Abstract—We report on the growth optimization of GaN-based self switching diode (SSD) structure on SiC, designed using Monte Carlo simulations, for the fabrication of nano-scale SSDs reach THz emission as a result of Gunn oscillations. Crack-free episturcture with good epi-characteristics and uniformity on 2-inch SiC substrate was achieved. High carrier density of 2 × 10^{18} cm^{-3} resulted in a low contact resistance of 0.35 Ω.mm.

Keywords—Gunn diode, THz, GaN, SiC, PA-MBE

1. INTRODUCTION

The most common solid-state electronics based THz devices are obtained using Schottky diodes for the frequency multiplication of fundamental oscillators such as resonant tunneling diodes (RTDs), impact ionization avalanche transit-time (IMPATT) diode, microwave multipliers and Gunn diodes. The oscillation frequency of classical GaAs and InP Gunn diodes (based on the transfer of electrons to the upper valleys) can only be extended to around 300 GHz limited by the scattering mechanism and energy relaxation frequencies [1]. The superior properties of GaN-based materials such as wide band-gap, high saturation velocity and high breakdown field make them suitable candidates for high power, high frequency and high-temperature applications [2]. GaN-based Gunn diodes can potentially operate at much higher power than traditional GaAs and InP Gunn diodes at very high frequency, above 300 GHz. However, up to now, no clear observations of continuous Gunn oscillations in GaN devices have been achieved, and the realization of a continuous wave GaN-based Gunn oscillator at 300 GHz and beyond has never been reached before. By means of pulse measurements, just the presence of negative differential resistance which leads to a subsequent breakdown of the devices, has been found [3].

Self-switching diodes (SSDs) produce planar asymmetric non-linear devices and simulations show their potential to create THz waves as a result of Gunn oscillations [4, 5]. In this work, we report on the growth optimization of Gunn-based SSD structure on SiC (Fig. 1 (a)), designed using Monte Carlo (MC) simulations, for the fabrication of nano-scale SSDs (Fig. 1 (b)) to reach THz emission.

II. EXPERIMENTAL

The design rules for the growth of the episturcture was provided by means of MC simulations. The designed episturcture was grown on double side polished semi-insulating (SI) 4H-SiC (001) substrate using plasma assisted molecular beam epitaxy (PA-MBE). The growth was initiated by the in-situ removal of the native oxide by exposing the surface of the substrate to three cycles of Ga deposition and flash-off. Subsequently, 100 nm AlN nucleation layer was grown at a substrate temperature of 740 °C followed by 1000 nm undoped two-step GaN buffer layer at 710 °C. Initial GaN with a thickness of 100 nm was grown at III/V = 0.85 followed by the growth of the remaining GaN under III/V ≥ 1. Finally, 400 nm silicon doped GaN active layer with a carrier concentration of 2 × 10^{18} cm^{-3} was grown at the same substrate temperature.
morphology of the undoped GaN buffer layer. Moreover, Si doping was optimized in the subsequent GaN active layer by varying the temperature of the Si effusion cell.

III. RESULTS

Fig. 2 (a) and (b) show the AFM images of 5 × 5 μm² scan area for GaN grown under nitrogen rich conditions (III/V < 1) and metal rich conditions (III/V ≥ 1), respectively. A rough surface morphology (III/V < 1) with RMS roughness of 6.1 nm while smooth surface (III/V ≥ 1) with an RMS roughness of 0.4 nm is obtained. Spotty reflection high energy electron diffraction (RHEED) pattern was observed during the growth of GaN under III/V < 1, indicative of the 3D growth mode while streaky GaN was obtained under III/V ≥ 1 with a (2×2) reconstruction pattern signifying 2D growth as shown in the inset of Fig. 2 (a) and (b), respectively.

Fig. 3 shows the GaN full-width-at-half-maximum (FWHM) along (002) and (102) planes as a function of III/V ratio. For the growth performed in nitrogen rich conditions (III/V < 1.0), the lowest FWHM for GaN (102) was achieved at III/V = 0.85, indicating overall good crystalline quality. In the Ga-stable and Ga rich regions (1.0 < III/V ratio < 1.2), the crystalline quality degraded as the value of FWHM increased while it saturated beyond III/V > 1.2.

