over the last four decades. An exception to this scenario is the treatment 

of acute promyelocytic leukaemia (APL), which is highly responsive to pro-differentiative 

therapy, consisting of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO). Unlike 

AML, CML is highly homogeneous in terms of molecular biology, with the expression of 

the fusion oncokinase breakpoint cluster region-ABL proto-oncogene 1, non-receptor 

tyrosine kinase (BCR-ABL) as the main pathogenic driver. In the early 2000s, the clinical 

use of tyrosine kinase inhibitors (TKI) targeting this protein revolutionised the 

management of CML due to great improvements in treatment response and survival 

rates. However, this disease remains challenging in particular cases. 

Despite its heterogeneous nature, AML displays a differentiation blockage as a 

hallmark. This feature, together with the example of the differentiation-based APL 

treatment, has prompted the development of an important line of research focusing on 

the molecular mechanisms governing cell differentiation during haematopoiesis. This 

knowledge would lead to a better understanding of the dysregulated processes leading 

to pathogenesis and their subsequent pharmacological targeting to treat the disease. In 

line with this, the present work sought to assess in detail the involvement of SRC 

homology 2 domain containing protein tyrosine phosphatases 1 (SHP1) and 2 (SHP2) in 

the differentiation of leukaemic cells and the potential of these molecules as 

pharmacological targets for AML. Herein, it was demonstrated the cooperative function 

of both phosphatases in phorbol ester-induced cell differentiation, with an enhanced 
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differentiated phenotype of cells subjected to simultaneous downregulation of these 

proteins. In addition, the kinase SRC was identified as a downstream target of SHP2 in 

this process, which appeared to influence the extent of the differentiation stimulus 

triggered by phorbol 12-myristate-13-acetate (PMA). Besides, the role of both 

phosphatases on cell differentiation showed to be partially overlapping through the 

regulation of β-catenin protein levels. Based on this evidence, the chemical inhibitor of 

SHP1 and SHP2 NSC 87877 (NSC) was successfully tested to boost the differentiation-

inducing effect of phorbol esters in the AML cell line HL-60. Moreover, this compound 

synergised with the phorbol ester 13-O-acetyl-12-deoxyphorbol or prostratin (PRS) to 

prevent proliferation of not only in HL-60 cells, but also additional cell lines used as AML 

models (NB-4, OCI-AML2 and THP-1). Most importantly, the anti-leukaemic activity of 

this combination was corroborated in vivo with a xenograft mouse model and in primary 

cells from AML patients ex vivo. 

In summary, the results described in the present work support a promising 

therapeutic potential of the chemical inhibitor NSC 87877 in combination with phorbol 

esters to treat AML. Furthermore, some mechanistic insight on the molecules connected 

to these phosphatases in both disease biology and pharmacological mode of action of 

the inhibitor has been provided.
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RESUMEN 

La hematopoyesis es un proceso de diferenciación muy relevante en el humano 

adulto, en el cual una célula multipotente, la célula madre hematopoyética (HSC de sus 

siglas en inglés), genera una amplia variedad de células plenamente diferenciadas con 

funciones de defensa inmune, intercambio de nutrientes y homeostasis de volumen. Las 

señales que regulan la biología de las HSCs deben estar estrechamente reguladas para 

asegurar su capacidad de autorrenovación y el recambio adecuado de células 

diferenciadas. Estas señales provienen del ambiente que las rodea, conocido como 

nicho, que está integrado por células hematopoyéticas y de otros linajes. La ruptura de 

este delicado equilibrio, bien por la alteración de las señales externas o por su 

transducción intracelular en las células madre y progenitores hematopoyéticos (HSPCs, 

de sus siglas en inglés) conduce al desarrollo de enfermedades hematológicas, 

incluyendo la leucemia. 

Un importante trastorno hematológico que afecta al linaje mieloide es la leucemia 

mieloide aguda (LMA). Esta enfermedad es especialmente recurrente entre las 

personas de edad avanzada, con una mediana de edad de diagnóstico de 70 años, un 

hecho a tener en cuenta dado el incremento en la esperanza de vida acontecido en 

países occidentales. La LMA es una enfermedad agresiva y altamente heterogénea con 

mal pronóstico para la que, en general, no ha habido avances terapéuticos significativos 

más allá de la quimioterapia en las últimas cuatro décadas. Una excepción a este 

panorama es el tratamiento de la leucemia promielocítica aguda (LPA), que responde 

muy bien a la terapia prodiferenciadora con ácido todo-trans-retinoico (ATRA, de sus 

siglas en inglés) y trióxido de arsénico (ATO, de sus siglas en inglés). 

A pesar de su naturaleza heterogénea, la LMA presenta un bloqueo en la 

diferenciación como uno de sus rasgos distintivos. Esta característica, unida al ejemplo 

del tratamiento de la LPA, basado en la diferenciación, ha impulsado el desarrollo de 

una importante línea de investigación centrada en los mecanismos moleculares que 

gobiernan la diferenciación celular durante la hematopoyesis. Este conocimiento daría 

lugar a una mejor comprensión de las alteraciones patogénicas y su uso como dianas 

farmacológicas para tratar la enfermedad. En este sentido, el presente trabajo tuvo como 

objetivo la evaluación detallada del papel de las quinasas con dominios de homología a 

SRC tipo 2 (SH2) 1 (SHP1) y 2 (SHP2) en la diferenciación de células leucémicas y su 

potencial como dianas farmacológicas para la LMA. Se demostró la función cooperativa 

de ambas fosfatasas en la diferenciación celular inducida por ésteres de forbol, con un 

fenotipo más diferenciado en células donde la expresión de dichas proteínas estaba 

disminuida simultáneamente. Además, la quinasa SRC fue identificada como una diana 



Resumen 
 

 

aguas abajo de SHP2 en este proceso, lo que parecía influir en la intensidad del estímulo 

diferenciador iniciado por 12-miristato-13-acetato de forbol (PMA, de sus siglas en 

inglés). Asimismo, se reveló que el papel de estas fosfatasas en la diferenciación celular 

se solapaba parcialmente a través de la regulación de los niveles de la proteína β-

catenina. Con base en estos resultados, se probó con éxito el inhibidor químico de SHP1 

y SHP2 NSC 87877 (NSC) para potenciar el efecto inductor de la diferenciación de los 

ésteres de forbol en la línea celular de LMA HL-60. Por otro lado, este compuesto mostró 

un efecto sinérgico con el éster de forbol 13-O-acetil-12-desoxiforbol, o prostratina 

(PRS), en la disminución de la proliferación no solo de células HL-60, sino también en 

otras líneas celulares modelo de LMA (NB-4, OCI-AML2 y THP-1). Lo que es más 

importante, la actividad antileucémica de esta combinación fue corroborada in vivo, en 

un modelo de ratón xenoinjerto, y ex vivo, sobre células primarias de pacientes de LMA. 

En resumen, los resultados descritos en el presente trabajo apoyan un potencial 

terapéutico prometedor del inhibidor químico NSC 87877 en combinación con ésteres 

de forbol para el tratamiento de la LMA. Asimismo, se han revelado algunos detalles de 

los mecanismos que implican a las moléculas ligadas a estas fosfatasas, tanto en la 

biología de dicha enfermedad como en el modo de acción del inhibidor.
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1. INTRODUCTION 

The adult human being is a complex organism composed of myriads of different cell 

types, each of which has very specific functions that co-ordinately contribute to a correct 

physiology. However, these differentiated cells lack self-renewal potential, have a limited 

lifespan and need to be replaced in order to sustain the regular function of different 

tissues and organs. Adult stem cells are responsible for this goal. These cells remain in 

an undifferentiated stage, which allows them to undergo cell divisions and originate more 

stem cells or new committed progenitors, thus ensuring the proper turnover of functional 

differentiated cells. 

Contrary to embryonic stem cells (ESCs), which are pluripotent –they can generate 

the three embryonic germ layers–, adult stem cells are uni- or multipotent, thus giving 

rise to only one or a few mature cell types, respectively. There is a restricted group of 

adult stem cells in the human body, namely haematopoietic, neuronal, intestinal, 

mesenchymal, satellite and epidermal stem cells (Dulak et al, 2015). Among them, 

haematopoietic stem cells (HSCs) have been extensively studied due to their ability to 

generate a wide range of mature cell types and their close similarities with leukaemic 

stem cells (LSCs), which account for drug resistance and disease relapse in blood 

cancers. 

1.1. Relevant aspects of haematopoiesis 

1.1.1. Haematopoietic stem cells: the origins of blood 

The primitive emergence of HSCs has been described to occur in mammals in 

a dorsal region of the embryo known as the aorta-gonad-mesonephros (AGM). 

Although it was initially suggested that the origin of HSCs was the haemangioblast, 

a cell also capable of generating endothelial cells, this remains nowadays 

controversial. Regardless of its origin, HSCs migrate from the AGM to several 

locations during development (the so-called waves of haematopoiesis) until they 

settle in the bone marrow (BM), where they stay throughout the entire lifetime (Orkin 

& Zon, 2008). 

The presence of HSCs in adult human BM was previously demonstrated as a 

result of the combination of functional assays (comprising long-term culture-initiating 

cells –LTC-IC– and in vivo repopulation assays) and immunophenotype-based 

selection of restricted populations within the bulk BM through flow cytometry 

approaches (Sutherland et al, 1989; Baum et al, 1992; Bhatia et al, 1997; Murray et 

al, 1994). These experiments have led to a progressive refinement of the functionally 

defined HSCs and simultaneously revealed some degree of heterogeneity in terms 
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of immunophenotype, repopulation ability and lineage outputs (Laurenti & Göttgens, 

2018). 

In order to have the HSC status, a cell must be capable of both self-renewing 

throughout time and generating all blood cell types on a single-cell level (Doulatov 

et al, 2012). Phenotypically, these cells maintain their integrity through a tight 

regulation of their metabolic activity: they remain highly quiescent, rely on 

autophagy, have a glycolytic rather than mitochondrial metabolism and keep low 

levels of protein synthesis (Laurenti & Göttgens, 2018). However, despite all these 

common features, the previously highlighted heterogeneity and the fact that 

purification of candidate HSCs has been based on immunophenotypic selection of 

cell subsets from a complex BM population (Jacobsen & Nerlov, 2019) make the 

term ‘HSC compartment’ more accurate. 

1.1.2. The haematopoietic hierarchy: revisiting the classical model 

The classical model of haematopoiesis situates the HSC compartment at the 

apex of a hierarchical tree and makes at least three assumptions to explain the 

whole process: i) lineage decisions are subsequent to a loss of self-renewal 

capacity, ii) the first step of lineage commitment distinguishes two main branches: 

lymphoid and myeloid, and iii) lineage decisions occur successively as bifurcations 

of a given branch of the tree (Doulatov et al, 2012). 

The first loss of self-renewal potential occurs during the transition of HSC to a 

multi-potent progenitor (MPP). This compartment can still give rise to all blood 

lineages, but its repopulation capacity is more limited than that of HSCs (Doulatov 

et al, 2012). After the MPP node, two new compartments arise, namely the common 

myeloid progenitor (CMP), able to generate all the myelo-erythroid mature lineages, 

and the lymphoid-primed multipotent progenitor (LMPP), with potential to generate 

both myeloid and lymphoid cells. The next bifurcation step will lead to the three 

main branches before unipotent progenitors: the megakaryocyte-erythrocyte 

progenitor (MegE), the pre-granulocyte-monocyte (Pre-GM) and the common 

lymphoid progenitor (CLP) compartments. Furthermore, the Pre-GM compartment 

will experience an additional round of self-renewal ability loss, which generates the 

granulocyte-monocyte progenitor (GMP) compartment, precursor of all myeloid 

unipotent progenitors and eventually myeloid cells (Figure 1.1A) (Jacobsen & 

Nerlov, 2019). 
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The classical model of haematopoiesis has been lately challenged owing to 

experimental observations supporting (i) the functional heterogeneity found in 

discrete immunophenotype-based compartments defined to date (Jacobsen & 

Nerlov, 2019; Laurenti & Göttgens, 2018), (ii) the early lineage commitment 

observed in immunophenotypical multi- or oligo-potent compartments (Notta et al, 

2016; Haas et al, 2018), (iii) the continuity of the process rather than a tree-like 

behaviour (Velten et al, 2017) and (iv) the differences found between studies under 

steady-state versus stress conditions (Sun et al, 2014; Haas et al, 2018). Therefore, 

new depictions of the process based on these new findings have been proposed 

A 

Figure 1.1. Different models to explain the haematopoietic differentiation. A) Traditional model of 
haematopoiesis with a hierarchical tree structure and strictly defined progenitor subpopulations. PreE: 
pre-colony-forming erythroid progenitor; MkP: megakaryocyte progenitor. Adapted from Jacobsen & 
Nerlov, 2019. B) Scheme of revisited models of haematopoiesis highlighting the continuous nature of 
the process and the diffuseness of the transitions between immature progenitors and more committed 
cells. Adapted from Haas et al, 2018. 

B 
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(Laurenti & Göttgens, 2018; Haas et al, 2018) (Figure 1.1B). The new paradigm 

has important consequences when driver events of haematologic malignancies are 

considered, especially regarding the isolation and pharmacological targeting of 

putative LSCs. 

1.1.3. The HSC niche: the temple of blood integrity 

Blood functions comprise gas exchange, volume homoeostasis and defence 

against pathogens. Therefore, the need of distinct blood cell types is highly variable 

at different time points. The haematopoietic stem and progenitor cells (HSPCs) 

must be able to sense all these signals and initiate responses that allow the 

maintenance of the physiologic condition. Nonetheless, this proliferating status 

needs to keep a delicate balance with quiescence for two main reasons: to avoid 

the exhaustion of the progenitor pool that would prevent future responses, and to 

preserve the genomic integrity, which, if severely altered, can lead to haematologic 

malignancies (Pinho & Frenette, 2019). 

The cues that help to maintain this fine-tuned equilibrium are provided by the 

surrounding environment, known as niche. This term was initially proposed by 

Schofield in 1978, who suggested that the stemness of HSCs was determined by 

the cells they were in association with. Consequently, leaving this particular 

environment would commit them to more differentiated progenitors (Schofield, 

1978). Ever since, an extensive body of work has confirmed the existence of the 

niche and the cellular architecture and signalling molecules involved in HSC 

regulation have been progressively elucidated. Despite that, the distribution of 

HSCs, their cellular interaction partners and the nature of these relationships are 

still far from being fully understood. 

The evidence available so far is essentially based on transgenic mouse models 

and surface immunophenotype-based purification of BM cell populations and shows 

that the BM niche is comprised of both non-hematopoietic and hematopoietic cells. 

Within the first group, osteoblasts (OBs) were traditionally considered important 

promoters of HSC maintenance, although this view has been ultimately questioned 

in favour of a role on the control of more committed lymphoid progenitors (Frisch, 

2019; Pinho & Frenette, 2019). Endothelial cells (ECs), on the other hand, provide 

regulatory cues for HSC support and mobilisation at different levels (physico-

chemical, mechanical and biological) (Sugiyama et al, 2019; Frisch, 2019; Pinho & 

Frenette, 2019). In addition, mesenchymal stem cells (MSCs) secrete different 

cytokines important for maintenance and release of HSCs to the bloodstream, this 
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latter aspect in cooperation with sympathetic nervous fibres (Frisch, 2019; Pinho & 

Frenette, 2019). Conversely, non-myelinating Schwann cells regulate HSC 

quiescence. Finally, adipocytes appear to be essential for emergency 

haematopoietic reconstitution whereas deleterious if present in unbalanced 

numbers (Cuminetti & Arranz, 2019). 

Among the haematopoietic components supporting HSCs, megakaryocytes 

(MKs), macrophages (MΦs), neutrophils, regulatory T (Treg) lymphocytes and 

HSPCs can be named. MKs interact with specific subsets of HSCs to regulate their 

quiescence through distinct cytokines. MΦs are regulators of HSC quiescence as 

well, together with their retention in an indirect manner through interaction with OBs 

and MSCs. On the other hand, neutrophils are positive regulators of HSC self-

renewal and engraftment, as well as HSPC expansion in emergency myelopoiesis. 

Additionally, Treg lymphocytes have shown to favour allogeneic HSC transplantation 

(allo-HSCT) (Pinho & Frenette, 2019; Cossío et al, 2019). Finally, it is worth noting 

the proliferation-promoting effect of HSPC-HSPC contact by limiting the availability 

of transforming growth factor beta (TGFβ) for this subset (May et al, 2018). 

As it can be assumed, the increasing number of niche components depicts a 

very complex landscape in terms of regulatory networks governing HSC fate. We 

have previously suggested the possibility that every single HSPC might be located 

in a unique niche comprised of a particular combination of cellular partners 

interacting with both HSCs and one another, thereby dictating the individual 

outcomes of progenitors and stem cells (Pérez-Fernández & Hernández-

Hernández, 2016). This idea would be consistent with the HSPC heterogeneity 

discussed above. In any case, and despite its intricate nature, considerable efforts 

are still being made to fully elucidate the constituents and functions of the BM niche. 

This makes the study of the BM niche a continuously flourishing field of research, 

even more than four decades after the seminal contribution of Schofield. 

1.2. Unbalanced equilibrium in haematopoiesis: myeloid leukaemias 

The intracellular signalling of HSPCs is a precisely balanced process in which any 

disturbance may significantly alter the outcome of the cell. When this signalling is 

perturbed and stops being governed by physiological needs, the proliferation and 

differentiation status of HSPCs becomes aberrant, thus giving rise to leukaemia. 

Among the different types of human leukaemia, myeloid leukaemias comprise 

alterations in myelopoiesis. However, remarkable differences are found within the same 

group. According to progression, two sub-groups can be established: chronic myeloid 
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leukaemia (CML), with slower evolution and much better prognosis (Holyoake & Vetrie, 

2017), and acute myeloid leukaemia (AML), with a rapid progression (Khwaja et al, 

2016), especially in elderly patients, and poorer outcome (De Kouchkovsky & Abdul-Hay, 

2016). 

1.2.1. Acute myeloid leukaemia (AML) 

Also known as acute myelogenous leukaemia, this disease is characterized by 

an aberrant, clonal proliferation of immature myeloid progenitors (blasts) that invade 

BM and peripheral blood (PB), eventually leading to severe disruptions in 

physiological haematopoiesis (Figure 1.2). In Western countries, it displays an 

incidence between 3 and 5 cases per 100 000 individuals older than 18 years with 

increasing rates among mature people and a median age of ~70 years at the time 

of diagnosis (Döhner et al, 2015; Di Nardo & Cortes, 2016; Khwaja et al, 2016).  

Figure 1.2. The pathogenesis of AML. The HSC population normally gives rise to gradually more 
committed progenitors and precursors, which will eventually lead to fully differentiated cells (left side). 
On the contrary, AML emerges when a driver event generates a LSC population that disturbs the 
balance between division and differentiation. Leukaemic blasts then outcompete normal cells and 
populate the BM niche and PB (right side). Adapted from Khwaja et al, 2016. 
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One of the most relevant features of AML is its prominent heterogeneity. Most 

newly diagnosed AML cases present a founding clone and at least one subclone, a 

fact that is of capital relevance for relapse and therapy resistance (Döhner et al, 

2015). The early French-American-British (FAB) classification of 1976 already 

reflected the varied nature of the disease: eight different subtypes, from M0 to M7, 

were back then distinguished according to the morphology and maturation of 

leukaemic blasts (Table 1.1) (Miller & Pilichowska, 2014). Ever since, increasing 

knowledge on cytogenetic and genetic anomalies, as well as clinically relevant 

features, have been incorporated to FAB criteria by the World Health Organisation 

(WHO), thus giving rise to a periodically updated classification, being the last 

version published in 2016 (Table 1.2) (Arber et al, 2016). The continuous evolution 

of these grouping criteria further illustrates the complexity of this disease, reflected 

in terms of diagnosis, prognosis and treatment. 

Table 1.1. FAB classification of AML 

FAB SUBTYPE NAME 

M0 Undifferentiated acute myeloblastic leukemia 

M1 Acute myeloblastic leukemia with minimal maturation 

M2 Acute myeloblastic leukemia with maturation 

M3 Acute promyelocytic leukemia (APL) 

M4 Acute myelomonocytic leukemia 

M4 eos Acute myelomonocytic leukemia with eosinophilia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia 

M7 Acute megakaryoblastic leukemia 

 

Likely due to the abovementioned complexity, the standard therapy for AML 

has remained almost unchanged for the last four decades. It basically comprises 

two steps: induction and consolidation. The induction step consists of the so-called 

7+3 cycle: 7 days of treatment with the nucleoside analogue arabinocytosine (AraC 

or cytarabine) followed by 3 days of anthracycline administration (De Kouchkovsky 

& Abdul-Hay, 2016; Di Nardo & Cortes, 2016). However, patients over 60 years are 

poor responders to 7+3 cycle and the only possible improvement is the addition of 

the anti-CD33 calicheamicin-conjugated monoclonal antibody gemtuzumab 

ozogamicin (GO), which has been recently reintroduced in clinic (Winer & Stone, 
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2019) and might increase survival of patients who do not display adverse 

cytogenetic risk (Döhner et al, 2015). Fourteen days after the initiation of induction 

therapy, BM status must be evaluated to make a further decision. In case of 

unsuccessful response, either additional 7+3 cycles or alternative approaches are 

undertaken. If complete remission (CR) is achieved, patients can then undergo 

consolidation therapy, which is needed to avoid short-term relapse (De 

Kouchkovsky & Abdul-Hay, 2016; Miller & Pilichowska, 2014). At this point, two 

main alternatives are available: additional chemotherapy with intermediate-dose 

cytarabine or allo-HSCT. The former is usually the first choice, with different 

regimens depending on age, genetic profile and additional clinical conditions, 

whereas the latter is only selected for patients unlikely to respond to chemotherapy 

(De Kouchkovsky & Abdul-Hay, 2016; Di Nardo & Cortes, 2016; Döhner et al, 2015). 

