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C14ORF39/SIX6OS1 is a constituent of the
synaptonemal complex and is essential for
mouse fertility
Laura Gómez-H1,*, Natalia Felipe-Medina1,*, Manuel Sánchez-Martı́n2,3, Owen R. Davies4, Isabel Ramos1,
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Meiotic recombination generates crossovers between homologous chromosomes that are

essential for genome haploidization. The synaptonemal complex is a ‘zipper’-like protein

assembly that synapses homologue pairs together and provides the structural framework for

processing recombination sites into crossovers. Humans show individual differences in the

number of crossovers generated across the genome. Recently, an anonymous gene variant in

C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here

we show that C14ORF39/SIX6OS1 encodes a component of the central element of the

synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the

well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking

SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes

an arrest at the pachytene-like stage and results in infertility. In accordance with its role as

a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate

processing of intermediate recombination nodules before crossover formation.
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D
uring meiosis, two successive rounds of chromosome
segregation occur following a single round of replication,
resulting in the formation of haploid gametes from

diploid progenitors1. This ploidy reduction is achieved through a
series of meiosis-specific events, including pairing, synapsis,
crossover formation between homologues, suppression of sister
centromere separation during the first (reductional) division and
separation of sister chromatids during the second (equational)
division. Homologous chromosomes become tethered together
through numerous recombination events between homologous
non-sister chromatids, which are triggered by double-strand
break induction. Through resolution, a subset of recombination
events mature into crossovers (chiasmata) that maintain the
physical tethering between homologues until the onset of
anaphase I (ref. 1).

In humans, the number of crossovers occurring across the
genome differs between individuals. Through exploitation of data
resources in Iceland, Kong et al.2 recently analysed over two
million recombination events and putative variants from 2,261
whole genome–sequenced individuals to identify variants that
influence the global recombination rate. Among the new variants,
several coding SNPs in very well-known meiotic players were
identified, including the histone methyltransferase PRDM9
and the meiotic cohesin RAD21L, the latter of which has been
the focus of our previous meiotic studies3–5.

In addition to their well-established role in mediating sister
chromatid cohesion through ring structure formation, cohesin
complexes are also responsible for the assembly of the synapto-
nemal complex (SC)5–7. The SC is a proteinaceous structure that
holds homologous chromosome pairs in synapsis during
prophase I, from zygonema to pachynema. It consists of two
parallel axial elements (AEs) that bind sister chromatids together,
and which become known as lateral elements (LEs) upon
chromosome pairing. It also contains transverse filaments, which
connect (synapse) the two LEs together. Transverse filament
proteins are recruited to LEs and undergo zipper-like assembly,
bridging between LEs through the formation of the midline central
element (CE), and thereby generating the tripartite structure of the
SC8. To date, only seven protein structural components of the SC
have been identified in mammals, namely LE proteins SYCP2 and
SYCP3, transverse filament protein SYCP1, and CE proteins
SYCE1, SYCE2, SYCE3 and TEX12 (ref. 9). The location of
CE-specific proteins is, by definition, restricted to the synapsed
regions of the chromosomes from zygotene to diplotene9. The SC
provides the structural framework for synapsis, double-strand
break (DSB) repair and exchange between homologues10,11.
It is known from mouse mutants and through human genetic
analysis of families with non-obstructive azoospermia and
premature ovarian failure, that alterations in these genes
(that is, meiosis-specific cohesin subunit STAG3, and SYCE1)
can result in meiotic arrest and human infertility12,13.

To gain further insight into the biological processes affecting
recombination rates across the human genome, we have
investigated the list of genes that were recently identified as
having coding variants2. We focus our analysis on the anonymous
C14ORF39/SIX6OS1 gene (herein SIX6OS1) based on its
restricted pattern of transcription and expression. Here, we show
that C14ORF39/SIX6OS1 encodes a component of the CE of
the SC. Yeast two-hybrid analysis reveals that SIX6OS1 interacts
with SYCE1. In addition, mice lacking SIX6OS1 are defective
in chromosome synapsis at meiotic prophase I, which provokes an
arrest at the pachytene-like stage and results in mouse infertility.
In accordance with its role as a modifier of the human
recombination rate, SIX6OS1 is essential for the appropriate
processing of intermediate recombination nodules before crossover
formation in mice.

Results
C14ORF39/SIX6OS1 is a protein of the mammalian SC. The
sequence variants identified by Kong et al.2 include known
genes functioning in meiotic recombination such as RNF212
(refs 14,15), RAD21L (ref. 4), PRDM9 (ref. 16), MSH4 (ref. 17)
and CCNB1P1 (ref. 18). They also include an anonymous open
reading frame, containing a nonsynonymous SNV with unknown
function (rs1254319, p.Leu524Phe). This gene, named SIX6OS1,
is also annotated as coding for a natural antisense transcript
(NAT) that is associated with the eye transcription factor SIX6
(ref. 19). However, and in contrast to most natural antisense
transcripts, SIX6OS1 shows a high degree of sequence similarity
between mouse (4930447C04Rik) and human (C14ORF39), and
contains large theoretical conserved open reading frames
encoding putative proteins of 587 and 574 residues in mouse
and human, respectively (Supplementary Fig. 1). Phylogenetic
analysis indicates that SIX6OS1 is a unique gene that appeared
firstly in the genomes of cartilaginous fish, and it can be
clearly identified from lobed fin fish to mammals (Supplementary
Fig. 1). Interestingly, in the variant rs1254319 (p.Leu524Phe),
the phenylalanine residue is very well conserved in all genomes
(including several other primates, for example, Orangutan and
Baboon) except humans (Supplementary Fig. 1).

Analysis of Six6os1 mRNA expression in mouse tissues by
RT–qPCR (Fig. 1a) revealed that it is most abundantly expressed
in testis (in agreement with GTEx database20).

The Six6os1 open reading frame predicts a protein of
around 70 kDa, in agreement with our western blot analysis
(Supplementary Fig. 3a). Sequence analysis reveals the presence of
an evolutionarily conserved region of high helical content within
its N terminus (corresponding to amino acids 1–261), including a
short stretch of predicted coiled-coil structure towards the
C-terminal end of this region (Supplementary Fig. 2a).
These features are typical of SC proteins, which commonly
contain a high percentage of helical content and adopt homo- or
hetero-oligomeric helical bundle or coiled-coil structures21,22.
The presence of conserved proline residues between predicted
helices suggests that the structure includes helix–turn–helix
motifs, rather than adopting an extended helical conformation
such as that observed in the crystal structure of SYCP3 (ref. 22).
This feature is in common with SC central element proteins
SYCE1 and SYCE3, but contrasts with the elongated helical
structure predicted and observed in solution for central element
complex SYCE2-TEX12 and transverse filament protein SYCP1
(ref. 21). We therefore predict that this N-terminal helical region
could mediate interactions with structural proteins of the SC. The
remainder of the SIX6OS1 sequence is predicted to be largely
unstructured, but importantly contains patches of evolutionary
conservation towards its C-terminal end (Supplementary Fig. 2b).
These features are characteristic of flexible sequences that
interact with globular proteins at specific peptide motifs
through induced fit, and thereby mediate the assembly of
macromolecular complexes. The unstructured C-terminal region
further contains numerous predicted phosphorylation sites,
including four conserved S/TP potential CDK phosphorylation
sites (Supplementary Fig. 2c), which may function in regulating
the timely assembly of such macromolecular complexes during
the first meiotic division.

