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Abstract: The stability of endoreversible heat engines has been extensively studied in the literature.
In this paper, an alternative dynamic equations system was obtained by using restitution forces that
bring the system back to the stationary state. The departing point is the assumption that the system
has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat
fluxes, without further specifications regarding the properties of the working fluid or the heat device
specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like
heat engine model were analyzed. It was shown that the evolution of the trajectories toward the
stationary state have relevant consequences on the performance of the system. A major role was played
by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the
input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values,
the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and
power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic
trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases,
they improved the efficiency and power values with a decrease in entropy generation; (3) for the
symmetric case (σhc = 1), the trajectories evolved either with increasing entropy generation tending
toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible
limit. Moreover, it was shown that the total entropy generation can define a time scale for both the
operation cycle time and the relaxation characteristic time.

Keywords: multiobjective optimization; Pareto front; stability; maximum power regime; entropy behavior

1. Introduction

The optimization of energy converters has never been as relevant as it is now. Energy production
requirements, efficient use of heat sources, and heat waste reduction are continually pushing
technological edges. Linked to this degree of specialization are the control and stability of operation
regimes yielding a desirable stable production, despite the possible variations of external or internal
conditions. In many cases, this requires the fine-tuning of control parameters with intrinsic energetic
costs. In this regard, there are some hints as to the possibility of seizing the stability of heat
engine operation regimes to enhance their performance by relaxing the control over the operation
parameters [1–3]. Studies regarding the weakly dissipative limit [4] thus far have pointed out the
special role played by the endoreversible model [5,6]. These studies consider that after the system
experiences a perturbation in its operation variables, the trajectories that lead the system back to its
steady state tend to evolve toward the endoreversible limit. This limit has been proven to be associated
with thermodynamic states, with the best compromise between maximum efficiency, maximum power
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output, and minimum entropy production as given by the Pareto front of the system. Although the
equivalence of the low dissipation model (based on entropy generation) and the endoreversible model
(based on specific heat transfer laws) has been established for several heat transfer laws [7–9], it is not
obvious that the endoreversible behavior appears interconnected to the stability of the low dissipation
model. A natural concern is to look for this very same behavior in the context of endoreversible
heat engines.

On the other side, the stability of heat engines is not a novel topic. Especially in the realm of
finite-time thermodynamics, endoreversible and irreversible models have, in their assets, a good number
of works in this regard. From the pioneering work of Santillan et al. [10], a number of studies have
analyzed the local and global stability of a variety of operation regimes [11–18], including economic
factors [19], and have extended the analysis to heat pumps, refrigerators, and generalized heat
engines [17,20–27].

The validation and applicability of the endoreversible hypothesis has been widely analyzed
and discussed in the specialized literature [28–31], and although it constitutes an idealization of an
irreversible device, recent studies on molecular dynamics simulation [32] have validated its predictions
for a finite-time Carnot cycle of a weakly interacting gas (considered as a nearly ideal gas) and
considering the local equilibrium for a Maxwell–Boltzmann distribution with a spatially uniform
temperature and a spatially varying local center-of-mass velocity. In particular, these results also
point to the validity of the paradigmatic Curzon–Ahlborn efficiency at maximum power [33,34].
These molecular dynamics simulations of a two-dimensional Carnot engine allowed to investigate
not only the optimization of power output, but also some other figures of merit involving entropy
production as the ecological figure of merit [32]. This reinforces the validity of the Carnot-like
endoreversible model, where the quasistatic conditions linked to endoreversibility rely on the
thermalization due to the internal dynamic speed. Lastly, a recent work reported some new conceptual
insights (simulation and reconstruction) on the endoreversibility hypothesis [35] by considering that
subsystems are out of equilibrium, i.e., including internal irreversibilities: First, by means of the contact
temperature of the heat flows and the non-equilibrium molar entropy for material flows. This new
feature is beyond the traditional endoreversible thermodynamics, which considers internal subsystems
as reversible, i.e., without internal entropy production. Second, the mentioned work [35] goes beyond
the use of paradigmatic, simple models and thus sheds light on the modeling characteristics of
endoreversible systems in relation to real running heat engines.