Table 1.2. 2016 WHO classification of AML 

ACUTE MYELOID LEUKEMIA (AML) AND RELATED NEOPLASMS 

  AML with recurrent genetic abnormalities 

    AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 

    AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 

    APL with PML-RARA 

    AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

    AML with t(6;9)(p23;q34.1);DEK-NUP214 

    AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);GATA2, MECOM 

    AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1 

    Provisional entity: AML with BCR-ABL1 

    AML with mutated NPM1 

    AML with biallelic mutations of CEBPA 

    Provisional entity: AML with mutated RUNX1 

  AML with myelodysplasia-related changes 

  Therapy-related myeloid neoplasms 

  AML, Not Otherwise Specified 

    AML with minimal differentiation 

    AML without maturation 

    AML with maturation 
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    Acute myelomonocytic leukemia 

    Acute monoblastic/monocytic leukemia 

    Pure erythroid leukemia 

    Acute megakaryoblastic leukemia 

    Acute basophilic leukemia 

    Acute panmyelosis with myelofibrosis 

  Myeloid sarcoma 

  Myeloid proliferations related to Down syndrome 

    Transient abnormal myelopoiesis (TAM) 

    Myeloid leukemia associated with Down syndrome 

 

Despite the advances achieved since the 1960s, when AML was incurable 

(Khwaja et al, 2016), prognosis after standard treatment is still dismal. The median 

overall survival (OS) for AML patients is below 1 year and the 5-year survival rate 

is only ~25% in the United States (US) (Di Nardo & Cortes, 2016; Shallis et al, 2019; 

Miller & Pilichowska, 2014). This clearly illustrates the urgent need for new 

therapeutic approaches that improve these poor outcomes. Chemotherapy, the 

cornerstone of the current front-line treatment, is highly unspecific and not well 

tolerated by all patients. Besides, relapse is very frequent even after CR due to the 

presence of quiescent, non-responsive LSCs (Zeijlemaker et al, 2016). For this 

reason, considerable efforts are being made in the last years aiming at the 

development of directed therapies based on differential molecular features of 

leukaemic cells. 

1.2.1.1. Molecular alterations of AML cells 

As shown in Table 1.2, a proportion of AML cases are diagnosed and 

stratified on the basis of molecular abnormalities present in leukaemic clone(s). 

One of the facets that better illustrate the heterogeneity of the disease is the 

wide range of genomic alterations that can be found. Next generation 

sequencing (NGS) technologies have revealed at least 1 somatic genetic 

alteration in more than 95% of AML samples and several genetic alterations, 

three of them driver mutations, per sample (Di Nardo & Cortes, 2016). Large 

chromosomal rearrangements and point mutations in relevant genes have 

shown to be involved in AML pathogenesis and prognosis. Moreover, some of 

the products of these altered genes are becoming interesting targets for novel 
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directed therapies (see section 1.2.1.2). Some crucial and recurrent genetic 

abnormalities are the following. 

a) Large chromosomal rearrangements 

Cytogenetics remains the most important criterion for OS and CR prognosis 

in AML (De Kouchkovsky & Abdul-Hay, 2016) and was incorporated to WHO 

classification almost two decades ago (Khwaja et al, 2016). Indeed, some AML 

subtypes are exclusively diagnosed by the presence of chromosomal 

abnormalities instead of blast percentage. Although hundreds of mutations can 

be identified in AML samples, the following are listed because of their 

remarkable frequency or clinical relevance. 

• RUNX family transcription factor 1 (RUNX1)-RUNX1 partner 
transcriptional co-repressor 1 (RUNX1T1). Also known as AML1-

ETO, this fusion gene originates from the t(8;21)(q22;q22) 

rearrangement and represents between 5 and 10% of AML cases. It is 

especially frequent among young, non-infant individuals and defines a 

specific entity in the WHO classification of 2016 regardless of blast 

percentage (Table 1.2). RUNX1-RUNX1T1 gene is used for both 

diagnosis and minimal residual disease (MRD) monitoring. Its protein 

product contributes to leukaemogenesis through a wide range of altered 

functions: gene expression, ribosomal function, DNA repair, 

exacerbated reactive oxygen species (ROS) production, altered 

response to haematopoietic growth factors and cell cycle (Reikvam et 

al, 2011). The presence of this translocation at the time of diagnosis is 

considered a good prognosis factor unless co-occurring specific clinical 

conditions are present (Yang et al, 2017; Reikvam et al, 2011). 

• Promyelocytic leukemia (PML)-Retinoic acid receptor alpha 
(RARA). The translocation t(15;17)(q22;q21) is found in 5-10% of AML-

diagnosed individuals and defines the vast majority of APL cases (Yang 

et al, 2017). APL is a paradigm of molecular targeted leukaemia and 

merits a more detailed description (see section 1.2.1.3). 

• Core-binding factor subunit beta (CBFB)-Myosin heavy chain 11 
(MYH11). This fusion gene can be present in different forms coming from 

the aberrancies inv16 (p13.1q22) or t(16;16)(p13.1;q22). It defines 5-8% 

of AML cases irrespective of blast count according to 2016 WHO 

classification (Table 1.2). The median age of AML patients with these 
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rearrangements is 40 years and generally correlates with good 

prognosis. Co-occurring cytogenetic abnormalities are usual (Yang et al, 

2017). The leukaemogenic mechanism of the fusion gene product, 

CBFβ-SMMHC, appears to rely on repression of the haematopoietic 

transcription factor RUNX1, although the details are yet to be fully 

elucidated (Castilla & Bushweller, 2017). 

• Lysine methyltransferase 2A (KMT2A) rearrangements. 
Chromosomal abnormalities involving the gene KMT2A, located at 

11q23, account for about 5% of AML. Gene fusion events can occur with 

~80 different partners, which highly influence the outcome. In general, 

these rearrangements imply a poor prognosis and are found in patients 

with a median age of 40-60 years. It is also a highly heterogeneous 

subgroup of AML, with co-operating mutations in RAS proto-onocgenes, 

B-Raf proto-oncogene, serine/threonine kinase (BRAF) or neurofibromin 

1 (NF1), as well as high expression of of fms-like tyrosine kinase 3 

(FLT3), being important leukaemogenic factors (Yang et al, 2017).  

b) Individual gene mutations 

The mutational status of AML samples has become a very relevant 

diagnostic and prognostic tool with the fast development of sequencing 

technologies over the past few years. Although there are some mutations 

considered as recurrent –the most frequent ones affecting FLT3, DNA 

methyltransferase 3 alpha (DNMT3A) and nucleophosmin 1 (NPM1)–, 

heterogeneity is still present at this level. Indeed, these mutations only 

encompass roughly 30% of patients (Di Nardo & Cortes, 2016). Relevant 

recurrent mutations found in AML have long been grouped as class I (affecting 

signalling pathways) and class II (affecting cell differentiation), with an emerging 

class III, including epigenetic modulators (De Kouchkovsky & Abdul-Hay, 2016), 

and non-classified mutations in the genes tumour protein 53 (TP53) and NPM1. 

As it is the case for cytogenetic abnormalities, there is a much wider range of 

mutations, but only the most recurrent ones will be described herein. 

• Class I mutations 

o FLT3. Affecting to 2/3 AML patients, mutations in this gene can be 

present as internal tandem duplications of the juxtamembrane 

domain (FLT3-ITD) or as point mutations within the tyrosine kinase 

domain (FLT3-TKD). The both of them lead to constitutive activation 
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of pro-survival signals. They are more frequent in younger adults with 

normal karyotype (NK) and their variant allele frequency (VAF) is 

relevant for outcome prediction (Di Nardo & Cortes, 2016). 

o RAS-related oncogenes. This group comprises activating mutations 

in NRAS proto-oncogene (NRAS), KRAS proto-oncogene (KRAS), 

protein tyrosine phosphatase non-receptor 11 (PTPN11) and NF1 

genes. They are found in 10-15% of AML cases and generate 

aberrant activation of the RAS/RAF/MEK/ERK axis, thus leading to 

enhanced proliferation. They are associated to poor prognosis when 

arise during the progression from myelodysplastic syndrome (MDS) 

to AML, whereas NRAS mutations co-occurring with NPM1 or 

DNMT3A appear to confer a favourable outcome (Di Nardo & Cortes, 

2016).  

o KIT proto-onocogene, receptor tyrosine kinase (KIT). Mutations in the 

gene encoding the homonym receptor tyrosine kinase (RTK) are 

found almost exclusively in the so-called core-binding factor (CBF)-

AML, comprising the rearrangements RUNX1-RUNX1T1 (RUNX1 

codes for the monomer CBF2α of the heterodimeric transcription 

factor CBF) and CBFB-MYH11 (involving the β subunit of CBF) (Gu 

et al, 2018a). The missense mutation D816V is particularly recurrent 

in CBF-AML and commonly associated with poorer outcomes (Di 

Nardo & Cortes, 2016).  

• Class II mutations. 

o  CCAAT enhancer binding protein alpha (CEBPA). CEBPA is a 

master regulator of myeloid differentiation. Leukaemogenic mutations 

in this gene originate truncations in the N-terminus and 

insertions/deletions (indels) in the C-terminus that disrupt DNA 

binding and dimerization. These alterations are mainly found in NK-

AML patients, and biallelic CEBPA mutations have become a 

grouping criterion for 2016 WHO classification as they are linked to 

the favourable prognosis (Table 1.2) (Gu et al, 2018a; Di Nardo & 

Cortes, 2016). 

o RUNX1. This transcription factor regulates adult HSC differentiation 

and homeostasis. Frameshift and missense mutations in this gene 

are particularly frequent in patients with previous haematological 
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disorders and associated to shorter OS and resistance to standard 

chemotherapy. AML with mutated RUNX1 has been included into the 

revised WHO classification of 2016 due to its special features and 

unfavourable prognosis (Table 1.2). Additional co-occurring 

mutations and mutated RUNX1 VAF are important contributors to 

prognosis in this group (Gu et al, 2018a; Di Nardo & Cortes, 2016).  

o GATA-binding protein 2 (GATA2). GATA2 is a transcription factor 

with several partners involved in myelopoiesis. Mutations within its 

coding sequence mainly affect its regulatory region and are frequent 

co-operating events in CEBPA-mutated AML (Di Nardo & Cortes, 

2016). 

• Class III mutations. They are currently acknowledged as a key factor for 

leukaemogeneis and an important hallmark of clonal haematopoiesis, a 

pre-leukaemic stage typical in the elderly. This type of mutations is also 

thought to be dependent on co-operating mutations to initiate a leukaemic 

transformation. Some of them are: 

o DNMT3A. The enzyme encoded by this gene catalyses the 

methylation of cytosine residues in CpG islands, thus silencing genes 

participating in HSC differentiation and self-renewal. Mutations in this 

gene affect ~20% of de novo AML, are associated to age and 

frequently co-occur with alterations in NPM1, FLT3-ITD and isocitrate 

dehydrogenase 1 (IDH1) genes. They might also correlate with 

resistance to chemotherapy and relapse, although there is no 

consensus in this regard. Apparently, these mutations are early 

events leading to pre-leukaemic conditions (Gu et al, 2018a; Di Nardo 

& Cortes, 2016).  

o Tet methylcytosine dioxygenase 2 (TET2). TET2 performs the 

catalysis of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-

hmC), a metabolite important in cytosine demethylation and a 

recently suggested epigenetic mark important in gene promoters and 

enhancers. Alterations of this gene described in AML comprise loss-

of-function mutations that increase HSC self-renewal and impede 

differentiation. The prognostic value of these abnormalities is highly 

dependent on co-operating mutations (Di Nardo & Cortes, 2016; 

Naoe & Kiyoi, 2013). 
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o IDH1/2. In non-pathological conditions, IDH1 and IDH2 are enzymes 

of Krebs cycle that transform isocitrate into α-ketoglutarate (α-KG). 

IDH mutations found in AML usually occur in arginine residues and 

lead to the generation of 2-hydroxyglutarate (2-HG) instead of α-KG, 

the natural reaction product (Di Nardo & Cortes, 2016). Although 

competitive inhibition of TET2 activity by 2-HG and subsequent 

genome hypermethylation has been suggested as the underlying 

pathogenic mechanism of mutated IDH, recent work attributes a role 

for these enzymes on cell differentiation blockage, with methylation 

patterns resembling normal progenitors (Wiehle et al, 2017). The 

specific mutation site and co-operating events will define the 

outcome. It has been shown that these mutations arise at the origin 

of a leukemic clone and, together with additional key events, trigger 

leukaemogenesis (Di Nardo & Cortes, 2016; Naoe & Kiyoi, 2013).  

o ASXL transcriptional regulator 1 (ASXL1). ASXL1 is a chromatin 

modifier that interacts with polycomb repressor complex 2 (PRC2) 

and influences the trimethylation of the Lys27 residue of histone 3 

(H3K27me3). Alterations in this gene are commonly found together 

with mutations in RUNX1 and spliceosome-related genes and are 

indicators of poor prognosis (Di Nardo & Cortes, 2016).  

• NPM1. Mutations in this gene are found in 1/3 of AML cases, generally 

leading to dominant-negative forms that block differentiation. They are 

associated with augmented response to chemotherapy and good 

prognosis, unless co-occurring with altered DNMT3A and FLT3-ITD, 

which correlate with particularly poor outcomes (Di Nardo & Cortes, 2016; 

Kunchala et al, 2018). 

• TP53. This well-known tumour suppressor maintains genomic stability 

through different mechanisms. Mutations in this gene are frequently 

related to therapy of AML developed from MDS and associate to lower 

response to treatment and poor outcomes. Indeed, there is no consensus 

on optimal treatment for patients with mutated TP53 (Di Nardo & Cortes, 

2016). 

• Spliceosome-related genes. Mutations in genes coding for splicing 

factors account for ~10% of AML cases. These alterations lead to aberrant 

transcriptome and proteome that affect epigenetic regulation, transcription 
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itself and genome integrity in malignant cells. They associate to worse 

response to treatment and poor survival (Gu et al, 2018a; Di Nardo & 

Cortes, 2016). 

The cytogenetic alterations and gene mutations previously described have 

become very important criteria for diagnosis and risk stratification. As a proof, 

the European Leukaemia Net (ELN) includes them among its last 

recommendations update of 2017 (Döhner et al, 2017). 

c) Altered expression levels of non-mutated molecules 

Apart from the genomic alterations leading to chimeric oncogenes or 

mutant proteins, there is a group of processes altered owing to differential 

expression levels of some molecules versus the non-pathologic condition. 

Although contributing to disease heterogeneity, they constitute potential 

therapeutic targets, and their understanding has enabled recent and important 

clinical improvements. Representative examples are the following: 

• Enhanced expression of antiapoptotic proteins. B cell 

leukemia/lymphoma-2 (BCL2) is specifically overexpressed in LSCs 

versus HSCs, thus providing an interesting therapeutic window (Pollyea 

& Jordan, 2017). 

• Developmental pathways malfunction. Notch dysregulation has a dual 

role on AML leukaemogenesis. On one hand, downmodulation of this 

pathway mediates cell differentiation arrest and expansion of AML LSCs. 

On the other hand, the overexpression of Jag1 in BM niche triggered by 

activating mutations of the gene Ctnnb1 leads to Notch signalling 

overactivation in HSPCs and leukaemogenesis (Heidel et al, 2015). In 

addition, distinct elements of Hedgehog (Hh) pathway are upregulated in 

this disease, with involvement in resistance to chemotherapy and 

radiotherapy (Terao & Minami, 2019). There is also an interaction 

between Hh and FLT3 signalling in myeloid leukaemia (Winer & Stone, 

2019). Finally, Wnt signalling is involved in several aspects of the 

pathogenesis of AML, most of them through its central player, β-catenin 

(See section 1.3.2). 

• Differential expression of cellular antigens. A paradigmatic example is 

the myeloid-specific surface marker CD33, which led to the development 

of GO (Godwin et al, 2017). Although found in variable intensity on the 

surface of AML blasts, its expression on LSCs remains controversial. In 
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addition, its presence in normal myeloid progenitors contributes to the lack 

of specificity of CD33-based therapies. Other possible targets expressed 

in normal cells to a lesser extent are Wilms Tumour 1 protein (WT1) and 

Preferentially Expressed Antigen in Melanoma (PRAME) (Khwaja et al, 

2016). 

1.2.1.2. From molecular features to alternative therapies: a step forward 
to personalised medicine for AML 

Some of the previously outlined molecular alterations, together with many 

others that can appear in the AML setting, have become potentially helpful 

pharmacological targets to improve current treatments treatments against this 

disease. There is a huge number of clinical trials based on compounds targeting 

such alterations. Illustrative examples recently approved for clinical use are 

provided below (Figure 1.3) (Winer & Stone, 2019): 

• Small molecules restoring aberrant signalling pathways. A number of 

FLT3 inhibitors are currently under clinical trials in the FLT3-mutated AML 

setting. Interestingly, two of them, midostaurin (Rydapt) and gilteritinib 

(Xospata) have been commercialised. The former was approved in both 

US and Europe in combination with standard chemotherapy, whereas the 

latter achieved the U.S. Food and Drug Administration (FDA) approval for 

relapsed patients. 

• Drugs targeting epigenetic modulators. The compounds enasidenib 
(Idhifa, IDH2 inhibitor) and ivosidenib (Tibsovo, IDH1 inhibitor) were 

approved by FDA for relapsed/refractory (r/r) AML and the latter has 

recently –May 2019– achieved FDA permission for clinical use in patients 

who are unfit for intensive induction chemotherapy.  

• Pro-apoptotic agents. Venetoclax (Venclexta) is a BCL2 antagonist that 

received FDA approval in 2018 for its use in combination with 

hypomethylating agents (HMA) or low-dose chemotherapy in newly 

diagnosed AML patients unfit for standard induction chemotherapy. 

• Small molecules targeting developmental pathways. Up to date, only 

an inhibitor of Hh signalling has entered the clinic. The small molecule 

glasdegib (Daurismo) obtained FDA approval last year in combination 

with low dose cytarabine for patients unfit for standard induction 

chemotherapy. 
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• Surface antigen-targeting immunoconjugates. The paradigm of this 

strategy is unquestionably the immunoconjugate GO. After approval and 

voluntary withdrawal, it was re-evaluated and approved by FDA in 2017 

and by the European Medicines Agency (EMA) in 2018. It is indicated for 

newly diagnosed or r/r AML either as a monotherapy or in combination 

with chemotherapy. 

Despite the progress of the previously presented approaches after 4 

decades of scarce advances, many of them still rely on chemotherapy for proper 

effectiveness. Besides, although being more directed therapies, clonal 

heterogeneity remains an obstacle for drug targeting and is a source of relapse 

(Döhner et al, 2015). Therefore, considerable efforts are still needed to (i) refine 

diagnostic methods aiming at personalised therapies and (ii) identifying 

universal targets for LSCs that may help at the effective eradication of both 

founding clones and subclones. A promising avenue for the second purpose is 

the development of combinatorial therapies targeting at least two relevant 

molecules involved in pathogenesis, a field of very intense research over the 

last years. 

Figure 1.3. Drugs approved for clinical use based on distinctive molecular traits of AML cells. 
The diagram shows a simplified depiction of some aberrant processes occurring in AML cells and the 
different compounds targeting them that are mentioned in this work (see text for details). 
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1.2.1.3. Differentiation-based therapies for AML: extending the paradigm 
of APL 

APL arises when leukaemic blasts are blocked at the differentiation stage 

of promyelocytes and undergo uncontrolled proliferation, thereby disturbing 

normal haematopoiesis. This leads to a fast progressing and deadly 

malignancy, unless treated, due to severe coagulopathies and bleeding (Ablain 

& de Thé, 2011; Thomas, 2019). The vast majority of APL cases bear the 

cytogenetic abnormality t(15;17)(q21;q22), which generates the fusion protein 

PML-RARα. In contrast to other subtypes of AML, this oncoprotein might be the 

sole pathogenic driver of the disease. PML-RARα disturbs the normal 

physiology of myeloid progenitors via transcriptional repression of genes driving 

myeloid differentiation and stem cell self-renewal, as well as disruption of the 

so-called nuclear bodies (NBs). These structures, which require the wild-type 

PML protein, are involved in TP53 activation and senescence (de The et al, 

2017). 

Being a fatal disease until long after 1957, when the first cases of APL were 

reported, first successful improvements in the management of the disease 

comprised chemotherapy with anthracyclines, especially daunorubicin. 