To explore the localization of SIX6OS1, we in vivo
electroporated an expression plasmid encoding SIX6OS1-GFP23

into mouse testis. After 48 h, SIX6OS1-GFP co-localized with
SYCP3 along the synapsed LEs at pachynema (spermatocytes in
which homologues are fully synapsed) (Fig. 1b). In addition,
we carried out a detailed analysis of mouse spermatocytes and
oocytes spreads through double labelling with specific antibodies
against SIX6OS1 (which were intensively validated, Fig. 5c;
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Figure 1 | Transcriptional analysis and distribution of SIX6OS1 in mouse meiocytes. (a) Relative transcription of Six6os1 and Rad21l (ref. 4) mRNA by

quantitative reverse transcription PCR (RT–qPCR) in mouse tissues. b-Actin transcription was used to normalize the expression (mean±s.d., three

replicates). (b) Immunolabelling of in vivo electroporated SIX6OS1-GFP in mouse testis. SIX6OS1 was detected with anti-GFP (green) and endogenous

SYCP3 was detected using mouse anti-SYCP3 (red). DNA was stained with DAPI (blue). During pachytene, SIX6OS1 colocalizes with SYCP3 along

synapsed lateral elements (LEs) including the pseudoautosomic region (PAR) of the XY bivalent (spermatocytes). In diplotene and late diplotene, SIX6OS1

localizes at the still synapsed LEs. (c) Double immunolabelling of endogenous SIX6OS1 (green) and SYCP3 (red) in spermatocytes. DNA was stained with

DAPI (blue). During pachynema, SIX6OS1 is located at the synapsed autosomal LEs and at the PAR of the sex XY bivalent. (d,e) Co-labelling of

spermatocytes spread preparations with SIX6OS1 (green) and SYCP1, SYCE1, SYCE3, SYCE2 or TEX12 (red), showing that SIX6OS1 localizes to the

synapsed LEs but best mirrors SYCE1 localization. (f) Immunoelectron microscopy of frozen mouse testis sections marked with goat anti-SIX6OS1 antibody.

Left panel corresponds to an autosomal chromosome and right panel to the XY bivalent in which the PAR is shown. Gold particles 6 nm. Scale bar in

b–e, 10mm. PAR is indicated with an asterisk in b and c.
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Supplementary Fig. 3) and SYCP3 or SYCP1 (Fig. 1c,d;
Supplementary Fig. 4). SIX6OS1 was detected from zygonema
to pachynema, co-localizing with SYCP1 along synapsed LEs, but
with diminished co-localization at telomeres (Fig. 1d). On the XY
bivalent, the pseudoautosomal synapsed region labelled positively
for SIX6OS1 (Fig. 1c; Supplementary Fig. 4b). As desynapsis

progressed through diplonema, SIX6OS1 (together with SYCP1)
was not observed at the desynapsed regions of spermatocytes and
oocytes (Fig. 1d; Supplementary Fig. 4a). Thus, SIX6OS1 partially
overlaps the distribution of SYCP1 at the synapsed axes.

We next measured and compared the fluorescence profile
of SIX6OS1 along the chromosome axes with those of CE
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Figure 2 | Co-localization profile of SIX6OS1 with central element proteins. (a) Double immunostaining of SIX6OS1 (green) and SYCP1, SYCE1, SYCE3,

SYCE2 or TEX12 (red). Immunofluorescence signal levels were measured on synapsed chromosome axes. Left plots represent normalized signal intensity

profiles of SIX6OS1 with each CE protein. Right plots show regression analysis of the correlation between each pair. (b) Plot of the mean correlation

between SIX6OS1 and SYCP1, SYCE1, SYCE3, SYCE2 or TEX12 (n¼ 38 axial elements (AEs), mean±s.d.). The best correlation value was obtained with

SYCE1. Scale bar, 2.5mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13298

4 NATURE COMMUNICATIONS | 7:13298 | DOI: 10.1038/ncomms13298 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


proteins SYCP1, SYCE1, SYCE2, SYCE3 and TEX12 (Figs 1e, 2a).
This revealed that SIX6OS1 localization is more similar to the
continuous pattern of SYCP1 and SYCE1/3 (best regression with
SYCE1) than to the more punctate pattern of SYCE2 and TEX12
(ref. 24) (Fig. 2b). However, the SIX6OS1 localization pattern is
not strictly identical to SYCP1, especially at the telomeres, where
SIX6OS1 stained more weakly (Figs 1d and 2a).

In addition, we performed immuno-gold electron microscopy
on testis sections using the same SIX6OS1 antibody. The gold
particle distribution agrees with those previously reported for CE
proteins SYCE1, SYCE2, TEX12 and SYCE3 (refs 24,25) thus
supporting the localization of SIX6OS1 at the CE (Fig. 1f). Taken
together, these results demonstrate that SIX6OS1 is a meiotic
protein that is located at the CE of the SC.

SIX6OS1 interacts with SYCE1. To understand the role of
SIX6OS1 in meiosis, we searched for proteins that interact with
mouse SIX6OS1 through yeast two hybrid (Y2H) screening (see
Methods). Of the 6.1 million independent clones screened, 90
colonies containing interacting bait and prey fusion proteins grew
under the highest stringency conditions. Analysis of the positively
interacting clones (Methods) revealed that they all encode SYCE1,
a well-known protein of the CE of the SC26. To confirm and
validate this interaction, we made use of heterologous HEK 293T
cells by transiently transfecting expression plasmids encoding
GFP-SIX6OS1 and Myc-SYCE1. SIX6OS1 was found to co-
immunoprecipitate (co-IP) reciprocally with SYCE1 (Fig. 3a).

Through biochemical, biophysical and crystallographic studies,
all SC proteins studied to date have proven to exist as homo-
and/or hetero-oligomers. To explore the possible self-association of
SIX6OS1, we co-transfected Six6os1 tagged with two different
epitopes (GFP and Flag) and found that they co-immunoprecipitate
(Fig. 3b), suggesting that it exists as a homo-oligomer.

Next, we adopted a candidate gene approach to identify
additional putative interactors of SIX6OS1. We co-transfected
Six6os1 with cDNAs encoding each of the known central
element proteins (SYCE1, SYCE2, SYCE3 and TEX12), transverse
filament protein SYCP1, LE protein SYCP3, and the meiotic
cohesins REC8 and Sororin (a recently identified cohesin
subunit localized to synapsed regions27) (Fig. 3a;
Supplementary Fig. 5a,b). As positive controls we used the
well-known interaction between SYCE2 and TEX12 (ref. 21),
and between SYCE3 and SYCE1 (ref. 28; Supplementary Fig. 5c).
We detected co-immunoprecipitation only between SIX6OS1
and SYCE1.

Finally, we used truncated forms of SIX6OS1 to show that the
N-terminal half (1–286), but not the C-terminal half (287–574), is
able to interact with SYCE1 in isolation (Fig. 3c). Together,
these results indicate that the interaction between SIX6OS1 and
SYCE1 occurs in a very specific manner through the N-terminal
half of SIX6OS1.

Polycomplex formation of SIX6OS1. SYCP1 and SYCP3 form
filamentous structures, so-called polycomplexes, in the cytoplasm
of transfected cells. Thus, co-expression of an interacting
partner with SYCP1 or SYCP3 may lead to its recruitment to
polycomplexes25,29. To analyse this, we transfected the cDNA
encoding SIX6OS1 in combination with SYCP1 alone or in
different combinations with SYCE1, SYCE2, SYCE3 and TEX12,
and studied their distribution by immunofluorescence. In absence
of SYCP1, single transfections of SYCE1, SYCE3, SYCE2, TEX12
and SIX6OS1 produced different distributions (cytoplasmic
aggregates, whole cell, cytoplasmic and nuclear, respectively),
but in all cases without the appearance of self-assembled higher
order structures (Fig. 3d; Supplementary Fig. 6a).