Despite the extensive literature, the possibility of inducing optimization from stability in
finite-time thermodynamics has not been studied. This is one of the goals of the present paper,
which is focused on irreversible Carnot-like heat engine models with linear and inverse heat transfer
laws, as two representative examples, assuming that the maximum power state behaves as a steady
state. The kind of perturbations assumed in this analysis are from external sources or variations in
the external control, such as those stemming from variations in the velocity of a piston. A benefit of
this study is that, unlike the low-dissipation scheme, based on entropy production, the finite-time
thermodynamics scheme allows a more straightforward analysis of its consequences on the working
fluid and design of the heat engine, as it accounts for explicit heat transfer laws.

This paper is structured as follows: In Section 2, an overview of the endoreversible model is
presented, along with some results on the maximum power regime for both the Newton and the
phenomenological heat transfer laws. In Section 3, a multiobjective optimization is realized and the
Pareto front is faced with endoreversible behavior. In Section 4, the stability dynamics are obtained
from basic assumptions and the operation and relaxation times are compared in order to achieve a
useful stability. In Section 5, the relaxation trajectories are analyzed in the space of the control variables
as in the energetic space composed by power output, efficiency, and entropy generation. Finally some
concluding remarks are presented.
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2. A Quick Look at the Endoreversible Model

The most basic endoreversible model consists on a baseline Carnot cycle whose working fluid
operates with effective temperatures Thw and Tcw (isotherms of the Carnot cycle), irreversibly connected
to two external reservoirs at temperature Th and Tc (Th > Thw > Tcw > Tc), as depicted in Figure 1.

C P

Qh

Qc

Th

Tc

Thw

Tcw

Figure 1. Schematic representation of an endoreversible heat engine. The working fluid realizes a
Carnot cycle operating between the isothermal processes at effective temperatures Thw and Tcw < Thw.
The working fluid is irreversibly coupled to external reservoirs at temperatures Th and Tc < Th.

The endoreversible scheme requires knowledge of the heat transfer laws to model the heat fluxes
between the external reservoirs and the working fluid. In a somewhat general case of heat transfer
laws, Qh and Qc are expressed as:

Qh = σhcσc

(
Tk

h − Tk
hw

)
sgn (k) th > 0, (1)

Qc = σc

(
Tk

c − Tk
cw

)
sgn (k) tc < 0, (2)

where k 6= 0 is the exponent of the heat transfer law (k = 1 refers to the known Newton law, k = −1 is
known as the phenomenological law, k = 4 is the Stefan–Boltzmann law, and so on); σc and σh are the
thermal conductances with units of J·K−k/s, here considered as constant since only small fluctuations
around the operation regime are addressed. The function sgn (k) is defined as:

sgn (k) =

{
1 i f k > 0
−1 i f k < 0

,

which is introduced for consistency with the convention that the heat flux entering the working fluid is
positive and that the outgoing heat is negative; th and tc are the times at which the working fluid is in
contact with the external heat reservoirs Th and Tc, respectively. In Equation (1), the σhc ≡ σh/σc ratio
is introduced, which is an important ingredient to obtain the upper and lower bounds of the efficiency
of a given operation regime. The endoreversible hypothesis states that the entropy generation in the
inner part of the engine is zero. Mathematically, this means that:

Qh
Thw

+
Qc

Tcw
= 0, (3)

and from this constraint, the ratio of the operation time is given as:

tc

th
=

Tk
h − Tk

hw

Tk
cw − τkTk

h

Tcw

Thw
σhc, (4)
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where τ ≡ Tc/Th. With the endoreversible hypothesis constraining tc, in Equations (3) and (4),
the efficiency η, power output P, and total entropy generation S become functions of {Th, Tc, Thw,
Tcw, σhc, th, σc}. By using Equations (1) and (2), the explicit equations of these key thermodynamic
magnitudes are the following:

η = 1 + Qc
Qh

= 1− Tcw
Thw

, k = {1,−1}

P = Qh+Qc
tc+th

=


σcσhc(Tcw−Thw)(Th−Thw)(Tcw−τTh)sgn(k)

TcwThw(σhc−1)+Th(τThw−σhcTcw)
k = 1

σcσhc(Tcw−Thw)(Th−Thw)(Tcw−τTh)sgn(k)
Th(T2

hw(Tcw−τTh)+T2
cw(Th−Thw)τσhc)

k = −1
,

S = −Qh
Th
− Qc

Tc
=


thσcσhc(Th−Thw)(Tcw−τThw)sgn(k)

ThThwτ k = 1

thσcσhc(Th−Thw)(τThw−Tcw)sgn(k)
T2

h T2
hwτ

k = −1
.