Cytarabine was later combined with daunorubicin as a general AML treatment, 

together with HSCT. Nevertheless, considerable limitations remained, for 

instance early death derived from chemotherapy, low rates of disease-free 

survival and poor outcomes after relapse (Thomas, 2019; Coombs et al, 2015). 

Undeniably, a new therapeutic era for APL came with the introduction of all-

trans-retinoic acid (ATRA) into clinical practice in 1985 (Huang et al, 1988). After 

different stages being used as single agent and in combination with 

chemotherapy (Coombs et al, 2015), the results of co-treatment with ATRA and 

arsenic trioxide (ATO) in APL patients were published in 2004. That work 

demonstrated a synergistic interaction of between both compounds that led to 

shorter times to achieve CR, improved reduction of leukemic burden and longer 

disease-free survival (Shen et al, 2004). Thanks to its advantages versus 

ATRA+chemotherapy, ATRA+ATO has become the new front-line induction 

regimen for low-intermediate risk APL, with cure rates over 95 % (Coombs et 

al, 2015; De Thé, 2018). 

As monotherapy, ATRA propmpts an efficient differentiation of leukaemic 

blasts into mature granulocytes, which are rapidly cleared by BM macrophages 

(De Thé, 2018). On the other hand, ATO triggers an initial massive apoptosis 
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followed by blast differentiation, much slower than the one induced by ATRA 

(Ablain & de Thé, 2011). However, ATRA alone or combined with chemotherapy 

does not prevent relapse (De Thé et al, 2017). The underlying molecular 

explanation for the success of the co-treatment comes from the separate effect 

of ATRA and ATO on PML-RARα molecule. The former binds PML-RARα and 

recruits transcriptional co-activators, thus suppressing its pathogenic 

transcriptional repression. At the same time, it targets the oncoprotein for 

proteasome-dependent degradation, thereby allowing the formation of NBs by 

PML. On the other hand, ATO promotes differentiation through targeting PML-

RARα for degradation, thus releasing the previously repressed promoters. 

Besides, it binds wild-type PML, also restoring the formation of NBs and 

abrogating the self-renewal advantage of APL cells. The combination of these 

agents promotes transcriptional de-repression and PML-RARα degradation 

through different mechanisms, thus acting in a synergistic manner (De Thé, 

2018). 

APL differentiation therapy has provided a simple conceptual framework for 

treatments based on overcoming the differentiation blockade common to all 

AML subtypes. The expression of PML-RARα as the only leukaemic driver 

might be the main cause of the huge success of ATRA for APL treatment (De 

Thé, 2018) compared to other AML subtypes. However, widely altered 

molecules involved in cell differentiation are currently being investigated as 

general targets for differentiation-based strategies valid beyond APL. 

Combinations of ATRA with ATO, chemotherapy or FLT3 inhibitors have 

proven to be successful in non-APL AML patients. However, a large subset of 

AML cases is not responsive to ATRA due to epigenetic repression of the RARA 

gene and/or its downstream targets. Drugs targeting epigenetic modulators 

have shown to improve sensitivity to ATRA in AML cell lines and primary 

samples (van Gils et al, 2017). An interesting example is the lysine demethylase 

1A (KDM1A, previously known as LSD1) inhibitor tranylcypromine (TCP). TCP 

was successfully combined with ATRA in the pre-clinical setting (Schenk et al, 

2012) and is currently in early-phase clinical trials for AML and MDS treatment 

(NCT02717884). Moreover, a recent report has demonstrated that the inhibition 

of SUMOylation, recently acknowledged as an epigenetic mark, re-sensitises 

non-APL cells to ATRA-mediated differentiation (Baik et al, 2018). 

Besides, targeting the epigenetic modifiers responsible for the aberrant 

expression of genetic drivers of differentiation is becoming a powerful rationale 

for the development of ATRA-independent pro-differentiative therapies. 

https://clinicaltrials.gov/ct2/show/NCT02717884
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Different KDM1A inhibitors have demonstrated their pre-clinical efficiency as 

inductors of AML cell differentiation in a variety of contexts. In line with this, they 

apparently enhance survival in animal models, although clinical trials need to 

test their advantage as monotherapy versus the currently approved treatments 

(Lai et al, 2015; Wu et al, 2019; Barth et al, 2019). Inhibitors of both DOT1-like 

histone lysine methyltransferase (DOT1L) and bromodomain and extra-terminal 

domain (BET) epigenetic readers have shown in vitro efficacy at inducing 

differentiation in KMT2A-rearranged AML (Brzezinka et al, 2019). Interestingly, 

the recently approved enasidenib has become a clinical-grade drug inducing 

AML cell differentiation through mechanisms yet to be fully elucidated (Sun et 

al, 2019).  

A very promising target identified through a large-scale compound 

screening is the metabolic enzyme dihydroorotate dehydrogenase (DHODH), 

involved in purine metabolism. Different compounds inhibiting its activity have 

proven efficient differentiation induction both in vitro and in patient-derived 

xenograft (PDX) models, with an encouraging improvement of animal survival 

upon their administration as monotherapy (Sykes et al, 2016; Brzezinka et al, 

2019; Christian et al, 2019). Most importantly, an ongoing clinical trial is 

evaluating its feasibility for r/r AML (NCT03760666).  

Interestingly, there is a group of compounds that have long been known for 

their effects on differentiation of malignant leukaemic cells: the phorbol esters. 

They have been traditionally described as potent activators of protein kinase C 

(PKC) likely through its constitutive anchorage to the cell membrane (Goel et al, 

2007). They were described back in the late 1970s as inductors of differentiation 

in cell lines (Huberman & Callaham, 1979) and primary cells of myeloid 

leukaemia (Koeffler et al, 1980). Since then, these compounds have become a 

widely used tool for the study of cell differentiation processes in both 

physiological and pathological haematopoiesis, especially the naturally 

occurring phorbol-12-myristate-13-acetate (PMA, also known as 12-O-

tetradecanoylphorbol-13-acetate or TPA). Natural phorbol esters were reported 

to have antileukaemic potential even before the discovery of their differentiation 

induction ability (Goel et al, 2007), but evaluation of their clinical potential in 

patients suffering from leukaemia did not take place until the end of the past 

century (Han et al, 1998; Strair et al, 2002). An important obstacle hampering 

the incorporation of phorbol esters to front-line therapies has unquestionably 

been their carcinogenic potential (Goel et al, 2007). For this reason, PKC 

agonists lacking tumour-promoting activity, like bryostatins, were tested in 

https://clinicaltrials.gov/ct2/show/NCT03760666
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parallel to phorbol esters from the 1990s as therapeutically feasible compounds 

to treat haematologic malignancies (van der Hem et al, 1995; Roddie et al, 

2002). Although bryostatin 1 has undergone several clinical trials for the 

treatment of blood cancers, including AML, it has not been approved for clinical 

use neither by FDA nor by EMA. 

Nonetheless, phorbol esters still serve as an interesting proof of concept 

for the design of pro-differentiation strategies that may be the basis of future 

treatments using non-tumour-promoting PKC agonists. In this regard, the 

phorbol ester prostratin (13-O-acetyl-12-deoxyphorbol, hereafter PRS) 

emerges as an interesting candidate. Extracts containing this compound have 

long been used in Samoan traditional medicine without adverse effects. 

Importantly, it has shown not only a lack of tumour-promoting activity, but also 

anti-tumoral potential (Miana et al, 2015). Moreover, its differentiation-inducing 

ability in both AML cell lines and primary samples, as well as the potential 

benefit of its combination with conventional chemotherapy, have been recently 

reported (Shen et al, 2015). Despite these interesting observations, PRS has 

not been tested in vivo in the AML setting.  

1.2.2. Chronic myeloid leukaemia (CML) 

Chronic myeloid (or myelogenous) leukaemia is a blood disorder affecting 

approximately 1:100000 individuals per year in Western countries. It accounts for 

15% of all annual diagnosed cases of leukaemia and the median age for diagnosis 

is 65 years (Apperley, 2015; Hanlon & Copland, 2017). It is a clonal disorder arising 

at the HSC stage in the BM as a consequence of impaired differentiation to mature 

cells, thereby generating accumulation of immature progenitors in BM and PB 

(Figure 1.4) (Arrigoni et al, 2018).  

The progression of CML consists of three stages: chronic phase (CP), 

accelerated phase (AP) and blast crisis (BC). Most patients are diagnosed at CP, 

where they remain asymptomatic for long time periods as their immune system is 

still not impaired. Splenomegaly and leucocytosis are highly common features at 

diagnosis. This stage can be prolonged for up to 5-6 years. If untreated, the disease 

will progress to AP, when maturation blockage becomes increasingly marked and 

alterations in blood cell counts are much more evident. This phase typically lasts 4 

to 6 months, after which it evolves to BC. This is a very aggressive stage 

characterised by the presence of ≥ 20% of myeloid or lymphoid blasts in PB and 

great reluctance to chemotherapy. BC is a deadly condition with a median survival 

of 3-6 months (Quintás-Cardama & Cortes, 2006). 
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1.2.2.1. BCR-ABL: a kinase corrupting cell signalling 

Contrary to AML, CML is a rather homogeneous disease whose 

pathogenesis-triggering event is the emergence of the so-called Philadelphia 

chromosome (Ph). This entity arises as a consequence of the chromosomal 

rearrangement t(9;22)(q34;q11), which generally involves the exon 2 (a2) of the 

ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) gene, located at 

chromosome 9, and a variable fragment of the breakpoint cluster region (BCR) 

gene, placed at chromosome 22. This translocation will generate different 

variants of the fusion gene BCR-ABL1, depending on the location of the 

breakpoint in BCR gene. The most common variant involves the exons 13 or 14 

of BCR and originates the transcripts known as e13a2 or e14a2, respectively. 

The both of them translate into a 210 kDa protein commonly referred to as p210 

BCR-ABL (Flis & Chojnacki, 2019).  

The ability of BCR-ABL to disrupt cell signalling derives from its varied 

multidomain structure (Figure 1.5) and cytoplasmic instead of nuclear 

localisation, contrary to the parental ABL kinase (Hazlehurst et al, 2009). The 

structure of p210 BCR-ABL comprises: 

• N-terminal coiled-coil (CC) domain. It allows the oligomerisation 

and subsequent activation of the oncokinase, and is required for its 

leukaemogenic activity (Ren, 2005). 

Figure 1.4. The pathogenesis of CML. The emergence of the Ph chromosome containing BCR-ABL 
in HSCs first leads to an early CP characterised by the accumulation of mature granulocytes in PB. 
Upon disease progression, further events occur that cooperate with BCR-ABL and give rise to a more 
severe phenotype: the BP. These events can arise at both myeloid and lymphoid lineages, thus 
originating two variants of BP: myeloid and lymphoid. Adapted from Ren, 2005. 
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• Serine/threonine kinase (S/T-K) domain. It contains the Y177 

autophosphorylation residue, fundamental for the interaction with 

growth factor receptor-bound protein 2 (GRB2) (Soverini et al, 

2018). 

• Ras homolog gene family/Guanine nucleotide exchange 
factors (Rho/GEF) kinase domain (Soverini et al, 2018). 

• SRC homology (SH) domains. The SH1 domain displays the 

tyrosine kinase activity essential for the oncogenic activity of the 

protein. On the other hand, the SH2 and SH3 domains are crucial 

for interaction with different proteins regulating proliferation, 

survival, adhesion and migration signalling cascades (Ren, 2005; 

Soverini et al, 2018). 

• C-terminal region. It contains different regulatory elements of the 

ABL kinase and proline-rich regions important for interactions with 

other proteins. An important example is CRK-like proto-oncogene, 

adaptor protein (CRKL), whose phosphorylation status is a common 

measurement of ABL kinase activity (Soverini et al, 2018). 

The loss of an N-terminal site of myristoylation in parental ABL kinase (N-

cap) and its concomitant fusion with the CC domain and the Y177 of BCR are 

the main phenomena underlying the constitutive TK activity of BCR-ABL 

(Soverini et al, 2018). Phosphorylated Y177 recruits GRB2, which further 

interacts with GRB2 associated binding protein 2 (GAB2). CRKL binds BCR-

ABL C-terminal domain and initiates a phosphorylation cascade. Altogether, 

these events lead to phosphatidylinosytol 3-kinase (PI3K) activation, which in 

turn phosphorylates protein kinase B (best known as AKT), thus resulting in the 

inhibition of pro-apoptotic pathways (Hazlehurst et al, 2009). 

On the other hand, the interaction between GRB2 and BCR-ABL triggers 

the recruitment of RAS and SRC homology 2 domain-containing protein tyrosine 

Figure 1.5. Structure of the p210 isoform of BCR-ABL. Schematic diagram representing the 
multi-domain nature of the oncokinase (see text for details). Adapted from Soverini et al, 2018. 
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phosphatase 2 (SHP2). Both are required for the activation of the extracellular 

regulated kinase (ERK), which activates transcriptional programmes 

contributing to proliferative and survival advantage (Ren, 2005; Hazlehurst et 

al, 2009). 

The signal transducer and activator of transcription 5 (STAT5) transcription 

factor is also activated via its phosphorylation by BCR-ABL. Apparently, the SH2 

and SH3 domains of the fusion oncokinase are required for this event. Besides, 

it would occur independently of Janus kinase 2 (JAK2), an upstream regulator 

of this transcription factor in physiological conditions. STAT5 activation 

provokes the transcription of anti-apoptotic and cell cycle progression genes 

(Hazlehurst et al, 2009). 

In line with AML pathogenesis-contributing features, developmental 

pathways are also de-regulated and promote CML leukaemogenesis. The 

WNT/β-catenin pathway has been thoroughly studied in this context and 

evidence supports its key involvement in several aspects of the disease (See 

section 1.3.2.2). On the other hand, NOTCH and Hh pathways are crucial for 

LSC expansion and disease progression, the former through the augmented 

expression of its downstream target Hairy enhancer of split 1 (HES1) and the 

latter via the transmembrane receptor smoothened (SMO) (Arrigoni et al, 2018). 

1.2.2.2. Targeting BCR-ABL: tyrosine kinase inhibitors and the new era 
of CML treatment 

In a similar way to APL, CML has become a disease with a very good 

prognosis and a highly efficient front-line treatment thanks to the introduction of 

tyrosine kinase inhibitors (TKI) targeting BCR-ABL into the clinic.  

CML treatment went through different stages until the emergence of 

imatinib (IM, also known as STI-571 and commercially available as Gleevec) in 

the late 1990s. The first agent with remarkable improvements in life expectancy 

was hydroxyurea, used in the 1960s, still unable to prevent progression after 4-

5 years from diagnosis and eliminate the Ph+ cells. Later, prolonged survival (6-

7 years) was achieved with the introduction of interferon α (IFNα), although its 

side-effects hampered long-term usage in patients. Finally, in the early 1990s 

allo-HSCT truly revolutionized the treatment of the disease and was considered 

a possible cure, but only eligible patients were benefited from it (Apperley, 

2015). 

IM was approved by FDA for the treatment of CML in 2002, after the 

completion of the International Randomised Study of Interferon and cytarabine 
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versus STI-571 (IRIS) clinical trial (Apperley, 2015). IM is a 2-phenylamino 

pyridine-based that binds the inactive conformation of BCR-ABL and prevents 

its interaction with ATP, an event required for its activation (An et al, 2010). It 

also inhibits other cellular RTK, such as platelet-derived growth factor receptor 

(PDGFR) and c-KIT (Soverini et al, 2018). From a median survival of 5-7 years 

before the introduction of IM, patients currently display 5-year survival rates of 

up to 95% and their life expectancy is nearly the one of general population, with 

TKI being the front-line therapy (Hanlon & Copland, 2017). 

1.2.2.3. Pitfalls of TKI administration: when CML cells evade BCR-ABL 
inhibition 

Despite its efficacy and marked improvement in the prognosis and 

response, the administration of TKI faces some clinical barriers. First, they do 

not cure the disease: even when successful molecular response (meaning low 

or null detection of BCR-ABL expression) is achieved, CML LSCs are still 

detected in patients treated for more than 4 years with IM (Chu et al, 2011; 

Chomel et al, 2011). More than 50% of patients participating in the IRIS trial 

needed IM discontinuation due to either treatment failure or intolerable adverse 

effects, which implies that a high proportion of CML patients still require 

alternative therapies to IM (An et al, 2010). 

A study performed prior to IM approval for the clinical use reported re-

activation of BCR-ABL in BC-CML patients under TKI treatment (Soverini et al, 

2018). At least 25% of patients show TKI resistance (Arrigoni et al, 2018) with 

increasing probability as the disease progresses, being around 5% in CP-CML 

and higher than 65% in CML-BC (An et al, 2010). There is a number of 

mechanisms contributing to TKI resistance, which can be BCR-ABL-dependent 

and independent. 

1.2.2.3.1. BCR-ABL-dependent resistance and the use of TKI beyond IM 

Among these mechanisms, there are point mutations in particular regions 

of the oncokinase that impede drug binding. More than 20 different mutations 

affecting IM sensitivity have been described at the kinase domain, where IM 

interaction pocket is located. 

The most frequent mutation by far (and the first to be characterised) is the 

amino acid substitution T315I. It affects a crucial hydrogen bond that takes 

place between IM or second-generation TKI and BCR-ABL. Additionally, the 

substitution of Thr by Ile originates steric hindrance that physically impedes 
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the TKI to occupy the interaction pocket. Moreover, BCR-ABL keeps the ability 

to interact with ATP, thus conserving its catalytic activity and oncogenic 

potential. This mutation has recently been described in 15% of CML patients 

with IM treatment failure. 

On the other hand, IM binds the inactive conformation of BCR-ABL, which 

is stabilised by two regions of the protein known as the ATP-binding P-loop 

and the activation loop (A-loop). Mutations in these components hamper BCR-

ABL to switch to its inactive conformation, thereby preventing its interaction 

with TKI. Substitution mutations affecting the P-loop are the most frequent 

cause of mutation-derived IM resistance, and E255K is an important one. The 

frequency of P-loop mutations increases with the duration and progression of 

the disease. 

To overcome resistance derived from mutations in BCR-ABL, new TKI 

were developed. The so-called second generation TKI are nilotinib (NL), 

dasatinib and bosutinib. NL shares structural features with IM and binds the 

inactive conformation of BCR-ABL as well, with high specificity and much 

greater affinity than IM. Dasatinib is even more potent than nilotinib at binding 

both the inactive and active conformations of BCR-ABL. Last, bosutinib, 

together with dasatinib, is a dual BCR-ABL/SRC inhibitor. It also binds with 

great affinity the active conformation of BCR-ABL. The third generation TKI 

approved for therapy is ponatinib. It is a medium-range specific TKI designed 

to bind BCR-ABL regardless of mutations, being the only one able to inhibit 

BCR-ABLT315I (Soverini et al, 2018). New TKI are emerging as alternative or 

complementary options for CML treatment. Radotinib is a NL analogue already 

approved in South Korea with higher and faster molecular response than IM, 

as well as a competitive cost for health systems. One promising, recently 

developed compound is asciminib (ABL001), which interacts with a 

hydrophobic pocket occupied by the myristoylated N-cap in the native ABL 

kinase, thereby mimicking its inhibitory effect. Thus, it can bind BCR-ABL 

irrespective of catalytic site mutations, including T315I. Asciminib is currently 

under clinical trials evaluating not only its efficacy against CML and toxicity 

profile, but also the feasibility of its combination with catalytic site-binding TKI 

as an improved therapy targeting mutations in both binding sites (Massaro et 

al, 2018). 

Finally, another BCR-ABL-dependent mechanism of resistance is 

amplification at the mRNA or protein levels. The cause of resistance in this 
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scenario is the insufficiency of a given concentration of the drug to interact with 

all the copies of the oncokinase. A possible solution would be the increase of 

TKI doses, but intolerance could instead become an important issue (An et al, 

2010; Soverini et al, 2018).  

1.2.2.3.2. BCR-ABL-independent mechanisms: primary resistance 

Multiple BCR-ABL-independent TKI resistance mechanisms have been 

described. Although still a controversial issue, higher plasma levels of IM have 

been described in individuals with deep molecular response. The factors 

controlling this parameter need to be elucidated, although some of them could 

be adherence, individual pharmacokinetic parameters and cellular uptake of 

the drug. Incomplete adherence, indeed, is associated to sub-optimal 

responses. Metabolism by cytochrome P450 enzymes and alpha-1-acid 

glycoprotein binding have been reported as pharmacokinetic causes of 

variable IM availability for entry into leukaemic cells (An et al, 2010). Finally, 

cellular uptake is also an important question. HSCs naturally express different 

members of the ATP-binding cassette (ABC) family to protect themselves from 

genotoxic stress. These transporters are exploited by CML cells as tools for 

extracellular release of TKI, hence abrogating their effect. It has been 

described the increase of ATP binding cassette subfamily B member 1 

(ABCB1)-positive cells in AP-CML patients upon IM treatment, which suggests 

that the administration of TKI selects LSCs expressing these transporters. 

Concomitantly, CML cells have shown low expression levels of the 

transporters involved in TKI incorporation organic cation transporter 1 (OCT1) 

and organic cation/carnitine transporter 2 (OCTN2), which may contribute to 

TKI resistance through decreased drug uptake (Arrigoni et al, 2018). 