When transfected in combination with SYCP1, SIX6OS1 was not
recruited to the filamentous structures, and its cellular localization
was not modified (Fig. 3d). We then tested whether the distribution
pattern of transfected Six6os1 in COS7 cells was altered by its co-
transfection with Syce1, Syce3, Syce2 or Tex12. This revealed that
the SIX6OS1 distribution is drastically affected only in the presence
of SYCE1 (from diffuse pattern to punctate, Fig. 3d; Supplementary
Fig. 6b). Moreover, when COS7 cells were transfected with cDNAs
encoding SYCP1, SYCE1, SYCE3 and SIX6OS1 simultaneously, all
components co-localized in speckled cytoplasmic aggregates
(Fig. 3e). This pattern was only altered when SYCE1 was
absent (Supplementary Fig. 6c–f). We further validated the
interaction between SYCE1 and SIX6OS1 in transfected
COS7 cells by proximity ligation assay (PLA) (Supplementary
Fig. 7). In summary, these results further support the findings
of the Y2H and co-IP experiments by showing that SIX6OS1
interacts specifically and exclusively with SYCE1 in transfected
COS7 cells.

SIX6OS1 loading is dependent on synapsis. To investigate the
possible dependence of SIX6OS1 localization on the presence of
other SC proteins, we analysed spermatocytes of mice deficient
for Syce3 (ref. 30), Sycp1 (ref. 31) and meiotic cohesins Rad21l
(ref. 4), Rec8 (ref. 32) and Stag3 (ref. 33). These meiotic mutants
display different synaptic defects, from mild to more severe. In
the absence of RAD21L or REC8, double labelling of SIX6OS1
and SYCP3 shows that SIX6OS1 is localized to synapsed-like
regions (Fig. 4a). Interestingly, in Rec8 mutants, where there is no
synapsis between homologues but instead the AEs of 40
univalents are decorated with SYCP1 as a result of ‘synapsis-like’
events between sister chromatids34, SIX6OS1 is also present at
these atypical synapsed-like regions (Fig. 4b). In Stag3-deficient
mice, in which spermatocytes show almost no synapsis and very
short AEs, SIX6OS1 also mimics SYCP1 localization. Finally, in
mice lacking the central element proteins SYCE3 and SYCP1, in
which AEs completely fail to synapse in a pachytene-like
stage30,31, SIX6OS1 was not detected despite the presence
of a weak discontinuous pattern of SYCP1 deposition in the
Syce3 mutant (Fig. 4; Supplementary Fig. 9c)30. These results,
obtained through immunofluorescence analysis, allow a precise
comparison of the different CE-mutant phenotypes (compare
Fig. 4 with Fig. 7a by Schramm et al.30), and thus provide a global
picture of the biology of the CE proteins. In this regard, we
predict that Syce1 mutants will also be defective in SIX6OS1
loading since SYCE3 deficiency leads to failure in loading of both
SYCE1 (ref. 30) and SIX6OS1 onto the LEs (Fig. 4).

Together, our results indicate that SIX6OS1 is a new protein of
the CE, and its loading is consequently dependent on the
assembly of the tripartite SC structure that occurs upon synapsis
between homologous chromosomes or, interestingly, even
between sister chromatids.

Mice lacking SIX6OS1 are infertile. To investigate the function
of SIX6OS1 we generated a mutation of the murine Six6os1 gene
by CRISPR/Cas9 genome editing (Fig. 5a). The a priori most
suitable null mutation was chosen by PCR sequencing of the
targeted region of the murine Six6os1 gene (Fig. 5b). A founder
line was crossed with wild-type C57BL/6J and the resulting
heterozygotes were interbred. Spermatocytes from homozygous
targeted mice showed no SIX6OS1 protein expression by
immunofluorescence when analysed using two independent
polyclonal antibodies (Fig. 5c; Supplementary Fig. 3c). These
results indicate that the mutation is a null allele of the Six6os1
gene (herein Six6os1� /� ).
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Mice lacking SIX6OS1 did not display any obvious abnorm-
alities but were sterile. Consistent with this, testes size from
Six6os1� /� mice was only 30% of wild-type mice, and their
epididymides exhibited complete absence of spermatozoa
(Fig. 6a,b). Histological analysis of adult Six6os1� /� testes
revealed seminiferous tubules that lacked postmeiotic cell types.
The presence of spermatogonia, spermatocytes and Sertoli
and Leydig cells was not altered. (Fig. 6b). By identifying groups
of associated germ cell types in seminiferous tubule sections,
the twelve stages of the epithelial cycle can be distinguished.
Following these criteria, mutant adult mice showed an arrest at
stage IV of the epithelial cycle. Spermatogenesis proceeds

apparently normally in these mice up to prophase I, and then
at stage IV, there is a massive apoptosis of spermatocytes
(Fig. 6b). At 18 days of age, extensive apoptosis was also
detected (Fig. 6c), suggesting that SIX6OS1 deficiency already
affects spermatocytes during the first wave of meiosis. Thus,
we conclude that SIX6OS1 is essential for spermatogenesis and
its deficiency leads to non-obstructive azoospermia and
consequently to infertility.

Histological analysis of whole ovaries of Six6os1� /� female
mice at 4 months of age showed a lack of oocytes and a dense
stroma (Fig. 6d). To investigate when this ovarian failure
occurred, we histologically analysed ovaries from 6 day old
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Figure 3 | SIX6OS1 interacts specifically with SYCE1. (a–c) HEK 293T cells were transfected or co-transfected with the indicated expression vectors.

Protein complexes were immunoprecipitated overnight with either an anti-Flag, anti-EGFP or anti-Myc antibody, and were analysed by immunoblotting with

the indicated antibody. (a) SIX6OS1 co-immunoprecipitates (co-IP) with SYCE1 (as well as in the reciprocal IP) but not with either SYCP1, SYCE3, SYCE2 or

TEX12. (b) SIX6OS1-Flag co-immunoprecipitates with SIX6OS1-GFP, suggesting that it is able to form at least dimers. (c) SYCE1 co-immunoprecipitates

with the SIX6OS1 N-terminal half (1–286) but not with the C-terminal half (287–574). Immunoprecipitation of SYCE1 and full length SIX6OS1 was used as

positive control. (d) COS7 cells were transfected with Six6os1 alone (left panel) or in combination with Sycp1 and Syce1 (right panel). SIX6OS1 localization

drastically changed in the presence of SYCE1 but not with SYCP1. (e) Sycp1, Syce3, Syce1 and Six6os1 were simultaneously co-transfected in COS7 cells and

found to co-localize in the cytoplasm in the punctate pattern of SYCE1. The experiments were reproduced three times. Scale bars, 15mm.
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females (6 d.p.p.), a time point at which all oocytes are arrested in
dictyate and present a large number of primordial follicles
(outer cortex) and growing oocytes (inner cortex) (Fig. 6d).
At 6 d.p.p., ovaries of Six6os1� /� mice are already depleted of
follicles and show a severe ovarian dysgenesis (Fig. 6d) that is
responsible for the absence of oogenesis and consequently for the
severe premature ovarian failure.