(5)

As can be seen in the definition of the power output, instantaneous adiabatic processes were
considered. In order to deal with non-instantaneous adiabatics, a more detailed analysis of the
working fluid and the geometry of the device needs to be made (for example, see [36]). In some works,
these features have been analyzed by showing their influence in the power output and efficiency,
but under certain circumstances, such as the large compression ratios in a piston, these times produce
small effects on η and P, remaining compatible with the quasistatic nature of the internal process.

Notice that only S is proportional to th. As is shown later in Section 4 (see Equation (15)),
the relaxation times are also proportional to this partial time; thus, a relationship between relaxation
time and total entropy generation can be found. By fixing the value of S, a time scale for stability
can be established. Besides this time scale (establishing the speed of the restitution dynamics), it is
possible to analyze the energetic consequences of stability independently of th if one works with
entropy production per cycle time, defined as Ṡ ≡ S/(tc + th) = S/th(1 + tc/th), taking advantage of
the constraint on the total operation time through Equation (4).

The maximum power (MP) regime is specified by the temperatures T∗cw resulting from the
constraint ∂P/∂Tcw = 0 and T∗hw under the condition ∂P/∂Thw = 0. The resulting values are given by:

T∗hw =
Th(
√

τ+
√

σhc)
1+
√

σhc
k = 1, (6)

T∗cw =
Th(τ+

√
σhcτ)

1+
√

σhc
k = 1, (7)

T∗hw =
2Thτ(1+

√
σhc)

1+τ+2τ
√

σhc
k = −1, (8)

T∗cw =
2Thτ(1+

√
σhc)

2+
√

σhc(1+τ)
k = −1. (9)

From the optimal T∗cw values, parametrization of P, η, and Ṡ can be made (see dashed curve in
Figure 2). The obtained parametric curve exhibits a parabolic-like behavior, where the values of η

vary from 0 to ηC ≡ 1− τ, the Carnot efficiency (both limits corresponding to a zero power output),
and with a single maximum in P. This is what is known in the literature as an endoreversible behavior,
a kind of signature of the model. Some relevant features regarding the efficiency at maximum power
from these endoreversible models with k = 1 and k = −1 are pointed out:

• The Newton case (k = 1) gives an efficiency at maximum power, ηMP = ηCAN ≡ 1 −
√

τ,
the well-known Curzon–Ahlborn–Novikov (CAN) efficiency, which does not depend on the σhc
ratio and appears in a large variety of contexts linked to the maximization of power output, work,
and kinetic energy [37].

• The k = −1 case, frequently called the phenomenological law, referring to the natural results
arising in the linear irreversible thermodynamics framework. It allows to obtain the same limits of
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efficiency as in the low-dissipation model, where the self-optimization property has been studied.
In this case (k = −1), ηMP is σhc-dependent, bounded by ηMP ∈

(
ηC
2 , ηC

2−ηC

)
, according to whether

σhc varies from 0 to ∞ [7].

Figure 2. Parabolic behavior of the η, P, and Ṡ curve typical of the endoreversible model for (a) the
k = 1 case and (b) the k = −1 case. The values Th = 500 K, σhc = 1, and τ = 0.4 weer fixed. Additionally,
σc was chosen (for representation/comparison purposes) in such a way that the maximum power (MP)
was 70 W in both cases, so that η, P, and Ṡ ranged in similar intervals.

3. The Relevant Region for Optimization: The Pareto Front

Before exploring stability dynamics, it is convenient to introduce a multiobjective optimization of
the model. When looking for the best compromise among a variety of objective functions, the result is
the so-called Pareto front (in the space of energetic functions) and the corresponding Pareto optimal
set (in the space of operation variables).