1.2.2.3.3.  Surviving in the presence of TKI: the relevance of targeting 
CML LSCs 

A proportion of patients on TKI treatment cannot be discontinued without 

assuming a risk of relapse in the long run (Etienne et al, 2017; Rea et al, 2017). 

This implies lifelong therapy to keep free of disease. As intolerance can be an 

obstacle, new strategies aiming at an effective cure are strongly needed. The 

isolation of CML LSCs (Holyoake et al, 1999) and further demonstration of 

their survival ability in the presence of TKI (Corbin et al, 2011; Hamilton et al, 

2012) established the basis for the understanding of LSC persistence and 

relapse.  
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The precise mechanisms of BCR-ABL-independent survival are not 

completely elucidated, but some reports have shed light on interesting 

molecules sustaining this process. Some of them are PML, forkhead box O 3A 

(FoxO3a), SMO, BMI1 proto-oncogene, polycomb ring finger (BMI1), histone 

deacetylases (HDACs), β-catenin, arachidonate 5-lipoxygenase (ALOX5), 

BCL2 or protein phosphatase 2 phosphatase activator (PTPA, best known as 

PP2A). Other important contributors to LSC persistence are the protection 

provided by the BM niche through IFNα and C-X-C motif chemokine ligand 12 

(CXCL12) secretion. The hypoxic microenvironment, which would upregulate 

hypoxia-inducible factor 1 α (HIF-1α), thereby promoting LSC quiescence and 

autophagy (Morotti et al, 2014). In line with this, great efforts are being made 

over the last years to develop combinatorial therapies based on the 

simultaneous targeting of BCR-ABL and some of the abovementioned 

molecules and processes, which would reduce the chance of CML relapse 

(Sweet et al, 2013). 

1.3. The roles of the SRC homology 2 domain-containing protein tyrosine 
phosphatases 1 (SHP1) and 2 (SHP2) and β-catenin in myeloid leukaemias: 
therapeutic opportunities 

As previously outlined, two very important features shared by both types of myeloid 

leukaemias are the impaired differentiation and the distinctive properties of LSCs, which 

account for disease relapse and resistance to therapy. Therefore, research on relevant 

differentiation mechanisms and discovery of molecules supporting the LSC evasion to 

current therapies are invaluable tools for the development of new treatments. 

1.3.1. SHP1 and SHP2, mediators of redox-controlled cell differentiation and 
important contributors for leukaemia 

Apart from key proteins involved in cell signalling, there is a group of second 

messengers that also merit attention in the study of the pathophysiological control 

of those processes. Among the most studied second messengers over the last 

years, ROS must be highlighted. They were considered detrimental sub-products 

of aerobic cell metabolism for a long time. Conversely, relevant physiologic 

functions in different pathways involving GTPases, protein kinases/phosphatases, 

transcription factors or epigenetic modifiers have been ultimately attributed to these 

chemical entities (Prieto-Bermejo et al, 2018). 

In this context, redox signalling is not an exception as a modulator of 

haematopoietic cell differentiation. Our group described almost a decade ago the 
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need of a regulated production of ROS by NADPH oxidases (NOXs) to fully trigger 

megakaryocytic differentiation in cell lines and primary HSCs in vitro (Sardina et al, 

2010). This was supported by later reports showing the relevance of NOX function 

for cell differentiation in other tissues (Yoshikawa et al, 2019; Tang et al, 2019).  

As mentioned before, phosphoprotein phosphatases are targeted by ROS. 

Particularly, the family of protein tyrosine phosphatases (PTPs) have long been 

studied as antagonists of protein tyrosine kinases (PTKs) in cell signalling. PTPs 

share an oxidation prone Cys residue in their catalytic site that makes them 

sensitive to redox regulation. When the Cys residue becomes oxidised, the PTP 

loses its catalytic activity. This process is reversible as long as the oxidation is not 

strong enough to yield sulfinic (-SO2H) or sulfonic acid (-SO3H) (Figure 1.6) (Yu & 

Zhang, 2018).  

SHP1 and SHP2 belong to the non-receptor type subfamily of PTPs. These 

proteins have an almost identical structure, with two N-terminal SH2 domains (N-

SH2 and C-SH2, respectively), a central classical PTP domain and a C-terminal tail 

that undergoes phosphorylation by different PTKs. The SH2 domains allow the 

interaction of SHP1 and SHP2 with different proteins, including receptors, 

Figure 1.6. Inactivation of PTPs by ROS. ROS produced in a regulated manner can reach the catalytic 
Cys residue of PTPs and oxidise it from its thiolate form. Upon mild oxidation, the thiolate anion turns 
into sulfenic acid (-SOH), which can form intracellular bonds with other residues. All these variants are 
reversibly inactive forms (shown in orange). When the oxidation degree is high enough to reach the 
sulfinic (-SO2H) or sulfonic (-SO3H) acid forms, the inactivation is permanent (shown in red). Adapted 
from Yu & Zhang, 2018. 
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scaffolding proteins and immune inhibitory receptors. The interaction takes place 

through pTyr residues located at the consensus sequence [I/V/L]xY(p)xx[I/V/L], 

named immuno-receptor tyrosine-based inhibitory motif (ITIM), which is found in 

most of these interaction partners. These domains also regulate the PTP activity: 

the N-SH2 domain interacts with the PTP domain at the basal level, whereas the 

C-SH2 does not (Figure 1.7A). Thus, bisphosphorylated partners bind first C-SH2 

and then N-SH2, thereby releasing the PTP domain and increasing the 

phosphatase activity (Figure 1.7B) (Neel et al, 2003). SHP1 and SHP2 have been 

widely studied in the context of both physiologic and pathologic haematopoiesis and 

opposing roles have traditionally been described for them on the literature. SHP1 is 

classically described as an inhibitor of signals initiated at the cell membrane and 

SHP2 as required for full activation of such cascades (Abram & Lowell, 2017; 

Pandey et al, 2017).  

These proteins have been previously investigated in our group as likely targets 

of NOX-generated ROS in the context of megakaryocytic differentiation triggered 

by PMA. They were specifically oxidised and inhibited at early time points of this 

process, whereas the closely related family member PTP1B. Furthermore, this 

phenomenon was prevented with the addition of the NOX chemical inhibitor 

diphenylene iodonium (DPI) to the culture medium, supporting the hypothesis that 

this oxidation occurs in a regulated manner and involves some member(s) of NOX 

family. The relevance of the specific inhibition of these two PTPs was further tested 

Figure 1.7. Structure and mechanism of activation of SH2 domain containing protein tyrosine 
phosphatases. A) Diagram showing the three main domains of the PTPs and the interaction of the N-
SH2 domain in the inactive basal conformation. B) Upon binding phosphorylated partners with ITIM 
domains, the active site is released from interaction with N-SH2 domain and can catalyse the 
dephosphorylation reactions on the SHP substrates. Adapted from Abram & Lowel, 2017. 
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at the molecular level through RNAi downregulation, which enhanced cell 

differentiation, contrary to RNAi against PTP1B (López-Ruano, 2015). 

In addition to its role in AML cells differentiation, SHP2 overactivation is deeply 

involved in the pathogenesis of myeloid malignancies. At this respect, conditional 

expression of the gain-of-function mutant Shp2E76K in murine haematopoietic cells 

fostered the development of multi-lineage acute leukaemias (Xu et al, 2011). 

Consistently, this same mutant accelerated KMT2A-rearranged AML in vivo through 

the upregulation of the anti-apoptotic molecule MCL1 apoptosis regulator, BCL2 

family member (MCL1) (Chen et al, 2015) and contributed to homeobox A10 

(HoxA10)-mediated induction of AML (Wang et al, 2009). The authors of this study 

suggested the possible involvement of SHP2 mutations in AML sub-clones in 

disease progression. In line with this, another SHP2 mutant occurring in AML, 

SHP2G503A, has shown to enhance PTP activity and to accelerate a different subtype 

of KMT2A-rearranged AML (Fu et al, 2017). Furthermore, SHP2 cooperates with 

the AML driver FLT3/ITD for disease progression (Nabinger et al, 2013).  

Regarding CML pathogenesis, SHP2 has also recently been reported as an 

essential molecule for initiation and maintenance of BCR-ABL-induced 

myeloproliferative neoplasms (MPNs) in vivo (Gu et al, 2018b), presumably via 

interaction with GAB2 (Gu et al, 2016). This indirect activation of SHP2 by BCR-

ABL might be part of the mechanism for JAK2-independent activation of STAT5 in 

CML (Hjort et al, 2016). Indeed, interaction of SHP2 with GAB2 has been proposed 

as a mechanism contributing to TKI resistance (Wöhrle et al, 2013).  

Finally, SHP2 malfunction not only contributes to leukaemogenesis in a cell-

autonomous manner. A recent report has described that Shp2 mutations in the 

niche provoke secretion of C-C motif chemokine ligand 3 (CCL3), monocyte 

recruitment and interleukin 1 beta (IL1B)-mediated overproliferation of HSCs, thus 

giving rise to MPNs in vivo (Dong et al, 2016). 

Most reports attribute an anti-leukaemogenic role to SHP1 in myeloid 

malignancies, with lowered expression at the protein level and remarkable promoter 

methylation in both AML and CML (Abram & Lowell, 2017). This low expression has 

also been correlated with TKI resistance in CML patients (Esposito et al, 2011). 

Only Kang and colleagues have described a function for SHP1 in the leukocyte 

associated immunoglobulin like receptor 1 (LAIR1)-mediated promotion of AML. 

However, SHP1 would act as an adaptor protein, with no role for its catalytic 

function in this context (Kang et al, 2015). 
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1.3.2. β-catenin: a tightly regulated protein at the forefront of 
leukaemogenesis  

β-catenin is involved in cell adhesion through its interaction with cadherins and 

the central player of the canonical WNT pathway. In unstimulated cells, free β-

catenin levels are modulated by the balanced synthesis and degradation mediated 

by the multimeric destruction complex, comprising the proteins axis inhibitor (AXIN), 

adenomatous polyposis coli (APC), casein kinase 1 (CK1) and glycogen synthase 

kinase 3β (GSK3β). This complex sequesters and phosphorylates β-catenin, thus 

priming it for further recognition by β-transducin repeat-containing E3 ubiquitin 

protein ligase (β-TRC). β-TRC then polyubiquitylates β-catenin, thereby triggering 

its proteasomal degradation. Upon stimulation by canonical WNT ligands through 

their interaction with Frizzled (FZD) receptors and low-density lipoprotein-related 

protein (LRP) co-receptors, dishevelled (DVL) protein is activated and recruits the 

destruction complex to the proximity of the plasma membrane. At this point, the 

destruction complex is no longer able to sequester β-catenin and prime it for 

degradation, hence allowing its nuclear translocation. Once into the nucleus, β-

Figure 1.8. Canonical WNT signalling. In the absence of WNT ligands, the destruction complex 
comprised by AXIN, CK1, APC and GSK3β constitutively phosphorylates β-catenin (β-CAT) in different 
residues, thus priming it for proteasomal degradation. Upon WNT binding to its FZD receptors and LRP 
co-receptors, the destruction complex is recruited and remains unable to phosphorylate β-CAT, thereby 
allowing it to translocate into the nucleus and disrupt the interaction between TLE repressors and 
TCF/LEF transcription factors. In this way, transcription of pro-survival genes can occur. 
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catenin triggers de-repression of T cell factor/Lymphoid enhancer factor (TCF/LEF) 

transcription factors through competition with Transducin-like enhancer of split 

(TLE) proteins (Figure 1.8) (Staal & Clevers, 2005). This promotes the expression 

of survival- and proliferation-related genes, for instance cyclin D1 (CCND1) and 

MYC proto-oncogene, bHLH transcription factor (MYC). This protein is involved in 

several pathogenic mechanisms of different types of cancer, including colon, 

pancreatic, lung and ovarian cancer, as well as hepatocellular carcinoma (Shang et 

al, 2017).  

1.3.2.1. β-catenin in AML pathogenesis and its potential as a 
pharmacological target 

β-catenin contribution to myeloid malignancies is a field of intense research. 

Ectopic expression of a constitutively active form of this protein in primary 

human CD34+ cells impaired myeloid differentiation and protect them from 

apoptosis, a hallmark of leukaemia. In addition, aberrant expression of different 

components of canonical WNT pathway was found in primary AML samples in 

the same study (Simon et al, 2005). It is worth noting that β-catenin accounted 

for the transformation of myeloid-committed progenitors in LSCs and its 

absence impaired disease development in different murine models of AML 

(Wang et al, 2010). In agreement with this, expression of β-catenin showed 

correlation with the clonogenic potential of human primary AML cells in vitro, as 

well as decreased survival of patients (Ysebaert et al, 2006).  

One of the mechanisms underlying β-catenin stabilisation and nuclear 

localisation in AML cells seems to be its cooperation with its closely related 

partner plakoglobin (also known as γ-catenin), whose overexpression 

correlated with higher levels of β-catenin and activation of its transcriptional 

programme (Morgan et al, 2013). Moreover, occurrence of the AML-associated 

chromosomal translocations RUNX1-RUNX1T1, PML-RARα and promyelocytic 

leukemia zinc finger (PLZF)-RARα was concomitant with an increase of 

plakoglobin mRNA and protein levels, β-catenin protein expression and WNT 

transcriptional targets (Müller-Tidow et al, 2004). FLT3-ITD, another important 

AML driver, cooperated with β-catenin for its leukaemogeinc activity. It was able 

to increase β-catenin protein levels in AML samples, likely through enhanced 

expression of the FZD4 receptor. In addition, FLT3-ITD-mediated cell growth 

could be dependent on the β-catenin downstream partner TCF4 (Tickenbrock 

et al, 2005). Interestingly, a very recent report revealed a correlation between 

the protein levels and nuclear location of β-catenin and the amount of its 
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transcriptional co-activator lymphoid enhancer binding factor 1 (LEF1) in AML 

primary samples. Furthermore, the authors of the study have provided evidence 

supporting a regulatory mechanism of LEF1 on the levels and activity of β-

catenin in both AML and CML cell lines (Morgan et al, 2019). 

Several interesting pre-clinical approaches against AML have exploited the 

inhibition of β-catenin with other molecular targets. Two recent works reported 

the use of the small molecule β-catenin inhibitor BC2059, currently under phase 

I trials to evalulate its safety (NCT03459469). BC2059 was used in combination 

with the HDAC inhibitor panobinostat (Fiskus et al, 2015), the JAK2 inhibitor 

ruxolitinib and the BET inhibitor ARV-771 in MPN-derived secondary AML 

samples in vitro and in PDX models in vivo with promising results (Saenz et al, 

2019). Additionally, the cooperation between FLT3-ITD aberrant signalling and 

β-catenin has also been used as a rationale for therapy. The combination of the 

β-catenin inhibitor PRI-724 with sorafenib demonstrated anti-leukaemic activity 

against AML blasts and stem/progenitor cells in vitro, together with prolonged 

survival versus the individual agents in a PDX model (Jiang et al, 2018). PRI-

724 has undergone a clinical trial in combination with cytarabine for AML 

treatment (NCT01606579). Finally, the β-catenin degradation-promoting 

compound CWP232291 has recently completed a phase I clinical trial for the 

treatment of various haematologic malignancies, including r/rAML 

(NCT01398462). 

1.3.2.2. Contributions of β-catenin to CML disease and its co-targeting 
with BCR-ABL as a therapeutic tool 

The role of β-catenin in CML pathogenesis was described before than in 

AML and has therefore been elucidated in a deeper manner. First evidence of 

this proposed that the GMP compartment displayed the LSC activity in CML. 

GMPs from CML patients in the three different stages of the disease (CP, AP, 

BC) displayed increased levels of β-catenin versus their healthy counterparts, 

with an important role in their colony-forming ability (Jamieson et al, 2004). 

Consistently, the murine CML-like disease model induced by ectopic expression 

of p210 BCR-ABL showed that GMPs had the highest level of β-catenin 

expression, being the only population able to reproduce the disease in 

recipients (Minami et al, 2008). 

Further studies in the same mouse model demonstrated that BCR-ABL 

correlated with higher β-catenin expression in HSPCs versus non-transduced 

https://clinicaltrials.gov/ct2/show/NCT03459469?term=BC2059&rank=1
https://clinicaltrials.gov/ct2/show/NCT01606579?term=PRI-724&rank=6
https://clinicaltrials.gov/ct2/show/NCT01398462


Introduction 
 

37 
 

cells, a relevant feature for their clonogenic potential, but dispensable for 

disease progression, probably due to the multiple pathways altered by BCR-

ABL expression (Hu et al, 2009; Zhao et al, 2007; Heidel et al, 2012). All these 

studies revealed the cooperative role of β-catenin with BCR-ABL in leukaemic 

transformation. In addition, β-catenin levels have shown to correlate with 

disease progression from CP to BC in different studies (Jamieson et al, 2004; 

Coluccia et al, 2007; Hu et al, 2016). Indeed, CD34+ CML BC cells displayed 

differential TCF/LEF transcriptional activity versus CP cells (Sengupta et al, 

2007). Functionally, AP-derived GMPs with enforced β-catenin expression 

augmented their growth ability in re-plating assays (Jamieson et al, 2004). 

Finally, β-catenin is also an important player in TKI responsiveness. TKI-

resistant cell lines displayed higher β-catenin levels than their sensitive 

counterparts (Karabay et al, 2018) in a BCR-ABL-independent mechanism 

(Eiring et al, 2015). Moreover, downregulation of β-catenin led to restoration of 

TKI responsiveness in several experimental settings (Niu et al, 2013; Pehlivan 

et al, 2017; Zhou et al, 2017) and the β-catenin-related gene expression 

signature was different between TKI-responder and non-responder patients 

(McWeeney et al, 2010). The surrounding niche likely promotes β-catenin 

stabilisation in CML cells, with some results arguing in favour of an effect on TKI 

resistance (Zhang et al, 2012) and others against that idea (Eiring et al, 2015; 

Zhou et al, 2017). 

Several molecules involved in β-catenin upregulation have been described 

in the CML setting. Different models of unresponsiveness to TKI, including 

primary cells, showed upregulation of genes encoding WNT ligands that 

promote β-catenin stabilisation (Tsubaki et al, 2017; Chen et al, 2018; Li & Luo, 

2018) and FZD receptors (Liu et al, 2015). Promoter hypermethylation of the 

secreted frizzled-related protein-coding genes SFRP1 and SFRP2 has been 

reported in TKI-resistant CML cells as well (Pehlivan et al, 2009; Li & Luo, 2018).  

Interestingly, direct phosphorylation at the Tyr86 and 654 residues by BCR-

ABL was reported long time ago as relevant for nuclear accumulation of β-

catenin (Coluccia et al, 2007). The N-terminal ubiquitin-binding domain (UBD) 

of BCR-ABL would be important for the interaction leading to this 

phosphorylation, with an impact on disease progression (Chen et al, 2013).  

Another relevant molecule regarding this issue is interferon-regulatory 

factor 8 (IRF8), which has emerged as a regulator of β-catenin at different 
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levels. The activation of SHP2 by BCR-ABL would provoke the 

dephosphorylation of IRF8 in CML cells, thus abrogating its transcriptional 

repressing ability (Hjort et al, 2016). This, in turn, would release the promoters 

of GAS2 and PTPN13 genes. For the first case, synthesis of GAS2 protein 

would inhibit calpain, thereby preventing β-catenin degradation (Huang et al, 

2010). On the other hand, PTPN13 would be recruited to the destruction 

complex, where it would dephosphorylate the Tyr216 residue of GSK3β, hence 

preventing β-catenin degradation through a different mechanism (Huang et al, 

2013). The functional crosstalk between IRF8 and β-catenin was validated in 

vivo, thus supporting its relevance in disease progression towards BC and TKI 

resistance (Scheller et al, 2013). 

In addition, chibby 1 (CBY1), a nuclear protein with inhibitory effects in 

nuclear accumulation and transcriptional activity of β-catenin (Takemaru et al, 

2003; Li et al, 2010), has a role in CML. Promoter hypermethylation of CBY1 

with a concomitant protein decrease was reported in CML models. Importantly, 

an inverse correlation between CBY1 and β-catenin level and transcriptional 

activity was described in CML cells (Leo et al, 2013). Indeed, IM-mediated 

degradation of β-catenin would involve CBY1 promoter demethylation and the 

formation of the protein complex 14-3-3/β-catenin/CBY1. This tripartite complex 

would be translocated from nucleus to cytoplasm, eventually leading to β-

catenin degradation (Leo et al, 2015a; Mancini et al, 2013; Leo et al, 2015b).  

Finally, evidence has provided support for a mechanism of β-catenin 

modulation with the involvement of phosphatase 2 phosphatase activator 

(PP2A). The authors of that work proposed a model where the physical kinase-

independent interaction of BCR-ABL and JAK2 would lead to SET nuclear 

proto-oncogene (SET)-mediated inactivation of PP2A, which in turn could not 

promote GSK3β-induced phosphorylation and subsequent degradation of β-

catenin (Neviani et al, 2013). 

Despite the vast knowledge on the regulation of β-catenin in CML cells, 

remarkable pre-clinical or clinical success based on its targeting has been 

scarce so far. The FDA-approved antihelmintic drug pyrvinum pamoate was 

tested on TKI-sensitive and resistant cell lines, with anti-leukaemic activity in 

both cases. However, that work did not assess the effect of combining pyrvinium 

with TKI in the re-sensitisation of TKI-resistant cells (Zhang et al, 2017). 