As can be concluded from Fig. 2 and Fig. 3, smooth surface morphology is achieved for growths with III/V ≥ 1 while good crystalline quality was achieved when III/V < 1. Therefore, a two-step GaN with growth transition from III/V < 1 to III/V ≥ 1 during the initial stage of GaN buffer layer was implemented to obtain reduced dislocation density and smooth surface morphology. Table 1 shows the GaN FWHM along (002) and (102) planes grown using different growth modes.

Table 1 GaN FWHM along (002) and (102) planes grown using different growth modes.

<table>
<thead>
<tr>
<th>Growth mode</th>
<th>GaN FWHM (arcsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(002)</td>
</tr>
<tr>
<td>3D</td>
<td>250</td>
</tr>
<tr>
<td>2D</td>
<td>321</td>
</tr>
<tr>
<td>3D-2D</td>
<td>285</td>
</tr>
</tbody>
</table>

Fig. 4 shows the carrier concentration in GaN with respect to different Si effusion cell temperatures during the growth. As can be seen, a carrier concentration ranging from 0.7 to 6.5×10¹⁸ cm⁻³ was obtained. Fig. 5 shows the measured resistance versus the separation between the adjacent contacts of the transmission line measurement (TLM) structures on the epistucture using four-point probe technique. The contact resistance (Rc) was extracted from the slope and the y-axis intercept of the corresponding linear fit. The TLM was performed on several locations that resulted in an average Rc of 0.35 Ω.mm.

Fig. 4 Carrier concentration in GaN layer with different Si effusion cell temperature.

Fig. 5 Resistance versus separation between the adjacent contacts of TLM structures.
Based on the optimization of the growth conditions for the GaN buffer and the active layers, the complete epistructure was grown on 2-inch SiC substrate. Fig. 6 (a) shows the photograph of the 2-inch epiwafer and (b) shows the three-dimensional (3D) view of the epiwafer-bow of 19 μm obtained by making the measurements in 4 different directions.

Fig. 7 shows the mapping of electrical properties of the epistructure across the 2-inch epiwafer. An average (a) sheet resistance of 390 Ω/sq., (b) mobility of 187 cm²/V.s (c) and carrier density of 2.14×10^{18} cm⁻³ are obtained with the standard deviation of 4.2 %, 6.0 % and 3.2 %, respectively. Fig. 8 (a) and (b) show the FWHM mapping along GaN (002) and GaN (102) planes across the epiwafer, and Fig. 9 shows the photoluminescence (PL) mapping of the epistructure, indicating uniform electrical and optical qualities across the wafer.

Table 2 lists the FWHM of GaN along (002) and (102) planes, RMS roughness of $5 \times 5 \mu m^2$ scan area and the average carrier density in the GaN active layer for the four 2-inch epiwafers. As shown, GaN with improved crystalline quality was obtained with a sub nanometer RMS roughness. The SSD fabrication on these epiwafers is underway and the results will be presented elsewhere.

IV. SUMMARY

The GaN-based SSD structure on SiC substrate, designed using MC simulations was grown by PA-MBE. The crystalline quality of GaN buffer was improved by using 3D-2D growth modes. High carrier density of 2×10^{18} cm⁻³ was achieved for GaN active layer with Si doping and a corresponding contact resistance of 0.35 Ω.mm. Crack-free epistructure with sub nanometer RMS roughness and good uniformity across 2-inch was established.

ACKNOWLEDGEMENT

This work has been supported by the NRF2017-NRF-ANR003 GaNGUN project. This work has also been partially supported by the Ministerio de Economía y Competitividad (Spain) and FEDER (European Union) through project TEC2017-83910-R and by the Consejería de Educación de la Junta de Castilla y León (Spain) and FEDER (European Union) through project SA254P18.

REFERENCES