SIX6OS1 is essential for chromosome synapsis. To characterize
the meiotic defect in detail, Six6os1-deficient meiocytes were
analysed using spread preparations from males as well as from
fetal females. They were initially stained for AEs proteins
(that is, SYCP3), revealing that mutant spermatocytes have AEs
of normal morphology and composition (Fig. 7). Further,
cohesins SMC3, REC8, STAG3, RAD21L and SMC1B are all
present in AEs together with SYCP3 in Six6os1-deficient mice
(Supplementary Fig. 8). As expected, in wild-type spermatocytes
homologues were aligned in close juxtaposition during
zygotene, and full synapsis was achieved at pachynema (Fig. 7a;
Supplementary Fig. 9a). However, in both male and female
Six6os1-deficient mice, synapsis failed to develop between
homologues and all meiocytes were arrested in a pachytene-like
stage, in most cases with their AEs properly aligned (A-type).
However, a subset of meiocytes, more frequently observed in
oocytes than in spermatocytes, showed poorly or even
completely unaligned chromosome pairs (U-type; 17.6±3.7% in
spermatocytes; n¼ 3 and 79.06±18.9% in oocytes; n¼ 3,

Fig. 7a,b; Supplementary Fig. 9a). The lack of synapsis, and the
absence of breaks in unsynapsed AEs, were further analysed by
counting the number of centromeres (ACA staining, 21 versus 40
in spermatocytes and 20 versus 40 in oocytes, Supplementary
Fig. 10a) and telomeres (RAP1 marker, 40 versus 80,
Supplementary Fig. 10b) in arrested meiocytes. This confirmed
complete desynapsis but with the full integrity of AEs (all of the
AEs have two RAP1 signals at their ends). Finally, and to refine
the stage of the blockade, we immunolabelled Six6os1� /�

spermatocytes with the mid pachytene-specific histone variant
H1t (ref. 35). The positive staining for H1t (Supplementary
Fig. 10c) indicates that arrested spermatocytes reach the
mid-pachytene stage.

To gain further insight into the synaptic defects, we double
immunolocalized SYCP3 and SYCP1. In contrast to other CE
mutants such as Syce3, and even more so for Syce2 (ref. 36) and
Tex12 (ref. 37), Six6os1-deficient spermatocytes have reduced
levels of SYCP1 labelling (93.70% reduction in Six6os1� /�

versus 54.36% reduction in Syce3� /� ). Mutant oocytes,
however, show a slightly weaker reduction of SYCP1 staining
(79.28% reduction, Fig. 7a,b; Supplementary Fig. 9c for
quantification). We next double immunolocalized SYCP3 with
SYCE1, SYCE3, SYCE2 and TEX12, revealing the absence
of staining of all CE components in Six6os1� /� spermatocytes
(Fig. 7c) and oocytes (Supplementary Fig. 11). Similarly,
the regulatory cohesin subunit Sororin, which is located at the
CE27, is also lacking in Six6os1-deficient spermatocytes
(Supplementary Fig. 8).
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Figure 4 | SIX6OS1 loading is dependent on synapsis but not on AE proteins. (a) Double labelling of SIX6OS1 (green) and SYCP3 (red) or (b) SYCP1

(red) in Rad21l� /� , Rec8� /� , Stag3� /� , Syce3� /� and Sycp1� /� showing that loading of SIX6OS1 is dependent on synapsis. SIX6OS1 is detected in

the synapsed LEs of meiotic cohesin mutants but is absent from unsynapsed AEs in Syce3� /� and Sycp1� /� spermatocytes. Scale bar, 10mm.
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To establish a direct causal role of SIX6OS1 deficiency in the
observed phenotype, we analysed mice during the first almost
synchronous wave of spermatogenesis at 18 d.p.p. We find that
the meiotic arrest observed at this stage mimics that observed in
adult males. Interestingly, the arrest is more homogeneous, with a
lack of SYCP1 labelling in all AEs, despite the presence of both
A- and U-type AEs (U-type 35.37±2.3%; Supplementary
Fig. 7b). This suggests that the weak SYCP1 staining observed
in the adult mutants could be a byproduct of a longer arrest.

In Sycp1-deficient mice, SIX6OS1 (Fig. 4), SYCE1-3 and TEX12
are not recruited to the SC30. Surprisingly, the lack of any of
these central element proteins also leads to the aberrant
deposition of SYCP1 in a weak discontinuous pattern, with the
severest phenotype occurring in SIX6OS1 deficiency (weakest
staining). This mutual interdependence, in addition to the fact
that biochemical reactions (that is, DSB processing) take place
in the three-dimensional (3D) mesh of the SC, make it difficult to
distinguish cause and effect when analyzing mutant mice such as
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Figure 5 | Generation and genetic characterization of Six6os1-deficient mice. (a) Schematic representation of the wild-type locus (WT) and the genome

editing strategy at the Six6os1 locus, showing the sgRNAs, the corresponding coding exons (light grey) and non-coding exons (open boxes). Thin (non-coding)

and thick (coding sequences) lines under exons represent the expected transcript derived from WT and Six6os1 edited allele. ATG, initiation codon; TGA, stop

codon. The nucleotide sequence of the 124 base pair deletion derived from PCR amplification of DNA from the Six6os1 edited/edited is indicated. Primers are

represented by arrows. (b) PCR analysis of genomic DNA from three littermate progeny of Six6os1þ /� heterozygote crosses. The PCR amplification with

primers F and R (indicated by arrows) revealed 413 and 289 bp fragments for wild-type and disrupted alleles, respectively. (þ /þ ), (þ /� ) and (� /� )

designate wild-type, heterozygous and homozygous knockout animals, respectively. (c) Double immunofluorescence of spermatocytes at pachytene stage

obtained from Six6os1þ /þ and Six6os1� /� mice using SYCP3 (red) and a goat polyclonal antibody against SIX6OS1 (green). Scale bar, 10mm.
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those of the SC. Based on recent progress in elucidating the
organization of the SC38, and on the specific interaction of
SIX6OS1 with SYCE1, it seems most plausible that SYCP1
recruits CE proteins, and the nascent CE then stabilizes
SYCP1 assembly. Thus, absence of CE proteins disrupts the
full accumulation of SYCP1, leading to weak/discontinuous
staining patterns.

Defective DSB processing in Six6os1� /� meiocytes. During
leptonema, DSBs are generated by SPO11 and are then resected to
form ssDNA ends that invade into the homologous chromosome.
DSBs are marked by the presence of phosphorylated H2AX
(g-H2AX)39, which is formed through phosphorylation by the
kinase ATR following its recruitment by BRCA1 (ref. 37). Thus,
we monitored the formation of DSBs by analyzing the presence of
g-H2AX. While g-H2AX distribution in mutant spermatocytes
resembles that of wild-type cells in early prophase I (leptotene,
zygotene) (Supplementary Table 1), g-H2AX is not restricted
to sex chromosomes during pachynema (Fig. 8a). In contrast,
g-H2AX shows a moderate labelling on the chromatin of AEs in
mutant pachytene-like spermatocytes (WT 23.40±3.2; U-type
26.02±5.0; A-type 30.74±3.6; see Supplementary Table 2).
In females, the distribution of g-H2AX is slightly different.
Oocytes at pachytene-like stage show a similar overall pattern of
g-H2AX labelling as spermatocytes (WT 20.85±3.5; U-type

28.14±9.8; A-type 27.01±10.9; see Supplementary Table 2),
but it is more strictly localized to their AEs (Fig. 8b).
The distribution of g-H2AX-labelling during early prophase I,
and its persistence in meiocytes during the pachynema-like stage,
suggest that DSBs are generated in Six6os1� /� meiocytes but are
not properly repaired. To better understand the processing of
DSBs, we explored the kinetics and distribution of proteins
involved in DSB recombination and repair. After DSBs are
induced, the recombinase RAD51 is recruited to early
recombination nodules and promotes homologous strand
invasion40. In wild-type zygotene spermatocytes, RAD51
assembles on numerous foci along the AEs/LEs, which are
substituted by the single strand binding protein RPA and finally
disappear towards pachytene, with the exception of the
unsynapsed sex AEs (Fig. 8a). During early stages (leptonema),
RAD51 distribution in mutants was similar to wild-type
controls (Supplementary Table 1). However, in Six6os1� /�

spermatocytes at zygotene and pachytene-like stage, both
RAD51 and RPA remained partially associated with the AEs
(Fig. 8a; see Supplementary Tables 1 and 2). We obtained similar
results when we analysed spreads from Six6os1� /� oocytes
(Fig. 8b; Supplementary Table 2).