Similarly, the small molecule AV65, another β-catenin inhibitor, demonstrated 

activity against BCR-ABLT315I TKI-resistant CML cell lines and synergy with IM 
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in TKI-sensitive cells. Once again, the authors did not provide evidence of re-

sensitisation ability of the drug in TKI-resistant cells (Nagao et al, 2011). In the 

in vivo setting, indirect decrease of β-catenin levels through inhibition of 

PTPN13 by using the Ser-Leu-Val tripeptide or the small molecule quinobene 

hampered TKI resistance, disease progression and relapse after TKI 

discontinuation (Huang et al, 2016). Additionally, the reduction of secreted WNT 

ligands through the porcupine O-acyltransferase (PORCN) inhibitor WNT974 

markedly enhanced NL activity in different mouse models, including a PDX 

(Agarwal et al, 2017). Most importantly, the abovementioned PRI-724 was 

recently tested in combination with IM in a PDX model with antileukaemic 

activity against transplanted BC-CML cells bearing the T315I and E255V 

mutations (Zhou et al, 2017). Not surprisingly, this drug has completed a phase 

II clinical trial in combination with dasatinib for CML treatment (NCT01606579)

https://clinicaltrials.gov/ct2/show/NCT01606579?term=PRI-724&rank=6
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2. HYPOTHESIS AND AIMS 

As highlighted before, a better understanding of the molecular mechanisms 

governing haematopoietic cell differentiation is key for the development of therapeutic 

approaches able to overcome the differentiation blockage characteristic of leukaemia. 

This rationale has become greatly successful in the context of APL (Coombs et al, 2015; 

De Thé, 2018). In this regard, previous work in our lab has unveiled the PTPs SHP1 and 

SHP2 as targets of ROS that are generated upon PMA stimulation in HEL cells. The 

oxidation-mediated inactivation of these proteins is required to fully trigger 

megakaryocytic differentiation in this model (López-Ruano, 2015). 

Interestingly, HEL cells were generated from a patient with erythroleukaemia, a 

subtype of AML (FAB M7). On the other hand, the natural phorbol ester PRS has been 

proposed as a therapeutic alternative for AML in combination with standard 

chemotherapy in the pre-clinical setting (Shen et al, 2015). The pro-differentiation effects 

of PRS, together with the side-effects of chemotherapy, make the study of novel 

compounds targeting other pathways altered in AML in combination with PRS as a 

differentiation-based therapy a worthy endeavour. 

Considering this background, the general goal of this Thesis was to explore the 
potential of SHP1 and SHP2 as therapeutic targets against myeloid leukaemias. 
This general aim was addressed through the following specific objectives: 

1. Study of the mechanisms involved in the convergent modulation of 
leukaemia cells differentiation by SHP1 and SHP2. 

2. Assessment of the use of chemical inhibitors of SHP1 and SHP2 with 
phorbol esters as a differentiation-based therapy against AML. 
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3. MATERIALS AND METHODS 

3.1. Materials 

3.1.1. Cell lines 

Table 3.1. Cell lines used in this work 

NAME SUPPLIER REFERENCE PURPOSE 

HEK-293T Kindly provided by C. 
Trigueros PhD 
(INBIOMED Foundation, 
Donosti, Spain) 

N/A Lentivirus 
production 

HEL DSMZ – German 
Collection of 
Microorganisms and Cell 
Cultures GmbH 

ACC-11 Model for human 
megakaryocytic 
differentiation 

HL-60 DSMZ – German 
Collection of 
Microorganisms and Cell 
Cultures GmbH 

ACC-3 Model for AML-M2 

NB-4 DSMZ – German 
Collection of 
Microorganisms and Cell 
Cultures GmbH 

ACC-207 Model for AML-M3 

Non-CML iPSCs Generated at H. 
Wheadon PhD lab 
(Toofan et al, 2018) 

N/A Model for normal 
stem cell population 

OCI-AML2 Kindly provided by R.I.R. 
Macias PhD (University 
of Salamanca, Spain) 

N/A Model for AML-M4 

THP-1 Kindly provided by S. 
Lorenzo (University of 
Oviedo, Spain) 

N/A Model for AML-M5 

 

3.1.2. Primary bone marrow samples 

Table 3.2. AML primary samples used in this work 

ID Age 
(years) FAB subtype Karyotype Mutations 

AML1 53 M0 46, XX, t(3;3)(q21;q21)[20] WT1, IDH1  

AML2 59 M0 46, XY N/D 

AML3 57 M0 46, XY N/A 

AML4 52 M1 45, XX, -7[15] N/D 
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AML5 71 M0 
46, XX, del (5q)(q13q35)[13] 

47, XXSL, +8[2] 
N/A 

AML6 39 M4 46, XY FLT3 

AML7 50 Secondary 
AML No metaphases N/D 

AML8 64 M5 No metaphases NPM1 

 

Table 3.3. HD primary samples used in this work 

ID Age (years) 

HD1 26 

HD2 27 

HD3 39 

HD4 36 

 

3.1.3. Drugs 

Table 3.4. Pharmacologically active compounds used for this work 

ITEM SUPPLIER REFERENCE 

12-Deoxyphorbol-13-Acetate 
(Prostratin, PRS) 

Santa Cruz Biotechnology sc-203422A 

NSC 87877 (NSC) Santa Cruz Biotechnology 

Tocris Bioscience 

sc-204139 

2613 

Phorbol 12-myristate-13-
acetate (PMA) 

Sigma-Aldrich P8139 

SHP099 hydrochloride MedChem Express HY-100388A 

Sodium stibogluconate (SSG) MedChem Express HY-100595 

 

3.1.4. Flow cytometry antibodies 

Table 3.5. Flow cytometry antibodies employed for the present work 

ITEM SUPPLIER REFERENCE 

Annexin V detection kit Immnuostep ANXVKPE-100T 

Anti CD11b-APC Miltenyi Biotec 130-191-241 
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Anti CD41-APC Immnuostep 41A-100T 

Anti CD61-APC Immnuostep 61A-100T 

 

3.1.5. Western blot antibodies 

Table 3.6. Primary antibodies for western blot used in this work 

TARGET SUPPLIER REFERENCE 
(Clone) 

WORKING 
DILUTION 

BLOCKING 
SOLUTION 

ERK Santa Cruz 
Biotechnology 

sc-153 (K-23) 1:5000 5% milk in TBS-T 

GAPDH ThermoFisher 
Scientific AM4300 (6C5) 1:40000 5% milk in TBS-T 

GSK3β BD Transduction 
Laboratories 

612201 (7/GSK-
3b) 

1:3000 5% milk in TBS-T 

pERK Santa Cruz 
Biotechnology 

sc-7383 (E-4) 1:3000 2% BSA in TBS-T 

pSRCTyr418 Abcam ab4816 1:2000 2% BSA in TBS-T 

pSTAT5Tyr694 BD Transduction 
Laboratories 

611964 (47) 1:1000 2% BSA in TBS-T 

SHP1 Santa Cruz 
Biotechnology sc-287 (C-19) 1:2000 5% milk in TBS-T 

SHP1 BD Transduction 
Laboratories 

610126 
(52/PTP1C/SHP1) 

1:1000 5% milk in TBS-T 

SHP2 Santa Cruz 
Biotechnology sc-280 (C-18) 1:2000 5% milk in TBS-T 

SHP2 BD Transduction 
Laboratories 

610622 
(79/PTP1D/SHP2) 

1:2000 5% milk in TBS-T 

SRC Santa Cruz 
Biotechnology sc- 8056 (B-12) 1:2000 5% milk in TBS-T 

SRC Cell Signalling 
Technology 2108S 1:1000 5% milk in TBS-T 

STAT5 Santa Cruz 
Biotechnology 

sc-835 (C-17) 1:1000 5% BSA in TBS-T 

β-CATENIN BD Transduction 
Laboratories 

610153 (14/Beta-
Catenin) 

1:500 5% milk in TBS-T 
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Table 3.7. Secondary antibodies for western blot used in this work 

TARGET SUPPLIER REFERENCE 
(Clone) 

WORKING 
DILUTION 

BLOCKING 
SOLUTION 

DETECTION 
METHOD 

Mouse IgG 
(H+L) 

Bio-Rad 1706516 1:10000 5% milk in 
TBS-T 

Chemilumines-
cence 

Rabbit IgG 
(H+L) 

Invitrogen A16104 1:5000 5% milk in 
TBS-T 

Chemilumines-
cence 

 

3.1.6. Oligonucleotides 

Table 3.8. Oligonucleotides for RNAi downregulation employed in this work 

TARGET IDENTIFICATION KEY SEQUENCE (5’-3’ sense) 

Firefly luciferase Luc CTGACGCGGAATACTTCGA 

Human SHP1 SHP1 GAACAAATGCGTCCCATA 

Human SHP2 SHP2 TGACAGATCTTGTGGAACA 

Human SHP1 and SHP2 SHP1/2 TGACAGAGCTGGTGGAGTA 

Human SRC 
SRC#1 TCAAGTGCATTAAGAACGA 

SRC#2 TCAAGTGCATTAAGAACGA 

 

3.1.7. Buffers and solutions 

 Buffer 1 for protein solubilisation. 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-

40, 10% (v/v) glycerol, 5 mM EDTA. 

 MLB protein solubilisation buffer. 25 mM HEPES pH 7.5, 150 mM NaCl, 1% (v/v) 

IGEPALTM, 10% (v/v) glycerol, 10 mM MgCl2, 1 mM EDTA, 25 mM NaF, 1 mM 

Na3VO4. 

 Phosphate buffered saline (PBS) 1X pH 7.4: 137 mM NaCl, 2.7 mM KCl, 100 mM 

Na2HPO4, 2 mM KH2PO4. 

 Propidium Iodide (PI) working solution for ploidy analysis: 50 μg/mL PI (Acros 

Organics) and 0.1 mg/ml Ribonuclease A (Thermo Scientific) in PBS 1X. 

 Protein loading buffer for western blot 2X. 125 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 

5% (v/v) glycerol, 0.003% (w/v) bromophenol blue, 1% (v/v) β-mercaptoethanol.  

 Stripping solution for western blot membranes: 62.5 mM Tris-HCl pH 6.8; 2% SDS 

(w/v); 100 mM β-mercaptoethanol. 

 Tris buffered saline with Tween 20 (TBS-T). 10 mM Tris-HCl pH 7.5, 100 mM NaCl, 

0.05% (v/v) Tween 20.  
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 Western blot running buffer 1X. 5 mM Tris-HCl pH 8.3, 40 mM glycine, 0.1% (w/v) 

SDS. 

 Western blot running gel buffer. 1.5 M Tris-HCl pH 8.8. 

 Western blot stacking gel buffer: 0.5 M Tris-HCl pH 6.8. 

 Western blot transfer buffer 1X. 25 mM Tris, 190 mM glycine, 20% (v/v) methanol. 

3.1.8. Laboratory equipment 

 40SM-200A (Precisa) analytical scale and Electronic Scale (Want) precision scale. 

 AllegraTM 21R (Beckman), 5810R (Eppendorf) and 3-16PK (Sigma) centrifuges. 

 Applied Biosystems ProFlexTM PCR system (Thermo Scientific) thermal cycler. 

 BFR 25 (Grant Boekel) platform rocker. 

 CKX41 (Olympus), TMS (Nikon), Eclipse Ci-L (Nikon) and XL Core (EVOS) 

inverted light microscopes. 

 CS-9000 (Shimadzu) densitometer. 

 Cytospin2 centrifuge (Shandon). 

 ESCO class II BSC (Labcultures), Telstar Bio IIA class II (Fisher Scientific) and 

HerasafeTM KS Class II (Thermo Scientific) laminar airflow biosafety cabinets. 

 FACSCalibur and FACSCanto II (BD Biosystems) flow cytometers. 

 Fluidigm Biomark Analyser (Fluidigm). 

 Forma -86 ULT (Thermo Electron Corporation) -80ºC freezer. 

 Forma Direct Heat 311 (Thermo Scientific) and New Brunswick Galaxy 170 S 

(Eppendorf) CO2 incubators. 

 IGNIS -20ºC freezer. 

 Liquid nitrogen tank (Thermo Forma). 

 Medical X-Ray Processor 102 (Kodak) film processor. 

 MicropH 2001 (Crison) pH-meter. 

 Minimix (OVAN) magnetic stirrer. 

 Mini-PROTEAN® III, Mini-PROTEAN® Tetra (Bio-Rad) and Novex™ XCell™ 

SureLock™ (Invitrogen) vertical electrophoresis and blot transfer systems. 

 Mutliskan FC (Thermo Scientific) and Spectramax M5 (Molecular Devices) plate 

readers. 

 Nanodrop 1000 and Nanodrop 2100 (Thermo Scientific) spectrophotometers. 

 Odyssey® Fc Dual-Mode Imaging System (LI-COR Biosciences). 

 Power Pac HC and Power Pac Basic (Bio-Rad) power suppliers for vertical 

electrophoresis. 

 Roller mix (Ovan). 
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 SBS TFB serie B (Memmert), Grant sub 28 (Cambridgeshire) and Retostat 

thermostatic water baths. 

 Sorvall Legend Micro 21R (Thermo Scientific), IEC MicroCL 17 (Thermo Electron 

Corporation) and 2-16 (Sigma) microcentrifuges. 

 Steam Sterilizer (Raypa) and Autester-G (Selecta) autoclaves. 
 Taqman 7900 (Applied Biosystems) quantitative PCR machine. 

 VB85 (Gelaire) laminar airflow hood. 

 XL-100K (Beckman) ultracentrifuge. 

 XM Full HD Camera (MicrosCopiaDigital). 

 Other frequently used laboratory devices. 

 

3.1.9.  Software and other informatic tools 

 BD CellQuest Pro (BD Biosciences), for cell acquisition in BD FACSCalibur 

instrument. 

 CalcuSyn 2.0.0 (Biosoft) for drug interaction studies and half maximal inhibitory 

concentration (IC50) determination in cell lines with nearly linear dose-response 

curves. 

 FlowJo v10.5.3 (FlowJo, LLC) and Flowing Software 2 (Turku Centre for 

Biotechnology) for flow cytometry data analysis. 

 GraphPad Prism 6 and Prism 8 (GraphPad Software) for IC50 determination in cell 

lines with a non-linear dose-response curve and data plotting. 

 IBM SPSS Statistics 22 (IBM) for statistical analysis.  

 Microsoft Office 365 ProPlus suite (Microsoft) for manuscript writing, data analysis 

and figure assembly. 

 R version 3.4.4 (GNU General Public License) for statistical analysis and data 

plotting. 

 Servier Medical ART (SMART) graphical material was used from the website 

https://smart.servier.com/ under a Creative Commons Attribution 3.0 Unported 

License. 

 ToupView (ToupTek Photonics) for image acquisition of HL-60 cytospin slides. 

 Zotero (Corporation for Digital Scholarship) for citations and reference 

management throughout this manuscript. 

 

 

 

 

https://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/legalcode
https://creativecommons.org/licenses/by/3.0/legalcode
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3.2. Experimental procedures 

3.2.1. Cell culture 

All cell lines used for this work were cultured at 37ºC and 5% CO2. HEL, HL-

60, NB-4 and THP-1 cells were grown in RPMI 1640 supplemented with heat-

inactivated foetal bovine serum (FBS) at a final concentration of 10% (v/v) and 1X 

Penicillin-Streptomycin (Pen-Strep) commercial solution. OCI-AML2 cells were 

cultured in Alpha MEM with FBS 20% (v/v) and 1X Pen-Strep. Culture medium was 

replaced every 48 h after cell count with trypan blue exclusion dye and cells were 

seeded at 2-2.5·105 cells/mL. 

HEK-293T cells were grown in DMEM with 10% FBS and 1X Pen-Strep. They 

were passaged when confluent cultures were observed under the microscope 

(usually every 3-4 days). Spent medium was removed and culture was washed with 

1X PBS. Next, trypsin-EDTA solution pre-warmed at 37ºC was added to detach 

cells and after brief incubation it was inactivated by adding fresh medium. Cells 

were then seeded at the desired density for lentiviral production. 

Primary bone-marrow mononuclear cells (BM-MNCs) were cultured in RPMI 

1640 with 10% FBS and 1X Pen-Strep. 

All cell culture reagents were purchased to Biowest or Gibco unless otherwise 

specified. 

3.2.2. Lentivirus production for RNAi 

Sequences for RNAi-mediated knockdown of the different proteins studied in 

this work were designed according to the criteria proposed by Reynolds et al. 

(Reynolds et al, 2004). DNA hybridisation and construct introduction into the 

pLVTHM plasmid was previously performed in the laboratory (López-Ruano, 2015). 

The HIV-based second-generation shRNA delivery system was kindly provided by 

D. Trono (Wiznerowicz & Trono, 2003). This system splits the lentiviral genome into 

three different plasmids: the transfer plasmid (pLVTHM), containing the insertion 

cassette for stable shRNA expression and a deletion at the 3’ LTR to inactivate 

lentivirus replication (Figure 3.1); the envelope plasmid (pMD2.G), which encodes  

the envelope glycoprotein dictating the virus tropism (VSV-G is encoded in pMD2.G 

and allows for wide tropism) and the packaging plasmid (psPAX2), encoding Gag, 

Pol and accessory proteins required for efficient packaging of the vector.  
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3.2.2.1. Seeding of HEK-293T cells 

100 mm-diameter cell culture dishes were coated with 3 mL of 0.1 mg/ml 

poly-D-lysine (Sigma Aldrich) for 5 min. Coating reagent was then removed and 

dishes were air-dried prior to cell seeding. After that, HEK-293T suspensions 

were adjusted to an appropriate volume to achieve 80% confluent cultures in 

9.6 mL of complete medium per dish. Once the dishes were dry, cells were 

plated and incubated at 37ºC for 6 h. 

3.2.2.2.  Cell transfection 

Purified plasmids were mixed in a transfection solution as follows (volumes 

are given by 100 mm diameter dish of HEK-293T cells at 80% confluence): 1200 

μl of 150 mM NaCl, 6 μg of pLVTHM plasmid, 6 μg of psPAX2 plasmid, 4.5 μg 

of pMD2.G plasmid and 60 μl of 1 mg/ml linear polyethyleneimine (PEI, 

Figure 3.1. Map of the lentiviral vector for stable RNAi expression pLVTHM. Schematic 
representation of the vector showing its main features. The restriction sites MluI and ClaI downstream 
of the H1 promoter serve as cloning site for RNAi constructs. The enhanced green fluorescent protein 
(EGFP) open reading frame (ORF) under the elongation factor 1 alpha (EF-1α) promoter allows the 
monitoring of transduced cells. 
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Polysciences Inc.). The mixture was vortexed and incubated for 20 min at RT 

to allow the formation of complexes composed of polycationic PEI and 

polyanionic DNA, which are subsequently endocytosed by the virus producing 

cells. After that, the mixture was added dropwise onto the previously seeded 

HEK-293T monolayers. The cultures were incubated overnight with the 

DNA/PEI mixture. Next day, the transfection medium was safely disposed of 

and replaced by 8.5 mL of pre-warmed fresh DMEM. 

3.2.2.3. Supernatant collection and concentration 

 Supernatants containing lentiviral particles were harvested at 48h and 72h 

post-transfection. Lentiviruses were concentrated by ultracentrifugation at 

50 000 g for 2h at 16ºC. The liquid fraction was discarded and 200 μl of RPMI 

with 1% FBS were added to the viral pellet. Tubes containing the concentrated 

lentiviruses were then incubated for 4 h at 4ºC to allow resuspension and then 

the concentrates were homogenized by pipetting up and down at least 40 times. 

Finally, they were aliquoted and frozen at -80ºC prior to use. 

3.2.2.4. Titration of viral concentrates 

105 HEK-293T cells/well were seeded in a 24-well plate pre-coated with 

poly-D-lysine and air-dried. Cells were incubated for 6 h at 37ºC to allow their 

attachment to the plate and supernatant volume was adjusted to 350 μl prior to 

adding viral concentrates. Different volumes of previously made 1:100 dilutions 

of the lentiviral concentrates were added onto each well. Then, plates were spun 

down at 1800 g and 32ºC for 90 min to facilitate the virus-cell interaction and 

incubated overnight at 37ºC. Next day, the lentivirus-containing supernatants 

were disposed of and replaced by 500 μl of fresh DMEM. After 48 h of incubation 

at 37ºC to allow cell growth and GFP expression, cells were detached with 

trypsin-EDTA and acquired in a flow cytometer. The percentage of GFP+ cells 

was used to estimate the viral titre with the following equation: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �
𝑇𝑇𝑇𝑇
𝑚𝑚𝑚𝑚

� =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (105) × % 𝐺𝐺𝐺𝐺𝑃𝑃+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

100
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑚𝑚𝑚𝑚)

 

The highest value of viral titre for each shRNA-containing lentivirus was 

chosen from the previous calculations as theoretically, that would be the number 

for a situation when one single viral particle infected a single cell. 
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3.2.3. Lentiviral transduction of cell lines 

Cells were cultured for at least 6 h prior to transduction in the appropriate 

culture medium with 1% FBS at a density of 4·105 cells/mL. After that, different 

volumes of ice-thawed lentiviral concentrates were added to the desired number of 

cells in a way that multiplicity of infection (MOI) was enough to yield nearly 100% 

GFP+ cultures. Cell density was adjusted to 3·105 cells/mL and cultures were 

distributed onto 96-well plates with 200 μl/well. Plates were centrifuged at 1800 g 

and 32ºC for 90 min and subsequently incubated at 37ºC overnight. The day after 

transduction, cells were harvested, washed twice with PBS and seeded in complete 

fresh medium with 10% FBS at a density of 3·105 cells/mL for a proper recovery. 