To this end, a sorting algorithm is used by applying the concept of dominance [38]: A vector
v = (v1, . . . , vn) dominates another one w = (w1, . . . , wn) if, and only if, vi ≥ wi ∀ i ∈ {1, . . . , n} (if one
is looking for a maximum, ≤ for a minimum) and there is at least one j, such that vj > wj, if one is
interested in those vectors that are not dominated by any other. In other words, vectors that have
the best value at least in one objective function. In this case, such a vector is formed by η, P, and Ṡ.
The algorithm introduced here is a modification of the one introduced in [1–3], as follows:

1. In the phase space (Thw, Tcw), the region of physical relevance is defined (Th ≥ Thw ≥ Tcw ≥ Tc).
2. A random set of points in the phase space is obtained and the thermodynamic functions are

evaluated (energetic space).
3. A set of non-dominated points in the energetic space is obtained, giving a provisional Pareto front.
4. From the corresponding Pareto optimal set (phase space), a convex region is defined and extended

in order to cover a larger region for searching new points in the Pareto front. Details on the
definition of the extended region are given below.

5. From the new region, a new set of random points is proposed and a new set of non-dominated
points in the energetic space is obtained.

In the present analysis, and in order to ensure convergence in the results, Kullback–Leibler (KL)
divergence was introduced as a measure of the relative entropy DKL [39]. DKL was calculated between
the probability distribution of the efficiencies of the Pareto front in the ith and the i− 1th iterations.
As the probability distribution of η converges to the true Pareto front distribution, the entropy of the
distribution converges as well. In such a case, the relative entropy DKL tends toward zero. The radius
to extend the search region in the phase space decreases with the DKL value. When this relative entropy
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is very small, there is no information gain in iterating more times; then, the search for new points in
the Pareto optimal set stops. As mentioned before, DKL provides a measure of statistical convergence
by indicating how distant two distributions are. If DKL = 0, then the information stemming from both
distributions is the same. This is a relevant issue to demonstrate that the obtained trend is not due to
the lack of additional iterations.

To obtain DKL, the range of possible values of η, each iteration was divided into
√

N (rounded to
the upper next integer [40], with N being the number of random points added to the search in each
iteration) equal intervals (or bins). In this way, the same partition was used to compute the discrete
probability distributions, ρk (for the k iteration). DKL was calculated by comparing ρk−1 with ρk. DKL,k
is given by:

DKL,k(ρk−1‖ρk) = −∑
i

ρk−1,i log
(

ρk,i

ρk−1,i

)
, (10)

allowing to determine how much information is gained by narrowing the search. In Figure 2, the Pareto
front is depicted (green points), along with the endoreversible curve for η, P, and Ṡ (dashed line),
obtained from the parametric elimination of Thw (Tcw is constant for the fixed values of the σhc, σc,
τ, and Th parameters; see Equations (7) and (9)). Notice that even when the endoreversible curve
depends on a first constraint (Tcw satisfies ∂P/∂Tcw = 0), the Pareto front has nothing to do with.
Nonetheless, the Pareto front lies over the endoreversible curve, covering the regions from maximum
power to maximum efficiency and minimum entropy production. This is consistent with the literature,
where the mentioned part of the curve has been denoted as the relevant region for optimization.
For optimization purposes, additional figures of merit as compromise functions between these three
(such as the Ecological function [41] or the Omega function [42]) will not provide further information
to the Pareto front. After all of these considerations, analysis of stability dynamics can be made.

4. Stability Dynamics and Relaxation Times

One goal of this analysis was to recover the previous results obtained in the low-dissipation
scheme (with no direct connection to working fluid particularities) and to lay the groundwork
for a more direct connection with the properties of the working fluid and design parameters.
The perturbations we were interested in involved only those of an external nature. The temperature
of the external reservoirs remained constant, as well as the conductances of the heat transfer laws
(lastly depending on temperature) for only small variations in the operation regime. To illustrate these
points, consider a 2-D piston describing a Carnot cycle. The velocity of the piston will determine
the effective temperatures of the isotherms of the particles inside the piston (see [32]). The external
control (and its energetic cost) needs to remain constant as the velocity of the piston is not accounted
for in the thermodynamic description of the gas inside of it. However, fluctuations in this velocity,
as well as possible cyclic variability, will lead to variations in the effective temperatures Thw and Tcw.
Then, a compromise between the energetic cost of the control and the thermodynamic consequences
due to stability is of interest.