Next, we analysed the presence of MSH4 and MLH1 foci in
mutant spermatocytes. MSH4 mediates the transition after
synapsis from initial to late recombination nodules. MLH1 is a
component of the post-replicative mismatch repair system and
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Figure 6 | The absence of SIX6OS1 provokes azoospermia and ovarian failure. (a) Genetic ablation of Six6os1 leads to a reduction of the testis size (n¼8

wild-type and knock out, Welch’s t-test analysis: Po0.0001), and (b) a complete arrest of spermatogenesis in epithelial stage IV as shown in hematoxylin-

eosin stained testis sections. Massive apoptosis of spermatocytes is indicated (asterisks). The spermatogenic arrest leads to empty epididymides and

azoospermia. Scale bar in upper panels, 100mm and in lower panels, 5mm. (St) Seminiferous tubules. (Ep) Epididymides. (c) Tubule degeneration in juvenile

mice (13 d.p.p. and 18 d.p.p.) lacking SIX6OS1 and spermatogenic arrest before pachytene studied by histology. At 13 d.p.p. spermatogenesis has reached late

zygotene; at 18 d.p.p. it has reached late pachytene. Spermatocyte degeneration (apoptosis is indicated by asterisks) was first seen in 18 d.p.p. Six6os1� /� .

(d) Ovaries from Six6os1-deficient mice show atrophy with fibrosis and depletion of follicles. Comparative histological analysis of ovaries from Six6os1� /� and

wild-type mice at 6 days (6 d.p.p.), and 4 months (4 m) of age. Asterisks indicate corpora lutea. Scale bars represent 100mm in 4 m, and 20mm in 6 d.p.p.
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marks sites of future chiasmata41,42. During early stages, MSH4
foci in mutants resemble those in wild-type spermatocytes.
However, these foci persisted in pachytene-like arrested
spermatocytes from Six6os1-deficient mice (Supplementary
Fig. 12). Lastly, MLH1 foci were absent in Six6os1� /�

pachytene-like chromosomes (Fig. 9a), while one/two MLH1
foci per bivalent were observed in wild-type spermatocytes.
Similar results were obtained in oocytes lacking SIX6OS1
(Fig. 9a), suggesting a direct function of SIX6OS1 in homologous
recombination rather than in the elimination of arrested
spermatocytes at the so-called pachytene checkpoint of males.
To further validate this, and in light of the late arrest at
mid-pachytene-like stage (H1t positive), we exposed mutant
spermatocytes to the PP2A inhibitor okadaic acid to allow
in vitro transition from pachytene to metaphase-like I (ref. 43).
After okadaic acid treatment, there was a rapid induction of
chromosome condensation, leading to 20 bivalents that stain for
SYCP3, with the formation of at least one chiasma in the wild
type (Fig. 9b). In contrast, okadaic acid-treated Six6os1� /�

spermatocytes displayed 40 free univalents, with characteristic
labelling for SYCP3 (Fig. 9b). Together, our data strongly
suggest that processing of recombination intermediates into
MLH1-marked late recombination nodules (chiasmata) is
critically dependent on SIX6OS1.

X–Y chromosome behaviour and sex body formation. In
Six6os1 mutant spermatocytes, the X and Y chromosomes are
aligned in only 25.49±0.06% of cells (Fig. 10a). In contrast, the
degree of alignment of the sex bivalent in Syce3 null mutants is
44.10±3.17%. In mutant spermatocytes that lack aligned sex
chromosomes, the sex body is not formed (see below H2AX
staining Fig. 10b). The remaining fraction of Six6os1� /�

spermatocytes with aligned XY chromosomes show apparent
synapsis at the PAR, but without staining for SYCP1, in contrast
to the positive SYCP1 labelling of the PAR in Syce3� /�

spermatocytes (Fig. 10a). These results suggest that whilst the sex
body is not formed in either mutant, the synapsis defect in the
absence of SIX6OS1 is more severe than in the Syce3 knockout.

The X and Y chromosomes show homology only along the
distal pseudoautosomal region44 of their chromosome lengths,
and the remaining unsynapsed parts are subjected to meiotic sex
chromosome inactivation. This is a meiotic specific process that
uses the DNA damage response to recognize unsynapsed regions
and reconfigure their chromatin to a silent epigenetic domain
named the sex body. The act of silencing is itself dependent upon
phosphorylation of histone H2AX (g-H2AX) by ATR in a
BRCA1-dependent manner45. We performed g-H2AX labelling
of mutant spermatocytes and found moderate staining of the
X and Y chromosomes in those cells showing aligned sex
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Figure 7 | Six6os1� /� meiocytes are not able to synapse. (a) Double labelling of spermatocyte spreads of wild-type pachytene, and Six6os1� /� and

Syce3� /� arrested pachytene-like spermatocytes with SYCP3 (red) and SYCP1 (green). In Six6os1� /� spermatocytes, SYCP1 does not localize to the

unaligned-type (U-type) AEs but shows a very weak staining in spermatocytes with more aligned AEs (aligned-type, A-type). By direct comparison, in

Syce3� /� arrested spermatocytes SYCP1 localizes in a discontinuous pattern along AEs independent of whether or not they are closely aligned. (b) Double

labelling of spreads of wild-type pachytene and Six6os1� /� pachytene-like oocytes (aligned and unaligned) with SYCP3 and SYCP1. (c) Double labelling of

spreads of wild-type pachytene and Six6os1� /� pachytene-like spermatocytes of SYCP3 (red) and SYCE1, SYCE3, SYCE2 or TEX12 (green) (see also

extended Supplementary Fig. 11 for staining in oocyte spreads). All proteins are completely absent from the AEs in Six6os1-deficient mice. Scale bar, 10mm.
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Figure 8 | DSBs are generated but defectively repaired in Six6os1-deficient meiocytes. (a) Double immunolabelling of g-H2AX (green) with SYCP3 (red)

in wild-type and Six6os1� /� spermatocytes (left panel). In wild-type pachytene, g-H2AX labels intensely the chromatin of the unsynapsed sex bivalent. In

Six6os1� /� pachytene-like spermatocytes g-H2AX labelling remains in the chromatin. Double immunolabelling of SYCP3 (red) and RAD51 (green) (central

panel) or RPA (green) (right panel). Both RAD51 and RPA remain associated to the AEs in Six6os1� /� pachytene-like spermatocytes, showing a higher

number of foci than wild-type pachytene. (b) Immunostaining of spread preparations of wild-type pachytene and Six6os1� /� pachytene-like oocytes for

g-H2AX (green), RAD51 (green) and RPA (green) together with SYCP3 (red). g-H2AX labelling in Six6os1� /� arrested oocytes is more restricted to the AEs

than in spermatocytes. Plots under each image panel represent the quantification of intensity or number of foci from wild-type and pachytene-like arrested

meiocytes. Welch’s t-test analysis: *Po0.01; **Po0.001; ***Po0.0001. (See numeric data at Supplementary Table 2). Scale bar, 10mm.
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chromosomes. This is in contrast with the strong labelling
observed in the sex body chromatin of control spermatocytes at
pachynema (Fig. 10b). Given the interplay between synapsis and
DNA damage response, we directly analysed the status of 53BP1,
a component of the DNA damage response that collaborates with
BRCA1 in the sex body formation. In contrast to its accumulation
on the unsynapsed XY45 in wild type, 53BP1 signals were not
observed in Six6os1 mutant spermatocytes (Fig. 10c). Together,
these results indicate that SIX6OS1 deficiency, similar to most
asynaptic mice mutants, impedes sex body formation46.