Two days after lentivirus removal, an aliquot of the culture was acquired in a flow 

cytometer to monitor the percentage of GFP+ cells. Simultaneous silencing of SHP1 

and SHP2 was performed by transducing SHP2-silenced cells with lentiviruses 

targeting SHP1 expression. Similarly, simultaneous downregulation of SRC and 

SH2 domain containing PTPs was performed by adding lentiviruses targeting the 

expression of those PTPs on SRC-downregulated cells. 

3.2.4. Primary bone marrow mononuclear cells (BM-MNCs) isolation 

Bone marrow samples from AML patients and healthy donors (HD) were 

harvested at Hospital Clínico Universitario de Salamanca after informed consent of 

the participants, according to Helsinki Declaration. To avoid aggregation, samples 

were sequentially passed several times through 18G and 21G needles. Then, they 

were transferred into a new tube and diluted 1:3 with Hank’s Balanced Salt Solution 

(HBSS, Lonza). For isolation of mononuclear cells, 4 mL of Ficoll-Paque™ PLUS 

(GE Healthcare) were carefully added into the bottom of a 15 mL Falcon tube. Next, 

6 mL of the diluted BM sample were gently added through the wall to avoid mixing 

with Ficoll (Figure 3.2A). Tubes containing sample + Ficoll were afterwards spun 

down at 460 g for 30 minutes at minimum acceleration and deceleration to avoid 

disruption of the different phases. After centrifugation, a cloudy phase appeared on 

the top of Ficoll, containing the BM-MNCs (Figure 3.2B). These cells were sucked 

up with a Pasteur pipette and transferred into a clean tube. Cells were then washed 
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with HBSS and centrifuged at 300 g for 10 min twice, and finally resuspended in 

culture medium at a density of 106 cells/mL for subsequent treatments.  

3.2.5. Primary bone marrow samples thawing and recovery 

Liquid nitrogen-frozen AML BM-MNCs were rapidly thawed at 37ºC and 

washed twice with PBS to remove freezing solution (FBS + 10% DMSO). Then, 

viable cell number was determined through trypan blue exclusion staining with a 

Thoma haemocytometer and cells were cultured in complete medium overnight at 

37ºC at a density of 106 cells/mL prior to treatments. 

3.2.6. Drug treatments 

3.2.6.1. Stock solutions 

PMA and PRS were dissolved in DMSO to a concentration of 2 mM and 20 

mM, respectively, aliquoted, and stored at -80ºC prior to use. Thawed aliquots 

were not re-used. NSC was dissolved in the appropriate volume of dH2O to a 

concentration of 50 mM. After thorough vortexing, aliquots were made and 

stored at -20ºC or -80ºC. They were used up to two freeze-thaw cycles. SHP099 

hydrochloride was dissolved in DMSO to a final concentration of and 10 mM 

with sonication and aliquoted at -80ºC prior to use. The unused fraction of 

thawed aliquots was discarded. SSG was freshly prepared prior to use to 

different concentrations depending on the purpose. The desired volume of 

complete culture medium was added to weighed drug and the mixture was 

vigorously vortexed. After that, it was incubated at 75ºC with continuous shaking 

until no turbidity was observed. 

 

Figure 3.2. Isolation of primary BM-MNCs. A) BM samples diluted in HBSS are gently placed into a 
tube containing Ficoll. B) After proper centrifugation, different phases emerge from the sample, being 
the BM-MNCs the one of interest for this study. Adapted from (Low & Wan Abbas, 2015). 

A B 
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3.2.6.2. Drug treatments for cell proliferation studies 

For MTT assays, 100 µL of AML cell lines (HL-60, NB-4, OCI-AML2 and 

THP-1) suspensions at a density of 4-5·105 cells/mL were seeded in 96-well 

plates with three technical replicates per condition. 2X or 4X drug solutions were 

prepared for single agent or combined treatments, respectively. The different 

doses were prepared by serial dilution starting from the highest dose tested. 50 

or 100 µL of the drug were added to the cells for combinations or individual 

treatments, respectively, making a final volume of 200 µL/well and a density of 

2-2.5·105 cells/mL. Cells were incubated for 48 h at 37ºC. 

3.2.6.3. Drug treatment for cell differentiation, cell number, viability and 
colony-forming unit (CFU) ability assessment  

Once the interaction between the different drugs was determined, the most 

interesting drug combinations were selected for further studies. For flow 

cytometry experiments, HEL and HL-60 cells were seeded at a density of 

3.5·105 cells/mL in 96-well plates in a final volume of 200 µL. For morphology 

studies, HL-60 cells were cultured in 6-well plates in a final volume of 5 mL at a 

density of 3.5·105 cells/mL. For cell number, viability and clonogenicity studies, 

cells were cultured the same way with a final density of 2.5·105 cells/mL. 

Primary BM-MNCs were cultured in the presence of synergistic doses of PRS 

and NSC in HL-60 cells at a density of 106 cells/mL. Cells were pre-incubated 

with SHP1 and SHP2 inhibitors (SSG, SHP099, NSC) to allow the inhibition of 

PTPs for 1h at 37ºC prior to addition of phorbol esters (PMA and PRS) at the 

desired concentrations and the cultures were incubated at 37ºC for 48h. 

3.2.7. MTT assay 

The reduction of 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide 

(MTT) to MTT-formazan by cellular succinate dehydrogenases is a common way to 

estimate the number of alive cells after a given treatment. MTT-formazan 

precipitates can be dissolved in DMSO, generating a purple solution whose 

absorbance is directly related with metabolic activity during the incubation time.  

After the incubation period, cells were washed with PBS (twice when NSC was 

present in the medium, as its intense red colour of the drug in solution may interfere 

with absorbance measurements). Then, they were resuspended in 100 µL of a 5 

mg/mL solution of MTT (Sigma-Aldrich) in PBS and incubated for 75 min at 37ºC. 

Once the MTT-formazan precipitates were formed, plates were spun down and 
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washed with PBS. Finally, crystals were dissolved with 100 µL/well DMSO (Sigma-

Aldrich) and absorbance at 570 nm was measured in a plate reader. 

3.2.8. Study of drug interactions using CalcuSyn 

The interactions between drugs in MTT or resazurin assays were determined 

using CalcuSyn software, which utilises the Median Effect method (Chou, 2006) for 

calculating the so-called combination index (CI). CI values above 1 are indicators 

of antagonism, around 1 of additivity and below 1 of synergism. 

Cells were incubated with a range of doses of the different drugs employed to 

test their sensitivity. Based on that, different combinations were simultaneously 

tested with single-agent dose ranges and inhibitory effect was introduced in 

CalcuSyn software to calculate CIs. Additive or synergistic doses were selected for 

further studies. 

3.2.9. Trypan blue exclusion cell count 

Viable cells keeping integrity repel this dye due to its negative charge, which is 

repelled by the cell membrane, also negatively charged. Only cells with damaged 

membranes (i.e. dead cells) will incorporate trypan blue molecules and display a 

blue colour under the microscope. Therefore, trypan blue staining is a very 

straightforward approach to determine cell viability in a cell culture. 

For synergistic combinations in HL-60 obtained through MTT assays, trypan 

blue exclusion assays were also performed to confirm the enhanced effect through 

a different method. An aliquot was taken for every treatment and conveniently 

diluted with PBS. Next, trypan blue 0.4% (w/v) (Gibco) was added to cell 

suspensions in a volume ratio 1:1 and thoroughly mixed. Then, cells were counted 

under the microscope by using a Thoma haemocytometer. 

3.2.10. Viability tests with Annexin V staining 

Annexin V is a protein able to bind phosphatidylserine (PS) residues in the 

presence of calcium (Ca2+) cations. PS translocation to the outer layer of 

cytoplasmic membrane occurs at the beginning of apoptosis and is a reliable marker 

of this process. Fluorophore-conjugated Annexin V is widely used to assess 

apoptosis induction by flow cytometry. 

5·105 HL-60 cells treated for 48 h with PRS and NSC were harvested and 

washed with PBS prior to 15 min staining with phycoerythrin (PE)-conjugated 

Annexin V (Immunostep) diluted 1:50 in 1X binding buffer. After the incubation 
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period, cell suspensions were conveniently diluted with binding buffer to stop the 

reaction and for a proper acquisition speed in a flow cytometer. 

3.2.11. Colony-forming unit (CFU) assays 

After incubation in the presence of drugs, viable cell number was determined 

by trypan blue staining in a Thoma haemocytometer. 500 HL-60 cells were 

resuspended in 500 µL of StemMACS HSC-CFU basic (Miltenyi Biotec) whereas 

104 AML or 2.5·104 HD BM-MNCs were resuspended in 500 µL of StemMACS HSC-

CFU complete without Epo (Milteny Biotec). In all cases, cell suspensions in semi-

solid medium were seeded in 24-well plates, ensuring proper humidity by filling al 

the surrounding wells with sterile PBS. Colonies were counted 7 days after seeding 

for HL-60 cells and 14 days after seeding for BM-MNCs. 

3.2.12. Cell differentiation assessment  

Cells treated with PMA and PRS become strongly attached to the bottom of the 

wells. Therefore, an incubation of at least 30 min on ice was carried out to facilitate 

cell detachment and prevent cell damage during the harvesting process for all the 

following studies. 

3.2.12.1. Measurement of cell surface antigens by flow cytometry 

Cells were collected and washed with PBS to remove drugs and cell culture 

media. They were resuspended in 50-100 µL PBS and incubated with 1:25 

dilutions of fluorochrome-conjugated anti CD41, anti CD61 or anti CD11 

antibodies for 15 min at RT in the dark. Then, they were washed with PBS to 

remove the excess of antibodies and conveniently resuspended in PBS to be 

acquired in a flow cytometer. 

3.2.12.2. Determination cell ploidy status 

Treated cells were harvested and washed with PBS to remove drugs and 

culture media. Then, they were fixed with 2.5% paraformaldehyde (PFA, 

Thermo Scientific) in PBS to maintain GFP fluorescence, washed with PBS and 

spun down at 1000 x g for 5 min. After that, they were resuspended in 70% 

ethanol (Thermo Scientific) and incubated overnight at 4ºC. Next day, they were 

washed and centrifuged as before and incubated at 37ºC for 45 min in a solution 

containing 50 ng/mL propidium iodide (PI) and 0.5 ng/mL of RNase A in PBS 

1X. Cells were washed and centrifuged again  and finally resuspended in the 

proper volume of PBS to be acquired in a flow cytometer. The subsets of interest 

were gated as shown in Figure 3.3.  



Materials and methods 
 

60 
 

3.2.12.3. Morphological assessment of cell differentiation 

After incubation with drugs and detachment step, cells were collected, and 

a small aliquot was taken for cell number determination by Trypan blue staining. 

Then, cells were washed with PBS and centrifuged at 300 g for 5 min. After 

determination of cell number, cells were resuspended in PBS to a density of 5-

7.5·105 cells/mL and kept on ice until their use. 100 µL of the cell suspensions 

were taken per slide to perform cytospins. The cell suspensions were 

centrifuged at 10 g for 7 min to attach the cells onto the slides and, after visually 

checking under a microscope, suitable preparations were stained with May-

Grünwald-Giemsa solution. Cell morphology and relative differentiation status 

was assessed by M. Díez-Campelo MD PhD (Hospital Clínico Universitario de 

Salamanca). 

3.2.13. AML xenograft model for drug testing in vivo 

Female 8-week-old NOD-SCID mice (Charles River) were irradiated with a 2.5 

Gy single dose 24 h prior to cell transplant. HL-60 cells were maintained in 

exponential growth phase (cell density adjusted daily to 3.5·105 cells/mL prior to 

injection). The day of transplantation, they were harvested and washed twice with 

Figure 3.3. Gating strategy for ploidy analysis of HEL cells. Representative example of the gates 
and channels used for ploidy analysis in SHP1- and SHP2-silenced HEL cells treated for 7 days with 20 
nM PMA. 
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abundant PBS and then resuspended in RPMI 1640 without serum. Each animal 

was injected with 5·106 HL-60 cells through the lateral tail veins in a maximum 

volume of 200 µL. Five days after transplantation, treatment with the indicated 

agents was started. Stock solutions of drugs were diluted in sterile PBS and 

administered intraperitoneally (i.p.). DMSO concentration was adjusted to be 

exactly the same in all treatment arms. Animals were daily monitored and treated 

every two days until humane endpoint, defined by scruffy fur, loss of activity and a 

loss of weight equal or greater than 25%, was reached. All animal protocols were 

approved by the University of Salamanca Bioethics Committee. 

3.2.14. Study of protein levels by Western blot 

All cell lines were seeded at a density of 3.5·105 cells/mL the day before protein 

extraction. When the effects of drug treatments on protein levels were assessed, 

cells were treated at the specified doses for a 16 h period unless otherwise 

specified. A minimum of three biological replicates were performed. 

3.2.14.1. Protein extraction  

Cells were harvested and centrifuged at 700 x g and 4ºC for 7 min and the 

supernatant was discarded. When the pellets were not immediately processed, 

they were dried and stored at -20ºC.  

For AML cell lines, pellets were resuspended in MLB buffer with a 

commercial protease inhibitor cocktail (Sigma Aldrich) and incubated on ice for 

20 min. Then, samples were centrifuged at 21000 x g and 4ºC for 15 min and 

the supernatants were recovered for subsequent use. For gel loading, samples 

were mixed 1:1 with protein loading buffer 2X and denatured by incubation in 

boiling water for 5 min. 

3.2.14.2. Protein quantification 

Small aliquots of the soluble fractions of protein extracts were taken and 

conveniently diluted in water for further quantification using Bradford’s method 

(Bradford, 1976). Bovine serum albumin (BSA) was used as a standard for the 

curve where sample absorbance values were interpolated. Assays were 

performed in 96-well plates and samples were measured in triplicate. 

3.2.14.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE) 

Protein extracts from AML cell lines were separated in poured gels of a 

fixed concentration of polyacrylamide in western blot running buffer 1X. The 
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same protein amount was loaded in every lane for comparison purposes. 

Electrophoresis were performed at a constant voltage of 125 V and RT until the 

bromophenol blue front reached the edge of the gel.  

3.2.14.4. Wet transfer of proteins to membranes 

Polyvinylidene difluoride (PVDF) membranes were used for transferring 

proteins from AML cell lines. Membranes were activated with methanol and then 

placed in close contact to polyacrylamide gels. The transfer was performed in 

1X western blot transfer buffer during 4 or 16 h, depending on the protein(s) of 

interest, at a constant amperage of 400 or 150 mA, respectively. 

The presence of proteins on the membranes was checked by staining with 

Ponceau S solution. The dye was washed off before incubation with antibodies. 

3.2.14.5. Incubation with antibodies 

Prior to antibody hybridisation, unspecific binding reactions were blocked 

by incubating the membranes with the different block solutions indicated in 

Tables 3.6 and 3.7. Block was performed for 1 h at RT. 

Blocked membranes were then incubated in the presence of primary 

antibodies diluted in the block solutions specified in Table 3.6 overnight at 4ºC. 

Then, they were washed three times in TBS-T and transferred into appropriate 

secondary antibody dilutions (Table 3.7) for an incubation of 1 h at RT (and 

protected from light in the case of fluorescent dye-conjugated antibodies). After 

this step, membranes were washed again three times with TBS-T prior to 

detection. 

3.2.14.6. Signal detection 

When horseradish peroxidase (HRP)-conjugated secondary antibodies 

were used, membranes were incubated with Clarity Western ECL Substrate 

(Bio-Rad) or Pierce™ ECL Plus Western Blotting Substrate (Thermo Scientific) 

for band visualisation.  

3.2.14.7. Quantification of western blot bands 

Signals recorded in X-ray films were quantified by densitometry using a 

wavelength of 570 nm. 

3.2.15. Statistical analysis 

For two-group comparisons, unpaired Student’s t test was used. For multiple 

group comparisons, either ANOVA (data fitting normal distribution) or Kruskal-
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Wallis (data not fitting normal distribution) tests were performed. Appropriate post 

hoc tests were subsequently run for pairwise comparisons. For animal survival, a 

Log-Rank test was conducted. Excel, SPSS and R v3.4.4 were used as statistics 

software. 

Bar graphs represent data average ± standard deviation. Lines above bar 

diagrams depict statistical significance of pairwise comparison between the bars 

located below the extremes when a multiple comparison test was performed. 

Symbols above bars indicate differences versus the corresponding control 

(untreated cells, control RNAi, etc.). For all tests, significant differences were 

declared when p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). Non-significant 

differences were denoted by ‘n.s.’.
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4. RESULTS AND DISCUSSION 

4.1.  SHP1 and SHP2 show cooperative effects to induce cell differentiation in 
HEL cells 

Previous results from our group showing the role of ROS in haematopoietic cell 

differentiation (Sardina et al, 2010) led to the interrogation of likely mediators of this 

process. This led to the finding of SHP1 and SHP2 as direct targets of ROS. By using 

HEL cells as a model, these molecules were found to be specifically oxidised after PMA 

exposure, whereas their closely related family member PTP1B did not. The need for this 

specific inhibition to fully induce differentiation was validated through RNAi mediated 

downregulation of the three PTPs. Again, an enhancement of the PMA-induced cell 

differentiation was achieved after silencing SHP1 and SHP2, whereas this effect was 

absent upon PTP1B downregulation (López-Ruano, 2015). This was the basis for a 

deeper study of the mechanisms underlying the control of differentiation in HEL cells and 

the exploration of the therapeutic potential of these observations. 

4.1.1. Simultaneous downregulation of SHP1 and SHP2 enhances 
differentiation of HEL cells over individual silencing 

The coincident pro-differentiation effect triggered by individual silencing of 

SHP1 and SHP2 previously observed in our laboratory (López-Ruano, 2015) raised 

the question of whether these PTPs were acting through different pathways. To 

address this issue, SHP1 and SHP2 were simultaneously downregulated in HEL 

cells (Figure 4.1).  

As a cell line with megakaryocytic potential, the differentiation of HEL cells was 

tracked by measuring the increase of the surface markers CD41 (a protein complex 

comprised of the glycoproteins GpIIb and GpIIIa) and CD61 (the individual GpIIIa 

glycoprotein), as previously reported by our group (Sardina et al, 2010, 2014). 

Figure 4.1. Individual and simultaneous silencing of SHP1 and SHP2 in HEL cells. Immunoblot 
showing the decrease of SHP1 and SHP2 at the protein level after lentiviral transduction of HEL cells 
with the RNAi sequences against these proteins. GAPDH was used as loading control. N = 6. 
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GpIIb/IIIa is a receptor for fibrinogen and participates in platelet aggregation, and 

the expression of its constituents progressively augments throughout 

megakaryocytic differentiation (Block & Poncz, 1995). In the absence of any 

stimulus, individual silencing of the phosphatases increased the expression of both 

CD41 and CD61, in agreement with previous observations of our group (López-

Ruano, 2015). Moreover, when both PTPs were simultaneously downregulated, the 

expression of the surface markers was more pronounced than in control and 

individually silenced cells (Figure4.2A-B). A similar trend was observed upon 

stimulation with 20 nM PMA for 48 h (Figure 4.2C).  

A well-documented process that occurs during megakaryopoiesis is the 

prominent increase in DNA content due to a process of endomitosis, consisting of 

DNA synthesis without subsequent cytokinesis. Therefore, an increase of DNA 

content can be directly associated with the progression in the process of 

differentiation, and this parameter can be quantified by flow cytometry (Sardina et 

al, 2014). DNA content of HEL cells individually and simultaneously downregulated 

for SHP1 and SHP2 was measured after a 7-day treatment with 20 nM PMA. 

Consistent with the expression of surface epitopes, cell ploidy was higher when the 

Figure 4.2. Simultaneous downregulation of SHP1 and SHP2 enhanced the upregulation of 
megakaryocytic surface markers. A) Representative fluorescence histograms of CD41 and CD61 in 
HEL cells subjected to individual and simultaneous downregulation of SHP1 and SHP2. B) Expression 
levels of the megakaryocytic markers CD41 and CD61 in SHP1- and SHP2-silenced cells without 
stimulation. C) Expression levels of the megakaryocytic markers CD41 and CD61 in SHP1- and SHP2-
silenced after induction of cell differentiation with 20 nM PMA for 48 h. 

A 

C B 
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expression both PTPs had been reduced over control and individually silenced cells 

(Figure 4.3).  