A simple approach to tackle this problem is the following: Since the operation regime is entirely
defined by Thw and Tcw, the dynamics involving only these two variables are to be addressed.
Fluctuations in these temperatures will affect the heat exchanged between the working fluid and
the external reservoirs, Qh and Qc. From a Taylor expansion in the first order, Qh and Qc near the MP
state can be written in matrix form as:(

Qh −Q∗h
Qc −Q∗c

)
=

 ∂Qh
∂Thw

∣∣∣
∗

∂Qh
∂Tcw

∣∣∣
∗

∂Qc
∂Thw

∣∣∣
∗

∂Qc
∂Tcw

∣∣∣
∗

 ·( Thw − T∗hw

Tcw − T∗cw

)
=

(
α 0

β γ

)
·
(

Thw − T∗hw

Tcw − T∗cw

)
(11)

⇒
(

Thw − T∗hw

Tcw − T∗cw

)
= −

 1
α 0

− β
αγ

1
γ

 ·( Q∗h −Qh

Q∗c −Qc

)
, (12)
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where α, β, and γ are the elements of the Jacobian matrix evaluated in the MP state (denoted by ∗).
It is noted again that this analysis assumes that the MP state is a steady stationary state. Within the
first order scheme [43], the simplest relationship for an autonomous system for the two variables Thw
and Tcw is: (

Ṫhw

Ṫcw

)
= −

(
A 0

0 B

)
·
(

Thw − T∗hw

Tcw − T∗cw

)
, (13)

which is a good approximation near a stable point. The coefficients A and B determine the restitution
strength (with units of s−1). The bigger they are, the faster the system will return to the steady state.
By substituting Equation (12) into Equation (13), with the resulting dynamics:(

Ṫhw

Ṫcw

)
=

 A
α 0

− Bβ
αγ

B
γ

 ·( Q∗h −Qh

Q∗c −Qc

)
. (14)

The magnitudes of the relaxation times t1 = −1/λ1 and t2 = −1/λ2 are obtained from the
eigenvalues, λ1,2, of the square matrix in the right-hand side of Equation (14). For the cases k = 1 and
k = −1, they are:

t1 =


thσcσhc

A k = 1

thσcσhc(1+τ+2τ
√

σhc)
4AT2

h τ2(1+
√

σhc)
2 k = −1,

t2 =


thσcσhc(1−

√
τ)

B(
√

σhc+
√

τ)
k = 1

thσcσhc(1+τ+2τ
√

σhc)(1−τ)

4BT2
h τ2(1+

√
σhc)

2 k = −1.

(15)

Due to the units of the two matrices, a K/J unit factor should be accounted for in the final expression
on the right-hand side of Equations (15), providing the correct units for the relaxation times (in s).
As mentioned before, A and B provide the strength of the restitution dynamics, i.e., if they have large
values, then the relaxation times are short. Notice that both the relaxation times and the total entropy
generation are proportional to the contact time th; then, S can be used to define a characteristic time
scale for relaxation. Since there are no reasons to provide a preferred relaxation in the heat exchange
Qc or Qh, it can be assumed that t1 = t2 (this requirement can be tuned according to the specific
conditions of a heat device at hand). Additionally, when looking for stability of a cyclic process, it is
desirable that the stability is achieved in times shorter than those of the operation time; that is:

t1 + t2 = 2t1 ≤ th + tc = th

(
1 +

tc

th

)
. (16)

From this constraint and Equation (4), the relaxation times are bounded by:

t1 = t2 ≤


th
2
(
1 +
√

σhc
)

k = 1

th(1+
√

σhc)(1+τ
√

σhc)
2+
√

σhc(1+τ)
k = −1,

(17)

where the equality corresponds to the case where tc + th = t1 + t2. From now on, equality is assumed.
Then, the resulting dynamics (Equation (14)) for k = 1 are:
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Ṫhw = − 2σcσhc(Thw(1+
√