Discussion
Synapsis of homologous chromosomes is essential for the
completion of meiosis and thus for fertility. The SC provides
the structural framework for synapsis and for the processing of
recombination intermediates into crossovers. Recently, the gene
variant rs1254319 (p.Leu524Phe) in the anonymous C14ORF39/
SIX6OS1 gene was identified as an influencing polymorphism
affecting the human recombination rate2. In addition, the same
rs1254319 (p.Leu524Phe) variant has been associated with age at
menarche, an indirect fertility trait47, in a meta-analysis of 32

genome-wide association studies in 87,802 women of European
descent48. Accordingly, we show that this coding variant of
SIX6OS1 lies in a conserved residue of the SIX6OS1protein.
Cytological analysis revealed that SIX6OS1 is a new component of
the CE of the SC that co-localizes with SYCE1 and SYCE3 at the
synapsed chromosome axes (Fig. 1e).

By comparison of the cytological localization of CE proteins,
their protein–protein interaction network, and the phenotypes
obtained from their knockout mice, it has been suggested that
there are two discernible subdomains within the central element.
One domain, formed by SYCP1, SYCE1 and SYCE3, would act in
concert through a network of interactions, specifically between
SYCP1 and SYCE3, and between SYCE3 and SYCE1 (refs 49,50).
The other, more inner domain of TEX12 and SYCE2 would
form a separate complex by themselves. The SYCE2–TEX12
complex is an equimolar hetero-octamer, formed by the
association of a SYCE2 tetramer and two TEX12 dimers21, and
their corresponding mutant mice show some degree of synapsis
with small but intense foci of SYCP1, SYCE1 and SYCE3
between their aligned AEs24,30,51. Mutant spermatocytes for Syce3
show an intermediate phenotype, with defective recruitment
of CE proteins but a weak discontinuous pattern of SYCP1
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Figure 9 | SIX6OS1 is essential for the processing of intermediate recombination nodules. (a) Double immunolabelling of SYCP3 (red) with MLH1

(green). MLH1 foci are absent at the AEs/LEs of Six6os1� /� meiocytes whereas at least one focus is present along each autosomal SC in wild-type pachytene

meiocytes. (b) Immunostaining of SYCP3 (red) and ACA (green) in wild type and Six6os1� /� spermatocytes. Okadaic acid-induced metaphase I plates of

wild-type spermatocytes give rise to 20 bivalents each, with two opposed centromere signals (ACA) and positive staining for SYCP3, whereas Six6os1� /�

spermatocytes lead to 40 free univalents, each with an ACA signal and SYCP3 labelling the centromeric and interchromatid domain. Scale bar, 10mm.
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staining30. SIX6OS1 deficiency produces a more severe
phenotype, with weaker discontinuous SYCP1 loading and also
lack of recruitment of CE proteins (Fig. 7). Thus, SIX6OS1 would
belong to the first subdomain (together with SYCP1, SYCE1
and SYCE3), in which mutant mice display aligned homologues
and normally assembled AEs, but no CE structures at all. From a
cytological perspective, the pattern of SIX6OS1 distribution along
LEs in pachynema (revealed through co-localization curves and
regression coefficients) is also in agreement with the continuous
distribution of SYCE1 and SYCP1 along synapsed LEs24,30

(Fig. 2). This localization of SIX6OS1 is also congruent with the
Y2H, co-immunoprecipitation and PLA results we have obtained
showing its specific ability to interact and co-localize with SYCE1.
Taken together with the presence of more unaligned chromosome

pairs in Six6os1� /� than in Syce3� /� spermatocytes, and the
interdependent loading of SIX6OS1 and SYCE3 (Figs 4a,b
and 7c), we suggest that SIX6OS1 is required at a similar
hierarchy level (neither upstream nor downstream) to SYCE3,
and downstream of SYCP1.

Despite the recent advances in reconstructing the 3D molecular
organization of the mammalian SC with isotropic resolution
through super-resolution imaging52, several gaps still remain in
the net of interactors and partners involved in the assembly of the
SC tripartite structure. In this regard, it has been postulated that
SYCE1 stabilizes SYCP1 N-terminal interactions in the CE25,
suggesting that SYCE1 can act alongside SYCP1 with SYCE3.
However, this view is neither validated by the phenotype of
Syce3� /� spermatocytes, in which SYCP1 stains weakly and
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Syce3� /� pachytene-like arrested spermatocytes. Yellow letters indicate aligned/unaligned sex chromosomes in mutant spermatocytes. (b) Co-labelling

of SYCP3 (red) and g-H2AX (green) in Six6os1� /� pachytene-like arrested spermatocytes, showing moderate staining in XY chromosomes. (c) Double

immunolabelling of SYCP3 (red) and 53BP1 (green). 53BP1 signal is not observed in the XY chromosomes of mutant spermatocytes, in contrast to the

strong labelling of the sex body in wild type. Scale bar, 10mm.
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SYCE2/TEX12 is absent from AEs30, nor by Y2H studies21.
Recently, a direct interaction between SYCP1 and SYCE3, but
not with SYCE1, SYCE2 or TEX12, has been shown by co-IP
experiments and biochemical studies50, which is in closer
agreement with the genetic depletion phenotype. Similarly, with
the present knowledge of interactions and components of the SC,
we have no explanation for the weaker SYCP1 staining in
adult Six6os1 mutants in comparison with the Syce3 mutant
(which also lacks SIX6OS1). In this sense, the appearance of a
new player in the CE family of proteins such as SIX6OS1, which
is essential for the stabilization of the central region and for
synapsis, deepens the complexity of the multilayered structure of
the CE and suggests that unknown players could help to elucidate
several open questions.

It has been shown through mouse mutants lacking CE-specific
proteins that assembly of the SC central region is essential
for recombination progression and chiasmata formation9.
Similarly, Six6os1-deficient meiocytes showed an arrest in the
processing of recombination intermediates into MLH1-marked
late recombination nodules (chiasmata). Together, these
observations raise the possibility that interaction between
components of the CE and recombination machinery would be
critical for meiotic recombination. In this context, interactions
have been described between RAD51 and both SYCP1 and SYCE2
(ref. 26). Based on sequence analysis, we predict that SIX6OS1
contains a highly helical structural region within its N terminus,
followed by a flexible linker and then a C-terminal flexible protein
docking sequence that could recruit multiple globular proteins to
induce macromolecular protein complex. In accordance with other
SC proteins, self-association and SYCE1-binding are likely
mediated by the helical N-terminal domain, suggesting that this
region may function in the structural assembly of the CE. The
predicted unstructured nature of the remainder of the sequence
suggests it may act as a flexible linker between the N-terminal
structural domain and protein–protein interactions mediated by
conserved patches of residues within the C terminus of the
molecule. It is tempting to speculate that the predicted
protein–protein interaction motifs of the C-terminal region may
be responsible for the recruitment and/or stabilization of
components of recombination nodules necessary for proper
recombination progression. Consequently, subtle variations in
the protein sequence of human SIX6OS1 (that is, rs1254319,
p.Leu524Phe), could act by modifying the CO/NCO ratio, which is
ultimately responsible for the observed number of recombination
events genome wide. Interestingly, allele A in rs1254319
p.Leu524Phe is associated with higher recombination rate in
women (53 cM) but not in men2. This observation fits well
with the observed sexual dimorphism in several cellular aspects
of Six6os1-deficient mice, such as differences in the deposition of
SYCP1 (Fig. 7a,b; Supplementary Fig. 9c) and difference in the
frequency of U-type AEs between mutant oocytes and
spermatocytes.