Taken together, these results confirm a pro-differentiation effect exerted by the 

downregulation of the PTPs SHP1 and SHP2. Besides, HEL cells show an 

enhanced acquisition of differentiation traits when the PTPs are downregulated at 

the same time. This supports the involvement of this proteins in the differentiation 

of the cell line, at least partially, through different signalling pathways. Although this 

contrasts with the traditionally opposed roles attributed to these PTPs (Zhang et al, 

2000; Neel et al, 2003), cooperation between them has previously been described 

in the context of epidermal growth factor (EGF) signalling (Wang et al, 2006). Since 

this convergent role had not been reported so far in the haematopoietic system, the 

next logical step was to study the different downstream molecules which are 

targeted by these two PTPs. 

4.1.2. SRC levels are decreased in SHP2-silenced HEL cells 

SRC family kinases (SFKs) are abundantly expressed in platelets and required 

for their correct function through activation of phosphorylation cascades initiated at 

the cell membrane (Senis et al, 2014). However, hyperactivation of the founder 

family member, SRC, in megakaryocytes from patients with myelofibrosis, leads to 

dysfunctions in platelet generation, arguing in favour of the need for a tight 

regulation of the activity of this kinase in megakaryopoiesis (Turro et al, 2016). It is 

worth noting that SHP2 has been described as a positive regulator of SRC 

activation in the mouse cell line 3T3 (Zhang et al, 2004). This evidence prompted 

us to study the activation status of the kinase SRC in our system upon 

downregulation of the PTPs SHP1 and SHP2.  

Figure 4.3. HEL cells stimulated for cell differentiation displayed increased ploidy upon dual 
silencing of SHP1 and SHP2. Percentage of SHP1- and SHP2-silenced HEL cells with the indicated 
DNA amount after induction of megakaryocytic differentiation with 20 nM PMA for 7 days. 
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As shown in Figure 4.4, a marked decrease of total SRC levels and, 

consequently, its active form, pSRCY418, was observed when SHP2 was 

downregulated. Of interest, SRC has been reported to be a substrate of the 

protease calpain in breast cancer cells (Tan et al, 2005), and an indirect mechanism 

of SHP2-mediated inhibition of calpain has been described in BCR-ABL-expressing 

cells (Hjort et al, 2016). Therefore, it is likely that downregulation of SHP2 might be 

a driving force for calpain activation and subsequent proteolytic degradation of SRC 

in our system. Nevertheless, this hypothesis has not been experimentally tested 

and would be an interesting question to address in the future. Contrarily, no 

remarkable changes of either SRC levels or activation status were detected upon 

SHP1 downregulation, thus suggesting that the role of this PTP in HEL cells 

differentiation is not mediated by the kinase. 

4.1.3. SRC downregulation increases the responsiveness of HEL cells to 
PMA 

To further explore the relationship between the SHP2 downregulation-induced 

decrease of SRC levels and its pro-differentiative effect, HEL cells were subjected 

to transduction with lentiviral particles targeting SRC. Both sequences employed 

displayed an efficient reduction of SRC protein levels (Figure 4.5). Surprisingly, in 

the absence of differentiation-triggering stimuli, a consistent reduction of the surface 

Figure 4.4. The downregulation of SHP2, but not SHP1, decreased SRC at the protein level in 
HEL cells. Immunoblot of protein samples from SHP1- and SHP2-silenced HEL cells showing the levels 
of active and total SRC levels. GAPDH was used as loading control. N = 3. 

Figure 4.5. SRC was efficiently downregulated by the sequences employed HEL cells. Immunoblot 
showing the decrease of SRC at the protein level after lentiviral transduction of HEL cells with the RNAi 
sequences against these proteins. GAPDH was used as loading control. N = 5. 
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markers CD41 and CD61 was found for both RNAi sequences (Figure 4.6A). 

Nonetheless, the levels of megakaryocytic markers in SRC-silenced cells closely 

resembled those of control cells after PMA exposure (Figure 4.6B). As a result, the 

induction of differentiation markers versus the unstimulated condition was clearly 

higher in SRC-silenced cells (Figure 4.6C).  

In order to find a molecular explanation for the observed phenotype, the active 

forms of ERK and STAT5, two molecules involved in the differentiation process in 

our system (Sardina et al, 2010), were studied. In line with surface markers data, 

both pSTAT5Tyr694 and pERK were lower in unstimulated SRC-silenced versus 

control cells, whereas their levels not only were restored, but exceeded those of 

control cells upon stimulation with 20 nM PMA (Figure 4.7). 

Interestingly, STAT5 has been described as a direct target of SRC, which would 

contribute to the activation of the former through its tyrosine phosphorylation 

(Okutani et al, 2001). On the other hand, ERK pathway would be subject to indirect 

regulation by SRC activity (Wu et al, 2012). This scenario would be consistent with 

the reduced levels of active STAT5 and ERK in the absence of stimulation (Figure 
4.7), which correlated with lower expression of the differentiation markers studied 

(Figure 4.6A). However, PMA stimulation could be triggering a differentiation 

process mainly relying on PKC activation, a direct target of phorbol esters. 

Figure 4.6. SRC downregulation primed HEL cells for a greater response to PMA. A) Expression 
levels of CD41 and CD61 in unstimulated HEL cells transduced with lentivirus containing RNAi 
sequences targeting SRC. B) Expression levels of CD41 and CD61 in SRC-silenced HEL cells after 
stimulation with 20 nM PMA for 48 h. C) Overall induction of CD41 and CD61 expression by PMA versus 
untreated SRC-downregulated HEL cells. N = 14. 
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Importantly, PKC phosphorylation by SRC has been reported as an inhibitory post-

translational modification in some contexts (Joseloff et al, 2002). Under these 

circumstances, the presence of SRC inside the cell would be hampering PMA-

induced differentiation. Therefore, stimulation with this compound in SRC-silenced 

cells could trigger a stronger activation of STAT5 and ERK pathways due to the 

absence of SRC as a negative modulator of PKC, in agreement with the 

observations herein reported (Figure 4.7). This would in turn allow cell 

differentiation to occur in a more pronounced fashion in SRC-silenced versus 

control cells (Figure 4.6B-C).  

4.1.4. SRC is a downstream target of SHP2 but not of SHP1 

As it could be observed on Figure 4.4, a relevant reduction of SRC levels was 

only observed in SHP2-silenced cells. In order to rule out a role of SHP1 and 

confirm the involvement of SHP2 in the control of SRC protein levels, both PTPs 

were downregulated in a SRC-silenced background in our system, thus obtaining 

SRC single-silenced together with SRC/SHP1 and SRC/SHP2 double-silenced 

Figure 4.7. The enhanced response of SRC-downregulated HEL cells to PMA was mediated by 
activation of ERK and STAT5 pathways. Immunoblot showing the active (phosphorylated) and total 
levels of ERK (upper bands) and STAT5 (lower bands) in SRC-silenced HEL cells before and after 
stimulation with 20 nM PMA for 48 h. N = 5. 

Figure 4.8. Simultaneous downregulation of SRC and either SHP1 or SHP2 was achieved in HEL 
cells. Immunoblot showing reduction of each SH2 domain containing PTP individually and in parallel 
with SRC in HEL cells. GAPDH was used as loading control. N = 3. 
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cells (Figure 4.8). Without stimulation, surface markers of cell differentiation were 

again downregulated in SRC single-silenced cells. Moreover, SHP1 downregulation 

in SRC-silenced cells rescued the expression levels of CD41 and CD61, closely 

resembling those found in control cells. Interestingly, no differences were observed 

between SRC-silenced and SRC/SHP2-silenced cells (Figure 4.9A). Upon 

incubation with 20 nM PMA, CD41 and CD61 expression reached similar levels to 

control cells, in line with the results shown in Figure 4.6B. An interesting 

observation is the slightly increasing trend in the expression of both markers found 

in SRC/SHP1 double-silenced cells over SRC-silenced cells (Figure 4.9B). When 

the fold-induction of these surface molecules was studied, similar results were 

observed, with no differences between SRC-silenced and SRC/SHP2 double-

silenced cells and significant changes when SHP1 was downregulated after SRC 

silencing (Figure 4.9C). The available knowledge regarding the regulation of SRC 

activation by SHP1 is not conclusive and seems to be cell type-dependent 

(Roskoski, 2005). All in all, these results support a role for SHP1 independent of 

SRC, together with a regulatory role of SRC levels by SHP2 upstream of the kinase 

in the differentiation of HEL cells.  

Figure 4.9. SHP1 but not SHP2 downregulation reverted the effect of SRC silencing in HEL cells. 
A) Expression levels of CD41 and CD61 in unstimulated HEL cells individually silenced for SRC and 
with simultaneous downregulation of SRC and either SHP1 or SHP2. B) Expression levels of CD41 and 
CD61 in the same cells after stimulation with 20 nM PMA for 48 h. C) Overall induction of CD41 and 
CD61 expression by PMA versus untreated HEL cells with individual SRC silencing and simultaneously 
with either SHP1 or SHP2. N = 6. 
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4.1.5. β-catenin levels are decreased upon silencing of SHP1 and SHP2 in 
HEL cells 

The SRC-independent effect of SHP1 downregulation in the differentiation of 

HEL cells did not explain the cooperative effect found for both PTPs in this process. 

Previous work performed in our laboratory had shown a relevant function for 

PTPN13 in the control of β-catenin stability in the same system. Specifically, the 

downregulation of PTPN13 through RNAi favoured the expression of CD41 and 

CD61 and the degradation of β-catenin. This molecule was functionally involved in 

the process of differentiation, since its direct RNAi-mediated knockdown also 

resulted in an enhanced expression of the surface molecules used for differentiation 

monitoring (Sardina et al, 2014).  

The fact that SHP1 and SHP2 are also PTPs provided the rationale to study 

the levels of β-catenin in HEL cells where these proteins had been knocked down. 

In line with the data described before, the downregulation of both SHP1 and SHP2 

led to a decrease in total β-catenin levels. Nonetheless, double-silenced cells did 

not display an enhanced effect on this parameter, a fact that per se could not explain 

the stronger differentiation potential of these cells (Figure 4.10). SRC intervention 

is also implied in this process, but additional mechanisms need to be elucidated to 

explain the increase in differentiation features upon simultaneous knock down of 

the two PTPs.  

Distinct regulatory roles of β-catenin have been attributed to SHP1 function in 

different cellular systems. For instance, this PTP has been reported to 

dephosphorylate pGSK3βTyr216 and subsequently inactivate it in MSCs, thereby 

preventing β-catenin degradation (Jiang et al, 2016). These findings would be 

consistent with the results presented in this work, where a reduction of SHP1 leads 

to a concomitant decrease of β-catenin (Figure 4.10). Contrarily, SHP1 

overexpression has been reported to induce β-catenin degradation in HEK-293T 

cells (Simoneau et al, 2011). These findings would be supported by the inverse 

correlation between SHP1 expression or activity and β-catenin levels found in 

Figure 4.10. The downregulation of SHP1 and SHP2 exerted a decrease of β-catenin protein 
levels. Immunoblot showing the levels of β-catenin in HEL cells with individual and simultaneous 
downregulation of SHP1 and SHP2. GAPDH was used as loading control. N = 4. 
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intestinal epithelial cells (Duchesne et al, 2003; Leblanc et al, 2017). Altogether, the 

evidence accumulated so far, together with the data presented here, point to a cell 

type-dependent regulatory mechanism of β-catenin levels by SHP1. 

β-catenin dephosphorylation by SHP2 was previously reported to regulate the 

interaction of the former with vascular endothelial (VE)-cadherin, but not its protein 

levels, in epithelial cells (Timmerman et al, 2012). On the other hand, SHP2-

mediated regulation of the amount of β-catenin by indirect control of pGSK3βSer9 

was described in hepatocellular carcinoma (HCC) stem cells (Xiang et al, 2017). 

Consistently, SHP2 expression and catalytic activity correlated with β-catenin levels 

in HCC and colorectal cancer cells (Liu et al, 2018; Zhang et al, 2018). In contrast 

to the work by Xiang et al, SHP2 could indirectly influence β-catenin levels through 

GAS2-mediated inhibition of calpain and PTPN13-mediated dephosphorylation of 

pGSK3βTyr216, as described before (Huang et al, 2010, 2013). Interestingly, previous 

work of our group and others support a relationship between β-catenin 

phosphorylation in Tyr residues and the stability of the protein (Coluccia et al, 2007; 

Sardina et al, 2014).  

The elucidation of whether one or several of the previously discussed 

mechanisms might be operating in our system merits further study and is indeed 

under current investigation in our group. 

4.1.6. Concluding remarks 

A deeper understanding of the molecular mechanisms that modulate cell 

differentiation in haematopoietic cells is paramount to better comprehend how these 

processes are altered in pathologic conditions, such as leukaemia. Identifying the 

relevant mediators involved in this regulation is the first step to define 

pharmacological targets and develop new active compounds for the treatment of 

blood disorders. 

In this regard, the previously described data have contributed to gaining further 

insights into the regulation of the differentiation process in HEL cells. It has added 

an additional piece of evidence to the previous work developed in our laboratory, 

which showed the specific oxidation and inactivation of SHP1 and SHP2 after 

stimulation of HEL cells with PMA and the relevance of this phenomenon to fully 

trigger megakaryocytic differentiation (López-Ruano, 2015). The experiments 

herein described have contributed to the elucidation of a complementary role for 

both PTPs in the whole process, based on the data showing that their simultaneous 

downregulation renders a stronger differentiation phenotype than individual knock 
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down (Figures 4.1 to 4.3). These results point to, at least, partially non-overlapping 

functions for the PTPs in the control of cell signalling leading to cell differentiation. 

To better understand how these phosphatases may act, a rational search of likely 

downstream molecules based on literature data was performed (Turro et al, 2016; 

Zhang et al, 2004; Sardina et al, 2014). This led to the finding that SRC is a 

downstream target of SHP2 involved in HEL cells differentiation (Figures 4.4 to 
4.9). In addition, β-catenin was revealed as a confluence point for SHP1 and SHP2 

in their control of this process (Figure 4.10). The precise mechanism of this 

phenomenon could not be addressed in this work and will be subject to future 

research in our group. 

In a global perspective, the integration of the previously shown results and the 

scientific evidence available on the literature supports the model depicted in Figure 
4.11. Upon PMA stimulation, PKC activation would lead to a regulated production 

of ROS by NADPH oxidases. These ROS would transiently oxidise and inactivate 

SHP1 and SHP2, thus triggering downstream processes. On one hand, SHP2 

inactivation would allow calpain to degrade SRC, thereby releasing new PKC 

molecules previously inhibited by the kinase and amplifying the pro-differentiative 

Figure 4.11. Schematic model depicting the possible mechanisms underlying the SHP1- and 
SHP2-mediated regulation of PMA-induced differentiation in HEL cells. Stimulation with PMA 
would lead to the activation of NOX complexes that would in turn produce ROS in a regulated manner. 
SHP1 and SHP2 molecules located nearby the ROS-producing NOXs would become transiently 
oxidised and inactivated, thus leading to downmodulation of β-catenin and SRC. These phenomena 
would thereby preclude the anti-differentiation signals mediated by β-catenin and trigger the pro-
differentiation effect exerted by ERK and STAT5 pathways (see text for details). 
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stimulus. In addition, β-catenin degradation would also be potentiated through 

molecular mechanisms yet to be elucidated. On the other hand, inactive SHP1 

would also lead to β-catenin decrease by yet unknown phenomena. The elimination 

of inhibitory signals for STAT5 and ERK activation, together with the reduction of 

the levels of a negative regulator of cell differentiation, such as β-catenin, would 

allow the process to fully progress. 

In summary, the inhibition of SHP1 and SHP2 is a signal triggering cell 

differentiation in a leukaemia-derived cell line. This stands as a very relevant finding 

in the context of a pathology with a differentiation blockage as a hallmark. 

Consequently, targeting these PTPs was considered as a plausible therapeutic 

proposal. 

4.2. Chemical inhibition of SHP1 and SHP2 as the basis for a pro-differentiation 
approach targeting AML cells 

4.2.1. The downregulation of SHP1 and SHP2 promotes cell differentiation in 
HL-60 cells 

To further validate the enhancement of cell differentiation upon SHP1 and 

SHP2 downregulation in AML cells, the cell line HL-60 was chosen as a non-APL 

AML model. This cell line has been widely described on the literature as a cellular 

system for the study of differentiation processes, especially those involving 

stimulation with phorbol esters. These cells undergo upregulation of the surface 

antigen CD11b, a component of the integrin involved in neutrophil adhesion 

CD11b/CD18 (Mazzone & Ricevuti, 1995), upon exposure to phorbol esters (Shen 

et al, 2015). 

HL-60 cells where SHP1 and SHP2 had been knocked down in parallel (Figure 
4.12A) were treated with 20 nM PMA and 0.5 µM PRS to induce CD11b expression. 

PMA treatment rendered a stronger induction of the surface epitope in PTP-

silenced over control cells, regardless of the incubation time (Figure 4.12B). In 

addition, incubation with PRS for 48 h had also a slightly enhanced effect in this 

same parameter when SHP1 and SHP2 were downregulated, although it failed to 

reach statistical significance (Figure 4.12C), presumably due to the milder effect of 

PRS versus the much more powerful one of PMA. Taken together, these results 

agree with those obtained in HEL cells (Figure 4.2) and reinforce the involvement 

of SHP1 and SHP2 in the phorbol ester-triggered differentiation of AML cells. 
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4.2.2. Chemical inhibitors of SHP1 and SHP2 recapitulate the effects of RNAi-
mediated downregulation in cell differentiation 

The results provided so far strongly support that SHP1 and SHP2 inhibition has 

a pro-differentiative effect on AML cells differentiation. However, in vivo RNAi 

delivery remains an unfeasible approach when therapeutic purposes are pursued. 

Therefore, small molecules targeting the phosphatases were tested to assess the 

differentiation-inducing potential of their RNAi-independent inhibition. Sodium 

stibogluconate (SSG) (Figure 4.13A) has long been used as a therapeutic agent 

against leishmaniasis. It irreversibly inhibits SHP1, SHP2 and PTP1B in vitro, with 

enhanced sensitivity against the former (Pathak & Yi, 2001). On the other hand, 

SHP099 (Figure 4.13B) is a recently developed allosteric SHP2 inhibitor that has 

rapidly become very popular due to its specificity and oral bioavailability (Garcia 

Fortanet et al, 2016). Finally, NSC 87877 (NSC) (Figure 4.13C) is a non-selective 

SHP1 and SHP2 inhibitor targeting the catalytic cleft of PTPs through non-covalent 

interactions (Chen et al, 2006). HL-60 cells exposed to only SSG and NSC for 48 h 

underwent upregulation of CD11b (Figure 4.14A). 

Figure 4.12. RNAi-mediated downmodulation of SHP1 and SHP2 enhanced phorbol ester-
induced differentiation in HL-60 cells. A) Immunoblot showing the simultaneous silencing of SHP1 
and SHP2 in HL-60 cells. GAPDH was used as loading control. N = 3. B) Expression levels of the 
surface marker CD11b in SHP1/2 silenced-HL-60 cells stimulated with 20 nM PMA for different time 
periods. N = 5. C) Expression levels of the surface marker CD11b in SHP1/2 silenced-HL-60 cells 
stimulated with 0.5 µM PRS for 48 h. N = 5. 
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The differentiation ability of SSG on HL-60 cells has been reported before 

(Pathak et al, 2002), although lower doses and longer incubation times were 

employed herein. Interestingly, SHP099 was the only inhibitor used targeting 

exclusively one of the PTPs, hence suggesting that inhibition of both PTPs might 

be needed to trigger differentiation of HL-60 cells under these circumstances. Of 

note, the fact that its mechanism of action is the stabilisation of the auto-inhibited 

conformation of SHP2 (Figure 1.7A) (Garcia Fortanet et al, 2016) brings the 

possibility that the interaction of SHP2 with activating molecules inside the cell might 

outcompete its effect. An additional difference between SHP099 and the other 

inhibitors used relies on the allosteric inhibition as its mode of action, which may 

account for the distinct observations made with this compound.  

A 

B C 

Figure 4.13. Chemical inhibitors of SHP1 and SHP2 used throughout this work. A) Chemical 
structure of sodium stibogluconate (SSG). B) Chemical structure of SHP099. C) Chemical structure of 
NSC 87877 (NSC). 

Figure 4.14. SSG and NSC promoted the expression of surface markers of differentiation in AML 
cell lines. A) Expression levels of the surface marker CD11b in HL-60 cells treated for 48 h with different 
inhibitors of SHP1 and SHP2 at the indicated doses. B) Expression levels of megakaryocytic surface 
markers in HEL cells after treatment with SSG and NSC at the indicated doses for 48 h. N = 6. NDC: 
No Drug Control. 
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 To provide evidence that the effect of chemical inhibitors was consistent with 

the results obtained after RNAi-mediated downregulation, SSG and NSC were also 

tested on HEL cells, where they induced a significant upregulation of both surface 

differentiation markers (Figure 4.14B). All in all, these results agree with those 

obtained in RNAi-targeted cells (Figures 4.2B and 4.12B) and support the 

therapeutic potential of inhibiting SHP1 and SHP2 as a differentiation-based 

therapeutic strategy against non-APL AML. 