σhc)−Th(
√

σhc+
√

τ))

(1+
√

σhc)
2 ,

Ṫcw = − 2σcσhcTh
√

τ
1+
√

σhc

(
Thw(1+

√
σhc)

Th

(√
σhc+

√
τ
) + Tcw

Th
√

τ

(
Th

Thw
− 1
)
− 1−τ+2(

√
σhc+

√
τ)

(1+
√

σhc)(1+
√

τ)

)
,

(18)

and for k = −1,

Ṫhw = − 4σcσhc
Thw
·
( Thw

Th
( 1+τ

2τ +
√

σhc)−1−√σhc

)
(1+
√

σhc( 1+τ
2 ))

(1+
√

σhc)
2
(1+τ

√
σhc)

,

Ṫcw = − 4σcσhc
Thw
·

τThw
Th

( 1+τ
2τ +

√
σhc)

2−(1+
√

σhc)
(

1+τ
√

σhc+
Tcw
Th
(1+
√

σhc( 1+τ
2 ))

)
+ Tcw

Thw
(1+
√

σhc)(1+τ
√

σhc)

(1+
√

σhc)
2
(1+τ

√
σhc)

.

(19)

From these dynamic equations, it is possible to calculate a relaxation velocity, v =
√

Ṫ2
hw + Ṫ2

cw
(in K/s), which indicates how fast the system is evolving toward the steady state. In Figure 3,
iso-velocity contours are depicted for the k = {1,−1} cases. Two trajectories are represented to provide
an idea of how fast the system can return to the MP state. In both cases, the operation time is indicated,
along with the time of evolution of each curve. As can be seen, 1 or 2 s are enough to drive the system
close to the stationary state; meanwhile, the cycle time is approximately 300 s. Another feature in
Figure 3 is that far from the steady state, the system evolves faster. Different marks at equal time
intervals are placed over the trajectories, and in every case, the system travels a longer distance in
the first interval. In both cases, the Tcw direction is slower. It can be confirmed that the depicted
trajectories evolve more quickly in the horizontal direction, while the final approach is mostly in the
vertical direction. Notice also that the k = −1 case has the fastest dynamics.
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Figure 3. Isocontours of the relaxation velocity for (a) the k = 1 case and (b) the k = −1 case.
The values Th = 500 K, σhc = 1, and τ = 0.4 were fixed. As in Figure 2, σc and th were chosen
(for representation/comparison purposes) in such a way that the MP was 70 W and the entropy at MP
was 70 J/K in both cases. By fixing S at MP conditions, a time scale for th was established, and therefore,
a scale for the relaxation time. The qualitative behavior for the other values of S was similar to the one
presented here.

5. Thermodynamics of the Relaxation Trajectories

From the analysis of the evolution of trajectories toward the steady state, it is not obvious which
energetic implications arise. To address this issue, the dynamic equations were numerically solved.
Several trajectories with a starting point within a radius of 30 K (in the Thw–Tcw space) from the MP
state were analyzed. Then, these trajectories were mapped into the energetic space (η, P, and Ṡ).
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As it can be checked in Equations (4), (17) and (18), the conductance ratio σhc plays a key role
both in the dynamic equations and in the energetic properties of the system. In this regard, it is noted
that the limits σhc → {0, ∞} are not physical from a dynamic point of view. For both the k = {−1, 1}
cases, the limit σhc → 0 leads to null power output P, entropy S (Equation (5)), and also null restitution
strengths (see Equation (18)), i.e., {P, S, A, B} → 0; thus, there is no power output and there are no
restitution forces. In comparison, the limit σhc → ∞ leads to {S, A, B} → ∞; thus, there is an infinite
entropy generation and infinite restitution forces. For this reason, in the present analysis, the more
realistic cases σhc = {10−6, 1, 106} were considered.