In summary, we have identified the biological pathway by
which the SNV identified in SIX6OS1 affects the recombination
rate in humans. Our functional data show how this protein of the
SC is dispensable for the generation of DSBs, but is required for
the appropriate processing of intermediate recombination
nodules immediately before reciprocal recombination and CO
formation, and is thus essential for chromosome synapsis and
fertility.

Methods
Histology. For histological analysis of adult testes, mice were perfused and their
testes/ovaries were processed into serial paraffin sections and stained with
hematoxylin-eosin. For histological studies of 13 and 18 day mice, testes were fixed
in Bouin’s fixative.

Immunocytology and antibodies. Testes were detunicated and processed
for spreading using the ‘dry-down’ technique. Oocytes from fetal ovaries
(E17.5 embryos) were digested with collagenase, incubated in hypotonic buffer,
disaggregated, fixed in paraformaldehyde and incubated with the indicated
antibodies for immunofluorescence. Goat polyclonal antibodies against
C14ORF39/SIX6OS1 were developed by Santa Cruz (sc-245304) and used for the
immunofluorescence analysis. This antibody was raised against a conserved
internal region of human SIX6OS1. Rabbit polyclonal antibodies against SIX6OS1
were developed by Proteintech (22664-1-AP) against a fusion protein of GST with
SIX6OS1 (C-350 aa) of human origin (see Supplementary Fig. 3 for validation) and
was used to validate the immunofluorescence results obtained with the goat
polyclonal antibody against C14ORF39/SIX6OS1 developed by Santa Cruz. The
primary antibodies used for immunofluorescence were rabbit aSMC3 serum K987
(1:20), rabbit aSMC1b serum K974 (1:20), rabbit aSTAG3 serum K403, aREC8
serum K1019, rabbit aRAD21 IgG K854 (1:5)4,5, mouse aSYCP3 IgG sc-74569
(1:100), rabbit aRAD51 sc-8349 (1:30) and PC130 (1:50), rabbit aSYCP1 IgG
ab15090 (1:200) (Abcam), rabbit anti-gH2AX (ser139) IgG #07-164 (1:200)
(Millipore), ACA or purified human a-centromere proteins IgG 15–235
(1:5, Antibodies Incorporated), mouse aMLH1 51-1327GR (1:5, BD Biosciences),
rabbit a53BP1 sc-22760 (1:20), rabbit aRAP1 IgG (1:400, provided by Dr Titia de
Lange, The Rockefeller University, USA), and rabbit aRPA IgG (1:300, provided by
Dr E. Marcon, Toronto University, Canada), rabbit aTEX12 IgG (1:100) and
guinea pig aSYCE3(1:20) (provided by Dr R. Benavente, University of Würzburg,
Germany), guinea pig aSYCE1 (1:100), rabbit aSYCE1 (Proteintech), guinea
pig aSYCE2 (1:50) (provided by C. Höög, Karolinska Institutet, Sweden) and
guinea pig aH1t (Provided by MA Handel). The secondary antibodies used
were TRITC a-mouse 115-095-146/a-rabbit 111-025-144 and FITC a-mouse
115-095-146/a-rabbit 111-095-045 (Jackson ImmunoResearch) (all 1:100).
Slides were visualized at room temperature using a microscope (Axioplan 2;
Carl Zeiss, Inc.) with 63� objectives with an aperture of 1.4 (Carl Zeiss, Inc.).
Images were taken with a digital camera (ORCA-ER; Hamamatsu) and processed
with OPENLAB 4.0.3 and Photoshop (Adobe). Quantification of gH2AX and
SYCP1 fluorescence signals was performed using Image J software. Chromosome
counts of A-type and U-type cells were performed on at least 100 pachytene-like
spermatocytes and oocytes from three individuals.

In vivo electroporation. Testes were freed from the abdominal cavity and 10 ml of
DNA solution (50 mg) mixed with 1 ml of 10� FastGreen (Sigma Aldrich F7258)
was injected in the rete testis with a DNA embryo microinjection tip. After a period
of 1 h following the injection, testes were held between a pair of electrodes and
electric pulses were applied four times (35 V for 50 ms each pulse) using a CUY21
BEX electroporator23.

Electron microscopy. For immunoelectron microscopy, 10mm cryosections of
mouse testis were fixed with acetone for 10 min at � 20 �C and air dried.
Incubation with primary antibodies was carried out in a humidified box for 4 h at
room temperature. After rinsing twice in PBS, sections were fixed for 10 min in 2%
formaldehyde and blocked with 50 mM NH4Cl. Secondary antibodies conjugated to
6 nm gold particles were incubated overnight at 4 �C, and samples were subsequently
washed in PBS. Samples were fixed for 30 min in 2.5% glutaraldehyde and postfixed
in 2% osmium tetroxide. After rinsing three times with H2O, samples were dehy-
drated in an ethanol series and embedded in Epon. Ultrathin sections were stained
with uranyl acetate and lead citrate according to standard procedures30.

Okadaic acid assay. Testes were dissected into a Petri dish containing ice cold
sterile medium (4 mM L-glutamine, 10% fetal calf serum, and 25 mM Hepes in
Dulbecco’s Modified Eagle’s medium) and cell suspensions (5� 106 cells per ml)
were exposed to 5 mM okadaic acid (Sigma-Aldrich) for 5 h at 32 �C and 5% CO2

before spreading the cells by the dry down procedure4.

Generation of plasmids. Full-length cDNAs encoding SIX6OS1, TEX12, SYCE1,
SYCE2, SYCE3, SYCP1 and SYCP3 were RT–PCR amplified from murine testis
RNA. Full-length cDNAs were cloned into the pcDNA3, pcDNA3 x2Flag, pCEFL
HA or pcDNA3.1 Myc-His (-) or pEGFP-C1 mammalian expression vectors.

Cell lines and transfections. HEK 293T and COS7 cell lines were transfected with
Lipofectamine (Invitrogen) or Jetpei (PolyPlus) and obtained from the ATCC. Cell
lines were tested for mycoplasma contamination (Mycoplasma PCR ELISA, Sigma).

Immunoprecipitation and proximity ligation assay. HEK 293T cells were
transiently transfected and whole cell extracts were prepared and cleared with
protein G Sepharose beads (GE Healthcare) for 1 h. The antibody was added for 2 h
and immunocomplexes were isolated by adsorption to protein G Sepharose beads
for 1 h. After washing, beads were loaded onto reducing 10% polyacrylamide SDS
gels and proteins were detected by western blotting with the indicated antibodies.
Immunoprecipitations were performed using mouse aFlag IgG (5 mg; F1804,
Sigma-Aldrich), rabbit aMyc Tag IgG (4mg; #06-549, Millipore), mouse aHA.11
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IgG MMS- (5ml, aprox. 10mg per 1 mg prot; 101R, Covance), goat aGFP IgG
(4mg; sc-5385, Santa Cruz), ChromPure mouse IgG (5 mg/1 mg prot; 015-000-003),
ChomPure rabbit IgG (5 mg per 1 mg prot.; 011-000-003, Jackson ImmunoR-
esearch), ChomPure goat IgG (5 mg per 1 mg prot.; 005-000-003, Jackson
ImmunoResearch). Primary antibodies used for western blotting were mouse aFlag
IgG (F1804, Sigma-Aldrich) (1:10,000), rabbit aHA IgG (H6908, Sigma-Aldrich)
(1:1,000), rabbit aFlag IgG (1:800; F7425 Sigma-Aldrich), mouse aMyc obtained
from hybridoma cell myc-1-9E10.2 ATCC (1:1,000). Secondary horseradish
peroxidase-conjugated a-mouse (NA931V, GE Healthcare), a-rabbit (#7074,
Cell Signaling), or a-goat (A27014, Thermo Scientific) antibodies were used at
1:10,000, 1:3,000 or 1:10,000 dilution, respectively. Antibodies were detected by
using Immobilon Western Chemiluminescent HRP Substrate from Millipore.
Proximity Ligation Assay was performed using goat aSIX6OS1 (sc-5385) and
rabbit aSYCE1, with the corresponding anti-goat PLA Probe PLUS and anti-rabbit
PLA probe MINUS, following the manufacturer’s instructions (Duolink Using PLA
Technology, SIGMA).