4.2.3. Chemical inhibition of SHP1 and SHP2 enhances the differentiation 
induction of phorbol esters 

As highlighted on the Introduction, the the re-discovery of non-tumour 

promoting phorbol esters that keep their differentiation-inducing effect makes the 

therapeutic use of these compounds an interesting possibility to be tested (Shen et 

al, 2015). Besides, the pro-differentiative ability of the chemical compounds 

described in the previous section raised the interesting possibility of an enhanced 

effect on cell differentiation in cells co-treated with phorbol esters and chemical 

inhibitors of SHP1 and SHP2.  

Despite the effect of SSG as a single agent, its simultaneous incubation with 

phorbol esters led to a mild and non-significant increase of CD11b versus PMA or 

PRS alone (Figure 4.15A). This might be due to the need for a recovery and 

subsequent increase of SHP1 and SHP2 activity at long times after PMA stimulation 

for a correct differentiation (López-Ruano, 2015). As indicated before, SSG 

irreversibly inhibits its targets, likely hampering the restoration of PTPase activity. 

Not surprisingly, SHP099 did not display any enhancement of either PMA or PRS 

Figure 4.15. SSG and SHP did not enhance the pro-differentiative effect of phorbol esters in HL-
60 cells. A) Expression levels of the surface marker CD11b in HL-60 cells treated for 48 h with PMA or 
PRS and SSG as single drugs and in combination. N = 5. B) Expression levels of the surface marker 
CD11b in HL-60 cells treated for 48 h with PMA or PRS and SHP as single drugs and in combination. 
N = 4 for experiments involving PMA and N = 5 for experiments with PRS. NDC: No Drug Control. 
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induction of cell differentiation, with a slight (but not significant) reduction of PRS 

effect (Figure 4.15B). 

As it could be expected, given the strong induction of CD11b expression as a 

single agent (Figure 4.14A), NSC was the only compound capable of boosting both 

PMA (Figure 4.16A) and PRS (Figure 4.17A) effects on this surface marker. 

Consistently, cells co-treated with either PMA or PRS and NSC displayed typical 

differentiation features, such as heterochromatic and kidney-shaped nuclei, 

reduced nucleus/cytoplasm ratio or more eosinophil cytosol, in a more pronounced 

fashion than control and single agent-treated cells (Figures 4.16B and 4.17B). 

Finally, the adherent phenotype usually triggered by phorbol ester stimulation was 

strikingly more evident upon co-treatment with PRS and NSC versus exposure to 

individual drugs, again supporting an enhancement of the effect of the phorbol ester 

by the PTP inhibitor (Figure 4.17C).  

Off-target effects have been attributed to inhibitors of SHP1 and SHP2, 

including NSC, at the concentration ranges used for this study. These phenomena 

comprise SHP2-independent alteration of cellular signalling pathways (Tsutsumi et 

al, 2018), as well as inhibition of PTPs other than SHP1 and SHP2 (Shi et al, 2015). 

Figure 4.16. NSC potentiated the differentiation induced by PMA in HL-60 cells. A) Expression 
levels of the surface marker CD11b in HL-60 cells treated for 48 h with PMA and NSC as single drugs 
and in combination. N = 5. NDC: No Drug Control. B) Representative images of cytospins from HL-60 
under the same conditions of panel A and stained for visualisation under the microscope. N = 3. Scale 
bar: 10 µm. 
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However, the consistency observed between the specific inhibition of those PTPs 

by RNAi and the use of NSC supports the hypothesis that the differentiation effects 

observed in this work are mediated by the intended targeting of SHP1 and SHP2. 

All in all, the combination of the non-tumour promoting phorbol ester PRS with 

NSC could be a good candidate for therapeutic screening of anti-leukaemic activity 

based on the induction of cell differentiation in non-APL AML cells. 

Figure 4.17. NSC potentiated the differentiation induced by PRS in HL-60 cells. A) Expression 
levels of the surface marker CD11b in HL-60 cells treated for 48 h with PRS and NSC as single drugs 
and in combination. N = 7. NDC: No Drug Control. B) Representative images of cytospins from HL-60 
under the same conditions of panel A and stained for visualisation under the microscope. N = 3. Scale 
bar: 10 µm. C) Representative bright field microscopy images of HL-60 cells under the same conditions 
of panels A and B to show their concomitant attachment to the culture plastic with cell differentiation. N 
= 7. 
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4.2.4. Anti-proliferative activity of PRS and chemical inhibitors of SHP1 and 
SHP2 against AML cells 

The previously described effect of PRS+NSC co-treatment was very 

encouraging and supported its feasibility as a therapeutic differentiation-based 

strategy for AML. Nonetheless, every anti-cancer therapy should desirably fulfil at 

least two requirements: to slow down cell proliferation, avoiding tissue invasion, and 

specifically trigger malignant cell death, decreasing tumour burden. Therefore, the 

next step in this study was to test whether the combination of chemical inhibition of 

SHP1 and SHP2 with PRS had anti-leukaemic potential. 

4.2.4.1. The growth of HL-60 cells is affected by PRS and chemical 
inhibition of SHP1 and SHP2 

Based on previous reports where the different compounds had been used, 

distinct dose ranges of PRS and the three PTP inhibitors were tested on HL-60 

cells to determine their dose-response curves. PRS had a hampering effect on 

cell proliferation at the low micromolar range (Figure 4.18A), in agreement with 

published data using the same cell line (Shen et al, 2015). 

On the other hand, SSG had a remarkable anti-proliferative effect only at 

high doses (8000 µg/mL), with mild reduction caused by the rest of tested 

concentrations (Figure 4.18B). As it was the case for differentiation, this 

contrasts with previously reported results (Pathak et al, 2002), although the 

experimental conditions in the present work were different, with an incubation 

time of 48 h instead of 6 days. This is the most likely cause of the observed 

dissimilarities. 

In line with the lack of effect in CD11b induction, SHP099 displayed a very 

modest impact on cell proliferation, regardless of the concentration used 

(Figure 4.18C). This is consistent with the data on the literature reporting the 

lack of effect of this compound on oncokinase-independent cancer cells, such 

as HL-60 (Chen et al, 2016). Our own observations agree well with this 

oncokinase-based sensitivity to SHP099, since MOLM13 cells, which express 

FLT3-ITD, were highly responsive to this compound (data not shown).  

Lastly, NSC was the only compound showing a factual dose-dependent 

response in HL-60 cells (Figure 4.18D), with an IC50 of 95.8 μM. Anti-tumour 

potential for NSC has been reported before in neuroblastoma cell lines, 

although its effects were attributed to the inhibition of DUSP26 instead of SH2 

domain containing PTPs (Shi et al, 2015). Moreover, the enhanced inhibitory 
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capacity of this molecule against SHP2E76K over the wild-type PTP (Chen et al, 

2006) makes it a very interesting drug for use against AML cells, where that 

gain-of-function mutation is frequently expressed (Xu et al, 2011; Chen et al, 

2015). In accordance with cell differentiation data, NSC emerged as the best 

candidate to be combined with PRS for an efficient impairment of cell 

proliferation in AML cells. 

4.2.4.2. NSC and PRS co-treatment synergistically reduces HL-60 cells 
proliferation 

Notwithstanding the mild effects of SSG and SHP099 in cell proliferation as 

single treatments (Figure 4.18B-C), they were tested in combination with PRS 

to rule out the possibility of a drug interaction. The co-treatments displayed an 

effect on cell proliferation with a very similar trend to that observed in CD11b 

expression. SSG only exerted a subtle enhancement of PRS effect at the 

highest dose tested in combination (Figure 4.19A), whereas no increase in cell 

growth inhibition was observed upon combining PRS and SHP099 versus PRS 

alone (Figure 4.19B).  

Figure 4.18. Dose-response effect of PRS and chemical inhibitors of SHP1 and SHP2 on HL-60 
cell proliferation. A) Dose-response curve of HL-60 cells treated with PRS for 48 h. N = 6. B) Dose-
response curve of HL-60 cells treated with SSG for 48 h. N = 6. C) Dose-response curve of HL-60 cells 
treated with SHP099 for 48 h. N = 6. D) Dose-response curve of HL-60 cells treated with NSC for 48 h. 
N = 6. 
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Again, the combined exposure to PRS and NSC exceeded the effects of 

single drug treatments (Figure 4.20A), with CI values supporting a synergistic 

interaction between the drugs (Figure 4.20B). Since the MTT assay relies on 

A 

B 

Figure 4.19. SSG and SHP did not enhance the effect of PRS on HL-60 cell proliferation. A) 
Proliferation rate of HL-60 cells treated with PRS and SSG as single agents and their combination at 
the specified doses for 48 h. N = 6 for experiments with 0.5 µM PRS and N = 9 for experiments with 2 
µM PRS. B) Proliferation rate of HL-60 cells treated with PRS and SHP as single agents and their 
combination at the specified doses for 48 h. N = 9. NDC: No Drug Control. 

Figure 4.20. PRS and NSC synergised to impair the proliferation of HL-60 cells. A) Proliferation 
rate of HL-60 cells treated with PRS and NSC as single agents and their combination at the specified 
doses for 48 h. B) Graphical representation of the average CI values obtained for the drug combinations 
tested. Statistical differences were evaluated between CIs and the value 1. N = 8 for experiments with 
0.5 µM PRS and N = 7 for experiments with 2 µM PRS. NDC: No Drug Control. 
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mitochondrial activity, the possibility of an effect on this parameter without 

changes in cell proliferation needed to be discarded. Therefore, viable cell count 

was performed with trypan blue exclusion assays. As shown in Figure 4.21, a 

stronger reduction was obtained when cells were exposed to the drug 

combination versus the individual treatments. This confirmed the results of MTT 

assays and supported a synergy between PRS and NSC. 

Taken together, these results demonstrate that the combined inhibition of 

SHP1 and SHP2 with the administration of a non-tumour-promoting phorbol 

ester is an efficient approach to reduce cell proliferation in AML cells. 

4.2.4.3. Additional mechanisms to cell differentiation induction 
contribute to synergistic reduction of cell proliferation by 
PRS+NSC in HL-60 cells 

Cell differentiation and growth might be unlinked in a heterogeneous 

population of cancer cells due to unresponsive or less sensitive subset of CSCs 

(de Thé & Chen, 2010). Therefore, differentiation-independent mechanisms 

could be accounting for the anti-proliferative effect of PRS+NSC treatment on 

HL-60 cells.  

The possible impairment of self-renewal ability was interrogated by 

performing CFU assays. A mild, non-significant reduction in the number of 

CFUs was elicited by treatment with PRS. Strikingly, a dramatic effect was 

observed with NSC treatment, upon which the number of CFUs was reduced in 

~2/3 versus the untreated cells. No enhanced decrease was registered upon 

co-treatment versus NSC as a single drug (Figure 4.22). Since the drugs were 

withdrawn before cell seeding in the semi-solid medium, it can be suggested 

that cells do not require a continuous exposure to NSC for a long-term effect. 

Additional wash-out experiments assessing cell proliferation would confirm such 

hypothesis. 

Figure 4.21. The synergy between PRS and 
NSC was also observed in viable cell 
numbers. Cell counts of trypan blue-unstained 
HL-60 cells treated with PRS and NSC as 
single agents and in combination for 48 h at the 
indicated doses. N = 7. NDC: No Drug Control. 
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In contrast, when cell death was evaluated by Annexin V staining, a 

notorious increase of Annexin V+ cells was observed after the treatment with 

PRS, whereas no changes were exerted by NSC as single drug. In addition, the 

percentage of cell death was not increased by co-treatment versus PRS alone 

(Figure 4.23). This agrees well with previously reported induction of cell death 

in HL-60 cells (Shen et al, 2015). 

Thus, these results support that, together with cell differentiation 

enhancement, the drugs employed herein synergise to impair cell proliferation 

via distinct cellular processes: NSC would drastically reduce self-renewal 

potential whereas PRS would induce cell death. Combined use of both drugs 

would have an enhanced effect through triggering both phenomena at the same 

time. 

 

 

Figure 4.22. NSC markedly decreased 
the clonogenic potential of HL-60 cells. 
Colony-forming unit (CFU) counts of HL-
60 cells treated with PRS and NSC as 
single agents and in combination for 48 h 
at the indicated doses and subsequently 
seeded in methylcellulose medium without 
growth factors for 7 days in the absence of 
drugs. N = 7. NDC: No Drug Control. 

Figure 4.23. PRS greatly triggered cell death in HL-60 cells. A) Representative histograms of 
fluorescence intensity of HL-60 cells treated for 48 h with PRS and NSC as single agents and in 
combination at the specified doses and stained with Annexin V – PE. B) Summary data of all the 
experiments performed. N = 4. NDC: No Drug Control. 
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4.2.4.4. Synergistic effect of PRS+NSC treatment on cell proliferation is 
reproduced in other AML cell lines 

To address whether the anti-leukaemic activity of PRS and NSC was 

restricted to HL-60 cells, these compounds were tested on additional cell lines 

used as AML models: NB-4 (PML-RARA+), OCI-AML2 and THP-1 (KMT2A-

AF9+). The three cell lines displayed sensitivity to PRS at the micromolar range 

(Figure 4.24A), as well as to NSC at similar dose ranges to that used for HL-60 

cells (Figure 4.24B, IC50s were 79.0 μM for NB-4, 214.5 μM for OCI-AML2 and 

145.9 μM for THP-1 cells). Interestingly, NB-4 cells, which are a model of the 

differentiation therapy-responsive APL, were the most sensitive ones to both 

agents. Contrarily, THP-1 cells, which belong to M5 FAB subtype, displayed the 

lowest sensitivity to both drugs, especially PRS. These results further reinforce 

an anti-leukaemic effect of PRS+NSC relying on the differentiation induction 

ability of this combination. 

In agreement with the response of HL-60 cells to these drugs (Figure 
4.20A) co-treatment of the abovementioned cell lines with PRS and NSC 

displayed enhanced efficiency at reducing cell proliferation versus exposure to 

Figure 4.24. The anti-leukaemic effect of PRS and NSC held true in AML cell lines other than HL-
60. A) Dose-response curves for different AML cell lines treated for 48 h with PRS. B) Dose-response 
curves for different AML cell lines treated for 48 h with NSC. N = 7 for NB-4 cells and N = 5 for OCI-
AML2 and THP-1 cells. 
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single agents at the doses tested (Figure 4.25A). CI values again supported a 

synergistic interaction (Figure 4.25B). All things considered, it can be 

concluded that the anti-leukaemic activity of the combination of PRS and NSC 

is not restricted to HL-60 cells and can be proposed as a potential wide-range 

therapy for the treatment of different subtypes of AML. 

4.2.5. PRS and NSC display anti-leukaemic activity in a xenograft mouse 
model of AML 

The next step after the demonstration of the anti-leukaemic activity of the 

combined treatment with PRS and NSC was to test their effect in a whole organism. 

Drug metabolism and microenvironmental protection of leukaemic cells are 

Figure 4.25. PRS and NSC synergised to preclude cell proliferation in AML cell lines other than 
HL-60. A) Proliferation rate of NB-4, OCI-AML2 and THP-1 cells treated for 48 h with PRS and NSC as 
single drugs and in combination at the indicated doses. B) Graphical representation of the average CI 
values obtained for the drug combinations indicated in panel A. Statistical differences were evaluated 
between CIs and the value 1. N = 5 for NB-4 and N = 6 for OCI-AML2 and THP-1 cells. NDC: No Drug 
Control. 

A B 

Figure 4.26. Treatment with PRS and NSC augmented survival in an in vivo model of AML. A) 
Distribution of survival times of NOD-SCID mice transplanted with HL-60 cells under different treatment 
regimens. B) Kaplan-Meier plot displaying the survival curves for the same animals. N = 5 for Vehicle 
and PRS groups and N = 6 for NSC- and combination-treated mice. 

A B 
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common mechanisms of resistance to therapy, and therefore need to be studied in 

a pre-clinical setting. The survival of immune-deficient mice transplanted with HL-

60 cells was prolonged upon treatment with both PRS, NSC and combination 

(Figure 4.26). In contrast to the interaction found in vitro, no enhanced lifespan was 

achieved when animals were co-treated with both drugs, and no differences 

between PRS and NSC were observed. Nevertheless, the clear improvement of 

animal survival with every treatment validates the activity of the compounds in vivo. 

It is likely that dose adjustment could allow the observation of an enhancement of 

cell survival by the drug combination. 

4.2.6. The combination of PRS and NSC affects the CFU ability of primary 
AML cells in vitro 

All the results presented so far had been obtained in cell lines, which are very 

homogeneous populations and do not represent the characteristic sub-clonal and 

inter-individual heterogeneity of AML. Given the in vivo activity of both PRS and 

NSC, a reasonable step forward in this pre-clinical study was to test their effects on 

primary cells from patients with AML ex vivo. All samples used for this study came 

from non-APL AML patients (Table 3.2). 

The treatment with PRS alone displayed a significant reduction of CFU 

numbers versus untreated cells, with all patient samples showing sensitivity to 

some extent. On the other hand, most samples (6 out of 8) underwent a reduction 

of CFU numbers after NSC treatment, although the overall results did not reach 

statistical significance versus untreated cells. More importantly, the combined 

treatment decreased the number of CFUs versus the single agents in 7 out of 8 

patients, and the overall reduction effect reached statistical significance versus both 

untreated and NSC-treated cells (Figure 4.27A). In contrast, the effect of these 

drugs on healthy donor-derived BM primary cells was less pronounced, with no 

overall statistical significance. Most importantly, the drug combination did not 

display any enhanced effect versus individual treatments (Figure 4.27B). 

A remarkable observation of these experiments is that the three most 

responsive patient samples to both PRS and PRS+NSC (AML1, AML3 and AML5) 

belonged to FAB M0 subtype, commonly associated with poor outcomes (Walter et 

al, 2013). The fact that a pro-differentiative compound targets this AML subtype, 

also known as minimally differentiated AML, makes sense. Moreover, AML1, 

showing a chromosomal translocation and two point mutations in WT1 and IDH1 

(Table 3.2), was more sensitive to NSC as well. Contrarily, AML6 and AML8 
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samples, with FLT3 and NPM1 mutations, augmented their CFU capacity upon 

NSC treatment. Nonetheless, the most important finding was that every single 

sample underwent a reduction in CFU ability upon combined treatment, further 

reinforcing the therapeutic potential of this approach. A wider cohort of patient 

samples would be required to study possible correlations between responsiveness 

to these compounds and specific molecular alterations. 

4.2.7. Concluding remarks 

The astonishing improvement of APL outcomes after the development of 

differentiation-based therapies has led to an intense research aiming at the 

implementation of this kind of strategies in non-APL cases (See section 1.2.1.3). All 

those attempts were based on a deep knowledge of molecular players controlling 

cell differentiation processes in leukaemic cells. 

The findings shown on Figures 4.2C, 4.3 and 4.12B were the rationale for 

testing a therapeutic proposal whose pre-clinical potential has been demonstrated 

with the set of experiments described throughout this section. First, evidence has 

been provided that the enhancement of cell differentiation upon SHP1 and SHP2 

inhibition was reproduced with the non-tumour-promoting agent PRS, a potential 

candidate for clinical use much more feasible than PMA (Figure 4.12C). Then, the 

dual inhibitors of SHP1 and SHP2 SSG and NSC have shown differentiation-

Figure 4.27. PRS and NSC co-treatment displayed an enhanced effect at reducing clonogenic 
potential of patient-derived AML cells while sparing healthy donor-derived cells in vitro. A) 
Relative CFU counts of primary BM-MNCs from AML treated for 48 h with PRS and NSC as single drugs 
and in combination and seeded for 14 days in methlylcellulose medium with appropriate growth factors 
in the absence of drugs. B) The same representation as in panel A for healthy donor-derived BM-MNCs. 
Statistical significance is denoted by asterisks (*) versus untreated cells and by hashes (#) versus cells 
treated with NSC. 

A B 
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inducing ability as single agents (Figure 4.14), but only NSC enhanced the effect 

of phorbol ester stimulation in the process (Figures 4.16 and 4.17). Additionally, 

the co-treatment with PRS and NSC has demonstrated to synergise at reducing cell 

proliferation (Figures 4.20, 4.21 and 4.25) likely due to joint effect of cell 

differentiation induction and differential targeting of self-renewal and apoptosis 

(Figures 4.22 and 4.23). The activity of both compounds has been corroborated in 

an in vivo setting (Figure 4.26) and in primary samples from AML patients (Figure 
4.27). Globally considered, the results presented in this section greatly support the 

therapeutic feasibility of combining SHP1 and SHP2 inhibitors and phorbol esters 

as an efficient differentiation-based therapy at the pre-clinical level. 
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5. CONCLUSIONS 

The results presented and discussed throughout this manuscript allow to make the 

following conclusions: 

1. The protein tyrosine phosphatases SHP1 and SHP2 cooperate to regulate 
differentiation in AML cell lines. 

2. The kinase SRC is a downstream target of SHP2 in the context of HEL cell 
differentiation. 

3. β-catenin levels are modulated in the same manner by SHP1 and SHP2 in 
HEL cells. 

4. The chemical inhibitor of SHP1 and SHP2 NSC 87877 enhances the 
differentiation-promoting effect of phorbol esters in AML cell lines. 

5. Combined administration of prostratin and NSC 87877 exerts a synergistic 
anti-leukaemic effect against AML in vitro. 

6. Prostratin and NSC are efficacious anti-leukaemic agents in a disperse 
xenograft AML model in vivo and in primary cells from patients with AML 
ex vivo. 
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