In Figure 4, the four rows display the trajectories obtained from numerically solving the dynamics
in Equation (18) for the k = 1 case. The first row displays the trajectories in the Thw and Tcw space,
while the next rows show, respectively, the mapping of the same trajectories over the η–P, Ṡ–P,
and Ṡ–η spaces. The three columns are for the abovementioned representative conductance values:
(a) σhc = 10−6, (b) σhc = 1, and (c) σhc = 106. In the first row, according to the initial state in each
trajectory, a clock hour analogy was used; in this way, the purple line corresponds to 12 o’clock and
red line to 3 o’clock. The Pareto optimal set is displayed (green points), together with some iso-velocity
contours. The white curve indicates the position of the MP state as σhc varies from 0 to ∞. All of these
points produce the same efficiency at MP given by η∗ = ηCAN . For the rest of the rows, the Pareto
front and the endoreversible curve are presented as well. Note also that in the three configurations
(columns), the total operation time is the same, but the tc/th (and σc) ratio varies, as can be seen in the
legend in each case. This figure reveals several key features:

(a) For a small σhc (left column), only trajectories between 9 and 3 o’clock are present in the Thc–Tcw

space (denoted in colors ranging from red to blue). Most of the observed trajectories (especially those
with darker colors) evolve to the stable state near the endoreversible curve in such a way that the
power and efficiency progressively increase their values, while entropy production decreases (see rows
2–4 in the first column). In other words, the relaxation process mainly drives the system toward a
thermodynamic steady state, thereby enhancing the thermodynamic performance of the engine (η and
P increase and Ṡ decreases).

(b) For σhc = 1 (second column), the trajectories arriving at the stable point from all directions are
clearly observed. Those in darker colors (from 9 to 3 o’clock) evolve, as in the above case, but closer
to the endoreversible curve, showing an increase in power and efficiency and a decrease in entropy
generation. In contrast, the trajectories denoted in colors ranging from orange to green (between 3
and 7 o’clock) evolve to the steady state near the Pareto front, with an increase in power output
but a decrease in efficiency and higher entropy production. Note also in this configuration how the
relaxation is well balanced between the trajectories approaching the endoreversible limit on the Pareto
front side and to the other side. However, the curves near the Pareto front are longer, meaning that
random perturbations tend to favor a locus directed toward the Pareto front.

(c) For a large σhc (last column), the trajectories evolve directly toward the endoreversible curve
first. In this part of the trajectory, η, P, and Ṡ are enhanced simultaneously. Later on, the system
evolves to the steady state, either through the endoreversible limit or the Pareto front.

(d) Although the sizes of the perturbations in the Thw–Tcw space are the same, the case with the
small σhc allows larger variations of power output, while the case where σhc = 1 exhibits the smallest
fluctuations in the η–Ṡ plane.

(e) The relaxation times (Equation (17)) are directly proportional to th, and from the expressions
of P, η, and S (see Equation (5)), only entropy generation depends on th. Thus, the characteristic time
scale of the relaxation is linked to the entropy scale of the system, a feature that connects the stability
with the thermodynamics of the system. In this entropy–control point of view, the dynamics for the
small values of σhc in the left column apply to greater th values and, as a consequence, when the contact
time of the heat engine with the cold reservoir is small. On the contrary, the dynamics for the large
values of σhc in the right column apply to smaller th values, i.e., when the contact time of the heat
engine with the cold reservoir is large.
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Figure 4. Trajectories in the Thw–Tcw space and the mapping over the η–P, Ṡ–P, and Ṡ–η spaces for
k = 1. (a) the σhc = 10−6 case; (b) the σhc = 1 case; (c) the σhc = 106 case. The values Th = 500 K and
τ = 0.4 were fixed. As in Figure 2, σc and th were chosen (for representation/comparison purposes) in
such a way that the MP was 70 W and the entropy at MP was 70 J/K in both cases.

In Figure 5, the corresponding configurations for k = −1 are depicted. Notice that the behavior of the
trajectories is almost the same as that in the k = 1 case, but here, the maximum power stationary state is
linked to different efficiencies as σhc increases from 0 to ∞. In particular, when σhc → 0, the efficiency at
maximum power is η∗ = 1−τ

2 = ηc
2 ; when σhc → 1, η∗ = 2(1−τ)

3+τ = 2ηC
4−ηC

; when σhc → ∞, η∗ = 1−τ
1+τ = ηC

2−ηC
.