The uncropped versions of western blots in Fig. 3 are shown in Supplementary
Fig. 13.

Production of CRISPR/Cas9-edited mice. Six6os1-gRNAs (G68 50-CACCGAT
CTGTTTGTCAGTTTGGAC-30 and 50-AAACGTCCAAACTGACAAAC AG
ATC-30 and G75 50-CACCGTACTTATGTCTT GCTCATAC-30 and 50-AAAC
GTATGACAAGACATAAGTAC-30 targeting exon 2 and exon 3 were predicted
at crispr.mit.edu. Six6os1-sgRNAs were produced by cloning annealed
complementary oligos at the BbsI site of pX330 (#42230, Addgene), generating
PCR products containing a T7 promoter sequence that were purified (NZYtech),
and then performing in vitro transcription using the MEGAshortscript T7
Transcription Kit (Life Technologies). The plasmid pST1374-NLS-flag-linker-Cas9
(#44758; Addgene) was used for generating Cas9 mRNA after linearization with
AgeI. In vitro transcription and capping were performed using the mMESSAGE
mMACHINE T7 Transcription Kit (AM1345; Life Technologies). Products were
purified using the RNeasy Mini Kit (Qiagen). RNA (100 ng ml� 1 Cas9 and
50 ng ml� 1 each guide RNA) was microinjected into zygotes (F1 hybrids between
strains C57BL/6J and CBA/J)53. Edited founders were identified by PCR
amplification (Taq polymerase, NZYtech) with primers flanking exons 2 and 3
(Primer F 50-CACTTACATTTTCCTTTTAAGAATGC-30 and R 50-CCCCTC
TCAT ACATACAAGTTGC-30) and subcloned into pBlueScript (Stratagene)
followed by standard Sanger sequencing. The length of the corresponding
wild-type and mutant allele were 413 and 289 bp, respectively. The selected founder
was crossed with wild-type C57BL/6J to eliminate possible unwanted off-targets
and to generate pure heterozygous. Six6os1þ /� heterozygous mice were sequenced
again by Sanger sequencing and crossed to give rise to Six6os1� /� homozygous.
Genotyping was performed by agarose gel electrophoresis analysis of PCR products
produced from DNA isolated from tail biopsy specimens. Mouse mutants for Rec8,
Rad21l, Syce3, Sycp1 and Stag3 have been previously developed4,13,30–32.

Mice were housed in a temperature-controlled facility (specific pathogen free, spf)
using individually ventilated cages, standard diet and a 12h light-dark cycle,
according to European Union regulations at the ‘Servicio de Experimentación
Animal, SEA’. Mouse protocols were approved by the Ethics Committee for Animal
Experimentation of the University of Salamanca (USAL). We made every effort to
minimize suffering and to improve animal welfare. Blinded experiments were not
possible since the phenotype was very obvious between wild-type and Six6os1-
deficient mouse for all of the experimental procedures used. No randomization
methods were applied since the animals were not divided in groups/treatments. The
minimum size used for each analysis was three animals/genotype. The mice analysed
were between 2 and 4 months of age, except in those experiments where is indicated.

Quantitative PCR. Total RNA was isolated from various tissues of wild-type adult
mice. To analyse the expression of Six6os1 and Rad21l mRNAs, equal amounts of
cDNA were synthesized using SuperScript II Reverse Transcriptase (Invitrogen,
Life Technologies) and Oligo (dT). qPCR was performed using FastStart Universal
SYBR Green Master Mix (ROX) (Roche) and specific forward and reverse primers:
qSIX6OS1_F 50- GCTGAATGTGGAGATAAAGAG-30 and qSIX6OS1_R 50-AG
GAGTTTCAGGAGTTTGAGG-30 ; qRAD21L_F 50-TTGCAGCTCACTGGGAG
AAGA-30 and qRAD21L_R50-AGTCCTGGGCGAAATGTCATC-30 . All qPCR
reactions were performed at 95 �C for 10 min, and then 40 cycles of 95 �C for 15 s
and 62 �C for 1 min on the iQ5 Thermal Cycler (Bio-Rad). b-Actin was amplified
as a housekeeping gene with the primers qb-actin_F 50-GGCACCACACCTTCT
ACAATG-30and qb-actin_R 50-GTGGTGGTGAAGCTGTAGCC -30 .

Y2H assay and screening. Y2H assay was performed using the Matchmaker Gold
Yeast Two-Hybrid System (Clontech) according to the manufacturers’ instructions.
Mouse Six6os1 cDNA encoding the N terminus (1-138) was subcloned into the
vector pGBKT7 and was used as bait to screen a mouse testis Mate & Plate cDNA
library (Clontech Laboratories Inc.). Positive clones were initially identified on
double dropout SD (synthetic dropout)/–Leu/–Trp/X-a-Gal/Aureobasidin A plates
before further selection on higher stringency quadruple dropout SD/–Ade/–His/–
Leu/–Trp/X-a-Gal/Aureobasidin A plates. Pray plasmids were extracted from the
candidate yeast clones and transformed into Escherichia coli. The plasmids from two

independent bacteria colonies were independently grown, extracted and Sanger
sequenced. Southern blotting was also used for plasmid screening.

Sequence analysis. Protein sequences were extracted from the UniProt database
and analysed using Jalview 2 (ref. 54). Multiple sequence alignments and secondary
structure predictions were performed using MUSCLE (EBI)55 and Jpred 4 (ref. 56),
respectively.

Co-localization profile. SIX6OS1 and either SYCP1, SYCE1, SYCE3, SYCE2 or
TEX12 were stained on spreads of wild-type spermatocytes. Images were captured
with identical camera settings. Fluorescence signals were measured along the 19
autosomal AEs of pachytene cells using the ‘Plot profile’ tool of ImageJ. Signal
intensities were standardized, acquiring values between � 1 and 1, and the
overlay profiles of SIX6OS1 and other CE proteins were plotted. Regression
analysis for each pair of proteins was performed to determine the correlation
between their profiles. The values of the coefficients of determination R2 are shown
in the scatter plots.

Statistics. To compare counts between genotypes at different stages, we used the
Welch’s t-test (unequal variances t-test), which was appropriate as the count
data were not highly skewed (that is, were reasonably approximated by a normal
distribution) and in most cases showed unequal variance. Asterisks denote
statistical significance: *P value o0.01, **P value o0.001 and ***P valueo0.0001.

Data availability. Genomic DNA sequences of H. sapiens (human, 317761),
M. musculus (mouse, 75801) are available on GenBank (http://www.ncbi.nlm.
nih.gov/genbank/). Amino acid sequences of H. sapiens (Q8N1H7), M. musculus
(NP_083381), P. troglodytes (Chimp, H2Q8E6), S. charissii (Tasmnaina devil,
G3WQS7), O. anatinus (Latypus, F6ZZ02), P. sinensis (Chinese turtle, K7GAG2),
G. gallus (Chick, E1C952) and L. chalumnae (West india coelacanth, M3XIB0) were
obtained from the UniProt database (http://www.uniprot.org/). All remaining data
generated in this study are available in the Article and Supplementary Information
files or available from the authors upon request from the authors.
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