The dynamics for different σhc are no longer linked to equal operation times tc + th. Another difference is
that the relaxation times are noticeably smaller and, therefore, the restitution forces are stronger. Additionally,
as σhc decreases (η∗ also decreases), the same temperature perturbations lead to the farthest starting points
in the energetic planes. In this way, the case of tlarge σhc (with a high efficiency) is the one with the smallest
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drops in η, P, and Ṡ (with shorter trajectories). This suggests that the system becomes more stable as the
efficiency in the steady state increases.

S

W K S


W K S


W K

S

W K S


W K S


W K

Thw[K]

Tcw[K]

th + tc = 200.12 s

th = 199.98 s

σc = 1.56 × 10
11
W ·K

Thw[K] Thw[K]

η η

η

η

P[W]

P[W]

th + tc = 285.71 s

th = 173.47 s

σc = 4.36 × 10
5
W ·K

th + tc = 499.25 s

th = 0.87 s

σc = 6.24 × 10
4
W ·K

(a) (b) (c)

Figure 5. Trajectories in the Thw–Tcw space and mapping over the η–P, Ṡ–P, and Ṡ–η spaces for k = −1.
In column (a) the σhc = 10−6 case; (b) the σhc = 1 case; (c) the σhc = 106 case. The values Th = 500 K
and τ = 0.4 were fixed. As in Figure 2, σc and th were chosen (for representation/comparison purposes)
in such a way that the MP was 70 W and the entropy at MP was 70 J/K in both cases.

6. Concluding Remarks

It was shown that the Pareto front, which represents the best compromise among power
output, efficiency, and entropy generation is related to endoreversible behavior, obtained herein
by analyzing the Newton and phenomenological heat transfer laws in the context of Carnot-like
models. These findings corroborate those obtained in the low-dissipation scheme.
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A set of dynamic equations were found based only on the assumption that the endoreversible
heat engine has a stationary state and from a Taylor expansion of the input/output heat fluxes in the
first order. A relationship between relaxation times and total operation time was obtained. It was
shown that the trajectories that lead the system back to the stationary state require much shorter times
than the cycle time, allowing the system to work under continuous cyclic operation.

Mapping of the relaxation trajectories into the energetic space allowed for an analysis of the
performance consequences of stability. The degree of symmetry of the conductance ratio in the
input/output heat exchange is the main valuable factor for stability dynamics. For small σhc values,
the thermodynamic trajectories improve the efficiency and power values with a decrease in entropy
generation, evolving near the endoreversible behavior. For larger σhc values, the first part of the
thermodynamic trajectories improve the efficiency and power values with a decrease in entropy
generation, evolving toward the endoreversible behavior and the Pareto front. In between these two
situations, i.e., for equal conductance values, (σhc = 1) trajectories with decreasing efficiencies and
increasing entropy generation can be found, with a preference for evolving near the Pareto front.

In summation, the stability of the irreversible Carnot-like heat engine exhibits two interesting
behaviors in which the fluctuations around the stationary state (due to external perturbations) would
likely maintain the system in an optimum state, or produce self-optimization induced by the stability.
A biased control of the operation parameters could result in an economic saving, as energy is needed
for the fine-tuning of parameter control. Finally, in this work the thermodynamic functions that were
selected as the most relevant for this heat engine model were η, P, and Ṡ. It is very likely that by
analyzing different stationary states, such as those predicted by the compromise Ecological [41] or
Omega [42] operation performances, the role of the Pareto front would be more evident, as occurred in
the case of the low-dissipation heat engine and refrigerator [1,2].

Another valuable remark is that the total entropy generation defines a time scale for both
the operation and relaxation times. Finally, this analysis laid down the grounds to analyze heat
devices dependent on working fluid properties, where the endoreversible hypothesis plays a relevant
role. Especially when the thermalization mechanisms are fast enough compared to the cycle time in
agreement with local equilibrium. This allows to incorporate, in a straightforward way, stochastic-type
perturbations into the analysis through additive noise in Equation (14).
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